Science.gov

Sample records for combined sustainable technology

  1. COMBINING INNOVATIVE RENEWABLE AND NATIVE AMERICAN TECHNOLOGIES IN THE DESIGN OF A SUSTAINABLE OUTDOOR CLASSROOM

    EPA Science Inventory

    Findings are summarized below in project-related outputs and outcomes.

    Objective 1: Plan by using a charrette process to relate educational needs of the sustainable outdoor classroom with potential innovative renewable and indigenous technologies.

    a. Out...

  2. Combining Project-based Instruction, Earth Science Content, and GIS Technology in Teacher Professional Development: Is this Holistic Approach Sustainable?

    NASA Astrophysics Data System (ADS)

    Rubino-Hare, L.; Bloom, N.; Claesgens, J.; Fredrickson, K.; Henderson-Dahms, C.; Sample, J. C.

    2012-12-01

    From 2009-2011, with support from the National Science Foundation (ITEST, DRL-0929846) and Science Foundation Arizona (MSAG-0412-09), educators, geologists and geographers at Northern Arizona University (NAU) partnered to offer professional development for interdisciplinary teams of secondary and middle school teachers with a focus on project-based instruction (PBI) using geospatial technologies (GST). While participating in professional development teachers received support and were held accountable to NAU staff. They implemented activities and pedagogical strategies presented, increased knowledge, skills, and confidence teaching with project-based instruction integrating GST, and their students demonstrated learning gains. Changes in student understanding are only observed when teachers continue to implement change, so the question remained: did these changes in practice sustain after official project support ended? In order to determine what, if anything, teachers sustained from the professional development and the factors that promoted or hindered sustained use of teaching with GST and PBI, data were collected one to two years following the professional development. Research questions included a) what pedagogical practices did teachers sustain following the professional learning experiences? and b) what contexts were present in schools that supported or limited the use of geospatial technologies as a teaching and learning tool? Findings from this study indicate that teachers fall into three categories of sustaining implementation - reformed implementers, mechanical implementers and non-implementers. School context was less of a factor in level of implementation than teachers' beliefs and philosophy of teaching and teachers' understanding of technology integration (teaching with technology vs. teaching technology). Case studies of teacher experiences will be presented along with implications for future professional development.

  3. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya

    NASA Astrophysics Data System (ADS)

    Mganga, K. Z.; Musimba, N. K. R.; Nyariki, D. M.

    2015-12-01

    Drylands occupy more than 80 % of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems.

  4. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya.

    PubMed

    Mganga, K Z; Musimba, N K R; Nyariki, D M

    2015-12-01

    Drylands occupy more than 80% of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems. PMID:26178534

  5. SUSTAINABLE TECHNOLOGY DIVISION - HOME PAGE

    EPA Science Inventory

    The mission of the Sustainable Technology Division is to advance the scientific understanding, development and application of technologies and methods for prevention, removal and control of environmental risks to human health and ecology. The Division is organized into four bra...

  6. Sustainable Technology at WPI

    ERIC Educational Resources Information Center

    Bartelson, Jon

    2009-01-01

    Worcester Polytechnic Institute (WPI) seeks to foster a community that produces sustainable solutions in all facets of campus life: (1) teaching; (2) research; (3) service; and (4) administrative operations. The university strives to model the three tenets of sustainability (environmental preservation, economic prosperity, and social equity for…

  7. Sustaining Innovation in Technological Education.

    ERIC Educational Resources Information Center

    Lawrenz, Frances; Keiser, Nanette; Lavoie, Bethann

    2003-01-01

    Examines the sustainability of technological innovation in community colleges. Reports on a Web-based survey that was followed up with site visits, which revealed that innovation was sustained by sharing power with collaborative partners, designing flexible programs, rewarding professional development, and using program data for marketing. Makes…

  8. Sustainability of wastewater treatment technologies.

    PubMed

    Muga, Helen E; Mihelcic, James R

    2008-08-01

    A set of indicators that incorporate environmental, societal, and economic sustainability were developed and used to investigate the sustainability of different wastewater treatment technologies, for plant capacities of <5 million gallons per day (MGD) or 18.9 x 10(3) cubic meters (m(3)/day). The technologies evaluated were mechanical (i.e., activated sludge with secondary treatment), lagoon (facultative, anaerobic, and aerobic), and land treatment systems (e.g., slow rate irrigation, rapid infiltration, and overland flow). The economic indicators selected were capital, operation and management, and user costs because they determine the economic affordability of a particular technology to a community. Environmental indicators include energy use, because it indirectly measures resource utilization, and performance of the technology in removing conventional wastewater constituents such as biochemical oxygen demand, ammonia nitrogen, phosphorus, and pathogens. These indicators also determine the reuse potential of the treated wastewater. Societal indicators capture cultural acceptance of the technology through public participation and also measure whether there is improvement in the community from the specific technology through increased job opportunities, better education, or an improved local environment. While selection of a set of indicators is dependent on the geographic and demographic context of a particular community, the overall results of this study show that there are varying degrees of sustainability with each treatment technology. PMID:17467148

  9. Sustainability and Sustainable Technologies fo a Better World

    EPA Science Inventory

    Sustainability and Sustainable Technologies for a Better World Subhas K. Sikdar National Risk Management Research Laboratory United States Environmental protection Agency 26 W. M.L. King Dr. Cincinnati, OH 45237 Sikdar.subhas@epa.gov ABSTRACT Students of engineering...

  10. Technology in the Classroom versus Sustainability

    ERIC Educational Resources Information Center

    Knott, Cynthia L.; Steube, G.; Yang, Hongqiang

    2013-01-01

    The use of technology in universities and colleges is an issue of interest and speculation. One issue related to technology use in the classroom is sustainability of resources that support the technology. This paper explores faculty perceptions about technology use and sustainability in an east coast university. This university has initiated a new…

  11. A technological infrastructure to sustain Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    La Mattina, Ernesto; Savarino, Vincenzo; Vicari, Claudia; Storelli, Davide; Bianchini, Devis

    In the Web 3.0 scenario, where information and services are connected by means of their semantics, organizations can improve their competitive advantage by publishing their business and service descriptions. In this scenario, Semantic Peer to Peer (P2P) can play a key role in defining dynamic and highly reconfigurable infrastructures. Organizations can share knowledge and services, using this infrastructure to move towards value networks, an emerging organizational model characterized by fluid boundaries and complex relationships. This chapter collects and defines the technological requirements and architecture of a modular and multi-Layer Peer to Peer infrastructure for SOA-based applications. This technological infrastructure, based on the combination of Semantic Web and P2P technologies, is intended to sustain Internetworked Enterprise configurations, defining a distributed registry and enabling more expressive queries and efficient routing mechanisms. The following sections focus on the overall architecture, while describing the layers that form it.

  12. Conceptualisation of Technology Education within the Paradigm of Sustainable Development

    ERIC Educational Resources Information Center

    Pavlova, Margarita

    2009-01-01

    This article addresses the issue of how sustainable development might be conceptualised and used to advance technology education practice. It is argued that a conceptualisation of sustainable development based on a combination of weak anthropocentrism and value based approaches within particular social, environmental and economic contexts provides…

  13. Toward Sustainable Practices in Technology Education

    ERIC Educational Resources Information Center

    Elshof, Leo

    2009-01-01

    This paper discusses the problematic relationship between technology education, consumption and environmental sustainability. The emerging global sustainability crisis demands an educational response that moves beyond mere "tinkering" with classroom practices, toward technology education which embraces life cycle thinking and "eco-innovation". It…

  14. Combined optimization model for sustainable energization strategy

    NASA Astrophysics Data System (ADS)

    Abtew, Mohammed Seid

    Access to energy is a foundation to establish a positive impact on multiple aspects of human development. Both developed and developing countries have a common concern of achieving a sustainable energy supply to fuel economic growth and improve the quality of life with minimal environmental impacts. The Least Developing Countries (LDCs), however, have different economic, social, and energy systems. Prevalence of power outage, lack of access to electricity, structural dissimilarity between rural and urban regions, and traditional fuel dominance for cooking and the resultant health and environmental hazards are some of the distinguishing characteristics of these nations. Most energy planning models have been designed for developed countries' socio-economic demographics and have missed the opportunity to address special features of the poor countries. An improved mixed-integer programming energy-source optimization model is developed to address limitations associated with using current energy optimization models for LDCs, tackle development of the sustainable energization strategies, and ensure diversification and risk management provisions in the selected energy mix. The Model predicted a shift from traditional fuels reliant and weather vulnerable energy source mix to a least cost and reliable modern clean energy sources portfolio, a climb on the energy ladder, and scored multifaceted economic, social, and environmental benefits. At the same time, it represented a transition strategy that evolves to increasingly cleaner energy technologies with growth as opposed to an expensive solution that leapfrogs immediately to the cleanest possible, overreaching technologies.

  15. Making technological innovation work for sustainable development.

    PubMed

    Anadon, Laura Diaz; Chan, Gabriel; Harley, Alicia G; Matus, Kira; Moon, Suerie; Murthy, Sharmila L; Clark, William C

    2016-08-30

    This paper presents insights and action proposals to better harness technological innovation for sustainable development. We begin with three key insights from scholarship and practice. First, technological innovation processes do not follow a set sequence but rather emerge from complex adaptive systems involving many actors and institutions operating simultaneously from local to global scales. Barriers arise at all stages of innovation, from the invention of a technology through its selection, production, adaptation, adoption, and retirement. Second, learning from past efforts to mobilize innovation for sustainable development can be greatly improved through structured cross-sectoral comparisons that recognize the socio-technical nature of innovation systems. Third, current institutions (rules, norms, and incentives) shaping technological innovation are often not aligned toward the goals of sustainable development because impoverished, marginalized, and unborn populations too often lack the economic and political power to shape innovation systems to meet their needs. However, these institutions can be reformed, and many actors have the power to do so through research, advocacy, training, convening, policymaking, and financing. We conclude with three practice-oriented recommendations to further realize the potential of innovation for sustainable development: (i) channels for regularized learning across domains of practice should be established; (ii) measures that systematically take into account the interests of underserved populations throughout the innovation process should be developed; and (iii) institutions should be reformed to reorient innovation systems toward sustainable development and ensure that all innovation stages and scales are considered at the outset. PMID:27519800

  16. QUEST: Qualifying Environmentally Sustainable Technologies

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Over the years, pollution prevention has proven to be a means to comply with environmental regulations, improve product performance and reduce costs. The NASA Acquisition Pollution Prevention (AP2) Program was created to help individual NASA Centers and programs work together to evaluate and adopt environmentally preferable technologies and practices. The AP2 Program accomplishes its mission using a variety of tools such as networking, information/technology exchange and partnering. Due to its extensive network of contacts, the AP2 Program is an excellent resource for finding existing solutions to problems. If no solution is readily known, the AP2 Program works to identify potential solutions and partners for demonstration/ validation projects. Partnering to prevent pollution is a cornerstone of NASA's prime mission and the One NASA Initiative. This annual newsletter highlights some of our program's collaborative efforts. I believe you will discover how the AP2 Program is responsive in meeting the Agency's environmental management strategic plans.

  17. Technology in Sustainable Development Context

    NASA Astrophysics Data System (ADS)

    Uno, Kimio

    The economic and demographic growth in Asia has put increased importance to this part of the world whose contribution to the global community is vital in meeting global challenges. International cooperation in engineering education assumes a pivotal role in providing access to the frontiers of scientific and technological knowledge to the growing youths in the region. The thrust for advancement has been provided by the logic coming from the academic world itself, whereas expectations are high that the engineering education responds to challenges that are coming from outside the universities, such as environmental management, disaster management, and provision of common knowledge platform across disciplinary lines. Some cases are introduced in curriculum development that incorporates fieldwork and laboratory work intended to enhance the ability to cooperate. The new mode is discussed with focus on production, screening, storing/delivery, and leaning phases of knowledge. The strength of shared information will be enhanced through international cooperation.

  18. Sustaining integrated technology in undergraduate mathematics

    NASA Astrophysics Data System (ADS)

    Oates, Greg

    2011-09-01

    The effective integration of technology into the teaching and learning of mathematics remains one of the critical challenges facing contemporary tertiary mathematics. This article reports on some significant findings of a wider study investigating the use of technology in undergraduate mathematics. It first discusses a taxonomy developed to describe and compare technology use within individual courses and departments that identifies a complex range of factors, summarized under six defining characteristics of an integrated technology mathematics curriculum (ITMC). An instrument for a simple comparison of technology use employing the elements of this taxonomy is provided. It then presents evidence gathered from an observational study of technology implementation at The University of Auckland, and examines this evidence against the taxonomy. The findings suggest that while the underlying complexity of the taxonomy limits a categorical definition of integrated technology, it does provide an effective means for examining the issues confronting those wishing to implement and sustain integrated technology in undergraduate mathematics. An integrated, holistic approach, which aims for curricular consistency across all the characteristics described in the taxonomy, provides the basis for a more effective and sustainable ITMC. Key findings, some of which will be considered in more detail in this discussion, include: the importance of mandating technology use in official departmental policy; paying attention to consistency and fairness in assessment; re-evaluating the value of topics in the curriculum; re-establishing the goals of undergraduate courses; and developing the pedagogical technical knowledge of teaching staff.

  19. Hydrazine Catalyst Production: Sustaining S-405 Technology

    NASA Technical Reports Server (NTRS)

    Wucherer, E. J.; Cook, Timothy; Stiefel, Mark; Humphries, Randy, Jr.; Parker, Janet

    2003-01-01

    The development of the iridium-based Shell 405 catalyst for spontaneous decomposition of hydrazine was one of the key enabling technologies for today's spacecraft and launch vehicles. To ensure that this crucial technology was not lost when Shell elected to exit the business, Aerojet, supported by NASA, has developed a dedicated catalyst production facility that will supply catalyst for future spacecraft and launch vehicle requirements. We have undertaken a program to transfer catalyst production from Shell Chemical USA (Houston, TX) to Aerojet's Redmond, WA location. This technology transition was aided by Aerojet's 30 years of catalyst manufacturing experience and NASA diligence and support in sustaining essential technologies. The facility has produced and tested S-405 catalyst to existing Shell 405 specifications and standards. Our presentation will describe the technology transition effort including development of the manufacturing facility, capture of the manufacturing process, test equipment validation, initial batch build and final testing.

  20. Combining sustainable energy development and employment strategies

    SciTech Connect

    Olesen, G.B.

    1994-12-31

    International Network for Sustainable Energy--Europe (INforSE--Europe) is developing proposals to focus on the important connections between CO,-abatement strategies and employment. Basically, support for unemployed people in industrialized countries can be used to support job-creating sustainable energy measures. This paper describes the first version of the proposals for the European Union (EU), covering estimates of potential employment effects of wind energy, solar thermal energy, combustible and digestible biomass, and increased energy efficiency in heat and electricity. The result of these first estimates is that these proposals can create directly about 600,000 jobs and by induced effects an additional 1,300,000 jobs lasting for more than 10 years. The proposed elements of a sustainable energy strategy will have a significant role in reducing the unemployment of 17 million persons in EU. Because of reduced expenses of the states for unemployment benefits and increased tax revenue, it is estimated that the states can support the implementation of the proposals with at least 25% of the investments and still have a positive effect on the state budgets, The paper also describes the worldwide INforSE campaign and a number of other NGO activities on environment, energy, and employment.

  1. Sustainable technologies for the building construction industry

    SciTech Connect

    Vanegas, J.A.; DuBose, J.R.; Pearce, A.R.

    1995-12-31

    As the dawn of the twenty-first century approaches, the current pattern of unsustainable, inequitable and unstable asymmetric demographic and economic growth has forced many segments of society to come together in facing a critical challenge: how can societies across the world meet their current basic human needs, aspirations and desires, without compromising the ability of future generations to meet their own needs? At the core of this challenge is the question: how can the human race maintain in perpetuity a healthy, physically attractive and biologically productive environment. The development path that we have been taking, in the past few centuries, has been ultimately detrimental to the health of our surrounding ecological context. We are consuming an increasing share of the natural resources available to use on this planet, and we are creating sufficiently large amounts of waste and pollution such that the earth can no longer assimilate our wastes and recover from the negative impacts. This is a result of a growing population as well as new technologies which make it easier for use to access natural resources and also require the consumption of more resources. Unsustainable technology has been the result of linear rather than cyclic thinking. The paradigm shift from linear to cyclic thinking in technological design is the crux of the shift from unsustainability to sustainability. This paper discusses the implications for the building design and construction industries. Strategies, technologies, and opportunities are presented to improve the sustainability of the built environment.

  2. Security Technology Demonstration and Validation Sustainability Plan

    SciTech Connect

    2008-08-31

    This report describes the process of creating continuity and sustainability for demonstration and validation (DEMVAL) assets at the National Security Technology Incubator (NSTI). The DEMVAL asset program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The mission of the NSTI program is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. Part of this support is envisioned to be research and development of companies’ technology initiatives, at the same time providing robust test and evaluation of actual development activities. This program assists companies in developing technologies under the NSTI program through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. Development of the commercial potential for national security technologies is a significant NSTI focus. As part of the process of commercialization, a comprehensive DEMVAL program has been recognized as an essential part of the overall incubator mission. A number of resources have been integrated into the NSTI program to support such a DEMVAL program.

  3. Energy technology progress for sustainable development

    SciTech Connect

    Arvizu, D.E.; Drennen, T.E.

    1997-03-01

    Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option.

  4. Sustainable Technology: Community Surveys of Requisite Skills, Spring 2000.

    ERIC Educational Resources Information Center

    Pezzoli, Jean A.; Ainsworth, Don

    The goal of this study was to obtain feedback from relevant community businesses regarding skills needed by employees in Sustainable Technologies. Survey results will help design the innovative Sustainable Technologies curriculum, which is under development at the Maui Community College. In the fall 1999 semester, the Sustainable Technologies…

  5. Sustainable sanitation technology options for urban slums.

    PubMed

    Katukiza, A Y; Ronteltap, M; Niwagaba, C B; Foppen, J W A; Kansiime, F; Lens, P N L

    2012-01-01

    Poor sanitation in urban slums results in increased prevalence of diseases and pollution of the environment. Excreta, grey water and solid wastes are the major contributors to the pollution load into the slum environment and pose a risk to public health. The high rates of urbanization and population growth, poor accessibility and lack of legal status in urban slums make it difficult to improve their level of sanitation. New approaches may help to achieve the sanitation target of the Millennium Development Goal (MDG) 7; ensuring environmental sustainability. This paper reviews the characteristics of waste streams and the potential treatment processes and technologies that can be adopted and applied in urban slums in a sustainable way. Resource recovery oriented technologies minimise health risks and negative environmental impacts. In particular, there has been increasing recognition of the potential of anaerobic co-digestion for treatment of excreta and organic solid waste for energy recovery as an alternative to composting. Soil and sand filters have also been found suitable for removal of organic matter, pathogens, nutrients and micro-pollutants from grey water. PMID:22361648

  6. EVALUATION OF CURRENT SUSTAINABILITY ASSESSMENT OF BIOBASED TECHNOLOGY

    EPA Science Inventory

    Sustainable technology is driven by economic competitiveness, government policies and public pressure. The claim of inherent cleanliness for biotechnology is too simplistic. Each application of biotechnology must be evaluated for suitable characteristics of sustainability. The ...

  7. Relative Sustainability and Making Technological Choices

    EPA Science Inventory

    ABSTRACT System sustainability is a dynamic concept. Sustainability analysis is thus about making decisions on the overall, relative desirability of a system under study. The appropriate approach is to consider environmental, societal, and economic impacts of the system and de...

  8. MCC Instruction in Sustainable Technologies. Follow-Up Study.

    ERIC Educational Resources Information Center

    Pezzoli, Jean A.; Ainsworth, Donald

    The purposes of this study were to collect feedback from Sustainable Technologies interns regarding the usefulness and effectiveness of their education and training from the Maui Community College Instruction in Sustainable Technologies (MIST) program, and to further assess community need for a new Associate Degree program in Sustainable…

  9. Ceramic Technologies for Sustainability: Perspectives from Siemens Corporate Technology

    NASA Astrophysics Data System (ADS)

    Rossner, W.

    2011-05-01

    Climate change, environmental care, energy efficiency, scarcity of resources, population growth, demographic change, urbanization and globalization are the most pressing questions in the coming century. They will have an effect on all regions and groups of global society. Effective solutions will require immediate, efficient and concerted activities in all areas at the social, economic and environmental level. Since the 1980s it has been understood that developments should examine their sustainability more seriously to ensure that they do not compromise the ability of future generations to meet their own needs. This has also attributes to the sustainability demand of ceramic technologies. In the last decades a wide variety of ceramics developments have been brought to the markets, ranging from human implants to thermal barrier coatings in fossil power plants. There are innovative developments which should enter the market within the next years like solid oxide fuel cells or separation membranes for gas and liquids. Further ahead there will be ceramics with self-adapting, self-healing and multifunctional features to generate novel applications to save energy and to reduce carbon footprints across the entire value creation process of energy, industry, transportation and manufacturing.

  10. Ventilator Technologies Sustain Critically Injured Patients

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Consider this scenario: A soldier has been critically wounded in a sudden firefight in a remote region of Afghanistan. The soldier s comrades attend to him and radio for help, but the soldier needs immediate medical expertise and treatment that is currently miles away. The connection between medical support for soldiers on the battlefield and astronauts in space may not be immediately obvious. But when it comes to providing adequate critical care, NASA and the military have very similar operational challenges, says Shannon Melton of NASA contractor Wyle Integrated Science and Engineering. Melton works within Johnson Space Center s Space Medicine Division, which supports astronaut crew health before, during, and after flight. In space, we have a limited number of care providers, and those providers are not always clinicians with extensive medical training. We have limited room to provide care, limited consumables, and our environment is not like that of a hospital, she says. The Space Medicine Division s Advanced Projects Group works on combining the expertise of both clinicians and engineers to develop new capabilities that address the challenges of medical support in space, including providing care to distant patients. This field, called telemedicine, blends advanced communications practices and technologies with innovative medical devices and techniques to allow caregivers with limited or no medical experience to support a patient s needs. NASA, just by its nature, has been doing remote medicine since the beginning of the Space Program, says Melton, an engineer in the Advanced Projects Group. Since part of NASA s mandate is to transfer the results of its technological innovation for the benefit of the public, the Agency has worked with doctors and private industry to find ways to apply the benefits of space medicine on Earth. In one such case, a NASA partnership has resulted in new technologies that may improve the quality of emergency medicine for wounded

  11. A Decision Tool for Selecting a Sustainable Learning Technology Intervention

    ERIC Educational Resources Information Center

    Raji, Maryam; Zualkernan, Imran

    2016-01-01

    Education is a basic human right. In pursuit of this right, governments in developing countries and their donors often invest scarce resources in educational initiatives that are sometimes not sustainable. This paper addresses the problem of selecting a sustainable learning technology intervention (LTI) for a typical developing country. By solving…

  12. METAL FORMING (INDUSTRIAL MULTIMEDIA BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    The Industrial Multimedia Branch's research program in metal products manufacturing was developed to identify environmental problems and deliver solutions for environmental improvements based on sustainable technology to the industry. There are over 35,000 manufacturing establish...

  13. PROJECT LISTING - CLEAN PROCESSES BRANCH (SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    This list of projects for the Clean Processes Branch (CPB)of NRMRL's Sustainable Technology Division covers CPB projects in the areas of metal finishing and electronics pollution prevention; green engineering for chemical synthesis; solvent and coatings alternatives; separations ...

  14. QuEST: Qualifying Environmentally Sustainable Technologies

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2012-01-01

    Articles in this issue inlude: (1) Foundation of Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) Technology Evaluation is Testing and Qualification, (2) Materials Management and Substitution Efforts, (3 Recycling and Pollution Control Efforts, and (4) Remediation Efforts

  15. Technological solution for vulnerable communities: Questioning the sustainability of Appropriate Technology

    NASA Astrophysics Data System (ADS)

    Sianipar, C. P. M.; Dowaki, K.; Yudoko, G.

    2015-01-01

    Vulnerability eradication has become an emerging concern in today's society following the increasing uncertainties in achieving societal resilience, particularly in vulnerable communities. Furthermore, incorporating technological solution, especially appropriate technology (AT), into such concern requires interdisciplinary understandings to achieve a holistic eradication based on the particularities of each community. This study aims to briefly reveal existing scholarly discourses and investigate potential gap(s) between previous researches. Literatures, particularly consisting meta-analysis on previous scholarly discussions, are surveyed. The findings reveal three progress among scientific discourses. The first one is the paradigm shift of developmental purposes from typical development to empowerment. Next, concerns in technology development indicate the parallel movement toward empowerment. Then, previous methodological developments, including approach in sustaining AT, indicate the needs to assess the future based on sustainability. Therefore, a new research is proposed to develop an assessment framework on AT for vulnerability eradication on the basis of empowerment paradigm, extended focuses in technology development, and extended coverage of future changes in dynamic matter. The framework needs to be developed based on the combination of positivist-deductive-qualitative research paradigms. This is intended to generalize the framework for being used in different cases, to build an applicative framework as an integral part of existing body of knowledge, and to develop an enriched and flexible construction of framework. Looking at existing researches, this brief study proposes insights to move scientific progress toward a more holistic vulnerability eradication using AT solution both in conceptual and practical levels.

  16. Sustaining Integrated Technology in Undergraduate Mathematics

    ERIC Educational Resources Information Center

    Oates, Greg

    2011-01-01

    The effective integration of technology into the teaching and learning of mathematics remains one of the critical challenges facing contemporary tertiary mathematics. This article reports on some significant findings of a wider study investigating the use of technology in undergraduate mathematics. It first discusses a taxonomy developed to…

  17. Information Technology, Core Competencies, and Sustained Competitive Advantage.

    ERIC Educational Resources Information Center

    Byrd, Terry Anthony

    2001-01-01

    Presents a model that depicts a possible connection between competitive advantage and information technology. Focuses on flexibility of the information technology infrastructure as an enabler of core competencies, especially mass customization and time-to-market, that have a relationship to sustained competitive advantage. (Contains 82…

  18. Meeting Challenges to Sustainable Development through Science and Technology Education

    ERIC Educational Resources Information Center

    Holbrook, Jack

    2009-01-01

    This paper is intended to stimulate discussion and recommendations related to science and technology education and its role in sustainable development. It puts forward points of view and addresses concerns in science education. The paper recognizes that all in not well within science and technology education and that there are concerns related to…

  19. Sustainable LED Fluorescent Light Replacement Technology

    SciTech Connect

    2011-06-30

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: • Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. • Environmental Impact Review – Designs are

  20. Combining instrumental and contextual approaches: nanotechnology and sustainable development.

    PubMed

    Liao, Nina

    2009-01-01

    Billions of people live in poverty, with no access to safe drinking water or solutions for other critical health and medical needs. Nanotechnology is poised to create workable solutions for large-scale public health needs in developing countries, including improving water quality and providing life-saving pharmaceuticals. There are two views on how emerging technologies such as nanotechnology can influence and affect developing countries. Instrumentalists believe that the international community can transfer nanotechnology from one context to another and use it to assist the poor. Contextualists warn that nanotechnology can increase inequality in underdeveloped regions. Because of inadequacies in both positions, the international community must adopt a mixed strategy. This article argues that this mixed strategy should target the bottom of the pyramid, develop native capability, implement emergency protocols in projects, create accountability, and engage the public. Managed well, this strategy can propel developing countries toward sustainable development. PMID:20122117

  1. Wind Energy Technology: Training a Sustainable Workforce

    ERIC Educational Resources Information Center

    Krull, Kimberly W.; Graham, Bruce; Underbakke, Richard

    2009-01-01

    Through innovative teaching and technology, industry and educational institution partnerships, Cloud County Community College is preparing a qualified workforce for the emerging wind industry estimated to create 80,000 jobs by 2020. The curriculum blends on-campus, on-line and distance learning, land-lab, and field training opportunities for…

  2. Critical materialism: science, technology, and environmental sustainability.

    PubMed

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite. PMID:20795298

  3. Scientific challenges in sustainable energy technology

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan

    2006-04-01

    We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

  4. Scientific Challenges in Sustainable Energy Technology

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan

    2006-03-01

    This presentation will describe and evaluate the challenges, both technical, political, and economic, involved with widespread adoption of renewable energy technologies. First, we estimate the available fossil fuel resources and reserves based on data from the World Energy Assessment and World Energy Council. In conjunction with the current and projected global primary power production rates, we then estimate the remaining years of supply of oil, gas, and coal for use in primary power production. We then compare the price per unit of energy of these sources to those of renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the degree to which supply/demand forces stimulate a transition to renewable energy technologies in the next 20-50 years. Secondly, we evaluate the greenhouse gas buildup limitations on carbon-based power consumption as an unpriced externality to fossil-fuel consumption, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit of globally averaged GDP, as produced by the Intergovernmental Panel on Climate Change (IPCC). A greenhouse gas constraint on total carbon emissions, in conjunction with global population growth, is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, at potentially daunting levels relative to current renewable energy demand levels. Thirdly, we evaluate the level and timescale of R&D investment that is needed to produce the required quantity of carbon-free power by the 2050 timeframe, to support the expected global energy demand for carbon-free power. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected global carbon-free energy demand requirements. Fifth, we evaluate the challenges to the chemical sciences to

  5. Sustainability, arid grasslands and grazing: New applications for technology

    SciTech Connect

    Pregenzer, A.L.; Parmenter, R.; Passell, H.D.; Budge, T.; Vande Caste, J.

    1999-12-08

    The study of ecology is taking on increasing global importance as the value of well-functioning ecosystems to human well-being becomes better understood. However, the use of technological systems for the study of ecology lags behind the use of technologies in the study of other disciplines important to human well-being, such as medicine, chemistry and physics. The authors outline four different kinds of large-scale data needs required by land managers for the development of sustainable land use strategies, and which can be obtained with current or future technological systems. They then outline a hypothetical resource management scenario in which data on all those needs are collected using remote and in situ technologies, transmitted to a central location, analyzed, and then disseminated for regional use in maintaining sustainable grazing systems. They conclude by highlighting various data-collection systems and data-sharing networks already in operation.

  6. Bridge to a sustainable future: National environmental technology strategy

    SciTech Connect

    1995-04-01

    For the past two years the Administration has sought the views of Congress, the states, communities, industry, academia, nongovernmental organizations, and interested citizens on ways to spur the development and use of a new generation of environmental technologies. This document represents the views of thousands of individuals who participated in events around the country to help craft a national environmental technology strategy that will put us on the path to sustainable development.

  7. Developing a Global Mindset: Integrating Demographics, Sustainability, Technology, and Globalization

    ERIC Educational Resources Information Center

    Aggarwal, Raj

    2011-01-01

    Business schools face a number of challenges in responding to the business influences of demographics, sustainability, and technology--all three of which are also the fundamental driving forces for globalization. Demographic forces are creating global imbalances in worker populations and in government finances; the world economy faces…

  8. Needs Assessment for Education in Sustainable Technologies on Maui.

    ERIC Educational Resources Information Center

    Pezzoli, Jean A.

    In Spring 1997, Maui Community College (MCC), in Hawaii, conducted a survey of Maui businesses to determine perceived needs for a certificate or associate degree program in sustainable technologies. Questionnaires were mailed to 500 businesses, including building, electrical, and plumbing contractors, architects, waste disposal, power generators,…

  9. Ethnicity and attitudes towards life sustaining technology.

    PubMed

    Blackhall, L J; Frank, G; Murphy, S T; Michel, V; Palmer, J M; Azen, S P

    1999-06-01

    The ethical and legal implications of decisions to withhold and withdraw life support have been widely debated. Making end-of-life decisions is never easy, and when the cultural background of doctor and patient differ, communication about these issues may become even more difficult. In this study, we examined the attitudes of people aged 65 and older from different ethnic groups toward foregoing life support. To this end, we conducted a survey of 200 respondents from each of four ethnic groups: European-American, African-American, Korean-American and Mexican-American (800 total), followed by in-depth ethnographic interviews with 80 respondents. European-Americans were the least likely to both accept and want life-support (p < 0.001). Mexican-Americans were generally more positive about the use of life-support and were more likely to personally want such treatments (p < 0.001). Ethnographic interviews revealed that this was due to their belief that life-support would not be suggested if a case was truly hopeless. Compared to European-Americans, Korean-Americans were very positive regarding life-support (RR = 6.7, p < 0.0001); however, they did not want such technology personally (RR = 1.2, p = 0.45). Ethnographic interviews revealed that the decision of life support would be made by their family. Compared to European-Americans, African-Americans felt that it was generally acceptable to withhold or withdraw life-support (RR = 1.6, p = 0.06), but were the most likely to want to be kept alive on life-support (RR = 2.1, p = 0.002). Ethnographic interviews documented a deep distrust towards the health care system and a fear that health care was based on one's ability to pay. We concluded that (a) ethnicity is strongly related to attitudes toward and personal wishes for the use of life support in the event of coma or terminal illness, and (b) this relationship was complex and in some cases, contradictory. PMID:10405016

  10. The Social Agenda of Education for Sustainable Development within Design & Technology: The Case of the Sustainable Design Award

    ERIC Educational Resources Information Center

    Pitt, James; Lubben, Fred

    2009-01-01

    The paper explores the adoption of the social dimensions of sustainability in technological design tasks. It uses a lens which contrasts education for sustainability as "a frame of mind" with an attempt to bridge a "value-action gap". This lens is used to analyse the effectiveness of the Sustainable Design Award, an intervention in post-16…

  11. Education for Sustainable Development: Current Discourses and Practices and Their Relevance to Technology Education

    ERIC Educational Resources Information Center

    Leal Filho, Walter; Manolas, Evangelos; Pace, Paul

    2009-01-01

    Technology education is a well-established field of knowledge whose applications have many ramifications. For example, technology education may be used as a tool in meeting the challenges of sustainable development. However, the usefulness of technology education to the sustainability debate as a whole and to education for sustainable development…

  12. A combined ANP-delphi approach to evaluate sustainable tourism

    SciTech Connect

    Garcia-Melon, Monica

    2012-04-15

    The evaluation of sustainable tourism strategies promoted by National Parks (NP) related stakeholders is a key concern for NP managers. To help them in their strategic evaluation procedures, in this paper we propose a methodology based on the Analytic Network Process and a Delphi-type judgment-ensuring procedure. The approach aims at involving stakeholders in a participatory and consensus-building process. The methodology was applied to Los Roques NP in Venezuela. The problem included three sustainable tourism strategies defined by the stakeholders: eco-efficient resorts, eco-friendly leisure activities and ecological transportation systems. Representatives of eight stakeholders participated in the methodology. 13 sustainability criteria were selected. Results provide some important insights into the overall philosophy and underlying participants' conception of what sustainable development of Los Roques NP means. This conception is broadly shared by stakeholders as they coincided in the weights of most of the criteria, which were assigned individually through the questionnaire. It is particularly noteworthy that tourists and environmentalists almost fully match in their assessments of criteria but not of the alternatives. Moreover, there is a great agreement in the final assessment. This suggests that the regular contact among the different stakeholders, i.e. tourists with inhabitants, authorities with environmentalists, tour operators with representatives of the ministry, etc. has led to a common understanding of the opportunities and threats for the NP. They all agreed that the procedure enhances participation and transparency and it is a necessary source of information and support for their decisions.

  13. Recent developments in microbial fuel cell technologies for sustainable bioenergy.

    PubMed

    Watanabe, Kazuya

    2008-12-01

    Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes. PMID:19134546

  14. An algorithmic interactive planning framework in support of sustainable technologies

    NASA Astrophysics Data System (ADS)

    Prica, Marija D.

    This thesis addresses the difficult problem of generation expansion planning that employs the most effective technologies in today's changing electric energy industry. The electrical energy industry, in both the industrialized world and in developing countries, is experiencing transformation in a number of different ways. This transformation is driven by major technological breakthroughs (such as the influx of unconventional smaller-scale resources), by industry restructuring, changing environmental objectives, and the ultimate threat of resource scarcity. This thesis proposes a possible planning framework in support of sustainable technologies where sustainability is viewed as a mix of multiple attributes ranging from reliability and environmental impact to short- and long-term efficiency. The idea of centralized peak-load pricing, which accounts for the tradeoffs between cumulative operational effects and the cost of new investments, is the key concept in support of long-term planning in the changing industry. To start with, an interactive planning framework for generation expansion is posed as a distributed decision-making model. In order to reconcile the distributed sub-objectives of different decision makers with system-wide sustainability objectives, a new concept of distributed interactive peak load pricing is proposed. To be able to make the right decisions, the decision makers must have sufficient information about the estimated long-term electricity prices. The sub-objectives of power plant owners and load-serving entities are profit maximization. Optimized long-term expansion plans based on predicted electricity prices are communicated to the system-wide planning authority as long-run bids. The long-term expansion bids are cleared by the coordinating planner so that the system-wide long-term performance criteria are satisfied. The interactions between generation owners and the coordinating planning authority are repeated annually. We view the proposed

  15. Evaluation of the Sustainable Development Graduation Track at Delft University of Technology

    ERIC Educational Resources Information Center

    De Werk, G.; Kamp, L. M.

    2008-01-01

    This paper evaluates the sustainable development graduation track at TU Delft. This track can be followed by all students of TU Delft. It consists of an interdisciplinary colloquium "Technology in Sustainable Development", 300 h of self-chosen courses on sustainable development and a graduation project in which sustainable development is…

  16. What would an environmentally sustainable reproductive technology industry look like?

    PubMed

    Richie, Cristina

    2015-05-01

    Through the use of assisted reproductive technologies (ARTs), multiple children are born adding to worldwide carbon emissions. Evaluating the ethics of offering reproductive services against its overall harm to the environment makes unregulated ARTs unjustified, yet the ART business can move towards sustainability as a part of the larger green bioethics movement. By integrating ecological ethos into the ART industry, climate change can be mitigated and the conversation about consumption can become a broader public discourse. Although the impact of naturally made children on the environment is undeniable, I will focus on the ART industry as an anthropogenic source of carbon emissions which lead to climate change. The ART industry is an often overlooked source of environmental degradation and decidedly different from natural reproduction as fertility centres provide a service for a fee and therefore can be subject to economic, policy and bioethical scrutiny. In this article, I will provide a brief background on the current state of human-driven climate change before suggesting two conservationist strategies that can be employed in the ART business. First, endorsing a carbon capping programme that limits the carbon emissions of ART businesses will be proposed. Second, I will recommend that policymakers eliminate funded ARTs for those who are not biologically infertile. I will conclude the article by urging policymakers and all those concerned with climate change to consider the effects of the reproductive technologies industry in light of climate change and move towards sustainability. PMID:25060852

  17. P2, RECYCLING AND WASTE TREATMENT SYSTEMS PILOT (ETV - INDUSTRIAL MULTIMEDIA BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    The Environmental Technology Verification Program (ETV) evaluates the feasibility of a private-sector approach to technology verification in an attempt to reduce the risk to small business of adopting new environmental control processes. NRMRL's Sustainable Technology Division's ...

  18. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management. PMID:27620092

  19. Harnessing: Technologies for Sustainable Reindeer Husbandry in the Arctic

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.; Yurchak, Boris; Turi, Johan Mathis; Mathiesen, Svein

    2004-01-01

    To accelerate the development of sustainable reindeer husbandry under the lead of indigenous reindeer herders, it is critical to empower reindeer herders with the best available technologies and to promote a new kind of science where traditional knowledge is fully integrated into the scientific management of the natural environment in the Arctic. This is particularly true given the dramatic environmental, climatic, economic, social and industrial changes, which have taken place across the Arctic in recent years, all of which have had serious impacts on the reindeer herding communities of the North. The Anar Declaration, adopted by the 2d World Reindeer Herders Congress (WRHC), in Inari, Finland, June 2001drew guidelines for the development of a sustainable reindeer husbandry based on reindeer peoples values and goals. The declaration calls for the reindeer herding peoples to be given the possibilities to develop and influence the management of the reindeer industry and its natural environment because of their knowledge and traditional practices. At the same time, Arctic scientists from many institutions and governments are carrying out increasingly highly technical reindeer related research activities. It is important that the technologies and results of these activities be more commonly co-produced with the reindeer herder community and/or made more readily available to the reindeer peoples for comparison with traditional knowledge for improved herd management. This paper describes a project in which reindeer herders and scientists are utilizing technologies to create a system for collecting and sharing knowledge. The project, Reindeer Mapper, is creating an information management and knowledge sharing system, which will help make technologies more readily available to the herder community for observing, data collection and analysis, monitoring, sharing, communications, and dissemination of information - to be integrated with traditional, local knowledge. The

  20. Indicators for technological, environmental and economic sustainability of ozone contactors.

    PubMed

    Zhang, Jie; Tejada-Martinez, Andres E; Lei, Hongxia; Zhang, Qiong

    2016-09-15

    Various studies have attempted to improve disinfection efficiency as a way to improve the sustainability of ozone disinfection which is a critical unit process for water treatment. Baffling factor, CT10, and log-inactivation are commonly used indicators for quantifying disinfection credits. However the applicability of these indicators and the relationship between these indicators have not been investigated in depth. This study simulated flow, tracer transport, and chemical species transport in a full-scale ozone contactor operated by the City of Tampa Water Department and six other modified designs using computational fluid dynamics (CFD). Through analysis of the simulation results, we found that baffling factor and CT10 are not optimal indicators of disinfection performance. We also found that the relationship between effluent CT obtained from CT transport simulation and baffling factor depends on the location of ozone release. In addition, we analyzed the environmental and economic impacts of ozone contactor designs and upgrades and developed a composite indicator to quantify the sustainability in technological, environmental and economic dimensions. PMID:27322565

  1. Designing Catalysts for Clean Technology, Green Chemistry, and Sustainable Development

    NASA Astrophysics Data System (ADS)

    Meurig Thomas, John; Raja, Robert

    2005-08-01

    There is a pressing need for cleaner fuels (free or aromatics and of minimal sulfur content) or ones that convert chemical energy directly to electricity, silently and without production of noxious oxides and particulates; chemical, petrochemical and pharmaceutical processes that may be conducted in a one-step, solvent-free manner and that use air as the preferred oxidant; and industrial processes that minimize consumption of energy, production of waste, or the use of corrosive, explosive, volatile, and nonbiodegradable materials. All these needs and other desiderata, such as the in situ production and containment of aggressive and hazardous reagents, and the avoidance of use of ecologically harmful elements, may be achieved by designing the appropriate heterogeneous inorganic catalyst, which ideally should be cheap, readily preparable and fully characterizable, preferably under in situ reaction conditions. A range of nanoporous and nanoparticle catalysts that meet most of the stringent demands of sustainable development and responsible (clean) technology is described. Specific examples that are highlighted include the production of adipic acid (precursor of polyamides and urethanes) without the use of concentrated nitric acid nor the production of greenhouse gases such as nitrous oxide; the production of caprolactam (precursor of nylon) without the use of oleum and hydroxylamine sulfate; and the terminal oxyfunctionalization of linear alkanes in air. The topic of biocatalysis and sustainable development is also briefly discussed for the epoxidation of terpenes and fatty acid methyl esters; for the generation of polymers, polylactides, and polyesters; and for the production of 1,3-propanediol from corn.

  2. Teaching Sustainable Entrepreneurship to Engineering Students: The Case of Delft University of Technology

    ERIC Educational Resources Information Center

    Bonnet, Hans; Quist, Jaco; Hoogwater, Daan; Spaans, Johan; Wehrmann, Caroline

    2006-01-01

    Sustainability, enhancement of personal skills, social aspects of technology, management and entrepreneurship are of increasing concern for engineers and therefore for engineering education. In 1996 at Delft University of Technology this led to the introduction of a subject on sustainable entrepreneurship and technology in the course programmes of…

  3. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Zhang, Gong; Yang, Xiahua; You, Shao-Hong

    2015-10-01

    This review on Sustainability covers selected 2014 publications on the focus of the following sections: • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management. PMID:26420087

  4. Gas laser for efficient sustaining a continuous optical discharge plasma in scientific and technological applications

    SciTech Connect

    Zimakov, V P; Kuznetsov, V A; Kedrov, A Yu; Solov'ev, N G; Shemyakin, A N; Yakimov, M Yu

    2009-09-30

    A stable high-power laser is developed for the study and technical applications of a continuous optical discharge (COD). The laser based on the technology of a combined discharge in a scheme with a fast axial gas flow emits 2.2 kW at 10.6 {mu}m per meter of the active medium in continuous and repetitively pulsed regimes with the electrooptical efficiency 20%. The sustaining of the COD plasma in argon and air is demonstrated at the atmospheric pressure. The emission properties of the COD plasma are studied and its possible applications are discussed. (lasers)

  5. Artificial photosynthesis combines biology with technology for sustainable energy transformation

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2013-03-01

    Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP) to support our GDP and nutrition. The cost to Earth systems of "our cut" of NPP is thought to be rapidly driving several Earth systems outside of bounds that were established on the geological time scale. Even with a fundamental realignment of human priorities, changing the unsustainable trajectory of the anthropocene will require reengineering photosynthesis to more efficiently meet human needs. Artificial photosynthetic systems are envisioned that can both supply renewable fuels and serve as platforms for exploring redesign strategies for photosynthesis. These strategies can be used in the nascent field of synthetic biology to make vast, much needed improvements in the biomass production efficiency of photosynthesis.

  6. Combining Aesthetic with Ecological Values for Landscape Sustainability

    PubMed Central

    Yang, Dewei; Luo, Tao; Lin, Tao; Qiu, Quanyi; Luo, Yunjian

    2014-01-01

    Humans receive multiple benefits from various landscapes that foster ecological services and aesthetic attractiveness. In this study, a hybrid framework was proposed to evaluate ecological and aesthetic values of five landscape types in Houguanhu Region of central China. Data from the public aesthetic survey and professional ecological assessment were converted into a two-dimensional coordinate system and distribution maps of landscape values. Results showed that natural landscapes (i.e. water body and forest) contributed positively more to both aesthetic and ecological values than semi-natural and human-dominated landscapes (i.e. farmland and non-ecological land). The distribution maps of landscape values indicated that the aesthetic, ecological and integrated landscape values were significantly associated with landscape attributes and human activity intensity. To combine aesthetic preferences with ecological services, the methods (i.e. field survey, landscape value coefficients, normalized method, a two-dimensional coordinate system, and landscape value distribution maps) were employed in landscape assessment. Our results could facilitate to identify the underlying structure-function-value chain, and also improve the understanding of multiple functions in landscape planning. The situation context could also be emphasized to bring ecological and aesthetic goals into better alignment. PMID:25050886

  7. Combining aesthetic with ecological values for landscape sustainability.

    PubMed

    Yang, Dewei; Luo, Tao; Lin, Tao; Qiu, Quanyi; Luo, Yunjian

    2014-01-01

    Humans receive multiple benefits from various landscapes that foster ecological services and aesthetic attractiveness. In this study, a hybrid framework was proposed to evaluate ecological and aesthetic values of five landscape types in Houguanhu Region of central China. Data from the public aesthetic survey and professional ecological assessment were converted into a two-dimensional coordinate system and distribution maps of landscape values. Results showed that natural landscapes (i.e. water body and forest) contributed positively more to both aesthetic and ecological values than semi-natural and human-dominated landscapes (i.e. farmland and non-ecological land). The distribution maps of landscape values indicated that the aesthetic, ecological and integrated landscape values were significantly associated with landscape attributes and human activity intensity. To combine aesthetic preferences with ecological services, the methods (i.e. field survey, landscape value coefficients, normalized method, a two-dimensional coordinate system, and landscape value distribution maps) were employed in landscape assessment. Our results could facilitate to identify the underlying structure-function-value chain, and also improve the understanding of multiple functions in landscape planning. The situation context could also be emphasized to bring ecological and aesthetic goals into better alignment. PMID:25050886

  8. Technological innovation, human capital and social change for sustainability. Lessons learnt from the industrial technologies theme of the EU's Research Framework Programme.

    PubMed

    Sabadie, Jesús Alquézar

    2014-05-15

    Europe is facing a twofold challenge. It must maintain or even increase its competitiveness, a basic requirement in a globalised economy and under the current demographic threat. It needs also to tackle the so-called "grand challenges", especially environmental issues, through a sustainable model of production and consumption. Such challenges should lead to new business and industrial models, based on more sustainable production and consumption chains, from design to end of life. This implies a need for new industrial materials and processes, new skills and, indeed, new values and life-styles. Sustainability and innovation are key elements of EU's Research and Innovation Framework Programmes, particularly in the field of industrial technologies (nanotechnologies, materials and industrial technologies), which objective is to "improve the competitiveness of the European industry and generate knowledge to ensure its transformation from a resource intensive to a knowledge intensive industry". Sustainability and innovation are interrelated challenges for R&D. Research can develop technical solutions to tackle environmental or societal challenges, but such technologies need to be successfully commercialised to have a real environmental impact. Several socio-economic studies carried-out by the European Commission show not only the emerging technological and industrial trends, but they also emphasise the need for linking sustainable technologies with social change. Human capital and new social behaviours are critical factors to combine economic competitiveness and sustainability: technology alone is no longer able to solve global challenges. But what kind of human capital (skills, behaviours, and values) are we referring to? How to encourage the shift towards a greener society through human capital? Which reforms are needed in education systems to move towards a sustainable economy? Are there examples of social innovation to be extrapolated and/or generalised? PMID

  9. Combined Sustainability Assessment and Techno-Economic Analysis for the Production of Biomass-Derived High-Octane Gasoline Blendstock

    SciTech Connect

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit

    2015-11-13

    Conversion technologies for biomass to liquid hydrocarbon fuels are being actively developed. Converting biomass into advanced hydrocarbon fuels requires detailed assessments to help prioritize research; techno-economic analysis (TEA) is a long established tool used to assess feasibility and progress. TEA provides information needed to make informed judgments about the viability of any given conceptual conversion process; it is particularly useful to identify technical barriers and measure progress toward overcoming those barriers. Expansion of the cellulosic biofuels industry at the scale needed to meet the Renewable Fuel Standard goals is also expected to have environmental impacts. Hence, the success of the biofuels industry depends not only on economic viability, but also on environmental sustainability. A biorefinery process that is economically feasible but suffers from key sustainability drawbacks is not likely to represent a long-term solution to replace fossil-derived fuels. Overarching concerns like environmental sustainability need to be addressed for biofuels production. Combined TEA and environmental sustainability assessment of emerging pathways helps facilitate biorefinery designs that are both economically feasible and minimally impactful to the environment. This study focuses on environmental sustainability assessment and techno-economic analysis for the production of high-octane gasoline blendstock via gasification and methanol/dimethyl ether intermediates. Results from the conceptual process design with economic analysis, along with the quantification and assessment of the environmental sustainability, are presented and discussed. Sustainability metrics associated with the production of high-octane gasoline include carbon conversion efficiency, consumptive water use, life-cycle greenhouse gas emissions, fossil energy consumption, energy return on investment and net energy value.

  10. ENVIRONMENTAL AND SUSTAINABLE TECHNOLOGY EVALUATION: BIOMASS CO-FIRING IN INDUSTRIAL BOILERS--UNIVERSITY OF IOWA

    EPA Science Inventory

    The U.S. EPA operates the Environmental and Sustainable Technology Evaluation (ESTE) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. This ESTE project involved evaluation of co-firing common woody bio...

  11. Challenge 98: Sustaining the Work of a Regional Technology Integration Initiative

    ERIC Educational Resources Information Center

    Billig, Shelley H.; Sherry, Lorraine; Havelock, Bruce

    2005-01-01

    In this article, we offer a research-based theoretical framework for sustainability, describing the proven qualities of a project and the innovations that support its sustained existence over time. We then describe how a US Department of Education Technology Innovation Challenge grantee, working to promote technology integration in a…

  12. Addressable Reconfigurable Technology (ART) for Building Sustainable Moon Bases

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Shaya, E. J.; Cheung, C. Y.; Floyd, S. R.

    2005-05-01

    NASA's Exploration Initiative requires approaches and tools to support of near future human activities on the lunar surface. A sustainable infrastructure and tools to support such activities must be developed using currently available ElectroMechanical Systems (EMS). Architecture based on Addressable Reconfigurable Technology (ART), which we are already developing for small rovers, should be well suited to this task. ART structures are highly addressable arrays of robust nodes interconnected by highly reconfigurable struts that, along with tethers and surfaces are autonomously and reversibly deployable. The basic building unit in this architecture is a tetrahedron, the most efficient space-filling form, consisting of nodes interconnected with struts that can be reversibly and/or partially deployed or stowed to allow the tetrahedron to change its size and shape on command in real-time. Tetrahedral units are interlinked in one (linear), two (planar), or three (space-filling) dimensions to create conformable objects. As more tetrahedra are interconnected, the degrees of freedom are increased and motions evolve from simple to complex, from stepped to continuous. This design allows movement to change shape and/or location revolutionizing the architecture for space structures by epitomizing portable `form follows function' at every level. Although the 3D network of actuators and structural elements is composed of nodes that are addressable as are pixels in an LCD screen. The full functionality of such a system requires fully autonomous operation, and will ultimately be realized through a neural basis function (NBF) we are currently developing, which possesses the capability for actuator-level autonomic response and heuristic-level decision-making. Two EMS level ART-based concepts are designed for sustainable autonomous operation on the Moon. The Autonomous Lunar Investigator (ALI) would consist of one or more 12tetrahedral walkers capable of rapid locomotion with the

  13. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by

  14. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    SciTech Connect

    Shipley, Ms. Anna; Hampson, Anne; Hedman, Mr. Bruce; Garland, Patricia W; Bautista, Paul

    2008-12-01

    Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure

  15. An engineering dilemma: sustainability in the eyes of future technology professionals.

    PubMed

    Haase, S

    2013-09-01

    The ability to design technological solutions that address sustainability is considered pivotal to the future of the planet and its people. As technology professionals engineers are expected to play an important role in sustaining society. The present article aims at exploring sustainability concepts of newly enrolled engineering students in Denmark. Their understandings of sustainability and the role they ascribe to sustainability in their future professional practice is investigated by means of a critical discourse analysis including metaphor analysis and semiotic analysis. The sustainability construal is considered to delimit possible ways of dealing with the concept in practice along the engineering education pathway and in professional problem solving. Five different metaphors used by the engineering students to illustrate sustainability are identified, and their different connotative and interpretive implications are discussed. It is found that sustainability represents a dilemma to the engineering students that situates them in a tension between their technology fascination and the blame they find that technological progress bears. Their sustainability descriptions are collected as part of a survey containing among other questions one open-ended, qualitative question on sustainability. The survey covers an entire year group of Danish engineering students in the first month of their degree study. PMID:23197313

  16. Technological Innovation and Developmental Strategies for Sustainable Management of Aquatic Resources in Developing Countries

    NASA Astrophysics Data System (ADS)

    Agboola, Julius Ibukun

    2014-12-01

    Sustainable use and allocation of aquatic resources including water resources require implementation of ecologically appropriate technologies, efficient and relevant to local needs. Despite the numerous international agreements and provisions on transfer of technology, this has not been successfully achieved in developing countries. While reviewing some challenges to technological innovations and developments (TID), this paper analyzes five TID strategic approaches centered on grassroots technology development and provision of localized capacity for sustainable aquatic resources management. Three case studies provide examples of successful implementation of these strategies. Success requires the provision of localized capacity to manage technology through knowledge empowerment in rural communities situated within a framework of clear national priorities for technology development.

  17. Research Technology (ASTP) Rocket Based Combined Cycle (RBCC) Engine

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.

  18. SUSTAINABILITY: ECOLOGICAL, SOCIAL, ECONOMIC, TECHNOLOGICAL, AND SYSTEMS ASPECTS

    EPA Science Inventory

    Sustainability is generally associated with a definition by the World Commission on Environment and Development, 1987: "? development that ?meets the needs and aspirations of the present without compromising the ability to meet those of the future' ?" However, a mathematical theo...

  19. Technology policy and sustainability: An empirical study of renewable energy development in India

    NASA Astrophysics Data System (ADS)

    Iyer, Maithili

    In the debate over sustainability and development paradigms, energy assumes a unique position by virtue of its direct link with environmental sustainability and its role as an essential vehicle for development. Agenda 21 recognizes that coupling end-use energy efficiency with renewable sources of energy will help meet a large share of the world's energy needs while reducing the environmental impacts of energy use. Nevertheless, the extent and scope of diffusion of new and renewable energy technologies is contingent upon the capabilities of the countries concerned to realize firstly, a need, and subsequently, the resources for utilizing the technologies. India has one of the largest renewable energy programs (REPs) in the world, however, renewables continue to remain a marginal contributor to the total energy supply. The need to fundamentally change the program design of REPs has been suggested by many critics and experts in view of the implementation problems. However, mainstream thinking maintains that Poor financial conditions in the energy sector, not program design flaws, are at the heart of poor implementation results, leading to the premise that infusion of capital and efforts at market transformation through the involvement of the private sector could solve the problem. This dissertation uses case studies on solar photovoltaics, wind energy, and biogas in India to analyze the implementation of renewable energy technologies. Based on stakeholder interviews, documents, and site visits, this dissertation argues that the problems currently recognized are in reality symptomatic of a combination of three underlying problems: (1) An inadequate understanding of the needs of energy users and the complex interplay of existing policies and technological choices with user needs and behavior; (2) An institutional network, both at the local and the national level, that lacks the capacity to facilitate information exchange within and between institutions, thereby losing

  20. The University and Transformation towards Sustainability: The Strategy Used at Chalmers University of Technology

    ERIC Educational Resources Information Center

    Holmberg, John; Lundqvist, Ulrika; Svanstrom, Magdalena; Arehag, Marie

    2012-01-01

    Purpose: The purpose of this paper is to present the strategy used for achieving change towards sustainability at Chalmers University of Technology (Chalmers). Examples of how this strategy has been used are described and discussed, and exemplified with different lines of activities in a project on Education for Sustainable Development, the ESD…

  1. [Preparation of curcumin-EC sustained-release composite particles by supercritical CO2 anti-solvent technology].

    PubMed

    Bai, Wei-li; Yan, Ting-yuan; Wang, Zhi-xiang; Huang, De-chun; Yan, Ting-xuan; Li, Ping

    2015-01-01

    Curcumin-ethyl-cellulose (EC) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading and yield of inclusion complex as evaluation indexes, on the basis of single factor tests, orthogonal experimental design was used to optimize the preparation process of curcumin-EC sustained-release composite particles. The experiments such as drug loading, yield, particle size distribution, electron microscope analysis (SEM) , infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 45 degrees C, crystallization pressure 10 MPa, curcumin concentration 8 g x L(-1), solvent flow rate 0.9 mL x min(-1), and CO2 velocity 4 L x min(-1). Under the optimal conditions, the average drug loading and yield of curcumin-EC sustained-release composite particles were 33.01% and 83.97%, and the average particle size of the particles was 20.632 μm. IR and DSC analysis showed that curcumin might complex with EC. The experiments of in vitro dissolution showed that curcumin-EC composite particles had good sustained-release effect. Curcumin-EC sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology. PMID:26080549

  2. Sustain

    SciTech Connect

    2013-08-20

    Current building energy simulation technology requires excessive labor, time and expertise to create building energy models, excessive computational time for accurate simulations and difficulties with the interpretation of the results. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. To prove this hypothesis, we developed an experimental test bed for building energy simulation. This novel test bed environment offers an easy-to-use interactive graphical interface, provides access to innovative simulation modules that run at accelerated computational speeds, and presents new graphics visualization methods to interpret simulation results. Our system offers the promise of dramatic ease of use in comparison with currently available building energy simulation tools. Its modular structure makes it suitable for early stage building design, as a research platform for the investigation of new simulation methods, and as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are demonstrated in several computationally expensive energy simulation modules. The incorporation of these modern graphical techniques should advance the state of the art in the domain of whole building energy analysis and building performance simulation, particularly at the conceptual design stage when decisions have the greatest impact. More importantly, these better simulation tools will enable the transition from prescriptive to performative energy codes, resulting in better, more efficient designs for our future built environment.

  3. Technology-Driven and Innovative Training for Sustainable Agriculture in The Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Wishart, D. N.

    2015-12-01

    Innovative training in 'Sustainable Agriculture' for an increasingly STEM-dependent agricultural sector will require a combination of approaches and technologies for global agricultural production to increase while offsetting climate change. Climate change impacts the water resources of nations as normal global weather patterns are altered during El Nino events. Agricultural curricula must incorporate awareness of 'climate change' in order to find novel ways to (1) assure global food security; (2) improve soil productivity and conservation; (3) improve crop yields and irrigation; (4) inexpensively develop site specific principles of crop management based on variable soil and associated hydrological properties; and (5) improve precision farming. In February 2015, Central State University (CSU), Ohio became an 1890 Land-Grant institution vital to the sustainability of Ohio's agricultural sector. Besides agricultural extension, the agriculture curriculum at CSU integrates multidisciplinary courses in science, technology engineering, agriculture, and mathematics (STEAM). The agriculture program could benefit from a technology-driven, interdisciplinary soil science course that promotes climate change education and climate literacy while being offered in both a blended and collaborative learning environment. The course will focus on the dynamics of microscale to mesoscale processes occurring in farming systems, those of which impact climate change or could be impacted by climate change. Elements of this course will include: climate change webinars; soil-climate interactions; carbon cycling; the balance of carbon fluxes between soil storage and atmosphere; microorganisms and soil carbon storage; paleoclimate and soil forming processes; geophysical techniques used in the characterization of soil horizons; impact of climate change on soil fertility; experiments; and demonstrations.

  4. Possibility of Low Carbon Society Formation by Using Aqua Science & Technologies (Establishment of an Ecologically Sustainable Society)

    NASA Astrophysics Data System (ADS)

    Yamasaki, Nakamichi

    2010-11-01

    Basic resolution of environmental problems needs a change of paradigm. In order to form a closed system and sustainable society, Japanese culture and civilization of EDO period (esthetics of self-control) must be considered. Quality technology of Japan is leading the world in environmental resolution. Many Japanese forget the traditional spirit (the original fail is in education). The combination of esthetics and technology is a characteristics of Japanese Goods. The origin of Japanese religion (ethos) is Japanese language and situation of Japan. The global aspects of closed earth system was showed. Practical examples of closed system, Biomass Applications, PVC recycling, poly-diamond synthesis are shown.

  5. SIMULATED EXPERIMENTS WITH COMPLEX SUSTAINABLE SYSTEMS: ECOLOGY AND TECHNOLOGY

    EPA Science Inventory


    The concept of sustainability is associated with the statement from the World Commission on Environment and Development, 1987: "... development that meets the needs and aspirations of the present without compromising the ability to meet those of the future..." However, this s...

  6. SUSTAINABILITY: ECOLOGICAL, SOCIAL, ECONOMIC, TECHNOLOGICAL, AND SYSTEMS PERSPECTIVES

    EPA Science Inventory

    Sustainability is generally associated with a definition by the World Commission on Environment and Development, 1987: "Development that meets the needs and aspirations of the present without compromising the ability to meet those of the future". However, a mathematical theory e...

  7. Sustaining Research Innovations in Educational Technology through Communities of Practice

    ERIC Educational Resources Information Center

    Hung, David; Lee, Shu-Shing; Lim, Kenneth Y. T.

    2012-01-01

    The diffusion of innovation is critical to societal progression. In the field of education, such diffusion takes on added significance because of the many stakeholders and accountabilities involved. This article presents the argument that efforts at diffusion which are designed from a top-down perspective are not sustainable over the long term…

  8. Applying Sustainable Systems Development Approach to Educational Technology Systems

    ERIC Educational Resources Information Center

    Huang, Albert

    2012-01-01

    Information technology (IT) is an essential part of modern education. The roles and contributions of technology to education have been thoroughly documented in academic and professional literature. Despite the benefits, the use of educational technology systems (ETS) also creates a significant impact on the environment, primarily due to energy…

  9. QuEST: Qualifying Environmentally Sustainable Technologies. Volume 2

    NASA Technical Reports Server (NTRS)

    Brown, Christina (Editor)

    2007-01-01

    TEERM focuses its validation efforts on technologies that have shown promise in laboratory testing, but lack testing under realistic or field environment. Mature technologies have advantages over those that are still in the developmental stage such as being more likely to be transitioned into a working environment. One way TEERM begins to evaluate the suitability of technologies is through Technology Readiness Levels (TRLs). TRLs are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. TEERM generally works on demonstrating/validating alternatives that fall within TRLs 5-9. In instances where a mature technology does not exist for a particular Agency application, TEERM works with technology development groups and programs such as NASA's Innovative Partnerships Program (IPP). The IPP's purpose is to identify and document available technologies in light of NASA's needs, evaluate and prioritize those technologies, and reach out to find new partners. All TEERM projects involve multiple partners. Partnering reduces duplication of effort that otherwise might occur if individuals worked their problems alone. Partnering also helps reduce individual contributors' shares of the total cost of technology validation. Through collaboration and financial commitment from project stakeholders and third-party sources, it is possible to fully fund expensive demonstration/validation efforts.

  10. An instrument design to measure the sustainability of technology in risky environments: Case study of Iraq

    NASA Astrophysics Data System (ADS)

    Al-Sammarraie, Munadil Khaleel Faaeq; Faieq, Alaa K.; Al-Qasa, Khaled

    2016-08-01

    Electronic Government (eG) has become a vital tool to serve the beneficiaries; therefore, it has received the attention of many Information System (IS) researchers. Due to the importance of the sustainability of IS, this paper identifies the emergence of a clear gape to measure the sustainability of IS in risky circumstances, such as wars, conflicts and violence; nowadays, the risky issue is increasing remarkably. This paper expands previous studies whose focus was on investigating the sustainability of electronic services unsecured countries in the world. Consequently, a need for a specific tool to measure the sustainability of technology among the users in risky conditions has become urgent. Based on the findings, it can be confirmed that this instrument is reliable to measure the sustainability of technology in risky environments.

  11. Factors affecting food security and contribution of modern technologies in food sustainability.

    PubMed

    Premanandh, Jagadeesan

    2011-12-01

    The concept of food insecurity is complex and goes beyond the simplistic idea of a country's inability to feed its population. The global food situation is redefined by many driving forces such as population growth, availability of arable lands, water resources, climate change and food availability, accessibility and loss. The combined effect of these factors has undeniably impacted global food production and security. This article reviews the key factors influencing global food insecurity and emphasises the need to adapt science-based technological innovations to address the issue. Although anticipated benefits of modern technologies suggest a level of food production that will sustain the global population, both political will and sufficient investments in modern agriculture are needed to alleviate the food crisis in developing countries. In this globalised era of the 21st century, many determinants of food security are trans-boundary and require multilateral agreements and actions for an effective solution. Food security and hunger alleviation on a global scale are within reach provided that technological innovations are accepted and implemented at all levels. PMID:22002569

  12. Decentralized peri-urban wastewater treatment technologies assessment integrating sustainability indicators.

    PubMed

    Mena-Ulecia, Karel; Hernández, Heykel Hernández

    2015-01-01

    Selection of treatment technologies without considering the environmental, economic and social factors associated with each geographical context risks the occurrence of negative impacts that were not properly foreseen, working against the sustainable performance of the technology. The principal aim of this study was to evaluate 12 technologies for decentralized treatment of domestic wastewater applicable to peri-urban communities using sustainability approaches and, at the same time, continuing a discussion about how to address a more integrated assessment of overall sustainability. For this, a set of 13 indicators that embody the environmental, economic and social approach for the overall sustainability assessment were used by means of a target plot diagram as a tool for integrating indicators that represent a holistic analysis of the technologies. The obtained results put forward different degrees of sustainability, which led to the selection of: septic tank+land infiltration; up-flow anaerobic reactor+high rate trickling filter and septic tank+anaerobic filter as the most sustainable and attractive technologies to be applied in peri-urban communities, according to the employed indicators. PMID:26177403

  13. Sustain

    Energy Science and Technology Software Center (ESTSC)

    2013-08-20

    Current building energy simulation technology requires excessive labor, time and expertise to create building energy models, excessive computational time for accurate simulations and difficulties with the interpretation of the results. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. To prove this hypothesis, we developed an experimental test bed for building energy simulation. This novel test bed environment offers an easy-to-use interactivemore » graphical interface, provides access to innovative simulation modules that run at accelerated computational speeds, and presents new graphics visualization methods to interpret simulation results. Our system offers the promise of dramatic ease of use in comparison with currently available building energy simulation tools. Its modular structure makes it suitable for early stage building design, as a research platform for the investigation of new simulation methods, and as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are demonstrated in several computationally expensive energy simulation modules. The incorporation of these modern graphical techniques should advance the state of the art in the domain of whole building energy analysis and building performance simulation, particularly at the conceptual design stage when decisions have the greatest impact. More importantly, these better simulation tools will enable the transition from prescriptive to performative energy codes, resulting in better, more efficient designs for our future built environment.« less

  14. Sustaining Innovation: Developing an Instructional Technology Assessment Process

    ERIC Educational Resources Information Center

    Carmo, Monica Cristina

    2013-01-01

    This case study developed an instructional technology assessment process for the Gevirtz Graduate School of Education (GGSE). The theoretical framework of Adelman and Taylor (2001) guided the development of this instructional technology assessment process and the tools to aid in its facilitation. GGSE faculty, staff, and graduate students…

  15. Video Tutorials: A Sustainable Method for Campus Technology Training

    ERIC Educational Resources Information Center

    Bowers, John; Dent, Julie; Barnes, Kathleen

    2009-01-01

    Technology training is a resource-intensive endeavor with inherent potential for waste. Such training is commonly offered in live, face-to-face workshops on campus, without charge, by colleges and universities who value technology skills in their faculty, staff, and students. The true cost to the institution begins with the space used for…

  16. High power semiconductor laser beam combining technology and its applications

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tong, Cunzhu; Peng, Hangyu; Zhang, Jun

    2013-05-01

    With the rapid development of laser applications, single elements of diode lasers are not able to meet the increasing requirements on power and beam quality in the material processing and defense filed, whether are used as pumping sources or directly laser sources. The coupling source with high power and high beam quality, multiplexed by many single elements, has been proven to be a promising technical solution. In this paper, the authors review the development tendency of efficiency, power, and lifetime of laser elements firstly, and then introduce the progress of laser beam combining technology. The authors also present their recent progress on the high power diode laser sources developed by beam combining technology, including the 2600W beam combining direct laser source, 1000W fiber coupled semiconductor lasers and the 1000W continuous wave (CW) semiconductor laser sources with beam quality of 12.5×14[mm. mrad]2.

  17. Identifying Effective Policy and Technologic Reforms for Sustainable Groundwater Management in Oman

    NASA Astrophysics Data System (ADS)

    Madani, K.; Zekri, S.; Karimi, A.

    2014-12-01

    Oman has gone through three decades of efforts aimed at addressing groundwater over-pumping and the consequent seawater intrusion. Example of measures adopted by the government since the 1990's include a vast subsidy program of irrigation modernization, a freeze on drilling new wells, delimitation of several no-drill zones, a crop substitution program, re-use of treated wastewater and construction of recharge dams. With no major success through these measures, the government laid the ground for water quotas by creating a new regulation in 1995. Nevertheless, groundwater quotas have not been enforced to date due to the high implementation and monitoring costs of traditional flow meters. This presentation discusses how sustainable groundwater management can be secured in Oman using a suit of policy and technologic reforms at a reasonable economic, political and practical cost. Data collected from farms with smart meters and low-cost wireless smart irrigation systems have been used to propose sustainable groundwater withdrawal strategies for Oman using a detailed hydro-economic model that couples a MODFLOW-SEAWAT model of the coastal aquifers with a dynamic profit maximization model. The hydro-economic optimization model was flexible to be run both as a social planner model to maximize the social welfare in the region, and as an agent-based model to capture the behavior of farmers interested in maximizing their profits independently. This flexibility helped capturing the trade-off between the optimality of the social planner solution developed at the system's level and its practicality (stability) with respect to the concerns and behaviors of the profit-maximizing farmers. The idetified promising policy and technolgical reforms for Oman include strict enforcement of groundwater quotas, smart metering, changing crop mixes, improving irrigation technologies, and revising geographical distribution of the farming activities. The presentation will discuss how different

  18. Problem-Solving in Technology Education as an Approach to Education for Sustainable Development

    ERIC Educational Resources Information Center

    Middleton, Howard

    2009-01-01

    This paper explores the issue of how students might learn about sustainability in technology--education classrooms and the relevance of problem-solving in that learning. One of the emerging issues in technology education research is the nature of problem-solving specified in curriculum documents and the kinds of learning activities undertaken by…

  19. Education for Sustainable Development in Technology Education in Irish Schools: A Curriculum Analysis

    ERIC Educational Resources Information Center

    McGarr, Oliver

    2010-01-01

    This paper explores the integration of Education for Sustainable Development (ESD) in technology education and the extent to which it is currently addressed in curriculum documents and state examinations in technology education at post-primary level in Ireland. This analysis is conducted amidst the backdrop of considerable change in technology…

  20. Teaching Methods Influencing the Sustainability of the Teaching Process in Technology Education in General Education Schools

    ERIC Educational Resources Information Center

    Soobik, Mart

    2014-01-01

    The sustainability of technology education is related to a traditional understanding of craft and the methods used to teach it; however, the methods used in the teaching process have been influenced by the innovative changes accompanying the development of technology. In respect to social and economic development, it is important to prepare young…

  1. Teachers' Initial and Sustained Use of an Instructional Assistive Technology Tool: Exploring the Mitigating Factors

    ERIC Educational Resources Information Center

    Bouck, Emily C.; Flanagan, Sara; Heutsche, Anne; Okolo, Cynthia M.; Englert, Carol Sue

    2011-01-01

    This qualitative research project explored factors that mitigated teachers implementing an instructional assistive technology and factors that mitigated its sustained use. Specifically, it explored these issues in relation to a social studies based instructional assistive technology (Virtual History Museum [VHM]), which was originally implemented…

  2. SUSTAINABLE URBAN TECHNOLOGIES TEAM (URBAN WATERSHED MANAGEMENT BRANCH - WSWRD)

    EPA Science Inventory

    The National Risk Management Research Laboratory's Urban Watershed Management Branch researches, develops and evaluates technologies, practices, and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF) sources in urban watersheds. The focus is on the...

  3. QuEST: Qualifying Environmentally Sustainable Technologies. Volume 6

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2011-01-01

    QuEST is a publication of the NASA Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM). This issue contains brief articles on: Risk Identification and Mitigation, Material Management and Substitution Efforts--Hexavalent Chrome-free Coatings and Low volatile organic compounds (VOCs) Coatings, Lead-Free Electronics, Corn-Based Depainting Media; Alternative Energy Efforts Hydrogen Sensors and Solar Air Conditioning. Other TEERM Efforts include: Energy and Water Management and Remediation Technology Collaboration.

  4. The shrinking planet: U. S. information technology and sustainable development

    SciTech Connect

    Elkington, J.; Shopley, J.

    1988-01-01

    The authors review examples of how computerization (particularly that involving sophisticated monitoring and feedback loops) has improved standards of performance in the health, safety, and environmental fields and helped increase the efficiency of energy and resource use. They recommended that the convergence of commercial information technology goals and environmental objectives be recognized and exploited.

  5. Human Exploration Missions - Maturing Technologies to Sustain Crews

    NASA Technical Reports Server (NTRS)

    Mukai, Chiaki; Koch, Bernhard; Reese, Terrence G.

    2012-01-01

    Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. Providing crews with the essentials of life such as clean air and potable water means recycling human metabolic wastes back to useful products. Individual technologies are under development for such things as CO2 scrubbing, recovery of O2 from CO2, turning waste water into potable water, and so on. But in order to fully evaluate and mature technologies fully they must be tested in a relevant, high-functionality environment; a systems environment where technologies are challenged with real human metabolic wastes. It is for this purpose that an integrated systems ground testing capability at the Johnson Space Center is being readied for testing. The relevant environment will include deep space habitat human accommodations, sealed atmosphere of 8 psi total pressure and 32% oxygen concentration, life support systems (food, air, water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth ]Moon L2 or L1, the moon, and Mars). This type of integrated testing is needed not only for research and technology development but later during the mission design, development, test, and evaluation phases of preparing for the mission.

  6. EVTEC (INDEPENDENT PILOT) (INDUSTRIAL MULTIMEDIA BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    As part of the ETV program, EvTEC evaluates innovative market-ready environmental technologies in the areas of pollution avoidance, control, remediation/restoration, and monitoring.EvTEC and the Washington State Department of Transportation are collaborating to evaluate new, in...

  7. Novel combination of anionic and cationic polymethacrylate polymers for sustained release tablet preparation.

    PubMed

    Obeidat, Wasfy M; Abu Znait, Ala'a H; Sallam, Al-Sayed A

    2008-06-01

    The objectives of this study were to prepare and evaluate a novel sustained release tablet formulation using a binary mixture of polymethacrylate polymers: Eudragit E-100 (EE) and Eudragit L-100 (EL) in their salt forms. Tablets prepared using EE-citrate and EL-Na showed the highest degree of swelling among other combinations of EE and EL. The drug release rates were independent of the pH of the dissolution medium as the release profiles exhibited a continuous release pattern with no burst effect when changing the pH of the medium. These results, along with other test results, indicated the presence of an ionic interaction between both polymers when combined in the salt forms. PMID:18568916

  8. QuEST: Qualifying Environmentally Sustainable Technologies. Vol. 3

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie (Editor)

    2008-01-01

    This is an exciting new chapter for the NASA Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM). The Principal Center's past successes have created new opportunities for partnership and technology implementation. TEERM is continuing to support the current NASA Programs while reaching out and offering our assistance and experience to Constellation. NASA has also assumed Chairmanship responsibility of the Joint Group on Pollution Prevention (JG-PP) and Chairmanship of the JG-PP Working Group (WG). Both JG-PP and TEERM strive to improve mission readiness and reduce risk to personnel and assets by solving joint problems through cooperation. JG-PP and TEERM not only show our commitment to environmental stewardship, but also our commitment to fiscal responsibility.

  9. Oil spill problems and sustainable response strategies through new technologies.

    PubMed

    Ivshina, Irena B; Kuyukina, Maria S; Krivoruchko, Anastasiya V; Elkin, Andrey A; Makarov, Sergey O; Cunningham, Colin J; Peshkur, Tatyana A; Atlas, Ronald M; Philp, James C

    2015-07-01

    Crude oil and petroleum products are widespread water and soil pollutants resulting from marine and terrestrial spillages. International statistics of oil spill sizes for all incidents indicate that the majority of oil spills are small (less than 7 tonnes). The major accidents that happen in the oil industry contribute only a small fraction of the total oil which enters the environment. However, the nature of accidental releases is that they highly pollute small areas and have the potential to devastate the biota locally. There are several routes by which oil can get back to humans from accidental spills, e.g. through accumulation in fish and shellfish, through consumption of contaminated groundwater. Although advances have been made in the prevention of accidents, this does not apply in all countries, and by the random nature of oil spill events, total prevention is not feasible. Therefore, considerable world-wide effort has gone into strategies for minimising accidental spills and the design of new remedial technologies. This paper summarizes new knowledge as well as research and technology gaps essential for developing appropriate decision-making tools in actual spill scenarios. Since oil exploration is being driven into deeper waters and more remote, fragile environments, the risk of future accidents becomes much higher. The innovative safety and accident prevention approaches summarized in this paper are currently important for a range of stakeholders, including the oil industry, the scientific community and the public. Ultimately an integrated approach to prevention and remediation that accelerates an early warning protocol in the event of a spill would get the most appropriate technology selected and implemented as early as possible - the first few hours after a spill are crucial to the outcome of the remedial effort. A particular focus is made on bioremediation as environmentally harmless, cost-effective and relatively inexpensive technology. Greater

  10. QuEST: Qualifying Environmentally Sustainable Technologies. Volume 4

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L.

    2009-01-01

    In 2004, in one of their first collaborative efforts, Centro Para Prevencao da Poluicao (Portuguese Center for Pollution Prevention or C3P). teamed with Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) and two Portuguese entities, TAP Portugal (Portuguese National Airline) and OGMA Indtistria Aeron utica de Portugal (Portuguese Aeronautics Industry), to target the reduction of hexavalent chromium, cadmium, and volatile organic compounds (VOCs) in aircraft maintenance operations. This project focused on two coating systems that utilize non-chrome pretreatments and low-VOC primers and topcoats.

  11. QuEST: Qualifying Environmentally Sustainable Technologies, Volume 5

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2010-01-01

    This edition of the QuEST newsletter contains brief articles that discuss the NASA Technology Evaluation for Environmental Risk Mitigation (TEERM) program, and the importance of collaboration, efforts in materials management and substitution for coatings for launch structures, Low volatile organic compound (VOC) Coatings Field Testing, Non-Chrome Coating Systems, Life Cycle Corrosion Testing, Lead-Free Electronics Testing and Corn Based Depainting and efforts in Pollution Control in the area of Hypergolic Propellant Destruction Evaluation, efforts in development of alternative energy in particular Hydrogen Sensors, Energy and Water Management, and efforts in remediation in the removal of Polychlorinated Biphenyl (PCB) contamination

  12. Sustainability assessment of tertiary wastewater treatment technologies: a multi-criteria analysis.

    PubMed

    Plakas, K V; Georgiadis, A A; Karabelas, A J

    2016-01-01

    The multi-criteria analysis gives the opportunity to researchers, designers and decision-makers to examine decision options in a multi-dimensional fashion. On this basis, four tertiary wastewater treatment (WWT) technologies were assessed regarding their sustainability performance in producing recycled wastewater, considering a 'triple bottom line' approach (i.e. economic, environmental, and social). These are powdered activated carbon adsorption coupled with ultrafiltration membrane separation (PAC-UF), reverse osmosis, ozone/ultraviolet-light oxidation and heterogeneous photo-catalysis coupled with low-pressure membrane separation (photocatalytic membrane reactor, PMR). The participatory method called simple multi-attribute rating technique exploiting ranks was employed for assigning weights to selected sustainability indicators. This sustainability assessment approach resulted in the development of a composite index as a final metric, for each WWT technology evaluated. The PAC-UF technology appears to be the most appropriate technology, attaining the highest composite value regarding the sustainability performance. A scenario analysis confirmed the results of the original scenario in five out of seven cases. In parallel, the PMR was highlighted as the technology with the least variability in its performance. Nevertheless, additional actions and approaches are proposed to strengthen the objectivity of the final results. PMID:27054724

  13. Subtask 5.3 - Water and Energy Sustainability and Technology

    SciTech Connect

    Bruce Folkedahl; Christopher Martin; David Dunham

    2010-09-30

    The overall goal of this Energy & Environmental Research Center project was to evaluate water capture technologies in a carbon capture and sequestration system and perform a complete systems analysis of the process to determine potential water minimization opportunities within the entire system. To achieve that goal, a pilot-scale liquid desiccant dehumidification system (LDDS) was fabricated and tested in conjunction with a coal-fired combustion test furnace outfitted with CO{sub 2} mitigation technologies, including the options of oxy-fired operation and postcombustion CO{sub 2} capture using an amine scrubber. The process gas stream for these tests was a coal-derived flue gas that had undergone conventional pollutant control (particulates, SO{sub 2}) and CO{sub 2} capture with an amine-based scrubber. The water balance data from the pilot-scale tests show that the packed-bed absorber design was very effective at capturing moisture down to levels that approach equilibrium conditions.

  14. Technological challenges for boosting coal production with environmental sustainability.

    PubMed

    Ghose, Mrinal K

    2009-07-01

    The global energy requirement has grown at a phenomenon rate and the consumption of primary energy sources has been a very high positive growth. This paper focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy source in foreseeable future. It examines the energy requirement perspective for India and demand of coal as the prime energy source. Economic development and poverty alleviation depend on securing affordable energy sources and Indian coal mining industry offers a bright future for the country's energy security, provided the industry is allowed to develop by supportive government policies and adopts latest technologies for mining. It is an irony that in-spite of having a plentiful reserves, India is not able to jack up coal production to meet its current and future demand. It discusses the strategies to be adopted for growth and meeting the coal demand. But such energy are very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively The paper highlights the emissions of greenhouse gases due to burning of fossil fuels and environmental consequences of global warming and sea-level rise. Technological solutions for environment friendly coal mining and environmental laws for the abatement of environmental degradation are discussed in this paper. PMID:18604635

  15. Integrated Sustainable Planning for Industrial Region Using Geospatial Technology

    NASA Astrophysics Data System (ADS)

    Tiwari, Manish K.; Saxena, Aruna; Katare, Vivek

    2012-07-01

    The Geospatial techniques and its scope of applications have undergone an order of magnitude change since its advent and now it has been universally accepted as a most important and modern tool for mapping and monitoring of various natural resources as well as amenities and infrastructure. The huge and voluminous spatial database generated from various Remote Sensing platforms needs proper management like storage, retrieval, manipulation and analysis to extract desired information, which is beyond the capability of human brain. This is where the computer aided GIS technology came into existence. A GIS with major input from Remote Sensing satellites for the natural resource management applications must be able to handle the spatiotemporal data, supporting spatiotemporal quarries and other spatial operations. Software and the computer-based tools are designed to make things easier to the user and to improve the efficiency and quality of information processing tasks. The natural resources are a common heritage, which we have shared with the past generations, and our future generation will be inheriting these resources from us. Our greed for resource and our tremendous technological capacity to exploit them at a much larger scale has created a situation where we have started withdrawing from the future stocks. Bhopal capital region had attracted the attention of the planners from the beginning of the five-year plan strategy for Industrial development. However, a number of projects were carried out in the individual Districts (Bhopal, Rajgarh, Shajapur, Raisen, Sehore) which also gave fruitful results, but no serious efforts have been made to involve the entire region. No use of latest Geospatial technique (Remote Sensing, GIS, GPS) to prepare a well structured computerized data base without which it is very different to retrieve, analyze and compare the data for monitoring as well as for planning the developmental activities in future.

  16. How we develop and sustain innovation in medical education technology: Keys to success.

    PubMed

    McGee, James B; Kanter, Steven L

    2011-01-01

    The use of information technology to support the educational mission of academic medical centers is nearly universal; however, the scope and methods employed vary greatly (Souza et al. 2008 ). This article reviews the methods, processes, and specific techniques needed to conceive, develop, implement, and assess technology-based educational programs across healthcare disciplines. We discuss the core concepts, structure, and techniques that enable growth, productivity, and sustainability within an academic setting. Herein are specific keys to success with examples including project selection, theory-based design, the technology development process, implementation, and evaluation that can lead to broad participation and positive learning outcomes. Most importantly, this article shares methods to involve students, faculty, and stakeholders in technology design and the development process that fosters a sustainable culture of educational innovation. PMID:21456984

  17. Sustained-release matrix tablets of metformin hydrochloride in combination with triacetyl-beta-cyclodextrin.

    PubMed

    Corti, Giovanna; Cirri, Marzia; Maestrelli, Francesca; Mennini, Natascia; Mura, Paola

    2008-02-01

    The low bioavailability and short half-life of metformin hydrochloride (MH) make the development of sustained-release forms desirable. However, drug absorption is limited to the upper gastrointestinal (GI) tract, thus requiring suitable delivery systems providing complete release during stomach-to-jejunum transit. This study was undertaken to develop a MH sustained-release formulation in compliance with these requirements. The strategy proposed is based on direct-compressed matrix tablets consisting of a combination of MH with the hydrophobic triacetyl-beta-cyclodextrin (TAbetaCD), dispersed in a polymeric material. Different polymers were tested as excipients, i.e. hydroxypropylmethylcellulose, xanthan gum, chitosan, ethylcellulose, Eudragit L100-55, and Precirol. Compatibility among the formulation components was assessed by DSC analysis. All the tablets were examined for drug release pattern in simulated gastric and jejunal fluids used in sequence to mimic the GI transit. Release studies demonstrated that blends of a hydrophobic swelling polymer (hydroxypropylmethylcellulose or chitosan) with a pH-dependent one (Eudragit L100-55) were more useful than single polymers in controlling drug release. Moreover, the main role played by the MH-TAbetaCD system preparation method (i.e. grinding or spray-drying) in determining the behaviour of the final formulation was evidenced. In fact, for a given matrix-tablet composition, different sustained-release effects were obtained by varying the relative amounts of MH-TAbetaCD as ground or spray-dried product. In particular, the 1:1 (w/w) blend of such systems, dispersed in a Eudragit-chitosan polymeric matrix, fully achieved the prefixed goal, giving about 30% released drug after 2h at gastric pH, and overcoming 90% released drug within the subsequent 3h in jejunal fluid. PMID:17616379

  18. Feeding nine billion people sustainably: conserving land and water through shifting diets and changes in technologies.

    PubMed

    Springer, Nathaniel P; Duchin, Faye

    2014-04-15

    In the early 21st century the extensive clearing of forestland, fresh water scarcity, and sharp rises in the price of food have become causes for concern. These concerns may be substantially exacerbated over the next few decades by the need to provide improved diets for a growing global population. This study applies an inter-regional input-output model of the world economy, the World Trade Model, for analysis of alternative scenarios about satisfying future food requirements by midcentury. The scenario analysis indicates that relying only on more extensive use of arable land and fresh water would require clearing forests and exacerbating regional water scarcities. However, a combination of less resource-intensive diets and improved agricultural productivity, the latter especially in Africa, could make it possible to use these resources sustainably while also constraining increases in food prices. Unlike the scenario outcomes from other kinds of economic models, our framework reveals the potential for a decisive shift of production and export of agricultural products away from developed countries toward Africa and Latin America. Although the assumed changes in diets and technologies may not be realizable without incentives, our results suggest that these regions exhibit comparative advantages in agricultural production due to their large remaining resource endowments and their potential for higher yields. PMID:24635667

  19. Combined SO sub 2 /NO sub x reduction technology

    SciTech Connect

    Livengood, C.D.; Huang, H.S. ); Markussen, J.M. )

    1992-01-01

    Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO{sub x}) regulations have fueled research and development efforts on technologies for the combined control of sulfur dioxide (SO{sub 2}) and NO{sub x}. The integrated removal of both SO{sub 2} and NO{sub x}, in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup (FGC) systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  20. POINTS-OF-CONTACT (INDUSTRIAL MULTIMEDIA BRANCH, SUSTAINABLE TECHNOLOGY BRANCH, NRMRL)

    EPA Science Inventory

    The Points-of-Contact page for the Industrial Multimedia Branch (IMB) of NRMRL's Sustainable Technology Division lists the names, titles, phone numbers, and e-mail addresses for staff members of IMB.IMB's mission is to develop, demonstrate, and evaluate timely and integrated in...

  1. Program Proposal: Certificates of Competence, Certificate of Achievement, Associate in Applied Science Degree in Sustainable Technology.

    ERIC Educational Resources Information Center

    Pezzoli, Jean A.; Ainsworth, Don

    This document proposes a program in sustainable technology at Maui Community College (Hawaii). This new career program would be designed to provide four Certificates of Competence, a Certificate of Achievement, and an Associate in Applied Science degree. The primary objectives of the program are to meet student, county, and state needs for…

  2. Integrating Social Sustainability in Engineering Education at the KTH Royal Institute of Technology

    ERIC Educational Resources Information Center

    Björnberg, Karin Edvardsson; Skogh, Inga-Britt; Strömberg, Emma

    2015-01-01

    Purpose: The purpose of this paper is to investigate what are perceived to be the main challenges associated with the integration of social sustainability into engineering education at the KTH Royal Institute of Technology, Stockholm. Design/methodology/approach: Semi-structured interviews were conducted with programme leaders and teachers from…

  3. Community Outreach Projects as a Sustainable Way of Introducing Information Technology in Developing Countries

    ERIC Educational Resources Information Center

    Zlotnikova, Irina; van der Weide, Theo

    2015-01-01

    The paper describes an approach to the sustainable introduction of IT in developing countries based on international collaboration between students taking the form of a knowledge bridge. The authors consider the challenges for introducing information technologies in developing countries; one of these is lack of reading materials ultimately leading…

  4. Innovate-Ideagora: A Call for Sustainable Development in Instructional Technology

    ERIC Educational Resources Information Center

    Easton, Denise; McCord, Alan

    2009-01-01

    In this edition of Innovate-Ideagora, Al McCord and Denise Easton report on developments in this online community, which now boasts over 400 members. As members engaged in active discussions about ways to support sustainable, accessible technologies, discussion coalesced around rumors of a $10 laptop and what such a development might mean for…

  5. Engineering Curricula in Sustainable Development. An Evaluation of Changes at Delft University of Technology

    ERIC Educational Resources Information Center

    Mulder, Karel F.

    2006-01-01

    This paper will first sketch some basic features of the engineering profession, and the need for change. It will analyse the political process that resulted in the decision at Delft University of Technology (DUT) to emphasise Sustainable Development (SD) in its curricula. The main goal of this education is to show that SD is not a burden, but a…

  6. Charting a New Direction: A Collaborative, Sustainable, Customer-Based Model for Information Technology.

    ERIC Educational Resources Information Center

    Golden, Robert; Kahn, Jay V.

    1998-01-01

    Describes the Keene State College (New Hampshire) mode for delivery of information technology, which features collaboration of major college divisions, sustainability within realistic revenue/cost projections, and customer-based service delivery. Pre-implementation conditions, origins of the collaborative arrangement, how organization of campus…

  7. Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass.

    PubMed

    Thomsen, Mette Hedegaard; Hauggaard-Nielsen, Henrik; Haugaard-Nielsen, Henrik

    2008-05-01

    To obtain the best possible net energy balance of the bioethanol production the biomass raw materials used need to be produced with limited use of non-renewable fossil fuels. Intercropping strategies are known to maximize growth and productivity by including more than one species in the crop stand, very often with legumes as one of the components. In the present study clover-grass is undersown in a traditional wheat crop. Thereby, it is possible to increase input of symbiotic fixation of atmospheric nitrogen into the cropping systems and reduce the need for fertilizer applications. Furthermore, when using such wheat and clover-grass mixtures as raw material, addition of urea and other fermentation nutrients produced from fossil fuels can be reduced in the whole ethanol manufacturing chain. Using second generation ethanol technology mixtures of relative proportions of wheat straw and clover-grass (15:85, 50:50, and 85:15) were pretreated by wet oxidation. The results showed that supplementing wheat straw with clover-grass had a positive effect on the ethanol yield in simultaneous saccharification and fermentation experiments, and the effect was more pronounced in inhibitory substrates. The highest ethanol yield (80% of theoretical) was obtained in the experiment with high fraction (85%) of clover-grass. In order to improve the sugar recovery of clover-grass, it should be separated into a green juice (containing free sugars, fructan, amino acids, vitamins and soluble minerals) for direct fermentation and a fibre pulp for pretreatment together with wheat straw. Based on the obtained results a decentralized biorefinery concept for production of biofuel is suggested emphasizing sustainability, localness, and recycling principles. PMID:18338188

  8. ENVIRONMENTAL AND SUSTAINABLE TECHNOLOGY EVALUATION: BIOMASS CO-FIRING IN INDUSTRIAL BOILERS--MINNESOTA POWER'S RAPIDS ENERGY CENTER

    EPA Science Inventory

    The U.S. EPA operates the Environmental and Sustainable Technology Evaluation (ESTE) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. This ESTE project involved evaluation of co-firing common woody bio...

  9. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  10. Overcoming systemic roadblocks to sustainability: The evolutionary redesign of worldviews, institutions, and technologies

    PubMed Central

    Beddoe, Rachael; Costanza, Robert; Farley, Joshua; Garza, Eric; Kent, Jennifer; Kubiszewski, Ida; Martinez, Luz; McCowen, Tracy; Murphy, Kathleen; Myers, Norman; Ogden, Zach; Stapleton, Kevin; Woodward, John

    2009-01-01

    A high and sustainable quality of life is a central goal for humanity. Our current socio-ecological regime and its set of interconnected worldviews, institutions, and technologies all support the goal of unlimited growth of material production and consumption as a proxy for quality of life. However, abundant evidence shows that, beyond a certain threshold, further material growth no longer significantly contributes to improvement in quality of life. Not only does further material growth not meet humanity's central goal, there is mounting evidence that it creates significant roadblocks to sustainability through increasing resource constraints (i.e., peak oil, water limitations) and sink constraints (i.e., climate disruption). Overcoming these roadblocks and creating a sustainable and desirable future will require an integrated, systems level redesign of our socio-ecological regime focused explicitly and directly on the goal of sustainable quality of life rather than the proxy of unlimited material growth. This transition, like all cultural transitions, will occur through an evolutionary process, but one that we, to a certain extent, can control and direct. We suggest an integrated set of worldviews, institutions, and technologies to stimulate and seed this evolutionary redesign of the current socio-ecological regime to achieve global sustainability. PMID:19240221

  11. Describing an Environment for a Self-Sustaining Technology Transfer Service in a Small Research Budget University: A Case Study

    ERIC Educational Resources Information Center

    Nieb, Sharon Lynn

    2014-01-01

    This single-site qualitative study sought to identify the characteristics that contribute to the self sustainability of technology transfer services at universities with small research budgets through a case study analysis of a small research budget university that has been operating a financially self-sustainable technology transfer service for…

  12. Sustainability Through Technology Licensing and Commercialization: Lessons Learned from the TRIAD Project

    PubMed Central

    Payne, Philip R.O.

    2014-01-01

    Ongoing transformation relative to the funding climate for healthcare research programs housed in academic and non-profit research organizations has led to a new (or renewed) emphasis on the pursuit of non-traditional sustainability models. This need is often particularly acute in the context of data management and sharing infrastructure that is developed under the auspices of such research initiatives. One option for achieving sustainability of such data management and sharing infrastructure is the pursuit of technology licensing and commercialization, in an effort to establish public-private or equivalent partnerships that sustain and even expand upon the development and dissemination of research-oriented data management and sharing technologies. However, the critical success factors for technology licensing and commercialization efforts are often unknown to individuals outside of the private sector, thus making this type of endeavor challenging to investigators in academic and non-profit settings. In response to such a gap in knowledge, this article will review a number of generalizable lessons learned from an effort undertaken at The Ohio State University to commercialize a prototypical research-oriented data management and sharing infrastructure, known as the Translational Research Informatics and Data Management (TRIAD) Grid. It is important to note that the specific emphasis of these lessons learned is on the early stages of moving a technology from the research setting into a private-sector entity and as such are particularly relevant to academic investigators interested in pursuing such activities. PMID:25848609

  13. Supporting Sustainable Markets Through Life Cycle Assessment: Evaluating emerging technologies, incorporating uncertainty and the consumer perspective

    NASA Astrophysics Data System (ADS)

    Merugula, Laura

    As civilization's collective knowledge grows, we are met with the realization that human-induced physical and biological transformations influenced by exogenous psychosocial and economic factors affect virtually every ecosystem on the planet. Despite improvements in energy generation and efficiencies, demand of material goods and energy services increases with no sign of a slowing pace. Sustainable development requires a multi-prong approach that involves reshaping demand, consumer education, sustainability-oriented policy, and supply chain management that does not serve the expansionist mentality. Thus, decision support tools are needed that inform developers, consumers, and policy-makers for short-term and long-term planning. These tools should incorporate uncertainty through quantitative methods as well as qualitatively informing the nature of the model as imperfect but necessary and adequate. A case study is presented of the manufacture and deployment of utility-scale wind turbines evaluated for a proposed change in blade manufacturing. It provides the first life cycle assessment (LCA) evaluating impact of carbon nanofibers, an emerging material, proposed for integration to wind power generation systems as blade reinforcement. Few LCAs of nanoproducts are available in scientific literature due to research and development (R&D) for applications that continues to outpace R&D for environmental, health, and safety (EHS) and life cycle impacts. LCAs of emerging technologies are crucial for informing developers of potential impacts, especially where market growth is swift and dissipative. A second case study is presented that evaluates consumer choice between disposable and reusable beverage cups. While there are a few studies that attempt to make the comparison using LCA, none adequately address uncertainty, nor are they representative for the typical American consumer. By disaggregating U.S. power generation into 26 subregional grid production mixes and evaluating

  14. Participatory evaluation of monitoring and modeling of sustainable land management technologies in areas prone to land degradation.

    PubMed

    Stringer, L C; Fleskens, L; Reed, M S; de Vente, J; Zengin, M

    2014-11-01

    Examples of sustainable land management (SLM) exist throughout the world. In many cases, SLM has largely evolved through local traditional practices and incremental experimentation rather than being adopted on the basis of scientific evidence. This means that SLM technologies are often only adopted across small areas. The DESIRE (DESertIfication mitigation and REmediation of degraded land) project combined local traditional knowledge on SLM with empirical evaluation of SLM technologies. The purpose of this was to evaluate and select options for dissemination in 16 sites across 12 countries. It involved (i) an initial workshop to evaluate stakeholder priorities (reported elsewhere), (ii) field trials/empirical modeling, and then, (iii) further stakeholder evaluation workshops. This paper focuses on workshops in which stakeholders evaluated the performance of SLM technologies based on the scientific monitoring and modeling results from 15 study sites. It analyses workshop outcomes to evaluate how scientific results affected stakeholders' perceptions of local SLM technologies. It also assessed the potential of this participatory approach in facilitating wider acceptance and implementation of SLM. In several sites, stakeholder preferences for SLM technologies changed as a consequence of empirical measurements and modeling assessments of each technology. Two workshop examples are presented in depth to: (a) explore the scientific results that triggered stakeholders to change their views; and (b) discuss stakeholders' suggestions on how the adoption of SLM technologies could be up-scaled. The overall multi-stakeholder participatory approach taken is then evaluated. It is concluded that to facilitate broad-scale adoption of SLM technologies, de-contextualized, scientific generalisations must be given local context; scientific findings must be viewed alongside traditional beliefs and both scrutinized with equal rigor; and the knowledge of all kinds of experts must be

  15. Enhancing technology development through integrated environmental analysis: toward sustainable nonlethal military systems.

    PubMed

    Saulters, Oral S; Erickson, Larry E; Leven, Blase A; Pickrel, John A; Green, Ryan M; Jamka, Leslie; Prill, Amanda

    2010-04-01

    New technologies are not only critical in supporting traditional industrial and military success but also play a pivotal role in advancing sustainability and sustainable development. With the current global economic challenges, resulting in tighter budgets and increased uncertainty, synergistic paradigms and tools that streamline the design and dissemination of key technologies are more important than ever. Accordingly, a proactive and holistic approach can facilitate efficient research, design, testing, evaluation, and fielding for novel and off-the-shelf products, thereby assisting developers, end users, and other diverse stakeholders in better understanding tradeoffs in the defense industry and beyond. By prioritizing mechanisms such as strategic life-cycle environmental assessments (LCEA); programmatic environment, safety, and occupational health evaluations (PESHE); health hazard assessments (HHA); and other innovative platforms and studies early within systems engineering, various nonlethal military technologies have been successfully developed and deployed. These efforts provide a framework for addressing complex environment, safety, and occupational health risks that affect personnel, infrastructure, property, socioeconomic, and natural/cultural resources. Moreover, integrated, comprehensive, multidisciplinary, and iterative analyses involving flexible groups of specialists/subject matter experts can be applied at various spatiotemporal scales in support of collaborations. This paper highlights the Urban Operations Laboratory process utilized for inclusive and transformative environmental analysis, which can translate into advantages and progress toward sustainable systems. PMID:19886729

  16. NYU3T: teaching, technology, teamwork: a model for interprofessional education scalability and sustainability.

    PubMed

    Djukic, Maja; Fulmer, Terry; Adams, Jennifer G; Lee, Sabrina; Triola, Marc M

    2012-09-01

    Interprofessional education is a critical precursor to effective teamwork and the collaboration of health care professionals in clinical settings. Numerous barriers have been identified that preclude scalable and sustainable interprofessional education (IPE) efforts. This article describes NYU3T: Teaching, Technology, Teamwork, a model that uses novel technologies such as Web-based learning, virtual patients, and high-fidelity simulation to overcome some of the common barriers and drive implementation of evidence-based teamwork curricula. It outlines the program's curricular components, implementation strategy, evaluation methods, and lessons learned from the first year of delivery and describes implications for future large-scale IPE initiatives. PMID:22920424

  17. Incentives to create and sustain healthy behaviors: technology solutions and research needs.

    PubMed

    Teyhen, Deydre S; Aldag, Matt; Centola, Damon; Edinborough, Elton; Ghannadian, Jason D; Haught, Andrea; Jackson, Theresa; Kinn, Julie; Kunkler, Kevin J; Levine, Betty; Martindale, Valerie E; Neal, David; Snyder, Leslie B; Styn, Mindi A; Thorndike, Frances; Trabosh, Valerie; Parramore, David J

    2014-12-01

    Health-related technology, its relevance, and its availability are rapidly evolving. Technology offers great potential to minimize and/or mitigate barriers associated with achieving optimal health, performance, and readiness. In support of the U.S. Army Surgeon General's vision for a "System for Health" and its Performance Triad initiative, the U.S. Army Telemedicine and Advanced Technology Research Center hosted a workshop in April 2013 titled "Incentives to Create and Sustain Change for Health." Members of government and academia participated to identify and define the opportunities, gain clarity in leading practices and research gaps, and articulate the characteristics of future technology solutions to create and sustain real change in the health of individuals, the Army, and the nation. The key factors discussed included (1) public health messaging, (2) changing health habits and the environmental influence on health, (3) goal setting and tracking, (4) the role of incentives in behavior change intervention, and (5) the role of peer and social networks in change. This report summarizes the recommendations on how technology solutions could be employed to leverage evidence-based best practices and identifies gaps in research where further investigation is needed. PMID:25469962

  18. Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management.

    PubMed

    Du, Qian; Chang, Ni-Bin; Yang, Chenghai; Srilakshmi, Kanth R

    2008-01-01

    The Lower Rio Grande Valley (LRGV) of south Texas is an agriculturally rich area supporting intensive production of vegetables, fruits, grain sorghum, and cotton. Modern agricultural practices involve the combined use of irrigation with the application of large amounts of agrochemicals to maximize crop yields. Intensive agricultural activities in past decades might have caused potential contamination of soil, surface water, and groundwater due to leaching of pesticides in the vadose zone. In an effort to promote precision farming in citrus production, this paper aims at developing an airborne multispectral technique for identifying tree health problems in a citrus grove that can be combined with variable rate technology (VRT) for required pesticide application and environmental modeling for assessment of pollution prevention. An unsupervised linear unmixing method was applied to classify the image for the grove and quantify the symptom severity for appropriate infection control. The PRZM-3 model was used to estimate environmental impacts that contribute to nonpoint source pollution with and without the use of multispectral remote sensing and VRT. Research findings using site-specific environmental assessment clearly indicate that combination of remote sensing and VRT may result in benefit to the environment by reducing the nonpoint source pollution by 92.15%. Overall, this study demonstrates the potential of precision farming for citrus production in the nexus of industrial ecology and agricultural sustainability. PMID:17222960

  19. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    SciTech Connect

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has

  20. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa.

    PubMed

    van Zyl, W H; Chimphango, A F A; den Haan, R; Görgens, J F; Chirwa, P W C

    2011-04-01

    The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation. PMID:22482027

  1. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa

    PubMed Central

    van Zyl, W. H.; Chimphango, A. F. A.; den Haan, R.; Görgens, J. F.; Chirwa, P. W. C.

    2011-01-01

    The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation. PMID:22482027

  2. Proceedings of the International Conferences on Education Technologies (ICEduTech) and Sustainability, Technology and Education (STE) (New Tapei City, Taiwan, December 10-12, 2014)

    ERIC Educational Resources Information Center

    Kommers, Piet, Ed.; Issa, Tomayess, Ed.; Issa, Theodora, Ed.; Chang, Dian-Fu, Ed.; Isias, Pedro, Ed.

    2014-01-01

    These proceedings contain the papers of the International Conferences on Educational Technologies (ICEduTech 2014), and Sustainability, Technology and Education (STE 2014). The International Conference on Educational Technologies (ICEduTech 2014) is the scientific conference addressing the real topics as seen by teachers, students, parents and…

  3. An Investigation of Educational Technology Sustainability Factors in New Jersey Elementary Schools and Their Alignment with the 2008 New Jersey School Technology Survey

    ERIC Educational Resources Information Center

    Timpone, Cathy J.

    2012-01-01

    Educational leaders struggle with how to develop and sustain an effective, current and affordable educational technology program that meets the needs of the 21st Century learner and increases teaching and learning effectiveness. Thus, this study aimed to extend the research and provide practical guidelines to assist leaders in sustaining an…

  4. Authentication and dating of biomass components of industrial materials; links to sustainable technology

    NASA Astrophysics Data System (ADS)

    Currie, L. A.; Klinedinst, D. B.; Burch, R.; Feltham, N.; Dorsch, R.

    2000-10-01

    There are twin pressures mounting in US industry for increased utilization of biomass feedstocks and biotechnology in production. The more demanding pressure relates to economic sustainability, that is, because of increased competition globally, businesses will fail unless a minimum margin of profit is maintained while meeting the demands of consumers for less expensive products. The second pressure relates to "Green Technology" where environmental sustainability, linked for example to concerns about climate change and the preservation of natural resources, represents a worldwide driving force to reduce the consumption of fossil hydrocarbons. The resulting transition of biomass production in the industrial plant, as opposed to the agricultural plant, has resulted in an increasing need for isotopic methods of authenticating and dating feedstocks, intermediates and industrial products. The research described represents a prototypical case study leading to the definition of a unique dual isotopic ( 13C, 14C) signature or "fingerprint" for a new biomass-based commercial polymer, polypropylene terephthalate (3GT).

  5. ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh--Merging Technology with Sustainable Implementation

    SciTech Connect

    Addy, Susan E.A.; Gadgil, Ashok J.; Kowolik, Kristin; Kostecki, Robert

    2009-12-01

    Today, 35-77 million Bangladeshis drink arsenic-contaminated groundwater from shallow tube wells. Arsenic remediation efforts have focused on the development and dissemination of household filters that frequently fall into disuse due to the amount of attention and maintenance that they require. A community scale clean water center has many advantages over household filters and allows for both chemical and electricity-based technologies to be beneficial to rural areas. Full cost recovery would enable the treatment center to be sustainable over time. ElectroChemical Arsenic Remediation (ECAR) is compatible with community scale water treatment for rural Bangladesh. We demonstrate the ability of ECAR to reduce arsenic levels> 500 ppb to less than 10 ppb in synthetic and real Bangladesh groundwater samples and examine the influence of several operating parameters on arsenic removal effectiveness. Operating cost and waste estimates are provided. Policy implication recommendations that encourage sustainable community treatment centers are discussed.

  6. Sustained Manned Mars Presence Enabled by E-sail Technology and Asteroid Water Mining

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka; Merikallio, Sini; Toivanen, Petri; Envall, M. Jouni

    The Electric Solar Wind Sail (E-sail) can produce 0.5-1 N of inexhaustible and controllable propellantless thrust [1]. The E-sail is based on electrostatic Coulomb interaction between charged thin tethers and solar wind ions. It was invented in 2006, was developed to TRL 4-5 in 2011-2013 with ESAIL FP7 project (http://www.electric-sailing.fi/fp7) and a CubeSat small-scale flight test is in course (ESTCube-1). The E-sail provides a flexible and efficient way of moving 0-2 tonne sized cargo payloads in the solar system without consuming propellant. Given the E-sail, one could use it to make manned exploration of the solar system more affordable by combining it with asteroid water mining. One first sends a miner spacecraft to an asteroid or asteroids, either by E-sail or traditional means. Many asteroids are known to contain water and liberating it only requires heating the material one piece at a time in a leak tight container. About 2 tonne miner can produce 50 tonnes of water per year which is sufficient to sustain continuous manned traffic between Earth and Mars. If the ice-bearing asteroid resides roughly at Mars distance, it takes 3 years for a 0.7 N E-sailer to transport a 10 tonne water/ice payload to Mars orbit or Earth C3 orbit. Thus one needs a fleet of 15 E-sail transport spacecraft plus replacements to ferry 50 tonnes of water yearly to Earth C3 (1/3) and Mars orbit (2/3). The mass of one transporter is 300 kg [2]. One needs to launch max 1.5 tonne mass of new E-sail transporters per year and in practice much less since it is simple to reuse them. This infrastructure is enough to supply 17 tonnes of water yearly at Earth C3 and 33 tonnes in Mars orbit. Orbital water can be used by manned exploration in three ways: (1) for potable water and for making oxygen, (2) for radiation shielding, (3) for LH2/LOX propellant. Up to 75 % of the wet mass of the manned module could be water (50 % propellant and 25 % radiation shield water). On top of this the total mass

  7. Sustained viral response in a hepatitis C virus-infected chimpanzee via a combination of direct-acting antiviral agents.

    PubMed

    Olsen, David B; Davies, Mary-Ellen; Handt, Larry; Koeplinger, Kenneth; Zhang, Nanyan Rena; Ludmerer, Steven W; Graham, Donald; Liverton, Nigel; MacCoss, Malcolm; Hazuda, Daria; Carroll, Steven S

    2011-02-01

    Efforts to develop novel, interferon-sparing therapies for treatment of chronic hepatitis C (HCV) infection are contingent on the ability of combination therapies consisting of direct antiviral inhibitors to achieve a sustained virologic response. This work demonstrates a proof of concept that coadministration of the nucleoside analogue MK-0608 with the protease inhibitor MK-7009, both of which produced robust viral load declines as monotherapy, to an HCV-infected chimpanzee can achieve a cure of infection. PMID:21115793

  8. The mini climatic city a dedicated space for technological innovations devoted to Sustainable City

    NASA Astrophysics Data System (ADS)

    Derkx, François; Lebental, Bérengère; Merliot, Erick; Dumoulin, Jean; Bourquin, Frédéric

    2015-04-01

    Our cities, from megalopolis to rural commune, are systems of an extraordinary technological and human complexity. Their balance is threatened by the growing population and rarefaction of resources. Massive urbanization endanges the environment, while global climate change, through natural hazards generated (climatic, hydrological and geological), threats people and goods. Connect the city, that is to say, design and spread systems able to route, between multiple actors, a very large amount of heterogeneous information natures and analyzed for various purposes, is at the heart of the hopes to make our cities more sustainable: climate-resilient, energy efficient and actresses of the energy transition, attractive to individuals and companies, health and environment friendly. If multiple players are already aware of this need, progress is slow because, beyond the only connectivity, it is the urban intelligence that will create the sustainable city, through coordinated capabilities of Perception, Decision and Action: to measure phenomena; to analyze their impact on urban sustainability in order to define strategies for improvement; to effectively act on the cause of the phenomenon. In this very active context with a strong societal impact, the Sense-City project aims to accelerate research and innovation in the field of sustainable city, particularly in the field of micro and nanosensors. The project is centered around a "mini climatic City", a unique mobile environmental chamber in Europe of 400m² that can accommodate realistic models of city main components, namely buildings, infrastructures, distribution networks or basements. This R&D test place, available in draft form from January 2015 and in finalized version in 2016, will allow to validate, in realistic conditions, innovative technologies performances for the sustainable city, especially micro- and nano-sensors, at the end of their development laboratory and upstream of industrialization. R & D platform

  9. Factors related to the economic sustainability of two-year chemistry-based technology training programs

    NASA Astrophysics Data System (ADS)

    Backus, Bridgid A.

    Two-year chemistry-based technology training (CBTT) programs in the U.S. are important in the preparation of the professional technical workforce. The purpose of this study was to identify, examine, and analyze factors related to the economic sustainability of CBTT programs. A review of literature identified four clustered categories of 31 sub-factors related to program sustainability. Three research questions relating to program sustainability were: (1) What is the relative importance of the identified factors?, (2) What differences exist between the opinions of administrators and faculty?, and (3) What are the interrelationships among the factors? In order to answer these questions, survey data gathered from CBTT programs throughout the United States were analyzed statistically. Conclusions included the following: (1) Rank order of the importance to sustainability of the clustered categories was: (1) Partnerships, (2) Employer and Student Educational Goals, (3) Faculty and Their Resources, and (4) Community Perceptions and Marketing Strategies. (2) Significant correlations between ratings of sustainability and the sub-factors included: degree of partnering, college responsiveness, administration involvement in partnerships, experiential learning opportunities, employer input in curriculum development, use of skill standards, number of program graduates, student job placement, professional development opportunities, administrator support, presence of a champion, flexible scheduling, program visibility, perception of chemical technicians, marketing plans, and promotion to secondary students. (3) Faculty and administrators differed significantly on only two sub-factor ratings: employer assisted curriculum development, and faculty workloads. (4) Significant differences in ratings by small program faculty and administrators and large program faculty and administrators were indicated, with most between small program faculty and large program administrators. The study

  10. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  11. Environmentally Sustainable Growth in the 21st Century: The Role of Catalytic Science in Technology

    NASA Astrophysics Data System (ADS)

    Cusumano, James A.

    1995-11-01

    Nations of the world face an unprecedented and daunting challenge. They aggressively seek to stimulate their economies, to create new jobs, to increase the accessibility of products and technologies that enhance the quality of life--at the same time they desparately pursue the reversal of a perceived global environmental crisis. Resolution of this apparent paradox can be addressed to a significant degree by new developments in catalytic science. With the recent advent of molecular design techniques, the modernized form of this broadly applicable technological tool has the potential to change the face of the four fundamental needs of humanity--health care, food supply, energy, and materials. This can be done in a way that provides a path to environmentally sustainable development for all citizens of the planet.

  12. Improving sustainability by technology assessment and systems analysis: the case of IWRM Indonesia

    NASA Astrophysics Data System (ADS)

    Nayono, S.; Lehmann, A.; Kopfmüller, J.; Lehn, H.

    2016-06-01

    To support the implementation of the IWRM-Indonesia process in a water scarce and sanitation poor region of Central Java (Indonesia), sustainability assessments of several technology options of water supply and sanitation were carried out based on the conceptual framework of the integrative sustainability concept of the German Helmholtz association. In the case of water supply, the assessment was based on the life-cycle analysis and life-cycle-costing approach. In the sanitation sector, the focus was set on developing an analytical tool to improve planning procedures in the area of investigation, which can be applied in general to developing and newly emerging countries. Because sanitation systems in particular can be regarded as socio-technical systems, their permanent operability is closely related to cultural or religious preferences which influence acceptability. Therefore, the design of the tool and the assessment of sanitation technologies took into account the views of relevant stakeholders. The key results of the analyses are presented in this article.

  13. Next-generation biofuels: Survey of emerging technologies and sustainability issues.

    PubMed

    Zinoviev, Sergey; Müller-Langer, Franziska; Das, Piyali; Bertero, Nicolás; Fornasiero, Paolo; Kaltschmitt, Martin; Centi, Gabriele; Miertus, Stanislav

    2010-10-25

    Next-generation biofuels, such as cellulosic bioethanol, biomethane from waste, synthetic biofuels obtained via gasification of biomass, biohydrogen, and others, are currently at the center of the attention of technologists and policy makers in search of the more sustainable biofuel of tomorrow. To set realistic targets for future biofuel options, it is important to assess their sustainability according to technical, economical, and environmental measures. With this aim, the review presents a comprehensive overview of the chemistry basis and of the technology related aspects of next generation biofuel production, as well as it addresses related economic issues and environmental implications. Opportunities and limits are discussed in terms of technical applicability of existing and emerging technology options to bio-waste feedstock, and further development forecasts are made based on the existing social-economic and market situation, feedstock potentials, and other global aspects. As the latter ones are concerned, the emphasis is placed on the opportunities and challenges of developing countries in adoption of this new industry. PMID:20922754

  14. Social Influence on Information Technology Adoption and Sustained Use in Healthcare: A Hierarchical Bayesian Learning Method Analysis

    ERIC Educational Resources Information Center

    Hao, Haijing

    2013-01-01

    Information technology adoption and diffusion is currently a significant challenge in the healthcare delivery setting. This thesis includes three papers that explore social influence on information technology adoption and sustained use in the healthcare delivery environment using conventional regression models and novel hierarchical Bayesian…

  15. Sustaining Technology in Low-Income Neighborhoods. A Consultative Session Convened by the Annie E. Casey Foundation. Thematic Summary.

    ERIC Educational Resources Information Center

    Annie E. Casey Foundation, Baltimore, MD.

    This report summarizes the presentations of 35 professionals from diverse sectors of society working on different aspects of the digital divide. Various uses of technology have been supported over the past decade to improve outcomes for low-income groups. This session focused on the issue of technology sustainability in the face of increasing…

  16. Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives

    NASA Astrophysics Data System (ADS)

    Conte, M.; Iacobazzi, A.; Ronchetti, M.; Vellone, R.

    Sustainable energy is becoming of increasing concern world-wide. The rapid growth of global climate changes along with the fear of energy supply shortage is creating a large consensus about the potential benefits of a hydrogen economy coming from renewable energy sources. The interesting perspectives are over-shadowed by uncertainties about the development of key technologies, such as renewable energy sources, advanced production processes, fuel cells, metal hydrides, nanostructures, standards and codes, and so on. The availability of critical technologies can create a base for the start of the hydrogen economy, as a fuel and energy carrier alternative to the current fossil resources. This paper will explore the rationale for such a revolution in the energy sector, will describe the state-of-the-art of major related technologies (fuel cell, storage systems, fuel cell vehicles) and current niche applications, and will sketch scientific and technological challenges and recommendations for research and development (R&D) initiatives to accelerate the pace for the widespread introduction of a hydrogen economy.

  17. A methodology for the sustainability assessment of arsenic mitigation technology for drinking water.

    PubMed

    Etmannski, T R; Darton, R C

    2014-08-01

    In this paper we show how the process analysis method (PAM) can be applied to assess the sustainability of options to mitigate arsenic in drinking water in rural India. Stakeholder perspectives, gathered from a fieldwork survey of 933 households in West Bengal in 2012 played a significant role in this assessment. This research found that the 'most important' issues as specified by the technology users are cost, trust, distance from their home to the clean water source (an indicator of convenience), and understanding the health effects of arsenic. We show that utilisation of a technology is related to levels of trust and confidence in a community, making use of a composite trust-confidence indicator. Measures to improve trust between community and organisers of mitigation projects, and to raise confidence in technology and also in fair costing, would help to promote successful deployment of appropriate technology. Attitudes to cost revealed in the surveys are related to the low value placed on arsenic-free water, as also found by other investigators, consistent with a lack of public awareness about the arsenic problem. It is suggested that increased awareness might change attitudes to arsenic-rich waste and its disposal protocols. This waste is often currently discarded in an uncontrolled manner in the local environment, giving rise to the possibility of point-source recontamination. PMID:24284264

  18. A streamlined search technology for identification of synergistic drug combinations.

    PubMed

    Weiss, Andrea; Berndsen, Robert H; Ding, Xianting; Ho, Chih-Ming; Dyson, Paul J; van den Bergh, Hubert; Griffioen, Arjan W; Nowak-Sliwinska, Patrycja

    2015-01-01

    A major key to improvement of cancer therapy is the combination of drugs. Mixing drugs that already exist on the market may offer an attractive alternative. Here we report on a new model-based streamlined feedback system control (s-FSC) method, based on a design of experiment approach, for rapidly finding optimal drug mixtures with minimal experimental effort. We tested combinations in an in vitro assay for the viability of a renal cell adenocarcinoma (RCC) cell line, 786-O. An iterative cycle of in vitro testing and s-FSC analysis was repeated a few times until an optimal low dose combination was reached. Starting with ten drugs that target parallel pathways known to play a role in the development and progression of RCC, we identified the best overall drug combination, being a mixture of four drugs (axitinib, erlotinib, dasatinib and AZD4547) at low doses, inhibiting 90% of cell viability. The removal of AZD4547 from the optimized drug combination resulted in 80% of cell viability inhibition, while still maintaining the synergistic interaction. These optimized drug combinations were significantly more potent than monotherapies of all individual drugs (p < 0.001, CI < 0.3). PMID:26416286

  19. Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment.

    PubMed

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-01-15

    The objective of this study was to assess the economic and environmental sustainability of submerged anaerobic membrane bioreactors (AnMBRs) in comparison with aerobic-based technologies for moderate-/high-loaded urban wastewater (UWW) treatment. To this aim, a combined approach of steady-state performance modelling, life cycle analysis (LCA) and life cycle costing (LCC) was used, in which AnMBR (coupled with an aerobic-based post-treatment) was compared to aerobic membrane bioreactor (AeMBR) and conventional activated sludge (CAS). AnMBR with CAS-based post-treatment for nutrient removal was identified as a sustainable option for moderate-/high-loaded UWW treatment: low energy consumption and reduced sludge production could be obtained at given operating conditions. In addition, significant reductions can be achieved in different aspects of environmental impact (global warming potential (GWP), abiotic depletion, acidification, etc.) and LCC over existing UWW treatment technologies. PMID:26473754

  20. Technology, Teachers, and Training: Combining Theory with Macedonia's Experience

    ERIC Educational Resources Information Center

    Hosman, Laura; Cvetanoska, Maja

    2013-01-01

    Numerous developing countries are currently planning or executing projects that introduce technology into their educational systems. This article asserts that such projects will have limited long-term success or impact until they are reconceptualized to incorporate three transformative concepts: teachers play the key role in determining the…

  1. Space Technologies for Enhancing the Resilience and Sustainability of Indigenous Reindeer Husbandry in the Russian Arctic

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.; Yurchak, Boris S.; Sleptsov, Yuri A.; Turi, Johan Mathis; Mathlesen, Svein D.

    2005-01-01

    To adapt successfully to the major changes - climate, environment, economic, social and industrial - which have taken place across the Arctic. in recent years, indigenous communities such as reindeer herders must become increasingly empowered with the best available technologies to add to their storehouse of traditional knowledge. Remotely-sensed data and observations are providing increased capabilities for monitoring, risk mapping, and surveillance of parameters critical to the characterization of pasture quality and migratory routes, such as vegetation distribution, snow cover, infrastructure development, and pasture damages due to fires. This paper describes a series of remote sensing capabilities, which are useful to reindeer husbandry, and gives the results of the first year of a project, "Reindeer Mapper", which is a remote sensing and GIs-based system to bring together space technologies with indigenous knowledge for sustainable reindeer husbandry in the Russian Arctic. In this project, reindeer herders and scientists are joining together to utilize technologies to create a system for collecting and sharing space-based and indigenous knowledge in the Russian Arctic. The "Reindeer Mapper" system will help make technologies more readily available to the herder community for observing, data collection and analysis, monitoring, sharing, communications, and dissemination of information - to be integrated with traditional, local knowledge. This paper describes some of the technologies which comprise the system including an intranet system to enable to the team members to work together and share information electronically, remote sensing data for monitoring environmental parameters important to reindeer husbandry (e.g., SAR, Landsat, AVHRR, MODIS), indigenous knowledge about important environmental parameters, acquisition of ground- based measurements, and the integration of all useful data sets for more informed decision-making.

  2. Double Wall Framing Technique An Example of High Performance, Sustainable Building Envelope Technology

    SciTech Connect

    Kosny, Dr. Jan; Asiz, Andi; Shrestha, Som S; Biswas, Kaushik; Nitin, Shukla

    2015-01-01

    Double wall technologies utilizing wood framing have been well-known and used in North American buildings for decades. Most of double wall designs use only natural materials such as wood products, gypsum, and cellulose fiber insulation, being one of few building envelope technologies achieving high thermal performance without use of plastic foams or fiberglass. Today, after several material and structural design modifications, these technologies are considered as highly thermally efficient, sustainable option for new constructions and sometimes, for retrofit projects. Following earlier analysis performed for U.S. Department of Energy by Fraunhofer CSE, this paper discusses different ways to build double walls and to optimize their thermal performance to minimize the space conditioning energy consumption. Description of structural configuration alternatives and thermal performance analysis are presented as well. Laboratory tests to evaluate thermal properties of used insulation and whole wall system thermal performance are also discussed in this paper. Finally, the thermal loads generated in field conditions by double walls are discussed utilizing results from a joined project performed by Zero Energy Building Research Alliance and Oak Ridge National Laboratory (ORNL), which made possible evaluation of the market viability of low-energy homes built in the Tennessee Valley. Experimental data recorded in two of the test houses built during this field study is presented in this work.

  3. Development and characterization of gastroretentive sustained-release formulation by combination of swelling and mucoadhesive approach: a mechanistic study

    PubMed Central

    Sankar, R; Jain, Subheet Kumar

    2013-01-01

    Background Acyclovir has pharmacokinetic limitations, including poor oral bioavailability of 15%–30%, high variability, and short elimination half-life of 2.3 hours. These limitations necessitate frequent administration of acyclovir, up to five times daily, leading to poor patient compliance, which in turn leads to a reduction in therapeutic efficacy and development of resistance. Methods A gastroretentive sustained-release (GR) formulation of acyclovir, based on a combination of swelling and mucoadhesive mechanisms, has been developed. Composition has been optimized after evaluation of different polymers, carbomer, polyethylene oxide, and sodium alginate alone and/or in combination. GR formulations were characterized for in-process quality-control tests, drug release and release rate kinetics, similarity factor analysis, swelling index, and matrix erosion. Results A formulation containing a combination of carbomer and polyethylene oxide had the highest similarity of drug release compared with a target drug-release profile obtained by pharmacokinetic simulations. The measurement of mucoadhesive strength, carried out with a texture analyzer, showed that the mucoadhesive strength of the GR formulation was significantly higher than that of the immediate-release (IR) tablet. The optimized GR formulation was found to be retained in the upper part of the gastrointestinal tract for 480 minutes; the IR tablet was retained for only 90 minutes as measured using a gastrointestinal retention study in albino rabbits. The GR formulation was also found to maintain more sustained plasma concentrations than the IR tablet. Mean residence time of the GR formulation was 7 hours versus 3.3 hours for the IR formulation. The relative bioavailability of the GR formulation was 261% of the IR formulation. Conclusion The GR formulation of acyclovir, based on swelling and mucoadhesive mechanisms, has prolonged retention in the upper gastrointestinal tract, sustained in vitro drug release

  4. The environmental sustainability of anaerobic digestion as a biomass valorization technology.

    PubMed

    De Meester, Steven; Demeyer, Jens; Velghe, Filip; Peene, Andy; Van Langenhove, Herman; Dewulf, Jo

    2012-10-01

    This paper studies the environmental sustainability of anaerobic digestion from three perspectives. First, reference electricity is compared to electricity production from domestic organic waste and energy crop digestion. Second, different digester feed possibilities in an agricultural context are studied. Third, the influence of applying digestate as fertilizer is investigated. Results highlight that biomass is converted at a rational exergy (energy) efficiency ranging from 15.3% (22.6) to 33.3% (36.0). From a life cycle perspective, a saving of over 90% resources is achieved in most categories when comparing biobased electricity to conventional electricity. However, operation without heat valorization results in 32% loss of this performance while using organic waste (domestic and agricultural residues) as feedstock avoids land resources. The use of digestate as a fertilizer is beneficial from a resource perspective, but causes increased nitrogen and methane emissions, which can be reduced by 50%, making anaerobic digestion an environmentally competitive bioenergy technology. PMID:22864176

  5. An interpretive summary of the 1997 conference on policies for fostering sustainable transportation technologies

    SciTech Connect

    Santini, D.J.

    1997-12-31

    T.R. Lakshmanan, director of the Bureau of Transportation Statistics, offered the following definition from the Bruntland Commission: ``Sustainable development is development that meets the needs of the present generations without compromising the ability of future generations.`` The technologies and policies that received the most attention would provide per-unit-of-service reduction of three kinds of social costs (external costs, in economist`s terminology) with respect to light duty transportation. The main factors to be reduced were oil use, greenhouse gases, and air pollution. Undesirable side effects of continually expanding transportation activity, including congestion and habitat loss, were also discussed. The conference included debate about priorities among these five categories of social cost, about which organizations should take action to achieve the reductions needed in each, and about what specific actions these organizations should take.

  6. Combining Ontologies and Peer-to-Peer Technologies for Inter-Organizational Knowledge Management

    ERIC Educational Resources Information Center

    Stuckenschmidt, Heiner; Siberski, Wolf; Nejdl, Wolfgang

    2005-01-01

    Purpose: The purpose of the paper is to review the characteristics of systems that combine P2P technology with explicit ontologies and assess the benefits of these technologies for inter-organizational knowledge management. Design/methodology/approach: We characterize existing technologies with respect to a number of aspects that are relevant to…

  7. Technology Combination Analysis Tool (TCAT) for Active Debris Removal

    NASA Astrophysics Data System (ADS)

    Chamot, B.; Richard, M.; Salmon, T.; Pisseloup, A.; Cougnet, C.; Axthelm, R.; Saunder, C.; Dupont, C.; Lequette, L.

    2013-08-01

    This paper present the work of the Swiss Space Center EPFL within the CNES-funded OTV-2 study. In order to find the most performant Active Debris Removal (ADR) mission architectures and technologies, a tool was developed in order to design and compare ADR spacecraft, and to plan ADR campaigns to remove large debris. Two types of architectures are considered to be efficient: the Chaser (single-debris spacecraft), the Mothership/ Kits (multiple-debris spacecraft). Both are able to perform controlled re-entry. The tool includes modules to optimise the launch dates and the order of capture, to design missions and spacecraft, and to select launch vehicles. The propulsion, power and structure subsystems are sized by the tool thanks to high-level parametric models whilst the other ones are defined by their mass and power consumption. Final results are still under investigation by the consortium but two concrete examples of the tool's outputs are presented in the paper.

  8. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.

    PubMed

    Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris

    2015-11-01

    Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications. PMID:26489525

  9. A "win-win" scenario: the use of sustainable land management technologies to improve rural livelihoods and combat desertification in semi-arid lands in Kenya

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Musimba, Nashon; Nyariki, Dickson; Nyangito, Moses; Mwang'ombe, Agnes

    2014-05-01

    Dryland ecosystems support over 2 billion people and are major providers of critical ecosystems goods and services globally. However, desertification continues to pose a serious threat to the sustainability of the drylands and livelihoods of communities inhabiting them. The desertification problem is well exemplified in the arid and semi-arid lands (ASALs) in Kenya which cover approximately 80% of the total land area. This study aimed to 1) determine what agropastoralists attribute to be the causes of desertification in a semi-arid land in Kenya, 2) document sustainable land management (SLM) technologies being undertaken to improve livelihoods and combat desertification, and 3) identify the factors that influence the choice of the sustainable land management (SLM) technologies. Results show that agropastoralists inhabiting the semi-arid lands in southeastern Kenya mainly attribute desertification to the recurrent droughts and low amounts of rainfall. Despite the challenges posed by desertification and climate variability, agropastoralists in the study area are using a combination of SLM technologies notably dryland agroforestry using drought tolerant species (indigenous and exotic), grass reseeding using perennial native and drought tolerant grass species (vegetation reestablishment) and in-situ rainwater harvesting to improve livelihoods and by extension combat desertification. Interestingly, the choice and adoption of these SLM technologies is influenced more by the additional benefits the agropastoralists can derive from them. Therefore, it is rationale to conclude that success in dryland restoration and combating desertification lies in programs and technologies that offer a "win-win" scenario to the communities inhabiting the drylands. Key words: Agroforestry; Agropastoralists; Drylands; Grass Reseeding; Rainwater Harvesting

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: MICROTURBINES AND COMBINED HEAT AND POWER TECHNOLOGIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification(ETV) Program evaluates the performance of innovatiave air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techno...

  11. Targeted therapy with propranolol and metronomic chemotherapy combination: sustained complete response of a relapsing metastatic angiosarcoma

    PubMed Central

    Banavali, Shripad; Pasquier, Eddy; Andre, Nicolas

    2015-01-01

    We report here a case of a 69-year-old woman with a relapsing metastatic angiosarcoma treated with a combination of metronomic chemotherapy and propranolol. The beta blockers were added since the tumour was positive for betaadrenergic receptor. A complete response was quickly obtained and lasted for 20 months. With this case, the combination of metronomic chemotherapy and propranolol in angiosarcoma warrants additional studies and illustrates the potential of metronomics to generate innovative yet inexpensive targeted therapies for both high-income and low-/middle-income countries. PMID:25624880

  12. Targeted therapy with propranolol and metronomic chemotherapy combination: sustained complete response of a relapsing metastatic angiosarcoma.

    PubMed

    Banavali, Shripad; Pasquier, Eddy; Andre, Nicolas

    2015-01-01

    We report here a case of a 69-year-old woman with a relapsing metastatic angiosarcoma treated with a combination of metronomic chemotherapy and propranolol. The beta blockers were added since the tumour was positive for betaadrenergic receptor. A complete response was quickly obtained and lasted for 20 months. With this case, the combination of metronomic chemotherapy and propranolol in angiosarcoma warrants additional studies and illustrates the potential of metronomics to generate innovative yet inexpensive targeted therapies for both high-income and low-/middle-income countries. PMID:25624880

  13. Empowering Sustained Patient Safety: The Benefits of Combining Top-down and Bottom-up Approaches.

    PubMed

    Stewart, Greg L; Manges, Kirstin A; Ward, Marcia M

    2015-01-01

    Implementation of TeamSTEPPS for improving patient safety is examined via descriptive qualitative analysis of semistructured interviews with 21 informants at 12 hospitals. Implementation approaches fit 3 strategies: top-down, bottom-up, and combination. The top-down approach failed to develop enough commitment to spread implementation. The bottom-up approach was unable to marshal the resources necessary to spread implementation. Combining top-down and bottom-up processes best facilitated the implementation and spread of the TeamSTEPPS safety initiative. PMID:25479238

  14. Sustainable resource recovery and energy conversion processes using microbial electrochemical technologies

    NASA Astrophysics Data System (ADS)

    Yates, Matthew D.

    Microbial Electrochemical Technologies (METs) are emerging technological platforms for the conversion of waste into usable products. METs utilize naturally occurring bacteria, called exoelectrogens, capable of transferring electrons to insoluble terminal electron acceptors. Electron transfer processes in the exoelectrogen Geobacter sulfurreducens were exploited here to develop sustainable processes for synthesis of industrially and socially relevant end products. The first process examined was the removal of soluble metals from solution to form catalytic nanoparticles and nanoporous structures. The second process examined was the biocatalytic conversion of electrons into hydrogen gas using electrons supplied directly to an electrode. Nanoparticle formation is desirable because materials on the nanoscale possess different physical, optical, electronic, and mechanical properties compared to bulk materials. In the first process, soluble palladium was used to form catalytic palladium nanoparticles using extracellular electron transfer (EET) processes of G. sulfurreducens, typically the dominant member of mixedculture METs. Geobacter cells reduced the palladium extracellularly using naturally produced pili, which provided extracellular adsorption and reduction sites to help delay the diffusion of soluble metals into the cell. The extracellular reduction prevented cell inactivation due to formation of intracellular particles, and therefore the cells could be reused in multiple palladium reduction cycles. A G. sulfurreducens biofilm was next investigated as a biotemplate for the formation of a nanoporous catalytic palladium structure. G. sulfurreducens biofilms have a dense network of pili and extracellular cytochromes capable of high rates of electron transfer directly to an electrode surface. These pili and cytochromes provide a dense number of reduction sites for nanoparticle formation without the need for any synthetic components. The cells within the biofilm also can

  15. Visions for a sustainable world: A conference on science, technology and social responsibility. Conference report

    SciTech Connect

    Not Available

    1992-12-31

    This report summarizes the organization, activities, and outcomes of Student Pugwash USA`s 1992 International Conference, Visions for a Sustainable World: A Conference on Science, Technology and Social Responsibility. The conference was held June 14--20, 1992 at Emory University, and brought together 94 students and over 65 experts from industry, academe, and government. The conference addressed issues ranging from global environmental cooperation to the social impacts of the Human Genome Project to minority concerns in the sciences. It provided a valuable forum for talented students and professionals to engage in critical dialogue on many interdisciplinary issues at the juncture of science, technology and society. The conference challenged students -- the world`s future scientists, engineers, and political leaders -- to think broadly about global problems and to devise policy options that are viable and innovative. The success of the conference in stimulating interest, understanding, and enthusiasm about interdisciplinary global issues is clearly evident from both the participants` feedback and their continued involvement in Student Pugwash USA programs. Six working groups met each morning. The working group themes included: environmental challenges for developing countries; energy options: their social and environmental impact; health care in developing countries; changing dynamics of peace and global security; educating for the socially responsible use of technology; ethics and the use of genetic information. The conference was specifically designed to include mechanisms for ensuring its long-term impact. Participants were encouraged to focus on their individual role in helping resolve global issues. This was achieved through each participant`s development of a Personal Plan of Action, a plan which mapped out activities the student could undertake after the conference to continue the dialogue and work towards the resolution of global and local problems.

  16. What Happens when the Research Ends? Factors Related to the Sustainability of a Technology-Infused Mathematics Curriculum

    ERIC Educational Resources Information Center

    Fishman, Barry; Penuel, William R.; Hegedus, Stephen; Roschelle, Jeremy

    2011-01-01

    This study examines factors related to the sustainability of SimCalc Mathworlds (SCMW), a technology-infused mathematics curriculum. We surveyed middle school teachers one year after their participation in a randomized trial where they were introduced to SCMW curriculum, to identify factors related to their continued use of the materials in ways…

  17. Mapping Research Activities and Technologies for Sustainability and Environmental Studies--A Case Study at University Level

    ERIC Educational Resources Information Center

    Hara, Keishiro; Uwasu, Michinori; Kurimoto, Shuji; Yamanaka, Shinsuke; Umeda, Yasushi; Shimoda, Yoshiyuki

    2013-01-01

    Systemic understanding of potential research activities and available technology seeds at university level is an essential condition to promote interdisciplinary and vision-driven collaboration in an attempt to cope with complex sustainability and environmental problems. Nonetheless, any such practices have been hardly conducted at universities…

  18. Implementing a Program in Sustainability for Engineers at University of Technology, Sydney: A Story of Intersecting Agendas

    ERIC Educational Resources Information Center

    Bryce, Paul; Johnston, Stephen; Yasukawa, Keiko

    2004-01-01

    Integrating sustainability into an undergraduate engineering program at the University of Technology, Sydney has been a challenging project. The authors of this paper have been participant observers of the integration process. In this paper, they have attempted an analysis of that process, focussing on the dynamics of the network of people and…

  19. Sequential Combination Therapy Leading to Sustained Remission in a Patient with SAPHO Syndrome.

    PubMed

    Huber, C E; Judex, A G; Freyschmidt, J; Feuerbach, S; Schölmerich, J; Müller-Ladner, U

    2009-01-01

    The SAPHO syndrome represents a variety of clinically similar disorders with the key features of hyperostotic bone lesions in combination with chronic pustular skin disease. The respective pathophysiology of bone and joint manifestations in SAPHO syndrome is still a matter of discussion. For example it does not appear to represent reactive arthritis and HLA B27 antigen, with the latter being typically present in patients with spondyloarthopathies. Treatment of SAPHO syndrome is also not well established and consists of various antiinflammatory and antirheumatic drugs. Here, we report a female patient with active SAPHO syndrome suffering from sternal swelling of unknown origin that had been known for 10 years and a 4-year-history of severe lower back pain. Remarkable were also a typical pustulous palmar erythema associated with swelling and decreased motility of both MCP-I joints. Inflammation parameters were high with an ESR 68 mm/1st hour and a CRP of 19.6 mg/l. She was initially treated with rofecoxib and doxycycline, followed by sulfasalazine with only partial clinical response. Thereafter, both articular symptoms as well as cutaneous lesions responded well to a combination therapy with methotrexate and sulfasalazine. Thus, the case illustrates nicely that methotrexate in combination with another DMARD can be successfully applied to patients with long-term active SAPHO syndrome. PMID:19471601

  20. Advising and Optimizing the Deployment of Sustainability-Oriented Technologies in the Integrated Electricity, Light-Duty Transportation, and Water Supply System

    NASA Astrophysics Data System (ADS)

    Tarroja, Brian

    The convergence of increasing populations, decreasing primary resource availability, and uncertain climates have drawn attention to the challenge of shifting the operations of key resource sectors towards a sustainable paradigm. This is prevalent in California, which has set sustainability-oriented policies such as the Renewable Portfolio Standards and Zero-Emission Vehicle mandates. To meet these goals, many options have been identified to potentially carry out these shifts. The electricity sector is focusing on accommodating renewable power generation, the transportation sector on alternative fuel drivetrains and infrastructure, and the water supply sector on conservation, reuse, and unconventional supplies. Historical performance evaluations of these options, however, have not adequately taken into account the impacts on and constraints of co-dependent infrastructures that must accommodate them and their interactions with other simultaneously deployed options. These aspects are critical for optimally choosing options to meet sustainability goals, since the combined system of all resource sectors must satisfy them. Certain operations should not be made sustainable at the expense of rendering others as unsustainable, and certain resource sectors should not meet their individual goals in a way that hinders the ability of the entire system to do so. Therefore, this work develops and utilizes an integrated platform of the electricity, transportation, and water supply sectors to characterize the performance of emerging technology and management options while taking into account their impacts on co-dependent infrastructures and identify synergistic or detrimental interactions between the deployment of different options. This is carried out by first evaluating the performance of each option in the context of individual resource sectors to determine infrastructure impacts, then again in the context of paired resource sectors (electricity-transportation, electricity

  1. Advancing Access to New Technology for Sustained High Resolution Observations of Plankton: From Bloom Dynamics to Climate Change

    NASA Astrophysics Data System (ADS)

    Sosik, H. M.; Olson, R. J.

    2012-12-01

    The combination of ocean observatory infrastructure and automated submersible flow cytometry can provide unprecedented capability for sustained high resolution time series of plankton, including taxa that are harmful or early indicators of ecosystem response to environmental change. Over the past decade, we have developed the FlowCytobot series of instruments that exemplify this capability. FlowCytobot and Imaging FlowCytobot use a combination of laser-based scattering and fluorescence measurements and video imaging of individual particles to enumerate and characterize cells ranging from picocyanobacteria to large chaining-forming diatoms. The process of developing these complex instruments was streamlined by access to the Martha's Vineyard Coastal Observatory (MVCO), a cabled facility on the New England Shelf, where real time two-way communications and access to shore power expedited cycles of instrument evaluation and design refinement. Repeated deployments at MVCO, typically 6 months in duration, have produced multi-year high resolution (hourly to daily) time series that are providing new insights into dynamics of community structure such as blooms, seasonality, and possibly even trends linked to regional climate change. The high temporal resolution observations of single cell properties make it possible not only to characterize taxonomic composition and size structure, but also to quantify taxon-specific growth rates. To meet the challenge of broadening access to this enabling technology, we have taken a two-step approach. First, we are partnering with a few scientific collaborators interested in using the instruments in different environments and to address different applications, notably the detection and characterization of harmful algal bloom events. Collaboration at this stage ensured that these first users outside the developers' lab had access to technical know-how required for successful outcomes; it also provided additional feedback that could be

  2. Power of the Mashup: Combining Essential Learning with New Technology Tools

    ERIC Educational Resources Information Center

    Boss, Suzie; Krauss, Jane

    2007-01-01

    Jerome Burg, after 34 years of teaching, left his own classroom last year and now helps other teachers integrate technology into the curriculum at Granada High School in Livermore, California. One new project he designed is heightening global interest in literary road trips by creating a resource that combines a new technology with a time-tested…

  3. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    PubMed

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  4. A Hydro-Economic Model for Water Level Fluctuations: Combining Limnology with Economics for Sustainable Development of Hydropower

    PubMed Central

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  5. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.

    PubMed

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2015-04-01

    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug. PMID:25637067

  6. Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.

    1992-01-01

    The goal of the Rocket-Based Combined Cycle (RBCC) Propulsion Technology Workshop was to assess the RBCC propulsion system's viability for Earth-to-Orbit (ETO) transportation systems. This was accomplished by creating a forum (workshop) in which past work in the field of RBCC propulsion systems was reviewed, current technology status was evaluated, and future technology programs in the field of RBCC propulsion systems were postulated, discussed, and recommended.

  7. Assessment of renewable energy technology and a case of sustainable energy in mobile telecommunication sector.

    PubMed

    Okundamiya, Michael S; Emagbetere, Joy O; Ogujor, Emmanuel A

    2014-01-01

    The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities. PMID:24578673

  8. Assessment of Renewable Energy Technology and a Case of Sustainable Energy in Mobile Telecommunication Sector

    PubMed Central

    Okundamiya, Michael S.; Emagbetere, Joy O.; Ogujor, Emmanuel A.

    2014-01-01

    The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities. PMID:24578673

  9. A survey of beam-combining technologies for laser space power transmission

    NASA Technical Reports Server (NTRS)

    Kwon, J. H.; Williams, M. D.; Lee, J. H.

    1988-01-01

    The combination of laser beams holds much promise for obtaining powerful beams. Methods are surveyed for beam combination (coherent and incoherent) and two of them are identified as the most effective means for achieving high power transmission in space. The two methods as applied to laser diode arrays are analyzed, and potentially productive work areas for the advancement of technology are delineated.

  10. Phototrophic periphyton techniques combine phosphorous removal and recovery for sustainable salt-soil zone.

    PubMed

    Lu, Haiying; Feng, Yanfang; Wu, Yonghong; Yang, Linzhang; Shao, Hongbo

    2016-10-15

    The P (Pi as KH2PO4 and Po as ATP) removal processes by phototrophic periphyton were investigated by determining the removal kinetics, metal content (Ca, Mg, Al, Fe, Cu, and Zn) of the solution and P fractions (Labile-P, Fe/Al-P, Ca-P, and Res-P) within the periphyton. Results showed that the periphyton was able to remove completely both Pi and Po after 48h when periphyton content was greater than 0.2gL(-1) (dry weight). The difference between Pi and Po removal was the conversion of Po into Pi by the periphyton, after that the removal mechanism was similar. The P removal mechanism was mainly due to the adsorption on the surfaces of the periphyton, including two aspects: i) the adsorption of PO4(3-) onto metal salts such as calcium carbonate (~50%) and ii) complexation between PO4(3-) and metal cations such as Ca(2+) (~40%). However, this bio-adsorptional process was significantly influenced by the extracellular polymeric substance (EPS) of periphyton, water hardness, initial P concentration, temperature and light intensity. This study not only deepens the understanding of P biogeochemical process in aquatic ecosystem, but provides a potential biomaterial for combining phosphorous removal and recovery from non-point source wastewaters, especially around salt-soil zone. PMID:27328877

  11. Combining Interactive Infrastructure Modeling and Evolutionary Algorithm Optimization for Sustainable Water Resources Design

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2013-12-01

    Population growth and climate change, combined with difficulties in building new infrastructure, motivate portfolio-based solutions to ensuring sufficient water supply. Powerful simulation models with graphical user interfaces (GUI) are often used to evaluate infrastructure portfolios; these GUI based models require manual modification of the system parameters, such as reservoir operation rules, water transfer schemes, or system capacities. Multiobjective evolutionary algorithm (MOEA) based optimization can be employed to balance multiple objectives and automatically suggest designs for infrastructure systems, but MOEA based decision support typically uses a fixed problem formulation (i.e., a single set of objectives, decisions, and constraints). This presentation suggests a dynamic framework for linking GUI-based infrastructure models with MOEA search. The framework begins with an initial formulation which is solved using a MOEA. Then, stakeholders can interact with candidate solutions, viewing their properties in the GUI model. This is followed by changes in the formulation which represent users' evolving understanding of exigent system properties. Our case study is built using RiverWare, an object-oriented, data-centered model that facilitates the representation of a diverse array of water resources systems. Results suggest that assumptions within the initial MOEA search are violated after investigating tradeoffs and reveal how formulations should be modified to better capture stakeholders' preferences.

  12. Contribution to the sustainable management of resources by novel combination of industrial solid residues into red ceramics.

    PubMed

    Karayannis, V; Spiliotis, X; Papastergiadis, E; Ntampegliotis, K; Papapolymerou, G; Samaras, P

    2015-03-01

    Limited amounts of industrial residues are recycled while the remaining huge quantities are stockpiled or disposed of, thus frequently leading to soil contamination. The utilization of industrial residues as valuable secondary resources into ceramics can contribute to efficient waste management and substitution for massive amounts of natural resources (clayey minerals) demanded for ceramic production. The low cost of these residues and even possible energy savings during mixture firing may also be beneficial. In the present study, the innovative combination of lignite fly ash with steel-making dust into clay-based red ceramics is undertaken, to contribute both to sustainable use of resources and prevention of soil contamination. Brick specimens were shaped by extrusion and fired, their microstructure was examined and the effect of the mixture composition and firing temperature on physico-mechanical properties was determined. Ceramic microstructures were successfully obtained by a suitable combination of fly ash with steel dust (5 + 5 wt%) into clays. Properties can be predicted and tailored to meet the needs for specific applications by appropriately adjusting the mixture composition and sintering temperature. PMID:25533568

  13. Addressing sustainable contributions to GEO/GEOSS from Science and Technology Communities: the EGIDA Methodology

    NASA Astrophysics Data System (ADS)

    Mazzetti, P.; Nativi, S.

    2012-04-01

    The European Project EGIDA (Coordinating Earth and Environmental cross-disciplinary projects to promote GEOSS) co-funded by the European Commission under the Seventh Framework programme, has started in September 2010. It aims to prepare a sustainable process of contribution to GEO/GEOSS promoting coordination of activities carried out by: the GEO Science & Technology (S&T) Committee; S&T national and European initiatives; and other S&T Communities. This will be done by supporting broader implementation and effectiveness of the GEOSS S&T Roadmap and the GEOSS mission through coherent and interoperable networking of National and European projects, and International initiatives. The definition of a general methodology for a sustainable contribution to GEO/GEOSS through the implementation of a System-of-System (re-) engineering process is one of the objectives of the EGIDA Project in order to consolidate the results of the actions carried out in support of the GEO Science and Technology Committee (STC) Road Map. The EGIDA Methodology is based on several sources including GEO activities and documents, activities of the EGIDA project in support of the GEO STC Road Map, lessons learned from the initiatives and projects already contributing, in different ways, to the building of advanced infrastructures as direct or indirect part to GEO/GEOSS. The design of the EGIDA Methodology included several steps: a) an operational definition of the EGIDA Methodology, b) the identification of the target audience for the EGIDA Methodology, c) the identification of typical scenarios for the application of the EGIDA Methodology. Basing on these design activities the EGIDA Methodology is defined as a set of two activities running in parallel: Networking Activities - to identify and address the relevant S&T community(-ies) and actors (Community Engagement) - and Technical Activities: - to guide the infrastructure development and align it with the GEO/GEOSS interoperability principles

  14. Biochronomer™ technology and the development of APF530, a sustained release formulation of granisetron

    PubMed Central

    Ottoboni, Thomas; Gelder, Mark S; O’Boyle, Erin

    2014-01-01

    Granisetron and other 5-hydroxytryptamine type 3 (5-HT3) receptor antagonists are first-line agents for preventing chemotherapy-induced nausea and vomiting (CINV). Current treatment guidelines prefer the longer-acting agent, palonosetron, for CINV prevention in some chemotherapy regimens. A new granisetron formulation, APF530, has been developed as an alternative long-acting agent. APF530 utilizes Biochronomer™ technology to formulate a viscous tri(ethylene glycol) poly(orthoester)-based formulation that delivers – by single subcutaneous (SC) injection – therapeutic granisetron concentrations over 5 days. The poly(orthoester) polymer family contain an orthoester linkage; these bioerodible polymer systems are specifically designed for controlled, sustained drug delivery. Pharmacokinetics and pharmacodynamics of APF530 250, 500, or 750 mg SC (granisetron 5, 10, or 15 mg, respectively) administered 30–60 minutes before chemotherapy were evaluated in two Phase II trials in cancer patients receiving moderately (MEC) or highly (HEC) emetogenic chemotherapy. Pharmacokinetics were dose proportional, with slow granisetron absorption and elimination. Both trials demonstrated similar results for median half-life, time to maximum concentration, and exposure for APF530 250 and 500 mg, with no differences between patients receiving MEC or HEC. A randomized Phase III trial demonstrated noninferiority of APF530 500 mg SC (granisetron 10 mg) to intravenous palonosetron 0.25 mg in preventing CINV in patients receiving MEC or HEC in acute (0–24 hours) and delayed (24–120 hours) settings, with activity over 120 hours. Mean maximum granisetron plasma concentrations were 10.8 and 17.8 ng/mL, and mean half-lives were 30.8 and 35.9 hours after SC administration of APF530 250 and 500 mg, respectively. Therapeutic granisetron concentrations were maintained for greater than 120 hours (5 days) in both APF530 dose groups. These data suggest that APF530 – an SC

  15. Combined remediation technologies: results from field trials at chlorinated solvent impacted sites

    NASA Astrophysics Data System (ADS)

    O'Carroll, D. M.; Chowdhury, A. I.; Lomheim, L.; Boparai, H. K.; Weber, K.; Austrins, L. M.; Edwards, E.; Sleep, B.; de Boer, C. V.; Garcia, A. N.

    2015-12-01

    Non-aqueous phase liquids (NAPLs) are one class of waste liquids often generated from waste mixtures in industrial processes containing surfactants, chlorinated hydrocarbons and other compounds. Chlorinated solvents, a particularly persistent NAPL contaminant, frequently contaminate water sources for decades and are one of the more common contaminants at brownfield and industrialized sites. Although considerable advances in our understanding of the phenomena governing NAPL remediation have been made, and a number of innovative remediation technologies have been developed, existing technologies are rarely able to achieve clean up goals in contaminated aquifers at the completion of remedial activities. The development and pilot scale testing of new and innovative remediation technologies is, therefore, crucial to achieve clean up goals at contaminated sites. Our research group is currently investigating a number of innovative remediation technologies, either individually or as combined remedies. This includes the applicability of nanometals and ISCO (e.g., persulfate) for contaminated site remediation. These technologies can be combined with technologies to enhance amendment delivery (e.g., electrokinetics) or create conditions favorable for enhanced biotic contaminant degradation. This presentation will discuss outcomes from a number of field trials conducted at chlorinated solvent impacted sites by our group with a particular focus on combined remediation technologies.

  16. Technological Alternatives or Use of Wood Fuel in Combined Heat and Power Production

    NASA Astrophysics Data System (ADS)

    Rusanova, Jekaterina; Markova, Darja; Bazbauers, Gatis; Valters, Kārlis

    2013-12-01

    Abstract Latvia aims for 40% share of renewable energy in the total final energy use. Latvia has large resources of biomass and developed district heating systems. Therefore, use of biomass for heat and power production is an economically attractive path for increase of the share of renewable energy. The optimum technological solution for use of biomass and required fuel resources have to be identified for energy planning and policy purposes. The aim of this study was to compare several wood fuel based energy conversion technologies from the technical and economical point of view. Three biomass conversion technologies for combined heat and electricity production (CHP) were analyzed: • CHP with steam turbine technology; • gasification CHP using gas engine; • bio-methane combined cycle CHP. Electricity prices for each alternative are presented. The results show the level of support needed for the analyzed renewable energy technologies and time period needed to reach price parity with the natural gas - fired combined cycle gas turbine (CCGT) CHPss. The results also show that bio-methane technology is most competitive when compared with CCGT among the considered technologies regarding fuel consumption and electricity production, but it is necessary to reduce investment costs to reach the electricity price parity with the natural gas CCGT.

  17. Effective application of optical sensing technology for sustainable liquid level sensing and rainfall measurement

    NASA Astrophysics Data System (ADS)

    Afzal, Muhammad Hassan Bin

    2015-05-01

    Rainfall measurement is performed on regular basis to facilitate effectively the weather stations and local inhabitants. Different types of rain gauges are available with different measuring principle for rainfall measurement. In this research work, a novel optical rain sensor is designed, which precisely calculate the rainfall level according to rainfall intensity. This proposed optical rain sensor model introduced in this paper, which is basically designed for remote sensing of rainfall and it designated as R-ORMS (Remote Optical Rainfall Measurement sensor). This sensor is combination of some improved method of tipping bucket rain gauge and most of the optical hydreon rain sensor's principle. This optical sensor can detect the starting time and ending time of rain, rain intensity and rainfall level. An infrared beam from Light Emitting Diode (LED) through powerful convex lens can accurately determines the diameter of each rain drops by total internal reflection principle. Calculations of these accumulative results determine the rain intensity and rainfall level. Accurate rainfall level is determined by internal optical LED based sensor which is embedded in bucket wall. This internal sensor is also following the total internal reflection (TIR) principle and the Fresnel's law. This is an entirely novel design of optical sensing principle based rain sensor and also suitable for remote sensing rainfall level. The performance of this proposed sensor has been comprehensively compared with other sensors with similar attributes and it showed better and sustainable result. Future related works have been proposed at the end of this paper, to provide improved and enhanced performance of proposed novel rain sensor.

  18. Promotion of muscle regeneration by myoblast transplantation combined with the controlled and sustained release of bFGFcpr.

    PubMed

    Hagiwara, Koki; Chen, Guoping; Kawazoe, Naoki; Tabata, Yasuhiko; Komuro, Hiroaki

    2016-04-01

    Although myoblast transplantation is an attractive method for muscle regeneration, its efficiency remains limited. The efficacy of myoblast transplantation in combination with the controlled and sustained delivery of basic fibroblast growth factor (bFGF) was investigated. Defects of thigh muscle in Sprague-Dawley (SD) rats were created, and GFP-positive myoblasts were subsequently transplanted. The rats were divided into three groups. In control group 1 (C1) only myoblasts were transplanted, while in control group 2 (C2) myoblasts were introduced along with empty gelatin hydrogel microspheres. In the experimental group (Ex), myoblasts were transplanted along with bFGF incorporated into gelatin hydrogel microspheres. Four weeks after transplantation, GFP-positive myoblasts were found to be integrated into the recipient muscle and to contribute to muscle fibre regeneration in all groups. A significantly higher expression level of GFP in the Ex group demonstrated that the survival rate of transplanted myoblasts in Ex was remarkably improved compared with that in C1 and C2. Furthermore, myofibre regeneration, characterized by centralization of the nuclei, was markedly accelerated in Ex. The expression level of CD31 in Ex was higher than that in both C1 and C2, but the differences were not statistically significant. A significantly higher expression level of Myogenin and a lower expression level of MyoD1 were both observed in Ex after 4 weeks, suggesting the promotion of differentiation to myotubes. Our findings suggest that the controlled and sustained release of bFGF from gelatin hydrogel microspheres improves the survival rate of transplanted myoblasts and promotes muscle regeneration by facilitating myogenesis rather than angiogenesis. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23554408

  19. Predicting the aquatic stage sustainability of a restored backwater channel combining in-situ and airborne remotely sensed bathymetric models.

    NASA Astrophysics Data System (ADS)

    Jérôme, Lejot; Jérémie, Riquier; Hervé, Piégay

    2014-05-01

    As other large river floodplain worldwide, the floodplain of the Rhône has been deeply altered by human activities and infrastructures over the last centuries both in term of structure and functioning. An ambitious restoration plan of selected by-passed reaches has been implemented since 1999, in order to improve their ecological conditions. One of the main action aimed to increase the aquatic areas in floodplain channels (i.e. secondary channels, backwaters, …). In practice, fine and/or coarse alluvium were dredged, either locally or over the entire cut-off channel length. Sometimes the upstream or downstream alluvial plugs were also removed to reconnect the restored feature to the main channel. Such operation aims to restore forms and associated habitats of biotic communities, which are no more created or maintained by the river itself. In this context, assessing the sustainability of such restoration actions is a major issue. In this study, we focus on 1 of the 24 floodplain channels which have been restored along the Rhône River since 1999, the Malourdie channel (Chautagne reach, France). A monitoring of the geomorphologic evolution of the channel has been conducted during a decade to assess the aquatic stage sustainability of this former fully isolated channel, which has been restored as a backwater in 2004. Two main types of measures were performed: (a) water depth and fine sediment thickness were surveyed with an auger every 10 m along the channel centerline in average every year and a half allowing to establish an exponential decay model of terrestrialization rates through time; (b) three airborne campaigns (2006, 2007, 2012) by Ultra Aerial Vehicle (UAV) provided images from which bathymetry were inferred in combination with observed field measures. Coupling field and airborne models allows us to simulate different states of terrestrialization at the scale of the whole restore feature (e.g. 2020/2030/2050). Raw results indicate that terrestrialization

  20. Superflex - A synergistic combination of vibrating beam and quartz flexure accelerometer technology

    NASA Astrophysics Data System (ADS)

    Norling, Brian L.

    A new mechanism concept called Superflex which uses quartz flexure technology for precision performance applications such as high-accuracy inertial navigation is described. Data from Superflex developmental prototypes are presented. The Superflex mechanization concept provides a synergistic combination of vibrating beam resonator and quartz flexure technology; it uses a form of symmetry in the flexures and sensing crystals which decouples static error stresses such as differential thermal expansian and permits all axis caging of shock overloads.

  1. Multiobjective Optimization Combining BMP Technology and Land Preservation for Watershed-based Stormwater Management

    NASA Astrophysics Data System (ADS)

    McGarity, A. E.

    2009-12-01

    Recent progress has been made developing decision-support models for optimal deployment of best management practices (BMP’s) in an urban watershed to achieve water quality goals. One example is the high-level screening model StormWISE, developed by the author (McGarity, 2006) that uses linear and nonlinear programming to narrow the search for optimal solutions to certain land use categories and drainage zones. Another example is the model SUSTAIN developed by USEPA and Tetra Tech (Lai, et al., 2006), which builds on the work of Yu, et al., 2002), that uses a detailed, computationally intensive simulation model driven by a genetic solver to select optimal BMP sites. However, a model that deals only with best management practice (BMP) site selections may fail to consider solutions that avoid future nonpoint pollutant loadings by preserving undeveloped land. This paper presents results of a recently completed research project in which water resource engineers partnered with experienced professionals at a land conservation trust to develop a multiobjective model for watershed management. The result is a revised version of StormWISE that can be used to identify optimal, cost-effective combinations of easements and similar land preservation tools for undeveloped sites along with low impact development (LID) and BMP technologies for developed sites. The goal is to achieve the watershed-wide limits on runoff volume and pollutant loads that are necessary to meet water quality goals as well as ecological benefits associated with habitat preservation and enhancement. A nonlinear programming formulation is presented for the extended StormWISE model that achieves desired levels of environmental benefits at minimum cost. Tradeoffs between different environmental benefits are generated by multiple runs of the model while varying the levels of each environmental benefit obtained. The model is solved using piecewise linearization of environmental benefit functions where each

  2. Sustainable Urban Infrastructure Development and the Role of Water Technologies in the U.S.

    EPA Science Inventory

    Increased climate variability and rapid urbanization are fundamentally changing the urban watershed hydrology and consequently sustainability of water systems. However, our urban planning and engineering practices are based on decades-old hydrological theory and guidance based o...

  3. Parabolic-Trough Technology Roadmap: A Pathway for Sustained Commercial Development and Deployment of Parabolic-Trough Technology

    SciTech Connect

    Price, H.; Kearney, D.

    1999-01-31

    Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop.

  4. Development of Sustained Release “NanoFDC (Fixed Dose Combination)” for Hypertension – An Experimental Study

    PubMed Central

    Arora, Anjuman; Shafiq, Nusrat; Jain, Sanjay; Khuller, G. K.; Sharma, Sadhana; Malhotra, Samir

    2015-01-01

    Objectives The present study was planned to formulate, characterize and evaluate the pharmacokinetics of a novel “NanoFDC” comprising three commonly prescribed anti-hypertensive drugs, hydrochlorothiazide (a diuretic), candesartan (ARB) and amlodipine (a calcium channel blocker). Basic Methods The candidate drugs were loaded in Poly (DL-lactide-co-gycolide) (PLGA) by emulsion- diffusion-evaporation method. The formulations were evaluated for their size, morphology, drug loading and in vitro release individually. Single dose pharmacokinetic profiles of the nanoformulations alone and in combination, as a NanoFDC, were evaluated in Wistar rats. Results The candidate drugs encapsulated inside PLGA showed entrapment efficiencies ranging from 30%, 33.5% and 32% for hydrochlorothiazide, candesartan and amlodipine respectively. The nanoparticles ranged in size from 110 to 180 nm. In vitro release profile of the nanoformulation showed 100% release by day 6 in the physiological pH 7.4 set up with PBS (phosphate buffer saline) and by day 4-5 in the intestinal pH 1.2 and 8.0 set up SGF (simulated gastric fluid) and SIF (simulated intestinal fluid) respectively. In pharmacokinetic analysis a sustained-release for 6 days and significant increase in the mean residence time (MRT), as compared to the respective free drugs was noted [MRT of amlodipine, hydrochlorothiazide and candesartan changed from 8.9 to 80.59 hours, 11 to 69.20 hours and 9 to 101.49 hours respectively]. Conclusion We have shown for the first time that encapsulating amlodipine, hydrochlorothiazide and candesartan into a single nanoformulation, to get the “NanoFDC (Fixed Dose Combination)” is a feasible strategy which aims to decrease pill burden. PMID:26047011

  5. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery.

    PubMed

    Wang, Chaoyang; He, Chengyi; Tong, Zhen; Liu, Xinxing; Ren, Biye; Zeng, Fang

    2006-02-01

    Combination of adsorption by porous CaCO(3) microparticles and encapsulation by polyelectrolyte multilayers via the layer-by-layer (LbL) self-assembly was proposed for sustained drug release. Firstly, porous calcium carbonate microparticles with an average diameter of 5 microm were prepared for loading a model drug, ibuprofen (IBU). Adsorption of IBU into the pores was characterized by ultraviolet (UV), infrared (IR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) experiment and X-ray diffraction (XRD). The adsorbed IBU amount Gamma was 45.1mg/g for one-time adsorption and increased with increasing adsorption times. Finally, multilayer films of protamine sulfate (PRO) and sodium poly(styrene sulfonate) (PSS) were formed on the IBU-loaded CaCO(3) microparticles by the layer-by-layer self-assembly. Amorphous IBU loaded in the pores of the CaCO(3) microparticles had a rapider release in the gastric fluid and a slower release in the intestinal fluid, compared with the bare IBU crystals. Polyelectrolyte multilayers assembled on the drug-loaded particles by the LbL reduced the release rate in both fluids. In this work, polymer/inorganic hybrid core-shell microcapsules were fabricated for controlled release of poorly water-soluble drugs. The porous inorganic particles are useful to load drugs in amorphous state and the polyelectrolyte multilayer films coated on the particle assuage the initial burst release. PMID:16359836

  6. Combining Emerging Technology and Writing across the Curriculum: Professional Development that Works!

    ERIC Educational Resources Information Center

    Hampson, Margaret P.; Hearron, Tom; Noggle, Mary

    2009-01-01

    Though Writing Across the Curriculum is not a new concept, Caldwell Community College and Technical Institute offers a two-semester professional development program that combines this instructional approach with emerging technology. Though this program focuses on the use of writing to enhance student learning, this training format can be…

  7. Combining Technology and Narrative in a Learning Environment for Workplace Training.

    ERIC Educational Resources Information Center

    Nelson, Wayne A.; Wellings, Paula; Palumbo, David; Gupton, Christine

    In a project designed to provide training for entry-level job skills in high tech industries, a combination of narrative and technology was employed to aid learners in developing the necessary soft skills (dependability, responsibility, listening comprehension, collaboration, et cetera) sought by employers. The EnterTech Project brought together a…

  8. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals

    PubMed Central

    Salazar, Jaime; Müller, Rainer H.; Möschwitzer, Jan P.

    2014-01-01

    Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals. PMID:26556191

  9. A City Parking Integration System Combined with Cloud Computing Technologies and Smart Mobile Devices

    ERIC Educational Resources Information Center

    Yeh, Her-Tyan; Chen, Bing-Chang; Wang, Bo-Xun

    2016-01-01

    The current study applied cloud computing technology and smart mobile devices combined with a streaming server for parking lots to plan a city parking integration system. It is also equipped with a parking search system, parking navigation system, parking reservation service, and car retrieval service. With this system, users can quickly find…

  10. Providing Semantic Metadata to Online Learning Resources on Sustainable Agriculture and Farming: Combining Values and Technical Knowledge

    ERIC Educational Resources Information Center

    Garcia-Barriocanal, Elena; Sicilia, Miguel-Angel; Sanchez-Alonso, Salvador

    2013-01-01

    Sustainable or organic agriculture aims at harmonizing the efficient production of food with the preservation of the environmental conditions for continuing production in a sustained way. As such, it embodies a set of environmental values that are currently taught and learnt worldwide in specific courses or as part of broader programs or…

  11. An Analysis of Selected Education Technology Sustainability Factors and Their Alignment with the California School Technology Survey

    ERIC Educational Resources Information Center

    Lee, Benjamin Bradley

    2010-01-01

    This study offers guidance to policy makers, educational leaders, and researchers about the aspects of Educational Technology (EdTech) implementation in which investments of money, time, or investigative inquiry will yield highest impacts. Beginning from the observations that: (1) the power and ubiquity of contemporary technologies have…

  12. In-situ Adsorption-Biological Combined Technology Treating Sediment Phosphorus in all Fractions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, C.; He, F.; Liu, B.; Xu, D.; Xia, S.; Zhou, Q.; Wu, Z.

    2016-07-01

    The removal efficiency of sediment phosphorus (P) in all fractions with in-situ adsorption-biological combined technology was studied in West Lake, Hangzhou, China. The removal amounts of sediment Ca-P, Fe/Al-P, IP, OP and TP by the combined effect of PCFM (Porous ceramic filter media) and V. spiralis was 61 mg/kg, 249 mg/kg, 318 mg/kg, 85 mg/kg and 416 mg/kg, respectively, and the corresponding removing rate reached 10.5%, 44.6%, 27.5%, 30.6% and 29.2%. This study suggested that the combination of PCFM and V. spiralis could achieve a synergetic sediment P removal because the removal rates of the combinations were higher than the sum of that of PCFM and macrophytes used separately. From analysis of sediment microbial community and predicted function, we found that the combined PCFM and V. spiralis enhanced the function of P metabolism by increasing specific genus that belong to phylum Firmicutes and Nitrospirae. Thus it can be seen the in-situ adsorption-biological combined technology could be further applied to treat internal P loading in eutrophic waters.

  13. In-situ Adsorption-Biological Combined Technology Treating Sediment Phosphorus in all Fractions.

    PubMed

    Zhang, Y; Wang, C; He, F; Liu, B; Xu, D; Xia, S; Zhou, Q; Wu, Z

    2016-01-01

    The removal efficiency of sediment phosphorus (P) in all fractions with in-situ adsorption-biological combined technology was studied in West Lake, Hangzhou, China. The removal amounts of sediment Ca-P, Fe/Al-P, IP, OP and TP by the combined effect of PCFM (Porous ceramic filter media) and V. spiralis was 61 mg/kg, 249 mg/kg, 318 mg/kg, 85 mg/kg and 416 mg/kg, respectively, and the corresponding removing rate reached 10.5%, 44.6%, 27.5%, 30.6% and 29.2%. This study suggested that the combination of PCFM and V. spiralis could achieve a synergetic sediment P removal because the removal rates of the combinations were higher than the sum of that of PCFM and macrophytes used separately. From analysis of sediment microbial community and predicted function, we found that the combined PCFM and V. spiralis enhanced the function of P metabolism by increasing specific genus that belong to phylum Firmicutes and Nitrospirae. Thus it can be seen the in-situ adsorption-biological combined technology could be further applied to treat internal P loading in eutrophic waters. PMID:27418242

  14. In-situ Adsorption-Biological Combined Technology Treating Sediment Phosphorus in all Fractions

    PubMed Central

    Zhang, Y.; Wang, C.; He, F.; Liu, B.; Xu, D.; Xia, S.; Zhou, Q.; Wu, Z.

    2016-01-01

    The removal efficiency of sediment phosphorus (P) in all fractions with in-situ adsorption-biological combined technology was studied in West Lake, Hangzhou, China. The removal amounts of sediment Ca-P, Fe/Al-P, IP, OP and TP by the combined effect of PCFM (Porous ceramic filter media) and V. spiralis was 61 mg/kg, 249 mg/kg, 318 mg/kg, 85 mg/kg and 416 mg/kg, respectively, and the corresponding removing rate reached 10.5%, 44.6%, 27.5%, 30.6% and 29.2%. This study suggested that the combination of PCFM and V. spiralis could achieve a synergetic sediment P removal because the removal rates of the combinations were higher than the sum of that of PCFM and macrophytes used separately. From analysis of sediment microbial community and predicted function, we found that the combined PCFM and V. spiralis enhanced the function of P metabolism by increasing specific genus that belong to phylum Firmicutes and Nitrospirae. Thus it can be seen the in-situ adsorption-biological combined technology could be further applied to treat internal P loading in eutrophic waters. PMID:27418242

  15. Soil ecology and agricultural technology; An integrated approach towards improved soil management for sustainable farming

    NASA Astrophysics Data System (ADS)

    Pulleman, Mirjam; Pérès, Guénola; Crittenden, Stephen; Heddadj, Djilali; Sukkel, Wijnand

    2014-05-01

    Intensive arable food production systems are in need of smart solutions that combine ecological knowledge and farm technology to maximize yields while protecting natural resources. The huge diversity of soil organisms and their interactions is of crucial importance for soil functions and ecosystem services, such as organic matter incorporation and break down, nutrient mineralization, soil structure formation, water regulation and disease and pest control. Soil management decisions that take into account the soil biodiversity and associated functions are thus essential to (i) maintain soil productivity in the long term, (ii) reduce the dependency on external inputs and non-renewables such as fossil fuels, and (iii) make agroecosystems more resilient against biotic and abiotic stresses. Organic farming systems and reduced tillage systems are two approaches that aim to increase soil biodiversity and general soil quality, through improved management of organic matter but differ in their emphasis on the use of chemical inputs for crop protection or soil disturbance, respectively. In North-western Europe experience with and knowledge of reduced tillage systems is still scarce, both in conventional and organic farming. Our study targeted both conventional and organic farming and aimed at 1) documenting reduced tillage practices within different agroecological contexts in NW Europe; 2) evaluating the effects of reduced tillage systems on soil biodiversity and soil ecosystem services; 3) increase understanding of agroecological factors that determine trade-offs between different ecosystem services. Earthworm species and nematode taxa were selected as indicator organisms to be studied for their known response to soil management and effects on soil functions. Additionally, soil organic matter, physical soil parameters and processes, and crop yields have been measured across multiple sites. Data have been collected over several cropping seasons in long term field experiments

  16. Combining Multidisciplinary Science, Quantitative Reasoning and Social Context to Teach Global Sustainability and Prepare Students for 21st Grand Challenges

    NASA Astrophysics Data System (ADS)

    Myers, J. D.

    2011-12-01

    The Earth's seven billion humans are consuming a growing proportion of the world's ecosystem products and services. Human activity has also wrought changes that rival the scale of many natural geologic processes, e.g. erosion, transport and deposition, leading to recognition of a new geological epoch, the Anthropocene. Because of these impacts, several natural systems have been pushed beyond the planetary boundaries that made the Holocene favorable for the expansion of humanity. Given these human-induced stresses on natural systems, global citizens will face an increasing number of grand challenges. Unfortunately, traditional discipline-based introductory science courses do little to prepare students for these complex, scientifically-based and technologically-centered challenges. With NSF funding, an introductory, integrated science course stressing quantitative reasoning and social context has been created at UW. The course (GEOL1600: Global Sustainability: Managing the Earth's Resources) is a lower division course designed around the energy-water-climate (EWC) nexus and integrating biology, chemistry, Earth science and physics. It melds lectures, lecture activities, reading questionnaires and labs to create a learning environment that examines the EWT nexus from a global through regional context. The focus on the EWC nexus, while important socially and intended to motivate students, also provides a coherent framework for identifying which disciplinary scientific principles and concepts to include in the course: photosynthesis and deep time (fossil fuels), biogeochemical cycles (climate), chemical reactions (combustion), electromagnetic radiation (solar power), nuclear physics (nuclear power), phase changes and diagrams (water and climate), etc. Lecture activities are used to give students the practice they need to make quantitative skills routine and automatic. Laboratory exercises on energy (coal, petroleum, nuclear power), water (in Bangladesh), energy

  17. Leading Sustainable Pedagogical Reform with Technology for Student-Centred Learning: A Complexity Perspective

    ERIC Educational Resources Information Center

    Toh, Yancy

    2016-01-01

    The literature on school improvement is littered with sombre reports of how ICT-mediated innovations have failed to create impact on teaching and learning. Even when evidence-based successes are palpable, they are sporadic and rarely sustainable. Against the backdrop of the litany of such studies, this paper reports the case of a primary school in…

  18. Teaching and Learning for Sustainable Development: ESD Research in Technology Education

    ERIC Educational Resources Information Center

    Pavlova, Margarita

    2013-01-01

    When education for sustainable development (ESD) emerged as part of the educational agenda in the international arena, it was associated with significant shifts in the educational debate about the purpose and nature of education and with the need to respond to crises caused by the modern idea of progress. Scientists from different fields warn…

  19. Using Innovative Technology to Develop Sustainable Assessment Practices in Marketing Education

    ERIC Educational Resources Information Center

    Debuse, Justin C. W.; Lawley, Meredith

    2011-01-01

    Timely, constructive feedback on assessment is critically important to students and yet is increasingly difficult for time-poor academics to consistently provide. Marketing educators also face pressure to incorporate sustainability into both the curriculum and practices such as assessment. This article outlines the development of an innovative…

  20. Sustainable Innovations: Bringing Digital Media and Emerging Technologies to the Classroom

    ERIC Educational Resources Information Center

    Herro, Danielle

    2015-01-01

    Because traditional schools struggle to effectively understand, implement, and sustain digital learning initiatives, innovating with digital media in classrooms is a difficult endeavor. Practitioners need examples to better understand conditions necessary to move forward with digital media and learning (DML) in schools. This article provides…

  1. The e-Beam Sustained Laser Technology for Space-based Doppler Wind Lidar

    NASA Technical Reports Server (NTRS)

    Brown, M. J.; Holman, W.; Robinson, R. J.; Schwarzenberger, P. M.; Smith, I. M.; Wallace, S.; Harris, M. R.; Willetts, D. V.; Kurzius, S. C.

    1992-01-01

    An overview is presented of GEC Avionics activities relating to the Spaceborne Doppler Wind Lidar. In particular, the results of design studies into the use of an e-beam sustained CO2 laser for spaceborne applications, and experimental work on a test bed system are discussed.

  2. The importance of pre-conversion technologies for coupling sustainable bioenergy land use to biomass trade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large scale bioenergy development will shift current land use dynamics in the agricultural sector. The establishment of biofuel and biopower feedstock markets has great potential for encouraging more sustainable land use practices. Work has been done showing that strategically integrating food, feed...

  3. Developing and Applying Green Building Technology in an Indigenous Community: An Engaged Approach to Sustainability Education

    ERIC Educational Resources Information Center

    Riley, David R.; Thatcher, Corinne E.; Workman, Elizabeth A.

    2006-01-01

    Purpose: This paper aims to disseminate an innovative approach to sustainability education in construction-related fields in which teaching, research, and service are integrated to provide a unique learning experience for undergraduate students, faculty members, and community partners. Design/methodology/approach: The paper identifies the need for…

  4. Delivering an Automated and Integrated Approach to Combination Screening Using Acoustic-Droplet Technology.

    PubMed

    Cross, Kevin; Craggs, Richard; Swift, Denise; Sitaram, Anesh; Daya, Sandeep; Roberts, Mark; Hawley, Shaun; Owen, Paul; Isherwood, Bev

    2016-02-01

    Drug combination testing in the pharmaceutical industry has typically been driven by late-stage opportunistic strategies rather than by early testing to identify drug combinations for clinical investigation that may deliver improved efficacy. A rationale for combinations exists across a number of diseases in which pathway redundancy or resistance to therapeutics are evident. However, early assays are complicated by the absence of both assay formats representative of disease biology and robust infrastructure to screen drug combinations in a medium-throughput capacity. When applying drug combination testing studies, it may be difficult to translate a study design into the required well contents for assay plates because of the number of compounds and concentrations involved. Dispensing these plates increases in difficulty as the number of compounds and concentration points increase and compounds are subsequently rolled onto additional labware. We describe the development of a software tool, in conjunction with the use of acoustic droplet technology, as part of a compound management platform, which allows the design of an assay incorporating combinations of compounds. These enhancements to infrastructure facilitate the design and ordering of assay-ready compound combination plates and the processing of combinations data from high-content organotypic assays. PMID:25835292

  5. Developing and Sustaining Schools as Technology­ Enriched Learning Organizations

    ERIC Educational Resources Information Center

    Atkinson, Linda Cole; O'Hair, Mary John; O'Hair, H. Dan; Williams, Leslie Ann

    2008-01-01

    During the last two decades, an assumption was advanced by policy makers that making technology available would result in effective technology transfer and integration in the teaching and learning process (Cuban, 2001); however, reality has been less kind with research presenting a pessimistic picture regarding the impact of technology in the…

  6. A Learning Ecology Perspective: School Systems Sustaining Art Teaching with Technology

    ERIC Educational Resources Information Center

    Lin, Ching-Chiu

    2011-01-01

    Infusing technology into art education practice has been a continuous endeavor for preservice and in-service art teacher education. In recent years, art educators around the world have researched issues related to the preparation of art teacher technology competencies, including art teacher perceptions of working with technology, implementations…

  7. Environmental and social cues can be used in combination to develop sustainable breeding techniques for goat reproduction in the subtropics.

    PubMed

    Delgadillo, J A

    2011-01-01

    Goat breeds from subtropical latitudes show different annual reproductive cycles. Some of them display large seasonal variations in their annual breeding season, while others display a moderate seasonality or sexual activity all year round. This reproductive seasonality causes seasonality of milk, cheese and meat productions and, as a consequence, induces wide variation in producer incomes. To solve this problem and provide methods allowing producers to breed animals during the anestrous period and stabilize production all year round, it is necessary to have a deep knowledge of their annual sexual activity and to identify the environmental factors controlling the timing of the annual reproductive cycle. Then, it is possible to build on these knowledge sustainable breeding techniques adapted to the environmental, economic and social characteristics of the local breeding system. In this review, I will illustrate this strategy through the example of our experiments in subtropical goats. First, we determined the characteristics of the annual breeding season in both male and female goats. Second, we identified the photoperiod as the major environmental factor controlling the timing of this annual breeding season. Third, we used the photoperiod to stimulate indirectly the sexual behavior of does. Indeed, we used photoperiodic treatments to stimulate the sexual activity of bucks during the non-breeding season. These sexually active male goats were then used to induce and synchronize the estrous behavior and ovulatory activity of anestrous females in confined or grazing conditions by using the 'male effect'. Under subtropical conditions, these results constitute an original manner to control the reproductive activity of local goats using the photoperiod combined with the 'male effect.' PMID:22440704

  8. Combination Chemotherapy with Suboptimal Doses of Benznidazole and Pentoxifylline Sustains Partial Reversion of Experimental Chagas' Heart Disease.

    PubMed

    Vilar-Pereira, Glaucia; Resende Pereira, Isabela; de Souza Ruivo, Leonardo Alexandre; Cruz Moreira, Otacilio; da Silva, Andrea Alice; Britto, Constança; Lannes-Vieira, Joseli

    2016-07-01

    Chronic chagasic cardiomyopathy (CCC) progresses with parasite persistence, fibrosis, and electrical alterations associated with an unbalanced immune response such as high plasma levels of tumor necrosis factor (TNF) and nitric oxide (NO). Presently, the available treatments only mitigate the symptoms of CCC. To improve CCC prognosis, we interfered with the parasite load and unbalanced immune response using the trypanocidal drug benznidazole (Bz) and the immunoregulator pentoxifylline (PTX). C57BL/6 mice chronically infected with the Colombian strain of Trypanosoma cruzi and with signs of CCC were treated for 30 days with a suboptimal dose of Bz (25 mg/kg of body weight), PTX (20 mg/kg), or their combination (Bz plus PTX) and analyzed for electrocardiographic, histopathological, and immunological changes. Bz (76%) and Bz-plus-PTX (79%) therapies decreased parasite loads. Although the three therapies reduced myocarditis and fibrosis and ameliorated electrical alterations, only Bz plus PTX restored normal heart rate-corrected QT (QTc) intervals. Bz-plus-PTX-treated mice presented complementary effects of Bz and PTX, which reduced TNF expression (37%) in heart tissue and restored normal TNF receptor 1 expression on CD8(+) T cells, respectively. Bz (85%) and PTX (70%) therapies reduced the expression of inducible nitric oxide synthase (iNOS/NOS2) in heart tissue, but only Bz (58%) reduced NO levels in serum. These effects were more pronounced after Bz-plus-PTX therapy. Moreover, 30 to 50 days after treatment cessation, reductions of the prolonged QTc and QRS intervals were sustained in Bz-plus-PTX-treated mice. Our findings support the importance of interfering with the etiological agent and immunological abnormalities to improve CCC prognosis, opening an opportunity for a better quality of life for Chagas' disease (CD) patients. PMID:27161638

  9. Combination Chemotherapy with Suboptimal Doses of Benznidazole and Pentoxifylline Sustains Partial Reversion of Experimental Chagas' Heart Disease

    PubMed Central

    Vilar-Pereira, Glaucia; Resende Pereira, Isabela; de Souza Ruivo, Leonardo Alexandre; Cruz Moreira, Otacilio; da Silva, Andrea Alice; Britto, Constança

    2016-01-01

    Chronic chagasic cardiomyopathy (CCC) progresses with parasite persistence, fibrosis, and electrical alterations associated with an unbalanced immune response such as high plasma levels of tumor necrosis factor (TNF) and nitric oxide (NO). Presently, the available treatments only mitigate the symptoms of CCC. To improve CCC prognosis, we interfered with the parasite load and unbalanced immune response using the trypanocidal drug benznidazole (Bz) and the immunoregulator pentoxifylline (PTX). C57BL/6 mice chronically infected with the Colombian strain of Trypanosoma cruzi and with signs of CCC were treated for 30 days with a suboptimal dose of Bz (25 mg/kg of body weight), PTX (20 mg/kg), or their combination (Bz plus PTX) and analyzed for electrocardiographic, histopathological, and immunological changes. Bz (76%) and Bz-plus-PTX (79%) therapies decreased parasite loads. Although the three therapies reduced myocarditis and fibrosis and ameliorated electrical alterations, only Bz plus PTX restored normal heart rate-corrected QT (QTc) intervals. Bz-plus-PTX-treated mice presented complementary effects of Bz and PTX, which reduced TNF expression (37%) in heart tissue and restored normal TNF receptor 1 expression on CD8+ T cells, respectively. Bz (85%) and PTX (70%) therapies reduced the expression of inducible nitric oxide synthase (iNOS/NOS2) in heart tissue, but only Bz (58%) reduced NO levels in serum. These effects were more pronounced after Bz-plus-PTX therapy. Moreover, 30 to 50 days after treatment cessation, reductions of the prolonged QTc and QRS intervals were sustained in Bz-plus-PTX-treated mice. Our findings support the importance of interfering with the etiological agent and immunological abnormalities to improve CCC prognosis, opening an opportunity for a better quality of life for Chagas' disease (CD) patients. PMID:27161638

  10. Federal strategies to increase the implementation of combined heat and power technologies in the United States

    SciTech Connect

    Laitner, J.; Parks, W.; Schilling, J.; Scheer, R.

    1999-07-01

    Recent interest in combined heat and power (CHP) is providing momentum to efforts aimed at increasing the capacity of this highly-efficient technology. Factors driving this increase in interest include the need to increase the efficiency of the nation's electricity generation infrastructure, DOE Assistant Secretary Dan Reicher's challenge to double the capacity of CHP by 2010, the success of DOE's Advanced Turbine Systems Program in supporting ultra-efficient CHP technologies, and the necessity of finding cost-effective solutions to address climate change and air quality issues. The federal government is committed to increasing the penetration of CHP technologies in the US. The ultimate goal is to build a competitive market for CHP in which policies and regulations support the implementation of a full suite of technologies for multiple applications. Specific actions underway at the federal level include technology strategies to improve CHP data collection and assessment and work with industry to encourage the development of advanced CHP technologies. Policy strategies include changes to federal environmental permitting procedures including CHP-friendly strategies in federal restructuring legislation, supporting tax credits and changes to depreciation requirements as economic incentives to CHP, working with industry to leverage resources in the development of advanced CHP technologies, educating state officials about the things they can do to encourage CHP, and increasing awareness about the benefits of CHP and the barriers limiting its increased implementation.

  11. Factors influencing communication and decision-making about life-sustaining technology during serious illness: a qualitative study

    PubMed Central

    Kryworuchko, Jennifer; Strachan, P H; Nouvet, E; Downar, J; You, J J

    2016-01-01

    Objectives We aimed to identify factors influencing communication and decision-making, and to learn how physicians and nurses view their roles in deciding about the use of life-sustaining technology for seriously ill hospitalised patients and their families. Design The qualitative study used Flanagan's critical incident technique to guide interpretive description of open-ended in-depth individual interviews. Setting Participants were recruited from the medical wards at 3 Canadian hospitals. Participants Interviews were completed with 30 healthcare professionals (9 staff physicians, 9 residents and 12 nurses; aged 25–63 years; 73% female) involved in decisions about the care of seriously ill hospitalised patients and their families. Measures Participants described encounters with patients and families in which communication and decision-making about life-sustaining technology went particularly well and unwell (ie, critical incidents). We further explored their roles, context and challenges. Analysis proceeded using constant comparative methods to form themes independently and with the interprofessional research team. Results We identified several key factors that influenced communication and decision-making about life-sustaining technology. The overarching factor was how those involved in such communication and decision-making (healthcare providers, patients and families) conceptualised the goals of medical practice. Additional key factors related to how preferences and decision-making were shaped through relationships, particularly how people worked toward ‘making sense of the situation’, how physicians and nurses approached the inherent and systemic tensions in achieving consensus with families, and how physicians and nurses conducted professional work within teams. Participants described incidents in which these key factors interacted in dynamic and unpredictable ways to influence decision-making for any particular patient and family. Conclusions A focus

  12. Universities in capacity building in sustainable development: focus on solid waste management and technology.

    PubMed

    Agamuthu, P; Hansen, Jens Aage

    2007-06-01

    This paper analyses some of the higher education and research capacity building experiences gained from 1998-2006 by Danish and Malaysian universities. The focus is on waste management, directly relating to both the environmental and socio-economic dimensions of sustainable development. Primary benefits, available as an educational legacy to universities, were obtained in terms of new and enhanced study curricula established on Problem-oriented Project-based Learning (POPBL) pedagogy, which strengthened academic environmental programmes at Malaysian and Danish universities. It involved more direct and mutually beneficial cooperation between academia and businesses in both countries. This kind of university reach-out is considered vital to development in all countries actively striving for global and sustainable development. Supplementary benefits were accrued for those involved directly in activities such as the 4 months of field studies, workshops, field courses and joint research projects. For students and academics, the gains have been new international dimensions in university curricula, enhanced career development and research collaboration based on realworld cases. It is suggested that the area of solid waste management offers opportunities for much needed capacity building in higher education and research, contributing to sustainable waste management on a global scale. Universities should be more actively involved in such educational, research and innovation programmes to make the necessary progress. ISWA can support capacity building activities by utilizing its resources--providing a lively platform for debate, securing dissemination of new knowledge, and furthering international networking beyond that which universities already do by themselves. A special challenge to ISWA may be to improve national and international professional networks between academia and business, thereby making education, research and innovation the key driving mechanisms in

  13. The use of Space Technology for the Benefit of Society in Context of Planning and Sustainable Development

    NASA Astrophysics Data System (ADS)

    Kuldeep, Kuldeep; Banu, Vijaya

    2016-07-01

    The introduction of the novel technology mostly leads to a number of advantages to the society. The space technology has shown such benefits in many fields including the areas of health and education, communication sectors, land and water resources management, weather forecasting and disaster management. It has vast potential for addressing a variety of societal problems of the developing countries especially in India in a effective manner. Large population which is spread over vast and remote areas of the nation, reaching out to them is a difficult task. This manuscript aims to explain the benefits originated from the application of space technology. The satellite imagery and its derived products can better be utilized for local level planning and sustainable development of a region. A case-study using Bhuvan Panchayat Portal developed by National Remote Sensing Centre, ISRO under the project "Space Based Information Support for De-Centralised Planning" towards Digital Empowerment of Society for Panchayat level Planning and Governance has been carried out, which list out the benefits that have accrued from the use of space technology for planning and development at grass root level in India. It covers, in particular, the benefits expected to be derived from the Indian Remote Sensing Satellite (IRS) Images and derived products. Certain conclusions about the benefits from space based inputs have been drawn that may be generally applicable to all developing countries. This paper also investigates the various possibilities and potentials of Remote Sensing technologies for societal applications.

  14. Selection of sustainable sanitation technologies for urban slums--a case of Bwaise III in Kampala, Uganda.

    PubMed

    Katukiza, A Y; Ronteltap, M; Oleja, A; Niwagaba, C B; Kansiime, F; Lens, P N L

    2010-12-01

    Provision of sanitation solutions in the world's urban slums is extremely challenging due to lack of money, space, access and sense of ownership. This paper presents a technology selection method that was used for the selection of appropriate sanitation solutions for urban slums. The method used in this paper takes into account sustainability criteria, including social acceptance, technological and physical applicability, economical and institutional aspects, and the need to protect and promote human health and the environment. The study was carried out in Bwaise III; a slum area in Kampala (Uganda). This was through administering of questionnaires and focus group discussions to obtain baseline data, developing a database to compare different sanitation options using technology selection criteria and then performing a multi-criteria analysis of the technology options. It was found that 15% of the population uses a public pit latrine; 75% uses a shared toilet; and 10% has private, non-shared sanitation facilities. Using the selection method, technologies such as Urine Diversion Dry Toilet (UDDT) and biogas latrines were identified to be potentially feasible sanitation solutions for Bwaise III. Sanitation challenges for further research are also presented. PMID:20943256

  15. Assessing the biophysical and socio-economic potential of Sustainable Land Management and Water Harvesting Technologies for rainfed agriculture across semi-arid Africa.

    NASA Astrophysics Data System (ADS)

    Irvine, Brian; Fleskens, Luuk; Kirkby, Mike

    2016-04-01

    Stakeholders in recent EU projects identified soil erosion as the most frequent driver of land degradation in semi-arid environments. In a number of sites, historic land management and rainfall variability are recognised as contributing to the serious environmental impact. In order to consider the potential of sustainable land management and water harvesting techniques stakeholders and study sites from the projects selected and trialled both local technologies and promising technologies reported from other sites . The combined PESERA and DESMICE modelling approach considered the regional effects of the technologies in combating desertification both in environmental and socio-economical terms. Initial analysis was based on long term average climate data with the model run to equilibrium. Current analysis, primarily based on the WAHARA study sites considers rainfall variability more explicitly in time series mode. The PESERA-DESMICE approach considers the difference between a baseline scenario and a (water harvesting) technology scenario, typically, in terms of productivity, financial viability and scope for reducing erosion risk. A series of 50 year rainfall realisations are generated from observed data to capture a full range of the climatic variability. Each realisation provides a unique time-series of rainfall and through modelling can provide a simulated time-series of crop yield and erosion risk for both baseline conditions and technology scenarios. Subsequent realisations and model simulations add to an envelope of the potential crop yield and cost-benefit relations. The development of such envelopes helps express the agricultural and erosional risk associated with climate variability and the potential for conservation measures to absorb the risk, highlighting the probability of achieving a given crop yield or erosion limit. Information that can directly inform or influence the local adoption of conservation measures under the climatic variability in semi

  16. Combining Brain–Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges

    PubMed Central

    Millán, J. d. R.; Rupp, R.; Müller-Putz, G. R.; Murray-Smith, R.; Giugliemma, C.; Tangermann, M.; Vidaurre, C.; Cincotti, F.; Kübler, A.; Leeb, R.; Neuper, C.; Müller, K.-R.; Mattia, D.

    2010-01-01

    In recent years, new research has brought the field of electroencephalogram (EEG)-based brain–computer interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely, “Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user–machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human–computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices. PMID:20877434

  17. Large Porous Particles for Sustained Release of a Decoy Oligonucelotide and Poly(ethylenimine): Potential for Combined Therapy of Chronic Pseudomonas aeruginosa Lung Infections.

    PubMed

    d'Angelo, Ivana; Perfetto, Brunella; Costabile, Gabriella; Ambrosini, Veronica; Caputo, Pina; Miro, Agnese; d'Emmanuele di Villa Bianca, Roberta; Sorrentino, Raffaella; Donnarumma, Giovanna; Quaglia, Fabiana; Ungaro, Francesca

    2016-05-01

    We have recently demonstrated that the specific inhibition of nuclear factor-κB by a decoy oligonucleotide (dec-ODN) delivered through inhalable large porous particles (LPP) made of poly(lactic-co-glycolic acid) (PLGA) may be highly beneficial for long-term treatment of lung inflammation. Nevertheless, besides chronic inflammation, multifunctional systems aimed to control also infection are required in chronic lung diseases, such as cystic fibrosis (CF). In this work, we tested the hypothesis that engineering PLGA-based LPP with branched poly(ethylenimine) (PEI) may improve LPP properties for pulmonary delivery of dec-ODN, with particular regard to the treatment of Pseudomonas aeruginosa lung infections. After getting insight into the role of PEI on the technological properties of PLGA-based LPP for delivery of dec-ODN, the putative synergistic effect of PEI free or PEI released from LPP on in vitro antimicrobial activity of tobramycin (Tb) and aztreonam (AZT) against P. aeruginosa was elucidated. Meanwhile, cytotoxicity studies on A549 cells were carried out. Results clearly demonstrate that the dry powders have promising aerosolization properties and afford a prolonged in vitro release of both dec-ODN and PEI. The encapsulation of PEI into LPP results in a 2-fold reduction of the minimum inhibitory concentration of AZT, while reducing the cytotoxic effect of PEI. Of note, the developed ODN/PLGA/PEI LPP persisted at lung at least for 14 days after intratracheal administration in rats where they can provide sustained and combined release of dec-ODN and PEI. dec-ODN will likely act as an anti-inflammatory drug, while PEI may enhance the therapeutic activity of inhaled antibiotics, which are commonly employed for the treatment of concomitant lung infections. PMID:27002689

  18. Barriers to Systemic, Effective, and Sustainable Technology Use in High School Classrooms

    ERIC Educational Resources Information Center

    Daniels, Jason Scott; Jacobsen, Michele; Varnhagen, Stanley; Friesen, Sharon

    2013-01-01

    The purpose of the Technology and High School Success (THSS) initiative was to encourage innovative strategies focused on improving provincial high school completion rates, using technology and student-centered learning to engage student interest. The primary purpose of this paper is to report on barriers that impede systemic, effective and…

  19. Ensuring sustainability of non-networked sanitation technologies: an approach to standardization.

    PubMed

    Starkl, Markus; Brunner, Norbert; Feil, Magdalena; Hauser, Andreas

    2015-06-01

    Non-networked sanitation technologies use no sewer, water or electricity lines. Based on a review of 45 commercially distributed technologies, 12 (representing three concepts) were selected for a detailed audit. They were located in six countries of Africa and Asia. The safety of users was generally assured and the costs per use were not excessive, whereas costs were fully transparent for only one technology surveyed. A main drawback was insufficient quality of the byproducts from on-site treatment, making recycling in agriculture a hygienic and environmental risk. Further, no technology was sufficiently mature (requiring e.g. to shift wastes by hand). In order to promote further development and give producers of mature products a competitive advantage, the paper proposes a certification of technologies to confirm the fulfillment of basic requirements to make them attractive for future users. PMID:25961898

  20. Sustainable and consumer-friendly emerging technologies for application within the meat industry: An overview.

    PubMed

    Troy, Declan J; Ojha, Kumari Shikha; Kerry, Joseph P; Tiwari, Brijesh K

    2016-10-01

    New and emerging robust technologies can play an important role in ensuring a more resilient meat value chain and satisfying consumer demands and needs. This paper outlines various novel thermal and non-thermal technologies which have shown potential for meat processing applications. A number of process analytical techniques which have shown potential for rapid, real-time assessment of meat quality are also discussed. The commercial uptake and consumer acceptance of novel technologies in meat processing have been subjects of great interest over the past decade. Consumer focus group studies have shown that consumer expectations and liking for novel technologies, applicable to meat processing applications, vary significantly. This overview also highlights the necessity for meat processors to address consumer risk-benefit perceptions, knowledge and trust in order to be commercially successful in the application of novel technologies within the meat sector. PMID:27162095

  1. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate.

    PubMed

    Guirimand, Gregory; Sasaki, Kengo; Inokuma, Kentaro; Bamba, Takahiro; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-04-01

    Xylitol, a value-added polyol deriving from D-xylose, is widely used in both the food and pharmaceutical industries. Despite extensive studies aiming to streamline the production of xylitol, the manufacturing cost of this product remains high while demand is constantly growing worldwide. Biotechnological production of xylitol from lignocellulosic waste may constitute an advantageous and sustainable option to address this issue. However, to date, there have been few reports of biomass conversion to xylitol. In the present study, xylitol was directly produced from rice straw hydrolysate using a recombinant Saccharomyces cerevisiae YPH499 strain expressing cytosolic xylose reductase (XR), along with β-glucosidase (BGL), xylosidase (XYL), and xylanase (XYN) enzymes (co-)displayed on the cell surface; xylitol production by this strain did not require addition of any commercial enzymes. All of these enzymes contributed to the consolidated bioprocessing (CBP) of the lignocellulosic hydrolysate to xylitol to produce 5.8 g/L xylitol with 79.5 % of theoretical yield from xylose contained in the biomass. Furthermore, nanofiltration of the rice straw hydrolysate provided removal of fermentation inhibitors while simultaneously increasing sugar concentrations, facilitating high concentration xylitol production (37.9 g/L) in the CBP. This study is the first report (to our knowledge) of the combination of cell surface engineering approach and membrane separation technology for xylitol production, which could be extended to further industrial applications. PMID:26631184

  2. The Long-Term Impact of an Education for Sustainability Course on Israeli Science and Technology Teachers' Pro-Environment Awareness, Commitment and Behaviour

    ERIC Educational Resources Information Center

    Abramovich, Anat; Loria, Yahavit

    2015-01-01

    The impact of an Education for Sustainability (EfS) course for science and technology junior high school teachers on the intentional and actual environmental behaviour of participants was studied by researching the EfS implementation of 13 science and technology teachers within their family, community, and work environment. The research was…

  3. Rocket-Based Combined-Cycle Propulsion Technology for Access-to-Space Applications

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    1999-01-01

    NASA's Office of Aero-Space Technology (OAST) established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. One of the main activities over the past three years has been on advancing the hydrogen fueled rocket-based combined cycle (RBCC) technologies. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet and Boeing-Rocketdyne designed, built and ground tested their RBCC engine concepts. In addition, ASTROX, Georgia Institute of Technology, McKinney Associates, Pennsylvania State University (PSU), and University of Alabama in Huntsville conducted supporting activities. The RBCC activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. Inlet testing was performed at the Lewis Research Center's 1 x 1 wind tunnel. All direct connect and free-jet engine testing were conducted at the GASL facilities on Long Island, New York. Testing spanned the Mach range from sea level static to Mach 8. Testing of the rocket-only mode, simulating the final phase of the ascent mission profile, was also performed. The originally planned work on these contracts was completed in 1999. Follow-on activities have been initiated for both hydrogen and hydrocarbon fueled RBCC concepts. Studies to better understand system level issues with the integration of RBCC propulsion with earth-to-orbit vehicles have also been conducted. This paper describes the status, progress and future plans of the RBCC activities funded by NASA/MSFC with a major focus on the benefits of utilizing air-breathing combined-cycle propulsion in access-to-space applications.

  4. Photovoltaics as a renewable energy technology in Bangladesh and its potential for increasing welfare, gender equity, and environmental sustainability

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sarwat

    Situated in the northeast corner of the South Asian sub-continent, Bangladesh is a developing country with high population density, low life expectancy, low rate of literacy and extremely low access to modern energy sources. Lack of access to electrification remains a major constraint to the country's economic development. In this context, as in other countries, Bangladeshi development practitioners have tended to pursue outputs that rely on new technologies as a means to leapfrog to higher levels of development. However, independent analysis of such efforts, in terms of achieving sustainable development outcomes, remains lacking. The full potential of renewable energy technologies in Bangladesh has yet to attract widespread recognition from policy makers. In this thesis, I review solar PV technology since it has already been attempted as a rural off-grid electrification option in Bangladesh. I argue that the applications of technology should follow, and not precede, considerations for human well-being. It is also important to have a more holistic perspective on human welfare, which should include the basic dimensions of choice and opportunities, and not just income levels. The Government of Bangladesh and its development partners need to expand support to renewable energy technologies and so redirect the focus of policy formulation and implementation to sustainable human development. I emphasize that people-centered public policy has a key role to play in the introduction of a technology such as the solar photovoltaics pioneered by Grameen Shakti, a not-for-profit company in Bangladesh. While equity in terms of a fair distribution of wealth and income may continue to be an illusion, innovations such as solar PV are indeed promising with respect to opening up opportunities and possible benefits for women, the environment and---more generally---human well-being. This thesis is based on work in rural areas complementary to various professional responsibilities that I

  5. A multimedia adult literacy program: Combining NASA technology, instructional design theory, and authentic literacy concepts

    NASA Technical Reports Server (NTRS)

    Willis, Jerry W.

    1993-01-01

    For a number of years, the Software Technology Branch of the Information Systems Directorate has been involved in the application of cutting edge hardware and software technologies to instructional tasks related to NASA projects. The branch has developed intelligent computer aided training shells, instructional applications of virtual reality and multimedia, and computer-based instructional packages that use fuzzy logic for both instructional and diagnostic decision making. One outcome of the work on space-related technology-supported instruction has been the creation of a significant pool of human talent in the branch with current expertise on the cutting edges of instructional technologies. When the human talent is combined with advanced technologies for graphics, sound, video, CD-ROM, and high speed computing, the result is a powerful research and development group that both contributes to the applied foundations of instructional technology and creates effective instructional packages that take advantage of a range of advanced technologies. Several branch projects are currently underway that combine NASA-developed expertise to significant instructional problems in public education. The branch, for example, has developed intelligent computer aided software to help high school students learn physics and staff are currently working on a project to produce educational software for young children with language deficits. This report deals with another project, the adult literacy tutor. Unfortunately, while there are a number of computer-based instructional packages available for adult literacy instruction, most of them are based on the same instructional models that failed these students when they were in school. The teacher-centered, discrete skill and drill-oriented, instructional strategies, even when they are supported by color computer graphics and animation, that form the foundation for most of the computer-based literacy packages currently on the market may not

  6. User Localization in Complex Environments by Multimodal Combination of GPS, WiFi, RFID, and Pedometer Technologies

    PubMed Central

    Dao, Trung-Kien; Nguyen, Hung-Long; Pham, Thanh-Thuy; Nguyen, Viet-Tung; Nguyen, Dinh-Van

    2014-01-01

    Many user localization technologies and methods have been proposed for either indoor or outdoor environments. However, each technology has its own drawbacks. Recently, many researches and designs have been proposed to build a combination of multiple localization technologies system which can provide higher precision results and solve the limitation in each localization technology alone. In this paper, a conceptual design of a general localization platform using combination of multiple localization technologies is introduced. The combination is realized by dividing spaces into grid points. To demonstrate this platform, a system with GPS, RFID, WiFi, and pedometer technologies is established. Experiment results show that the accuracy and availability are improved in comparison with each technology individually. PMID:25147866

  7. User localization in complex environments by multimodal combination of GPS, WiFi, RFID, and pedometer technologies.

    PubMed

    Dao, Trung-Kien; Nguyen, Hung-Long; Pham, Thanh-Thuy; Castelli, Eric; Nguyen, Viet-Tung; Nguyen, Dinh-Van

    2014-01-01

    Many user localization technologies and methods have been proposed for either indoor or outdoor environments. However, each technology has its own drawbacks. Recently, many researches and designs have been proposed to build a combination of multiple localization technologies system which can provide higher precision results and solve the limitation in each localization technology alone. In this paper, a conceptual design of a general localization platform using combination of multiple localization technologies is introduced. The combination is realized by dividing spaces into grid points. To demonstrate this platform, a system with GPS, RFID, WiFi, and pedometer technologies is established. Experiment results show that the accuracy and availability are improved in comparison with each technology individually. PMID:25147866

  8. The combination design for open and endoscopic surgery using fluorescence molecular imaging technology

    NASA Astrophysics Data System (ADS)

    Mao, Yamin; Jiang, Shixin; Ye, Jinzuo; An, Yu; Yang, Xin; Chi, Chongwei; Tian, Jie

    2015-03-01

    For clinical surgery, it is still a challenge to objectively determine tumor margins during surgery. With the development of medical imaging technology, fluorescence molecular imaging (FMI) method can provide real-time intraoperative tumor margin information. Furthermore, surgical navigation system based on FMI technology plays an important role for the aid of surgeons' precise tumor margin decision. However, detection depth is the most limitation exists in the FMI technique and the method convenient for either macro superficial detection or micro deep tissue detection is needed. In this study, we combined advantages of both open surgery and endoscopic imaging systems with FMI technology. Indocyanine green (ICG) experiments were performed to confirm the feasibility of fluorescence detection in our system. Then, the ICG signal was photographed in the detection area with our system. When the system connected with endoscope lens, the minimum quantity of ICG detected by our system was 0.195 ug. For aspect of C mount lens, the sensitivity of ICG detection with our system was 0.195ug. Our experiments results proved that it was feasible to detect fluorescence images with this combination method. Our system shows great potential in the clinical applications of precise dissection of various tumors

  9. An impact assessment of sustainable technologies for the Chinese urban residential sector at provincial level

    NASA Astrophysics Data System (ADS)

    Xing, Rui; Hanaoka, Tatsuya; Kanamori, Yuko; Dai, Hancheng; Masui, Toshihiko

    2015-06-01

    Recently, energy use in the urban residential sector of China has drastically increased due to higher incomes and urbanization. The fossil fuels dominant energy supply has since worsened the air quality, especially in urban areas. In this study we estimate the future energy service demands in Chinese urban residential areas, and then use an AIM/Enduse model to evaluate the emission reduction potential of CO2, SO2, NOx and PM. Considering the climate diversity and its impact on household energy service demands, our analysis is down-scaled to the provincial-level. The results show that in most of the regions, penetration of efficient technologies will bring CO2 emission reductions of over 20% compared to the baseline by the year 2030. Deployment of energy efficient technologies also co-benefits GHG emission reduction. However, efficient technology selection appears to differ across provinces due to climatic variation and economic disparity. For instance, geothermal heating technology is effective for the cold Northern areas while biomass technology contributes to emission reduction the most in the warm Southern areas.

  10. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    PubMed

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste. PMID:23444152