Science.gov

Sample records for combined sustainable technology

  1. COMBINING INNOVATIVE RENEWABLE AND NATIVE AMERICAN TECHNOLOGIES IN THE DESIGN OF A SUSTAINABLE OUTDOOR CLASSROOM

    EPA Science Inventory

    Findings are summarized below in project-related outputs and outcomes.

    Objective 1: Plan by using a charrette process to relate educational needs of the sustainable outdoor classroom with potential innovative renewable and indigenous technologies.

    a. Out...

  2. Combining Project-based Instruction, Earth Science Content, and GIS Technology in Teacher Professional Development: Is this Holistic Approach Sustainable?

    NASA Astrophysics Data System (ADS)

    Rubino-Hare, L.; Bloom, N.; Claesgens, J.; Fredrickson, K.; Henderson-Dahms, C.; Sample, J. C.

    2012-12-01

    From 2009-2011, with support from the National Science Foundation (ITEST, DRL-0929846) and Science Foundation Arizona (MSAG-0412-09), educators, geologists and geographers at Northern Arizona University (NAU) partnered to offer professional development for interdisciplinary teams of secondary and middle school teachers with a focus on project-based instruction (PBI) using geospatial technologies (GST). While participating in professional development teachers received support and were held accountable to NAU staff. They implemented activities and pedagogical strategies presented, increased knowledge, skills, and confidence teaching with project-based instruction integrating GST, and their students demonstrated learning gains. Changes in student understanding are only observed when teachers continue to implement change, so the question remained: did these changes in practice sustain after official project support ended? In order to determine what, if anything, teachers sustained from the professional development and the factors that promoted or hindered sustained use of teaching with GST and PBI, data were collected one to two years following the professional development. Research questions included a) what pedagogical practices did teachers sustain following the professional learning experiences? and b) what contexts were present in schools that supported or limited the use of geospatial technologies as a teaching and learning tool? Findings from this study indicate that teachers fall into three categories of sustaining implementation - reformed implementers, mechanical implementers and non-implementers. School context was less of a factor in level of implementation than teachers' beliefs and philosophy of teaching and teachers' understanding of technology integration (teaching with technology vs. teaching technology). Case studies of teacher experiences will be presented along with implications for future professional development.

  3. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya

    NASA Astrophysics Data System (ADS)

    Mganga, K. Z.; Musimba, N. K. R.; Nyariki, D. M.

    2015-12-01

    Drylands occupy more than 80 % of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems.

  4. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya.

    PubMed

    Mganga, K Z; Musimba, N K R; Nyariki, D M

    2015-12-01

    Drylands occupy more than 80% of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems. PMID:26178534

  5. SUSTAINABLE TECHNOLOGY DIVISION - HOME PAGE

    EPA Science Inventory

    The mission of the Sustainable Technology Division is to advance the scientific understanding, development and application of technologies and methods for prevention, removal and control of environmental risks to human health and ecology. The Division is organized into four bra...

  6. Sustainable Technology at WPI

    ERIC Educational Resources Information Center

    Bartelson, Jon

    2009-01-01

    Worcester Polytechnic Institute (WPI) seeks to foster a community that produces sustainable solutions in all facets of campus life: (1) teaching; (2) research; (3) service; and (4) administrative operations. The university strives to model the three tenets of sustainability (environmental preservation, economic prosperity, and social equity for…

  7. Sustaining Innovation in Technological Education.

    ERIC Educational Resources Information Center

    Lawrenz, Frances; Keiser, Nanette; Lavoie, Bethann

    2003-01-01

    Examines the sustainability of technological innovation in community colleges. Reports on a Web-based survey that was followed up with site visits, which revealed that innovation was sustained by sharing power with collaborative partners, designing flexible programs, rewarding professional development, and using program data for marketing. Makes…

  8. Sustainability of wastewater treatment technologies.

    PubMed

    Muga, Helen E; Mihelcic, James R

    2008-08-01

    A set of indicators that incorporate environmental, societal, and economic sustainability were developed and used to investigate the sustainability of different wastewater treatment technologies, for plant capacities of <5 million gallons per day (MGD) or 18.9 x 10(3) cubic meters (m(3)/day). The technologies evaluated were mechanical (i.e., activated sludge with secondary treatment), lagoon (facultative, anaerobic, and aerobic), and land treatment systems (e.g., slow rate irrigation, rapid infiltration, and overland flow). The economic indicators selected were capital, operation and management, and user costs because they determine the economic affordability of a particular technology to a community. Environmental indicators include energy use, because it indirectly measures resource utilization, and performance of the technology in removing conventional wastewater constituents such as biochemical oxygen demand, ammonia nitrogen, phosphorus, and pathogens. These indicators also determine the reuse potential of the treated wastewater. Societal indicators capture cultural acceptance of the technology through public participation and also measure whether there is improvement in the community from the specific technology through increased job opportunities, better education, or an improved local environment. While selection of a set of indicators is dependent on the geographic and demographic context of a particular community, the overall results of this study show that there are varying degrees of sustainability with each treatment technology. PMID:17467148

  9. Sustainability and Sustainable Technologies fo a Better World

    EPA Science Inventory

    Sustainability and Sustainable Technologies for a Better World Subhas K. Sikdar National Risk Management Research Laboratory United States Environmental protection Agency 26 W. M.L. King Dr. Cincinnati, OH 45237 Sikdar.subhas@epa.gov ABSTRACT Students of engineering...

  10. Technology in the Classroom versus Sustainability

    ERIC Educational Resources Information Center

    Knott, Cynthia L.; Steube, G.; Yang, Hongqiang

    2013-01-01

    The use of technology in universities and colleges is an issue of interest and speculation. One issue related to technology use in the classroom is sustainability of resources that support the technology. This paper explores faculty perceptions about technology use and sustainability in an east coast university. This university has initiated a new…

  11. A technological infrastructure to sustain Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    La Mattina, Ernesto; Savarino, Vincenzo; Vicari, Claudia; Storelli, Davide; Bianchini, Devis

    In the Web 3.0 scenario, where information and services are connected by means of their semantics, organizations can improve their competitive advantage by publishing their business and service descriptions. In this scenario, Semantic Peer to Peer (P2P) can play a key role in defining dynamic and highly reconfigurable infrastructures. Organizations can share knowledge and services, using this infrastructure to move towards value networks, an emerging organizational model characterized by fluid boundaries and complex relationships. This chapter collects and defines the technological requirements and architecture of a modular and multi-Layer Peer to Peer infrastructure for SOA-based applications. This technological infrastructure, based on the combination of Semantic Web and P2P technologies, is intended to sustain Internetworked Enterprise configurations, defining a distributed registry and enabling more expressive queries and efficient routing mechanisms. The following sections focus on the overall architecture, while describing the layers that form it.

  12. Conceptualisation of Technology Education within the Paradigm of Sustainable Development

    ERIC Educational Resources Information Center

    Pavlova, Margarita

    2009-01-01

    This article addresses the issue of how sustainable development might be conceptualised and used to advance technology education practice. It is argued that a conceptualisation of sustainable development based on a combination of weak anthropocentrism and value based approaches within particular social, environmental and economic contexts provides…

  13. Toward Sustainable Practices in Technology Education

    ERIC Educational Resources Information Center

    Elshof, Leo

    2009-01-01

    This paper discusses the problematic relationship between technology education, consumption and environmental sustainability. The emerging global sustainability crisis demands an educational response that moves beyond mere "tinkering" with classroom practices, toward technology education which embraces life cycle thinking and "eco-innovation". It…

  14. Combined optimization model for sustainable energization strategy

    NASA Astrophysics Data System (ADS)

    Abtew, Mohammed Seid

    Access to energy is a foundation to establish a positive impact on multiple aspects of human development. Both developed and developing countries have a common concern of achieving a sustainable energy supply to fuel economic growth and improve the quality of life with minimal environmental impacts. The Least Developing Countries (LDCs), however, have different economic, social, and energy systems. Prevalence of power outage, lack of access to electricity, structural dissimilarity between rural and urban regions, and traditional fuel dominance for cooking and the resultant health and environmental hazards are some of the distinguishing characteristics of these nations. Most energy planning models have been designed for developed countries' socio-economic demographics and have missed the opportunity to address special features of the poor countries. An improved mixed-integer programming energy-source optimization model is developed to address limitations associated with using current energy optimization models for LDCs, tackle development of the sustainable energization strategies, and ensure diversification and risk management provisions in the selected energy mix. The Model predicted a shift from traditional fuels reliant and weather vulnerable energy source mix to a least cost and reliable modern clean energy sources portfolio, a climb on the energy ladder, and scored multifaceted economic, social, and environmental benefits. At the same time, it represented a transition strategy that evolves to increasingly cleaner energy technologies with growth as opposed to an expensive solution that leapfrogs immediately to the cleanest possible, overreaching technologies.

  15. Making technological innovation work for sustainable development.

    PubMed

    Anadon, Laura Diaz; Chan, Gabriel; Harley, Alicia G; Matus, Kira; Moon, Suerie; Murthy, Sharmila L; Clark, William C

    2016-08-30

    This paper presents insights and action proposals to better harness technological innovation for sustainable development. We begin with three key insights from scholarship and practice. First, technological innovation processes do not follow a set sequence but rather emerge from complex adaptive systems involving many actors and institutions operating simultaneously from local to global scales. Barriers arise at all stages of innovation, from the invention of a technology through its selection, production, adaptation, adoption, and retirement. Second, learning from past efforts to mobilize innovation for sustainable development can be greatly improved through structured cross-sectoral comparisons that recognize the socio-technical nature of innovation systems. Third, current institutions (rules, norms, and incentives) shaping technological innovation are often not aligned toward the goals of sustainable development because impoverished, marginalized, and unborn populations too often lack the economic and political power to shape innovation systems to meet their needs. However, these institutions can be reformed, and many actors have the power to do so through research, advocacy, training, convening, policymaking, and financing. We conclude with three practice-oriented recommendations to further realize the potential of innovation for sustainable development: (i) channels for regularized learning across domains of practice should be established; (ii) measures that systematically take into account the interests of underserved populations throughout the innovation process should be developed; and (iii) institutions should be reformed to reorient innovation systems toward sustainable development and ensure that all innovation stages and scales are considered at the outset. PMID:27519800

  16. QUEST: Qualifying Environmentally Sustainable Technologies

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Over the years, pollution prevention has proven to be a means to comply with environmental regulations, improve product performance and reduce costs. The NASA Acquisition Pollution Prevention (AP2) Program was created to help individual NASA Centers and programs work together to evaluate and adopt environmentally preferable technologies and practices. The AP2 Program accomplishes its mission using a variety of tools such as networking, information/technology exchange and partnering. Due to its extensive network of contacts, the AP2 Program is an excellent resource for finding existing solutions to problems. If no solution is readily known, the AP2 Program works to identify potential solutions and partners for demonstration/ validation projects. Partnering to prevent pollution is a cornerstone of NASA's prime mission and the One NASA Initiative. This annual newsletter highlights some of our program's collaborative efforts. I believe you will discover how the AP2 Program is responsive in meeting the Agency's environmental management strategic plans.

  17. Technology in Sustainable Development Context

    NASA Astrophysics Data System (ADS)

    Uno, Kimio

    The economic and demographic growth in Asia has put increased importance to this part of the world whose contribution to the global community is vital in meeting global challenges. International cooperation in engineering education assumes a pivotal role in providing access to the frontiers of scientific and technological knowledge to the growing youths in the region. The thrust for advancement has been provided by the logic coming from the academic world itself, whereas expectations are high that the engineering education responds to challenges that are coming from outside the universities, such as environmental management, disaster management, and provision of common knowledge platform across disciplinary lines. Some cases are introduced in curriculum development that incorporates fieldwork and laboratory work intended to enhance the ability to cooperate. The new mode is discussed with focus on production, screening, storing/delivery, and leaning phases of knowledge. The strength of shared information will be enhanced through international cooperation.

  18. Sustaining integrated technology in undergraduate mathematics

    NASA Astrophysics Data System (ADS)

    Oates, Greg

    2011-09-01

    The effective integration of technology into the teaching and learning of mathematics remains one of the critical challenges facing contemporary tertiary mathematics. This article reports on some significant findings of a wider study investigating the use of technology in undergraduate mathematics. It first discusses a taxonomy developed to describe and compare technology use within individual courses and departments that identifies a complex range of factors, summarized under six defining characteristics of an integrated technology mathematics curriculum (ITMC). An instrument for a simple comparison of technology use employing the elements of this taxonomy is provided. It then presents evidence gathered from an observational study of technology implementation at The University of Auckland, and examines this evidence against the taxonomy. The findings suggest that while the underlying complexity of the taxonomy limits a categorical definition of integrated technology, it does provide an effective means for examining the issues confronting those wishing to implement and sustain integrated technology in undergraduate mathematics. An integrated, holistic approach, which aims for curricular consistency across all the characteristics described in the taxonomy, provides the basis for a more effective and sustainable ITMC. Key findings, some of which will be considered in more detail in this discussion, include: the importance of mandating technology use in official departmental policy; paying attention to consistency and fairness in assessment; re-evaluating the value of topics in the curriculum; re-establishing the goals of undergraduate courses; and developing the pedagogical technical knowledge of teaching staff.

  19. Hydrazine Catalyst Production: Sustaining S-405 Technology

    NASA Technical Reports Server (NTRS)

    Wucherer, E. J.; Cook, Timothy; Stiefel, Mark; Humphries, Randy, Jr.; Parker, Janet

    2003-01-01

    The development of the iridium-based Shell 405 catalyst for spontaneous decomposition of hydrazine was one of the key enabling technologies for today's spacecraft and launch vehicles. To ensure that this crucial technology was not lost when Shell elected to exit the business, Aerojet, supported by NASA, has developed a dedicated catalyst production facility that will supply catalyst for future spacecraft and launch vehicle requirements. We have undertaken a program to transfer catalyst production from Shell Chemical USA (Houston, TX) to Aerojet's Redmond, WA location. This technology transition was aided by Aerojet's 30 years of catalyst manufacturing experience and NASA diligence and support in sustaining essential technologies. The facility has produced and tested S-405 catalyst to existing Shell 405 specifications and standards. Our presentation will describe the technology transition effort including development of the manufacturing facility, capture of the manufacturing process, test equipment validation, initial batch build and final testing.

  20. Combining sustainable energy development and employment strategies

    SciTech Connect

    Olesen, G.B.

    1994-12-31

    International Network for Sustainable Energy--Europe (INforSE--Europe) is developing proposals to focus on the important connections between CO,-abatement strategies and employment. Basically, support for unemployed people in industrialized countries can be used to support job-creating sustainable energy measures. This paper describes the first version of the proposals for the European Union (EU), covering estimates of potential employment effects of wind energy, solar thermal energy, combustible and digestible biomass, and increased energy efficiency in heat and electricity. The result of these first estimates is that these proposals can create directly about 600,000 jobs and by induced effects an additional 1,300,000 jobs lasting for more than 10 years. The proposed elements of a sustainable energy strategy will have a significant role in reducing the unemployment of 17 million persons in EU. Because of reduced expenses of the states for unemployment benefits and increased tax revenue, it is estimated that the states can support the implementation of the proposals with at least 25% of the investments and still have a positive effect on the state budgets, The paper also describes the worldwide INforSE campaign and a number of other NGO activities on environment, energy, and employment.

  1. Sustainable technologies for the building construction industry

    SciTech Connect

    Vanegas, J.A.; DuBose, J.R.; Pearce, A.R.

    1995-12-31

    As the dawn of the twenty-first century approaches, the current pattern of unsustainable, inequitable and unstable asymmetric demographic and economic growth has forced many segments of society to come together in facing a critical challenge: how can societies across the world meet their current basic human needs, aspirations and desires, without compromising the ability of future generations to meet their own needs? At the core of this challenge is the question: how can the human race maintain in perpetuity a healthy, physically attractive and biologically productive environment. The development path that we have been taking, in the past few centuries, has been ultimately detrimental to the health of our surrounding ecological context. We are consuming an increasing share of the natural resources available to use on this planet, and we are creating sufficiently large amounts of waste and pollution such that the earth can no longer assimilate our wastes and recover from the negative impacts. This is a result of a growing population as well as new technologies which make it easier for use to access natural resources and also require the consumption of more resources. Unsustainable technology has been the result of linear rather than cyclic thinking. The paradigm shift from linear to cyclic thinking in technological design is the crux of the shift from unsustainability to sustainability. This paper discusses the implications for the building design and construction industries. Strategies, technologies, and opportunities are presented to improve the sustainability of the built environment.

  2. Security Technology Demonstration and Validation Sustainability Plan

    SciTech Connect

    2008-08-31

    This report describes the process of creating continuity and sustainability for demonstration and validation (DEMVAL) assets at the National Security Technology Incubator (NSTI). The DEMVAL asset program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The mission of the NSTI program is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. Part of this support is envisioned to be research and development of companies’ technology initiatives, at the same time providing robust test and evaluation of actual development activities. This program assists companies in developing technologies under the NSTI program through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. Development of the commercial potential for national security technologies is a significant NSTI focus. As part of the process of commercialization, a comprehensive DEMVAL program has been recognized as an essential part of the overall incubator mission. A number of resources have been integrated into the NSTI program to support such a DEMVAL program.

  3. Energy technology progress for sustainable development

    SciTech Connect

    Arvizu, D.E.; Drennen, T.E.

    1997-03-01

    Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option.

  4. Sustainable sanitation technology options for urban slums.

    PubMed

    Katukiza, A Y; Ronteltap, M; Niwagaba, C B; Foppen, J W A; Kansiime, F; Lens, P N L

    2012-01-01

    Poor sanitation in urban slums results in increased prevalence of diseases and pollution of the environment. Excreta, grey water and solid wastes are the major contributors to the pollution load into the slum environment and pose a risk to public health. The high rates of urbanization and population growth, poor accessibility and lack of legal status in urban slums make it difficult to improve their level of sanitation. New approaches may help to achieve the sanitation target of the Millennium Development Goal (MDG) 7; ensuring environmental sustainability. This paper reviews the characteristics of waste streams and the potential treatment processes and technologies that can be adopted and applied in urban slums in a sustainable way. Resource recovery oriented technologies minimise health risks and negative environmental impacts. In particular, there has been increasing recognition of the potential of anaerobic co-digestion for treatment of excreta and organic solid waste for energy recovery as an alternative to composting. Soil and sand filters have also been found suitable for removal of organic matter, pathogens, nutrients and micro-pollutants from grey water. PMID:22361648

  5. Sustainable Technology: Community Surveys of Requisite Skills, Spring 2000.

    ERIC Educational Resources Information Center

    Pezzoli, Jean A.; Ainsworth, Don

    The goal of this study was to obtain feedback from relevant community businesses regarding skills needed by employees in Sustainable Technologies. Survey results will help design the innovative Sustainable Technologies curriculum, which is under development at the Maui Community College. In the fall 1999 semester, the Sustainable Technologies…

  6. EVALUATION OF CURRENT SUSTAINABILITY ASSESSMENT OF BIOBASED TECHNOLOGY

    EPA Science Inventory

    Sustainable technology is driven by economic competitiveness, government policies and public pressure. The claim of inherent cleanliness for biotechnology is too simplistic. Each application of biotechnology must be evaluated for suitable characteristics of sustainability. The ...

  7. Relative Sustainability and Making Technological Choices

    EPA Science Inventory

    ABSTRACT System sustainability is a dynamic concept. Sustainability analysis is thus about making decisions on the overall, relative desirability of a system under study. The appropriate approach is to consider environmental, societal, and economic impacts of the system and de...

  8. MCC Instruction in Sustainable Technologies. Follow-Up Study.

    ERIC Educational Resources Information Center

    Pezzoli, Jean A.; Ainsworth, Donald

    The purposes of this study were to collect feedback from Sustainable Technologies interns regarding the usefulness and effectiveness of their education and training from the Maui Community College Instruction in Sustainable Technologies (MIST) program, and to further assess community need for a new Associate Degree program in Sustainable…

  9. Ceramic Technologies for Sustainability: Perspectives from Siemens Corporate Technology

    NASA Astrophysics Data System (ADS)

    Rossner, W.

    2011-05-01

    Climate change, environmental care, energy efficiency, scarcity of resources, population growth, demographic change, urbanization and globalization are the most pressing questions in the coming century. They will have an effect on all regions and groups of global society. Effective solutions will require immediate, efficient and concerted activities in all areas at the social, economic and environmental level. Since the 1980s it has been understood that developments should examine their sustainability more seriously to ensure that they do not compromise the ability of future generations to meet their own needs. This has also attributes to the sustainability demand of ceramic technologies. In the last decades a wide variety of ceramics developments have been brought to the markets, ranging from human implants to thermal barrier coatings in fossil power plants. There are innovative developments which should enter the market within the next years like solid oxide fuel cells or separation membranes for gas and liquids. Further ahead there will be ceramics with self-adapting, self-healing and multifunctional features to generate novel applications to save energy and to reduce carbon footprints across the entire value creation process of energy, industry, transportation and manufacturing.

  10. Ventilator Technologies Sustain Critically Injured Patients

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Consider this scenario: A soldier has been critically wounded in a sudden firefight in a remote region of Afghanistan. The soldier s comrades attend to him and radio for help, but the soldier needs immediate medical expertise and treatment that is currently miles away. The connection between medical support for soldiers on the battlefield and astronauts in space may not be immediately obvious. But when it comes to providing adequate critical care, NASA and the military have very similar operational challenges, says Shannon Melton of NASA contractor Wyle Integrated Science and Engineering. Melton works within Johnson Space Center s Space Medicine Division, which supports astronaut crew health before, during, and after flight. In space, we have a limited number of care providers, and those providers are not always clinicians with extensive medical training. We have limited room to provide care, limited consumables, and our environment is not like that of a hospital, she says. The Space Medicine Division s Advanced Projects Group works on combining the expertise of both clinicians and engineers to develop new capabilities that address the challenges of medical support in space, including providing care to distant patients. This field, called telemedicine, blends advanced communications practices and technologies with innovative medical devices and techniques to allow caregivers with limited or no medical experience to support a patient s needs. NASA, just by its nature, has been doing remote medicine since the beginning of the Space Program, says Melton, an engineer in the Advanced Projects Group. Since part of NASA s mandate is to transfer the results of its technological innovation for the benefit of the public, the Agency has worked with doctors and private industry to find ways to apply the benefits of space medicine on Earth. In one such case, a NASA partnership has resulted in new technologies that may improve the quality of emergency medicine for wounded

  11. A Decision Tool for Selecting a Sustainable Learning Technology Intervention

    ERIC Educational Resources Information Center

    Raji, Maryam; Zualkernan, Imran

    2016-01-01

    Education is a basic human right. In pursuit of this right, governments in developing countries and their donors often invest scarce resources in educational initiatives that are sometimes not sustainable. This paper addresses the problem of selecting a sustainable learning technology intervention (LTI) for a typical developing country. By solving…

  12. METAL FORMING (INDUSTRIAL MULTIMEDIA BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    The Industrial Multimedia Branch's research program in metal products manufacturing was developed to identify environmental problems and deliver solutions for environmental improvements based on sustainable technology to the industry. There are over 35,000 manufacturing establish...

  13. PROJECT LISTING - CLEAN PROCESSES BRANCH (SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    This list of projects for the Clean Processes Branch (CPB)of NRMRL's Sustainable Technology Division covers CPB projects in the areas of metal finishing and electronics pollution prevention; green engineering for chemical synthesis; solvent and coatings alternatives; separations ...

  14. QuEST: Qualifying Environmentally Sustainable Technologies

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2012-01-01

    Articles in this issue inlude: (1) Foundation of Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) Technology Evaluation is Testing and Qualification, (2) Materials Management and Substitution Efforts, (3 Recycling and Pollution Control Efforts, and (4) Remediation Efforts

  15. Technological solution for vulnerable communities: Questioning the sustainability of Appropriate Technology

    NASA Astrophysics Data System (ADS)

    Sianipar, C. P. M.; Dowaki, K.; Yudoko, G.

    2015-01-01

    Vulnerability eradication has become an emerging concern in today's society following the increasing uncertainties in achieving societal resilience, particularly in vulnerable communities. Furthermore, incorporating technological solution, especially appropriate technology (AT), into such concern requires interdisciplinary understandings to achieve a holistic eradication based on the particularities of each community. This study aims to briefly reveal existing scholarly discourses and investigate potential gap(s) between previous researches. Literatures, particularly consisting meta-analysis on previous scholarly discussions, are surveyed. The findings reveal three progress among scientific discourses. The first one is the paradigm shift of developmental purposes from typical development to empowerment. Next, concerns in technology development indicate the parallel movement toward empowerment. Then, previous methodological developments, including approach in sustaining AT, indicate the needs to assess the future based on sustainability. Therefore, a new research is proposed to develop an assessment framework on AT for vulnerability eradication on the basis of empowerment paradigm, extended focuses in technology development, and extended coverage of future changes in dynamic matter. The framework needs to be developed based on the combination of positivist-deductive-qualitative research paradigms. This is intended to generalize the framework for being used in different cases, to build an applicative framework as an integral part of existing body of knowledge, and to develop an enriched and flexible construction of framework. Looking at existing researches, this brief study proposes insights to move scientific progress toward a more holistic vulnerability eradication using AT solution both in conceptual and practical levels.

  16. Sustaining Integrated Technology in Undergraduate Mathematics

    ERIC Educational Resources Information Center

    Oates, Greg

    2011-01-01

    The effective integration of technology into the teaching and learning of mathematics remains one of the critical challenges facing contemporary tertiary mathematics. This article reports on some significant findings of a wider study investigating the use of technology in undergraduate mathematics. It first discusses a taxonomy developed to…

  17. Meeting Challenges to Sustainable Development through Science and Technology Education

    ERIC Educational Resources Information Center

    Holbrook, Jack

    2009-01-01

    This paper is intended to stimulate discussion and recommendations related to science and technology education and its role in sustainable development. It puts forward points of view and addresses concerns in science education. The paper recognizes that all in not well within science and technology education and that there are concerns related to…

  18. Information Technology, Core Competencies, and Sustained Competitive Advantage.

    ERIC Educational Resources Information Center

    Byrd, Terry Anthony

    2001-01-01

    Presents a model that depicts a possible connection between competitive advantage and information technology. Focuses on flexibility of the information technology infrastructure as an enabler of core competencies, especially mass customization and time-to-market, that have a relationship to sustained competitive advantage. (Contains 82…

  19. Sustainable LED Fluorescent Light Replacement Technology

    SciTech Connect

    2011-06-30

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: • Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. • Environmental Impact Review – Designs are

  20. Combining instrumental and contextual approaches: nanotechnology and sustainable development.

    PubMed

    Liao, Nina

    2009-01-01

    Billions of people live in poverty, with no access to safe drinking water or solutions for other critical health and medical needs. Nanotechnology is poised to create workable solutions for large-scale public health needs in developing countries, including improving water quality and providing life-saving pharmaceuticals. There are two views on how emerging technologies such as nanotechnology can influence and affect developing countries. Instrumentalists believe that the international community can transfer nanotechnology from one context to another and use it to assist the poor. Contextualists warn that nanotechnology can increase inequality in underdeveloped regions. Because of inadequacies in both positions, the international community must adopt a mixed strategy. This article argues that this mixed strategy should target the bottom of the pyramid, develop native capability, implement emergency protocols in projects, create accountability, and engage the public. Managed well, this strategy can propel developing countries toward sustainable development. PMID:20122117

  1. Critical materialism: science, technology, and environmental sustainability.

    PubMed

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite. PMID:20795298

  2. Wind Energy Technology: Training a Sustainable Workforce

    ERIC Educational Resources Information Center

    Krull, Kimberly W.; Graham, Bruce; Underbakke, Richard

    2009-01-01

    Through innovative teaching and technology, industry and educational institution partnerships, Cloud County Community College is preparing a qualified workforce for the emerging wind industry estimated to create 80,000 jobs by 2020. The curriculum blends on-campus, on-line and distance learning, land-lab, and field training opportunities for…

  3. Scientific challenges in sustainable energy technology

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan

    2006-04-01

    We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

  4. Scientific Challenges in Sustainable Energy Technology

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan

    2006-03-01

    This presentation will describe and evaluate the challenges, both technical, political, and economic, involved with widespread adoption of renewable energy technologies. First, we estimate the available fossil fuel resources and reserves based on data from the World Energy Assessment and World Energy Council. In conjunction with the current and projected global primary power production rates, we then estimate the remaining years of supply of oil, gas, and coal for use in primary power production. We then compare the price per unit of energy of these sources to those of renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the degree to which supply/demand forces stimulate a transition to renewable energy technologies in the next 20-50 years. Secondly, we evaluate the greenhouse gas buildup limitations on carbon-based power consumption as an unpriced externality to fossil-fuel consumption, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit of globally averaged GDP, as produced by the Intergovernmental Panel on Climate Change (IPCC). A greenhouse gas constraint on total carbon emissions, in conjunction with global population growth, is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, at potentially daunting levels relative to current renewable energy demand levels. Thirdly, we evaluate the level and timescale of R&D investment that is needed to produce the required quantity of carbon-free power by the 2050 timeframe, to support the expected global energy demand for carbon-free power. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected global carbon-free energy demand requirements. Fifth, we evaluate the challenges to the chemical sciences to

  5. Sustainability, arid grasslands and grazing: New applications for technology

    SciTech Connect

    Pregenzer, A.L.; Parmenter, R.; Passell, H.D.; Budge, T.; Vande Caste, J.

    1999-12-08

    The study of ecology is taking on increasing global importance as the value of well-functioning ecosystems to human well-being becomes better understood. However, the use of technological systems for the study of ecology lags behind the use of technologies in the study of other disciplines important to human well-being, such as medicine, chemistry and physics. The authors outline four different kinds of large-scale data needs required by land managers for the development of sustainable land use strategies, and which can be obtained with current or future technological systems. They then outline a hypothetical resource management scenario in which data on all those needs are collected using remote and in situ technologies, transmitted to a central location, analyzed, and then disseminated for regional use in maintaining sustainable grazing systems. They conclude by highlighting various data-collection systems and data-sharing networks already in operation.

  6. Bridge to a sustainable future: National environmental technology strategy

    SciTech Connect

    1995-04-01

    For the past two years the Administration has sought the views of Congress, the states, communities, industry, academia, nongovernmental organizations, and interested citizens on ways to spur the development and use of a new generation of environmental technologies. This document represents the views of thousands of individuals who participated in events around the country to help craft a national environmental technology strategy that will put us on the path to sustainable development.

  7. Needs Assessment for Education in Sustainable Technologies on Maui.

    ERIC Educational Resources Information Center

    Pezzoli, Jean A.

    In Spring 1997, Maui Community College (MCC), in Hawaii, conducted a survey of Maui businesses to determine perceived needs for a certificate or associate degree program in sustainable technologies. Questionnaires were mailed to 500 businesses, including building, electrical, and plumbing contractors, architects, waste disposal, power generators,…

  8. Developing a Global Mindset: Integrating Demographics, Sustainability, Technology, and Globalization

    ERIC Educational Resources Information Center

    Aggarwal, Raj

    2011-01-01

    Business schools face a number of challenges in responding to the business influences of demographics, sustainability, and technology--all three of which are also the fundamental driving forces for globalization. Demographic forces are creating global imbalances in worker populations and in government finances; the world economy faces…

  9. Ethnicity and attitudes towards life sustaining technology.

    PubMed

    Blackhall, L J; Frank, G; Murphy, S T; Michel, V; Palmer, J M; Azen, S P

    1999-06-01

    The ethical and legal implications of decisions to withhold and withdraw life support have been widely debated. Making end-of-life decisions is never easy, and when the cultural background of doctor and patient differ, communication about these issues may become even more difficult. In this study, we examined the attitudes of people aged 65 and older from different ethnic groups toward foregoing life support. To this end, we conducted a survey of 200 respondents from each of four ethnic groups: European-American, African-American, Korean-American and Mexican-American (800 total), followed by in-depth ethnographic interviews with 80 respondents. European-Americans were the least likely to both accept and want life-support (p < 0.001). Mexican-Americans were generally more positive about the use of life-support and were more likely to personally want such treatments (p < 0.001). Ethnographic interviews revealed that this was due to their belief that life-support would not be suggested if a case was truly hopeless. Compared to European-Americans, Korean-Americans were very positive regarding life-support (RR = 6.7, p < 0.0001); however, they did not want such technology personally (RR = 1.2, p = 0.45). Ethnographic interviews revealed that the decision of life support would be made by their family. Compared to European-Americans, African-Americans felt that it was generally acceptable to withhold or withdraw life-support (RR = 1.6, p = 0.06), but were the most likely to want to be kept alive on life-support (RR = 2.1, p = 0.002). Ethnographic interviews documented a deep distrust towards the health care system and a fear that health care was based on one's ability to pay. We concluded that (a) ethnicity is strongly related to attitudes toward and personal wishes for the use of life support in the event of coma or terminal illness, and (b) this relationship was complex and in some cases, contradictory. PMID:10405016

  10. The Social Agenda of Education for Sustainable Development within Design & Technology: The Case of the Sustainable Design Award

    ERIC Educational Resources Information Center

    Pitt, James; Lubben, Fred

    2009-01-01

    The paper explores the adoption of the social dimensions of sustainability in technological design tasks. It uses a lens which contrasts education for sustainability as "a frame of mind" with an attempt to bridge a "value-action gap". This lens is used to analyse the effectiveness of the Sustainable Design Award, an intervention in post-16…

  11. Education for Sustainable Development: Current Discourses and Practices and Their Relevance to Technology Education

    ERIC Educational Resources Information Center

    Leal Filho, Walter; Manolas, Evangelos; Pace, Paul

    2009-01-01

    Technology education is a well-established field of knowledge whose applications have many ramifications. For example, technology education may be used as a tool in meeting the challenges of sustainable development. However, the usefulness of technology education to the sustainability debate as a whole and to education for sustainable development…

  12. Recent developments in microbial fuel cell technologies for sustainable bioenergy.

    PubMed

    Watanabe, Kazuya

    2008-12-01

    Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes. PMID:19134546

  13. A combined ANP-delphi approach to evaluate sustainable tourism

    SciTech Connect

    Garcia-Melon, Monica

    2012-04-15

    The evaluation of sustainable tourism strategies promoted by National Parks (NP) related stakeholders is a key concern for NP managers. To help them in their strategic evaluation procedures, in this paper we propose a methodology based on the Analytic Network Process and a Delphi-type judgment-ensuring procedure. The approach aims at involving stakeholders in a participatory and consensus-building process. The methodology was applied to Los Roques NP in Venezuela. The problem included three sustainable tourism strategies defined by the stakeholders: eco-efficient resorts, eco-friendly leisure activities and ecological transportation systems. Representatives of eight stakeholders participated in the methodology. 13 sustainability criteria were selected. Results provide some important insights into the overall philosophy and underlying participants' conception of what sustainable development of Los Roques NP means. This conception is broadly shared by stakeholders as they coincided in the weights of most of the criteria, which were assigned individually through the questionnaire. It is particularly noteworthy that tourists and environmentalists almost fully match in their assessments of criteria but not of the alternatives. Moreover, there is a great agreement in the final assessment. This suggests that the regular contact among the different stakeholders, i.e. tourists with inhabitants, authorities with environmentalists, tour operators with representatives of the ministry, etc. has led to a common understanding of the opportunities and threats for the NP. They all agreed that the procedure enhances participation and transparency and it is a necessary source of information and support for their decisions.

  14. An algorithmic interactive planning framework in support of sustainable technologies

    NASA Astrophysics Data System (ADS)

    Prica, Marija D.

    This thesis addresses the difficult problem of generation expansion planning that employs the most effective technologies in today's changing electric energy industry. The electrical energy industry, in both the industrialized world and in developing countries, is experiencing transformation in a number of different ways. This transformation is driven by major technological breakthroughs (such as the influx of unconventional smaller-scale resources), by industry restructuring, changing environmental objectives, and the ultimate threat of resource scarcity. This thesis proposes a possible planning framework in support of sustainable technologies where sustainability is viewed as a mix of multiple attributes ranging from reliability and environmental impact to short- and long-term efficiency. The idea of centralized peak-load pricing, which accounts for the tradeoffs between cumulative operational effects and the cost of new investments, is the key concept in support of long-term planning in the changing industry. To start with, an interactive planning framework for generation expansion is posed as a distributed decision-making model. In order to reconcile the distributed sub-objectives of different decision makers with system-wide sustainability objectives, a new concept of distributed interactive peak load pricing is proposed. To be able to make the right decisions, the decision makers must have sufficient information about the estimated long-term electricity prices. The sub-objectives of power plant owners and load-serving entities are profit maximization. Optimized long-term expansion plans based on predicted electricity prices are communicated to the system-wide planning authority as long-run bids. The long-term expansion bids are cleared by the coordinating planner so that the system-wide long-term performance criteria are satisfied. The interactions between generation owners and the coordinating planning authority are repeated annually. We view the proposed

  15. Evaluation of the Sustainable Development Graduation Track at Delft University of Technology

    ERIC Educational Resources Information Center

    De Werk, G.; Kamp, L. M.

    2008-01-01

    This paper evaluates the sustainable development graduation track at TU Delft. This track can be followed by all students of TU Delft. It consists of an interdisciplinary colloquium "Technology in Sustainable Development", 300 h of self-chosen courses on sustainable development and a graduation project in which sustainable development is…

  16. What would an environmentally sustainable reproductive technology industry look like?

    PubMed

    Richie, Cristina

    2015-05-01

    Through the use of assisted reproductive technologies (ARTs), multiple children are born adding to worldwide carbon emissions. Evaluating the ethics of offering reproductive services against its overall harm to the environment makes unregulated ARTs unjustified, yet the ART business can move towards sustainability as a part of the larger green bioethics movement. By integrating ecological ethos into the ART industry, climate change can be mitigated and the conversation about consumption can become a broader public discourse. Although the impact of naturally made children on the environment is undeniable, I will focus on the ART industry as an anthropogenic source of carbon emissions which lead to climate change. The ART industry is an often overlooked source of environmental degradation and decidedly different from natural reproduction as fertility centres provide a service for a fee and therefore can be subject to economic, policy and bioethical scrutiny. In this article, I will provide a brief background on the current state of human-driven climate change before suggesting two conservationist strategies that can be employed in the ART business. First, endorsing a carbon capping programme that limits the carbon emissions of ART businesses will be proposed. Second, I will recommend that policymakers eliminate funded ARTs for those who are not biologically infertile. I will conclude the article by urging policymakers and all those concerned with climate change to consider the effects of the reproductive technologies industry in light of climate change and move towards sustainability. PMID:25060852

  17. P2, RECYCLING AND WASTE TREATMENT SYSTEMS PILOT (ETV - INDUSTRIAL MULTIMEDIA BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    The Environmental Technology Verification Program (ETV) evaluates the feasibility of a private-sector approach to technology verification in an attempt to reduce the risk to small business of adopting new environmental control processes. NRMRL's Sustainable Technology Division's ...

  18. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management. PMID:27620092

  19. Harnessing: Technologies for Sustainable Reindeer Husbandry in the Arctic

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.; Yurchak, Boris; Turi, Johan Mathis; Mathiesen, Svein

    2004-01-01

    To accelerate the development of sustainable reindeer husbandry under the lead of indigenous reindeer herders, it is critical to empower reindeer herders with the best available technologies and to promote a new kind of science where traditional knowledge is fully integrated into the scientific management of the natural environment in the Arctic. This is particularly true given the dramatic environmental, climatic, economic, social and industrial changes, which have taken place across the Arctic in recent years, all of which have had serious impacts on the reindeer herding communities of the North. The Anar Declaration, adopted by the 2d World Reindeer Herders Congress (WRHC), in Inari, Finland, June 2001drew guidelines for the development of a sustainable reindeer husbandry based on reindeer peoples values and goals. The declaration calls for the reindeer herding peoples to be given the possibilities to develop and influence the management of the reindeer industry and its natural environment because of their knowledge and traditional practices. At the same time, Arctic scientists from many institutions and governments are carrying out increasingly highly technical reindeer related research activities. It is important that the technologies and results of these activities be more commonly co-produced with the reindeer herder community and/or made more readily available to the reindeer peoples for comparison with traditional knowledge for improved herd management. This paper describes a project in which reindeer herders and scientists are utilizing technologies to create a system for collecting and sharing knowledge. The project, Reindeer Mapper, is creating an information management and knowledge sharing system, which will help make technologies more readily available to the herder community for observing, data collection and analysis, monitoring, sharing, communications, and dissemination of information - to be integrated with traditional, local knowledge. The

  20. Designing Catalysts for Clean Technology, Green Chemistry, and Sustainable Development

    NASA Astrophysics Data System (ADS)

    Meurig Thomas, John; Raja, Robert

    2005-08-01

    There is a pressing need for cleaner fuels (free or aromatics and of minimal sulfur content) or ones that convert chemical energy directly to electricity, silently and without production of noxious oxides and particulates; chemical, petrochemical and pharmaceutical processes that may be conducted in a one-step, solvent-free manner and that use air as the preferred oxidant; and industrial processes that minimize consumption of energy, production of waste, or the use of corrosive, explosive, volatile, and nonbiodegradable materials. All these needs and other desiderata, such as the in situ production and containment of aggressive and hazardous reagents, and the avoidance of use of ecologically harmful elements, may be achieved by designing the appropriate heterogeneous inorganic catalyst, which ideally should be cheap, readily preparable and fully characterizable, preferably under in situ reaction conditions. A range of nanoporous and nanoparticle catalysts that meet most of the stringent demands of sustainable development and responsible (clean) technology is described. Specific examples that are highlighted include the production of adipic acid (precursor of polyamides and urethanes) without the use of concentrated nitric acid nor the production of greenhouse gases such as nitrous oxide; the production of caprolactam (precursor of nylon) without the use of oleum and hydroxylamine sulfate; and the terminal oxyfunctionalization of linear alkanes in air. The topic of biocatalysis and sustainable development is also briefly discussed for the epoxidation of terpenes and fatty acid methyl esters; for the generation of polymers, polylactides, and polyesters; and for the production of 1,3-propanediol from corn.

  1. Indicators for technological, environmental and economic sustainability of ozone contactors.

    PubMed

    Zhang, Jie; Tejada-Martinez, Andres E; Lei, Hongxia; Zhang, Qiong

    2016-09-15

    Various studies have attempted to improve disinfection efficiency as a way to improve the sustainability of ozone disinfection which is a critical unit process for water treatment. Baffling factor, CT10, and log-inactivation are commonly used indicators for quantifying disinfection credits. However the applicability of these indicators and the relationship between these indicators have not been investigated in depth. This study simulated flow, tracer transport, and chemical species transport in a full-scale ozone contactor operated by the City of Tampa Water Department and six other modified designs using computational fluid dynamics (CFD). Through analysis of the simulation results, we found that baffling factor and CT10 are not optimal indicators of disinfection performance. We also found that the relationship between effluent CT obtained from CT transport simulation and baffling factor depends on the location of ozone release. In addition, we analyzed the environmental and economic impacts of ozone contactor designs and upgrades and developed a composite indicator to quantify the sustainability in technological, environmental and economic dimensions. PMID:27322565

  2. Teaching Sustainable Entrepreneurship to Engineering Students: The Case of Delft University of Technology

    ERIC Educational Resources Information Center

    Bonnet, Hans; Quist, Jaco; Hoogwater, Daan; Spaans, Johan; Wehrmann, Caroline

    2006-01-01

    Sustainability, enhancement of personal skills, social aspects of technology, management and entrepreneurship are of increasing concern for engineers and therefore for engineering education. In 1996 at Delft University of Technology this led to the introduction of a subject on sustainable entrepreneurship and technology in the course programmes of…

  3. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Zhang, Gong; Yang, Xiahua; You, Shao-Hong

    2015-10-01

    This review on Sustainability covers selected 2014 publications on the focus of the following sections: • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management. PMID:26420087

  4. Gas laser for efficient sustaining a continuous optical discharge plasma in scientific and technological applications

    SciTech Connect

    Zimakov, V P; Kuznetsov, V A; Kedrov, A Yu; Solov'ev, N G; Shemyakin, A N; Yakimov, M Yu

    2009-09-30

    A stable high-power laser is developed for the study and technical applications of a continuous optical discharge (COD). The laser based on the technology of a combined discharge in a scheme with a fast axial gas flow emits 2.2 kW at 10.6 {mu}m per meter of the active medium in continuous and repetitively pulsed regimes with the electrooptical efficiency 20%. The sustaining of the COD plasma in argon and air is demonstrated at the atmospheric pressure. The emission properties of the COD plasma are studied and its possible applications are discussed. (lasers)

  5. Artificial photosynthesis combines biology with technology for sustainable energy transformation

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2013-03-01

    Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP) to support our GDP and nutrition. The cost to Earth systems of "our cut" of NPP is thought to be rapidly driving several Earth systems outside of bounds that were established on the geological time scale. Even with a fundamental realignment of human priorities, changing the unsustainable trajectory of the anthropocene will require reengineering photosynthesis to more efficiently meet human needs. Artificial photosynthetic systems are envisioned that can both supply renewable fuels and serve as platforms for exploring redesign strategies for photosynthesis. These strategies can be used in the nascent field of synthetic biology to make vast, much needed improvements in the biomass production efficiency of photosynthesis.

  6. Combining aesthetic with ecological values for landscape sustainability.

    PubMed

    Yang, Dewei; Luo, Tao; Lin, Tao; Qiu, Quanyi; Luo, Yunjian

    2014-01-01

    Humans receive multiple benefits from various landscapes that foster ecological services and aesthetic attractiveness. In this study, a hybrid framework was proposed to evaluate ecological and aesthetic values of five landscape types in Houguanhu Region of central China. Data from the public aesthetic survey and professional ecological assessment were converted into a two-dimensional coordinate system and distribution maps of landscape values. Results showed that natural landscapes (i.e. water body and forest) contributed positively more to both aesthetic and ecological values than semi-natural and human-dominated landscapes (i.e. farmland and non-ecological land). The distribution maps of landscape values indicated that the aesthetic, ecological and integrated landscape values were significantly associated with landscape attributes and human activity intensity. To combine aesthetic preferences with ecological services, the methods (i.e. field survey, landscape value coefficients, normalized method, a two-dimensional coordinate system, and landscape value distribution maps) were employed in landscape assessment. Our results could facilitate to identify the underlying structure-function-value chain, and also improve the understanding of multiple functions in landscape planning. The situation context could also be emphasized to bring ecological and aesthetic goals into better alignment. PMID:25050886

  7. Combining Aesthetic with Ecological Values for Landscape Sustainability

    PubMed Central

    Yang, Dewei; Luo, Tao; Lin, Tao; Qiu, Quanyi; Luo, Yunjian

    2014-01-01

    Humans receive multiple benefits from various landscapes that foster ecological services and aesthetic attractiveness. In this study, a hybrid framework was proposed to evaluate ecological and aesthetic values of five landscape types in Houguanhu Region of central China. Data from the public aesthetic survey and professional ecological assessment were converted into a two-dimensional coordinate system and distribution maps of landscape values. Results showed that natural landscapes (i.e. water body and forest) contributed positively more to both aesthetic and ecological values than semi-natural and human-dominated landscapes (i.e. farmland and non-ecological land). The distribution maps of landscape values indicated that the aesthetic, ecological and integrated landscape values were significantly associated with landscape attributes and human activity intensity. To combine aesthetic preferences with ecological services, the methods (i.e. field survey, landscape value coefficients, normalized method, a two-dimensional coordinate system, and landscape value distribution maps) were employed in landscape assessment. Our results could facilitate to identify the underlying structure-function-value chain, and also improve the understanding of multiple functions in landscape planning. The situation context could also be emphasized to bring ecological and aesthetic goals into better alignment. PMID:25050886

  8. Technological innovation, human capital and social change for sustainability. Lessons learnt from the industrial technologies theme of the EU's Research Framework Programme.

    PubMed

    Sabadie, Jesús Alquézar

    2014-05-15

    Europe is facing a twofold challenge. It must maintain or even increase its competitiveness, a basic requirement in a globalised economy and under the current demographic threat. It needs also to tackle the so-called "grand challenges", especially environmental issues, through a sustainable model of production and consumption. Such challenges should lead to new business and industrial models, based on more sustainable production and consumption chains, from design to end of life. This implies a need for new industrial materials and processes, new skills and, indeed, new values and life-styles. Sustainability and innovation are key elements of EU's Research and Innovation Framework Programmes, particularly in the field of industrial technologies (nanotechnologies, materials and industrial technologies), which objective is to "improve the competitiveness of the European industry and generate knowledge to ensure its transformation from a resource intensive to a knowledge intensive industry". Sustainability and innovation are interrelated challenges for R&D. Research can develop technical solutions to tackle environmental or societal challenges, but such technologies need to be successfully commercialised to have a real environmental impact. Several socio-economic studies carried-out by the European Commission show not only the emerging technological and industrial trends, but they also emphasise the need for linking sustainable technologies with social change. Human capital and new social behaviours are critical factors to combine economic competitiveness and sustainability: technology alone is no longer able to solve global challenges. But what kind of human capital (skills, behaviours, and values) are we referring to? How to encourage the shift towards a greener society through human capital? Which reforms are needed in education systems to move towards a sustainable economy? Are there examples of social innovation to be extrapolated and/or generalised? PMID

  9. Combined Sustainability Assessment and Techno-Economic Analysis for the Production of Biomass-Derived High-Octane Gasoline Blendstock

    SciTech Connect

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit

    2015-11-13

    Conversion technologies for biomass to liquid hydrocarbon fuels are being actively developed. Converting biomass into advanced hydrocarbon fuels requires detailed assessments to help prioritize research; techno-economic analysis (TEA) is a long established tool used to assess feasibility and progress. TEA provides information needed to make informed judgments about the viability of any given conceptual conversion process; it is particularly useful to identify technical barriers and measure progress toward overcoming those barriers. Expansion of the cellulosic biofuels industry at the scale needed to meet the Renewable Fuel Standard goals is also expected to have environmental impacts. Hence, the success of the biofuels industry depends not only on economic viability, but also on environmental sustainability. A biorefinery process that is economically feasible but suffers from key sustainability drawbacks is not likely to represent a long-term solution to replace fossil-derived fuels. Overarching concerns like environmental sustainability need to be addressed for biofuels production. Combined TEA and environmental sustainability assessment of emerging pathways helps facilitate biorefinery designs that are both economically feasible and minimally impactful to the environment. This study focuses on environmental sustainability assessment and techno-economic analysis for the production of high-octane gasoline blendstock via gasification and methanol/dimethyl ether intermediates. Results from the conceptual process design with economic analysis, along with the quantification and assessment of the environmental sustainability, are presented and discussed. Sustainability metrics associated with the production of high-octane gasoline include carbon conversion efficiency, consumptive water use, life-cycle greenhouse gas emissions, fossil energy consumption, energy return on investment and net energy value.

  10. ENVIRONMENTAL AND SUSTAINABLE TECHNOLOGY EVALUATION: BIOMASS CO-FIRING IN INDUSTRIAL BOILERS--UNIVERSITY OF IOWA

    EPA Science Inventory

    The U.S. EPA operates the Environmental and Sustainable Technology Evaluation (ESTE) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. This ESTE project involved evaluation of co-firing common woody bio...

  11. Challenge 98: Sustaining the Work of a Regional Technology Integration Initiative

    ERIC Educational Resources Information Center

    Billig, Shelley H.; Sherry, Lorraine; Havelock, Bruce

    2005-01-01

    In this article, we offer a research-based theoretical framework for sustainability, describing the proven qualities of a project and the innovations that support its sustained existence over time. We then describe how a US Department of Education Technology Innovation Challenge grantee, working to promote technology integration in a…

  12. Addressable Reconfigurable Technology (ART) for Building Sustainable Moon Bases

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Shaya, E. J.; Cheung, C. Y.; Floyd, S. R.

    2005-05-01

    NASA's Exploration Initiative requires approaches and tools to support of near future human activities on the lunar surface. A sustainable infrastructure and tools to support such activities must be developed using currently available ElectroMechanical Systems (EMS). Architecture based on Addressable Reconfigurable Technology (ART), which we are already developing for small rovers, should be well suited to this task. ART structures are highly addressable arrays of robust nodes interconnected by highly reconfigurable struts that, along with tethers and surfaces are autonomously and reversibly deployable. The basic building unit in this architecture is a tetrahedron, the most efficient space-filling form, consisting of nodes interconnected with struts that can be reversibly and/or partially deployed or stowed to allow the tetrahedron to change its size and shape on command in real-time. Tetrahedral units are interlinked in one (linear), two (planar), or three (space-filling) dimensions to create conformable objects. As more tetrahedra are interconnected, the degrees of freedom are increased and motions evolve from simple to complex, from stepped to continuous. This design allows movement to change shape and/or location revolutionizing the architecture for space structures by epitomizing portable `form follows function' at every level. Although the 3D network of actuators and structural elements is composed of nodes that are addressable as are pixels in an LCD screen. The full functionality of such a system requires fully autonomous operation, and will ultimately be realized through a neural basis function (NBF) we are currently developing, which possesses the capability for actuator-level autonomic response and heuristic-level decision-making. Two EMS level ART-based concepts are designed for sustainable autonomous operation on the Moon. The Autonomous Lunar Investigator (ALI) would consist of one or more 12tetrahedral walkers capable of rapid locomotion with the

  13. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by

  14. An engineering dilemma: sustainability in the eyes of future technology professionals.

    PubMed

    Haase, S

    2013-09-01

    The ability to design technological solutions that address sustainability is considered pivotal to the future of the planet and its people. As technology professionals engineers are expected to play an important role in sustaining society. The present article aims at exploring sustainability concepts of newly enrolled engineering students in Denmark. Their understandings of sustainability and the role they ascribe to sustainability in their future professional practice is investigated by means of a critical discourse analysis including metaphor analysis and semiotic analysis. The sustainability construal is considered to delimit possible ways of dealing with the concept in practice along the engineering education pathway and in professional problem solving. Five different metaphors used by the engineering students to illustrate sustainability are identified, and their different connotative and interpretive implications are discussed. It is found that sustainability represents a dilemma to the engineering students that situates them in a tension between their technology fascination and the blame they find that technological progress bears. Their sustainability descriptions are collected as part of a survey containing among other questions one open-ended, qualitative question on sustainability. The survey covers an entire year group of Danish engineering students in the first month of their degree study. PMID:23197313

  15. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    SciTech Connect

    Shipley, Ms. Anna; Hampson, Anne; Hedman, Mr. Bruce; Garland, Patricia W; Bautista, Paul

    2008-12-01

    Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure

  16. Technological Innovation and Developmental Strategies for Sustainable Management of Aquatic Resources in Developing Countries

    NASA Astrophysics Data System (ADS)

    Agboola, Julius Ibukun

    2014-12-01

    Sustainable use and allocation of aquatic resources including water resources require implementation of ecologically appropriate technologies, efficient and relevant to local needs. Despite the numerous international agreements and provisions on transfer of technology, this has not been successfully achieved in developing countries. While reviewing some challenges to technological innovations and developments (TID), this paper analyzes five TID strategic approaches centered on grassroots technology development and provision of localized capacity for sustainable aquatic resources management. Three case studies provide examples of successful implementation of these strategies. Success requires the provision of localized capacity to manage technology through knowledge empowerment in rural communities situated within a framework of clear national priorities for technology development.

  17. Research Technology (ASTP) Rocket Based Combined Cycle (RBCC) Engine

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.

  18. SUSTAINABILITY: ECOLOGICAL, SOCIAL, ECONOMIC, TECHNOLOGICAL, AND SYSTEMS ASPECTS

    EPA Science Inventory

    Sustainability is generally associated with a definition by the World Commission on Environment and Development, 1987: "? development that ?meets the needs and aspirations of the present without compromising the ability to meet those of the future' ?" However, a mathematical theo...

  19. Technology policy and sustainability: An empirical study of renewable energy development in India

    NASA Astrophysics Data System (ADS)

    Iyer, Maithili

    In the debate over sustainability and development paradigms, energy assumes a unique position by virtue of its direct link with environmental sustainability and its role as an essential vehicle for development. Agenda 21 recognizes that coupling end-use energy efficiency with renewable sources of energy will help meet a large share of the world's energy needs while reducing the environmental impacts of energy use. Nevertheless, the extent and scope of diffusion of new and renewable energy technologies is contingent upon the capabilities of the countries concerned to realize firstly, a need, and subsequently, the resources for utilizing the technologies. India has one of the largest renewable energy programs (REPs) in the world, however, renewables continue to remain a marginal contributor to the total energy supply. The need to fundamentally change the program design of REPs has been suggested by many critics and experts in view of the implementation problems. However, mainstream thinking maintains that Poor financial conditions in the energy sector, not program design flaws, are at the heart of poor implementation results, leading to the premise that infusion of capital and efforts at market transformation through the involvement of the private sector could solve the problem. This dissertation uses case studies on solar photovoltaics, wind energy, and biogas in India to analyze the implementation of renewable energy technologies. Based on stakeholder interviews, documents, and site visits, this dissertation argues that the problems currently recognized are in reality symptomatic of a combination of three underlying problems: (1) An inadequate understanding of the needs of energy users and the complex interplay of existing policies and technological choices with user needs and behavior; (2) An institutional network, both at the local and the national level, that lacks the capacity to facilitate information exchange within and between institutions, thereby losing

  20. The University and Transformation towards Sustainability: The Strategy Used at Chalmers University of Technology

    ERIC Educational Resources Information Center

    Holmberg, John; Lundqvist, Ulrika; Svanstrom, Magdalena; Arehag, Marie

    2012-01-01

    Purpose: The purpose of this paper is to present the strategy used for achieving change towards sustainability at Chalmers University of Technology (Chalmers). Examples of how this strategy has been used are described and discussed, and exemplified with different lines of activities in a project on Education for Sustainable Development, the ESD…

  1. [Preparation of curcumin-EC sustained-release composite particles by supercritical CO2 anti-solvent technology].

    PubMed

    Bai, Wei-li; Yan, Ting-yuan; Wang, Zhi-xiang; Huang, De-chun; Yan, Ting-xuan; Li, Ping

    2015-01-01

    Curcumin-ethyl-cellulose (EC) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading and yield of inclusion complex as evaluation indexes, on the basis of single factor tests, orthogonal experimental design was used to optimize the preparation process of curcumin-EC sustained-release composite particles. The experiments such as drug loading, yield, particle size distribution, electron microscope analysis (SEM) , infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 45 degrees C, crystallization pressure 10 MPa, curcumin concentration 8 g x L(-1), solvent flow rate 0.9 mL x min(-1), and CO2 velocity 4 L x min(-1). Under the optimal conditions, the average drug loading and yield of curcumin-EC sustained-release composite particles were 33.01% and 83.97%, and the average particle size of the particles was 20.632 μm. IR and DSC analysis showed that curcumin might complex with EC. The experiments of in vitro dissolution showed that curcumin-EC composite particles had good sustained-release effect. Curcumin-EC sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology. PMID:26080549

  2. Sustain

    SciTech Connect

    2013-08-20

    Current building energy simulation technology requires excessive labor, time and expertise to create building energy models, excessive computational time for accurate simulations and difficulties with the interpretation of the results. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. To prove this hypothesis, we developed an experimental test bed for building energy simulation. This novel test bed environment offers an easy-to-use interactive graphical interface, provides access to innovative simulation modules that run at accelerated computational speeds, and presents new graphics visualization methods to interpret simulation results. Our system offers the promise of dramatic ease of use in comparison with currently available building energy simulation tools. Its modular structure makes it suitable for early stage building design, as a research platform for the investigation of new simulation methods, and as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are demonstrated in several computationally expensive energy simulation modules. The incorporation of these modern graphical techniques should advance the state of the art in the domain of whole building energy analysis and building performance simulation, particularly at the conceptual design stage when decisions have the greatest impact. More importantly, these better simulation tools will enable the transition from prescriptive to performative energy codes, resulting in better, more efficient designs for our future built environment.

  3. Technology-Driven and Innovative Training for Sustainable Agriculture in The Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Wishart, D. N.

    2015-12-01

    Innovative training in 'Sustainable Agriculture' for an increasingly STEM-dependent agricultural sector will require a combination of approaches and technologies for global agricultural production to increase while offsetting climate change. Climate change impacts the water resources of nations as normal global weather patterns are altered during El Nino events. Agricultural curricula must incorporate awareness of 'climate change' in order to find novel ways to (1) assure global food security; (2) improve soil productivity and conservation; (3) improve crop yields and irrigation; (4) inexpensively develop site specific principles of crop management based on variable soil and associated hydrological properties; and (5) improve precision farming. In February 2015, Central State University (CSU), Ohio became an 1890 Land-Grant institution vital to the sustainability of Ohio's agricultural sector. Besides agricultural extension, the agriculture curriculum at CSU integrates multidisciplinary courses in science, technology engineering, agriculture, and mathematics (STEAM). The agriculture program could benefit from a technology-driven, interdisciplinary soil science course that promotes climate change education and climate literacy while being offered in both a blended and collaborative learning environment. The course will focus on the dynamics of microscale to mesoscale processes occurring in farming systems, those of which impact climate change or could be impacted by climate change. Elements of this course will include: climate change webinars; soil-climate interactions; carbon cycling; the balance of carbon fluxes between soil storage and atmosphere; microorganisms and soil carbon storage; paleoclimate and soil forming processes; geophysical techniques used in the characterization of soil horizons; impact of climate change on soil fertility; experiments; and demonstrations.

  4. Applying Sustainable Systems Development Approach to Educational Technology Systems

    ERIC Educational Resources Information Center

    Huang, Albert

    2012-01-01

    Information technology (IT) is an essential part of modern education. The roles and contributions of technology to education have been thoroughly documented in academic and professional literature. Despite the benefits, the use of educational technology systems (ETS) also creates a significant impact on the environment, primarily due to energy…

  5. SUSTAINABILITY: ECOLOGICAL, SOCIAL, ECONOMIC, TECHNOLOGICAL, AND SYSTEMS PERSPECTIVES

    EPA Science Inventory

    Sustainability is generally associated with a definition by the World Commission on Environment and Development, 1987: "Development that meets the needs and aspirations of the present without compromising the ability to meet those of the future". However, a mathematical theory e...

  6. SIMULATED EXPERIMENTS WITH COMPLEX SUSTAINABLE SYSTEMS: ECOLOGY AND TECHNOLOGY

    EPA Science Inventory


    The concept of sustainability is associated with the statement from the World Commission on Environment and Development, 1987: "... development that meets the needs and aspirations of the present without compromising the ability to meet those of the future..." However, this s...

  7. Sustaining Research Innovations in Educational Technology through Communities of Practice

    ERIC Educational Resources Information Center

    Hung, David; Lee, Shu-Shing; Lim, Kenneth Y. T.

    2012-01-01

    The diffusion of innovation is critical to societal progression. In the field of education, such diffusion takes on added significance because of the many stakeholders and accountabilities involved. This article presents the argument that efforts at diffusion which are designed from a top-down perspective are not sustainable over the long term…

  8. Possibility of Low Carbon Society Formation by Using Aqua Science & Technologies (Establishment of an Ecologically Sustainable Society)

    NASA Astrophysics Data System (ADS)

    Yamasaki, Nakamichi

    2010-11-01

    Basic resolution of environmental problems needs a change of paradigm. In order to form a closed system and sustainable society, Japanese culture and civilization of EDO period (esthetics of self-control) must be considered. Quality technology of Japan is leading the world in environmental resolution. Many Japanese forget the traditional spirit (the original fail is in education). The combination of esthetics and technology is a characteristics of Japanese Goods. The origin of Japanese religion (ethos) is Japanese language and situation of Japan. The global aspects of closed earth system was showed. Practical examples of closed system, Biomass Applications, PVC recycling, poly-diamond synthesis are shown.

  9. QuEST: Qualifying Environmentally Sustainable Technologies. Volume 2

    NASA Technical Reports Server (NTRS)

    Brown, Christina (Editor)

    2007-01-01

    TEERM focuses its validation efforts on technologies that have shown promise in laboratory testing, but lack testing under realistic or field environment. Mature technologies have advantages over those that are still in the developmental stage such as being more likely to be transitioned into a working environment. One way TEERM begins to evaluate the suitability of technologies is through Technology Readiness Levels (TRLs). TRLs are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. TEERM generally works on demonstrating/validating alternatives that fall within TRLs 5-9. In instances where a mature technology does not exist for a particular Agency application, TEERM works with technology development groups and programs such as NASA's Innovative Partnerships Program (IPP). The IPP's purpose is to identify and document available technologies in light of NASA's needs, evaluate and prioritize those technologies, and reach out to find new partners. All TEERM projects involve multiple partners. Partnering reduces duplication of effort that otherwise might occur if individuals worked their problems alone. Partnering also helps reduce individual contributors' shares of the total cost of technology validation. Through collaboration and financial commitment from project stakeholders and third-party sources, it is possible to fully fund expensive demonstration/validation efforts.

  10. An instrument design to measure the sustainability of technology in risky environments: Case study of Iraq

    NASA Astrophysics Data System (ADS)

    Al-Sammarraie, Munadil Khaleel Faaeq; Faieq, Alaa K.; Al-Qasa, Khaled

    2016-08-01

    Electronic Government (eG) has become a vital tool to serve the beneficiaries; therefore, it has received the attention of many Information System (IS) researchers. Due to the importance of the sustainability of IS, this paper identifies the emergence of a clear gape to measure the sustainability of IS in risky circumstances, such as wars, conflicts and violence; nowadays, the risky issue is increasing remarkably. This paper expands previous studies whose focus was on investigating the sustainability of electronic services unsecured countries in the world. Consequently, a need for a specific tool to measure the sustainability of technology among the users in risky conditions has become urgent. Based on the findings, it can be confirmed that this instrument is reliable to measure the sustainability of technology in risky environments.

  11. Factors affecting food security and contribution of modern technologies in food sustainability.

    PubMed

    Premanandh, Jagadeesan

    2011-12-01

    The concept of food insecurity is complex and goes beyond the simplistic idea of a country's inability to feed its population. The global food situation is redefined by many driving forces such as population growth, availability of arable lands, water resources, climate change and food availability, accessibility and loss. The combined effect of these factors has undeniably impacted global food production and security. This article reviews the key factors influencing global food insecurity and emphasises the need to adapt science-based technological innovations to address the issue. Although anticipated benefits of modern technologies suggest a level of food production that will sustain the global population, both political will and sufficient investments in modern agriculture are needed to alleviate the food crisis in developing countries. In this globalised era of the 21st century, many determinants of food security are trans-boundary and require multilateral agreements and actions for an effective solution. Food security and hunger alleviation on a global scale are within reach provided that technological innovations are accepted and implemented at all levels. PMID:22002569

  12. Decentralized peri-urban wastewater treatment technologies assessment integrating sustainability indicators.

    PubMed

    Mena-Ulecia, Karel; Hernández, Heykel Hernández

    2015-01-01

    Selection of treatment technologies without considering the environmental, economic and social factors associated with each geographical context risks the occurrence of negative impacts that were not properly foreseen, working against the sustainable performance of the technology. The principal aim of this study was to evaluate 12 technologies for decentralized treatment of domestic wastewater applicable to peri-urban communities using sustainability approaches and, at the same time, continuing a discussion about how to address a more integrated assessment of overall sustainability. For this, a set of 13 indicators that embody the environmental, economic and social approach for the overall sustainability assessment were used by means of a target plot diagram as a tool for integrating indicators that represent a holistic analysis of the technologies. The obtained results put forward different degrees of sustainability, which led to the selection of: septic tank+land infiltration; up-flow anaerobic reactor+high rate trickling filter and septic tank+anaerobic filter as the most sustainable and attractive technologies to be applied in peri-urban communities, according to the employed indicators. PMID:26177403

  13. Sustain

    Energy Science and Technology Software Center (ESTSC)

    2013-08-20

    Current building energy simulation technology requires excessive labor, time and expertise to create building energy models, excessive computational time for accurate simulations and difficulties with the interpretation of the results. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. To prove this hypothesis, we developed an experimental test bed for building energy simulation. This novel test bed environment offers an easy-to-use interactivemore » graphical interface, provides access to innovative simulation modules that run at accelerated computational speeds, and presents new graphics visualization methods to interpret simulation results. Our system offers the promise of dramatic ease of use in comparison with currently available building energy simulation tools. Its modular structure makes it suitable for early stage building design, as a research platform for the investigation of new simulation methods, and as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are demonstrated in several computationally expensive energy simulation modules. The incorporation of these modern graphical techniques should advance the state of the art in the domain of whole building energy analysis and building performance simulation, particularly at the conceptual design stage when decisions have the greatest impact. More importantly, these better simulation tools will enable the transition from prescriptive to performative energy codes, resulting in better, more efficient designs for our future built environment.« less

  14. Video Tutorials: A Sustainable Method for Campus Technology Training

    ERIC Educational Resources Information Center

    Bowers, John; Dent, Julie; Barnes, Kathleen

    2009-01-01

    Technology training is a resource-intensive endeavor with inherent potential for waste. Such training is commonly offered in live, face-to-face workshops on campus, without charge, by colleges and universities who value technology skills in their faculty, staff, and students. The true cost to the institution begins with the space used for…

  15. Sustaining Innovation: Developing an Instructional Technology Assessment Process

    ERIC Educational Resources Information Center

    Carmo, Monica Cristina

    2013-01-01

    This case study developed an instructional technology assessment process for the Gevirtz Graduate School of Education (GGSE). The theoretical framework of Adelman and Taylor (2001) guided the development of this instructional technology assessment process and the tools to aid in its facilitation. GGSE faculty, staff, and graduate students…

  16. High power semiconductor laser beam combining technology and its applications

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tong, Cunzhu; Peng, Hangyu; Zhang, Jun

    2013-05-01

    With the rapid development of laser applications, single elements of diode lasers are not able to meet the increasing requirements on power and beam quality in the material processing and defense filed, whether are used as pumping sources or directly laser sources. The coupling source with high power and high beam quality, multiplexed by many single elements, has been proven to be a promising technical solution. In this paper, the authors review the development tendency of efficiency, power, and lifetime of laser elements firstly, and then introduce the progress of laser beam combining technology. The authors also present their recent progress on the high power diode laser sources developed by beam combining technology, including the 2600W beam combining direct laser source, 1000W fiber coupled semiconductor lasers and the 1000W continuous wave (CW) semiconductor laser sources with beam quality of 12.5×14[mm. mrad]2.

  17. Identifying Effective Policy and Technologic Reforms for Sustainable Groundwater Management in Oman

    NASA Astrophysics Data System (ADS)

    Madani, K.; Zekri, S.; Karimi, A.

    2014-12-01

    Oman has gone through three decades of efforts aimed at addressing groundwater over-pumping and the consequent seawater intrusion. Example of measures adopted by the government since the 1990's include a vast subsidy program of irrigation modernization, a freeze on drilling new wells, delimitation of several no-drill zones, a crop substitution program, re-use of treated wastewater and construction of recharge dams. With no major success through these measures, the government laid the ground for water quotas by creating a new regulation in 1995. Nevertheless, groundwater quotas have not been enforced to date due to the high implementation and monitoring costs of traditional flow meters. This presentation discusses how sustainable groundwater management can be secured in Oman using a suit of policy and technologic reforms at a reasonable economic, political and practical cost. Data collected from farms with smart meters and low-cost wireless smart irrigation systems have been used to propose sustainable groundwater withdrawal strategies for Oman using a detailed hydro-economic model that couples a MODFLOW-SEAWAT model of the coastal aquifers with a dynamic profit maximization model. The hydro-economic optimization model was flexible to be run both as a social planner model to maximize the social welfare in the region, and as an agent-based model to capture the behavior of farmers interested in maximizing their profits independently. This flexibility helped capturing the trade-off between the optimality of the social planner solution developed at the system's level and its practicality (stability) with respect to the concerns and behaviors of the profit-maximizing farmers. The idetified promising policy and technolgical reforms for Oman include strict enforcement of groundwater quotas, smart metering, changing crop mixes, improving irrigation technologies, and revising geographical distribution of the farming activities. The presentation will discuss how different

  18. Problem-Solving in Technology Education as an Approach to Education for Sustainable Development

    ERIC Educational Resources Information Center

    Middleton, Howard

    2009-01-01

    This paper explores the issue of how students might learn about sustainability in technology--education classrooms and the relevance of problem-solving in that learning. One of the emerging issues in technology education research is the nature of problem-solving specified in curriculum documents and the kinds of learning activities undertaken by…

  19. Education for Sustainable Development in Technology Education in Irish Schools: A Curriculum Analysis

    ERIC Educational Resources Information Center

    McGarr, Oliver

    2010-01-01

    This paper explores the integration of Education for Sustainable Development (ESD) in technology education and the extent to which it is currently addressed in curriculum documents and state examinations in technology education at post-primary level in Ireland. This analysis is conducted amidst the backdrop of considerable change in technology…

  20. Teachers' Initial and Sustained Use of an Instructional Assistive Technology Tool: Exploring the Mitigating Factors

    ERIC Educational Resources Information Center

    Bouck, Emily C.; Flanagan, Sara; Heutsche, Anne; Okolo, Cynthia M.; Englert, Carol Sue

    2011-01-01

    This qualitative research project explored factors that mitigated teachers implementing an instructional assistive technology and factors that mitigated its sustained use. Specifically, it explored these issues in relation to a social studies based instructional assistive technology (Virtual History Museum [VHM]), which was originally implemented…

  1. Teaching Methods Influencing the Sustainability of the Teaching Process in Technology Education in General Education Schools

    ERIC Educational Resources Information Center

    Soobik, Mart

    2014-01-01

    The sustainability of technology education is related to a traditional understanding of craft and the methods used to teach it; however, the methods used in the teaching process have been influenced by the innovative changes accompanying the development of technology. In respect to social and economic development, it is important to prepare young…

  2. SUSTAINABLE URBAN TECHNOLOGIES TEAM (URBAN WATERSHED MANAGEMENT BRANCH - WSWRD)

    EPA Science Inventory

    The National Risk Management Research Laboratory's Urban Watershed Management Branch researches, develops and evaluates technologies, practices, and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF) sources in urban watersheds. The focus is on the...

  3. QuEST: Qualifying Environmentally Sustainable Technologies. Volume 6

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2011-01-01

    QuEST is a publication of the NASA Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM). This issue contains brief articles on: Risk Identification and Mitigation, Material Management and Substitution Efforts--Hexavalent Chrome-free Coatings and Low volatile organic compounds (VOCs) Coatings, Lead-Free Electronics, Corn-Based Depainting Media; Alternative Energy Efforts Hydrogen Sensors and Solar Air Conditioning. Other TEERM Efforts include: Energy and Water Management and Remediation Technology Collaboration.

  4. The shrinking planet: U. S. information technology and sustainable development

    SciTech Connect

    Elkington, J.; Shopley, J.

    1988-01-01

    The authors review examples of how computerization (particularly that involving sophisticated monitoring and feedback loops) has improved standards of performance in the health, safety, and environmental fields and helped increase the efficiency of energy and resource use. They recommended that the convergence of commercial information technology goals and environmental objectives be recognized and exploited.

  5. Human Exploration Missions - Maturing Technologies to Sustain Crews

    NASA Technical Reports Server (NTRS)

    Mukai, Chiaki; Koch, Bernhard; Reese, Terrence G.

    2012-01-01

    Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. Providing crews with the essentials of life such as clean air and potable water means recycling human metabolic wastes back to useful products. Individual technologies are under development for such things as CO2 scrubbing, recovery of O2 from CO2, turning waste water into potable water, and so on. But in order to fully evaluate and mature technologies fully they must be tested in a relevant, high-functionality environment; a systems environment where technologies are challenged with real human metabolic wastes. It is for this purpose that an integrated systems ground testing capability at the Johnson Space Center is being readied for testing. The relevant environment will include deep space habitat human accommodations, sealed atmosphere of 8 psi total pressure and 32% oxygen concentration, life support systems (food, air, water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth ]Moon L2 or L1, the moon, and Mars). This type of integrated testing is needed not only for research and technology development but later during the mission design, development, test, and evaluation phases of preparing for the mission.

  6. EVTEC (INDEPENDENT PILOT) (INDUSTRIAL MULTIMEDIA BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    As part of the ETV program, EvTEC evaluates innovative market-ready environmental technologies in the areas of pollution avoidance, control, remediation/restoration, and monitoring.EvTEC and the Washington State Department of Transportation are collaborating to evaluate new, in...

  7. Novel combination of anionic and cationic polymethacrylate polymers for sustained release tablet preparation.

    PubMed

    Obeidat, Wasfy M; Abu Znait, Ala'a H; Sallam, Al-Sayed A

    2008-06-01

    The objectives of this study were to prepare and evaluate a novel sustained release tablet formulation using a binary mixture of polymethacrylate polymers: Eudragit E-100 (EE) and Eudragit L-100 (EL) in their salt forms. Tablets prepared using EE-citrate and EL-Na showed the highest degree of swelling among other combinations of EE and EL. The drug release rates were independent of the pH of the dissolution medium as the release profiles exhibited a continuous release pattern with no burst effect when changing the pH of the medium. These results, along with other test results, indicated the presence of an ionic interaction between both polymers when combined in the salt forms. PMID:18568916

  8. QuEST: Qualifying Environmentally Sustainable Technologies. Vol. 3

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie (Editor)

    2008-01-01

    This is an exciting new chapter for the NASA Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM). The Principal Center's past successes have created new opportunities for partnership and technology implementation. TEERM is continuing to support the current NASA Programs while reaching out and offering our assistance and experience to Constellation. NASA has also assumed Chairmanship responsibility of the Joint Group on Pollution Prevention (JG-PP) and Chairmanship of the JG-PP Working Group (WG). Both JG-PP and TEERM strive to improve mission readiness and reduce risk to personnel and assets by solving joint problems through cooperation. JG-PP and TEERM not only show our commitment to environmental stewardship, but also our commitment to fiscal responsibility.

  9. Oil spill problems and sustainable response strategies through new technologies.

    PubMed

    Ivshina, Irena B; Kuyukina, Maria S; Krivoruchko, Anastasiya V; Elkin, Andrey A; Makarov, Sergey O; Cunningham, Colin J; Peshkur, Tatyana A; Atlas, Ronald M; Philp, James C

    2015-07-01

    Crude oil and petroleum products are widespread water and soil pollutants resulting from marine and terrestrial spillages. International statistics of oil spill sizes for all incidents indicate that the majority of oil spills are small (less than 7 tonnes). The major accidents that happen in the oil industry contribute only a small fraction of the total oil which enters the environment. However, the nature of accidental releases is that they highly pollute small areas and have the potential to devastate the biota locally. There are several routes by which oil can get back to humans from accidental spills, e.g. through accumulation in fish and shellfish, through consumption of contaminated groundwater. Although advances have been made in the prevention of accidents, this does not apply in all countries, and by the random nature of oil spill events, total prevention is not feasible. Therefore, considerable world-wide effort has gone into strategies for minimising accidental spills and the design of new remedial technologies. This paper summarizes new knowledge as well as research and technology gaps essential for developing appropriate decision-making tools in actual spill scenarios. Since oil exploration is being driven into deeper waters and more remote, fragile environments, the risk of future accidents becomes much higher. The innovative safety and accident prevention approaches summarized in this paper are currently important for a range of stakeholders, including the oil industry, the scientific community and the public. Ultimately an integrated approach to prevention and remediation that accelerates an early warning protocol in the event of a spill would get the most appropriate technology selected and implemented as early as possible - the first few hours after a spill are crucial to the outcome of the remedial effort. A particular focus is made on bioremediation as environmentally harmless, cost-effective and relatively inexpensive technology. Greater

  10. QuEST: Qualifying Environmentally Sustainable Technologies. Volume 4

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L.

    2009-01-01

    In 2004, in one of their first collaborative efforts, Centro Para Prevencao da Poluicao (Portuguese Center for Pollution Prevention or C3P). teamed with Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) and two Portuguese entities, TAP Portugal (Portuguese National Airline) and OGMA Indtistria Aeron utica de Portugal (Portuguese Aeronautics Industry), to target the reduction of hexavalent chromium, cadmium, and volatile organic compounds (VOCs) in aircraft maintenance operations. This project focused on two coating systems that utilize non-chrome pretreatments and low-VOC primers and topcoats.

  11. QuEST: Qualifying Environmentally Sustainable Technologies, Volume 5

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2010-01-01

    This edition of the QuEST newsletter contains brief articles that discuss the NASA Technology Evaluation for Environmental Risk Mitigation (TEERM) program, and the importance of collaboration, efforts in materials management and substitution for coatings for launch structures, Low volatile organic compound (VOC) Coatings Field Testing, Non-Chrome Coating Systems, Life Cycle Corrosion Testing, Lead-Free Electronics Testing and Corn Based Depainting and efforts in Pollution Control in the area of Hypergolic Propellant Destruction Evaluation, efforts in development of alternative energy in particular Hydrogen Sensors, Energy and Water Management, and efforts in remediation in the removal of Polychlorinated Biphenyl (PCB) contamination

  12. Sustainability assessment of tertiary wastewater treatment technologies: a multi-criteria analysis.

    PubMed

    Plakas, K V; Georgiadis, A A; Karabelas, A J

    2016-01-01

    The multi-criteria analysis gives the opportunity to researchers, designers and decision-makers to examine decision options in a multi-dimensional fashion. On this basis, four tertiary wastewater treatment (WWT) technologies were assessed regarding their sustainability performance in producing recycled wastewater, considering a 'triple bottom line' approach (i.e. economic, environmental, and social). These are powdered activated carbon adsorption coupled with ultrafiltration membrane separation (PAC-UF), reverse osmosis, ozone/ultraviolet-light oxidation and heterogeneous photo-catalysis coupled with low-pressure membrane separation (photocatalytic membrane reactor, PMR). The participatory method called simple multi-attribute rating technique exploiting ranks was employed for assigning weights to selected sustainability indicators. This sustainability assessment approach resulted in the development of a composite index as a final metric, for each WWT technology evaluated. The PAC-UF technology appears to be the most appropriate technology, attaining the highest composite value regarding the sustainability performance. A scenario analysis confirmed the results of the original scenario in five out of seven cases. In parallel, the PMR was highlighted as the technology with the least variability in its performance. Nevertheless, additional actions and approaches are proposed to strengthen the objectivity of the final results. PMID:27054724

  13. Subtask 5.3 - Water and Energy Sustainability and Technology

    SciTech Connect

    Bruce Folkedahl; Christopher Martin; David Dunham

    2010-09-30

    The overall goal of this Energy & Environmental Research Center project was to evaluate water capture technologies in a carbon capture and sequestration system and perform a complete systems analysis of the process to determine potential water minimization opportunities within the entire system. To achieve that goal, a pilot-scale liquid desiccant dehumidification system (LDDS) was fabricated and tested in conjunction with a coal-fired combustion test furnace outfitted with CO{sub 2} mitigation technologies, including the options of oxy-fired operation and postcombustion CO{sub 2} capture using an amine scrubber. The process gas stream for these tests was a coal-derived flue gas that had undergone conventional pollutant control (particulates, SO{sub 2}) and CO{sub 2} capture with an amine-based scrubber. The water balance data from the pilot-scale tests show that the packed-bed absorber design was very effective at capturing moisture down to levels that approach equilibrium conditions.

  14. Technological challenges for boosting coal production with environmental sustainability.

    PubMed

    Ghose, Mrinal K

    2009-07-01

    The global energy requirement has grown at a phenomenon rate and the consumption of primary energy sources has been a very high positive growth. This paper focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy source in foreseeable future. It examines the energy requirement perspective for India and demand of coal as the prime energy source. Economic development and poverty alleviation depend on securing affordable energy sources and Indian coal mining industry offers a bright future for the country's energy security, provided the industry is allowed to develop by supportive government policies and adopts latest technologies for mining. It is an irony that in-spite of having a plentiful reserves, India is not able to jack up coal production to meet its current and future demand. It discusses the strategies to be adopted for growth and meeting the coal demand. But such energy are very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively The paper highlights the emissions of greenhouse gases due to burning of fossil fuels and environmental consequences of global warming and sea-level rise. Technological solutions for environment friendly coal mining and environmental laws for the abatement of environmental degradation are discussed in this paper. PMID:18604635

  15. Integrated Sustainable Planning for Industrial Region Using Geospatial Technology

    NASA Astrophysics Data System (ADS)

    Tiwari, Manish K.; Saxena, Aruna; Katare, Vivek

    2012-07-01

    The Geospatial techniques and its scope of applications have undergone an order of magnitude change since its advent and now it has been universally accepted as a most important and modern tool for mapping and monitoring of various natural resources as well as amenities and infrastructure. The huge and voluminous spatial database generated from various Remote Sensing platforms needs proper management like storage, retrieval, manipulation and analysis to extract desired information, which is beyond the capability of human brain. This is where the computer aided GIS technology came into existence. A GIS with major input from Remote Sensing satellites for the natural resource management applications must be able to handle the spatiotemporal data, supporting spatiotemporal quarries and other spatial operations. Software and the computer-based tools are designed to make things easier to the user and to improve the efficiency and quality of information processing tasks. The natural resources are a common heritage, which we have shared with the past generations, and our future generation will be inheriting these resources from us. Our greed for resource and our tremendous technological capacity to exploit them at a much larger scale has created a situation where we have started withdrawing from the future stocks. Bhopal capital region had attracted the attention of the planners from the beginning of the five-year plan strategy for Industrial development. However, a number of projects were carried out in the individual Districts (Bhopal, Rajgarh, Shajapur, Raisen, Sehore) which also gave fruitful results, but no serious efforts have been made to involve the entire region. No use of latest Geospatial technique (Remote Sensing, GIS, GPS) to prepare a well structured computerized data base without which it is very different to retrieve, analyze and compare the data for monitoring as well as for planning the developmental activities in future.

  16. How we develop and sustain innovation in medical education technology: Keys to success.

    PubMed

    McGee, James B; Kanter, Steven L

    2011-01-01

    The use of information technology to support the educational mission of academic medical centers is nearly universal; however, the scope and methods employed vary greatly (Souza et al. 2008 ). This article reviews the methods, processes, and specific techniques needed to conceive, develop, implement, and assess technology-based educational programs across healthcare disciplines. We discuss the core concepts, structure, and techniques that enable growth, productivity, and sustainability within an academic setting. Herein are specific keys to success with examples including project selection, theory-based design, the technology development process, implementation, and evaluation that can lead to broad participation and positive learning outcomes. Most importantly, this article shares methods to involve students, faculty, and stakeholders in technology design and the development process that fosters a sustainable culture of educational innovation. PMID:21456984

  17. Sustained-release matrix tablets of metformin hydrochloride in combination with triacetyl-beta-cyclodextrin.

    PubMed

    Corti, Giovanna; Cirri, Marzia; Maestrelli, Francesca; Mennini, Natascia; Mura, Paola

    2008-02-01

    The low bioavailability and short half-life of metformin hydrochloride (MH) make the development of sustained-release forms desirable. However, drug absorption is limited to the upper gastrointestinal (GI) tract, thus requiring suitable delivery systems providing complete release during stomach-to-jejunum transit. This study was undertaken to develop a MH sustained-release formulation in compliance with these requirements. The strategy proposed is based on direct-compressed matrix tablets consisting of a combination of MH with the hydrophobic triacetyl-beta-cyclodextrin (TAbetaCD), dispersed in a polymeric material. Different polymers were tested as excipients, i.e. hydroxypropylmethylcellulose, xanthan gum, chitosan, ethylcellulose, Eudragit L100-55, and Precirol. Compatibility among the formulation components was assessed by DSC analysis. All the tablets were examined for drug release pattern in simulated gastric and jejunal fluids used in sequence to mimic the GI transit. Release studies demonstrated that blends of a hydrophobic swelling polymer (hydroxypropylmethylcellulose or chitosan) with a pH-dependent one (Eudragit L100-55) were more useful than single polymers in controlling drug release. Moreover, the main role played by the MH-TAbetaCD system preparation method (i.e. grinding or spray-drying) in determining the behaviour of the final formulation was evidenced. In fact, for a given matrix-tablet composition, different sustained-release effects were obtained by varying the relative amounts of MH-TAbetaCD as ground or spray-dried product. In particular, the 1:1 (w/w) blend of such systems, dispersed in a Eudragit-chitosan polymeric matrix, fully achieved the prefixed goal, giving about 30% released drug after 2h at gastric pH, and overcoming 90% released drug within the subsequent 3h in jejunal fluid. PMID:17616379

  18. Feeding nine billion people sustainably: conserving land and water through shifting diets and changes in technologies.

    PubMed

    Springer, Nathaniel P; Duchin, Faye

    2014-04-15

    In the early 21st century the extensive clearing of forestland, fresh water scarcity, and sharp rises in the price of food have become causes for concern. These concerns may be substantially exacerbated over the next few decades by the need to provide improved diets for a growing global population. This study applies an inter-regional input-output model of the world economy, the World Trade Model, for analysis of alternative scenarios about satisfying future food requirements by midcentury. The scenario analysis indicates that relying only on more extensive use of arable land and fresh water would require clearing forests and exacerbating regional water scarcities. However, a combination of less resource-intensive diets and improved agricultural productivity, the latter especially in Africa, could make it possible to use these resources sustainably while also constraining increases in food prices. Unlike the scenario outcomes from other kinds of economic models, our framework reveals the potential for a decisive shift of production and export of agricultural products away from developed countries toward Africa and Latin America. Although the assumed changes in diets and technologies may not be realizable without incentives, our results suggest that these regions exhibit comparative advantages in agricultural production due to their large remaining resource endowments and their potential for higher yields. PMID:24635667

  19. Combined SO sub 2 /NO sub x reduction technology

    SciTech Connect

    Livengood, C.D.; Huang, H.S. ); Markussen, J.M. )

    1992-01-01

    Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO{sub x}) regulations have fueled research and development efforts on technologies for the combined control of sulfur dioxide (SO{sub 2}) and NO{sub x}. The integrated removal of both SO{sub 2} and NO{sub x}, in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup (FGC) systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  20. Innovate-Ideagora: A Call for Sustainable Development in Instructional Technology

    ERIC Educational Resources Information Center

    Easton, Denise; McCord, Alan

    2009-01-01

    In this edition of Innovate-Ideagora, Al McCord and Denise Easton report on developments in this online community, which now boasts over 400 members. As members engaged in active discussions about ways to support sustainable, accessible technologies, discussion coalesced around rumors of a $10 laptop and what such a development might mean for…

  1. Engineering Curricula in Sustainable Development. An Evaluation of Changes at Delft University of Technology

    ERIC Educational Resources Information Center

    Mulder, Karel F.

    2006-01-01

    This paper will first sketch some basic features of the engineering profession, and the need for change. It will analyse the political process that resulted in the decision at Delft University of Technology (DUT) to emphasise Sustainable Development (SD) in its curricula. The main goal of this education is to show that SD is not a burden, but a…

  2. POINTS-OF-CONTACT (INDUSTRIAL MULTIMEDIA BRANCH, SUSTAINABLE TECHNOLOGY BRANCH, NRMRL)

    EPA Science Inventory

    The Points-of-Contact page for the Industrial Multimedia Branch (IMB) of NRMRL's Sustainable Technology Division lists the names, titles, phone numbers, and e-mail addresses for staff members of IMB.IMB's mission is to develop, demonstrate, and evaluate timely and integrated in...

  3. Program Proposal: Certificates of Competence, Certificate of Achievement, Associate in Applied Science Degree in Sustainable Technology.

    ERIC Educational Resources Information Center

    Pezzoli, Jean A.; Ainsworth, Don

    This document proposes a program in sustainable technology at Maui Community College (Hawaii). This new career program would be designed to provide four Certificates of Competence, a Certificate of Achievement, and an Associate in Applied Science degree. The primary objectives of the program are to meet student, county, and state needs for…

  4. Integrating Social Sustainability in Engineering Education at the KTH Royal Institute of Technology

    ERIC Educational Resources Information Center

    Björnberg, Karin Edvardsson; Skogh, Inga-Britt; Strömberg, Emma

    2015-01-01

    Purpose: The purpose of this paper is to investigate what are perceived to be the main challenges associated with the integration of social sustainability into engineering education at the KTH Royal Institute of Technology, Stockholm. Design/methodology/approach: Semi-structured interviews were conducted with programme leaders and teachers from…

  5. Community Outreach Projects as a Sustainable Way of Introducing Information Technology in Developing Countries

    ERIC Educational Resources Information Center

    Zlotnikova, Irina; van der Weide, Theo

    2015-01-01

    The paper describes an approach to the sustainable introduction of IT in developing countries based on international collaboration between students taking the form of a knowledge bridge. The authors consider the challenges for introducing information technologies in developing countries; one of these is lack of reading materials ultimately leading…

  6. Charting a New Direction: A Collaborative, Sustainable, Customer-Based Model for Information Technology.

    ERIC Educational Resources Information Center

    Golden, Robert; Kahn, Jay V.

    1998-01-01

    Describes the Keene State College (New Hampshire) mode for delivery of information technology, which features collaboration of major college divisions, sustainability within realistic revenue/cost projections, and customer-based service delivery. Pre-implementation conditions, origins of the collaborative arrangement, how organization of campus…

  7. ENVIRONMENTAL AND SUSTAINABLE TECHNOLOGY EVALUATION: BIOMASS CO-FIRING IN INDUSTRIAL BOILERS--MINNESOTA POWER'S RAPIDS ENERGY CENTER

    EPA Science Inventory

    The U.S. EPA operates the Environmental and Sustainable Technology Evaluation (ESTE) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. This ESTE project involved evaluation of co-firing common woody bio...

  8. Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass.

    PubMed

    Thomsen, Mette Hedegaard; Hauggaard-Nielsen, Henrik; Haugaard-Nielsen, Henrik

    2008-05-01

    To obtain the best possible net energy balance of the bioethanol production the biomass raw materials used need to be produced with limited use of non-renewable fossil fuels. Intercropping strategies are known to maximize growth and productivity by including more than one species in the crop stand, very often with legumes as one of the components. In the present study clover-grass is undersown in a traditional wheat crop. Thereby, it is possible to increase input of symbiotic fixation of atmospheric nitrogen into the cropping systems and reduce the need for fertilizer applications. Furthermore, when using such wheat and clover-grass mixtures as raw material, addition of urea and other fermentation nutrients produced from fossil fuels can be reduced in the whole ethanol manufacturing chain. Using second generation ethanol technology mixtures of relative proportions of wheat straw and clover-grass (15:85, 50:50, and 85:15) were pretreated by wet oxidation. The results showed that supplementing wheat straw with clover-grass had a positive effect on the ethanol yield in simultaneous saccharification and fermentation experiments, and the effect was more pronounced in inhibitory substrates. The highest ethanol yield (80% of theoretical) was obtained in the experiment with high fraction (85%) of clover-grass. In order to improve the sugar recovery of clover-grass, it should be separated into a green juice (containing free sugars, fructan, amino acids, vitamins and soluble minerals) for direct fermentation and a fibre pulp for pretreatment together with wheat straw. Based on the obtained results a decentralized biorefinery concept for production of biofuel is suggested emphasizing sustainability, localness, and recycling principles. PMID:18338188

  9. Overcoming systemic roadblocks to sustainability: The evolutionary redesign of worldviews, institutions, and technologies

    PubMed Central

    Beddoe, Rachael; Costanza, Robert; Farley, Joshua; Garza, Eric; Kent, Jennifer; Kubiszewski, Ida; Martinez, Luz; McCowen, Tracy; Murphy, Kathleen; Myers, Norman; Ogden, Zach; Stapleton, Kevin; Woodward, John

    2009-01-01

    A high and sustainable quality of life is a central goal for humanity. Our current socio-ecological regime and its set of interconnected worldviews, institutions, and technologies all support the goal of unlimited growth of material production and consumption as a proxy for quality of life. However, abundant evidence shows that, beyond a certain threshold, further material growth no longer significantly contributes to improvement in quality of life. Not only does further material growth not meet humanity's central goal, there is mounting evidence that it creates significant roadblocks to sustainability through increasing resource constraints (i.e., peak oil, water limitations) and sink constraints (i.e., climate disruption). Overcoming these roadblocks and creating a sustainable and desirable future will require an integrated, systems level redesign of our socio-ecological regime focused explicitly and directly on the goal of sustainable quality of life rather than the proxy of unlimited material growth. This transition, like all cultural transitions, will occur through an evolutionary process, but one that we, to a certain extent, can control and direct. We suggest an integrated set of worldviews, institutions, and technologies to stimulate and seed this evolutionary redesign of the current socio-ecological regime to achieve global sustainability. PMID:19240221

  10. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  11. Describing an Environment for a Self-Sustaining Technology Transfer Service in a Small Research Budget University: A Case Study

    ERIC Educational Resources Information Center

    Nieb, Sharon Lynn

    2014-01-01

    This single-site qualitative study sought to identify the characteristics that contribute to the self sustainability of technology transfer services at universities with small research budgets through a case study analysis of a small research budget university that has been operating a financially self-sustainable technology transfer service for…

  12. Sustainability Through Technology Licensing and Commercialization: Lessons Learned from the TRIAD Project

    PubMed Central

    Payne, Philip R.O.

    2014-01-01

    Ongoing transformation relative to the funding climate for healthcare research programs housed in academic and non-profit research organizations has led to a new (or renewed) emphasis on the pursuit of non-traditional sustainability models. This need is often particularly acute in the context of data management and sharing infrastructure that is developed under the auspices of such research initiatives. One option for achieving sustainability of such data management and sharing infrastructure is the pursuit of technology licensing and commercialization, in an effort to establish public-private or equivalent partnerships that sustain and even expand upon the development and dissemination of research-oriented data management and sharing technologies. However, the critical success factors for technology licensing and commercialization efforts are often unknown to individuals outside of the private sector, thus making this type of endeavor challenging to investigators in academic and non-profit settings. In response to such a gap in knowledge, this article will review a number of generalizable lessons learned from an effort undertaken at The Ohio State University to commercialize a prototypical research-oriented data management and sharing infrastructure, known as the Translational Research Informatics and Data Management (TRIAD) Grid. It is important to note that the specific emphasis of these lessons learned is on the early stages of moving a technology from the research setting into a private-sector entity and as such are particularly relevant to academic investigators interested in pursuing such activities. PMID:25848609

  13. Supporting Sustainable Markets Through Life Cycle Assessment: Evaluating emerging technologies, incorporating uncertainty and the consumer perspective

    NASA Astrophysics Data System (ADS)

    Merugula, Laura

    As civilization's collective knowledge grows, we are met with the realization that human-induced physical and biological transformations influenced by exogenous psychosocial and economic factors affect virtually every ecosystem on the planet. Despite improvements in energy generation and efficiencies, demand of material goods and energy services increases with no sign of a slowing pace. Sustainable development requires a multi-prong approach that involves reshaping demand, consumer education, sustainability-oriented policy, and supply chain management that does not serve the expansionist mentality. Thus, decision support tools are needed that inform developers, consumers, and policy-makers for short-term and long-term planning. These tools should incorporate uncertainty through quantitative methods as well as qualitatively informing the nature of the model as imperfect but necessary and adequate. A case study is presented of the manufacture and deployment of utility-scale wind turbines evaluated for a proposed change in blade manufacturing. It provides the first life cycle assessment (LCA) evaluating impact of carbon nanofibers, an emerging material, proposed for integration to wind power generation systems as blade reinforcement. Few LCAs of nanoproducts are available in scientific literature due to research and development (R&D) for applications that continues to outpace R&D for environmental, health, and safety (EHS) and life cycle impacts. LCAs of emerging technologies are crucial for informing developers of potential impacts, especially where market growth is swift and dissipative. A second case study is presented that evaluates consumer choice between disposable and reusable beverage cups. While there are a few studies that attempt to make the comparison using LCA, none adequately address uncertainty, nor are they representative for the typical American consumer. By disaggregating U.S. power generation into 26 subregional grid production mixes and evaluating

  14. Enhancing technology development through integrated environmental analysis: toward sustainable nonlethal military systems.

    PubMed

    Saulters, Oral S; Erickson, Larry E; Leven, Blase A; Pickrel, John A; Green, Ryan M; Jamka, Leslie; Prill, Amanda

    2010-04-01

    New technologies are not only critical in supporting traditional industrial and military success but also play a pivotal role in advancing sustainability and sustainable development. With the current global economic challenges, resulting in tighter budgets and increased uncertainty, synergistic paradigms and tools that streamline the design and dissemination of key technologies are more important than ever. Accordingly, a proactive and holistic approach can facilitate efficient research, design, testing, evaluation, and fielding for novel and off-the-shelf products, thereby assisting developers, end users, and other diverse stakeholders in better understanding tradeoffs in the defense industry and beyond. By prioritizing mechanisms such as strategic life-cycle environmental assessments (LCEA); programmatic environment, safety, and occupational health evaluations (PESHE); health hazard assessments (HHA); and other innovative platforms and studies early within systems engineering, various nonlethal military technologies have been successfully developed and deployed. These efforts provide a framework for addressing complex environment, safety, and occupational health risks that affect personnel, infrastructure, property, socioeconomic, and natural/cultural resources. Moreover, integrated, comprehensive, multidisciplinary, and iterative analyses involving flexible groups of specialists/subject matter experts can be applied at various spatiotemporal scales in support of collaborations. This paper highlights the Urban Operations Laboratory process utilized for inclusive and transformative environmental analysis, which can translate into advantages and progress toward sustainable systems. PMID:19886729

  15. Participatory evaluation of monitoring and modeling of sustainable land management technologies in areas prone to land degradation.

    PubMed

    Stringer, L C; Fleskens, L; Reed, M S; de Vente, J; Zengin, M

    2014-11-01

    Examples of sustainable land management (SLM) exist throughout the world. In many cases, SLM has largely evolved through local traditional practices and incremental experimentation rather than being adopted on the basis of scientific evidence. This means that SLM technologies are often only adopted across small areas. The DESIRE (DESertIfication mitigation and REmediation of degraded land) project combined local traditional knowledge on SLM with empirical evaluation of SLM technologies. The purpose of this was to evaluate and select options for dissemination in 16 sites across 12 countries. It involved (i) an initial workshop to evaluate stakeholder priorities (reported elsewhere), (ii) field trials/empirical modeling, and then, (iii) further stakeholder evaluation workshops. This paper focuses on workshops in which stakeholders evaluated the performance of SLM technologies based on the scientific monitoring and modeling results from 15 study sites. It analyses workshop outcomes to evaluate how scientific results affected stakeholders' perceptions of local SLM technologies. It also assessed the potential of this participatory approach in facilitating wider acceptance and implementation of SLM. In several sites, stakeholder preferences for SLM technologies changed as a consequence of empirical measurements and modeling assessments of each technology. Two workshop examples are presented in depth to: (a) explore the scientific results that triggered stakeholders to change their views; and (b) discuss stakeholders' suggestions on how the adoption of SLM technologies could be up-scaled. The overall multi-stakeholder participatory approach taken is then evaluated. It is concluded that to facilitate broad-scale adoption of SLM technologies, de-contextualized, scientific generalisations must be given local context; scientific findings must be viewed alongside traditional beliefs and both scrutinized with equal rigor; and the knowledge of all kinds of experts must be

  16. NYU3T: teaching, technology, teamwork: a model for interprofessional education scalability and sustainability.

    PubMed

    Djukic, Maja; Fulmer, Terry; Adams, Jennifer G; Lee, Sabrina; Triola, Marc M

    2012-09-01

    Interprofessional education is a critical precursor to effective teamwork and the collaboration of health care professionals in clinical settings. Numerous barriers have been identified that preclude scalable and sustainable interprofessional education (IPE) efforts. This article describes NYU3T: Teaching, Technology, Teamwork, a model that uses novel technologies such as Web-based learning, virtual patients, and high-fidelity simulation to overcome some of the common barriers and drive implementation of evidence-based teamwork curricula. It outlines the program's curricular components, implementation strategy, evaluation methods, and lessons learned from the first year of delivery and describes implications for future large-scale IPE initiatives. PMID:22920424

  17. Incentives to create and sustain healthy behaviors: technology solutions and research needs.

    PubMed

    Teyhen, Deydre S; Aldag, Matt; Centola, Damon; Edinborough, Elton; Ghannadian, Jason D; Haught, Andrea; Jackson, Theresa; Kinn, Julie; Kunkler, Kevin J; Levine, Betty; Martindale, Valerie E; Neal, David; Snyder, Leslie B; Styn, Mindi A; Thorndike, Frances; Trabosh, Valerie; Parramore, David J

    2014-12-01

    Health-related technology, its relevance, and its availability are rapidly evolving. Technology offers great potential to minimize and/or mitigate barriers associated with achieving optimal health, performance, and readiness. In support of the U.S. Army Surgeon General's vision for a "System for Health" and its Performance Triad initiative, the U.S. Army Telemedicine and Advanced Technology Research Center hosted a workshop in April 2013 titled "Incentives to Create and Sustain Change for Health." Members of government and academia participated to identify and define the opportunities, gain clarity in leading practices and research gaps, and articulate the characteristics of future technology solutions to create and sustain real change in the health of individuals, the Army, and the nation. The key factors discussed included (1) public health messaging, (2) changing health habits and the environmental influence on health, (3) goal setting and tracking, (4) the role of incentives in behavior change intervention, and (5) the role of peer and social networks in change. This report summarizes the recommendations on how technology solutions could be employed to leverage evidence-based best practices and identifies gaps in research where further investigation is needed. PMID:25469962

  18. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    SciTech Connect

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has

  19. Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management.

    PubMed

    Du, Qian; Chang, Ni-Bin; Yang, Chenghai; Srilakshmi, Kanth R

    2008-01-01

    The Lower Rio Grande Valley (LRGV) of south Texas is an agriculturally rich area supporting intensive production of vegetables, fruits, grain sorghum, and cotton. Modern agricultural practices involve the combined use of irrigation with the application of large amounts of agrochemicals to maximize crop yields. Intensive agricultural activities in past decades might have caused potential contamination of soil, surface water, and groundwater due to leaching of pesticides in the vadose zone. In an effort to promote precision farming in citrus production, this paper aims at developing an airborne multispectral technique for identifying tree health problems in a citrus grove that can be combined with variable rate technology (VRT) for required pesticide application and environmental modeling for assessment of pollution prevention. An unsupervised linear unmixing method was applied to classify the image for the grove and quantify the symptom severity for appropriate infection control. The PRZM-3 model was used to estimate environmental impacts that contribute to nonpoint source pollution with and without the use of multispectral remote sensing and VRT. Research findings using site-specific environmental assessment clearly indicate that combination of remote sensing and VRT may result in benefit to the environment by reducing the nonpoint source pollution by 92.15%. Overall, this study demonstrates the potential of precision farming for citrus production in the nexus of industrial ecology and agricultural sustainability. PMID:17222960

  20. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa.

    PubMed

    van Zyl, W H; Chimphango, A F A; den Haan, R; Görgens, J F; Chirwa, P W C

    2011-04-01

    The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation. PMID:22482027

  1. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa

    PubMed Central

    van Zyl, W. H.; Chimphango, A. F. A.; den Haan, R.; Görgens, J. F.; Chirwa, P. W. C.

    2011-01-01

    The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation. PMID:22482027

  2. Proceedings of the International Conferences on Education Technologies (ICEduTech) and Sustainability, Technology and Education (STE) (New Tapei City, Taiwan, December 10-12, 2014)

    ERIC Educational Resources Information Center

    Kommers, Piet, Ed.; Issa, Tomayess, Ed.; Issa, Theodora, Ed.; Chang, Dian-Fu, Ed.; Isias, Pedro, Ed.

    2014-01-01

    These proceedings contain the papers of the International Conferences on Educational Technologies (ICEduTech 2014), and Sustainability, Technology and Education (STE 2014). The International Conference on Educational Technologies (ICEduTech 2014) is the scientific conference addressing the real topics as seen by teachers, students, parents and…

  3. An Investigation of Educational Technology Sustainability Factors in New Jersey Elementary Schools and Their Alignment with the 2008 New Jersey School Technology Survey

    ERIC Educational Resources Information Center

    Timpone, Cathy J.

    2012-01-01

    Educational leaders struggle with how to develop and sustain an effective, current and affordable educational technology program that meets the needs of the 21st Century learner and increases teaching and learning effectiveness. Thus, this study aimed to extend the research and provide practical guidelines to assist leaders in sustaining an…

  4. Authentication and dating of biomass components of industrial materials; links to sustainable technology

    NASA Astrophysics Data System (ADS)

    Currie, L. A.; Klinedinst, D. B.; Burch, R.; Feltham, N.; Dorsch, R.

    2000-10-01

    There are twin pressures mounting in US industry for increased utilization of biomass feedstocks and biotechnology in production. The more demanding pressure relates to economic sustainability, that is, because of increased competition globally, businesses will fail unless a minimum margin of profit is maintained while meeting the demands of consumers for less expensive products. The second pressure relates to "Green Technology" where environmental sustainability, linked for example to concerns about climate change and the preservation of natural resources, represents a worldwide driving force to reduce the consumption of fossil hydrocarbons. The resulting transition of biomass production in the industrial plant, as opposed to the agricultural plant, has resulted in an increasing need for isotopic methods of authenticating and dating feedstocks, intermediates and industrial products. The research described represents a prototypical case study leading to the definition of a unique dual isotopic ( 13C, 14C) signature or "fingerprint" for a new biomass-based commercial polymer, polypropylene terephthalate (3GT).

  5. ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh--Merging Technology with Sustainable Implementation

    SciTech Connect

    Addy, Susan E.A.; Gadgil, Ashok J.; Kowolik, Kristin; Kostecki, Robert

    2009-12-01

    Today, 35-77 million Bangladeshis drink arsenic-contaminated groundwater from shallow tube wells. Arsenic remediation efforts have focused on the development and dissemination of household filters that frequently fall into disuse due to the amount of attention and maintenance that they require. A community scale clean water center has many advantages over household filters and allows for both chemical and electricity-based technologies to be beneficial to rural areas. Full cost recovery would enable the treatment center to be sustainable over time. ElectroChemical Arsenic Remediation (ECAR) is compatible with community scale water treatment for rural Bangladesh. We demonstrate the ability of ECAR to reduce arsenic levels> 500 ppb to less than 10 ppb in synthetic and real Bangladesh groundwater samples and examine the influence of several operating parameters on arsenic removal effectiveness. Operating cost and waste estimates are provided. Policy implication recommendations that encourage sustainable community treatment centers are discussed.

  6. Sustained Manned Mars Presence Enabled by E-sail Technology and Asteroid Water Mining

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka; Merikallio, Sini; Toivanen, Petri; Envall, M. Jouni

    The Electric Solar Wind Sail (E-sail) can produce 0.5-1 N of inexhaustible and controllable propellantless thrust [1]. The E-sail is based on electrostatic Coulomb interaction between charged thin tethers and solar wind ions. It was invented in 2006, was developed to TRL 4-5 in 2011-2013 with ESAIL FP7 project (http://www.electric-sailing.fi/fp7) and a CubeSat small-scale flight test is in course (ESTCube-1). The E-sail provides a flexible and efficient way of moving 0-2 tonne sized cargo payloads in the solar system without consuming propellant. Given the E-sail, one could use it to make manned exploration of the solar system more affordable by combining it with asteroid water mining. One first sends a miner spacecraft to an asteroid or asteroids, either by E-sail or traditional means. Many asteroids are known to contain water and liberating it only requires heating the material one piece at a time in a leak tight container. About 2 tonne miner can produce 50 tonnes of water per year which is sufficient to sustain continuous manned traffic between Earth and Mars. If the ice-bearing asteroid resides roughly at Mars distance, it takes 3 years for a 0.7 N E-sailer to transport a 10 tonne water/ice payload to Mars orbit or Earth C3 orbit. Thus one needs a fleet of 15 E-sail transport spacecraft plus replacements to ferry 50 tonnes of water yearly to Earth C3 (1/3) and Mars orbit (2/3). The mass of one transporter is 300 kg [2]. One needs to launch max 1.5 tonne mass of new E-sail transporters per year and in practice much less since it is simple to reuse them. This infrastructure is enough to supply 17 tonnes of water yearly at Earth C3 and 33 tonnes in Mars orbit. Orbital water can be used by manned exploration in three ways: (1) for potable water and for making oxygen, (2) for radiation shielding, (3) for LH2/LOX propellant. Up to 75 % of the wet mass of the manned module could be water (50 % propellant and 25 % radiation shield water). On top of this the total mass

  7. Sustained viral response in a hepatitis C virus-infected chimpanzee via a combination of direct-acting antiviral agents.

    PubMed

    Olsen, David B; Davies, Mary-Ellen; Handt, Larry; Koeplinger, Kenneth; Zhang, Nanyan Rena; Ludmerer, Steven W; Graham, Donald; Liverton, Nigel; MacCoss, Malcolm; Hazuda, Daria; Carroll, Steven S

    2011-02-01

    Efforts to develop novel, interferon-sparing therapies for treatment of chronic hepatitis C (HCV) infection are contingent on the ability of combination therapies consisting of direct antiviral inhibitors to achieve a sustained virologic response. This work demonstrates a proof of concept that coadministration of the nucleoside analogue MK-0608 with the protease inhibitor MK-7009, both of which produced robust viral load declines as monotherapy, to an HCV-infected chimpanzee can achieve a cure of infection. PMID:21115793

  8. The mini climatic city a dedicated space for technological innovations devoted to Sustainable City

    NASA Astrophysics Data System (ADS)

    Derkx, François; Lebental, Bérengère; Merliot, Erick; Dumoulin, Jean; Bourquin, Frédéric

    2015-04-01

    Our cities, from megalopolis to rural commune, are systems of an extraordinary technological and human complexity. Their balance is threatened by the growing population and rarefaction of resources. Massive urbanization endanges the environment, while global climate change, through natural hazards generated (climatic, hydrological and geological), threats people and goods. Connect the city, that is to say, design and spread systems able to route, between multiple actors, a very large amount of heterogeneous information natures and analyzed for various purposes, is at the heart of the hopes to make our cities more sustainable: climate-resilient, energy efficient and actresses of the energy transition, attractive to individuals and companies, health and environment friendly. If multiple players are already aware of this need, progress is slow because, beyond the only connectivity, it is the urban intelligence that will create the sustainable city, through coordinated capabilities of Perception, Decision and Action: to measure phenomena; to analyze their impact on urban sustainability in order to define strategies for improvement; to effectively act on the cause of the phenomenon. In this very active context with a strong societal impact, the Sense-City project aims to accelerate research and innovation in the field of sustainable city, particularly in the field of micro and nanosensors. The project is centered around a "mini climatic City", a unique mobile environmental chamber in Europe of 400m² that can accommodate realistic models of city main components, namely buildings, infrastructures, distribution networks or basements. This R&D test place, available in draft form from January 2015 and in finalized version in 2016, will allow to validate, in realistic conditions, innovative technologies performances for the sustainable city, especially micro- and nano-sensors, at the end of their development laboratory and upstream of industrialization. R & D platform

  9. Environmentally Sustainable Growth in the 21st Century: The Role of Catalytic Science in Technology

    NASA Astrophysics Data System (ADS)

    Cusumano, James A.

    1995-11-01

    Nations of the world face an unprecedented and daunting challenge. They aggressively seek to stimulate their economies, to create new jobs, to increase the accessibility of products and technologies that enhance the quality of life--at the same time they desparately pursue the reversal of a perceived global environmental crisis. Resolution of this apparent paradox can be addressed to a significant degree by new developments in catalytic science. With the recent advent of molecular design techniques, the modernized form of this broadly applicable technological tool has the potential to change the face of the four fundamental needs of humanity--health care, food supply, energy, and materials. This can be done in a way that provides a path to environmentally sustainable development for all citizens of the planet.

  10. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  11. Factors related to the economic sustainability of two-year chemistry-based technology training programs

    NASA Astrophysics Data System (ADS)

    Backus, Bridgid A.

    Two-year chemistry-based technology training (CBTT) programs in the U.S. are important in the preparation of the professional technical workforce. The purpose of this study was to identify, examine, and analyze factors related to the economic sustainability of CBTT programs. A review of literature identified four clustered categories of 31 sub-factors related to program sustainability. Three research questions relating to program sustainability were: (1) What is the relative importance of the identified factors?, (2) What differences exist between the opinions of administrators and faculty?, and (3) What are the interrelationships among the factors? In order to answer these questions, survey data gathered from CBTT programs throughout the United States were analyzed statistically. Conclusions included the following: (1) Rank order of the importance to sustainability of the clustered categories was: (1) Partnerships, (2) Employer and Student Educational Goals, (3) Faculty and Their Resources, and (4) Community Perceptions and Marketing Strategies. (2) Significant correlations between ratings of sustainability and the sub-factors included: degree of partnering, college responsiveness, administration involvement in partnerships, experiential learning opportunities, employer input in curriculum development, use of skill standards, number of program graduates, student job placement, professional development opportunities, administrator support, presence of a champion, flexible scheduling, program visibility, perception of chemical technicians, marketing plans, and promotion to secondary students. (3) Faculty and administrators differed significantly on only two sub-factor ratings: employer assisted curriculum development, and faculty workloads. (4) Significant differences in ratings by small program faculty and administrators and large program faculty and administrators were indicated, with most between small program faculty and large program administrators. The study

  12. Improving sustainability by technology assessment and systems analysis: the case of IWRM Indonesia

    NASA Astrophysics Data System (ADS)

    Nayono, S.; Lehmann, A.; Kopfmüller, J.; Lehn, H.

    2016-06-01

    To support the implementation of the IWRM-Indonesia process in a water scarce and sanitation poor region of Central Java (Indonesia), sustainability assessments of several technology options of water supply and sanitation were carried out based on the conceptual framework of the integrative sustainability concept of the German Helmholtz association. In the case of water supply, the assessment was based on the life-cycle analysis and life-cycle-costing approach. In the sanitation sector, the focus was set on developing an analytical tool to improve planning procedures in the area of investigation, which can be applied in general to developing and newly emerging countries. Because sanitation systems in particular can be regarded as socio-technical systems, their permanent operability is closely related to cultural or religious preferences which influence acceptability. Therefore, the design of the tool and the assessment of sanitation technologies took into account the views of relevant stakeholders. The key results of the analyses are presented in this article.

  13. Next-generation biofuels: Survey of emerging technologies and sustainability issues.

    PubMed

    Zinoviev, Sergey; Müller-Langer, Franziska; Das, Piyali; Bertero, Nicolás; Fornasiero, Paolo; Kaltschmitt, Martin; Centi, Gabriele; Miertus, Stanislav

    2010-10-25

    Next-generation biofuels, such as cellulosic bioethanol, biomethane from waste, synthetic biofuels obtained via gasification of biomass, biohydrogen, and others, are currently at the center of the attention of technologists and policy makers in search of the more sustainable biofuel of tomorrow. To set realistic targets for future biofuel options, it is important to assess their sustainability according to technical, economical, and environmental measures. With this aim, the review presents a comprehensive overview of the chemistry basis and of the technology related aspects of next generation biofuel production, as well as it addresses related economic issues and environmental implications. Opportunities and limits are discussed in terms of technical applicability of existing and emerging technology options to bio-waste feedstock, and further development forecasts are made based on the existing social-economic and market situation, feedstock potentials, and other global aspects. As the latter ones are concerned, the emphasis is placed on the opportunities and challenges of developing countries in adoption of this new industry. PMID:20922754

  14. Social Influence on Information Technology Adoption and Sustained Use in Healthcare: A Hierarchical Bayesian Learning Method Analysis

    ERIC Educational Resources Information Center

    Hao, Haijing

    2013-01-01

    Information technology adoption and diffusion is currently a significant challenge in the healthcare delivery setting. This thesis includes three papers that explore social influence on information technology adoption and sustained use in the healthcare delivery environment using conventional regression models and novel hierarchical Bayesian…

  15. Sustaining Technology in Low-Income Neighborhoods. A Consultative Session Convened by the Annie E. Casey Foundation. Thematic Summary.

    ERIC Educational Resources Information Center

    Annie E. Casey Foundation, Baltimore, MD.

    This report summarizes the presentations of 35 professionals from diverse sectors of society working on different aspects of the digital divide. Various uses of technology have been supported over the past decade to improve outcomes for low-income groups. This session focused on the issue of technology sustainability in the face of increasing…

  16. Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives

    NASA Astrophysics Data System (ADS)

    Conte, M.; Iacobazzi, A.; Ronchetti, M.; Vellone, R.

    Sustainable energy is becoming of increasing concern world-wide. The rapid growth of global climate changes along with the fear of energy supply shortage is creating a large consensus about the potential benefits of a hydrogen economy coming from renewable energy sources. The interesting perspectives are over-shadowed by uncertainties about the development of key technologies, such as renewable energy sources, advanced production processes, fuel cells, metal hydrides, nanostructures, standards and codes, and so on. The availability of critical technologies can create a base for the start of the hydrogen economy, as a fuel and energy carrier alternative to the current fossil resources. This paper will explore the rationale for such a revolution in the energy sector, will describe the state-of-the-art of major related technologies (fuel cell, storage systems, fuel cell vehicles) and current niche applications, and will sketch scientific and technological challenges and recommendations for research and development (R&D) initiatives to accelerate the pace for the widespread introduction of a hydrogen economy.

  17. A methodology for the sustainability assessment of arsenic mitigation technology for drinking water.

    PubMed

    Etmannski, T R; Darton, R C

    2014-08-01

    In this paper we show how the process analysis method (PAM) can be applied to assess the sustainability of options to mitigate arsenic in drinking water in rural India. Stakeholder perspectives, gathered from a fieldwork survey of 933 households in West Bengal in 2012 played a significant role in this assessment. This research found that the 'most important' issues as specified by the technology users are cost, trust, distance from their home to the clean water source (an indicator of convenience), and understanding the health effects of arsenic. We show that utilisation of a technology is related to levels of trust and confidence in a community, making use of a composite trust-confidence indicator. Measures to improve trust between community and organisers of mitigation projects, and to raise confidence in technology and also in fair costing, would help to promote successful deployment of appropriate technology. Attitudes to cost revealed in the surveys are related to the low value placed on arsenic-free water, as also found by other investigators, consistent with a lack of public awareness about the arsenic problem. It is suggested that increased awareness might change attitudes to arsenic-rich waste and its disposal protocols. This waste is often currently discarded in an uncontrolled manner in the local environment, giving rise to the possibility of point-source recontamination. PMID:24284264

  18. A streamlined search technology for identification of synergistic drug combinations.

    PubMed

    Weiss, Andrea; Berndsen, Robert H; Ding, Xianting; Ho, Chih-Ming; Dyson, Paul J; van den Bergh, Hubert; Griffioen, Arjan W; Nowak-Sliwinska, Patrycja

    2015-01-01

    A major key to improvement of cancer therapy is the combination of drugs. Mixing drugs that already exist on the market may offer an attractive alternative. Here we report on a new model-based streamlined feedback system control (s-FSC) method, based on a design of experiment approach, for rapidly finding optimal drug mixtures with minimal experimental effort. We tested combinations in an in vitro assay for the viability of a renal cell adenocarcinoma (RCC) cell line, 786-O. An iterative cycle of in vitro testing and s-FSC analysis was repeated a few times until an optimal low dose combination was reached. Starting with ten drugs that target parallel pathways known to play a role in the development and progression of RCC, we identified the best overall drug combination, being a mixture of four drugs (axitinib, erlotinib, dasatinib and AZD4547) at low doses, inhibiting 90% of cell viability. The removal of AZD4547 from the optimized drug combination resulted in 80% of cell viability inhibition, while still maintaining the synergistic interaction. These optimized drug combinations were significantly more potent than monotherapies of all individual drugs (p < 0.001, CI < 0.3). PMID:26416286

  19. Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment.

    PubMed

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-01-15

    The objective of this study was to assess the economic and environmental sustainability of submerged anaerobic membrane bioreactors (AnMBRs) in comparison with aerobic-based technologies for moderate-/high-loaded urban wastewater (UWW) treatment. To this aim, a combined approach of steady-state performance modelling, life cycle analysis (LCA) and life cycle costing (LCC) was used, in which AnMBR (coupled with an aerobic-based post-treatment) was compared to aerobic membrane bioreactor (AeMBR) and conventional activated sludge (CAS). AnMBR with CAS-based post-treatment for nutrient removal was identified as a sustainable option for moderate-/high-loaded UWW treatment: low energy consumption and reduced sludge production could be obtained at given operating conditions. In addition, significant reductions can be achieved in different aspects of environmental impact (global warming potential (GWP), abiotic depletion, acidification, etc.) and LCC over existing UWW treatment technologies. PMID:26473754

  20. Technology, Teachers, and Training: Combining Theory with Macedonia's Experience

    ERIC Educational Resources Information Center

    Hosman, Laura; Cvetanoska, Maja

    2013-01-01

    Numerous developing countries are currently planning or executing projects that introduce technology into their educational systems. This article asserts that such projects will have limited long-term success or impact until they are reconceptualized to incorporate three transformative concepts: teachers play the key role in determining the…

  1. Space Technologies for Enhancing the Resilience and Sustainability of Indigenous Reindeer Husbandry in the Russian Arctic

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.; Yurchak, Boris S.; Sleptsov, Yuri A.; Turi, Johan Mathis; Mathlesen, Svein D.

    2005-01-01

    To adapt successfully to the major changes - climate, environment, economic, social and industrial - which have taken place across the Arctic. in recent years, indigenous communities such as reindeer herders must become increasingly empowered with the best available technologies to add to their storehouse of traditional knowledge. Remotely-sensed data and observations are providing increased capabilities for monitoring, risk mapping, and surveillance of parameters critical to the characterization of pasture quality and migratory routes, such as vegetation distribution, snow cover, infrastructure development, and pasture damages due to fires. This paper describes a series of remote sensing capabilities, which are useful to reindeer husbandry, and gives the results of the first year of a project, "Reindeer Mapper", which is a remote sensing and GIs-based system to bring together space technologies with indigenous knowledge for sustainable reindeer husbandry in the Russian Arctic. In this project, reindeer herders and scientists are joining together to utilize technologies to create a system for collecting and sharing space-based and indigenous knowledge in the Russian Arctic. The "Reindeer Mapper" system will help make technologies more readily available to the herder community for observing, data collection and analysis, monitoring, sharing, communications, and dissemination of information - to be integrated with traditional, local knowledge. This paper describes some of the technologies which comprise the system including an intranet system to enable to the team members to work together and share information electronically, remote sensing data for monitoring environmental parameters important to reindeer husbandry (e.g., SAR, Landsat, AVHRR, MODIS), indigenous knowledge about important environmental parameters, acquisition of ground- based measurements, and the integration of all useful data sets for more informed decision-making.

  2. Double Wall Framing Technique An Example of High Performance, Sustainable Building Envelope Technology

    SciTech Connect

    Kosny, Dr. Jan; Asiz, Andi; Shrestha, Som S; Biswas, Kaushik; Nitin, Shukla

    2015-01-01

    Double wall technologies utilizing wood framing have been well-known and used in North American buildings for decades. Most of double wall designs use only natural materials such as wood products, gypsum, and cellulose fiber insulation, being one of few building envelope technologies achieving high thermal performance without use of plastic foams or fiberglass. Today, after several material and structural design modifications, these technologies are considered as highly thermally efficient, sustainable option for new constructions and sometimes, for retrofit projects. Following earlier analysis performed for U.S. Department of Energy by Fraunhofer CSE, this paper discusses different ways to build double walls and to optimize their thermal performance to minimize the space conditioning energy consumption. Description of structural configuration alternatives and thermal performance analysis are presented as well. Laboratory tests to evaluate thermal properties of used insulation and whole wall system thermal performance are also discussed in this paper. Finally, the thermal loads generated in field conditions by double walls are discussed utilizing results from a joined project performed by Zero Energy Building Research Alliance and Oak Ridge National Laboratory (ORNL), which made possible evaluation of the market viability of low-energy homes built in the Tennessee Valley. Experimental data recorded in two of the test houses built during this field study is presented in this work.

  3. The environmental sustainability of anaerobic digestion as a biomass valorization technology.

    PubMed

    De Meester, Steven; Demeyer, Jens; Velghe, Filip; Peene, Andy; Van Langenhove, Herman; Dewulf, Jo

    2012-10-01

    This paper studies the environmental sustainability of anaerobic digestion from three perspectives. First, reference electricity is compared to electricity production from domestic organic waste and energy crop digestion. Second, different digester feed possibilities in an agricultural context are studied. Third, the influence of applying digestate as fertilizer is investigated. Results highlight that biomass is converted at a rational exergy (energy) efficiency ranging from 15.3% (22.6) to 33.3% (36.0). From a life cycle perspective, a saving of over 90% resources is achieved in most categories when comparing biobased electricity to conventional electricity. However, operation without heat valorization results in 32% loss of this performance while using organic waste (domestic and agricultural residues) as feedstock avoids land resources. The use of digestate as a fertilizer is beneficial from a resource perspective, but causes increased nitrogen and methane emissions, which can be reduced by 50%, making anaerobic digestion an environmentally competitive bioenergy technology. PMID:22864176

  4. An interpretive summary of the 1997 conference on policies for fostering sustainable transportation technologies

    SciTech Connect

    Santini, D.J.

    1997-12-31

    T.R. Lakshmanan, director of the Bureau of Transportation Statistics, offered the following definition from the Bruntland Commission: ``Sustainable development is development that meets the needs of the present generations without compromising the ability of future generations.`` The technologies and policies that received the most attention would provide per-unit-of-service reduction of three kinds of social costs (external costs, in economist`s terminology) with respect to light duty transportation. The main factors to be reduced were oil use, greenhouse gases, and air pollution. Undesirable side effects of continually expanding transportation activity, including congestion and habitat loss, were also discussed. The conference included debate about priorities among these five categories of social cost, about which organizations should take action to achieve the reductions needed in each, and about what specific actions these organizations should take.

  5. Combining Ontologies and Peer-to-Peer Technologies for Inter-Organizational Knowledge Management

    ERIC Educational Resources Information Center

    Stuckenschmidt, Heiner; Siberski, Wolf; Nejdl, Wolfgang

    2005-01-01

    Purpose: The purpose of the paper is to review the characteristics of systems that combine P2P technology with explicit ontologies and assess the benefits of these technologies for inter-organizational knowledge management. Design/methodology/approach: We characterize existing technologies with respect to a number of aspects that are relevant to…

  6. Development and characterization of gastroretentive sustained-release formulation by combination of swelling and mucoadhesive approach: a mechanistic study

    PubMed Central

    Sankar, R; Jain, Subheet Kumar

    2013-01-01

    Background Acyclovir has pharmacokinetic limitations, including poor oral bioavailability of 15%–30%, high variability, and short elimination half-life of 2.3 hours. These limitations necessitate frequent administration of acyclovir, up to five times daily, leading to poor patient compliance, which in turn leads to a reduction in therapeutic efficacy and development of resistance. Methods A gastroretentive sustained-release (GR) formulation of acyclovir, based on a combination of swelling and mucoadhesive mechanisms, has been developed. Composition has been optimized after evaluation of different polymers, carbomer, polyethylene oxide, and sodium alginate alone and/or in combination. GR formulations were characterized for in-process quality-control tests, drug release and release rate kinetics, similarity factor analysis, swelling index, and matrix erosion. Results A formulation containing a combination of carbomer and polyethylene oxide had the highest similarity of drug release compared with a target drug-release profile obtained by pharmacokinetic simulations. The measurement of mucoadhesive strength, carried out with a texture analyzer, showed that the mucoadhesive strength of the GR formulation was significantly higher than that of the immediate-release (IR) tablet. The optimized GR formulation was found to be retained in the upper part of the gastrointestinal tract for 480 minutes; the IR tablet was retained for only 90 minutes as measured using a gastrointestinal retention study in albino rabbits. The GR formulation was also found to maintain more sustained plasma concentrations than the IR tablet. Mean residence time of the GR formulation was 7 hours versus 3.3 hours for the IR formulation. The relative bioavailability of the GR formulation was 261% of the IR formulation. Conclusion The GR formulation of acyclovir, based on swelling and mucoadhesive mechanisms, has prolonged retention in the upper gastrointestinal tract, sustained in vitro drug release

  7. Technology Combination Analysis Tool (TCAT) for Active Debris Removal

    NASA Astrophysics Data System (ADS)

    Chamot, B.; Richard, M.; Salmon, T.; Pisseloup, A.; Cougnet, C.; Axthelm, R.; Saunder, C.; Dupont, C.; Lequette, L.

    2013-08-01

    This paper present the work of the Swiss Space Center EPFL within the CNES-funded OTV-2 study. In order to find the most performant Active Debris Removal (ADR) mission architectures and technologies, a tool was developed in order to design and compare ADR spacecraft, and to plan ADR campaigns to remove large debris. Two types of architectures are considered to be efficient: the Chaser (single-debris spacecraft), the Mothership/ Kits (multiple-debris spacecraft). Both are able to perform controlled re-entry. The tool includes modules to optimise the launch dates and the order of capture, to design missions and spacecraft, and to select launch vehicles. The propulsion, power and structure subsystems are sized by the tool thanks to high-level parametric models whilst the other ones are defined by their mass and power consumption. Final results are still under investigation by the consortium but two concrete examples of the tool's outputs are presented in the paper.

  8. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.

    PubMed

    Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris

    2015-11-01

    Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications. PMID:26489525

  9. A "win-win" scenario: the use of sustainable land management technologies to improve rural livelihoods and combat desertification in semi-arid lands in Kenya

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Musimba, Nashon; Nyariki, Dickson; Nyangito, Moses; Mwang'ombe, Agnes

    2014-05-01

    Dryland ecosystems support over 2 billion people and are major providers of critical ecosystems goods and services globally. However, desertification continues to pose a serious threat to the sustainability of the drylands and livelihoods of communities inhabiting them. The desertification problem is well exemplified in the arid and semi-arid lands (ASALs) in Kenya which cover approximately 80% of the total land area. This study aimed to 1) determine what agropastoralists attribute to be the causes of desertification in a semi-arid land in Kenya, 2) document sustainable land management (SLM) technologies being undertaken to improve livelihoods and combat desertification, and 3) identify the factors that influence the choice of the sustainable land management (SLM) technologies. Results show that agropastoralists inhabiting the semi-arid lands in southeastern Kenya mainly attribute desertification to the recurrent droughts and low amounts of rainfall. Despite the challenges posed by desertification and climate variability, agropastoralists in the study area are using a combination of SLM technologies notably dryland agroforestry using drought tolerant species (indigenous and exotic), grass reseeding using perennial native and drought tolerant grass species (vegetation reestablishment) and in-situ rainwater harvesting to improve livelihoods and by extension combat desertification. Interestingly, the choice and adoption of these SLM technologies is influenced more by the additional benefits the agropastoralists can derive from them. Therefore, it is rationale to conclude that success in dryland restoration and combating desertification lies in programs and technologies that offer a "win-win" scenario to the communities inhabiting the drylands. Key words: Agroforestry; Agropastoralists; Drylands; Grass Reseeding; Rainwater Harvesting

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: MICROTURBINES AND COMBINED HEAT AND POWER TECHNOLOGIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification(ETV) Program evaluates the performance of innovatiave air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techno...

  11. Sustainable resource recovery and energy conversion processes using microbial electrochemical technologies

    NASA Astrophysics Data System (ADS)

    Yates, Matthew D.

    Microbial Electrochemical Technologies (METs) are emerging technological platforms for the conversion of waste into usable products. METs utilize naturally occurring bacteria, called exoelectrogens, capable of transferring electrons to insoluble terminal electron acceptors. Electron transfer processes in the exoelectrogen Geobacter sulfurreducens were exploited here to develop sustainable processes for synthesis of industrially and socially relevant end products. The first process examined was the removal of soluble metals from solution to form catalytic nanoparticles and nanoporous structures. The second process examined was the biocatalytic conversion of electrons into hydrogen gas using electrons supplied directly to an electrode. Nanoparticle formation is desirable because materials on the nanoscale possess different physical, optical, electronic, and mechanical properties compared to bulk materials. In the first process, soluble palladium was used to form catalytic palladium nanoparticles using extracellular electron transfer (EET) processes of G. sulfurreducens, typically the dominant member of mixedculture METs. Geobacter cells reduced the palladium extracellularly using naturally produced pili, which provided extracellular adsorption and reduction sites to help delay the diffusion of soluble metals into the cell. The extracellular reduction prevented cell inactivation due to formation of intracellular particles, and therefore the cells could be reused in multiple palladium reduction cycles. A G. sulfurreducens biofilm was next investigated as a biotemplate for the formation of a nanoporous catalytic palladium structure. G. sulfurreducens biofilms have a dense network of pili and extracellular cytochromes capable of high rates of electron transfer directly to an electrode surface. These pili and cytochromes provide a dense number of reduction sites for nanoparticle formation without the need for any synthetic components. The cells within the biofilm also can

  12. Targeted therapy with propranolol and metronomic chemotherapy combination: sustained complete response of a relapsing metastatic angiosarcoma

    PubMed Central

    Banavali, Shripad; Pasquier, Eddy; Andre, Nicolas

    2015-01-01

    We report here a case of a 69-year-old woman with a relapsing metastatic angiosarcoma treated with a combination of metronomic chemotherapy and propranolol. The beta blockers were added since the tumour was positive for betaadrenergic receptor. A complete response was quickly obtained and lasted for 20 months. With this case, the combination of metronomic chemotherapy and propranolol in angiosarcoma warrants additional studies and illustrates the potential of metronomics to generate innovative yet inexpensive targeted therapies for both high-income and low-/middle-income countries. PMID:25624880

  13. Targeted therapy with propranolol and metronomic chemotherapy combination: sustained complete response of a relapsing metastatic angiosarcoma.

    PubMed

    Banavali, Shripad; Pasquier, Eddy; Andre, Nicolas

    2015-01-01

    We report here a case of a 69-year-old woman with a relapsing metastatic angiosarcoma treated with a combination of metronomic chemotherapy and propranolol. The beta blockers were added since the tumour was positive for betaadrenergic receptor. A complete response was quickly obtained and lasted for 20 months. With this case, the combination of metronomic chemotherapy and propranolol in angiosarcoma warrants additional studies and illustrates the potential of metronomics to generate innovative yet inexpensive targeted therapies for both high-income and low-/middle-income countries. PMID:25624880

  14. Empowering Sustained Patient Safety: The Benefits of Combining Top-down and Bottom-up Approaches.

    PubMed

    Stewart, Greg L; Manges, Kirstin A; Ward, Marcia M

    2015-01-01

    Implementation of TeamSTEPPS for improving patient safety is examined via descriptive qualitative analysis of semistructured interviews with 21 informants at 12 hospitals. Implementation approaches fit 3 strategies: top-down, bottom-up, and combination. The top-down approach failed to develop enough commitment to spread implementation. The bottom-up approach was unable to marshal the resources necessary to spread implementation. Combining top-down and bottom-up processes best facilitated the implementation and spread of the TeamSTEPPS safety initiative. PMID:25479238

  15. Visions for a sustainable world: A conference on science, technology and social responsibility. Conference report

    SciTech Connect

    Not Available

    1992-12-31

    This report summarizes the organization, activities, and outcomes of Student Pugwash USA`s 1992 International Conference, Visions for a Sustainable World: A Conference on Science, Technology and Social Responsibility. The conference was held June 14--20, 1992 at Emory University, and brought together 94 students and over 65 experts from industry, academe, and government. The conference addressed issues ranging from global environmental cooperation to the social impacts of the Human Genome Project to minority concerns in the sciences. It provided a valuable forum for talented students and professionals to engage in critical dialogue on many interdisciplinary issues at the juncture of science, technology and society. The conference challenged students -- the world`s future scientists, engineers, and political leaders -- to think broadly about global problems and to devise policy options that are viable and innovative. The success of the conference in stimulating interest, understanding, and enthusiasm about interdisciplinary global issues is clearly evident from both the participants` feedback and their continued involvement in Student Pugwash USA programs. Six working groups met each morning. The working group themes included: environmental challenges for developing countries; energy options: their social and environmental impact; health care in developing countries; changing dynamics of peace and global security; educating for the socially responsible use of technology; ethics and the use of genetic information. The conference was specifically designed to include mechanisms for ensuring its long-term impact. Participants were encouraged to focus on their individual role in helping resolve global issues. This was achieved through each participant`s development of a Personal Plan of Action, a plan which mapped out activities the student could undertake after the conference to continue the dialogue and work towards the resolution of global and local problems.

  16. Implementing a Program in Sustainability for Engineers at University of Technology, Sydney: A Story of Intersecting Agendas

    ERIC Educational Resources Information Center

    Bryce, Paul; Johnston, Stephen; Yasukawa, Keiko

    2004-01-01

    Integrating sustainability into an undergraduate engineering program at the University of Technology, Sydney has been a challenging project. The authors of this paper have been participant observers of the integration process. In this paper, they have attempted an analysis of that process, focussing on the dynamics of the network of people and…

  17. What Happens when the Research Ends? Factors Related to the Sustainability of a Technology-Infused Mathematics Curriculum

    ERIC Educational Resources Information Center

    Fishman, Barry; Penuel, William R.; Hegedus, Stephen; Roschelle, Jeremy

    2011-01-01

    This study examines factors related to the sustainability of SimCalc Mathworlds (SCMW), a technology-infused mathematics curriculum. We surveyed middle school teachers one year after their participation in a randomized trial where they were introduced to SCMW curriculum, to identify factors related to their continued use of the materials in ways…

  18. Mapping Research Activities and Technologies for Sustainability and Environmental Studies--A Case Study at University Level

    ERIC Educational Resources Information Center

    Hara, Keishiro; Uwasu, Michinori; Kurimoto, Shuji; Yamanaka, Shinsuke; Umeda, Yasushi; Shimoda, Yoshiyuki

    2013-01-01

    Systemic understanding of potential research activities and available technology seeds at university level is an essential condition to promote interdisciplinary and vision-driven collaboration in an attempt to cope with complex sustainability and environmental problems. Nonetheless, any such practices have been hardly conducted at universities…

  19. Advancing Access to New Technology for Sustained High Resolution Observations of Plankton: From Bloom Dynamics to Climate Change

    NASA Astrophysics Data System (ADS)

    Sosik, H. M.; Olson, R. J.

    2012-12-01

    The combination of ocean observatory infrastructure and automated submersible flow cytometry can provide unprecedented capability for sustained high resolution time series of plankton, including taxa that are harmful or early indicators of ecosystem response to environmental change. Over the past decade, we have developed the FlowCytobot series of instruments that exemplify this capability. FlowCytobot and Imaging FlowCytobot use a combination of laser-based scattering and fluorescence measurements and video imaging of individual particles to enumerate and characterize cells ranging from picocyanobacteria to large chaining-forming diatoms. The process of developing these complex instruments was streamlined by access to the Martha's Vineyard Coastal Observatory (MVCO), a cabled facility on the New England Shelf, where real time two-way communications and access to shore power expedited cycles of instrument evaluation and design refinement. Repeated deployments at MVCO, typically 6 months in duration, have produced multi-year high resolution (hourly to daily) time series that are providing new insights into dynamics of community structure such as blooms, seasonality, and possibly even trends linked to regional climate change. The high temporal resolution observations of single cell properties make it possible not only to characterize taxonomic composition and size structure, but also to quantify taxon-specific growth rates. To meet the challenge of broadening access to this enabling technology, we have taken a two-step approach. First, we are partnering with a few scientific collaborators interested in using the instruments in different environments and to address different applications, notably the detection and characterization of harmful algal bloom events. Collaboration at this stage ensured that these first users outside the developers' lab had access to technical know-how required for successful outcomes; it also provided additional feedback that could be

  20. Advising and Optimizing the Deployment of Sustainability-Oriented Technologies in the Integrated Electricity, Light-Duty Transportation, and Water Supply System

    NASA Astrophysics Data System (ADS)

    Tarroja, Brian

    The convergence of increasing populations, decreasing primary resource availability, and uncertain climates have drawn attention to the challenge of shifting the operations of key resource sectors towards a sustainable paradigm. This is prevalent in California, which has set sustainability-oriented policies such as the Renewable Portfolio Standards and Zero-Emission Vehicle mandates. To meet these goals, many options have been identified to potentially carry out these shifts. The electricity sector is focusing on accommodating renewable power generation, the transportation sector on alternative fuel drivetrains and infrastructure, and the water supply sector on conservation, reuse, and unconventional supplies. Historical performance evaluations of these options, however, have not adequately taken into account the impacts on and constraints of co-dependent infrastructures that must accommodate them and their interactions with other simultaneously deployed options. These aspects are critical for optimally choosing options to meet sustainability goals, since the combined system of all resource sectors must satisfy them. Certain operations should not be made sustainable at the expense of rendering others as unsustainable, and certain resource sectors should not meet their individual goals in a way that hinders the ability of the entire system to do so. Therefore, this work develops and utilizes an integrated platform of the electricity, transportation, and water supply sectors to characterize the performance of emerging technology and management options while taking into account their impacts on co-dependent infrastructures and identify synergistic or detrimental interactions between the deployment of different options. This is carried out by first evaluating the performance of each option in the context of individual resource sectors to determine infrastructure impacts, then again in the context of paired resource sectors (electricity-transportation, electricity

  1. Sequential Combination Therapy Leading to Sustained Remission in a Patient with SAPHO Syndrome.

    PubMed

    Huber, C E; Judex, A G; Freyschmidt, J; Feuerbach, S; Schölmerich, J; Müller-Ladner, U

    2009-01-01

    The SAPHO syndrome represents a variety of clinically similar disorders with the key features of hyperostotic bone lesions in combination with chronic pustular skin disease. The respective pathophysiology of bone and joint manifestations in SAPHO syndrome is still a matter of discussion. For example it does not appear to represent reactive arthritis and HLA B27 antigen, with the latter being typically present in patients with spondyloarthopathies. Treatment of SAPHO syndrome is also not well established and consists of various antiinflammatory and antirheumatic drugs. Here, we report a female patient with active SAPHO syndrome suffering from sternal swelling of unknown origin that had been known for 10 years and a 4-year-history of severe lower back pain. Remarkable were also a typical pustulous palmar erythema associated with swelling and decreased motility of both MCP-I joints. Inflammation parameters were high with an ESR 68 mm/1st hour and a CRP of 19.6 mg/l. She was initially treated with rofecoxib and doxycycline, followed by sulfasalazine with only partial clinical response. Thereafter, both articular symptoms as well as cutaneous lesions responded well to a combination therapy with methotrexate and sulfasalazine. Thus, the case illustrates nicely that methotrexate in combination with another DMARD can be successfully applied to patients with long-term active SAPHO syndrome. PMID:19471601

  2. Power of the Mashup: Combining Essential Learning with New Technology Tools

    ERIC Educational Resources Information Center

    Boss, Suzie; Krauss, Jane

    2007-01-01

    Jerome Burg, after 34 years of teaching, left his own classroom last year and now helps other teachers integrate technology into the curriculum at Granada High School in Livermore, California. One new project he designed is heightening global interest in literary road trips by creating a resource that combines a new technology with a time-tested…

  3. Assessment of Renewable Energy Technology and a Case of Sustainable Energy in Mobile Telecommunication Sector

    PubMed Central

    Okundamiya, Michael S.; Emagbetere, Joy O.; Ogujor, Emmanuel A.

    2014-01-01

    The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities. PMID:24578673

  4. Assessment of renewable energy technology and a case of sustainable energy in mobile telecommunication sector.

    PubMed

    Okundamiya, Michael S; Emagbetere, Joy O; Ogujor, Emmanuel A

    2014-01-01

    The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities. PMID:24578673

  5. Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.

    1992-01-01

    The goal of the Rocket-Based Combined Cycle (RBCC) Propulsion Technology Workshop was to assess the RBCC propulsion system's viability for Earth-to-Orbit (ETO) transportation systems. This was accomplished by creating a forum (workshop) in which past work in the field of RBCC propulsion systems was reviewed, current technology status was evaluated, and future technology programs in the field of RBCC propulsion systems were postulated, discussed, and recommended.

  6. A Hydro-Economic Model for Water Level Fluctuations: Combining Limnology with Economics for Sustainable Development of Hydropower

    PubMed Central

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  7. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    PubMed

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  8. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.

    PubMed

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2015-04-01

    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug. PMID:25637067

  9. A survey of beam-combining technologies for laser space power transmission

    NASA Technical Reports Server (NTRS)

    Kwon, J. H.; Williams, M. D.; Lee, J. H.

    1988-01-01

    The combination of laser beams holds much promise for obtaining powerful beams. Methods are surveyed for beam combination (coherent and incoherent) and two of them are identified as the most effective means for achieving high power transmission in space. The two methods as applied to laser diode arrays are analyzed, and potentially productive work areas for the advancement of technology are delineated.

  10. Combining Interactive Infrastructure Modeling and Evolutionary Algorithm Optimization for Sustainable Water Resources Design

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2013-12-01

    Population growth and climate change, combined with difficulties in building new infrastructure, motivate portfolio-based solutions to ensuring sufficient water supply. Powerful simulation models with graphical user interfaces (GUI) are often used to evaluate infrastructure portfolios; these GUI based models require manual modification of the system parameters, such as reservoir operation rules, water transfer schemes, or system capacities. Multiobjective evolutionary algorithm (MOEA) based optimization can be employed to balance multiple objectives and automatically suggest designs for infrastructure systems, but MOEA based decision support typically uses a fixed problem formulation (i.e., a single set of objectives, decisions, and constraints). This presentation suggests a dynamic framework for linking GUI-based infrastructure models with MOEA search. The framework begins with an initial formulation which is solved using a MOEA. Then, stakeholders can interact with candidate solutions, viewing their properties in the GUI model. This is followed by changes in the formulation which represent users' evolving understanding of exigent system properties. Our case study is built using RiverWare, an object-oriented, data-centered model that facilitates the representation of a diverse array of water resources systems. Results suggest that assumptions within the initial MOEA search are violated after investigating tradeoffs and reveal how formulations should be modified to better capture stakeholders' preferences.

  11. Phototrophic periphyton techniques combine phosphorous removal and recovery for sustainable salt-soil zone.

    PubMed

    Lu, Haiying; Feng, Yanfang; Wu, Yonghong; Yang, Linzhang; Shao, Hongbo

    2016-10-15

    The P (Pi as KH2PO4 and Po as ATP) removal processes by phototrophic periphyton were investigated by determining the removal kinetics, metal content (Ca, Mg, Al, Fe, Cu, and Zn) of the solution and P fractions (Labile-P, Fe/Al-P, Ca-P, and Res-P) within the periphyton. Results showed that the periphyton was able to remove completely both Pi and Po after 48h when periphyton content was greater than 0.2gL(-1) (dry weight). The difference between Pi and Po removal was the conversion of Po into Pi by the periphyton, after that the removal mechanism was similar. The P removal mechanism was mainly due to the adsorption on the surfaces of the periphyton, including two aspects: i) the adsorption of PO4(3-) onto metal salts such as calcium carbonate (~50%) and ii) complexation between PO4(3-) and metal cations such as Ca(2+) (~40%). However, this bio-adsorptional process was significantly influenced by the extracellular polymeric substance (EPS) of periphyton, water hardness, initial P concentration, temperature and light intensity. This study not only deepens the understanding of P biogeochemical process in aquatic ecosystem, but provides a potential biomaterial for combining phosphorous removal and recovery from non-point source wastewaters, especially around salt-soil zone. PMID:27328877

  12. Addressing sustainable contributions to GEO/GEOSS from Science and Technology Communities: the EGIDA Methodology

    NASA Astrophysics Data System (ADS)

    Mazzetti, P.; Nativi, S.

    2012-04-01

    The European Project EGIDA (Coordinating Earth and Environmental cross-disciplinary projects to promote GEOSS) co-funded by the European Commission under the Seventh Framework programme, has started in September 2010. It aims to prepare a sustainable process of contribution to GEO/GEOSS promoting coordination of activities carried out by: the GEO Science & Technology (S&T) Committee; S&T national and European initiatives; and other S&T Communities. This will be done by supporting broader implementation and effectiveness of the GEOSS S&T Roadmap and the GEOSS mission through coherent and interoperable networking of National and European projects, and International initiatives. The definition of a general methodology for a sustainable contribution to GEO/GEOSS through the implementation of a System-of-System (re-) engineering process is one of the objectives of the EGIDA Project in order to consolidate the results of the actions carried out in support of the GEO Science and Technology Committee (STC) Road Map. The EGIDA Methodology is based on several sources including GEO activities and documents, activities of the EGIDA project in support of the GEO STC Road Map, lessons learned from the initiatives and projects already contributing, in different ways, to the building of advanced infrastructures as direct or indirect part to GEO/GEOSS. The design of the EGIDA Methodology included several steps: a) an operational definition of the EGIDA Methodology, b) the identification of the target audience for the EGIDA Methodology, c) the identification of typical scenarios for the application of the EGIDA Methodology. Basing on these design activities the EGIDA Methodology is defined as a set of two activities running in parallel: Networking Activities - to identify and address the relevant S&T community(-ies) and actors (Community Engagement) - and Technical Activities: - to guide the infrastructure development and align it with the GEO/GEOSS interoperability principles

  13. Contribution to the sustainable management of resources by novel combination of industrial solid residues into red ceramics.

    PubMed

    Karayannis, V; Spiliotis, X; Papastergiadis, E; Ntampegliotis, K; Papapolymerou, G; Samaras, P

    2015-03-01

    Limited amounts of industrial residues are recycled while the remaining huge quantities are stockpiled or disposed of, thus frequently leading to soil contamination. The utilization of industrial residues as valuable secondary resources into ceramics can contribute to efficient waste management and substitution for massive amounts of natural resources (clayey minerals) demanded for ceramic production. The low cost of these residues and even possible energy savings during mixture firing may also be beneficial. In the present study, the innovative combination of lignite fly ash with steel-making dust into clay-based red ceramics is undertaken, to contribute both to sustainable use of resources and prevention of soil contamination. Brick specimens were shaped by extrusion and fired, their microstructure was examined and the effect of the mixture composition and firing temperature on physico-mechanical properties was determined. Ceramic microstructures were successfully obtained by a suitable combination of fly ash with steel dust (5 + 5 wt%) into clays. Properties can be predicted and tailored to meet the needs for specific applications by appropriately adjusting the mixture composition and sintering temperature. PMID:25533568

  14. Biochronomer™ technology and the development of APF530, a sustained release formulation of granisetron

    PubMed Central

    Ottoboni, Thomas; Gelder, Mark S; O’Boyle, Erin

    2014-01-01

    Granisetron and other 5-hydroxytryptamine type 3 (5-HT3) receptor antagonists are first-line agents for preventing chemotherapy-induced nausea and vomiting (CINV). Current treatment guidelines prefer the longer-acting agent, palonosetron, for CINV prevention in some chemotherapy regimens. A new granisetron formulation, APF530, has been developed as an alternative long-acting agent. APF530 utilizes Biochronomer™ technology to formulate a viscous tri(ethylene glycol) poly(orthoester)-based formulation that delivers – by single subcutaneous (SC) injection – therapeutic granisetron concentrations over 5 days. The poly(orthoester) polymer family contain an orthoester linkage; these bioerodible polymer systems are specifically designed for controlled, sustained drug delivery. Pharmacokinetics and pharmacodynamics of APF530 250, 500, or 750 mg SC (granisetron 5, 10, or 15 mg, respectively) administered 30–60 minutes before chemotherapy were evaluated in two Phase II trials in cancer patients receiving moderately (MEC) or highly (HEC) emetogenic chemotherapy. Pharmacokinetics were dose proportional, with slow granisetron absorption and elimination. Both trials demonstrated similar results for median half-life, time to maximum concentration, and exposure for APF530 250 and 500 mg, with no differences between patients receiving MEC or HEC. A randomized Phase III trial demonstrated noninferiority of APF530 500 mg SC (granisetron 10 mg) to intravenous palonosetron 0.25 mg in preventing CINV in patients receiving MEC or HEC in acute (0–24 hours) and delayed (24–120 hours) settings, with activity over 120 hours. Mean maximum granisetron plasma concentrations were 10.8 and 17.8 ng/mL, and mean half-lives were 30.8 and 35.9 hours after SC administration of APF530 250 and 500 mg, respectively. Therapeutic granisetron concentrations were maintained for greater than 120 hours (5 days) in both APF530 dose groups. These data suggest that APF530 – an SC

  15. Effective application of optical sensing technology for sustainable liquid level sensing and rainfall measurement

    NASA Astrophysics Data System (ADS)

    Afzal, Muhammad Hassan Bin

    2015-05-01

    Rainfall measurement is performed on regular basis to facilitate effectively the weather stations and local inhabitants. Different types of rain gauges are available with different measuring principle for rainfall measurement. In this research work, a novel optical rain sensor is designed, which precisely calculate the rainfall level according to rainfall intensity. This proposed optical rain sensor model introduced in this paper, which is basically designed for remote sensing of rainfall and it designated as R-ORMS (Remote Optical Rainfall Measurement sensor). This sensor is combination of some improved method of tipping bucket rain gauge and most of the optical hydreon rain sensor's principle. This optical sensor can detect the starting time and ending time of rain, rain intensity and rainfall level. An infrared beam from Light Emitting Diode (LED) through powerful convex lens can accurately determines the diameter of each rain drops by total internal reflection principle. Calculations of these accumulative results determine the rain intensity and rainfall level. Accurate rainfall level is determined by internal optical LED based sensor which is embedded in bucket wall. This internal sensor is also following the total internal reflection (TIR) principle and the Fresnel's law. This is an entirely novel design of optical sensing principle based rain sensor and also suitable for remote sensing rainfall level. The performance of this proposed sensor has been comprehensively compared with other sensors with similar attributes and it showed better and sustainable result. Future related works have been proposed at the end of this paper, to provide improved and enhanced performance of proposed novel rain sensor.

  16. Combined remediation technologies: results from field trials at chlorinated solvent impacted sites

    NASA Astrophysics Data System (ADS)

    O'Carroll, D. M.; Chowdhury, A. I.; Lomheim, L.; Boparai, H. K.; Weber, K.; Austrins, L. M.; Edwards, E.; Sleep, B.; de Boer, C. V.; Garcia, A. N.

    2015-12-01

    Non-aqueous phase liquids (NAPLs) are one class of waste liquids often generated from waste mixtures in industrial processes containing surfactants, chlorinated hydrocarbons and other compounds. Chlorinated solvents, a particularly persistent NAPL contaminant, frequently contaminate water sources for decades and are one of the more common contaminants at brownfield and industrialized sites. Although considerable advances in our understanding of the phenomena governing NAPL remediation have been made, and a number of innovative remediation technologies have been developed, existing technologies are rarely able to achieve clean up goals in contaminated aquifers at the completion of remedial activities. The development and pilot scale testing of new and innovative remediation technologies is, therefore, crucial to achieve clean up goals at contaminated sites. Our research group is currently investigating a number of innovative remediation technologies, either individually or as combined remedies. This includes the applicability of nanometals and ISCO (e.g., persulfate) for contaminated site remediation. These technologies can be combined with technologies to enhance amendment delivery (e.g., electrokinetics) or create conditions favorable for enhanced biotic contaminant degradation. This presentation will discuss outcomes from a number of field trials conducted at chlorinated solvent impacted sites by our group with a particular focus on combined remediation technologies.

  17. Technological Alternatives or Use of Wood Fuel in Combined Heat and Power Production

    NASA Astrophysics Data System (ADS)

    Rusanova, Jekaterina; Markova, Darja; Bazbauers, Gatis; Valters, Kārlis

    2013-12-01

    Abstract Latvia aims for 40% share of renewable energy in the total final energy use. Latvia has large resources of biomass and developed district heating systems. Therefore, use of biomass for heat and power production is an economically attractive path for increase of the share of renewable energy. The optimum technological solution for use of biomass and required fuel resources have to be identified for energy planning and policy purposes. The aim of this study was to compare several wood fuel based energy conversion technologies from the technical and economical point of view. Three biomass conversion technologies for combined heat and electricity production (CHP) were analyzed: • CHP with steam turbine technology; • gasification CHP using gas engine; • bio-methane combined cycle CHP. Electricity prices for each alternative are presented. The results show the level of support needed for the analyzed renewable energy technologies and time period needed to reach price parity with the natural gas - fired combined cycle gas turbine (CCGT) CHPss. The results also show that bio-methane technology is most competitive when compared with CCGT among the considered technologies regarding fuel consumption and electricity production, but it is necessary to reduce investment costs to reach the electricity price parity with the natural gas CCGT.

  18. Promotion of muscle regeneration by myoblast transplantation combined with the controlled and sustained release of bFGFcpr.

    PubMed

    Hagiwara, Koki; Chen, Guoping; Kawazoe, Naoki; Tabata, Yasuhiko; Komuro, Hiroaki

    2016-04-01

    Although myoblast transplantation is an attractive method for muscle regeneration, its efficiency remains limited. The efficacy of myoblast transplantation in combination with the controlled and sustained delivery of basic fibroblast growth factor (bFGF) was investigated. Defects of thigh muscle in Sprague-Dawley (SD) rats were created, and GFP-positive myoblasts were subsequently transplanted. The rats were divided into three groups. In control group 1 (C1) only myoblasts were transplanted, while in control group 2 (C2) myoblasts were introduced along with empty gelatin hydrogel microspheres. In the experimental group (Ex), myoblasts were transplanted along with bFGF incorporated into gelatin hydrogel microspheres. Four weeks after transplantation, GFP-positive myoblasts were found to be integrated into the recipient muscle and to contribute to muscle fibre regeneration in all groups. A significantly higher expression level of GFP in the Ex group demonstrated that the survival rate of transplanted myoblasts in Ex was remarkably improved compared with that in C1 and C2. Furthermore, myofibre regeneration, characterized by centralization of the nuclei, was markedly accelerated in Ex. The expression level of CD31 in Ex was higher than that in both C1 and C2, but the differences were not statistically significant. A significantly higher expression level of Myogenin and a lower expression level of MyoD1 were both observed in Ex after 4 weeks, suggesting the promotion of differentiation to myotubes. Our findings suggest that the controlled and sustained release of bFGF from gelatin hydrogel microspheres improves the survival rate of transplanted myoblasts and promotes muscle regeneration by facilitating myogenesis rather than angiogenesis. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23554408

  19. Predicting the aquatic stage sustainability of a restored backwater channel combining in-situ and airborne remotely sensed bathymetric models.

    NASA Astrophysics Data System (ADS)

    Jérôme, Lejot; Jérémie, Riquier; Hervé, Piégay

    2014-05-01

    As other large river floodplain worldwide, the floodplain of the Rhône has been deeply altered by human activities and infrastructures over the last centuries both in term of structure and functioning. An ambitious restoration plan of selected by-passed reaches has been implemented since 1999, in order to improve their ecological conditions. One of the main action aimed to increase the aquatic areas in floodplain channels (i.e. secondary channels, backwaters, …). In practice, fine and/or coarse alluvium were dredged, either locally or over the entire cut-off channel length. Sometimes the upstream or downstream alluvial plugs were also removed to reconnect the restored feature to the main channel. Such operation aims to restore forms and associated habitats of biotic communities, which are no more created or maintained by the river itself. In this context, assessing the sustainability of such restoration actions is a major issue. In this study, we focus on 1 of the 24 floodplain channels which have been restored along the Rhône River since 1999, the Malourdie channel (Chautagne reach, France). A monitoring of the geomorphologic evolution of the channel has been conducted during a decade to assess the aquatic stage sustainability of this former fully isolated channel, which has been restored as a backwater in 2004. Two main types of measures were performed: (a) water depth and fine sediment thickness were surveyed with an auger every 10 m along the channel centerline in average every year and a half allowing to establish an exponential decay model of terrestrialization rates through time; (b) three airborne campaigns (2006, 2007, 2012) by Ultra Aerial Vehicle (UAV) provided images from which bathymetry were inferred in combination with observed field measures. Coupling field and airborne models allows us to simulate different states of terrestrialization at the scale of the whole restore feature (e.g. 2020/2030/2050). Raw results indicate that terrestrialization

  20. Sustainable Urban Infrastructure Development and the Role of Water Technologies in the U.S.

    EPA Science Inventory

    Increased climate variability and rapid urbanization are fundamentally changing the urban watershed hydrology and consequently sustainability of water systems. However, our urban planning and engineering practices are based on decades-old hydrological theory and guidance based o...

  1. Superflex - A synergistic combination of vibrating beam and quartz flexure accelerometer technology

    NASA Astrophysics Data System (ADS)

    Norling, Brian L.

    A new mechanism concept called Superflex which uses quartz flexure technology for precision performance applications such as high-accuracy inertial navigation is described. Data from Superflex developmental prototypes are presented. The Superflex mechanization concept provides a synergistic combination of vibrating beam resonator and quartz flexure technology; it uses a form of symmetry in the flexures and sensing crystals which decouples static error stresses such as differential thermal expansian and permits all axis caging of shock overloads.

  2. Multiobjective Optimization Combining BMP Technology and Land Preservation for Watershed-based Stormwater Management

    NASA Astrophysics Data System (ADS)

    McGarity, A. E.

    2009-12-01

    Recent progress has been made developing decision-support models for optimal deployment of best management practices (BMP’s) in an urban watershed to achieve water quality goals. One example is the high-level screening model StormWISE, developed by the author (McGarity, 2006) that uses linear and nonlinear programming to narrow the search for optimal solutions to certain land use categories and drainage zones. Another example is the model SUSTAIN developed by USEPA and Tetra Tech (Lai, et al., 2006), which builds on the work of Yu, et al., 2002), that uses a detailed, computationally intensive simulation model driven by a genetic solver to select optimal BMP sites. However, a model that deals only with best management practice (BMP) site selections may fail to consider solutions that avoid future nonpoint pollutant loadings by preserving undeveloped land. This paper presents results of a recently completed research project in which water resource engineers partnered with experienced professionals at a land conservation trust to develop a multiobjective model for watershed management. The result is a revised version of StormWISE that can be used to identify optimal, cost-effective combinations of easements and similar land preservation tools for undeveloped sites along with low impact development (LID) and BMP technologies for developed sites. The goal is to achieve the watershed-wide limits on runoff volume and pollutant loads that are necessary to meet water quality goals as well as ecological benefits associated with habitat preservation and enhancement. A nonlinear programming formulation is presented for the extended StormWISE model that achieves desired levels of environmental benefits at minimum cost. Tradeoffs between different environmental benefits are generated by multiple runs of the model while varying the levels of each environmental benefit obtained. The model is solved using piecewise linearization of environmental benefit functions where each

  3. Parabolic-Trough Technology Roadmap: A Pathway for Sustained Commercial Development and Deployment of Parabolic-Trough Technology

    SciTech Connect

    Price, H.; Kearney, D.

    1999-01-31

    Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop.

  4. Development of Sustained Release “NanoFDC (Fixed Dose Combination)” for Hypertension – An Experimental Study

    PubMed Central

    Arora, Anjuman; Shafiq, Nusrat; Jain, Sanjay; Khuller, G. K.; Sharma, Sadhana; Malhotra, Samir

    2015-01-01

    Objectives The present study was planned to formulate, characterize and evaluate the pharmacokinetics of a novel “NanoFDC” comprising three commonly prescribed anti-hypertensive drugs, hydrochlorothiazide (a diuretic), candesartan (ARB) and amlodipine (a calcium channel blocker). Basic Methods The candidate drugs were loaded in Poly (DL-lactide-co-gycolide) (PLGA) by emulsion- diffusion-evaporation method. The formulations were evaluated for their size, morphology, drug loading and in vitro release individually. Single dose pharmacokinetic profiles of the nanoformulations alone and in combination, as a NanoFDC, were evaluated in Wistar rats. Results The candidate drugs encapsulated inside PLGA showed entrapment efficiencies ranging from 30%, 33.5% and 32% for hydrochlorothiazide, candesartan and amlodipine respectively. The nanoparticles ranged in size from 110 to 180 nm. In vitro release profile of the nanoformulation showed 100% release by day 6 in the physiological pH 7.4 set up with PBS (phosphate buffer saline) and by day 4-5 in the intestinal pH 1.2 and 8.0 set up SGF (simulated gastric fluid) and SIF (simulated intestinal fluid) respectively. In pharmacokinetic analysis a sustained-release for 6 days and significant increase in the mean residence time (MRT), as compared to the respective free drugs was noted [MRT of amlodipine, hydrochlorothiazide and candesartan changed from 8.9 to 80.59 hours, 11 to 69.20 hours and 9 to 101.49 hours respectively]. Conclusion We have shown for the first time that encapsulating amlodipine, hydrochlorothiazide and candesartan into a single nanoformulation, to get the “NanoFDC (Fixed Dose Combination)” is a feasible strategy which aims to decrease pill burden. PMID:26047011

  5. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery.

    PubMed

    Wang, Chaoyang; He, Chengyi; Tong, Zhen; Liu, Xinxing; Ren, Biye; Zeng, Fang

    2006-02-01

    Combination of adsorption by porous CaCO(3) microparticles and encapsulation by polyelectrolyte multilayers via the layer-by-layer (LbL) self-assembly was proposed for sustained drug release. Firstly, porous calcium carbonate microparticles with an average diameter of 5 microm were prepared for loading a model drug, ibuprofen (IBU). Adsorption of IBU into the pores was characterized by ultraviolet (UV), infrared (IR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) experiment and X-ray diffraction (XRD). The adsorbed IBU amount Gamma was 45.1mg/g for one-time adsorption and increased with increasing adsorption times. Finally, multilayer films of protamine sulfate (PRO) and sodium poly(styrene sulfonate) (PSS) were formed on the IBU-loaded CaCO(3) microparticles by the layer-by-layer self-assembly. Amorphous IBU loaded in the pores of the CaCO(3) microparticles had a rapider release in the gastric fluid and a slower release in the intestinal fluid, compared with the bare IBU crystals. Polyelectrolyte multilayers assembled on the drug-loaded particles by the LbL reduced the release rate in both fluids. In this work, polymer/inorganic hybrid core-shell microcapsules were fabricated for controlled release of poorly water-soluble drugs. The porous inorganic particles are useful to load drugs in amorphous state and the polyelectrolyte multilayer films coated on the particle assuage the initial burst release. PMID:16359836

  6. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals

    PubMed Central

    Salazar, Jaime; Müller, Rainer H.; Möschwitzer, Jan P.

    2014-01-01

    Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals. PMID:26556191

  7. A City Parking Integration System Combined with Cloud Computing Technologies and Smart Mobile Devices

    ERIC Educational Resources Information Center

    Yeh, Her-Tyan; Chen, Bing-Chang; Wang, Bo-Xun

    2016-01-01

    The current study applied cloud computing technology and smart mobile devices combined with a streaming server for parking lots to plan a city parking integration system. It is also equipped with a parking search system, parking navigation system, parking reservation service, and car retrieval service. With this system, users can quickly find…

  8. Combining Technology and Narrative in a Learning Environment for Workplace Training.

    ERIC Educational Resources Information Center

    Nelson, Wayne A.; Wellings, Paula; Palumbo, David; Gupton, Christine

    In a project designed to provide training for entry-level job skills in high tech industries, a combination of narrative and technology was employed to aid learners in developing the necessary soft skills (dependability, responsibility, listening comprehension, collaboration, et cetera) sought by employers. The EnterTech Project brought together a…

  9. Combining Emerging Technology and Writing across the Curriculum: Professional Development that Works!

    ERIC Educational Resources Information Center

    Hampson, Margaret P.; Hearron, Tom; Noggle, Mary

    2009-01-01

    Though Writing Across the Curriculum is not a new concept, Caldwell Community College and Technical Institute offers a two-semester professional development program that combines this instructional approach with emerging technology. Though this program focuses on the use of writing to enhance student learning, this training format can be…

  10. An Analysis of Selected Education Technology Sustainability Factors and Their Alignment with the California School Technology Survey

    ERIC Educational Resources Information Center

    Lee, Benjamin Bradley

    2010-01-01

    This study offers guidance to policy makers, educational leaders, and researchers about the aspects of Educational Technology (EdTech) implementation in which investments of money, time, or investigative inquiry will yield highest impacts. Beginning from the observations that: (1) the power and ubiquity of contemporary technologies have…

  11. Providing Semantic Metadata to Online Learning Resources on Sustainable Agriculture and Farming: Combining Values and Technical Knowledge

    ERIC Educational Resources Information Center

    Garcia-Barriocanal, Elena; Sicilia, Miguel-Angel; Sanchez-Alonso, Salvador

    2013-01-01

    Sustainable or organic agriculture aims at harmonizing the efficient production of food with the preservation of the environmental conditions for continuing production in a sustained way. As such, it embodies a set of environmental values that are currently taught and learnt worldwide in specific courses or as part of broader programs or…

  12. Soil ecology and agricultural technology; An integrated approach towards improved soil management for sustainable farming

    NASA Astrophysics Data System (ADS)

    Pulleman, Mirjam; Pérès, Guénola; Crittenden, Stephen; Heddadj, Djilali; Sukkel, Wijnand

    2014-05-01

    Intensive arable food production systems are in need of smart solutions that combine ecological knowledge and farm technology to maximize yields while protecting natural resources. The huge diversity of soil organisms and their interactions is of crucial importance for soil functions and ecosystem services, such as organic matter incorporation and break down, nutrient mineralization, soil structure formation, water regulation and disease and pest control. Soil management decisions that take into account the soil biodiversity and associated functions are thus essential to (i) maintain soil productivity in the long term, (ii) reduce the dependency on external inputs and non-renewables such as fossil fuels, and (iii) make agroecosystems more resilient against biotic and abiotic stresses. Organic farming systems and reduced tillage systems are two approaches that aim to increase soil biodiversity and general soil quality, through improved management of organic matter but differ in their emphasis on the use of chemical inputs for crop protection or soil disturbance, respectively. In North-western Europe experience with and knowledge of reduced tillage systems is still scarce, both in conventional and organic farming. Our study targeted both conventional and organic farming and aimed at 1) documenting reduced tillage practices within different agroecological contexts in NW Europe; 2) evaluating the effects of reduced tillage systems on soil biodiversity and soil ecosystem services; 3) increase understanding of agroecological factors that determine trade-offs between different ecosystem services. Earthworm species and nematode taxa were selected as indicator organisms to be studied for their known response to soil management and effects on soil functions. Additionally, soil organic matter, physical soil parameters and processes, and crop yields have been measured across multiple sites. Data have been collected over several cropping seasons in long term field experiments

  13. In-situ Adsorption-Biological Combined Technology Treating Sediment Phosphorus in all Fractions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, C.; He, F.; Liu, B.; Xu, D.; Xia, S.; Zhou, Q.; Wu, Z.

    2016-07-01

    The removal efficiency of sediment phosphorus (P) in all fractions with in-situ adsorption-biological combined technology was studied in West Lake, Hangzhou, China. The removal amounts of sediment Ca-P, Fe/Al-P, IP, OP and TP by the combined effect of PCFM (Porous ceramic filter media) and V. spiralis was 61 mg/kg, 249 mg/kg, 318 mg/kg, 85 mg/kg and 416 mg/kg, respectively, and the corresponding removing rate reached 10.5%, 44.6%, 27.5%, 30.6% and 29.2%. This study suggested that the combination of PCFM and V. spiralis could achieve a synergetic sediment P removal because the removal rates of the combinations were higher than the sum of that of PCFM and macrophytes used separately. From analysis of sediment microbial community and predicted function, we found that the combined PCFM and V. spiralis enhanced the function of P metabolism by increasing specific genus that belong to phylum Firmicutes and Nitrospirae. Thus it can be seen the in-situ adsorption-biological combined technology could be further applied to treat internal P loading in eutrophic waters.

  14. In-situ Adsorption-Biological Combined Technology Treating Sediment Phosphorus in all Fractions.

    PubMed

    Zhang, Y; Wang, C; He, F; Liu, B; Xu, D; Xia, S; Zhou, Q; Wu, Z

    2016-01-01

    The removal efficiency of sediment phosphorus (P) in all fractions with in-situ adsorption-biological combined technology was studied in West Lake, Hangzhou, China. The removal amounts of sediment Ca-P, Fe/Al-P, IP, OP and TP by the combined effect of PCFM (Porous ceramic filter media) and V. spiralis was 61 mg/kg, 249 mg/kg, 318 mg/kg, 85 mg/kg and 416 mg/kg, respectively, and the corresponding removing rate reached 10.5%, 44.6%, 27.5%, 30.6% and 29.2%. This study suggested that the combination of PCFM and V. spiralis could achieve a synergetic sediment P removal because the removal rates of the combinations were higher than the sum of that of PCFM and macrophytes used separately. From analysis of sediment microbial community and predicted function, we found that the combined PCFM and V. spiralis enhanced the function of P metabolism by increasing specific genus that belong to phylum Firmicutes and Nitrospirae. Thus it can be seen the in-situ adsorption-biological combined technology could be further applied to treat internal P loading in eutrophic waters. PMID:27418242

  15. In-situ Adsorption-Biological Combined Technology Treating Sediment Phosphorus in all Fractions

    PubMed Central

    Zhang, Y.; Wang, C.; He, F.; Liu, B.; Xu, D.; Xia, S.; Zhou, Q.; Wu, Z.

    2016-01-01

    The removal efficiency of sediment phosphorus (P) in all fractions with in-situ adsorption-biological combined technology was studied in West Lake, Hangzhou, China. The removal amounts of sediment Ca-P, Fe/Al-P, IP, OP and TP by the combined effect of PCFM (Porous ceramic filter media) and V. spiralis was 61 mg/kg, 249 mg/kg, 318 mg/kg, 85 mg/kg and 416 mg/kg, respectively, and the corresponding removing rate reached 10.5%, 44.6%, 27.5%, 30.6% and 29.2%. This study suggested that the combination of PCFM and V. spiralis could achieve a synergetic sediment P removal because the removal rates of the combinations were higher than the sum of that of PCFM and macrophytes used separately. From analysis of sediment microbial community and predicted function, we found that the combined PCFM and V. spiralis enhanced the function of P metabolism by increasing specific genus that belong to phylum Firmicutes and Nitrospirae. Thus it can be seen the in-situ adsorption-biological combined technology could be further applied to treat internal P loading in eutrophic waters. PMID:27418242

  16. Developing and Sustaining Schools as Technology­ Enriched Learning Organizations

    ERIC Educational Resources Information Center

    Atkinson, Linda Cole; O'Hair, Mary John; O'Hair, H. Dan; Williams, Leslie Ann

    2008-01-01

    During the last two decades, an assumption was advanced by policy makers that making technology available would result in effective technology transfer and integration in the teaching and learning process (Cuban, 2001); however, reality has been less kind with research presenting a pessimistic picture regarding the impact of technology in the…

  17. A Learning Ecology Perspective: School Systems Sustaining Art Teaching with Technology

    ERIC Educational Resources Information Center

    Lin, Ching-Chiu

    2011-01-01

    Infusing technology into art education practice has been a continuous endeavor for preservice and in-service art teacher education. In recent years, art educators around the world have researched issues related to the preparation of art teacher technology competencies, including art teacher perceptions of working with technology, implementations…

  18. Using Innovative Technology to Develop Sustainable Assessment Practices in Marketing Education

    ERIC Educational Resources Information Center

    Debuse, Justin C. W.; Lawley, Meredith

    2011-01-01

    Timely, constructive feedback on assessment is critically important to students and yet is increasingly difficult for time-poor academics to consistently provide. Marketing educators also face pressure to incorporate sustainability into both the curriculum and practices such as assessment. This article outlines the development of an innovative…

  19. Sustainable Innovations: Bringing Digital Media and Emerging Technologies to the Classroom

    ERIC Educational Resources Information Center

    Herro, Danielle

    2015-01-01

    Because traditional schools struggle to effectively understand, implement, and sustain digital learning initiatives, innovating with digital media in classrooms is a difficult endeavor. Practitioners need examples to better understand conditions necessary to move forward with digital media and learning (DML) in schools. This article provides…

  20. The e-Beam Sustained Laser Technology for Space-based Doppler Wind Lidar

    NASA Technical Reports Server (NTRS)

    Brown, M. J.; Holman, W.; Robinson, R. J.; Schwarzenberger, P. M.; Smith, I. M.; Wallace, S.; Harris, M. R.; Willetts, D. V.; Kurzius, S. C.

    1992-01-01

    An overview is presented of GEC Avionics activities relating to the Spaceborne Doppler Wind Lidar. In particular, the results of design studies into the use of an e-beam sustained CO2 laser for spaceborne applications, and experimental work on a test bed system are discussed.

  1. Leading Sustainable Pedagogical Reform with Technology for Student-Centred Learning: A Complexity Perspective

    ERIC Educational Resources Information Center

    Toh, Yancy

    2016-01-01

    The literature on school improvement is littered with sombre reports of how ICT-mediated innovations have failed to create impact on teaching and learning. Even when evidence-based successes are palpable, they are sporadic and rarely sustainable. Against the backdrop of the litany of such studies, this paper reports the case of a primary school in…

  2. Teaching and Learning for Sustainable Development: ESD Research in Technology Education

    ERIC Educational Resources Information Center

    Pavlova, Margarita

    2013-01-01

    When education for sustainable development (ESD) emerged as part of the educational agenda in the international arena, it was associated with significant shifts in the educational debate about the purpose and nature of education and with the need to respond to crises caused by the modern idea of progress. Scientists from different fields warn…

  3. The importance of pre-conversion technologies for coupling sustainable bioenergy land use to biomass trade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large scale bioenergy development will shift current land use dynamics in the agricultural sector. The establishment of biofuel and biopower feedstock markets has great potential for encouraging more sustainable land use practices. Work has been done showing that strategically integrating food, feed...

  4. Developing and Applying Green Building Technology in an Indigenous Community: An Engaged Approach to Sustainability Education

    ERIC Educational Resources Information Center

    Riley, David R.; Thatcher, Corinne E.; Workman, Elizabeth A.

    2006-01-01

    Purpose: This paper aims to disseminate an innovative approach to sustainability education in construction-related fields in which teaching, research, and service are integrated to provide a unique learning experience for undergraduate students, faculty members, and community partners. Design/methodology/approach: The paper identifies the need for…

  5. Combining Multidisciplinary Science, Quantitative Reasoning and Social Context to Teach Global Sustainability and Prepare Students for 21st Grand Challenges

    NASA Astrophysics Data System (ADS)

    Myers, J. D.

    2011-12-01

    The Earth's seven billion humans are consuming a growing proportion of the world's ecosystem products and services. Human activity has also wrought changes that rival the scale of many natural geologic processes, e.g. erosion, transport and deposition, leading to recognition of a new geological epoch, the Anthropocene. Because of these impacts, several natural systems have been pushed beyond the planetary boundaries that made the Holocene favorable for the expansion of humanity. Given these human-induced stresses on natural systems, global citizens will face an increasing number of grand challenges. Unfortunately, traditional discipline-based introductory science courses do little to prepare students for these complex, scientifically-based and technologically-centered challenges. With NSF funding, an introductory, integrated science course stressing quantitative reasoning and social context has been created at UW. The course (GEOL1600: Global Sustainability: Managing the Earth's Resources) is a lower division course designed around the energy-water-climate (EWC) nexus and integrating biology, chemistry, Earth science and physics. It melds lectures, lecture activities, reading questionnaires and labs to create a learning environment that examines the EWT nexus from a global through regional context. The focus on the EWC nexus, while important socially and intended to motivate students, also provides a coherent framework for identifying which disciplinary scientific principles and concepts to include in the course: photosynthesis and deep time (fossil fuels), biogeochemical cycles (climate), chemical reactions (combustion), electromagnetic radiation (solar power), nuclear physics (nuclear power), phase changes and diagrams (water and climate), etc. Lecture activities are used to give students the practice they need to make quantitative skills routine and automatic. Laboratory exercises on energy (coal, petroleum, nuclear power), water (in Bangladesh), energy

  6. Delivering an Automated and Integrated Approach to Combination Screening Using Acoustic-Droplet Technology.

    PubMed

    Cross, Kevin; Craggs, Richard; Swift, Denise; Sitaram, Anesh; Daya, Sandeep; Roberts, Mark; Hawley, Shaun; Owen, Paul; Isherwood, Bev

    2016-02-01

    Drug combination testing in the pharmaceutical industry has typically been driven by late-stage opportunistic strategies rather than by early testing to identify drug combinations for clinical investigation that may deliver improved efficacy. A rationale for combinations exists across a number of diseases in which pathway redundancy or resistance to therapeutics are evident. However, early assays are complicated by the absence of both assay formats representative of disease biology and robust infrastructure to screen drug combinations in a medium-throughput capacity. When applying drug combination testing studies, it may be difficult to translate a study design into the required well contents for assay plates because of the number of compounds and concentrations involved. Dispensing these plates increases in difficulty as the number of compounds and concentration points increase and compounds are subsequently rolled onto additional labware. We describe the development of a software tool, in conjunction with the use of acoustic droplet technology, as part of a compound management platform, which allows the design of an assay incorporating combinations of compounds. These enhancements to infrastructure facilitate the design and ordering of assay-ready compound combination plates and the processing of combinations data from high-content organotypic assays. PMID:25835292

  7. Environmental and social cues can be used in combination to develop sustainable breeding techniques for goat reproduction in the subtropics.

    PubMed

    Delgadillo, J A

    2011-01-01

    Goat breeds from subtropical latitudes show different annual reproductive cycles. Some of them display large seasonal variations in their annual breeding season, while others display a moderate seasonality or sexual activity all year round. This reproductive seasonality causes seasonality of milk, cheese and meat productions and, as a consequence, induces wide variation in producer incomes. To solve this problem and provide methods allowing producers to breed animals during the anestrous period and stabilize production all year round, it is necessary to have a deep knowledge of their annual sexual activity and to identify the environmental factors controlling the timing of the annual reproductive cycle. Then, it is possible to build on these knowledge sustainable breeding techniques adapted to the environmental, economic and social characteristics of the local breeding system. In this review, I will illustrate this strategy through the example of our experiments in subtropical goats. First, we determined the characteristics of the annual breeding season in both male and female goats. Second, we identified the photoperiod as the major environmental factor controlling the timing of this annual breeding season. Third, we used the photoperiod to stimulate indirectly the sexual behavior of does. Indeed, we used photoperiodic treatments to stimulate the sexual activity of bucks during the non-breeding season. These sexually active male goats were then used to induce and synchronize the estrous behavior and ovulatory activity of anestrous females in confined or grazing conditions by using the 'male effect'. Under subtropical conditions, these results constitute an original manner to control the reproductive activity of local goats using the photoperiod combined with the 'male effect.' PMID:22440704

  8. Combination Chemotherapy with Suboptimal Doses of Benznidazole and Pentoxifylline Sustains Partial Reversion of Experimental Chagas' Heart Disease.

    PubMed

    Vilar-Pereira, Glaucia; Resende Pereira, Isabela; de Souza Ruivo, Leonardo Alexandre; Cruz Moreira, Otacilio; da Silva, Andrea Alice; Britto, Constança; Lannes-Vieira, Joseli

    2016-07-01

    Chronic chagasic cardiomyopathy (CCC) progresses with parasite persistence, fibrosis, and electrical alterations associated with an unbalanced immune response such as high plasma levels of tumor necrosis factor (TNF) and nitric oxide (NO). Presently, the available treatments only mitigate the symptoms of CCC. To improve CCC prognosis, we interfered with the parasite load and unbalanced immune response using the trypanocidal drug benznidazole (Bz) and the immunoregulator pentoxifylline (PTX). C57BL/6 mice chronically infected with the Colombian strain of Trypanosoma cruzi and with signs of CCC were treated for 30 days with a suboptimal dose of Bz (25 mg/kg of body weight), PTX (20 mg/kg), or their combination (Bz plus PTX) and analyzed for electrocardiographic, histopathological, and immunological changes. Bz (76%) and Bz-plus-PTX (79%) therapies decreased parasite loads. Although the three therapies reduced myocarditis and fibrosis and ameliorated electrical alterations, only Bz plus PTX restored normal heart rate-corrected QT (QTc) intervals. Bz-plus-PTX-treated mice presented complementary effects of Bz and PTX, which reduced TNF expression (37%) in heart tissue and restored normal TNF receptor 1 expression on CD8(+) T cells, respectively. Bz (85%) and PTX (70%) therapies reduced the expression of inducible nitric oxide synthase (iNOS/NOS2) in heart tissue, but only Bz (58%) reduced NO levels in serum. These effects were more pronounced after Bz-plus-PTX therapy. Moreover, 30 to 50 days after treatment cessation, reductions of the prolonged QTc and QRS intervals were sustained in Bz-plus-PTX-treated mice. Our findings support the importance of interfering with the etiological agent and immunological abnormalities to improve CCC prognosis, opening an opportunity for a better quality of life for Chagas' disease (CD) patients. PMID:27161638

  9. Combination Chemotherapy with Suboptimal Doses of Benznidazole and Pentoxifylline Sustains Partial Reversion of Experimental Chagas' Heart Disease

    PubMed Central

    Vilar-Pereira, Glaucia; Resende Pereira, Isabela; de Souza Ruivo, Leonardo Alexandre; Cruz Moreira, Otacilio; da Silva, Andrea Alice; Britto, Constança

    2016-01-01

    Chronic chagasic cardiomyopathy (CCC) progresses with parasite persistence, fibrosis, and electrical alterations associated with an unbalanced immune response such as high plasma levels of tumor necrosis factor (TNF) and nitric oxide (NO). Presently, the available treatments only mitigate the symptoms of CCC. To improve CCC prognosis, we interfered with the parasite load and unbalanced immune response using the trypanocidal drug benznidazole (Bz) and the immunoregulator pentoxifylline (PTX). C57BL/6 mice chronically infected with the Colombian strain of Trypanosoma cruzi and with signs of CCC were treated for 30 days with a suboptimal dose of Bz (25 mg/kg of body weight), PTX (20 mg/kg), or their combination (Bz plus PTX) and analyzed for electrocardiographic, histopathological, and immunological changes. Bz (76%) and Bz-plus-PTX (79%) therapies decreased parasite loads. Although the three therapies reduced myocarditis and fibrosis and ameliorated electrical alterations, only Bz plus PTX restored normal heart rate-corrected QT (QTc) intervals. Bz-plus-PTX-treated mice presented complementary effects of Bz and PTX, which reduced TNF expression (37%) in heart tissue and restored normal TNF receptor 1 expression on CD8+ T cells, respectively. Bz (85%) and PTX (70%) therapies reduced the expression of inducible nitric oxide synthase (iNOS/NOS2) in heart tissue, but only Bz (58%) reduced NO levels in serum. These effects were more pronounced after Bz-plus-PTX therapy. Moreover, 30 to 50 days after treatment cessation, reductions of the prolonged QTc and QRS intervals were sustained in Bz-plus-PTX-treated mice. Our findings support the importance of interfering with the etiological agent and immunological abnormalities to improve CCC prognosis, opening an opportunity for a better quality of life for Chagas' disease (CD) patients. PMID:27161638

  10. Federal strategies to increase the implementation of combined heat and power technologies in the United States

    SciTech Connect

    Laitner, J.; Parks, W.; Schilling, J.; Scheer, R.

    1999-07-01

    Recent interest in combined heat and power (CHP) is providing momentum to efforts aimed at increasing the capacity of this highly-efficient technology. Factors driving this increase in interest include the need to increase the efficiency of the nation's electricity generation infrastructure, DOE Assistant Secretary Dan Reicher's challenge to double the capacity of CHP by 2010, the success of DOE's Advanced Turbine Systems Program in supporting ultra-efficient CHP technologies, and the necessity of finding cost-effective solutions to address climate change and air quality issues. The federal government is committed to increasing the penetration of CHP technologies in the US. The ultimate goal is to build a competitive market for CHP in which policies and regulations support the implementation of a full suite of technologies for multiple applications. Specific actions underway at the federal level include technology strategies to improve CHP data collection and assessment and work with industry to encourage the development of advanced CHP technologies. Policy strategies include changes to federal environmental permitting procedures including CHP-friendly strategies in federal restructuring legislation, supporting tax credits and changes to depreciation requirements as economic incentives to CHP, working with industry to leverage resources in the development of advanced CHP technologies, educating state officials about the things they can do to encourage CHP, and increasing awareness about the benefits of CHP and the barriers limiting its increased implementation.

  11. Factors influencing communication and decision-making about life-sustaining technology during serious illness: a qualitative study

    PubMed Central

    Kryworuchko, Jennifer; Strachan, P H; Nouvet, E; Downar, J; You, J J

    2016-01-01

    Objectives We aimed to identify factors influencing communication and decision-making, and to learn how physicians and nurses view their roles in deciding about the use of life-sustaining technology for seriously ill hospitalised patients and their families. Design The qualitative study used Flanagan's critical incident technique to guide interpretive description of open-ended in-depth individual interviews. Setting Participants were recruited from the medical wards at 3 Canadian hospitals. Participants Interviews were completed with 30 healthcare professionals (9 staff physicians, 9 residents and 12 nurses; aged 25–63 years; 73% female) involved in decisions about the care of seriously ill hospitalised patients and their families. Measures Participants described encounters with patients and families in which communication and decision-making about life-sustaining technology went particularly well and unwell (ie, critical incidents). We further explored their roles, context and challenges. Analysis proceeded using constant comparative methods to form themes independently and with the interprofessional research team. Results We identified several key factors that influenced communication and decision-making about life-sustaining technology. The overarching factor was how those involved in such communication and decision-making (healthcare providers, patients and families) conceptualised the goals of medical practice. Additional key factors related to how preferences and decision-making were shaped through relationships, particularly how people worked toward ‘making sense of the situation’, how physicians and nurses approached the inherent and systemic tensions in achieving consensus with families, and how physicians and nurses conducted professional work within teams. Participants described incidents in which these key factors interacted in dynamic and unpredictable ways to influence decision-making for any particular patient and family. Conclusions A focus

  12. Universities in capacity building in sustainable development: focus on solid waste management and technology.

    PubMed

    Agamuthu, P; Hansen, Jens Aage

    2007-06-01

    This paper analyses some of the higher education and research capacity building experiences gained from 1998-2006 by Danish and Malaysian universities. The focus is on waste management, directly relating to both the environmental and socio-economic dimensions of sustainable development. Primary benefits, available as an educational legacy to universities, were obtained in terms of new and enhanced study curricula established on Problem-oriented Project-based Learning (POPBL) pedagogy, which strengthened academic environmental programmes at Malaysian and Danish universities. It involved more direct and mutually beneficial cooperation between academia and businesses in both countries. This kind of university reach-out is considered vital to development in all countries actively striving for global and sustainable development. Supplementary benefits were accrued for those involved directly in activities such as the 4 months of field studies, workshops, field courses and joint research projects. For students and academics, the gains have been new international dimensions in university curricula, enhanced career development and research collaboration based on realworld cases. It is suggested that the area of solid waste management offers opportunities for much needed capacity building in higher education and research, contributing to sustainable waste management on a global scale. Universities should be more actively involved in such educational, research and innovation programmes to make the necessary progress. ISWA can support capacity building activities by utilizing its resources--providing a lively platform for debate, securing dissemination of new knowledge, and furthering international networking beyond that which universities already do by themselves. A special challenge to ISWA may be to improve national and international professional networks between academia and business, thereby making education, research and innovation the key driving mechanisms in

  13. Selection of sustainable sanitation technologies for urban slums--a case of Bwaise III in Kampala, Uganda.

    PubMed

    Katukiza, A Y; Ronteltap, M; Oleja, A; Niwagaba, C B; Kansiime, F; Lens, P N L

    2010-12-01

    Provision of sanitation solutions in the world's urban slums is extremely challenging due to lack of money, space, access and sense of ownership. This paper presents a technology selection method that was used for the selection of appropriate sanitation solutions for urban slums. The method used in this paper takes into account sustainability criteria, including social acceptance, technological and physical applicability, economical and institutional aspects, and the need to protect and promote human health and the environment. The study was carried out in Bwaise III; a slum area in Kampala (Uganda). This was through administering of questionnaires and focus group discussions to obtain baseline data, developing a database to compare different sanitation options using technology selection criteria and then performing a multi-criteria analysis of the technology options. It was found that 15% of the population uses a public pit latrine; 75% uses a shared toilet; and 10% has private, non-shared sanitation facilities. Using the selection method, technologies such as Urine Diversion Dry Toilet (UDDT) and biogas latrines were identified to be potentially feasible sanitation solutions for Bwaise III. Sanitation challenges for further research are also presented. PMID:20943256

  14. The use of Space Technology for the Benefit of Society in Context of Planning and Sustainable Development

    NASA Astrophysics Data System (ADS)

    Kuldeep, Kuldeep; Banu, Vijaya

    2016-07-01

    The introduction of the novel technology mostly leads to a number of advantages to the society. The space technology has shown such benefits in many fields including the areas of health and education, communication sectors, land and water resources management, weather forecasting and disaster management. It has vast potential for addressing a variety of societal problems of the developing countries especially in India in a effective manner. Large population which is spread over vast and remote areas of the nation, reaching out to them is a difficult task. This manuscript aims to explain the benefits originated from the application of space technology. The satellite imagery and its derived products can better be utilized for local level planning and sustainable development of a region. A case-study using Bhuvan Panchayat Portal developed by National Remote Sensing Centre, ISRO under the project "Space Based Information Support for De-Centralised Planning" towards Digital Empowerment of Society for Panchayat level Planning and Governance has been carried out, which list out the benefits that have accrued from the use of space technology for planning and development at grass root level in India. It covers, in particular, the benefits expected to be derived from the Indian Remote Sensing Satellite (IRS) Images and derived products. Certain conclusions about the benefits from space based inputs have been drawn that may be generally applicable to all developing countries. This paper also investigates the various possibilities and potentials of Remote Sensing technologies for societal applications.

  15. Assessing the biophysical and socio-economic potential of Sustainable Land Management and Water Harvesting Technologies for rainfed agriculture across semi-arid Africa.

    NASA Astrophysics Data System (ADS)

    Irvine, Brian; Fleskens, Luuk; Kirkby, Mike

    2016-04-01

    Stakeholders in recent EU projects identified soil erosion as the most frequent driver of land degradation in semi-arid environments. In a number of sites, historic land management and rainfall variability are recognised as contributing to the serious environmental impact. In order to consider the potential of sustainable land management and water harvesting techniques stakeholders and study sites from the projects selected and trialled both local technologies and promising technologies reported from other sites . The combined PESERA and DESMICE modelling approach considered the regional effects of the technologies in combating desertification both in environmental and socio-economical terms. Initial analysis was based on long term average climate data with the model run to equilibrium. Current analysis, primarily based on the WAHARA study sites considers rainfall variability more explicitly in time series mode. The PESERA-DESMICE approach considers the difference between a baseline scenario and a (water harvesting) technology scenario, typically, in terms of productivity, financial viability and scope for reducing erosion risk. A series of 50 year rainfall realisations are generated from observed data to capture a full range of the climatic variability. Each realisation provides a unique time-series of rainfall and through modelling can provide a simulated time-series of crop yield and erosion risk for both baseline conditions and technology scenarios. Subsequent realisations and model simulations add to an envelope of the potential crop yield and cost-benefit relations. The development of such envelopes helps express the agricultural and erosional risk associated with climate variability and the potential for conservation measures to absorb the risk, highlighting the probability of achieving a given crop yield or erosion limit. Information that can directly inform or influence the local adoption of conservation measures under the climatic variability in semi

  16. Combining Brain–Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges

    PubMed Central

    Millán, J. d. R.; Rupp, R.; Müller-Putz, G. R.; Murray-Smith, R.; Giugliemma, C.; Tangermann, M.; Vidaurre, C.; Cincotti, F.; Kübler, A.; Leeb, R.; Neuper, C.; Müller, K.-R.; Mattia, D.

    2010-01-01

    In recent years, new research has brought the field of electroencephalogram (EEG)-based brain–computer interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely, “Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user–machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human–computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices. PMID:20877434

  17. Barriers to Systemic, Effective, and Sustainable Technology Use in High School Classrooms

    ERIC Educational Resources Information Center

    Daniels, Jason Scott; Jacobsen, Michele; Varnhagen, Stanley; Friesen, Sharon

    2013-01-01

    The purpose of the Technology and High School Success (THSS) initiative was to encourage innovative strategies focused on improving provincial high school completion rates, using technology and student-centered learning to engage student interest. The primary purpose of this paper is to report on barriers that impede systemic, effective and…

  18. Ensuring sustainability of non-networked sanitation technologies: an approach to standardization.

    PubMed

    Starkl, Markus; Brunner, Norbert; Feil, Magdalena; Hauser, Andreas

    2015-06-01

    Non-networked sanitation technologies use no sewer, water or electricity lines. Based on a review of 45 commercially distributed technologies, 12 (representing three concepts) were selected for a detailed audit. They were located in six countries of Africa and Asia. The safety of users was generally assured and the costs per use were not excessive, whereas costs were fully transparent for only one technology surveyed. A main drawback was insufficient quality of the byproducts from on-site treatment, making recycling in agriculture a hygienic and environmental risk. Further, no technology was sufficiently mature (requiring e.g. to shift wastes by hand). In order to promote further development and give producers of mature products a competitive advantage, the paper proposes a certification of technologies to confirm the fulfillment of basic requirements to make them attractive for future users. PMID:25961898

  19. Sustainable and consumer-friendly emerging technologies for application within the meat industry: An overview.

    PubMed

    Troy, Declan J; Ojha, Kumari Shikha; Kerry, Joseph P; Tiwari, Brijesh K

    2016-10-01

    New and emerging robust technologies can play an important role in ensuring a more resilient meat value chain and satisfying consumer demands and needs. This paper outlines various novel thermal and non-thermal technologies which have shown potential for meat processing applications. A number of process analytical techniques which have shown potential for rapid, real-time assessment of meat quality are also discussed. The commercial uptake and consumer acceptance of novel technologies in meat processing have been subjects of great interest over the past decade. Consumer focus group studies have shown that consumer expectations and liking for novel technologies, applicable to meat processing applications, vary significantly. This overview also highlights the necessity for meat processors to address consumer risk-benefit perceptions, knowledge and trust in order to be commercially successful in the application of novel technologies within the meat sector. PMID:27162095

  20. Large Porous Particles for Sustained Release of a Decoy Oligonucelotide and Poly(ethylenimine): Potential for Combined Therapy of Chronic Pseudomonas aeruginosa Lung Infections.

    PubMed

    d'Angelo, Ivana; Perfetto, Brunella; Costabile, Gabriella; Ambrosini, Veronica; Caputo, Pina; Miro, Agnese; d'Emmanuele di Villa Bianca, Roberta; Sorrentino, Raffaella; Donnarumma, Giovanna; Quaglia, Fabiana; Ungaro, Francesca

    2016-05-01

    We have recently demonstrated that the specific inhibition of nuclear factor-κB by a decoy oligonucleotide (dec-ODN) delivered through inhalable large porous particles (LPP) made of poly(lactic-co-glycolic acid) (PLGA) may be highly beneficial for long-term treatment of lung inflammation. Nevertheless, besides chronic inflammation, multifunctional systems aimed to control also infection are required in chronic lung diseases, such as cystic fibrosis (CF). In this work, we tested the hypothesis that engineering PLGA-based LPP with branched poly(ethylenimine) (PEI) may improve LPP properties for pulmonary delivery of dec-ODN, with particular regard to the treatment of Pseudomonas aeruginosa lung infections. After getting insight into the role of PEI on the technological properties of PLGA-based LPP for delivery of dec-ODN, the putative synergistic effect of PEI free or PEI released from LPP on in vitro antimicrobial activity of tobramycin (Tb) and aztreonam (AZT) against P. aeruginosa was elucidated. Meanwhile, cytotoxicity studies on A549 cells were carried out. Results clearly demonstrate that the dry powders have promising aerosolization properties and afford a prolonged in vitro release of both dec-ODN and PEI. The encapsulation of PEI into LPP results in a 2-fold reduction of the minimum inhibitory concentration of AZT, while reducing the cytotoxic effect of PEI. Of note, the developed ODN/PLGA/PEI LPP persisted at lung at least for 14 days after intratracheal administration in rats where they can provide sustained and combined release of dec-ODN and PEI. dec-ODN will likely act as an anti-inflammatory drug, while PEI may enhance the therapeutic activity of inhaled antibiotics, which are commonly employed for the treatment of concomitant lung infections. PMID:27002689

  1. The Long-Term Impact of an Education for Sustainability Course on Israeli Science and Technology Teachers' Pro-Environment Awareness, Commitment and Behaviour

    ERIC Educational Resources Information Center

    Abramovich, Anat; Loria, Yahavit

    2015-01-01

    The impact of an Education for Sustainability (EfS) course for science and technology junior high school teachers on the intentional and actual environmental behaviour of participants was studied by researching the EfS implementation of 13 science and technology teachers within their family, community, and work environment. The research was…

  2. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate.

    PubMed

    Guirimand, Gregory; Sasaki, Kengo; Inokuma, Kentaro; Bamba, Takahiro; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-04-01

    Xylitol, a value-added polyol deriving from D-xylose, is widely used in both the food and pharmaceutical industries. Despite extensive studies aiming to streamline the production of xylitol, the manufacturing cost of this product remains high while demand is constantly growing worldwide. Biotechnological production of xylitol from lignocellulosic waste may constitute an advantageous and sustainable option to address this issue. However, to date, there have been few reports of biomass conversion to xylitol. In the present study, xylitol was directly produced from rice straw hydrolysate using a recombinant Saccharomyces cerevisiae YPH499 strain expressing cytosolic xylose reductase (XR), along with β-glucosidase (BGL), xylosidase (XYL), and xylanase (XYN) enzymes (co-)displayed on the cell surface; xylitol production by this strain did not require addition of any commercial enzymes. All of these enzymes contributed to the consolidated bioprocessing (CBP) of the lignocellulosic hydrolysate to xylitol to produce 5.8 g/L xylitol with 79.5 % of theoretical yield from xylose contained in the biomass. Furthermore, nanofiltration of the rice straw hydrolysate provided removal of fermentation inhibitors while simultaneously increasing sugar concentrations, facilitating high concentration xylitol production (37.9 g/L) in the CBP. This study is the first report (to our knowledge) of the combination of cell surface engineering approach and membrane separation technology for xylitol production, which could be extended to further industrial applications. PMID:26631184

  3. Photovoltaics as a renewable energy technology in Bangladesh and its potential for increasing welfare, gender equity, and environmental sustainability

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sarwat

    Situated in the northeast corner of the South Asian sub-continent, Bangladesh is a developing country with high population density, low life expectancy, low rate of literacy and extremely low access to modern energy sources. Lack of access to electrification remains a major constraint to the country's economic development. In this context, as in other countries, Bangladeshi development practitioners have tended to pursue outputs that rely on new technologies as a means to leapfrog to higher levels of development. However, independent analysis of such efforts, in terms of achieving sustainable development outcomes, remains lacking. The full potential of renewable energy technologies in Bangladesh has yet to attract widespread recognition from policy makers. In this thesis, I review solar PV technology since it has already been attempted as a rural off-grid electrification option in Bangladesh. I argue that the applications of technology should follow, and not precede, considerations for human well-being. It is also important to have a more holistic perspective on human welfare, which should include the basic dimensions of choice and opportunities, and not just income levels. The Government of Bangladesh and its development partners need to expand support to renewable energy technologies and so redirect the focus of policy formulation and implementation to sustainable human development. I emphasize that people-centered public policy has a key role to play in the introduction of a technology such as the solar photovoltaics pioneered by Grameen Shakti, a not-for-profit company in Bangladesh. While equity in terms of a fair distribution of wealth and income may continue to be an illusion, innovations such as solar PV are indeed promising with respect to opening up opportunities and possible benefits for women, the environment and---more generally---human well-being. This thesis is based on work in rural areas complementary to various professional responsibilities that I

  4. Rocket-Based Combined-Cycle Propulsion Technology for Access-to-Space Applications

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    1999-01-01

    NASA's Office of Aero-Space Technology (OAST) established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. One of the main activities over the past three years has been on advancing the hydrogen fueled rocket-based combined cycle (RBCC) technologies. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet and Boeing-Rocketdyne designed, built and ground tested their RBCC engine concepts. In addition, ASTROX, Georgia Institute of Technology, McKinney Associates, Pennsylvania State University (PSU), and University of Alabama in Huntsville conducted supporting activities. The RBCC activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. Inlet testing was performed at the Lewis Research Center's 1 x 1 wind tunnel. All direct connect and free-jet engine testing were conducted at the GASL facilities on Long Island, New York. Testing spanned the Mach range from sea level static to Mach 8. Testing of the rocket-only mode, simulating the final phase of the ascent mission profile, was also performed. The originally planned work on these contracts was completed in 1999. Follow-on activities have been initiated for both hydrogen and hydrocarbon fueled RBCC concepts. Studies to better understand system level issues with the integration of RBCC propulsion with earth-to-orbit vehicles have also been conducted. This paper describes the status, progress and future plans of the RBCC activities funded by NASA/MSFC with a major focus on the benefits of utilizing air-breathing combined-cycle propulsion in access-to-space applications.

  5. A multimedia adult literacy program: Combining NASA technology, instructional design theory, and authentic literacy concepts

    NASA Technical Reports Server (NTRS)

    Willis, Jerry W.

    1993-01-01

    For a number of years, the Software Technology Branch of the Information Systems Directorate has been involved in the application of cutting edge hardware and software technologies to instructional tasks related to NASA projects. The branch has developed intelligent computer aided training shells, instructional applications of virtual reality and multimedia, and computer-based instructional packages that use fuzzy logic for both instructional and diagnostic decision making. One outcome of the work on space-related technology-supported instruction has been the creation of a significant pool of human talent in the branch with current expertise on the cutting edges of instructional technologies. When the human talent is combined with advanced technologies for graphics, sound, video, CD-ROM, and high speed computing, the result is a powerful research and development group that both contributes to the applied foundations of instructional technology and creates effective instructional packages that take advantage of a range of advanced technologies. Several branch projects are currently underway that combine NASA-developed expertise to significant instructional problems in public education. The branch, for example, has developed intelligent computer aided software to help high school students learn physics and staff are currently working on a project to produce educational software for young children with language deficits. This report deals with another project, the adult literacy tutor. Unfortunately, while there are a number of computer-based instructional packages available for adult literacy instruction, most of them are based on the same instructional models that failed these students when they were in school. The teacher-centered, discrete skill and drill-oriented, instructional strategies, even when they are supported by color computer graphics and animation, that form the foundation for most of the computer-based literacy packages currently on the market may not

  6. User Localization in Complex Environments by Multimodal Combination of GPS, WiFi, RFID, and Pedometer Technologies

    PubMed Central

    Dao, Trung-Kien; Nguyen, Hung-Long; Pham, Thanh-Thuy; Nguyen, Viet-Tung; Nguyen, Dinh-Van

    2014-01-01

    Many user localization technologies and methods have been proposed for either indoor or outdoor environments. However, each technology has its own drawbacks. Recently, many researches and designs have been proposed to build a combination of multiple localization technologies system which can provide higher precision results and solve the limitation in each localization technology alone. In this paper, a conceptual design of a general localization platform using combination of multiple localization technologies is introduced. The combination is realized by dividing spaces into grid points. To demonstrate this platform, a system with GPS, RFID, WiFi, and pedometer technologies is established. Experiment results show that the accuracy and availability are improved in comparison with each technology individually. PMID:25147866

  7. User localization in complex environments by multimodal combination of GPS, WiFi, RFID, and pedometer technologies.

    PubMed

    Dao, Trung-Kien; Nguyen, Hung-Long; Pham, Thanh-Thuy; Castelli, Eric; Nguyen, Viet-Tung; Nguyen, Dinh-Van

    2014-01-01

    Many user localization technologies and methods have been proposed for either indoor or outdoor environments. However, each technology has its own drawbacks. Recently, many researches and designs have been proposed to build a combination of multiple localization technologies system which can provide higher precision results and solve the limitation in each localization technology alone. In this paper, a conceptual design of a general localization platform using combination of multiple localization technologies is introduced. The combination is realized by dividing spaces into grid points. To demonstrate this platform, a system with GPS, RFID, WiFi, and pedometer technologies is established. Experiment results show that the accuracy and availability are improved in comparison with each technology individually. PMID:25147866

  8. An impact assessment of sustainable technologies for the Chinese urban residential sector at provincial level

    NASA Astrophysics Data System (ADS)

    Xing, Rui; Hanaoka, Tatsuya; Kanamori, Yuko; Dai, Hancheng; Masui, Toshihiko

    2015-06-01

    Recently, energy use in the urban residential sector of China has drastically increased due to higher incomes and urbanization. The fossil fuels dominant energy supply has since worsened the air quality, especially in urban areas. In this study we estimate the future energy service demands in Chinese urban residential areas, and then use an AIM/Enduse model to evaluate the emission reduction potential of CO2, SO2, NOx and PM. Considering the climate diversity and its impact on household energy service demands, our analysis is down-scaled to the provincial-level. The results show that in most of the regions, penetration of efficient technologies will bring CO2 emission reductions of over 20% compared to the baseline by the year 2030. Deployment of energy efficient technologies also co-benefits GHG emission reduction. However, efficient technology selection appears to differ across provinces due to climatic variation and economic disparity. For instance, geothermal heating technology is effective for the cold Northern areas while biomass technology contributes to emission reduction the most in the warm Southern areas.

  9. The combination design for open and endoscopic surgery using fluorescence molecular imaging technology

    NASA Astrophysics Data System (ADS)

    Mao, Yamin; Jiang, Shixin; Ye, Jinzuo; An, Yu; Yang, Xin; Chi, Chongwei; Tian, Jie

    2015-03-01

    For clinical surgery, it is still a challenge to objectively determine tumor margins during surgery. With the development of medical imaging technology, fluorescence molecular imaging (FMI) method can provide real-time intraoperative tumor margin information. Furthermore, surgical navigation system based on FMI technology plays an important role for the aid of surgeons' precise tumor margin decision. However, detection depth is the most limitation exists in the FMI technique and the method convenient for either macro superficial detection or micro deep tissue detection is needed. In this study, we combined advantages of both open surgery and endoscopic imaging systems with FMI technology. Indocyanine green (ICG) experiments were performed to confirm the feasibility of fluorescence detection in our system. Then, the ICG signal was photographed in the detection area with our system. When the system connected with endoscope lens, the minimum quantity of ICG detected by our system was 0.195 ug. For aspect of C mount lens, the sensitivity of ICG detection with our system was 0.195ug. Our experiments results proved that it was feasible to detect fluorescence images with this combination method. Our system shows great potential in the clinical applications of precise dissection of various tumors

  10. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    PubMed

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste. PMID:23444152

  11. ALDUO(TM) Algae Cultivation Technology for Delivering Sustainable Omega-3s, Feed, and Fuel

    SciTech Connect

    Bai, Xuemei

    2012-09-24

    * ALDUO(TM) Algae Production Technology Cellana?s Proprietary, Photosynthetic, & Proven * ALDUO(TM) Enables Economic Algae Production Unencumbered by Contamination by Balancing Higher-Cost PBRs with Lower-Cost Open Ponds * ALDUO(TM) Advantages * ALDUO(TM) Today o Large collection of strains for high value co-products o Powerful Mid-scale Screening & Optimization System o Solution to a Conflicting Interest o Split Pond Yield Enhancement o Heterotrophy & mixotrophy as a "finishing step" o CO2 Mitigation-flue Gas Operation o Worldwide Feed Trials with Livestock & Aquatic Species * ALDUO(TM) Technology Summarized

  12. PHYSICAL VAPOR DEPOSITION OF TANTALUM ON GUN BARREL STEEL (SYSTEMS ANLAYSIS BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    This project entails the development of an alternative technology for plating gun barrel steel to replace the process electroplating of chrome (Cr-electroplate) with physical vapor deposition of tantalum (Ta-PVD). Developed by Benet Laboratory at Watervliet Arsenal, this project'...

  13. Sustaining a Professional Dimension in the Use of Educational Technology in European Higher Educational Practices

    ERIC Educational Resources Information Center

    Lindberg, J. Ola; Olofsson, Anders D.

    2012-01-01

    This article discusses the professional dimension of making technology-enhanced learning (TEL) a part of European higher educational practices. In order to position the article in a European context, three of the most important European research Networks of Excellence (NoEs) aimed at understanding, developing, and implementing TEL and educational…

  14. System-Wide Factors in Sustaining Technology-Based Inquiry Environments.

    ERIC Educational Resources Information Center

    Martin, Laura M. W.

    This paper suggests the importance of considering factors outside of the classroom in accounting for the presence of inquiry, and identifies some of these factors. The conclusions are based upon a study of staff developers and teachers who took part in the Bank Street College Mathematics, Science and Technology Teacher Education project.…

  15. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    SciTech Connect

    Dr. Xiaodi Huang; Dr. J. Y. Hwang

    2005-03-28

    Steel is a basic material broadly used by perhaps every industry and individual. It is critical to our nation's economy and national security. Unfortunately, the American steel industry is losing competitiveness in the world steel production field. There is an urgent need to develop the next generation of steelmaking technology for the American steel industry. Direct steelmaking through the combination of microwave, electric arc, and exothermal heating is a revolutionary change from current steelmaking technology. This technology can produce molten steel directly from a shippable agglomerate, consisting of iron oxide fines, powdered coal, and ground limestone. This technology is projected to eliminate many current intermediate steelmaking steps including coking, pellet sintering, blast furnace (BF) ironmaking, and basic oxygen furnace (BOF) steelmaking. This technology has the potential to (a) save up to 45% of the energy consumed by conventional steelmaking; (b) dramatically reduce the emission of CO{sub 2}, SO{sub 2}, NO{sub x}, VOCs, fine particulates, and air toxics; (c) substantially reduce waste and emission control costs; (d) greatly lower capital cost; and (e) considerably reduce steel production costs. This technology is based on the unique capability of microwaves to rapidly heat steelmaking raw materials to elevated temperature, then rapidly reduce iron oxides to metal by volumetric heating. Microwave heating, augmented with electric arc and exothermal reactions, is capable of producing molten steel. This technology has the components necessary to establish the ''future'' domestic steel industry as a technology leader with a strong economically competitive position in world markets. The project goals were to assess the utilization of a new steelmaking technology for its potential to achieve better overall energy efficiency, minimize pollutants and wastes, lower capital and operating costs, and increase the competitiveness of the U.S. steel industry. The

  16. Combined SO{sub 2}/NO{sub x} reduction technology

    SciTech Connect

    Livengood, C.D.; Huang, H.S.; Markussen, J.M.

    1992-09-01

    Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO{sub x}) regulations have fueled research and development efforts on technologies for the combined control of sulfur dioxide (SO{sub 2}) and NO{sub x}. The integrated removal of both SO{sub 2} and NO{sub x}, in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup (FGC) systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  17. On Singularities and Black Holes in Combination-Driven Models of Technological Innovation Networks

    PubMed Central

    Solé, Ricard; Amor, Daniel R.; Valverde, Sergi

    2016-01-01

    It has been suggested that innovations occur mainly by combination: the more inventions accumulate, the higher the probability that new inventions are obtained from previous designs. Additionally, it has been conjectured that the combinatorial nature of innovations naturally leads to a singularity: at some finite time, the number of innovations should diverge. Although these ideas are certainly appealing, no general models have been yet developed to test the conditions under which combinatorial technology should become explosive. Here we present a generalised model of technological evolution that takes into account two major properties: the number of previous technologies needed to create a novel one and how rapidly technology ages. Two different models of combinatorial growth are considered, involving different forms of ageing. When long-range memory is used and thus old inventions are available for novel innovations, singularities can emerge under some conditions with two phases separated by a critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities will be observed. Instead, a “black hole” of old innovations appears and expands in time, making the rate of invention creation slow down into a linear regime. PMID:26821277

  18. On Singularities and Black Holes in Combination-Driven Models of Technological Innovation Networks.

    PubMed

    Solé, Ricard; Amor, Daniel R; Valverde, Sergi

    2016-01-01

    It has been suggested that innovations occur mainly by combination: the more inventions accumulate, the higher the probability that new inventions are obtained from previous designs. Additionally, it has been conjectured that the combinatorial nature of innovations naturally leads to a singularity: at some finite time, the number of innovations should diverge. Although these ideas are certainly appealing, no general models have been yet developed to test the conditions under which combinatorial technology should become explosive. Here we present a generalised model of technological evolution that takes into account two major properties: the number of previous technologies needed to create a novel one and how rapidly technology ages. Two different models of combinatorial growth are considered, involving different forms of ageing. When long-range memory is used and thus old inventions are available for novel innovations, singularities can emerge under some conditions with two phases separated by a critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities will be observed. Instead, a "black hole" of old innovations appears and expands in time, making the rate of invention creation slow down into a linear regime. PMID:26821277

  19. Externally-fired combined cycle: An effective coal fueled technology for repowering and new generation

    SciTech Connect

    Stoddard, L.E.; Bary, M.R.; Gray, K.M.; LaHaye, P.G.

    1995-06-01

    The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. In the EFCC, the heat input to a gas turbine is supplied indirectly through a ceramic air heater. The air heater, along with an atmospheric coal combustor and ancillary equipment, replaces the conventional gas turbine combustor. A steam generator located downstream from the ceramic air heater and steam turbine cycle, along with an exhaust cleanup system, completes the combined cycle. A key element of the EFCC Development Program, the 25 MMBtu/h heat-input Kennebunk Test Facility (KTF), has recently begun operation. The KTF has been operating with natural gas and will begin operating with coal in early 1995. The US Department of Energy selected an EFCC repowering of the Pennsylvania Electric Company`s Warren Station for funding under the Clean Coal Technology Program Round V. The project focuses on repowering an existing 48 MW (gross) steam turbine with an EFCC power island incorporating a 30 MW gas turbine, for a gross power output of 78 MW and a net output of 72 MW. The net plant heat rate will be decreased by approximately 30% to below 9,700 Btu/kWh. Use of a dry scrubber and fabric filter will reduce sulfur dioxide (SO{sub 2}) and particulate emissions to levels under those required by the Clean Air Act Amendments (CAAA) of 1990. Nitrogen oxides (NO{sub x}) emissions are controlled by the use of staged combustion. The demonstration project is currently in the engineering phase, with startup scheduled for 1997. This paper discusses the background of the EFCC, the KTF, the Warren Station EFCC Clean Coal Technology Demonstration Project, the commercial plant concept, and the market potential for the EFCC.

  20. Design and in vitro evaluation of novel sustained- release matrix tablets for lornoxicam based on the combination of hydrophilic matrix formers and basic pH-modifiers.

    PubMed

    Hamza, Yassin El-Said; Aburahma, Mona Hassan

    2010-01-01

    The short half-life of lornoxicam, a potent non-steroidal anti-inflammatory drug, makes the development of sustained-release (SR) forms extremely advantageous. However, due to its weak acidic nature, its release from SR delivery systems is limited to the lower gastrointestinal tract which consequently leads to a delayed onset of its analgesic action. Accordingly, the aim of this study was to develop lornoxicam SR matrix tablets that provide complete drug release that starts in the stomach to rapidly alleviate the painful symptoms and continues in the intestine to maintain protracted analgesic effect as well as meets the reported SR specifications. The proposed strategy was based on preparing directly compressed hydroxypropylmethylcellulose matrix tablets to sustain lornoxicam release. Basic pH-modifiers, either sodium bicarbonate or magnesium oxide, were incorporated into these matrix tablets to create basic micro-environmental pH inside the tablets favorable to drug release in acidic conditions. All the prepared matrix tablets containing basic pH-modifiers showed acceptable physical properties before and after storage. Release studies, performed in simulated gastric and intestinal fluids used in sequence to mimic the GI transit, demonstrate the possibility of sustaining lornoxicam release by combining hydrophilic matrix formers and basic pH-Modifiers to prepare tablets that meet the reported sustained-release specifications. PMID:19895367

  1. Technologies and combination therapies for enhancing movement training for people with a disability

    PubMed Central

    2012-01-01

    There has been a dramatic increase over the last decade in research on technologies for enhancing movement training and exercise for people with a disability. This paper reviews some of the recent developments in this area, using examples from a National Science Foundation initiated study of mobility research projects in Europe to illustrate important themes and key directions for future research. This paper also reviews several recent studies aimed at combining movement training with plasticity or regeneration therapies, again drawing in part from European research examples. Such combination therapies will likely involve complex interactions with motor training that must be understood in order to achieve the goal of eliminating severe motor impairment. PMID:22463132

  2. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    NASA Astrophysics Data System (ADS)

    Malyutina, Yu. N.; Bataev, A. A.; Mali, V. I.; Anisimov, A. G.; Shevtsova, L. I.

    2015-10-01

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  3. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    SciTech Connect

    Malyutina, Yu. N. Bataev, A. A. Shevtsova, L. I.; Mali, V. I. Anisimov, A. G.

    2015-10-27

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  4. Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology

    SciTech Connect

    Kosny, Jan; Miller, William A; Childs, Phillip W; Biswas, Kaushik

    2011-01-01

    During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

  5. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering

    PubMed Central

    Nandakumar, Anandkumar; Barradas, Ana; de Boer, Jan; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a Ca-P layer in a simulated physiological solution. Scaffold morphology and composition were studied using scanning electron microscopy (SEM) coupled to energy dispersive X-ray analyzer (EDX) and Fourier Tranform Infrared Spectroscopy (FTIR). Bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on coated and uncoated 3DF and 3DF + ESP scaffolds for up to 21 d in basic and mineralization medium and cell attachment, proliferation, and expression of genes related to osteogenesis were assessed. Cells attached, proliferated and secreted ECM on all the scaffolds. There were no significant differences in metabolic activity among the different groups on days 7 and 21. Coated 3DF scaffolds showed a significantly higher DNA amount in basic medium at 21 d compared with the coated 3DF + ESP scaffolds, whereas in mineralization medium, the presence of coating in 3DF+ESP scaffolds led to a significant decrease in the amount of DNA. An effect of combining different scaffolding technologies and material types on expression of a number of osteogenic markers (cbfa1, BMP-2, OP, OC and ON) was observed, suggesting the potential use of this approach in bone tissue engineering. PMID:23507924

  6. Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration

    NASA Technical Reports Server (NTRS)

    Esper, Jaime

    2004-01-01

    In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem "module" or "box" components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic "upgrade infrastructure" needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of prequalified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS

  7. Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration

    NASA Astrophysics Data System (ADS)

    Esper, Jaime

    2005-02-01

    In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem ``module'' or ``box'' components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic ``upgrade infrastructure'' needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of pre-qualified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a

  8. Sustainable Innovative Technologies for Life in Closed Habitats - on Earth, Moon and Mars

    NASA Astrophysics Data System (ADS)

    Slenzka, Klaus; Dünne, Matthias; Rischka, Klaus

    Many of the projects are co-funded by organisations out of the space area, demonstrating the high relevance of applications also in the closed biosphere Earth. The results of the development of a biomimetic adhesive in the ESA-ITI-project "Alternative Glues in Space and on Earth based on Biomimetic Strategies" (Glue2Space) (ESA-ITI 19585/06/NL/CP) will be presented intensively. Additionally, a short overview of the other technology items will be given.

  9. Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development

    SciTech Connect

    Shannon M. Bragg-Sitton

    2013-09-01

    Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

  10. Towards using space technology( satellite information) for the attainment of sustainable economic development- Nigerian Experience

    NASA Astrophysics Data System (ADS)

    Akeh, L. E.; Okpara, J. N.

    This paper attempts to x-ray the important role NigeriaSat1 and Meteorological satellites in constellation with other satellites have played in the recent time in attaining sustainable economic development in Nigeria Instead of the usual discrete observations scattered all over the surface of the earth especially the more populated areas and major trading routes or inferring to the shape and movement of weather systems from few widely scattered observations scientists in Nigeria can now enjoy a bird s eye view of the planet and see the movement and evolution of the storm system in animated sequences on computer screen as well as the continuous surveillance of the entire planet With satellite data Nigerian Meteorological Agency NIMET is able to determine the location and intensity of storms diagnose weather producing system heavy rainfall and tracking of meso-scale convective systems This have been very helpful in improving the quality of short and medium range weather forecast specialized forecasts also have greatly increased public confidence in the usage of our products Also with launching of NigeriaSat 1 by the National Space Research and Development Agency NASRDA there has been improved Famine Early Warning System FEWS and appropriate decision- making in the country coupled with thorough environmental monitoring

  11. [Modern information and communication technology in medical rehabilitation. Enhanced sustainability through Internet-delivered aftercare].

    PubMed

    Kordy, H; Theis, F; Wolf, M

    2011-04-01

    Internet and mobile phones open new avenues for the optimization of health services in medical rehabilitation. Various models of Internet-delivered aftercare after psychosomatic inpatient treatment have shown promising results. The focus of this report is on the experience in translating one of the promising models, the Internet-Bridge ("Internet-Brücke"), to every day health care. Effectiveness was estimated through comparison of 254 patients who were treated in a hospital specialized in psychosomatic medicine and who participated in the Internet-Bridge as well as in the 1-year follow-up in the frame of standard quality assurance between 2003-2010 with 364 patients of the same hospital who also participated in the 1-year follow-up, but did not utilize the aftercare. Sustainable, reliable, and clinically significant improvements were more frequent in participants of the Internet-Bridge, especially with regard to psychological well-being, social problems, and psychosocial competence-at small additional costs. Results are understood as encouragement to start translation to routine care accompanied by research. PMID:21465402

  12. Modeling technology innovation: How science, engineering, and industry methods can combine to generate beneficial socioeconomic impacts

    PubMed Central

    2012-01-01

    Background Government-sponsored science, technology, and innovation (STI) programs support the socioeconomic aspects of public policies, in addition to expanding the knowledge base. For example, beneficial healthcare services and devices are expected to result from investments in research and development (R&D) programs, which assume a causal link to commercial innovation. Such programs are increasingly held accountable for evidence of impact—that is, innovative goods and services resulting from R&D activity. However, the absence of comprehensive models and metrics skews evidence gathering toward bibliometrics about research outputs (published discoveries), with less focus on transfer metrics about development outputs (patented prototypes) and almost none on econometrics related to production outputs (commercial innovations). This disparity is particularly problematic for the expressed intent of such programs, as most measurable socioeconomic benefits result from the last category of outputs. Methods This paper proposes a conceptual framework integrating all three knowledge-generating methods into a logic model, useful for planning, obtaining, and measuring the intended beneficial impacts through the implementation of knowledge in practice. Additionally, the integration of the Context-Input-Process-Product (CIPP) model of evaluation proactively builds relevance into STI policies and programs while sustaining rigor. Results The resulting logic model framework explicitly traces the progress of knowledge from inputs, following it through the three knowledge-generating processes and their respective knowledge outputs (discovery, invention, innovation), as it generates the intended socio-beneficial impacts. It is a hybrid model for generating technology-based innovations, where best practices in new product development merge with a widely accepted knowledge-translation approach. Given the emphasis on evidence-based practice in the medical and health fields and

  13. The Beneficial Effects of Postinfarct Cytokine Combination Therapy are Sustained During Long-Term Follow-Up

    PubMed Central

    Sanganalmath, Santosh K.; Stein, Adam B.; Guo, Yiru; Tiwari, Sumit; Hunt, Greg; Vincent, Robert J.; Huang, Yiming; Rezazadeh, Arash; Ildstad, Suzanne T.; Dawn, Buddhadeb; Bolli, Roberto

    2009-01-01

    We have previously reported that administration of granulocyte colony-stimulating factor (G-CSF)+Flt-3 ligand (FL) or G-CSF+stem cell factor (SCF) improves left ventricular (LV) function and halts LV remodeling at 35 days after myocardial infarction (MI). In the current study, we investigated whether these beneficial effects are sustained in the long term - an issue of fundamental importance for clinical translation. Mice undergoing a 30-min coronary occlusion followed by reperfusion received vehicle (group I), G-CSF+FL (group II), G-CSF+SCF (group III), or G-CSF alone (group IV) starting 4 h after reperfusion and were euthanized 48 weeks later. LV structure and function were assessed by serial echocardiography before and at 48 h and 4, 8, 16, 32, and 48 wk after MI. During follow-up, mice in group I exhibited worsening of LV function and progressive LV remodeling. Compared with group I, both groups II and III exhibited improved LV EF at 4 wk after MI; however, only in group II was this improvement sustained at 48 wk. Group II was also the only group in which the decrease in infarct wall thickening fraction, the LV dilatation, and the increase in LV mass were attenuated vs. group I. We conclude that the beneficial effect of G-CSF+FL on postinfarction LV dysfunction and remodeling is sustained for at least 11 months, and thus is likely to be permanent. In contrast, the effect of G-CSF+SCF was not sustained beyond the first few weeks, and G-CSF alone is ineffective. To our knowledge, this is the first long-term study of cytokines in postinfarction LV remodeling. The results reveal heretofore unknown differential actions of cytokines and have important translational implications. PMID:19616005

  14. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    NASA Astrophysics Data System (ADS)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  15. A Framework for Successful Research Experiences in the Classroom: Combining the Power of Technology and Mentors

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama; Stefanov, William L.; Willis, Kim; Runco, Susan; McCollum, Tim; Lindgren, Charles F.; Baker, Marshalyn; Mailhot, Michele

    2011-01-01

    Authentic research opportunities in the classroom are most impactful when they are student-driven and inquiry-based. These experiences are even more powerful when they involve technology and meaningful connections with scientists. In today's classrooms, activities are driven by state required skills, education standards, and state mandated testing. Therefore, programs that incorporate authentic research must address the needs of teachers. NASA's Expedition Earth and Beyond (EEAB) Program has developed a framework that addresses teacher needs and incorporates the use of technology and access to mentors to promote and enhance authentic research in the classroom. EEAB is a student involvement program that facilitates student investigations of Earth or planetary comparisons using NASA data. To promote student-led research, EEAB provides standards-aligned, inquiry-based curricular resources, an implementation structure to facilitate research, educator professional development, and ongoing support. This framework also provides teachers with the option to incorporate the use of technology and connect students with a mentor, both of which can enrich student research experiences. The framework is structured by a modeled 9-step process of science which helps students organize their research. With more schools gaining increased access to technology, EEAB has created an option to help schools take advantage of students' interest and comfort with technology by leveraging the use of available technologies to enhance student research. The use of technology not only allows students to collaborate and share their research, it also provides a mechanism for them to work with a mentor. This framework was tested during the 2010/2011 school year. Team workspaces hosted on Wikispaces for Educators allow students to initiate their research and refine their research question initially without external input. This allows teams to work independently and rely on the skills and interests of

  16. A Framework for Successful Research Experiences in the Classroom: Combining the Power of Technology and Mentors

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.; McCollum, T.; Lindgren, C. F.; Baker, M.; Mailhot, M.

    2011-12-01

    Authentic research opportunities in the classroom are most impactful when they are student-driven and inquiry-based. These experiences are even more powerful when they involve technology and meaningful connections with scientists. In today's classrooms, activities are driven by state required skills, education standards, and state mandated testing. Therefore, programs that incorporate authentic research must address the needs of teachers. NASA's Expedition Earth and Beyond (EEAB) Program has developed a framework that addresses teacher needs and incorporates the use of technology and access to mentors to promote and enhance authentic research in the classroom. EEAB is a student involvement program that facilitates student investigations of Earth or planetary comparisons using NASA data. To promote student-led research, EEAB provides standards-aligned, inquiry-based curricular resources, an implementation structure to facilitate research, educator professional development, and ongoing support. This framework also provides teachers with the option to incorporate the use of technology and connect students with a mentor, both of which can enrich student research experiences. The framework is structured by a modeled 9-step process of science which helps students organize their research. With more schools gaining increased access to technology, EEAB has created an option to help schools take advantage of students' interest and comfort with technology by leveraging the use of available technologies to enhance student research. The use of technology not only allows students to collaborate and share their research, it also provides a mechanism for them to work with a mentor. This framework was tested during the 2010/2011 school year. Team workspaces hosted on Wikispaces for Educators allow students to initiate their research and refine their research question initially without external input. This allows teams to work independently and rely on the skills and interests of

  17. Anaerobic digestion as a core technology in sustainable management of organic matter.

    PubMed

    Verstraete, W; Morgan-Sagastume, F; Aiyuk, S; Waweru, M; Rabaey, K; Lissens, G

    2005-01-01

    In the past decades, anaerobic digestion (AD) has steadily gained importance. However, the technology is not regarded as a top priority in science policy and in industrial development at present. In order for AD to further develop, it is crucial that AD profits from the current fuel issues emerging in the international arena. AD can provide low-cost treatment of sewage and solid domestic wastes, which represents a vast application potential that should be promoted in the developing world. Furthermore, the developments in the last decades in the domain of anaerobic microbiology and technology have generated some interesting niches for the application of AD, such as anaerobic nitrogen removal and the treatment of chlorinated organics. Recently, AD has also generated some serendipities, such as the use of AD in processes for sulphur and calcium removal and the coupling of AD with microbial fuel cells. The international developments in terms of bio-refineries and CO2-emission abatement are of crucial importance with respect to the impetus that AD will receive in the coming decade. There should be little doubt that by placing the focus of AD on the production of green energy and clean nutrients, the future of AD will be assured. PMID:16180409

  18. Application of electro-Fenton technology to remediation of polluted effluents by self-sustaining process.

    PubMed

    Fernández de Dios, Maria Ángeles; Iglesias, Olaia; Pazos, Marta; Sanromán, Maria Ángeles

    2014-01-01

    The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel cells (MFCs) were designed in order to supply electricity to electro-Fenton processes and to achieve high treatment efficiency at low cost. Initially, the effect of key parameters on the MFC power generation was evaluated. Afterwards, the degradation of Reactive Black 5 dye and phenanthrene was evaluated in an electro-Fenton reactor, containing iron-enriched zeolite as catalyst, using the electricity supplied by the MFC. Near complete dye decolourization and 78% of phenanthrene degradation were reached after 90 min and 30 h, respectively. Furthermore, preliminary reusability tests of the developed catalyst showed high degradation levels for successive cycles. The results permit concluding that the integrated system is adequate to achieve high treatment efficiency with low electrical consumption. PMID:24723828

  19. Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process

    PubMed Central

    Fernández de Dios, Maria Ángeles; Iglesias, Olaia; Pazos, Marta; Sanromán, Maria Ángeles

    2014-01-01

    The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel cells (MFCs) were designed in order to supply electricity to electro-Fenton processes and to achieve high treatment efficiency at low cost. Initially, the effect of key parameters on the MFC power generation was evaluated. Afterwards, the degradation of Reactive Black 5 dye and phenanthrene was evaluated in an electro-Fenton reactor, containing iron-enriched zeolite as catalyst, using the electricity supplied by the MFC. Near complete dye decolourization and 78% of phenanthrene degradation were reached after 90 min and 30 h, respectively. Furthermore, preliminary reusability tests of the developed catalyst showed high degradation levels for successive cycles. The results permit concluding that the integrated system is adequate to achieve high treatment efficiency with low electrical consumption. PMID:24723828

  20. The Use of Space Technology for Environmental Security, Disaster Rehabilitation and Sustainable Development in Afghanistan and Iraq

    NASA Astrophysics Data System (ADS)

    Lovett, Kian

    Since the dawn of time, humans have engaged in war. In the last 5,600 years of recorded history 14,600 wars have been waged1. The United Nations has sought to save succeeding generations from the scourge of war and to foster peace. Wars have recently taken place in Afghanistan and Iraq. Both countries are now faced with a range of complex problems. In-depth country assessments reveal significant shortcomings in the areas of water, sanitation, health, security and natural resource management. These are key factors when examining environmental security, sustainable development and trans-boundary problems, all of which are issues relevant to the Middle East and Central Asian states. Space technology can be applied to support the reconstruction and development plans for Afghanistan and Iraq; however, there needs to be an investigation and open discussion of how these resources can best be used. Already, agencies within the United Nations possess considerable expertise in the use of space technologies in the area of disaster management. If this capability is to be used, there will need to be inter-agency coordination, not to mention a further expansion and development of the United Nations role in both Afghanistan and Iraq.

  1. Low Impact Development (LID) Technologies for Sustainable Water Management: Studies from a Green Roof

    NASA Astrophysics Data System (ADS)

    Digiovanni, K. A.; Montalto, F. A.; Gaffin, S.

    2009-12-01

    Anthropogenic induced landscape alterations, such as urbanization, can cause drastic alterations to predevelopment hydrologic conditions and the systems linked to these cycles. Low impact development (LID) technologies, such as green roofs, can help to minimize these impacts given their ability to retain and detain stormwater and subsequently evapotranspire or infiltrate excess water. An innovative technique for simultaneously monitoring stormwater retention, allowing for runoff quantification, as well as evapotranspiration from a small scale green roof box was employed for a green roof at the Ethical Culture Fieldston School located in the Bronx, NY. A 1.2 meter long by 0.6 meter wide green roof box was created as a replica section of the 525 m2 green roof on the building. The layers of the green roof box consisted of a roof membrane, drainage layer, four inch media layer, and vegetative Sedum layer. Monitoring equipment on the green roof included a weather station and real time environmental sensors which quantify wind speed, precipitation, soil moisture, temperature, humidity, albedo, and incident solar radiation. In addition to this equipment, a platform scale was positioned beneath the green roof box. Data was collected at 5 minute time intervals over a six month monitoring period between Spring and Fall 2009. A mass balance technique was utilized to quantify runoff from the green roof box. Evapotranspiration during antecedent conditions was also quantified utilizing a mass balance methodology and compared to energy balance estimates based on climatic conditions measured on the green roof. Results of runoff generation under a variety of rainfall conditions, as well as a comparison between mass balance and energy balance measures of evapotranspiration will be presented. The incorporation of this and further data collection into model development and calibration activities will be informative in predicting the impact that the implementation of green roof

  2. Technology targeting for sustainable intensification of crop production in the Delta region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Schulthess, U.; Krupnik, T. J.; Ahmed, Z. U.; McDonald, A. J.

    2015-04-01

    Remote sensing data are nowadays being acquired within short intervals and made available at a low cost or for free. This opens up opportunities for new remote sensing applications, such as the characterization of entire regions to identify most suitable areas for technology targeting. Increasing population growth and changing dietary habits in South Asia call for higher cereal production to ensure future food security. In the Delta area of Bangladesh, surface water is considered to be available in quantities large enough to support intensification by adding an irrigated dry season crop. Fuel-efficient, low lift axial flow pumps have shown to be suitable to carry water to fields that are within a buffer of four hundred meters of the rivers. However, information on how and where to target surface water irrigation efforts is currently lacking. We describe the opportunities and constraints encountered in developing a procedure to identify cropland for which axial flow pumps could be successfully deployed upon in a 43'000 km2 area. First, we isolated cropland and waterways using Landsat 5 and 7 scenes using image segmentation followed by classification with the random forest algorithm. Based on Landsat 7 and 8 scenes, we extracted maximum dry season enhanced vegetation index (EVI) values, which we classified into fallow, low-, and high-intensity cropland for the last three years. Last, we investigated the potential for surface water irrigation on fallow and low-intensity land by applying a cropping risk matrix to address the twin threats of soil and water salinity. Our analysis indicates that there are at least 20,000 ha of fallow land under the low-risk category, while more than 100,000 ha of low-intensity cropland can be brought into intensified production. This information will aid in technology targeting for the efficient deployment of surface water irrigation as a tool for intensification.

  3. Environmental footprints and costs of coal-based integrated gasification combined cycle and pulverized coal technologies

    SciTech Connect

    2006-07-15

    The report presents the results of a study to establish the environmental footprint and costs of the coal-based integrated gasification combined cycle (IGCC) technology relative to the conventional pulverized coal (PC) technologies. The technology options evaluated are restricted to those that are projected by the authors to be commercially applied by 2010. The IGCC plant configurations include coal slurry-based and dry coal-based, oxygen-blown gasifiers. The PC plant configurations include subcritical, supercritical, and ultra-supercritical boiler designs. All study evaluations are based on the use of three different coals: bituminous, sub-bituminous, and lignite. The same electric generating capacity of 500 MW is used for each plant configuration. State-of-the-art environmental controls are also included as part of the design of each plant. The environmental comparisons of IGCC and PC plants are based on thermal performance, emissions of criteria and non-criteria air pollutants, solid waste generation rates, and water consumption and wastewater discharge rates associated with each plant. The IGCC plants in these comparisons include NOX and SO{sub 2} controls considered viable for 2010 deployment. In addition, the potential for use of other advanced controls, specifically the selective catalytic reduction system for NOX reduction and the ultra-efficient Selexol and Rectisol systems for SO{sub 2} reduction, is also investigated. The cost estimates presented in the report include capital and operating costs for each IGCC and PC plant configuration. Cost impacts of using the advanced NOx and SO{sub 2} controls are included. The report provides an assessment of the CO{sub 2} capture and sequestration potential for the IGCC and PC plants. A review of the technical and economic aspects of CO{sub 2} capture technologies is included. 20 refs., 75 figs., 3 apps.

  4. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets.

    PubMed

    Salazar, Jaime; Müller, Rainer H; Möschwitzer, Jan P

    2013-07-16

    Standard particle size reduction techniques such as high pressure homogenization or wet bead milling are frequently used in the production of nanosuspensions. The need for micronized starting material and long process times are their evident disadvantages. Combinative particle size reduction technologies have been developed to overcome the drawbacks of the standard techniques. The H 42 combinative technology consists of a drug pre-treatment by means of spray-drying followed by standard high pressure homogenization. In the present paper, spray-drying process parameters influencing the diminution effectiveness, such as drug and surfactant concentration, were systematically analyzed. Subsequently, the untreated and pre-treated drug powders were homogenized for 20 cycles at 1500 bar. For untreated, micronized glibenclamide, the particle size analysis revealed a mean particle size of 772 nm and volume-based size distribution values of 2.686 μm (d50%) and 14.423 μm (d90%). The use of pre-treated material (10:1 glibenclamide/docusate sodium salt ratio spray-dried as ethanolic solution) resulted in a mean particle size of 236 nm and volume-based size distribution values of 0.131 μm (d50%) and 0.285 μm (d90%). These results were markedly improved compared to the standard process. The nanosuspensions were further transferred into tablet formulations. Wet granulation, freeze-drying and spray-drying were investigated as downstream methods to produce dry intermediates. Regarding the dissolution rate, the rank order of the downstream processes was as follows: Spray-drying>freeze-drying>wet granulation. The best drug release (90% within 10 min) was obtained for tablets produced with spray-dried nanosuspension containing 2% mannitol as matrix former. In comparison, the tablets processed with micronized glibenclamide showed a drug release of only 26% after 10 min. The H 42 combinative technology could be successfully applied in the production of small drug nanocrystals. A

  5. Single-Site Heterogeneous Catalysts: Innovations, Advantages, and Future Potential in Green Chemistry and Sustainable Technology

    NASA Astrophysics Data System (ADS)

    Raja, Robert; Thomas, John Meurig

    The advantages that flow from the availability of single-site heterogeneous catalysts are many. They facilitate the determination of the kinetics and mechanism of catalytic turnover and render accessible the energetics of various intermediates. More importantly, it is possible to prepare soluble molecular fragments that circumscribe the single site, thus enabling a direct comparison to be made between the catalytic performance of the same active site when functioning as a heterogeneous or a homogeneous catalyst. Our approach adopts the principles and practices of solid-state chemistry, augmented by lessons derived from enzymology, as well as computational chemistry. We have succeeded in designing a range of new catalysts to effect, inter alia, shape-selective, regioselective, bifunctional, and enantioselective catalytic conversions. In particular, large fractions of these catalysts are ideally suited for the era of clean technology in which single-step and/or solvent-free processes abound, and in which benign oxidants such as air or oxygen and inexpensive nanoporous materials are employed.

  6. Emerging technologies for sustainable irrigation – a tribute to the career of Terry Howell, Sr. Selected papers from the 2015 ASABE and IA irrigation symposium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article is an introduction to the “Emerging Technologies in Sustainable Irrigation – A Tribute to the Career of Terry Howell, Sr.” Special Collection in this issue of Transactions ASABE and the next issue of Applied Engineering in Agriculture, consisting of 15 articles selected from 62 papers a...

  7. Light Water Reactor Sustainability Program: Reactor Safety Technologies Pathway Technical Program Plan

    SciTech Connect

    Corradini, M. L.

    2015-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  8. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content.

    PubMed

    Tom, Asha P; Pawels, Renu; Haridas, Ajit

    2016-03-01

    Municipal solid waste with high moisture content is the major hindrance in the field of waste to energy conversion technologies and here comes the importance of biodrying process. Biodrying is a convective evaporation process, which utilizes the biological heat developed from the aerobic reactions of organic components. The numerous end use possibilities of the output are making the biodrying process versatile, which is possible by achieving the required moisture reduction, volume reduction and bulk density enhancement through the effective utilization of biological heat. In the present case study the detailed research and development of an innovative biodrying reactor has been carried out for the treatment of mixed municipal solid waste with high moisture content. A pilot scale biodrying reactor of capacity 565 cm(3) was designed and set up in the laboratory. The reactor dimensions consisted of an acrylic chamber of 60 cm diameter and 200 cm height, and it was enveloped by an insulation chamber. The insulation chamber was provided to minimise the heat losses through the side walls of the reactor. It simulates the actual condition in scaling up of the reactor, since in bigger scale reactors the heat losses through side walls will be negligible while comparing the volume to surface area ratio. The mixed municipal solid waste with initial moisture content of 61.25% was synthetically prepared in the laboratory and the reactor was fed with 109 kg of this substrate. Aerobic conditions were ensured inside the reactor chamber by providing the air at a constant rate of 40 litre per minute, and the direction of air flow was from the specially designed bottom air chamber to the reactor matrix top. The self heating inside reactor matrix was assumed in the range of 50-60°C during the design stage. Innovative biodrying reactor was found to be efficiently working with the temperature inside the reactor matrix rising to a peak value of 59°C by the fourth day of experiment (the

  9. Beyond Monitoring: A Brief Review of the Use of Remote Sensing Technology for Assessing Dryland Sustainability

    NASA Astrophysics Data System (ADS)

    Washington-Allen, R. A.

    2015-12-01

    Drylands cover 41% of the terrestrial surface and provide > $1 trillion in ecosystem services to one-third of the global population, yet are not well studied with estimates of degradation ranging from 10 - 80%. Here I will present an abbreviated history of the use of remote sensing (RS) to monitor Dryland degradation, review contemporary applications, and provide guidance for future directions. These early monitoring attempts (and some recent efforts) assumed the social model of "Tragedy of the Commons" and the ecological model of "the Balance of Nature". These assumptions justified a monitoring approach rather than an assessment, where land degradation was understood to be primarily a function of human action through livestock grazing management. The perceived linear impact of grazing on grassland biomass led to the early development of a remote sensing-based proxy of vegetation response: the normalized difference vegetation index (NDVI). Many RS studies of Drylands are biased towards the NDVI or variants, whereas the contemporary view of Drylands as complex systems has led to a new synthesis of approaches from ecological modeling, ecohydrology, landscape ecology, and remote sensing that now explicitly confront both multiple drivers that include land-use policy, droughts & floods, fire, and responses that include increased soil erosion and changes in soil quality, landscape composition, pattern, and structure. However, problems still abound including 1) a consensus on the definition of Drylands, 2) the need for time series of drivers to conduct assessments, 3) a lack of understanding of below-ground biomass dynamics, 4) improved mapping of grassland, shrubland, and savanna dryland cover types and their 3D structure. There are new technologies in Dryland RS including multi-frequency ground penetrating radar (GPR), RADAR, IFSAR, LIDAR, and MISR that may lead to the development of new indicators to address these issues.

  10. Sustainable land-use by regional energy and material flow management using "Terra-Preta-Technology

    NASA Astrophysics Data System (ADS)

    Friede, K.; Rößler, K.; Terytze, K.; Vogel, I.; Worzyk, F.; Schatten, R.; Wagner, R.; Haubold-Rosar, M.; Rademacher, A.; Weiß, U.; Weinfurtner, K.; Drabkin, D.; Zundel, S.; Trabelsi, S.

    2012-04-01

    The interdisciplinary and transdisciplinary joint research project seeks innovative system solutions for resource efficiency, climate protection and area revaluation by means of an integrative approach. The project's fundament is set by implementing the zero-emission-strategy, launching a regional resource efficient material flow management as well as utilising "Terra-Preta-Technology" as an innovative system component. As the centrepiece of optimised regional biogenic material flows Terra Preta Substrate (TPS) contains biochar shall be utilised exemplarily in model regions. In regional project 1 (state of Brandenburg, county Teltow-Fläming) TPS shall be used on military conversion areas, which are contaminated with polycyclic aromatic hydrocarbons and mineral oil hydrocarbons. It will be examined, whether the use of TPS causes accelerated pollutant reduction and whether this area is available for renewable raw material production. In regional project 2 (Western Lusatia, county Oberspreewald-Lusatia) reclamation and renaturation of post-mining-landscapes is first priority. In this case, the project seeks for an upgrade of devastated soils for plant production as well as for restoration of soil functions and setup of organic soil substances. In regional project 3 (state of North Rhine-Westphalia, city of Schmallenberg) reforestations of large scale windbreakage areas shall be supported by using TPS. Soil stabilisation, increased growth and survival of young trees and decreased nutrient losses are desired achievements. The crop production effectiveness and environmental compatibility of TPS will be determined by tests in laboratories, by lysimeter and open land taking into account chemical and physical as well as biological parameters. Currently diverse chemical, physical and biological examinations are performed. First results will be presented. The focus will be set on the use of TPS on military conversion areas to reduce specific organic contaminations.

  11. A novel technology for hematopoietic stem cell expansion using combination of nanofiber and growth factors.

    PubMed

    Lu, Jingwei; Aggarwal, Reeva; Pompili, Vincent J; Das, Hiranmoy

    2010-06-01

    Hematopoietic stem cell transplantation has been applied as a standard procedure of treatment for hematological disorders like multiple myeloma and leukemia for several decades. Various sources of stem cells like bone marrow, peripheral blood and umbilical cord blood are used for the transplantation. Among these umbilical cord blood is currently preferred due to the primitiveness of the derived stem cells and minimal possibilities of graft versus host disease or development of graft induced tumors. One of the problems for these sources is the procurement of sufficient number of donor stem cells. Inadequate number of cells may lead to delayed recovery and decrease survivability of the patient. Thus to overcome the limitation of stem cell number, development of an ex-vivo expansion technology is critically important. The recent emerging technology using nanofiber in combination with growth factors has made a significant improvement to the field of regenerative medicine and a couple of patents have been filed. In this review, we will focus on factors regulating hematopoietic stem cell self-renewal and expansion emphasizing on nanofiber as a supporting matrix. PMID:20420564

  12. Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    SciTech Connect

    Not Available

    1992-03-01

    On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

  13. Coal diesel combined-cycle project. Comprehensive report to Congress: Clean Coal Technology Program

    SciTech Connect

    Not Available

    1994-05-01

    One of the projects selected for funding is a project for the design, construction, and operation of a nominal 90 ton-per-day 14-megawatt electrical (MWe), diesel engine-based, combined-cycle demonstration plant using coal-water fuels (CWF). The project, named the Coal Diesel Combined-Cycle Project, is to be located at a power generation facility at Easton Utilities Commission`s Plant No. 2 in Easton, Talbot County, Maryland, and will use Cooper-Bessemer diesel engine technology. The integrated system performance to be demonstrated will involve all of the subsystems, including coal-cleaning and slurrying systems; a selective catalytic reduction (SCR) unit, a dry flue gas scrubber, and a baghouse; two modified diesel engines; a heat recovery steam generation system; a steam cycle; and the required balance of plant systems. The base feedstock for the project is bituminous coal from Ohio. The purpose of this Comprehensive Report is to comply with Public Law 102-154, which directs the DOE to prepare a full and comprehensive report to Congress on each project selected for award under the CCT-V Program.

  14. Sustained long-term immune responses after in situ gene therapy combined with radiotherapy and hormonal therapy in prostate cancer patients

    SciTech Connect

    Fujita, Tetsuo; Teh, Bin S.; Mai, W.-Y.; Kusaka, Nobuyuki; Naruishi, Koji; Fattah, Elmoataz Abdel; Aguilar-Cordova, Estuardo; Butler, E. Brian; Thompson, Timothy C.

    2006-05-01

    Purpose: To explore long-term immune responses after combined radio-gene-hormonal therapy. Methods and Materials: Thirty-three patients with prostate specific antigen 10 or higher or Gleason score of 7 or higher or clinical stage T2b to T3 were treated with gene therapy that consisted of 3 separate intraprostatic injections of AdHSV-tk on Days 0, 56, and 70. Each injection was followed by 2 weeks of valacyclovir. Intensity-modulated radiation therapy was delivered 2 days after the second AdHSV-tk injection for 7 weeks. Hormonal therapy was initiated on Day 0 and continued for 4 months or 2.3 years. Blood samples were taken before, during, and after treatment. Lymphocytes were analyzed by fluorescent antibody cell sorting (FACS). Results: Median follow-up was 26 months (range, 4-48 months). The mean percentages of DR{sup +}CD8{sup +} T cells were increased at all timepoints up to 8 months. The mean percentages of DR{sup +}CD4{sup +} T cells were increased later and sustained longer until 12 months. Long-term (2.3 years) use of hormonal therapy did not affect the percentage of any lymphocyte population. Conclusions: Sustained long-term (up to 8 to 12 months) systemic T-cell responses were noted after combined radio-gene-hormonal therapy for prostate cancer. Prolonged use of hormonal therapy does not suppress this response. These results suggest the potential for sustained activation of cell-mediated immune responses against cancer.

  15. Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice

    PubMed Central

    Ghosh, Sudeshna; Kinsey, Steven G.; Liu, Qing-song; Hruba, Lenka; McMahon, Lance R.; Grim, Travis W.; Merritt, Christina R.; Wise, Laura E.; Abdullah, Rehab A.; Selley, Dana E.; Sim-Selley, Laura J.; Cravatt, Benjamin F.

    2015-01-01

    Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-​3-​pyridinyl-​4-​[[3-​[[5-​(trifluoromethyl)-​2-​pyridinyl]oxy]phenyl]methyl]-​1-​piperidinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Δ9-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition combined

  16. Reproductive technologies combine well with genomic selection in dairy breeding programs.

    PubMed

    Thomasen, J R; Willam, A; Egger-Danner, C; Sørensen, A C

    2016-02-01

    The objective of the present study was to examine whether genomic selection of females interacts with the use of reproductive technologies (RT) to increase annual monetary genetic gain (AMGG). This was tested using a factorial design with 3 factors: genomic selection of females (0 or 2,000 genotyped heifers per year), RT (0 or 50 donors selected at 14 mo of age for producing 10 offspring), and 2 reliabilities of genomic prediction. In addition, different strategies for use of RT and how strategies interact with the reliability of genomic prediction were investigated using stochastic simulation by varying (1) number of donors (25, 50, 100, 200), (2) number of calves born per donor (10 or 20), (3) age of donor (2 or 14 mo), and (4) number of sires (25, 50, 100, 200). In total, 72 different breeding schemes were investigated. The profitability of the different breeding strategies was evaluated by deterministic simulation by varying the costs of a born calf with reproductive technologies at levels of €500, €1,000, and €1,500. The results confirm our hypothesis that combining genomic selection of females with use of RT increases AMGG more than in a reference scheme without genomic selection in females. When the reliability of genomic prediction is high, the effect on rate of inbreeding (ΔF) is small. The study also demonstrates favorable interaction effects between the components of the breeder's equation (selection intensity, selection accuracy, generation interval) for the bull dam donor path, leading to higher AMGG. Increasing the donor program and number of born calves to achieve higher AMGG is associated with the undesirable effect of increased ΔF. This can be alleviated, however, by increasing the numbers of sires without compromising AMGG remarkably. For the major part of the investigated donor schemes, the investment in RT is profitable in dairy cattle populations, even at high levels of costs for RT. PMID:26686703

  17. Making Friends with the Sustainable Livelihoods Framework.

    ERIC Educational Resources Information Center

    Hinshelwood, Emily

    2003-01-01

    A renewable energy project in South Wales was enriched by elements of the sustainable livelihood approach: people centered, holistic, and dynamic. The approach shifted the focus from technology to people and from product to process; it combined micro and macro issues. (SK)

  18. Earthdata Search: Combining New Services and Technologies for Earth Science Data Discovery, Visualization, and Access

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Pilone, D.

    2014-12-01

    A host of new services are revolutionizing discovery, visualization, and access of NASA's Earth science data holdings. At the same time, web browsers have become far more capable and open source libraries have grown to take advantage of these capabilities. Earthdata Search is a web application which combines modern browser features with the latest Earthdata services from NASA to produce a cutting-edge search and access client with features far beyond what was possible only a couple of years ago. Earthdata Search provides data discovery through the Common Metadata Repository (CMR), which provides a high-speed REST API for searching across hundreds of millions of data granules using temporal, spatial, and other constraints. It produces data visualizations by combining CMR data with Global Imagery Browse Services (GIBS) image tiles. Earthdata Search renders its visualizations using custom plugins built on Leaflet.js, a lightweight mobile-friendly open source web mapping library. The client further features an SVG-based interactive timeline view of search results. For data access, Earthdata Search provides easy temporal and spatial subsetting as well as format conversion by making use of OPeNDAP. While the client hopes to drive adoption of these services and standards, it provides fallback behavior for working with data that has not yet adopted them. This allows the client to remain on the cutting-edge of service offerings while still boasting a catalog containing thousands of data collections. In this session, we will walk through Earthdata Search and explain how it incorporates these new technologies and service offerings.

  19. Challenges of Implementing New Technologies for Sustainable Energy. Opening address at the Sixth Grove Fuel Cell Symposium, London, 13-16 September 1999

    NASA Astrophysics Data System (ADS)

    Jørgen Koch, Hans

    To meet the commitments made in Kyoto, energy-related CO 2 emissions would have to fall to almost 30% below the level projected for a "Business-As-Usual" scenario. Meeting this goal will require a large-scale shift toward climate-friendly technologies such as fuel cells, which have a large long-term potential for both stationary generation and transportation. The deployment of a technology is the last major stage in the process of technological shift. Climate-friendly technologies are not being deployed at a sufficient rate or in sufficient amount to allow IEA countries to meet their targets. Hence, if technology is to play an important roll in reducing emissions within the Kyoto time frame (2008-2012) and beyond, immediate and sustained action to accelerate technology deployment will be required. Obstacles in the way of the deployment of technologies that are ready or near-ready for normal use have come to be referred to as market barriers. The simplest yet most significant form of market barrier to a new technology is the out-of-pocket cost to the user relative to the cost of technologies currently in use. Some market barriers also involve market failure, where the market fails to take account of all the costs and benefits involved, such as omitting external environmental costs, and therefore retard the deployment of more environmentally sustainable technologies. Other barriers include poor information dissemination, excessive and costly regulations, slow capital turnover rates, and inadequate financing. Efforts by governments to alleviate market barriers play an important role to complement private-sector activities, and there are many policies and measures each government could take. In addition, international technology collaboration can help promote the best use of available R&D resources and can contribute to more effective deployment of the result of research and development by sharing costs, pooling information and avoiding duplication of efforts.

  20. CYP1B1 and endothelial nitric oxide synthase combine to sustain proangiogenic functions of endothelial cells under hyperoxic stress

    PubMed Central

    Tang, Yixin; Scheef, Elizabeth A.; Gurel, Zafer; Sorenson, Christine M.; Jefcoate, Colin R.

    2010-01-01

    We have recently shown that deletion of constitutively expressed CYP1B1 is associated with attenuation of retinal endothelial cell (EC) capillary morphogenesis (CM) in vitro and angiogenesis in vivo. This was largely caused by increased intracellular oxidative stress and increased production of thrombospondin-2, an endogenous inhibitor of angiogenesis. Here, we demonstrate that endothelium nitric oxide synthase (eNOS) expression is dramatically decreased in the ECs prepared from retina, lung, heart, and aorta of CYP1B1-deficient (CYP1B1−/−) mice compared with wild-type (CYP1B1+/+) mice. The eNOS expression was also decreased in retinal vasculature of CYP1B1−/− mice. Inhibition of eNOS activity in cultured CYP1B1+/+ retinal ECs blocked CM and was concomitant with increased oxidative stress, like in CYP1B1−/− retinal ECs. In addition, expression of eNOS in CYP1B1−/− retinal ECs or their incubation with a nitric oxide (NO) donor enhanced NO levels, lowered oxidative stress, and improved cell migration and CM. Inhibition of CYP1B1 activity in the CYP1B1+/+ retinal ECs resulted in reduced NO levels and attenuation of CM. In contrast, expression of CYP1B1 increased NO levels and enhanced CM of CYP1B1−/− retinal ECs. Furthermore, attenuation of CYP1B1 expression with small interfering RNA proportionally lowered eNOS expression and NO levels in wild-type cells. Together, our results link CYP1B1 metabolism in retinal ECs with sustained eNOS activity and NO synthesis and/or bioavailability and low oxidative stress and thrombospondin-2 expression. Thus CYP1B1 and eNOS cooperate in different ways to lower oxidative stress and thereby to promote CM in vitro and angiogenesis in vivo. PMID:20032512

  1. Is Sustainability Sustainable?

    ERIC Educational Resources Information Center

    Bonevac, Daniel

    2010-01-01

    The most important concept in current environmental thinking is "sustainability". Environmental policies, economic policies, development, resource use--all of these things, according to the consensus, ought to be sustainable. But what is sustainability? What is its ethical foundation? There is little consensus about how these questions ought to be…

  2. Highlights of NASA's Special ETO Program Planning Workshop on rocket-based combined-cycle propulsion system technologies

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.

    1992-01-01

    A NASA workshop on rocket-based combined-cycle propulsion technologies is described emphasizing the development of a starting point for earth-to-orbit (ETO) rocket technologies. The tutorial is designed with attention given to the combined development of aeronautical airbreathing propulsion and space rocket propulsion. The format, agenda, and group deliberations for the tutorial are described, and group deliberations include: (1) mission and space transportation infrastructure; (2) vehicle-integrated propulsion systems; (3) development operations, facilities, and human resource needs; and (4) spaceflight fleet applications and operations. Although incomplete the workshop elevates the subject of combined-cycle hypersonic propulsion and develops a common set of priniciples regarding the development of these technologies.

  3. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment

    SciTech Connect

    Not Available

    1993-05-01

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

  4. The effect of sustained natural apophyseal glide (SNAG) combined with neurodynamics in the management of a patient with cervical radiculopathy: a case report.

    PubMed

    Anandkumar, Sudarshan

    2015-02-01

    This case report describes a 47-year-old female who presented with complaints of pain in the right elbow radiating down to the thumb. Physical examination revealed symptom reproduction with Spurling A test, upper limb neurodynamic testing-1 and right cervical rotation along with reduced symptoms with neck distraction. Clinical diagnosis of cervical radiculopathy (CR) was made based on a clinical prediction rule. This case report speculates a potentially first-time description of successful conservative management of CR in a patient utilizing simultaneous combination of sustained natural apophyseal glide and neurodynamic mobilization. Immediate improvements were seen in pain, cervical range of motion and functional abilities. The patient was discharged from physical therapy by the second week after four treatment sessions with complete pain resolution maintained at a four-month follow-up period. PMID:25329587

  5. Recombinant HBV vaccine enhances the rate of sustained virological response when early initiated after anti-HCV combination therapy.

    PubMed

    Hanafy, Amr Shaaban; Farag, Alaa Ahmad; Hassanin, Hassan Mahmoud; Hassaneen, Ahmad Mahmoud

    2016-01-01

    The overall SVR rate for chronic hepatitis C genotype 4 using the Standard of care is 54.3%. HBV infection can be prevented by the administration of effective and safe vaccine. Evaluation of the vaccination-induced anti-HBs response rates in a cohort of HCV Egyptian patients after being exposed to antiviral combination therapy and the magnitude of its effect on the rate of SVR through its putative role in induction of crossed immunity. (A) 500 HCV patients who had completed the course of antiviral therapy and achieved ETR were retrospectively analyzed and received 20 μg of recombinant DNA vaccine for hepatitis B at time intervals (0, 1, and 4 months). The first dose of the vaccine was initiated one month post treatment. (B) Laboratory analysis: Included routine preliminary investigations to anti viral therapy and specific investigations as determination of anti-HBs antibodies 2 months following the third dose of vaccine. 433 patients showed protective response (86.6%), 67 patients were non-responders (13.4%) (P = 0.003). Adding HBV vaccine 1 month post-treatment increased SVR (400 patients, 80%) (χ(2)  = 40.3, P = 0.000). Diabetes affect response to HBV vaccine (P = 0.0001). Adding HBV vaccine to the post treatment care of patients with HCV after termination of antiviral therapy gain two benefits; protection from HBV and significant increase in rates of SVR. PMID:26147509

  6. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    SciTech Connect

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: • Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) • Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information • New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation

  7. Combination of DNA prime--adenovirus boost immunization with entecavir elicits sustained control of chronic hepatitis B in the woodchuck model.

    PubMed

    Kosinska, Anna D; Zhang, Ejuan; Johrden, Lena; Liu, Jia; Seiz, Pia L; Zhang, Xiaoyong; Ma, Zhiyong; Kemper, Thekla; Fiedler, Melanie; Glebe, Dieter; Wildner, Oliver; Dittmer, Ulf; Lu, Mengji; Roggendorf, Michael

    2013-01-01

    A potent therapeutic T-cell vaccine may be an alternative treatment of chronic hepatitis B virus (HBV) infection. Previously, we developed a DNA prime-adenovirus (AdV) boost vaccination protocol that could elicit strong and specific CD8+ T-cell responses to woodchuck hepatitis virus (WHV) core antigen (WHcAg) in mice. In the present study, we first examined whether this new prime-boost immunization could induce WHcAg-specific T-cell responses and effectively control WHV replication in the WHV-transgenic mouse model. Secondly, we evaluated the therapeutic effect of this new vaccination strategy in chronically WHV-infected woodchucks in combination with a potent antiviral treatment. Immunization of WHV-transgenic mice by DNA prime-AdV boost regimen elicited potent and functional WHcAg-specific CD8+ T-cell response that consequently resulted in the reduction of the WHV load below the detection limit in more than 70% of animals. The combination therapy of entecavir (ETV) treatment and DNA prime-AdV boost immunization in chronic WHV carriers resulted in WHsAg- and WHcAg-specific CD4+ and CD8+ T-cell responses, which were not detectable in ETV-only treated controls. Woodchucks receiving the combination therapy showed a prolonged suppression of WHV replication and lower WHsAg levels compared to controls. Moreover, two of four immunized carriers remained WHV negative after the end of ETV treatment and developed anti-WHs antibodies. These results demonstrate that the combined antiviral and vaccination approach efficiently elicited sustained immunological control of chronic hepadnaviral infection in woodchucks and may be a new promising therapeutic strategy in patients. PMID:23785279

  8. TRACI - TOOL FOR THE REDUCTION AND ASSESSMENT OF CHEMICAL AND ENVIRONMENTAL IMPACTS (SYSTEMS ANALYSIS BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    TRACI is an impact assessment tool being developed to assist in environmental decision making for programs in Pollution Prevention (P2), Life Cycle Assessment (LCA) and Sustainable Development (SD). TRACI includes impact assessment methodologies and supporting databases to allow ...

  9. EVALUATION OF TWO LEAD-BASED PAINT REMOVAL AND WASTE STABILIZATION TECHNOLOGY COMBINATIONS ON TYPICAL EXTERIOR SURFACES: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1624 Daniels*, A., Kominsky, J.R., and Clark*, P.J. Evaluation of Two Lead-Based Paint Removal and Waste Stabilization Technology Combinations on Typical Exterior Surfaces. Published in: Journal of Hazardous Materials 87 (1-3):117-126 (2001). 10/04/2001 A study was co...

  10. The Road to Sustainability. Sustainability Workbook

    ERIC Educational Resources Information Center

    Afterschool Alliance, 2002

    2002-01-01

    Sustainability seems generally thought to mean raising money. But money is only part of the equation. Money cannot be raised without a quality program, a quality program demonstrates results, effective results are based on sound management practices, etc. Sustainability therefore, is many things that in combination make something capable of…

  11. The technologically integrated oncosimulator: combining multiscale cancer modeling with information technology in the in silico oncology context.

    PubMed

    Stamatakos, Georgios; Dionysiou, Dimitra; Lunzer, Aran; Belleman, Robert; Kolokotroni, Eleni; Georgiadi, Eleni; Erdt, Marius; Pukacki, Juliusz; Rüeping, Stefan; Giatili, Stavroula; d'Onofrio, Alberto; Sfakianakis, Stelios; Marias, Kostas; Desmedt, Christine; Tsiknakis, Manolis; Graf, Norbert

    2014-05-01

    This paper outlines the major components and function of the technologically integrated oncosimulator developed primarily within the Advancing Clinico Genomic Trials on Cancer (ACGT) project. The Oncosimulator is defined as an information technology system simulating in vivo tumor response to therapeutic modalities within the clinical trial context. Chemotherapy in the neoadjuvant setting, according to two real clinical trials concerning nephroblastoma and breast cancer, has been considered. The spatiotemporal simulation module embedded in the Oncosimulator is based on the multiscale, predominantly top-down, discrete entity-discrete event cancer simulation technique developed by the In Silico Oncology Group, National Technical University of Athens. The technology modules include multiscale data handling, image processing, invocation of code execution via a spreadsheet-inspired environment portal, execution of the code on the grid, and the visualization of the predictions. A refining scenario for the eventual coupling of the oncosimulator with immunological models is also presented. Parameter values have been adapted to multiscale clinical trial data in a consistent way, thus supporting the predictive potential of the oncosimulator. Indicative results demonstrating various aspects of the clinical adaptation and validation process are presented. Completion of these processes is expected to pave the way for the clinical translation of the system. PMID:24108720

  12. Blood Pressure Control with a Single-Pill Combination of Indapamide Sustained-Release and Amlodipine in Patients with Hypertension: The EFFICIENT Study

    PubMed Central

    Jadhav, Uday; Hiremath, Jagdish; Namjoshi, Deepak J.; Gujral, Vinod K.; Tripathi, Kamlakar K.; Siraj, Mohammad; Shamanna, Paramesh; Safar, Michel

    2014-01-01

    Objective Despite antihypertensive treatment, most hypertensive patients still have high blood pressure (BP), notably high systolic blood pressure (SBP). The EFFICIENT study examines the efficacy and acceptability of a single-pill combination of sustained-release (SR) indapamide, a thiazide-like diuretic, and amlodipine, a calcium channel blocker (CCB), in the management of hypertension. Methods Patients who were previously uncontrolled on CCB monotherapy (BP≥140/90 mm Hg) or were previously untreated with grade 2 or 3 essential hypertension (BP≥160/100 mm Hg) received a single-pill combination tablet containing indapamide SR 1.5 mg and amlodipine 5 mg daily for 45 days, in this multicenter prospective phase 4 study. The primary outcome was mean change in BP from baseline; percentage of patients achieving BP control (BP<140/90 mm Hg) was a secondary endpoint. SBP reduction (ΔSBP) versus diastolic BP reduction (ΔDBP) was evaluated (ΔSBP/ΔDBP) from baseline to day 45. Safety and tolerability were also assessed. Results Mean baseline BP of 196 patients (mean age 52.3 years) was 160.2/97.9 mm Hg. After 45 days, mean SBP decreased by 28.5 mm Hg (95% CI, 26.4 to 30.6), while diastolic BP decreased by 15.6 mm Hg (95% CI, 14.5 to 16.7). BP control (<140/90 mm Hg) was achieved in 85% patients. ΔSBP/ΔDBP was 1.82 in the overall population. Few patients (n = 3 [2%]) reported side effects, and most (n = 194 [99%]) adhered to treatment. Conclusion In patients who were previously uncontrolled on CCB monotherapy or untreated with grade 2 or 3 hypertension, single-pill combination indapamide SR/amlodipine reduced BP effectively—especially SBP— over 45 days, and was safe and well tolerated. Trial Registration Clinical Trial Registry – India CTRI/2010/091/000114 PMID:24714044

  13. Combining near-term technologies to achieve a two-launch manned Mars mission

    NASA Technical Reports Server (NTRS)

    Baker, David A.; Zubrin, Robert M.

    1990-01-01

    This paper introduces a mission architecture called 'Mars Direct' which brings together several technologies and existing hardware into a novel mission strategy to achieve a highly capable and affordable approach to the Mars and Lunar exploratory objective of the Space Exploration Initiative (SEI). Three innovations working in concept cut the initial mass by a factor of three, greatly expand out ability to explore Mars, and eliminate the need to assemble vehicles in Earth orbit. The first innovation, a hybrid Earth/Mars propellant production process works as follows. An Earth Return Vehicle (ERV), tanks loaded with liquid hydrogen, is sent to Mars. After landing, a 100 kWe nuclear reactor is deployed which powers a propellant processor that combines onboard hydrogen with Mars' atmospheric CO2 to produce methane and water. The water is then electrolized to create oxygen and, in the process, liberates the hydrogen for further processing. Additional oxygen is gained directly by decomposition of Mars' CO2 atmosphere. This second innovation, a hybrid crew transport/habitation method, uses the same habitat for transfer to Mars as well as for the 18 month stay on the surface. The crew return via the previously launched ERV in a modest, lightweight return capsule. This reduces mission mass for two reasons. One, it eliminates the unnecessary mass of two large habitats, one in orbit and one on the surface. And two, it eliminates the need for a trans-Earth injection stage. The third innovation is a launch vehicle optimized for Earth escape. The launch vehicle is a Shuttle Derived Vehicle (SDV) consisting of two solid rocket boosters, a modified external tank, four space shuttle main engines and a large cryogenic upper stage mounted atop the external tank. This vehicle can throw 40 tonnes (40,000 kg) onto a trans-Mars trajectory, which is about the same capability as Saturn-5. Using two such launches, a four person mission can be carried out every twenty-six months with

  14. [Research on identification of cabbages and weeds combining spectral imaging technology and SAM taxonomy].

    PubMed

    Zu, Qin; Zhang, Shui-fa; Cao, Yang; Zhao, Hui-yi; Dang, Chang-qing

    2015-02-01

    Weeds automatic identification is the key technique and also the bottleneck for implementation of variable spraying and precision pesticide. Therefore, accurate, rapid and non-destructive automatic identification of weeds has become a very important research direction for precision agriculture. Hyperspectral imaging system was used to capture the hyperspectral images of cabbage seedlings and five kinds of weeds such as pigweed, barnyard grass, goosegrass, crabgrass and setaria with the wavelength ranging from 1000 to 2500 nm. In ENVI, by utilizing the MNF rotation to implement the noise reduction and de-correlation of hyperspectral data and reduce the band dimensions from 256 to 11, and extracting the region of interest to get the spectral library as standard spectra, finally, using the SAM taxonomy to identify cabbages and weeds, the classification effect was good when the spectral angle threshold was set as 0. 1 radians. In HSI Analyzer, after selecting the training pixels to obtain the standard spectrum, the SAM taxonomy was used to distinguish weeds from cabbages. Furthermore, in order to measure the recognition accuracy of weeds quantificationally, the statistical data of the weeds and non-weeds were obtained by comparing the SAM classification image with the best classification effects to the manual classification image. The experimental results demonstrated that, when the parameters were set as 5-point smoothing, 0-order derivative and 7-degree spectral angle, the best classification result was acquired and the recognition rate of weeds, non-weeds and overall samples was 80%, 97.3% and 96.8% respectively. The method that combined the spectral imaging technology and the SAM taxonomy together took full advantage of fusion information of spectrum and image. By applying the spatial classification algorithms to establishing training sets for spectral identification, checking the similarity among spectral vectors in the pixel level, integrating the advantages of

  15. Digital Libraries with Embedded Values: Combining Insights from LIS and Science and Technology Studies

    ERIC Educational Resources Information Center

    Fleischmann, Kenneth R.

    2007-01-01

    In the digital age, libraries are increasingly being augmented or even replaced by information technology (IT), which is often accompanied by implicit assumptions of objectivity and neutrality, yet the field of science and technology studies (STS) has a long history of studying what values are embedded in IT and how they are embedded. This article…

  16. Exergy sustainability.

    SciTech Connect

    Robinett, Rush D. III; Wilson, David Gerald; Reed, Alfred W.

    2006-05-01

    Exergy is the elixir of life. Exergy is that portion of energy available to do work. Elixir is defined as a substance held capable of prolonging life indefinitely, which implies sustainability of life. In terms of mathematics and engineering, exergy sustainability is defined as the continuous compensation of irreversible entropy production in an open system with an impedance and capacity-matched persistent exergy source. Irreversible and nonequilibrium thermodynamic concepts are combined with self-organizing systems theories as well as nonlinear control and stability analyses to explain this definition. In particular, this paper provides a missing link in the analysis of self-organizing systems: a tie between irreversible thermodynamics and Hamiltonian systems. As a result of this work, the concept of ''on the edge of chaos'' is formulated as a set of necessary and sufficient conditions for stability and performance of sustainable systems. This interplay between exergy rate and irreversible entropy production rate can be described as Yin and Yang control: the dialectic synthesis of opposing power flows. In addition, exergy is shown to be a fundamental driver and necessary input for sustainable systems, since exergy input in the form of power is a single point of failure for self-organizing, adaptable systems.

  17. Estimating GHG Reduction from Combinations of Current Best-Available and Future Powertrain and Vehicle Technologies for a Midsized Car Using EPA’s ALPHA Model

    EPA Science Inventory

    EPA identified the best, or most efficient, engines, transmissions and vehicle technologies, and then used ALPHA to predict the GHG emissions would be from a midsized car incorporating the best combination of these technologies.

  18. Novel methodology to examine cognitive and experiential factors in language development: combining eye-tracking and LENA technology

    PubMed Central

    Odean, Rosalie; Nazareth, Alina; Pruden, Shannon M.

    2015-01-01

    Developmental systems theory posits that development cannot be segmented by influences acting in isolation, but should be studied through a scientific lens that highlights the complex interactions between these forces over time (Overton, 2013a). This poses a unique challenge for developmental psychologists studying complex processes like language development. In this paper, we advocate for the combining of highly sophisticated data collection technologies in an effort to move toward a more systemic approach to studying language development. We investigate the efficiency and appropriateness of combining eye-tracking technology and the LENA (Language Environment Analysis) system, an automated language analysis tool, in an effort to explore the relation between language processing in early development, and external dynamic influences like parent and educator language input in the home and school environments. Eye-tracking allows us to study language processing via eye movement analysis; these eye movements have been linked to both conscious and unconscious cognitive processing, and thus provide one means of evaluating cognitive processes underlying language development that does not require the use of subjective parent reports or checklists. The LENA system, on the other hand, provides automated language output that describes a child’s language-rich environment. In combination, these technologies provide critical information not only about a child’s language processing abilities but also about the complexity of the child’s language environment. Thus, when used in conjunction these technologies allow researchers to explore the nature of interacting systems involved in language development. PMID:26379591

  19. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    SciTech Connect

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible

  20. A Combination of Various Technologies in the Fabrication of a Removable Partial Denture--A Case Study.

    PubMed

    Seitz, Stefanie; Cox, Nicholas; Jones, John D; Zimmermann, Richard

    2016-01-01

    Digital dentistry is increasing prevalent throughout general dental practice. Scanned impression systems, CAD/CAM software, milling units, and 3D printers are becoming used with regularity by some private practitioners. This case report describes a combination of multiple technologies including intraoral scanning, 3D printing, and traditional impression and processing techniques used for fabricating a removable partial denture. The patient indicated that he was highly satisfied throughout the course of treatment and especially with the final result. Future technology will continue to evolve and be more widely used in removable prosthodontics and other areas of dentistry. PMID:27008841

  1. Comparing Adhesive Bonding and LAMP Joining Technology in Case of Hybrid Material Combination

    NASA Astrophysics Data System (ADS)

    Markovits, T.; Bauernhuber, A.

    As plastics are utilized more and more frequently in our devices, it becomes necessary that they can be adequately joined to other materials, like metals. Bonding different materials was carried so far out primarily by adhesives, however, novel technologies, like laser assisted metal-plastic joining are showing benefits against current technologies. In the course of this study, the authors joined PMMA plastic to structural steel by adhesives and by laser assisted metal-plastic joining. Mechanical tests were carried out to compare the two different technologies, and to be able to position the LAMP joining within the field of joining technologies. Results show clearly the advantages of laser transmission joining as compared to adhesives.

  2. A Short Review of Information and Communication Technologies and Basic Education in LDCs--What Is Useful, What Is Sustainable?

    ERIC Educational Resources Information Center

    Grace, Jeremy; Kenny, Charles

    2003-01-01

    Information and communication technologies such as radio and television have long been used in education. The advent of the technology of the Internet has created pressure for Internet access in primary and secondary schools across the world. This paper reviews some of the available evidence on the impact and cost of such technologies in…

  3. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    SciTech Connect

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    2005-06-30

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  4. Formulation development, optimization, and evaluation of sustained release tablet of valacyclovir hydrochloride by combined approach of floating and swelling for better gastric retention.

    PubMed

    Upadhyay, Pratik; Nayak, Kunal; Patel, Kaushika; Patel, Jaymin; Shah, Shreeraj; Deshpande, Jayant

    2014-12-01

    The present study is intended to enhance gastric retention of sustained release tablet of valacyclovir hydrochloride by combined approach of floating and swelling. The tablets are prepared by direct compression method. Polyethylene oxide (Polyox WSR 303) is selected as the swelling matrix agent. Sodium starch glycolate (SSG) is used as swelling enhancer, and sodium bicarbonate is used as an effervescent agent for floating. A 3(2) full factorial design is applied to systematically optimize the formulation. The concentration of Polyox WSR 303 (X 1) and concentration of SSG (X 2) are selected as independent variables. The percentage drug release at 12 h, floating lag time, and maximum percentage swelling are selected as dependent variables. Formulations are evaluated for hardness, friability, floating lag time, total floating time, percentage swelling, in vitro drug release, and in vivo floating study. The results indicated that X 1 and X 2 significantly affected the drug release properties, floating lag times, and maximum percentage swelling. Release rate decreases as the concentration of Polyox increased. Regression analysis and numerical optimization are performed to identify the best formulation. Formulation F5 prepared with Polyox WSR 303 (15 %) and SSG (10 %) is found to be the best formulation. F5 followed zero-order release mechanism. Swelling and floating gastroretentive tablets of valacyclovir HCl are successfully formulated with controlled delivery to stomach with an aim of increasing the mean residence time in the upper part of GIT where the drug has its absorption window. PMID:25787207

  5. A case study in innovative outreach--combining training, research, and technology transfer to address real-world problems.

    PubMed Central

    Chang, D P

    1998-01-01

    Outreach, training, technology transfer, and research are often treated as programmatically distinct activities. The interdisciplinary and applied aspects of the Superfund Basic Research Program offer an opportunity to explore different models. A case study is presented that describes a collaborative outreach effort that combines all of the above. It involves the University of California's Davis and Berkeley program projects, the University of California Systemwide Toxic Substances Research and Teaching Program, the U.S. Navy's civilian workforce at the former Mare Island Naval Shipyard, Vallejo, California (MINSY), a Department of Defense (DoD) Environmental Education Demonstration Grant program, and the Private Industry Council of Napa and Sonoma counties in California. The effort applied a Superfund-developed technology to a combined waste, radium and polychlorinated biphenyl contamination, stemming from a problematic removal action at an installation/restoration site at MINSY. The effort demonstrates that opportunities for similar collaborations are possible at DoD installations. PMID:9703494

  6. SCIENCE AND LAW IN SUSTAINABILITY

    EPA Science Inventory

    Understanding sustainability depends in large part on research in science and technology, subjects that provide basic knowledge about humankind's interaction with the natural environment and how much impact and development the environment can sustain without suffering irreparable...

  7. Day, night, and all-weather security surveillance automation: synergy from combining two powerful technologies

    NASA Astrophysics Data System (ADS)

    Morellas, Vassilios; Johnston, Chris; Johnson, Andrew; Roberts, Sharon D.; Francisco, Glen L.

    2005-05-01

    Thermal imaging is rightfully a real-world technology proven to bring confidence to daytime, nighttime and all weather security surveillance. Automatic image processing intrusion detection algorithms are also a real world technology proven to bring confidence to system surveillance security solutions. Together, day, night and all weather video imagery sensors and automated intrusion detection software systems create the real power to protect early against crime, providing real-time global homeland protection, rather than simply being able to monitor and record activities for post event analysis. These solutions, whether providing automatic security system surveillance at airports (to automatically detect unauthorized aircraft takeoff and landing activities) or at high risk private, public or government facilities (to automatically detect unauthorized people or vehicle intrusion activities) are on the move to provide end users the power to protect people, capital equipment and intellectual property against acts of vandalism and terrorism. As with any technology, infrared sensors and automatic image intrusion detection systems for global homeland security protection have clear technological strengths and limitations compared to other more common day and night vision technologies or more traditional manual man-in-the-loop intrusion detection security systems. This paper addresses these strength and limitation capabilities. False Alarm (FAR) and False Positive Rate (FPR) is an example of some of the key customer system acceptability metrics and Noise Equivalent Temperature Difference (NETD) and Minimum Resolvable Temperature are examples of some of the sensor level performance acceptability metrics.

  8. Day, night and all-weather security surveillance automation synergy from combining two powerful technologies

    SciTech Connect

    Morellas, Vassilios; Johnson, Andrew; Johnston, Chris; Roberts, Sharon D.; Francisco, Glen L.

    2006-07-01

    Thermal imaging is rightfully a real-world technology proven to bring confidence to daytime, night-time and all weather security surveillance. Automatic image processing intrusion detection algorithms are also a real world technology proven to bring confidence to system surveillance security solutions. Together, day, night and all weather video imagery sensors and automated intrusion detection software systems create the real power to protect early against crime, providing real-time global homeland protection, rather than simply being able to monitor and record activities for post event analysis. These solutions, whether providing automatic security system surveillance at airports (to automatically detect unauthorized aircraft takeoff and landing activities) or at high risk private, public or government facilities (to automatically detect unauthorized people or vehicle intrusion activities) are on the move to provide end users the power to protect people, capital equipment and intellectual property against acts of vandalism and terrorism. As with any technology, infrared sensors and automatic image intrusion detection systems for global homeland security protection have clear technological strengths and limitations compared to other more common day and night vision technologies or more traditional manual man-in-the-loop intrusion detection security systems. This paper addresses these strength and limitation capabilities. False Alarm (FAR) and False Positive Rate (FPR) is an example of some of the key customer system acceptability metrics and Noise Equivalent Temperature Difference (NETD) and Minimum Resolvable Temperature are examples of some of the sensor level performance acceptability metrics. (authors)

  9. Visualizing petroleum systems with a combination of GIS and multimedia technologies: An example from the West Siberia Basin

    SciTech Connect

    Walsh, D.B.; Grace, J.D.

    1996-12-31

    Petroleum system studies provide an ideal application for the combination of Geographic Information System (GIS) and multimedia technologies. GIS technology is used to build and maintain the spatial and tabular data within the study region. Spatial data may comprise the zones of active source rocks and potential reservoir facies. Similarly, tabular data include the attendant source rock parameters (e.g. pyroloysis results, organic carbon content) and field-level exploration and production histories for the basin. Once the spatial and tabular data base has been constructed, GIS technology is useful in finding favorable exploration trends, such as zones of high organic content, mature source rocks in positions adjacent to sealed, high porosity reservoir facies. Multimedia technology provides powerful visualization tools for petroleum system studies. The components of petroleum system development, most importantly generation, migration and trap development typically span periods of tens to hundreds of millions of years. The ability to animate spatial data over time provides an insightful alternative for studying the development of processes which are only captured in {open_quotes}snapshots{close_quotes} by static maps. New multimedia-authoring software provides this temporal dimension. The ability to record this data on CD-ROMs and allow user- interactivity further leverages the combination of spatial data bases, tabular data bases and time-based animations. The example used for this study was the Bazhenov-Neocomian petroleum system of West Siberia.

  10. Implementing interactive decision support: A case for combining cyberinfrastructure, data fusion, and social process to mobilize scientific knowledge in sustainability problems

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2014-12-01

    Geosciences are becoming increasingly data intensive, particularly in relation to sustainability problems, which are multi-dimensional, weakly structured and characterized by high levels of uncertainty. In the case of complex resource management problems, the challenge is to extract meaningful information from data and make sense of it. Simultaneously, scientific knowledge alone is insufficient to change practice. Creating tools, and group decision support processes for end users to interact with data are key challenges to transforming science-based information into actionable knowledge. The ENCOMPASS project began as a multi-year case study in the Atacama Desert of Chile to design and implement a knowledge transfer model for energy-water-mining conflicts in the region. ENCOMPASS combines the use of cyberinfrastructure (CI), automated data collection, interactive interfaces for dynamic decision support, and participatory modelling to support social learning. A pilot version of the ENCOMPASS CI uses open source systems and serves as a structure to integrate and store multiple forms of data and knowledge, such as DEM, meteorological, water quality, geomicrobiological, energy demand, and groundwater models. In the case study, informatics and data fusion needs related to scientific uncertainty around deep groundwater flowpaths and energy-water connections. Users may upload data from field sites with handheld devices or desktops. Once uploaded, data assets are accessible for a variety of uses. To address multi-attributed decision problems in the Atacama region a standalone application with touch-enabled interfaces was created to improve real-time interactions with datasets by groups. The tool was used to merge datasets from the ENCOMPASS CI to support exploration among alternatives and build shared understanding among stakeholders. To date, the project has increased technical capacity among stakeholders, resulted in the creation of both for-profit and non

  11. Combined effects of moisture, temperature, fiber architecture, and sustained load on the mechanical and microstructural properties of notched and unnotched e-glass/vinyl ester composite materials

    NASA Astrophysics Data System (ADS)

    Buck, Stephanie E.

    Structural composite materials are being investigated for use in applications which will require long-term durability in the presence of various environments and external loading conditions. Flaws may be created in these composite materials during manufacturing, machining, or use. Adverse use conditions may result in significantly reduced mechanical properties and changes in the microstructural properties and damage mechanisms of composites with seemingly minor flaws. E-glass/vinyl ester composite coupons, some with a preexisting flaw, have been conditioned in a wet environment for periods of up to nearly 8000 hours at several temperatures, mostly with a sustained tensile load, to determine the changes in the mechanical properties and damage mechanisms which occur with the introduction of a flaw. The fiber architectures used for the unnotched coupons were [0/90/+/-45]2s, [0/90/+/-45]3s, and [90/0]2s, all containing a chopped strand mat in each set, while those used for the notched coupons were [90/0]2s, [0] 16, [0/90]8, and [0/90]f8, with only the first containing the random mat. The combination of moisture and temperature was found to degrade the mechanical properties of the unnotched materials, particularly the tensile strength. The addition of a sustained load was found to further degrade these properties. During conditioning, the damage mechanisms were found to change from matrix microcracking, fiber damage, and occasional edge delaminations for unnotched specimens to the growth of a significant transverse crack from the notch tip and longitudinal tow debonding for notched specimens. Moisture and elevated temperature were found to affect the extent of damage, but not the dual nature of damage, in the vicinity of the notch tip, while the fiber architecture affected some of the patterns of damage. The unidirectional samples, not loaded during conditioning, were tested in load cycles to determine the strain energy release rates for increments of growth of

  12. A combined remote sensing and modeling based approach to identify sustainable pathways for urban and peri-urban agriculture in China

    NASA Astrophysics Data System (ADS)

    Wattenbach, M.; Delgado, J. M.; Roessner, S.; Bochow, M.; Güntner, A.; Kropp, J.; Cantu Ros, A. G.; Hattermann, F.; Kolbe, T.; Sodoudi, S.; Cubasch, U. Ulrich; Zeitz, J.; Ross, L.; Böckel, K.; Fang, C.; Bo, L.; Pan, G.

    2012-04-01

    As the world's biggest economy, China is becoming the biggest consumer of resources globally. Given this trend, the over-proportional fast increase in urbanization presents China with fundamental problems. Among the most urgent ones is the increasing loss of agricultural land as urbanization takes place in the most productive regions along the coast. The latter is being responsible for a shift in agriculture production towards climatically less favorable areas. At the same time, the loss of green areas in and around growing cities is increasing the effect of the urban heat island. The perception of the potential risks related to this phenomenon, in the context of climate change, has led the Shanghai city administration to increase its urban-greening efforts, expanding the per capita area of green from 1m2 in 1990 to 12.5m2 in 2008. In this context, this paper aims at identifying the influence of urban and peri-urban agriculture (UPA) on the sustainability of the urban regions of Shanghai and Nanjing. In particular, it focuses on the effects of UPA on the greenhouse gas (GHG) emissions, soil nutrients and water balances, local climate and the structure and functions of the urbanized areas. We propose an interdisciplinary framework combining remote sensing, model simulations and GHG field observations and targeted at identifying "win-win" strategies for sustainable planning pathways showing high potentials for UPA. The framework is based on spatial scenario modeling, automatic classification of urban structure types and on a prototype of a high-quality spatial database consisting of a 3D city model. Dynamic boundary conditions for climate and urban development are provided by state of the art models. These approaches meet the needs of stakeholders and planners in China. A special emphasis is put on interdependencies between small holder farming in the urban and peri-urban zone and climate change adaptation and mitigation strategies focusing on improved management of

  13. [Experimental research on combined water and air backwashing reactor technology for biological activated carbon].

    PubMed

    Xie, Zhi-Gang; Qiu, Xue-Min; Zhao, Yan-Ling

    2012-01-01

    To proper control the backwashing process of biological activated carbon (BAC) reactor and improve the overall operation performance, the evaluative indexes such as backwashing wastewater turbidity, organic pollutants removal rate of pre and post-backwashing, and the variation of biomass and biological activity in carbon column are used to compare and analyze the effect of three different combined water and air backwashing methods on the operation of BAC reactor. The result shows that intermittent combined water and air backwashing method is most suitable to BAC reactor. The biological activaty obviously increases by 62.5% after intermittent combined water and air backwashing process. While, the biological activaty using the backwashing method of air plus water and the backwashing method of water and air compounded plus water washing increases by 55.6%, 38.5%, respectively. After backwashing 308h, the reactor recovered to its normal function after intermittent combined water and air backwashing process with the removal rate of UV254 reaching to 60.0%. The fulvic-like fluorescence peak of backwashing water are very weak, and are characterized by low-excitation wavelength tryptophan like (peak S) and high excitation wavelength of tryptophan (peak T), which are caused by the microbial debris washed down. The three-dimensional fluorescence spectra also show that microbial fragments are easy to be washed clean with intermittent combined water and air backwashing. PMID:22452199

  14. The sustainability solutions agenda.

    PubMed

    Sarewitz, Daniel; Clapp, Richard; Crumbley, Cathy; Kriebel, David; Tickner, Joel

    2012-01-01

    Progress toward a more sustainable society is usually described in a "knowledge-first" framework, where science characterizes a problem in terms of its causes and mechanisms as a basis for subsequent action. Here we present a different approach-A Sustainability Solutions Agenda (SSA)-which seeks from the outset to identify the possible pathways to solutions. SSA focuses on uncovering paths to sustainability by improving current technological practice, and applying existing knowledge to identify and evaluate technological alternatives. SSA allows people and organizations to transition toward greater sustainability without sacrificing essential technological functions, and therefore does not threaten the interests that depend on those functions. Whereas knowledge-first approaches view scientific information as sufficient to convince people to take the right actions, even if those actions are perceived as against their immediate interests, SSA allows values to evolve toward greater attention to sustainability as a result of the positive experience of solving a problem. PMID:22776577

  15. Online Professional Development: Combining Best Practices from Teacher, Technology and Distance Education

    ERIC Educational Resources Information Center

    Signer, Barbara

    2008-01-01

    This article provides a model of online professional development that is consistent with recommendations from the fields of teacher education, technology staff development and online learning. A graduate mathematics education course designed and implemented using the model is presented to exemplify the model's core components and interactions. The…

  16. The Learning Environment Associated with Information Technology Education in Taiwan: Combining Psychosocial and Physical Aspects

    ERIC Educational Resources Information Center

    Liu, Chia-Ju; Zandvliet, David B.; Hou, I.-Ling

    2012-01-01

    This study investigated perceptions of senior high school students towards the Taiwanese information technology (IT) classroom with the What Is Happening in this Class? (WIHIC) survey and explored the physical learning environment of the IT classroom using the Computerised Classroom Environment Inventory (CCEI). The participants included 2,869…

  17. Becoming allies: Combining social science and technological perspectives to improve energy research and policy making

    SciTech Connect

    Diamond, Rick; Moezzi, Mithra

    2002-07-01

    Within the energy research community, social sciences tends to be viewed fairly narrowly, often as simply a marketing tool to change the behavior of consumers and decision makers, and to ''attack market barriers''. As we see it, social sciences, which draws on sociology, psychology, political science, business administration, and other academic disciplines, is capable of far more. A social science perspective can re-align questions in ways that can lead to the development of technologies and technology policy that are much stronger and potentially more successful than they would be otherwise. In most energy policies governing commercial buildings, the prevailing R and D directives are firmly rooted in a technology framework, one that is generally more quantitative and evaluative than that fostered by the social sciences. To illustrate how social science thinking would approach the goal of achieving high energy performance in the commercial building sector, they focus on the US Department of Energy's Roadmap for commercial buildings (DOE 2000) as a starting point. By ''deconstructing'' the four strategies provided by the Roadmap, they set the stage for proposing a closer partnership between advocates of technology-based and social science-based approaches.

  18. Combining ARS Process-Based Water and Wind Erosion Prediction Technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion process research in the United States has long been separated by location, experimental data collection, and prediction technologies. Erosion experiment stations were established in the l930’s throughout the country, however most examined erosion by water while a few in the Plains states we...

  19. Wayanad widows: A study of sustainable rural economic development using renewable energy technology for micro enterprise in Kerala, India

    NASA Astrophysics Data System (ADS)

    Voorhees, Maire Claire

    This thesis examines the situation of the farmer widows of Wayanad, Kerala through exploration of the underlying agricultural and economic issues leading to farmers' suicides, the current state of the environment in the Wayanad District of Kerala, India, and an economic model of micro-entrepreneurship to address economic and social issues of the surviving widows. Quantitative and qualitative research methods were performed through the assessment and document analysis of archive, newspaper, and published reports to gain a macro perspective. The Environmental Vulnerability Index was used as a tool to evaluate and organize findings of the current environmental conditions in the region. This thesis supports the sustainability concept of considering the economic, ecological, and social impacts when identifying economic development pathways. The goal was to explore the appropriateness of small household solar systems as vehicle in the micro-enterprise model to be a sustainable alternative economic pathway to agriculture for the farmer widows of Wayanad.

  20. Long-term indigenous soil conservation technology in the Chencha area, southern Ethiopia: origin, characteristics, and sustainability.

    PubMed

    Engdawork, Assefa; Bork, Hans-Rudolf

    2014-11-01

    The purpose of this study is to examine the origin, development, and characteristics of terraces (kella), plus their potentials and determinants for sustainable use in the Chencha-Dorze Belle area of southern Ethiopia. Field surveys were conducted to determine the various parameters of the indigenous terraces and in order to collect samples for radiocarbon dating. To identify farmers' views of the terrace systems, semi-structured interviews and group discussions were also carried out. Terraces were built and used-as radiocarbon dating proves-at least over the last 800 years. The long-term continued usage of the indigenous terraces is the result of social commitments, the structural features of the terraces, and the farmers' responses to the dynamics of social and cultural circumstances. We dubbed that the terraces are a success story of fruitful environmental management over generations. Thus, a strong need is to preserve and develop this important cultural heritage and example of sustainable land use. PMID:24805921

  1. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013

    SciTech Connect

    Hallbert, Bruce; Thomas, Ken

    2014-07-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  2. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    SciTech Connect

    Hallbert, Bruce; Thomas, Ken

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  3. Integrating Sustainable Development in Higher Education through Experience-Based Learning: Insights from Experts in Team (EiT) for Developing a Combined Theoretical Framework

    ERIC Educational Resources Information Center

    Otte, Pia Piroschka

    2016-01-01

    Universities are understood to play an essential role in the promotion of sustainable development. However, the recognition of sustainable development in higher education poses multiple challenges to the traditional higher education system. This article introduces a course concept called "Experts in Teams" (EiT) as a new platform of…

  4. In vitro conservation and sustained production of breadfruit ( Artocarpus altilis, Moraceae): modern technologies for a traditional tropical crop

    NASA Astrophysics Data System (ADS)

    Murch, Susan J.; Ragone, Diane; Shi, Wendy Lei; Alan, Ali R.; Saxena, Praveen K.

    2008-02-01

    Breadfruit ( Artocarpus altilis, Moraceae) is a traditionally cultivated, high-energy, high-yield crop, but widespread use of the plant for food is limited by poor quality and poor storage properties of the fruit. A unique field genebank of breadfruit species and cultivars exists at the National Tropical Botanical Garden in the Hawaiian Islands and is an important global resource for conservation and sustainable use of breadfruit. However, this plant collection could be damaged by a random natural disaster such as a hurricane. We have developed a highly efficient in vitro plant propagation system to maintain, conserve, mass propagate, and distribute elite varieties of this important tree species. Mature axillary shoot buds were collected from three different cultivars of breadfruit and proliferated using a cytokinin-supplemented medium. The multiple shoots were maintained as stock cultures and repeatedly used to develop whole plants after root differentiation on a basal or an auxin-containing medium. The plantlets were successfully grown under greenhouse conditions and were reused to initiate additional shoot cultures for sustained production of plants. Flow cytometry was used to determine the nuclear deoxyribonucleic acid content and the ploidy status of the in vitro grown population. The efficacy of the micropropagation protocols developed in this study represents a significant advancement in the conservation and sustained mass propagation of breadfruit germplasm in a controlled environment free from contamination.

  5. In vitro conservation and sustained production of breadfruit (Artocarpus altilis, Moraceae): modern technologies for a traditional tropical crop.

    PubMed

    Murch, Susan J; Ragone, Diane; Shi, Wendy Lei; Alan, Ali R; Saxena, Praveen K

    2008-02-01

    Breadfruit (Artocarpus altilis, Moraceae) is a traditionally cultivated, high-energy, high-yield crop, but widespread use of the plant for food is limited by poor quality and poor storage properties of the fruit. A unique field genebank of breadfruit species and cultivars exists at the National Tropical Botanical Garden in the Hawaiian Islands and is an important global resource for conservation and sustainable use of breadfruit. However, this plant collection could be damaged by a random natural disaster such as a hurricane. We have developed a highly efficient in vitro plant propagation system to maintain, conserve, mass propagate, and distribute elite varieties of this important tree species. Mature axillary shoot buds were collected from three different cultivars of breadfruit and proliferated using a cytokinin-supplemented medium. The multiple shoots were maintained as stock cultures and repeatedly used to develop whole plants after root differentiation on a basal or an auxin-containing medium. The plantlets were successfully grown under greenhouse conditions and were reused to initiate additional shoot cultures for sustained production of plants. Flow cytometry was used to determine the nuclear deoxyribonucleic acid content and the ploidy status of the in vitro grown population. The efficacy of the micropropagation protocols developed in this study represents a significant advancement in the conservation and sustained mass propagation of breadfruit germplasm in a controlled environment free from contamination. PMID:17710379

  6. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  7. Environmental Technology Verification Report: Climate Energy freewatt™ Micro-Combined Heat and Power System

    EPA Science Inventory

    The EPA GHG Center collaborated with the New York State Energy Research and Development Authority (NYSERDA) to evaluate the performance of the Climate Energy freewatt Micro-Combined Heat and Power System. The system is a reciprocating internal combustion (IC) engine distributed e...

  8. NEWS - SUSTAINABILITY SCIENCE

    EPA Science Inventory

    A series of papers contributed by a diversified collection of researchers endeavor to depict sustainability science as an incomplete but necessary global endeavor. Their concern rests on the perceived inability of science and technology to solely lead the development of sustain...

  9. Sustainability at BPA 2012

    SciTech Connect

    2012-12-01

    BPA’s Sustainability Action Plan is grounded in our commitment to environmental stewardship and Executive Order 13514 that calls on the federal agencies to “lead by example” by setting a 2020 greenhouse gas emissions target, increasing energy efficiency; reducing fleet petroleum consumption; conserving water; reducing waste; supporting sustainable communities; and leveraging federal purchasing power to promoting environmentally responsible products and technologies.

  10. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  11. Surveying and optical tooling technologies combined to align a skewed beamline at the LAMPF accelerator

    SciTech Connect

    Bauke, W.; Clark, D.A.; Trujillo, P.B.

    1985-01-01

    Optical Tooling evolved from traditional surveying, and both technologies are sometimes used interchangeably in large industrial installations, since the instruments and their specialized adapters and supports complement each other well. A unique marriage of both technologies was accomplished in a novel application at LAMPF, the Los Alamos Meson Physics Facility. LAMPF consists of a linear accelerator with multiple target systems, one of which had to be altered to accommodate a new beamline for a neutrino experiment. The new line was to be installed into a crowded beam tunnel and had to be skewed and tilted in compound angles to avoid existing equipment. In this paper we describe how Optical Tooling was used in conjunction with simple alignment and reference fixtures to set fiducials on the magnets and other mechanical components of the beamline, and how theodolites and sight levels were then adapted to align these components along the calculated skew planes. Design tolerances are compared with measured alignment results.

  12. Mixed application MMIC technologies - Progress in combining RF, digital and photonic circuits

    NASA Technical Reports Server (NTRS)

    Swirhun, S.; Bendett, M.; Sokolov, V.; Bauhahn, P.; Sullivan, C.; Mactaggart, R.; Mukherjee, S.; Hibbs-Brenner, M.; Mondal, J.

    1991-01-01

    Approaches for future 'mixed application' monolithic integrated circuits (ICs) employing optical receive/transmit, RF amplification and modulation and digital control functions are discussed. We focus on compatibility of the photonic component fabrication with conventional RF and digital IC technologies. Recent progress at Honeywell in integrating several parts of the desired RF/digital/photonic circuit integration suite required for construction of a future millimeter-wave optically-controlled phased-array element are illustrated.

  13. Literacity: A multimedia adult literacy package combining NASA technology, recursive ID theory, and authentic instruction theory

    NASA Technical Reports Server (NTRS)

    Willis, Jerry; Willis, Dee Anna; Walsh, Clare; Stephens, Elizabeth; Murphy, Timothy; Price, Jerry; Stevens, William; Jackson, Kevin; Villareal, James A.; Way, Bob

    1994-01-01

    An important part of NASA's mission involves the secondary application of its technologies in the public and private sectors. One current application under development is LiteraCity, a simulation-based instructional package for adults who do not have functional reading skills. Using fuzzy logic routines and other technologies developed by NASA's Information Systems Directorate and hypermedia sound, graphics, and animation technologies the project attempts to overcome the limited impact of adult literacy assessment and instruction by involving the adult in an interactive simulation of real-life literacy activities. The project uses a recursive instructional development model and authentic instruction theory. This paper describes one component of a project to design, develop, and produce a series of computer-based, multimedia instructional packages. The packages are being developed for use in adult literacy programs, particularly in correctional education centers. They use the concepts of authentic instruction and authentic assessment to guide development. All the packages to be developed are instructional simulations. The first is a simulation of 'finding a friend a job.'

  14. BLAP-Tags, TUBEs and DUB-Chips: Combined Novel Technologies will Advance Molecular Epithelial Physiology.

    PubMed

    Hamilton, Kirk L

    2012-01-01

    The field of ubiquitylation and deubiquitylation of proteins in molecular physiology is growing at a rapid rate. Our understanding of molecular physiology of these processes may become limited by the advancement of technologies that scientists can employ. Therefore, it is important to approach physiological questions of ubiquitylation and deubiquitylation of proteins from a multiple methodological direction. Indeed, the role of ubiquitylation and deubiquitylation of proteins in cellular function has been implicated in the pathophysiology of human diseases including cancer, viral diseases, and neurodegenerative disorders. There are many modulators (activators and inhibitors) of ubiquitylation and deubiquitylation. Therefore, the link is being able to rapidly assess potential modulators of ubiquitylation and deubiquitylation and determine which specific modulators play a role(s) within a particular physiological setting. After the specific modulators have been identified, further experimentation is required to assess the downstream use as potential clinical targets for a particular disease. The first step is to identify the specific modulators. This perspective highlights a multi-prong technologies approach that uses three novel technologies (BLAP-tagged proteins, TUBES, and DUB-Chips) that can rapidly identify a number of potential candidates that modulate ubiquitylation and deubiquitylation of cellular proteins. PMID:22615701

  15. BLAP-Tags, TUBEs and DUB-Chips: Combined Novel Technologies will Advance Molecular Epithelial Physiology

    PubMed Central

    Hamilton, Kirk L.

    2012-01-01

    The field of ubiquitylation and deubiquitylation of proteins in molecular physiology is growing at a rapid rate. Our understanding of molecular physiology of these processes may become limited by the advancement of technologies that scientists can employ. Therefore, it is important to approach physiological questions of ubiquitylation and deubiquitylation of proteins from a multiple methodological direction. Indeed, the role of ubiquitylation and deubiquitylation of proteins in cellular function has been implicated in the pathophysiology of human diseases including cancer, viral diseases, and neurodegenerative disorders. There are many modulators (activators and inhibitors) of ubiquitylation and deubiquitylation. Therefore, the link is being able to rapidly assess potential modulators of ubiquitylation and deubiquitylation and determine which specific modulators play a role(s) within a particular physiological setting. After the specific modulators have been identified, further experimentation is required to assess the downstream use as potential clinical targets for a particular disease. The first step is to identify the specific modulators. This perspective highlights a multi-prong technologies approach that uses three novel technologies (BLAP-tagged proteins, TUBES, and DUB-Chips) that can rapidly identify a number of potential candidates that modulate ubiquitylation and deubiquitylation of cellular proteins. PMID:22615701

  16. The Impact of High School Principal's Technology Leadership on the Sustainability of Corporate Sponsored Information Communication Technology Curriculum

    ERIC Educational Resources Information Center

    Gottwig, Bruce Ryan

    2013-01-01

    The proliferation of information communication technology (ICT) has placed educational institutions in the forefront in educating and training students as skilled consumers, engineers, and technicians of this widely used technology. Corporations that develop and use ICT are continually building a skilled workforce; however, because of the growth…

  17. Regional Sustainable Environmental Management

    EPA Science Inventory

    Regional sustainable environmental management is an interdisciplinary effort to develop a sufficient understanding of the interactions between ecosystems, the economy, law, and technology to formulate effective long-term management strategies on a regional scale. Regional sustai...

  18. Emerging technology in surgical education: combining real-time augmented reality and wearable computing devices.

    PubMed

    Ponce, Brent A; Menendez, Mariano E; Oladeji, Lasun O; Fryberger, Charles T; Dantuluri, Phani K

    2014-11-01

    The authors describe the first surgical case adopting the combination of real-time augmented reality and wearable computing devices such as Google Glass (Google Inc, Mountain View, California). A 66-year-old man presented to their institution for a total shoulder replacement after 5 years of progressive right shoulder pain and decreased range of motion. Throughout the surgical procedure, Google Glass was integrated with the Virtual Interactive Presence and Augmented Reality system (University of Alabama at Birmingham, Birmingham, Alabama), enabling the local surgeon to interact with the remote surgeon within the local surgical field. Surgery was well tolerated by the patient and early surgical results were encouraging, with an improvement of shoulder pain and greater range of motion. The combination of real-time augmented reality and wearable computing devices such as Google Glass holds much promise in the field of surgery. PMID:25361359

  19. A fixed-dose combination tablet of gemigliptin and metformin sustained release has comparable pharmacodynamic, pharmacokinetic, and tolerability profiles to separate tablets in healthy subjects

    PubMed Central

    Park, Sang-In; Lee, Howard; Oh, Jaeseong; Lim, Kyoung Soo; Jang, In-Jin; Kim, Jeong-Ae; Jung, Jong Hyuk; Yu, Kyung-Sang

    2015-01-01

    . The FDC tablet of gemigliptin and metformin sustained release can be a convenient therapeutic option in patients with type 2 diabetes mellitus requiring a combination approach. PMID:25678778

  20. Rocket-Based Combined-Cycle (RBCC) Propulsion Technology Workshop. Tutorial session

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The goal of this workshop was to illuminate the nation's space transportation and propulsion engineering community on the potential of hypersonic combined cycle (airbreathing/rocket) propulsion systems for future space transportation applications. Four general topics were examined: (1) selections from the expansive advanced propulsion archival resource; (2) related propulsion systems technical backgrounds; (3) RBCC engine multimode operations related subsystem background; and (4) focused review of propulsion aspects of current related programs.

  1. A Technology Pathway for Airbreathing, Combined-Cycle, Horizontal Space Launch Through SR-71 Based Trajectory Modeling

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Ratnayake, Nalin A.; Clark, Casie M.

    2011-01-01

    Access to space is in the early stages of commercialization. Private enterprises, mainly under direct or indirect subsidy by the government, have been making headway into the LEO launch systems infrastructure, of small-weight-class payloads of approximately 1000 lbs. These moderate gains have emboldened the launch industry and they are poised to move into the middle-weight class (roughly 5000 lbs). These commercially successful systems are based on relatively straightforward LOX-RP, two-stage, bi-propellant rocket technology developed by the government 40 years ago, accompanied by many technology improvements. In this paper we examine a known generic LOX-RP system with the focus on the booster stage (1st stage). The booster stage is then compared to modeled Rocket-Based and Turbine-Based Combined Cycle booster stages. The air-breathing propulsion stages are based on/or extrapolated from known performance parameters of ground tested RBCC (the Marquardt Ejector Ramjet) and TBCC (the SR-71/J-58 engine) data. Validated engine models using GECAT and SCCREAM are coupled with trajectory optimization and analysis in POST-II to explore viable launch scenarios using hypothetical aerospaceplane platform obeying the aerodynamic model of the SR-71. Finally, and assessment is made of the requisite research technology advances necessary for successful commercial and government adoption of combined-cycle engine systems for space access.

  2. Exploration and Sustainability Expo Welcome

    NASA Video Gallery

    NASA Ames Deputy Associate Director Dr. Yvonne Pendleton welcomes attendees to the 2009 Exploration and Sustainability Expo held at NASA Ames Research Center. She highlights the emerging technologi...

  3. Study of the sustained speed of kill of the combination of fipronil/amitraz/(S)-methoprene and the combination of imidacloprid/permethrin against Dermacentor reticulatus, the European dog tick

    PubMed Central

    Fourie, J.J.; Beugnet, F.; Ollagnier, C.; Pollmeier, M.G.

    2011-01-01

    The sustained speed of kill against Dermacentor reticulatus of two topical combinations, one containing fipronil/amitraz/(S)-methoprene and the other, imidacloprid/permethrin, was evaluated in dogs. Two treated groups and one untreated control group of eight adult Beagle dogs each were randomly formed based on pre-infestation rates and bodyweight. Each treatment was administered topically once on Day 0, according to the recommended label dose and instructions for use. All dogs were infested with 50 adult unfed D. reticulatus starting on Day 1, then weekly, for a total of five weeks. While most studies determine tick efficacy at 48 hours (h), in this study, all remaining ticks were counted and categorized 24 h following each infestation. The numbers of ticks (living or dead) that remained attached on treated dogs were compared to those on the control animals. The percent reduction of attached ticks (disruption of attachment) at 24 h on dogs treated with fipronil/amitraz/(S)-methoprene remained above 92% for four weeks. The reduction of attached ticks at 24 h on dogs treated with imidacloprid/permethrin did not reach 80% during the entire study. The number of ticks attached at 24 h was significantly (p < 0.05) lower in the fipronil/ amitraz/(S)-methoprene group than in the imidacloprid/permethrin group in assessments on Days 2, 15, 22, 29 and 36. When assessing efficacy based upon live ticks on treated versus control dogs, fipronil/amitraz/(S)-methoprene 24 h efficacy was above 95% for four weeks, decreasing to 77.8% at Day 36. The 24 h efficacy of imidacloprid/permethrin ranged from 56.2% to 86.7% through Day 29, never achieving 90% throughout the study. The 24-hour efficacy of fipronil/amitraz/(S)-methoprene was significantly (p < 0.05) higher than imidacloprid/permethrin at all time points, including Day 36. PMID:22091462

  4. ULSI technology and materials: Quantitative answers by combined mass spectrometry surface techniques

    NASA Astrophysics Data System (ADS)

    Bersani, M.; Fedrizzi, M.; Sbetti, M.; Anderle, M.

    1998-11-01

    The progressive microelectronics ULSI device shrinking towards improving the performances has driven the development of new materials and process technologies. A good example is given by oxynitride, an innovative material which is thought for the next generation of 0.25 μm MOS circuits. Oxynitrides have replaced thermal silicon oxides as gate insulator due to the properties of good masking against impurity diffusion, together with the excellent dielectric strength and the better resistance to dielectric breakdown. The strong request from microelectronics industries for a complete and accurate characterization of this new material and the technological processes concerned, has considerably stimulated the research, particularly in the field of analytical methodology. Secondary Ion Mass Spectrometry, linked since the beginning with microelectronics development, shows again to be the most reliable and suitable microanalytical technique to give answers to this topics. In this work we present some examples of methodologies applied to an accurate quantitative characterization of this new material, together with its impact on the production processes. We show how the complementary employing of several mass spectrometry techniques, such as magnetic sector SIMS, SNMS and ToF-SIMS, can give a more complete overview both to process issues and to methodological developements of the techniques themselves.

  5. ULSI technology and materials: Quantitative answers by combined mass spectrometry surface techniques

    SciTech Connect

    Bersani, M.; Fedrizzi, M.; Anderle, M.; Sbetti, M.

    1998-11-24

    The progressive microelectronics ULSI device shrinking towards improving the performances has driven the development of new materials and process technologies. A good example is given by oxynitride, an innovative material which is thought for the next generation of 0.25 {mu}m MOS circuits. Oxynitrides have replaced thermal silicon oxides as gate insulator due to the properties of good masking against impurity diffusion, together with the excellent dielectric strength and the better resistance to dielectric breakdown. The strong request from microelectronics industries for a complete and accurate characterization of this new material and the technological processes concerned, has considerably stimulated the research, particularly in the field of analytical methodology. Secondary Ion Mass Spectrometry, linked since the beginning with microelectronics development, shows again to be the most reliable and suitable microanalytical technique to give answers to this topics. In this work we present some examples of methodologies applied to an accurate quantitative characterization of this new material, together with its impact on the production processes. We show how the complementary employing of several mass spectrometry techniques, such as magnetic sector SIMS, SNMS and ToF-SIMS, can give a more complete overview both to process issues and to methodological developements of the techniques themselves.

  6. Status of flue-gas treatment technologies for combined SO[sub 2]/NO[sub x] reduction

    SciTech Connect

    Livengood, C.D. . Energy Systems Div.); Markussen, J.M. )

    1993-01-01

    Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO.) regulations have fueled research and development efforts on the technologies for the combined control of sulfur dioxide (SO[sub 2]) and NO[sub x]. The integrated removal of both SO[sub 2] and NO[sub x] in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  7. [Rapid Identification of Epicarpium Citri Grandis via Infrared Spectroscopy and Fluorescence Spectrum Imaging Technology Combined with Neural Network].

    PubMed

    Pan, Sha-sha; Huang, Fu-rong; Xiao, Chi; Xian, Rui-yi; Ma, Zhi-guo

    2015-10-01

    To explore rapid reliable methods for detection of Epicarpium citri grandis (ECG), the experiment using Fourier Transform Attenuated Total Reflection Infrared Spectroscopy (FTIR/ATR) and Fluorescence Spectrum Imaging Technology combined with Multilayer Perceptron (MLP) Neural Network pattern recognition, for the identification of ECG, and the two methods are compared. Infrared spectra and fluorescence spectral images of 118 samples, 81 ECG and 37 other kinds of ECG, are collected. According to the differences in tspectrum, the spectra data in the 550-1 800 cm(-1) wavenumber range and 400-720 nm wavelength are regarded as the study objects of discriminant analysis. Then principal component analysis (PCA) is applied to reduce the dimension of spectroscopic data of ECG and MLP Neural Network is used in combination to classify them. During the experiment were compared the effects of different methods of data preprocessing on the model: multiplicative scatter correction (MSC), standard normal variable correction (SNV), first-order derivative(FD), second-order derivative(SD) and Savitzky-Golay (SG). The results showed that: after the infrared spectra data via the Savitzky-Golay (SG) pretreatment through the MLP Neural Network with the hidden layer function as sigmoid, we can get the best discrimination of ECG, the correct percent of training set and testing set are both 100%. Using fluorescence spectral imaging technology, corrected by the multiple scattering (MSC) results in the pretreatment is the most ideal. After data preprocessing, the three layers of the MLP Neural Network of the hidden layer function as sigmoid function can get 100% correct percent of training set and 96.7% correct percent of testing set. It was shown that the FTIR/ATR and fluorescent spectral imaging technology combined with MLP Neural Network can be used for the identification study of ECG and has the advantages of rapid, reliable effect. PMID:26904814

  8. Cistanches identification based on fluorescent spectral imaging technology combined with principal component analysis and artificial neural network

    NASA Astrophysics Data System (ADS)

    Dong, Jia; Huang, Furong; Li, Yuanpeng; Xiao, Chi; Xian, Ruiyi; Ma, Zhiguo

    2015-03-01

    In this study, fluorescent spectral imaging technology combined with principal component analysis (PCA) and artificial neural networks (ANNs) was used to identify Cistanche deserticola, Cistanche tubulosa and Cistanche sinensis, which are traditional Chinese medicinal herbs. The fluorescence spectroscopy imaging system acquired the spectral images of 40 cistanche samples, and through image denoising, binarization processing to make sure the effective pixels. Furthermore, drew the spectral curves whose data in the wavelength range of 450-680 nm for the study. Then preprocessed the data by first-order derivative, analyzed the data through principal component analysis and artificial neural network. The results shows: Principal component analysis can generally distinguish cistanches, through further identification by neural networks makes the results more accurate, the correct rate of the testing and training sets is as high as 100%. Based on the fluorescence spectral imaging technique and combined with principal component analysis and artificial neural network to identify cistanches is feasible.

  9. Combining Social Networks and Semantic Web Technologies for Personalizing Web Access

    NASA Astrophysics Data System (ADS)

    Carminati, Barbara; Ferrari, Elena; Perego, Andrea

    The original purpose of Web metadata was to protect end-users from possible harmful content and to simplify search and retrieval. However they can also be also exploited in more enhanced applications, such as Web access personalization on the basis of end-users’ preferences. In order to achieve this, it is however necessary to address several issues. One of the most relevant is how to assess the trustworthiness of Web metadata. In this paper, we discuss how such issue can be addressed through the use of collaborative and Semantic Web technologies. The system we propose is based on a Web-based Social Network, where members are able not only to specify labels, but also to rate existing labels. Both labels and ratings are then used to assess the trustworthiness of resources’ descriptions and to enforce Web access personalization.

  10. Process automation using combinations of process and machine control technologies with application to a continuous dissolver

    SciTech Connect

    Spencer, B.B.: Yarbro, O.O.

    1991-01-01

    Operation of a continuous rotary dissolver, designed to leach uranium-plutonium fuel from chopped sections of reactor fuel cladding using nitric acid, has been automated. The dissolver is a partly continuous, partly batch process that interfaces at both ends with batchwise processes, thereby requiring synchronization of certain operations. Liquid acid is fed and flows through the dissolver continuously, whereas chopped fuel elements are fed to the dissolver in small batches and move through the compartments of the dissolver stagewise. Sequential logic (or machine control) techniques are used to control discrete activities such as the sequencing of isolation valves. Feedback control is used to control acid flowrates and temperatures. Expert systems technology is used for on-line material balances and diagnostics of process operation. 1 ref., 3 figs.

  11. Combined mineralogical and EXAFS characterization of polluted sediments for the definition of technological variables and constraints

    NASA Astrophysics Data System (ADS)

    Brigatti, M. F.; Elmi, C.; Laurora, A.; Malferrari, D.; Medici, L.

    2009-04-01

    An extremely severe aspect, both from environmental and economic viewpoint, is the management of polluted sediments removed from drainage and irrigation canals. Canals, in order to retain their functionality over the time, need to have their beds, periodically cleaned from sediments there accumulating. The management of removed sediments is extremely demanding, also from an economical perspective, if these latter needs to be treated as dangerous waste materials, as stated in numerous international standards. Furthermore the disposal of such a large amount of material may introduce a significant environmental impact as well. An appealing alternative is the recovery or reuse of these materials, for example in brick and tile industry, after obviously the application of appropriate techniques and protocols that could render these latter no longer a threat for human health. The assessment of the effective potential danger for human health and ecosystem of sediments before and after treatment obviously requires both a careful chemical and mineralogical characterization and, even if not always considered in the international standards, the definition of the coordination shell of heavy metals dangerous for human health, as a function of their oxidation state and coordination (e.g. Cr and Pb), and introducing technological constraints or affecting the features of the end products. Fe is a good representative for this second category, as the features of the end product, such as color, strongly depend not only from Fe concentration but also from its oxidation state, speciation and coordination. This work will first of all provide mineralogical characterization of sediments from various sampling points of irrigation and drainage canals of Po river region in the north-eastern of Italy. Samples were investigated with various approaches including X-ray powder diffraction under non-ambient conditions, thermal analysis and EXAFS spectroscopy. Obtained results, and in particular

  12. The utilization of bubble detector technology in the development of a Combination Area Neutron Spectrometer (CANS)

    SciTech Connect

    Buckner, M.A.; Sims, C.S.

    1991-01-01

    The compact and relatively inexpensive Combination Area Neutron Spectrometer (CANS) should provide neutron spectral capabilities heretofore available only via complex set-ups and time-consuming, painstaking calculations. Some of its strong points include the measurement of neutron fluence and the need for only a single algorithm, with a single solution, regardless of the spectra. Because fluence, a real quantity, is the foundation of dose equivalent determination, the results of CANS should endure the winds of change accompanying the definition of dose equivalent and its consorted conversion conventions. It is also hoped that personnel applications may be realized in miniature version of CANS, the Personal Neutron Dosemeter/Spectrometer (PENDOSE). 6 refs., 3 figs.

  13. Heart failure analysis dashboard for patient's remote monitoring combining multiple artificial intelligence technologies.

    PubMed

    Guidi, G; Pettenati, M C; Miniati, R; Iadanza, E

    2012-01-01

    In this paper we describe an Heart Failure analysis Dashboard that, combined with a handy device for the automatic acquisition of a set of patient's clinical parameters, allows to support telemonitoring functions. The Dashboard's intelligent core is a Computer Decision Support System designed to assist the clinical decision of non-specialist caring personnel, and it is based on three functional parts: Diagnosis, Prognosis, and Follow-up management. Four Artificial Intelligence-based techniques are compared for providing diagnosis function: a Neural Network, a Support Vector Machine, a Classification Tree and a Fuzzy Expert System whose rules are produced by a Genetic Algorithm. State of the art algorithms are used to support a score-based prognosis function. The patient's Follow-up is used to refine the diagnosis. PMID:23366362

  14. Forest products industry of the future: Building a sustainable technology advantage for America`s forest products industry

    SciTech Connect

    1999-02-01

    The US forest, wood, and paper industry ranks as one of the most competitive forest products industries in the world. With annual shipments valued at nearly $267 billion, it employs over 1.3 million people and is currently among the top 10 manufacturing employers in 46 out of 50 states. Retaining this leadership position will depend largely on the industry`s success in developing and using advanced technologies. These technologies will enable manufacturing plants and forestry enterprises to maximize energy and materials efficiency and reduce waste and emissions, while producing high-quality, competitively priced wood and paper products. In a unique partnership, leaders in the forest products industry have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to encourage cooperative research efforts that will help position the US forest products industry for continuing prosperity while advancing national energy efficiency and environmental goals.

  15. Evaluation of the sustainability of contrasted pig farming systems: development of a market conformity tool for pork products based on technological quality traits.

    PubMed

    Gonzàlez, J; Gispert, M; Gil, M; Hviid, M; Dourmad, J Y; de Greef, K H; Zimmer, C; Fàbrega, E

    2014-12-01

    A market conformity tool, based on technological meat quality parameters, was developed within the Q-PorkChains project, to be included in a global sustainability evaluation of pig farming systems. The specific objective of the market conformity tool was to define a scoring system based on the suitability of meat to elaborate the main pork products, according to their market shares based on industry requirements, in different pig farming systems. The tool was based on carcass and meat quality parameters that are commonly used for the assessment of technological quality, which provide representative and repeatable data and are easily measurable. They were the following: cold carcass weight; lean meat percentage; minimum subcutaneous back fat depth at m. gluteus medius level, 45 postmortem and ultimate pH (measured at 24-h postmortem) in m. longissimus lumborum and semimembranosus; meat colour; drip losses and intramuscular fat content in a m. longissimus sample. Five categories of pork products produced at large scale in Europe were considered in the study: fresh meat, cooked products, dry products, specialties and other meat products. For each of the studied farming systems, the technological meat quality requirements, as well as the market shares for each product category within farming system, were obtained from the literature and personal communications from experts. The tool resulted in an overall conformity score that enabled to discriminate among systems according to the degree of matching of the achieved carcass and meat quality with the requirements of the targeted market. In order to improve feasibility, the tool was simplified by selecting ultimate pH at m. longissimus or semimembranosus, minimum fat thickness measured at the left half carcass over m. gluteus medius and intramuscular fat content in a m. longissimus sample as iceberg indicators. The overall suitability scores calculated by using both the complete and the reduced tools presented good

  16. U.S.-MEXICO TECHNOLOGY TRANSFER; BILATERAL TECHNICAL EXCHANGES FOR SUSTAINABLE ECONOMIC GROWTH IN THE BORDER REGION

    SciTech Connect

    Jimenez, Richard, D., Dr.

    2007-10-01

    The U.S. Department of Energy (DOE) maintains a strong commitment to transfer the results of its science and technology programs to the private sector. The intent is to apply innovative and sometimes advanced technologies to address needs while simultaneously stimulating new commercial business opportunities. Such focused “technology transfer” was evident in the late 1990s as the results of DOE investments in environmental management technology development led to new tools for characterizing and remediating contaminated sites as well as handling and minimizing the generation of hazardous wastes. The Department’s Office of Environmental Management was attempting to reduce the cost, accelerate the schedule, and improve the efficacy of clean-up efforts in the nuclear weapons complex. It recognized that resulting technologies had broader world market applications and that their commercialization would further reduce costs and facilitate deployment of improved technology at DOE sites. DOE’s Albuquerque Operations Office (now part of the National Nuclear Security Administration) began in 1995 to build the foundation for a technology exchange program with Mexico. Initial sponsorship for this work was provided by the Department’s Office of Environmental Management. As part of this effort, Applied Sciences Laboratory, Inc. (ASL) was contracted by the DOE Albuquerque office to identify Mexico’s priority environmental management needs, identify and evaluate DOE-sponsored technologies as potential solutions for those needs, and coordinate these opportunities with decision makers from Mexico’s federal government. That work led to an improved understanding of many key environmental challenges that Mexico faces and the many opportunities to apply DOE’s technologies to help resolve them. The above results constituted, in large part, the foundation for an initial DOE-funded program to apply the Department’s technology base to help address some of Mexico

  17. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies.

    PubMed

    Wang, Xiaolin; Chen, Shuxun; Kong, Marco; Wang, Zuankai; Costa, Kevin D; Li, Ronald A; Sun, Dong

    2011-11-01

    Sorting (or isolation) and manipulation of rare cells with high recovery rate and purity are of critical importance to a wide range of physiological applications. In the current paper, we report on a generic single cell manipulation tool that integrates optical tweezers and microfluidic chip technologies for handling small cell population sorting with high accuracy. The laminar flow nature of microfluidics enables the targeted cells to be focused on a desired area for cell isolation. To recognize the target cells, we develop an image processing methodology with a recognition capability of multiple features, e.g., cell size and fluorescence label. The target cells can be moved precisely by optical tweezers to the desired destination in a noninvasive manner. The unique advantages of this sorter are its high recovery rate and purity in small cell population sorting. The design is based on dynamic fluid and dynamic light pattern, in which single as well as multiple laser traps are employed for cell transportation, and a recognition capability of multiple cell features. Experiments of sorting yeast cells and human embryonic stem cells are performed to demonstrate the effectiveness of the proposed cell sorting approach. PMID:21918752

  18. Using Bitmap Indexing Technology for Combined Numerical and TextQueries

    SciTech Connect

    Stockinger, Kurt; Cieslewicz, John; Wu, Kesheng; Rotem, Doron; Shoshani, Arie

    2006-10-16

    In this paper, we describe a strategy of using compressedbitmap indices to speed up queries on both numerical data and textdocuments. By using an efficient compression algorithm, these compressedbitmap indices are compact even for indices with millions of distinctterms. Moreover, bitmap indices can be used very efficiently to answerBoolean queries over text documents involving multiple query terms.Existing inverted indices for text searches are usually inefficient forcorpora with a very large number of terms as well as for queriesinvolving a large number of hits. We demonstrate that our compressedbitmap index technology overcomes both of those short-comings. In aperformance comparison against a commonly used database system, ourindices answer queries 30 times faster on average. To provide full SQLsupport, we integrated our indexing software, called FastBit, withMonetDB. The integrated system MonetDB/FastBit provides not onlyefficient searches on a single table as FastBit does, but also answersjoin queries efficiently. Furthermore, MonetDB/FastBit also provides avery efficient retrieval mechanism of result records.

  19. Characterization of aqueous two phase systems by combining lab-on-a-chip technology with robotic liquid handling stations.

    PubMed

    Amrhein, Sven; Schwab, Marie-Luise; Hoffmann, Marc; Hubbuch, Jürgen

    2014-11-01

    Over the last decade, the use of design of experiment approaches in combination with fully automated high throughput (HTP) compatible screenings supported by robotic liquid handling stations (LHS), adequate fast analytics and data processing has been developed in the biopharmaceutical industry into a strategy of high throughput process development (HTPD) resulting in lower experimental effort, sample reduction and an overall higher degree of process optimization. Apart from HTP technologies, lab-on-a-chip technology has experienced an enormous growth in the last years and allows further reduction of sample consumption. A combination of LHS and lab-on-a-chip technology is highly desirable and realized in the present work to characterize aqueous two phase systems with respect to tie lines. In particular, a new high throughput compatible approach for the characterization of aqueous two phase systems regarding tie lines by exploiting differences in phase densities is presented. Densities were measured by a standalone micro fluidic liquid density sensor, which was integrated into a liquid handling station by means of a developed generic Tip2World interface. This combination of liquid handling stations and lab-on-a-chip technology enables fast, fully automated, and highly accurate density measurements. The presented approach was used to determine the phase diagram of ATPSs composed of potassium phosphate (pH 7) and polyethylene glycol (PEG) with a molecular weight of 300, 400, 600 and 1000 Da respectively in the presence and in the absence of 3% (w/w) sodium chloride. Considering the whole ATPS characterization process, two complete ATPSs could be characterized within 24h, including four runs per ATPS for binodal curve determination (less than 45 min/run), and tie line determination (less than 45 min/run for ATPS preparation and 8h for density determination), which can be performed fully automated over night without requiring man power. The presented methodology provides

  20. Refrigerated fruit storage monitoring combining two different wireless sensing technologies: RFID and WSN.

    PubMed

    Badia-Melis, Ricardo; Ruiz-Garcia, Luis; Garcia-Hierro, Javier; Villalba, Jose I Robla

    2015-01-01

    Every day, millions of tons of temperature-sensitive goods are produced, transported, stored or distributed worldwide, thus making their temperature and humidity control essential. Quality control and monitoring of goods during the cold chain is an increasing concern for producers, suppliers, logistic decision makers and consumers. In this paper we present the results of a combination of RFID and WSN devices in a set of studies performed in three commercial wholesale chambers of 1848 m3 with different set points and products. Up to 90 semi-passive RFID temperature loggers were installed simultaneously together with seven motes, during one week in each chamber. 3D temperature mapping charts were obtained and also the psychrometric data model from ASABE was implemented for the calculation of enthalpy changes and the absolute water content of air. Thus thank to the feedback of data, between RFID and WSN it is possible to estimate energy consumption in the cold room, water loss from the products and detect any condensation over the stored commodities. PMID:25730482

  1. Rocket-Based Combined Cycle Engine Technology Development: Inlet CFD Validation and Application

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Yungster, S.

    1996-01-01

    A CFD methodology has been developed for inlet analyses of Rocket-Based Combined Cycle (RBCC) Engines. A full Navier-Stokes analysis code, NPARC, was used in conjunction with pre- and post-processing tools to obtain a complete description of the flow field and integrated inlet performance. This methodology was developed and validated using results from a subscale test of the inlet to a RBCC 'Strut-Jet' engine performed in the NASA Lewis 1 x 1 ft. supersonic wind tunnel. Results obtained from this study include analyses at flight Mach numbers of 5 and 6 for super-critical operating conditions. These results showed excellent agreement with experimental data. The analysis tools were also used to obtain pre-test performance and operability predictions for the RBCC demonstrator engine planned for testing in the NASA Lewis Hypersonic Test Facility. This analysis calculated the baseline fuel-off internal force of the engine which is needed to determine the net thrust with fuel on.

  2. Refrigerated Fruit Storage Monitoring Combining Two Different Wireless Sensing Technologies: RFID and WSN

    PubMed Central

    Badia-Melis, Ricardo; Ruiz-Garcia, Luis; Garcia-Hierro, Javier; Villalba, Jose I. Robla

    2015-01-01

    Every day, millions of tons of temperature-sensitive goods are produced, transported, stored or distributed worldwide, thus making their temperature and humidity control essential. Quality control and monitoring of goods during the cold chain is an increasing concern for producers, suppliers, logistic decision makers and consumers. In this paper we present the results of a combination of RFID and WSN devices in a set of studies performed in three commercial wholesale chambers of 1848 m3 with different set points and products. Up to 90 semi-passive RFID temperature loggers were installed simultaneously together with seven motes, during one week in each chamber. 3D temperature mapping charts were obtained and also the psychrometric data model from ASABE was implemented for the calculation of enthalpy changes and the absolute water content of air. Thus thank to the feedback of data, between RFID and WSN it is possible to estimate energy consumption in the cold room, water loss from the products and detect any condensation over the stored commodities. PMID:25730482

  3. ICT for Education: A Conceptual Framework for the Sustainable Adoption of Technology-Enhanced Learning Environments in Schools

    ERIC Educational Resources Information Center

    Rodriguez, Patricio; Nussbaum, Miguel; Dombrovskaia, Lioubov

    2012-01-01

    Currently, the use of information and communication technologies (ICT) in education does not conclusively demonstrate significant effects on learning. However, not all ICT usage models are designed to affect student outcomes. Therefore, to accurately study the impact of ICT, the concept of an educational programme supported by ICT must first be…

  4. Teaching with technology: learning outcomes for a combined dental and dental hygiene online hybrid oral histology course.

    PubMed

    Gadbury-Amyot, Cynthia C; Singh, Amul H; Overman, Pamela R

    2013-06-01

    Among the challenges leaders in dental and allied dental education have faced in recent years is a shortage of well-qualified faculty members, especially in some specialty areas of dentistry. One proposed solution has been the use of technology. At the University of Missouri-Kansas City School of Dentistry, the departure of a faculty member who taught the highly specialized content in oral histology and embryology provided the opportunity to implement distance delivery of that course. The course is taught once a year to a combined group of dental and dental hygiene students. Previous to spring semester of 2009, the course was taught using traditional face-to-face, in-class lectures and multiple-choice examinations. During the spring semesters of 2009, 2010, and 2011, the course was taught using synchronous and asynchronous distance delivery technology. Outcomes for these courses (including course grades and performance on the National Board Dental Examination Part I) were compared to those from the 2006, 2007, and 2008 courses. Students participating in the online hybrid course were also given an author-designed survey, and the perceptions of the faculty member who made the transition from teaching the course in a traditional face-to-face format to teaching in an online hybrid format were solicited. Overall, student and faculty perceptions and student outcomes and course reviews have been positive. The results of this study can provide guidance to those seeking to use technology as one method of curricular delivery. PMID:23740910

  5. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology

    SciTech Connect

    David Shropshire

    2009-09-01

    Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions to their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.

  6. Biomass Gasification Combined Cycle

    SciTech Connect

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  7. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using combined biochemical and thermochemical processes in a multi-stage biorefinery concept

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental impact of agricultural waste from processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the...

  8. Formulation and Evaluation of Fixed-Dose Combination of Bilayer Gastroretentive Matrix Tablet Containing Atorvastatin as Fast-Release and Atenolol as Sustained-Release

    PubMed Central

    Dey, Sanjay; Chattopadhyay, Sankha; Mazumder, Bhaskar

    2014-01-01

    The objective of the present study was to develop bilayer tablets of atorvastatin and atenolol that are characterized by initial fast-release of atorvastatin in the stomach and comply with the release requirements of sustained-release of atenolol. An amorphous, solvent evaporation inclusion complex of atorvastatin with β-cyclodextrin, present in 1 : 3 (drug/cyclodextrin) molar ratio, was employed in the fast-release layer to enhance the dissolution of atorvastatin. Xanthan gum and guar gum were integrated in the sustained-release layer. Bilayer tablets composed of sustained-release layer (10% w/w of xanthan gum and guar gum) and fast-release layer [1 : 3 (drug/cyclodextrin)] showed the desired release profile. The atorvastatin contained in the fast-release layer showed an initial fast-release of more than 60% of its drug content within 2 h, followed by sustained release of the atenolol for a period of 12 h. The pharmacokinetic study illustrated that the fast absorption and increased oral bioavailability of atorvastatin as well as therapeutic concentration of atenolol in blood were made available through adoption of formulation strategy of bilayer tablets. It can be concluded that the bilayer tablets of atorvastatin and atenolol can be successfully employed for the treatment of hypertension and hypercholesterolemia together through oral administration of single tablet. PMID:24527446

  9. Research on distributed strain separation technology of fiber Brillouin sensing system combining an electric power optical fiber cable

    NASA Astrophysics Data System (ADS)

    Lei, Yuqing; Chen, Xi; Li, Jihui; Tong, Jie

    2013-12-01

    Brillouin-based optical fiber sensing system has been taken more and more attentions in power transmission line in recent years. However, there exists a temperature cross sensitivity problem in sensing system. Hence, researching on strain separation technology of fiber brillouin sensing system is an urgent requirement in its practical area. In this paper, a real-time online distributed strain separation calculation technology of fiber Brillouin sensing combining an electric power optical fiber cable is proposed. The technology is mainly composed of the Brillouin temperature-strain distributed measurement system and the Raman temperature distributed measurement system. In this technology, the electric power optical fiber cable is a special optical phase conductor (OPPC); the Brillouin sensing system uses the Brillouin optical time domain analysis (BOTDA) method. The optical unit of the OPPC includes single-mode and multimode fibers which can be used as sensing channel for Brillouin sensing system and Raman sensing system respectively. In the system networking aspect, the data processor of fiber Brillouin sensing system works as the host processor and the data processor of fiber Raman sensing system works as the auxiliary processor. And the auxiliary processor transfers the data to the host processor via the Ethernet interface. In the experiment, the BOTDA monitoring system and the Raman monitoring system work on the same optical unit of the OPPC simultaneously; In the data processing aspect, the auxiliary processor of Raman transfers the temperature data to the host processor of Brillouin via the Ethernet interface, and then the host processor of Brillouin uses the temperature data combining itself strain-temperature data to achieve the high sampling rate and high-precision strain separation via data decoupling calculation. The data decoupling calculation is achieved through the interpolation, filtering, feature point alignment, and the singular point prediction

  10. Influence of natural and technological emergency situations on tourism and sustainable development in St.Petersburg and Leningrad region (Russia)

    NASA Astrophysics Data System (ADS)

    Shnyparkov, A. L.; Petrova, E. G.; Vashchalova, T. V.; Gavrilova, S. A.; Danilina, A. V.; Gryaznova, V. V.

    2012-04-01

    St.Petersburg and Leningrad region belong to the most populated and tourist-active regions in the European part of Russia. St.Petersburg is a second important transportation connection point in Russia, there are many industrial and infrastructure facilities in Leningrad region such as chemical plants, mechanic engineering, power stations including a nuclear power station, etc. That is why a lot of technical objects and people can be influenced or damaged by natural hazards and various types of technological accidents can be triggered by natural phenomena that have place in the region. According to the Russian Ministry of Emergency Situation, Leningrad region has a medium level of frequency of emergency situations caused by natural triggers (two to four cases a year). The climatic and orographic conditions of the area contribute to the development of many different types of dangerous natural processes such as floods, storms, strong winds, extreme heat and frost, snowfalls, heavy rains, hale, etc. Hydro-meteorological phenomena are the most often among all natural triggers of emergency situations in the region; about 50% of them are caused by storms and strong winds and 25% by floods. The biggest number of natural emergency situations happens in St.Petersburg. Storms make the marine navigation more difficult and even block the port sometimes. In Leningrad region, 5-10 villages and cities (including St.Petersburg) are at risk to be flooded. In November 1999, the work of Leningradskaya nuclear power station was partly blocked due to the increasing in water level. The federal road Moscow-St.Petersburg is often under influence of heavy snowfalls that cause many problems for transport system of the region during the winter. The majority of technological emergency situations are caused by fires in industrial facilities and residential sector, trafic accidents and shipcrashes. Sometimes natural phenomena can also trigger technological accidents. However, their frequency is

  11. Alumina calcination with the advanced circulating fluid bed technology: A design with increased efficiency combined with operating flexibility

    SciTech Connect

    Schmidt, H.W.; Stockhausen, W.; Silberberg, A.N.

    1996-10-01

    The Circulating Fluid Bed (CFB) technology has now been applied to alumina calcination for a quarter of a century. The combined capacity of the 32 units installed is greater than 10 million metric tons per year. The paper highlights the consistency of the product quality which is based upon the operating experience of the last decade and improvements to the calcination system which also provides lower heat consumption. The principal modifications are incorporated in the preheating and cooling sections of the plant. These design modifications have also reduced capital cost. Overall the plant retains its proven features of high flexibility, unique temperature control, high availability, reliable performance, and low maintenance cost. The design is applicable to single train units up to a capacity of 3,000 MTPD (alumina).

  12. Terra-Preta-Technology as an innovative system component to create circulation oriented, sustainable land use systems

    NASA Astrophysics Data System (ADS)

    Dotterweich, M.; Böttcher, J.; Krieger, A.

    2012-04-01

    This paper presents current research and application projects on innovative system solutions which are based on the implementation of a regional resource efficient material flow management as well as utilising "Terra-Preta-Technology" as an innovative system component. Terra Preta Substrate (TPS) is a recently developed substance composed of liquid and solid organic matter, including biochar, altered by acid-lactic fermentation. Based on their properties, positive effects on water and nutrient retention, soil microbiological activity, and cation-exchange capacity are expected and currently investigated by different projects. TPS further sequesters carbon and decreases NO2 emissions from fertilized soils as observed by the use of biochar. The production of TPS is based on a circulation oriented organic waste management system directly adapted to the local available inputs and desired soil amendment properties. The production of TPS is possible with simple box systems for subsistence farming but also on a much larger scale as modular industrial plants for farmers or commercial and municipal waste management companies in sizes from 500 and 50,000 m3. The Terra-Preta-Technology enhances solutions to soil conservation, soil amelioration, humic formation, reduced water consumption, long term carbon sequestration, nutrient retention, containment binding, and to biodiversity on local to a regional scale. The projects also involve research of ancient land management systems to enhance resource efficiency by means of an integrative and transdisciplinary approach.

  13. Tracking Health Data Is Not Enough: A Qualitative Exploration of the Role of Healthcare Partnerships and mHealth Technology to Promote Physical Activity and to Sustain Behavior Change

    PubMed Central

    Young, Heather M; Pande, Amit; Han, Jay J

    2016-01-01

    Background Despite the recent explosion of the mobile health (mHealth) industry and consumer acquisition of mHealth tools such as wearable sensors and applications (apps), limited information is known about how this technology can sustain health behavior change and be integrated into health care. Objective The objective of the study was to understand potential users’ views of mHealth technology, the role this technology may have in promoting individual activity goals aimed at improving health, and the value of integrating mHealth technology with traditional health care. Methods Four focus groups were conducted with adults interested in sharing their views on how mHealth technology could support wellness programs and improve health. Participants (n=30) were enrolled from an employee population at an academic health institution. Qualitative thematic analysis was used to code transcripts and identify overarching themes. Results Our findings suggest that tracking health data alone may result in heightened awareness of daily activity, yet may not be sufficient to sustain use of mHealth technology and apps, which often have low reuse rates. Participants suggested that context, meaning, and health care partnerships need to be incorporated to engage and retain users. In addition to these findings, drivers for mHealth technology previously identified in the literature, including integration and control of health data were confirmed in this study. Conclusions This study explores ways that mHealth technologies may be used to not only track data, but to encourage sustained engagement to achieve individual health goals. Implications of these findings include recommendations for mHealth technology design and health care partnership models to sustain motivation and engagement, allowing individuals to achieve meaningful behavior change. PMID:26792225

  14. Developing Sustainable Life Support System Concepts

    NASA Technical Reports Server (NTRS)

    Thomas, Evan A.

    2010-01-01

    Sustainable spacecraft life support concepts may allow the development of more reliable technologies for long duration space missions. Currently, life support technologies at different levels of development are not well evaluated against each other, and evaluation methods do not account for long term reliability and sustainability of the hardware. This paper presents point-of-departure sustainability evaluation criteria for life support systems, that may allow more robust technology development, testing and comparison. An example sustainable water recovery system concept is presented.

  15. Emerging flue-gas cleanup technologies for combined control of SO{sub 2} and NO{sub x}

    SciTech Connect

    Livengood, C.D.; Markussen, J.M.

    1994-06-01

    Enactment of the 1990 Clean Air Act Amendments, as well as passage of legislation at the state level has raised the prospect of more stringent nitrogen oxides (NO{sub x}) emission regulations and has fueled research and development efforts on a number technologies for the combined control of sulfur dioxide (SO{sub 2}) and NO{sub x}. The integrated removal of both SO{sub 2} and NO{sub x} in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  16. Combining usability testing with eye-tracking technology: evaluation of a visualization support for antibiotic use in intensive care.

    PubMed

    Eghdam, Aboozar; Forsman, Johanna; Falkenhav, Magnus; Lind, Mats; Koch, Sabine

    2011-01-01

    This research work is an explorative study to measure efficiency, effectiveness and user satisfaction of a prototype called Infobiotika aiming to support antibiotic use in intensive care. The evaluation was performed by combining traditional usability testing with eye-tracking technology. The test was conducted with eight intensive care physicians whereof four specialists and four residents. During three test phases participants were asked to perform three types of tasks, namely navigational, clinical and tasks to measure the learning effect after 3-5 minutes free exploring time. A post-test questionnaire was used to explore user satisfaction. Based on the results and overall observations, Infobiotika seems to be effective and efficient in terms of supporting navigation and also a learnable product for intensive care physicians fulfilling their need to get an accurate overview of a patient status quickly. Applying eye-tracking technology during usability testing has shown to be a valuable complement to traditional methods that revealed many unexpected issues in terms of navigation and contributed a supplementary understanding about design problems and user performance. PMID:21893885

  17. A methodological combined framework for roadmapping biosensor research: a fault tree analysis approach within a strategic technology evaluation frame.

    PubMed

    Siontorou, Christina G; Batzias, Fragiskos A

    2014-03-01

    Biosensor technology began in the 1960s to revolutionize instrumentation and measurement. Despite the glucose sensor market success that revolutionized medical diagnostics, and artificial pancreas promise currently the approval stage, the industry is reluctant to capitalize on other relevant university-produced knowledge and innovation. On the other hand, the scientific literature is extensive and persisting, while the number of university-hosted biosensor groups is growing. Considering the limited marketability of biosensors compared to the available research output, the biosensor field has been used by the present authors as a suitable paradigm for developing a methodological combined framework for "roadmapping" university research output in this discipline. This framework adopts the basic principles of the Analytic Hierarchy Process (AHP), replacing the lower level of technology alternatives with internal barriers (drawbacks, limitations, disadvantages), modeled through fault tree analysis (FTA) relying on fuzzy reasoning to count for uncertainty. The proposed methodology is validated retrospectively using ion selective field effect transistor (ISFET) - based biosensors as a case example, and then implemented prospectively membrane biosensors, putting an emphasis on the manufacturability issues. The analysis performed the trajectory of membrane platforms differently than the available market roadmaps that, considering the vast industrial experience in tailoring and handling crystallic forms, suggest the technology path of biomimetic and synthetic materials. The results presented herein indicate that future trajectories lie along with nanotechnology, and especially nanofabrication and nano-bioinformatics, and focused, more on the science-path, that is, on controlling the natural process of self-assembly and the thermodynamics of bioelement-lipid interaction. This retained the nature-derived sensitivity of the biosensor platform, pointing out the differences

  18. Solvents and sustainable chemistry

    PubMed Central

    Welton, Tom

    2015-01-01

    Solvents are widely recognized to be of great environmental concern. The reduction of their use is one of the most important aims of green chemistry. In addition to this, the appropriate selection of solvent for a process can greatly improve the sustainability of a chemical production process. There has also been extensive research into the application of so-called green solvents, such as ionic liquids and supercritical fluids. However, most examples of solvent technologies that give improved sustainability come from the application of well-established solvents. It is also apparent that the successful implementation of environmentally sustainable processes must be accompanied by improvements in commercial performance. PMID:26730217

  19. PERFORMANCE EVALUATION OF A SUSTAINABLE AND ENERGY EFFICIENT RE-ROOFING TECHNOLOGY USING FIELD-TEST DATA

    SciTech Connect

    Biswas, Kaushik; Miller, William A; Childs, Phillip W; Kosny, Jan; Kriner, Scott

    2011-01-01

    Three test attics were constructed to evaluate a new sustainable method of re-roofing utilizing photo-voltaic (PV) laminates, metal roofing panels, and PCM heat sink in the Envelope Systems Research Apparatus (ESRA) facility in the ORNL campus. Figure 1 is a picture of the three attic roofs located adjacent to each other. The leftmost roof is the conventional shingle roof, followed by the metal panel roof incorporating the cool-roof coating, and third from left is the roof with the PCM. On the PCM roof, the PV panels are seen as well; they're labelled from left-to-right as panels 5, 6 and 7. The metal panel roof consists of three metal panels with the cool-roof coating; in further discussion this is referred to as the infrared reflective (IRR) metal roof. The IRR metal panels reflect the incoming solar radiation and then quickly re-emit the remaining absorbed portion, thereby reducing the solar heat gain of the attic. Surface reflectance of the panels were measured using a Solar Spectrum Reflectometer. In the 0.35-2.0 {mu}m wavelength interval, which accounts for more than 94% of the solar energy, the IRR panels have an average reflectance of 0.303. In the infrared portion of the spectrum, the IRR panel reflectance is 0.633. The PCM roof consists of a layer of macro-encapsulated bio-based PCM at the bottom, followed by a 2-cm thick layer of dense fiberglass insulation with a reflective surface on top, and metal panels with pre-installed PV laminates on top. The PCM has a melting point of 29 C (84.2 F) and total enthalpy between 180 and 190 J/g. The PCM was macro-packaged in between two layers of heavy-duty plastic foil forming arrays of PCM cells. Two air cavities, between PCM cells and above the fiberglass insulation, helped the over-the-deck natural air ventilation. It is anticipated that during summer, this extra ventilation will help in reducing the attic-generated cooling loads. The extra ventilation, in conjunction with the PCM heat sink, are used to minimize

  20. Sustainability Frontiers

    ERIC Educational Resources Information Center

    Selby, David

    2010-01-01

    This article introduces Sustainability Frontiers, a newly formed, international, not-for-profit alliance of sustainability and global educators dedicated to challenging and laying bare the assumptions, exposing the blind spots, and transgressing the boundaries of mainstream understandings of sustainability-related education. Among the orthodoxies…

  1. Extreme health sensing: the challenges, technologies, and strategies for active health sustainment of military personnel during training and combat missions

    NASA Astrophysics Data System (ADS)

    Buller, Mark; Welles, Alexander; Chadwicke Jenkins, Odest; Hoyt, Reed

    2010-04-01

    Military personnel are often asked to accomplish rigorous missions in extremes of climate, terrain, and terrestrial altitude. Personal protective clothing and individual equipment such as body armor or chemical biological suits and excessive equipment loads, exacerbate the physiological strain. Health, over even short mission durations, can easily be compromised. Measuring and acting upon health information can provide a means to dynamically manage both health and mission goals. However, the measurement of health state in austere military environments is challenging; (1) body worn sensors must be of minimal weight and size, consume little power, and be comfortable and unobtrusive enough for prolonged wear; (2) health states are not directly measureable and must be estimated; (3) sensor measurements are prone to noise, artifact, and failure. Given these constraints we examine current successful ambulatory physiological status monitoring technologies, review maturing sensors that may provide key health state insights in the future, and discuss unconventional analytical techniques that optimize health, mission goals, and doctrine from the perspective of thermal work strain assessment and management.

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION--FUELCELL ENERGY, INC.: DFC 300A MOLTEN CARBONATE FUEL CELL COMBINED HEAT AND POWER SYSTEM

    EPA Science Inventory

    The U.S. EPA operates the Environmental Technology Verification program to facilitate the deployment of innovative technologies through performance verification and information dissemination. A technology area of interest is distributed electrical power generation, particularly w...

  3. Measuring Energy Sustainability

    SciTech Connect

    Greene, David L

    2009-01-01

    For the purpose of measurement, energy sustainability is defined as ensuring that future generations have energy resources that enable them to achieve a level of well-being at least as good as that of the current generation. It is recognized that there are valid, more comprehensive understandings of sustainability and that energy sustainability as defined here is only meaningful when placed in a broader context. Still, measuring energy sustainability is important to society because the rates of consumption of some fossil resources are now substantial in relation to measures of ultimate resources, and because conflicts between fossil energy use and environmental sustainability are intensifying. Starting from the definition, an equation for energy sustainability is derived that reconciles renewable fl ows and nonrenewable stocks, includes the transformation of energy into energy services, incorporates technological change and, at least notionally, allows for changes in the relationship between energy services and societal well-being. Energy sustainability must be measured retrospectively as well as prospectively, and methods for doing each are discussed. Connections to the sustainability of other resources are also critical. The framework presented is merely a starting point; much remains to be done to make it operational.

  4. How NASA is building and sustaining a community of scientist-communicators through virtual technology, graphic facilitation and other community-building tools

    NASA Astrophysics Data System (ADS)

    DeWitt, S.; Bovaird, E.; Stewart, N.; Reaves, J.; Tenenbaum, L. F.; Betz, L.; Kuchner, M. J.; Dodson, K. E.; Miller, A.

    2013-12-01

    In 2013 NASA launched its first agency-wide effort to cultivate and support scientist-communicators. The multiple motivations behind this effort are complex and overlapping, and include a desire to connect the agency's workforce to its mission and to each other in the post-Space Shuttle era; a shift in how the agency and the world communicates about science; the current public perception of science and of NASA, and a desire to share the stories of the real people behind the agency's technical work. Leaders in the NASA science, communications and public outreach communities partnered with the agency's training and leadership development organization to: identify and fully characterize the need for training and development in science communication, experiment with various learning models, and invite early-adopter scientists to evaluate these models for future agency investment. Using virtual collaboration technology, graphic facilitation, and leadership development methods, we set out to create an environment where scientist-communicators can emerge and excel. First, we asked scientists from across the agency to identify their motivations, opportunities, barriers and areas of interest in science communication. Scientists identified a need to go beyond traditional media training, a need for continuous practice and peer feedback, and a need for agency incentives and sustained support for this kind of work. This community-driven approach also uncovered a serious need for communication support in the wake of diminishing resources for travel and conference attendance. As a first step, we offered a series of virtual learning events - highly collaborative working sessions for scientists to practice their communication technique, develop and apply new skills to real-world situations, and gain valuable feedback from external subject matter experts and fellow scientists from across the agency in a supportive environment. Scientists from ten NASA centers and a broad range of

  5. Microlenticular lens replication by the combination of gas-assisted imprint technology and LIGA-like process

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hung; Shih, Ching-Jui; Wang, Hsuan-Cheng; Chang, Fuh-Yu; Young, Hong-Tsu; Chang, Wen-Chuan

    2012-09-01

    A mold used in creating diffractive optical elements significantly affects the quality of these devices. In this study, we improved traditional microlens fabrication processes, which have shortcomings, mainly by combining gas-assisted imprint technology and the lithographie galvanoformung abformung (LIGA)-like process. This combination resulted in the production of high-quality optical components with high replication rates, high uniformity, large areas and high flexibility. Given the pixel size of the panel used, the optimal viewing distance, the film thickness and the glass thickness in the formula, we could determine the radius of curvature and the thickness of the lens. By the use of U-groove machining, precise electroforming and embossing to produce polydimethylsiloxane (PDMS) molds, lens film elements can be produced via an ultraviolet (UV)-cured molding process that converts microlenses into flexible polyethylene terephthalate films. In this study, the microlenticular lens mold is fabricated by U-groove machining, Ni electroforming and PDMS casting. Then, the PDMS mold with microlenticular lens structure is used in the gas-assisted UV imprint process and the PET film with microlenticular lens array is obtained. The lenticular lens had a radius of curvature and height of 228 and 18 µm, respectively. A 3D confocal laser microscope was used to measure the radius of curvature and the spacing of the metal molds, nickel (Ni) molds, PDMS molds and the finished thin-film products. The geometry of the final microlenticular lens was very close to the design values. All geometric errors were below 5%, the surface roughness reached the optical level (with all Ra values less than 10 nm) and the replication rate was 95%. The results demonstrate that this process can be used to fabricate gapless, lenticular-shaped, high-precision microlens arrays with a unitary curvature.

  6. Combined Use of the Canine Adenovirus-2 and DREADD-Technology to Activate Specific Neural Pathways In Vivo

    PubMed Central

    Boender, Arjen J.; de Jong, Johannes W.; Boekhoudt, Linde; Luijendijk, Mieneke C. M.; van der Plasse, Geoffrey; Adan, Roger A. H.

    2014-01-01

    We here describe a technique to transiently activate specific neural pathways in vivo. It comprises the combined use of a CRE-recombinase expressing canine adenovirus-2 (CAV-2) and an adeno-associated virus (AAV-hSyn-DIO-hM3D(Gq)-mCherry) that contains the floxed inverted sequence of the designer receptor exclusively activated by designer drugs (DREADD) hM3D(Gq)-mCherry. CAV-2 retrogradely infects projection neurons, which allowed us to specifically express hM3D(Gq)-mCherry in neurons that project from the ventral tegmental area (VTA) to the nucleus accumbens (Acb), the majority of which were dopaminergic. Activation of hM3D(Gq)-mCherry by intraperitoneal (i.p.) injections of clozapine-N-oxide (CNO) leads to increases in neuronal activity, which enabled us to specifically activate VTA to Acb projection neurons. The VTA to Acb pathway is part of the mesolimbic dopamine system and has been implicated in behavioral activation and the exertion of effort. Injections of all doses of CNO led to increases in progressive ratio (PR) performance. The effect of the lowest dose of CNO was suppressed by administration of a DRD1-antagonist, suggesting that CNO-induced increases in PR-performance are at least in part mediated by DRD1-signaling. We hereby validate the combined use of CAV-2 and DREADD-technology to activate specific neural pathways and determine consequent changes in behaviorally relevant paradigms. PMID:24736748

  7. The combination of Forest Site Maps, Site specific Growth Models and Nutrient Balance Models as a Basis for Sustainable Management in the Northern Limestone Alps

    NASA Astrophysics Data System (ADS)

    Ettmayer, C.; Katzensteiner, K.; Eckmüllner, O.

    2012-04-01

    The demand for biomass from forests is rising continuously. Decision support tools for managers and forest authorities should help to avoid negative consequences of increased biomass extraction on ecosystem processes and the sustainable supply of forest services. Those tools have to be site and stand specific. In Alpine regions shallow soils with high organic matter content are widespread on calcareous bedrock. There is increasing evidence that those soils are particularly vulnerable and intensive harvest leads to rapid humus and nutrient losses and a decline of water storage capacity. Such soils may rely on the existence of a continuous forest cover and/or a minimum input of coarse woody debris. For a test region in Tyrol management scenarios will be modelled to predict management effects on sites with calcareous bedrock. Site specific growth and yield models for biomass fractions are developed based on existing inventory data, site maps and high resolution digital surface and terrain models, complemented by stratified biomass and nutrient inventories, and are used for the calculation of different production scenarios. Nutrient balance models taking into account nutrient extraction via harvest, leaching losses as well as gains via atmospheric deposition, and fertilization are used to calculate the potential sustainable harvest intensity. In addition humus dynamics of the frequently shallow rendzic Leptosols is taken into account. Concepts for long term carbon and nutrient management experiments as a basis for adaptive forest management in the Calacareous Alps are developed.

  8. Use of rotary fluidized-bed technology for development of sustained-release plant extracts pellets: potential application for feed additive delivery.

    PubMed

    Meunier, J-P; Cardot, J-M; Gauthier, P; Beyssac, E; Alric, M

    2006-07-01

    The aim of this study was to develop sustained release plant extracts as a potential alternative to antibiotic growth promoters for growing pigs. Pellets with a core based on microcrystalline cellulose and 3 active compounds (eugenol, carvacrol, and thymol) were prepared using rotary fluidized-bed technology. Two particle sizes were produced that had a mean size of approximately 250 and 500 mum. Results show the process was able to produce pellets with a spherical and homogenous form when 10% of the active compounds were incorporated into the core. When active compounds were increased to 20%, the pellet became stickier, and the yield decreased from 90 to 65%. Different amounts of coating in the form of an aqueous-based ethylcellulose (EC) dispersion (Surelease) were applied to the core to modify the release of active compounds. The efficacy of the coating was evaluated in vitro using a flow-through cell apparatus. The time to achieve 50 and 90% dissolution increased with the increase in particle size (P < 0.05) and the increase in EC-coating level from 10 to 20% (wt/wt; P < 0.05), indicating the ability of the process to slow release depending on particle size and the amount of polymer applied. Differences in the release of the active compounds were observed in the same formulation of pellets, except for the formulation with small 10%-EC-coated particles, in which the active compounds were rapidly dissolved (more than 85% in 15 min or less). For all other formulations, the dissolution time for eugenol was always faster than for thymol or carvacrol. The close monitoring of plant extract behavior in the gastrointestinal tract could become a key factor in the continued use of phyto-molecules as alternatives to antibiotic growth promoters and in optimizing the balance between cost and efficacy. Different microencapsulation technologies can be used, of which the rotary fluidized bed warrants consideration because of the quality of the products obtained. PMID:16775069

  9. Earthquake and Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey (SATREPS Project: Science and Technology Research Partnership for Sustainable Development by JICA-JST)

    NASA Astrophysics Data System (ADS)

    Kaneda, Yoshiyuki

    2015-04-01

    Earthquake and Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey (SATREPS Project: Science and Technology Research Partnership for Sustainable Development by JICA-JST) Yoshiyuki KANEDA Disaster mitigation center Nagoya University/ Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Mustafa ELDIK Boğaziçi University, Kandilli Observatory and       Earthquake Researches Institute (KOERI) and Members of SATREPS Japan-Turkey project The target of this project is the Marmara Sea earthquake after the Izmit (Kocaeli) Earthquake 1999 along to the North Anatolian fault. According to occurrences of historical Earthquakes, epicenters have moved from East to West along to the North Anatolian Fault. There is a seismic gap in the Marmara Sea. In Marmara region, there is Istanbul with high populations such as Tokyo. Therefore, Japan and Turkey can share our own experiences during past damaging earthquakes and we can prepare for future large Earthquakes and Tsunamis in cooperation with each other in SATREPS project. This project is composed of Multidisciplinary research project including observation researches, simulation researches, educational researches, and goals are as follows, ① To develop disaster mitigation policy and strategies based on Multidisciplinary research activities. ② To provide decision makers with newly found knowledge for its implementation to the current regulations. ③ To organize disaster education programs in order to increase disaster awareness in Turkey. ④ To contribute the evaluation of active fault studies in Japan. In this SATREPS project, we will integrate Multidisciplinary research results for disaster mitigation in Marmara region and .disaster education in Turkey.

  10. A Meta-Analysis Method to Advance Design of Technology-Based Learning Tool: Combining Qualitative and Quantitative Research to Understand Learning in Relation to Different Technology Features

    ERIC Educational Resources Information Center

    Zhang, Lin

    2014-01-01

    Educators design and create various technology tools to scaffold students' learning. As more and more technology designs are incorporated into learning, growing attention has been paid to the study of technology-based learning tool. This paper discusses the emerging issues, such as how can learning effectiveness be understood in relation to…

  11. A MEMS thermal shear stress sensor produced by a combination of substrate-free structures with anodic bonding technology

    NASA Astrophysics Data System (ADS)

    Ou, Yi; Qu, Furong; Wang, Guanya; Nie, Mengyan; Li, Zhigang; Ou, Wen; Xie, Changqing

    2016-07-01

    By combining substrate-free structures with anodic bonding technology, we present a simple and efficient micro-electro-mechanical system (MEMS) thermal shear stress sensor. Significantly, the resulting depth of the vacuum cavity of the sensor is determined by the thickness of the silicon substrate at which Si is removed by the anisotropic wet etching process. Compared with the sensor based on a sacrificial layer technique, the proposed MEMS thermal shear-stress sensor exhibits dramatically improved sensitivity due to the much larger vacuum cavity depth. The fabricated MEMS thermal shear-stress sensor with a vacuum cavity depth as large as 525 μm and a vacuum of 5 × 10-2 Pa exhibits a sensitivity of 184.5 mV/Pa and a response time of 180 μs. We also experimentally demonstrate that the sensor power is indeed proportional to the 1/3-power of the applied shear stress. The substrate-free structures offer the ability to precisely measure the shear stress fluctuations in low speed turbulent boundary layer wind tunnels.

  12. Sustainable Biofuels Development Center

    SciTech Connect

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  13. Sustainable water management in rural and peri-urban areas: what technology do we need to meet the UN millennium development goals?

    PubMed

    Wilderer, P A

    2005-01-01

    Installation of advanced urban water management systems is one of the most important first steps in the attempt to overcome poverty on earth, outbreak of diseases, crime and even terrorism. Because world wide application of traditional water supply, sewerage and wastewater treatment technology requires financial resources which are basically not available within a reasonable short time frame novel solutions must be found, developed and implemented. The combination of high-tech on-site treatment of the various waste streams generated in households, enterprises and industrial sites, and reuse of the valuable materials obtained from the treatment plants, including the purified water, is one of the options which is investigated by various groups of researchers and technology developers, nowadays. This concept may help meeting the UN Millennium Development Goals, provided people are ready to accept this new way of dealing with household wastes. Education is necessary to build up the foundation which modern water technology can be based upon. In parallel, tailored modifications are to be considered to satisfy the specific demands of local communities. In this context, female participation appears to be extremely important in the decision making process. PMID:16104399

  14. Geodiversity and geohazards of the Susa Valley (W-Alps, Italy): combining scientific research and new technologies for enhanced knowledge and proactive management of geoheritage in mountain regions

    NASA Astrophysics Data System (ADS)

    Giardino, Marco; Bacenetti, Marco; Perotti, Luigi; Giordano, Enrico; Ghiraldi, Luca; Palomba, Mauro

    2013-04-01

    and digital evolutionary models have been prepared for didactic trails and virtual laboratory, for contributing to the popularization of geological history, climate and environmental changes, natural hazards and related risk management practices in the Susa Valley. By combining geodiversity and geohazards knowledge, a new conceptual and operational discipline has been achieved in the management of the geoheritage of the Susa Valley. New techniques for recognizing and managing its rich geodiversity have been developed and applied to the territory of the "Alpi Cozie Geopark" (Interreg Alcotra 2007-2013, Project 2) for geosites selection, geo-trails preparation and management and dissemination activities. As final results, better recognition of the economic value of geodiversity and stronger perception of natural risks have been achieved: both valuable contributions to reduce local vulnerability to disasters and to support a territorial integrated quality management system of geoheritage, suitable for tourism and sustainable development.

  15. Collaboration across disciplines for sustainability: green chemistry as an emerging multistakeholder community.

    PubMed

    Iles, Alastair; Mulvihill, Martin J

    2012-06-01

    Sustainable solutions to our nation's material and energy needs must consider environmental, health, and social impacts while developing new technologies. Building a framework to support interdisciplinary interactions and incorporate sustainability goals into the research and development process will benefit green chemistry and other sciences. This paper explores the contributions that diverse disciplines can provide to the design of greener technologies. These interactions have the potential to create technologies that simultaneously minimize environmental and health impacts by drawing on the combined expertise of students and faculty in chemical sciences, engineering, environmental health, social sciences, public policy, and business. PMID:22574828

  16. The Ethical Role of Information in Sustainable Communities.

    ERIC Educational Resources Information Center

    Lockway, Larry

    1995-01-01

    Discussion of sustainable communities, or sustainable development, focuses on the ethical role of information in fostering sustainable environmental development. Topics include background information, developments in information technology, permaculture in the area of horticulture and information ethics, information ethics models, hardware…

  17. Prospects for Sustainable Energy

    NASA Astrophysics Data System (ADS)

    Cassedy, Edward S., Jr.

    2000-04-01

    Fossil fuels are a finite resource, and their continued use as the world's dominant energy supply is damaging the environment. Future use of alternative methods of energy supply is inescapable. This book offers a critical assessment of all possible sustainable energy technologies and energy storage. Coverage explores the historical origins, technical features, marketability, and environmental impacts of the complete range of sustainable energy technologies: solar, biomass, wind, hydropower, geothermal power, ocean-energy sources, solar-derived hydrogen fuel, and energy storage. The aim is to inform policy analysts and decision makers of the options available for sustainable energy production. This accessible volume will be a valuable resource for a broad group of academics and researchers with a wide range of backgrounds and scientific training. It will also be an ideal supplementary next for advanced courses in environmental studies, energy economics and policy, and engineering.

  18. Preliminary Sizing Completed for Single- Stage-To-Orbit Launch Vehicles Powered By Rocket-Based Combined Cycle Technology

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.

    2002-01-01

    Single-stage-to-orbit (SSTO) propulsion remains an elusive goal for launch vehicles. The physics of the problem is leading developers to a search for higher propulsion performance than is available with all-rocket power. Rocket-based combined cycle (RBCC) technology provides additional propulsion performance that may enable SSTO flight. Structural efficiency is also a major driving force in enabling SSTO flight. Increases in performance with RBCC propulsion are offset with the added size of the propulsion system. Geometrical considerations must be exploited to minimize the weight. Integration of the propulsion system with the vehicle must be carefully planned such that aeroperformance is not degraded and the air-breathing performance is enhanced. Consequently, the vehicle's structural architecture becomes one with the propulsion system architecture. Geometrical considerations applied to the integrated vehicle lead to low drag and high structural and volumetric efficiency. Sizing of the SSTO launch vehicle (GTX) is itself an elusive task. The weight of the vehicle depends strongly on the propellant required to meet the mission requirements. Changes in propellant requirements result in changes in the size of the vehicle, which in turn, affect the weight of the vehicle and change the propellant requirements. An iterative approach is necessary to size the vehicle to meet the flight requirements. GTX Sizer was developed to do exactly this. The governing geometry was built into a spreadsheet model along with scaling relationships. The scaling laws attempt to maintain structural integrity as the vehicle size is changed. Key aerodynamic relationships are maintained as the vehicle size is changed. The closed weight and center of gravity are displayed graphically on a plot of the synthesized vehicle. In addition, comprehensive tabular data of the subsystem weights and centers of gravity are generated. The model has been verified for accuracy with finite element analysis. The

  19. The Combination Design of Enabling Technologies in Group Learning: New Study Support Service for Visually Impaired University Students

    ERIC Educational Resources Information Center

    Tangsri, Chatcai; Na-Takuatoong, Onjaree; Sophatsathit, Peraphon

    2013-01-01

    This article aims to show how the process of new service technology-based development improves the current study support service for visually impaired university students. Numerous studies have contributed to improving assisted aid technology such as screen readers, the development and the use of audiobooks, and technology that supports individual…

  20. Sustainability 101

    ERIC Educational Resources Information Center

    Shi, David

    2008-01-01

    Sustainability is one of the leading issues of this time. Climate change is real, and widespread commitment and creativity are needed to combat its negative effects. Higher education is the seedbed of the sustainability movement. Much climate research and environmental science takes place on college and university campuses, which are, by their…

  1. Sustainable Learning

    ERIC Educational Resources Information Center

    Cadwell, Louise; Dillon, Robert

    2011-01-01

    Green schools have moved into a new era that focuses on building a culture of sustainability in every aspect of learning in schools. In the early stages of sustainability education, the focus was on recycling and turning off the lights. Now, students and adults together are moving into the areas of advocacy and action that are based on a deep…

  2. Physicochemical and Microstructural Characterization of Corn Starch Edible Films Obtained by a Combination of Extrusion Technology and Casting Technique.

    PubMed

    Fitch-Vargas, Perla Rosa; Aguilar-Palazuelos, Ernesto; de Jesús Zazueta-Morales, José; Vega-García, Misael Odín; Valdez-Morales, Jesús Enrique; Martínez-Bustos, Fernando; Jacobo-Valenzuela, Noelia

    2016-09-01

    Starch edible films (EFs) have been widely studied due to their potential in food preservation; however, their application is limited because of their poor mechanical and barrier properties. Because of that, the aim of this work was to use the extrusion technology (Ex T) as a pretreatment of casting technique to change the starch structure in order to obtain EFs with improved physicochemical properties. To this, corn starch and a mixture of plasticizers (sorbitol and glycerol, in different ratios) were processed in a twin screw extruder to generate the starch modification and subsequently casting technique was used for EFs formation. The best conditions of the Ex T and plasticizers concentration were obtained using response surface methodology. All the response variables evaluated, were affected significatively by the Plasticizers Ratio (Sorbitol:Glycerol) (PR (S:G)) and Extrusion Temperature (ET), while the Screw Speed (SS) did not show significant effect on any of these variables. The optimization study showed that the appropriate conditions to obtain EFs with the best mechanical and barrier properties were ET = 89 °C, SS = 66 rpm and PR (S:G) = 79.7:20.3. Once the best conditions were obtained, the optimal treatment was characterized according to its microstructural properties (X-ray diffraction, Scanning Electron Microscopy and Atomic Force Microscopy) to determine the damage caused in the starch during Ex T and casting technique. In conclusion, with the combination of Ex T and casting technique were obtained EFs with greater breaking strength and deformation, as well as lower water vapor permeability than those reported in the literature. PMID:27550869

  3. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    PubMed

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). PMID:25458677

  4. Silk-Based Biomaterials for Sustained Drug Delivery

    PubMed Central

    Yucel, Tuna; Lovett, Michael L.; Kaplan, David L.

    2014-01-01

    Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk’s well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193

  5. Sustainable Deforestation Evaluation Model and System Dynamics Analysis

    PubMed Central

    Feng, Huirong; Lim, C. W.; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi

    2014-01-01

    The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony. PMID:25254225

  6. Silk-based biomaterials for sustained drug delivery.

    PubMed

    Yucel, Tuna; Lovett, Michael L; Kaplan, David L

    2014-09-28

    Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk's well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193

  7. Sustainable deforestation evaluation model and system dynamics analysis.

    PubMed

    Feng, Huirong; Lim, C W; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi

    2014-01-01

    The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony. PMID:25254225

  8. Multi-loaded ceramic beads/matrix scaffolds obtained by combining ionotropic and freeze gelation for sustained and tuneable vancomycin release.

    PubMed

    Hess, Ulrike; Mikolajczyk, Gerd; Treccani, Laura; Streckbein, Philipp; Heiss, Christian; Odenbach, Stefan; Rezwan, Kurosch

    2016-10-01

    For a targeted release against bacteria-associated bone diseases (osteomyelitis) ceramic beads with a high drug loading capacity, loaded with vancomycin as model antibiotic, are synthesized as drug carrier and successfully incorporated in an open porous hydroxyapatite matrix scaffold via freeze gelation to prevent bead migration at the implantation site and to extend drug release. We demonstrate that the quantity of loaded drug by the hydroxyapatite and β-tricalcium phosphate beads, produced by ionotropic gelation, as well as drug release can be tuned and controlled by the selected calcium phosphate powder, sintering temperature, and high initial vancomycin concentrations (100mg/ml) used for loading. Bead pore volume up to 68mm(3)/g, with sufficiently large open pores (pore size of up to 650nm with open porosity of 72%) and high surface area (91m(2)/g) account likewise for a maximum drug loading of 236mg/g beads or 26mg/sample. Multi-drug loading of the beads/matrix composite can further increase the maximum loadable amount of vancomycin to 37mg/sample and prolong release and antibacterial activity on Bacillus subtilis up to 5days. The results confirmed that our approach to incorporate ceramic beads as drug carrier for highly increased drug load in freeze-gelated matrix scaffolds is feasible and may lead to a sustained drug release and antibacterial activity. PMID:27287153

  9. Combining Drama Pedagogy with Digital Technologies to Support the Language Learning Needs of Newly Arrived Refugee Children: A Classroom Case Study

    ERIC Educational Resources Information Center

    Dunn, Julie; Bundy, Penny; Woodrow, Nina

    2012-01-01

    Although significant research has been completed that examines the effectiveness of process drama as a pedagogical approach for developing additional languages and further work has focused on the affordances of digital technologies within drama work, scant attention has been paid to the possibilities which a combination of these approaches might…

  10. Potent Synergy and Sustained Bactericidal Activity of a Vancomycin-Colistin Combination versus Multidrug-Resistant Strains of Acinetobacter baumannii ▿ †

    PubMed Central

    Gordon, N. C.; Png, K.; Wareham, D. W.

    2010-01-01

    Multidrug-resistant Acinetobacter baumannii (MDRAB) presents an increasing challenge to health care. Although colistin has been used as a treatment of last resort, there is concern regarding its potential for toxicity and the emergence of resistance. The mechanism of action of colistin, however, raises the possibility of synergy with compounds that are normally inactive against Gram-negative organisms by virtue of the impermeability of the bacterial outer membrane. This study evaluated the effect of colistin combined with vancomycin on 5 previously characterized epidemic strains and 34 MDRAB clinical isolates by using time-kill assay, microdilution, and Etest methods. For all the isolates, significant synergy was demonstrated by at least one method, with reductions in the MIC of vancomycin from >256 μg/ml to ≤48 μg/ml for all strains after exposure to 0.5 μg/ml colistin. This raises the possibility of the clinical use of this combination for infections due to MDRAB, with the potential for doses lower than those currently used. PMID:20876375

  11. EVALUATION OF TWO LEAD-BASED PAINT REMOVAL AND WASTE STABILIZATION TECHNOLOGY COMBINATIONS ON TYPICAL EXTERIOR SURFACES

    EPA Science Inventory

    A study was conducted to demonstrate the effectiveness of a wet abrasive blasting technology to remove lead-based paint from exterior wood siding and brick substrates as well as to evaluate the effectiveness of two waste stabilization technologies to stabilize the resulting blast...

  12. Sustainable Development.

    ERIC Educational Resources Information Center

    Auerbach, Raymond

    1994-01-01

    Discusses South African national development priorities, sustainable development, and the future of agriculture and presents three scenarios of possible national action: production for sale and export, household food security, and conservation of natural resources. (MKR)

  13. Sustainable Development

    NASA Astrophysics Data System (ADS)

    Schmandt, Jurgen; Ward, C. H.; Marilu Hastings, Assisted By

    2000-04-01

    Demographers predict that the world population will double during the first half of the 21st century before it will begin to level off. In this volume, a group of prominent authors examine what societal changes must occur to meet this challenge to the natural environment and the transformational changes that we must experience to achieve sustainability. Frances Cairncross, Herman E. Daly, Stephen H. Schneider and others provide a broad discussion of sustainable development. They detail economic and environmental, as well as spiritual and religious, corporate and social, scientific and political factors. Sustainable Development: The Challenge of Transition offers many insightful policy recommendations about how business, government, and individuals must change their current values, priorities, and behavior to meet present and future challenges. It will appeal to scholars and decision makers interested in global change, environmental policy, population growth, and sustainable development, and also to corporate environmental managers.

  14. The road to sustainability

    SciTech Connect

    Sarrao, John L; Crabtree, George

    2009-01-01

    Sustainability is the hottest topic in energy research today, but what does it actually mean? George Crabtree and John Sarrao describe what makes a technology sustainable, and outline the materials-science challenges standing between us and clean, long-lasting energy. Although most people agree that more-sustainable energy technologies are desirable, they often find it harder to agree on exactly how sustainable these technologies need to be, and even precisely what is meant by sustainability. To clarify the debate, we suggest three criteria for sustainability, each of which captures a different feature of the problem. While we do not have the lUxury of achieving full sustainability for all of our next-generation energy technologies, we can use these definitions to select our strategic sustainability targets and track our progress toward achieving them. As will become clear, the most sustainable energy technologies require the most challenging fundamental science breakthroughs. The first criterion for sustainability is 'lasts a long time'. This quality has been a feature of many energy sources we have used historically, including wood in ancient times and oil throughout most of the 20th century. The definition of 'long time' is, of course, relative: the world's demand for energy long ago outpaced the ability of wood to supply it, and the production of oil is likely to peak sometime within the next few decades. Substantial reductions in the rate of oil consumption through higher-efficiency processes can significantly impact on how long non-renewable resources last. In applying the 'long time' criterion, we need to distinguish between energy sources that are effectively limitless and those that are finite but, for the moment, adequate. The second criterion for sustainability is 'does no harm'. Burning fossil fuels releases pollutants such as sulphur and mercury that endanger human health, as well as greenhouse gases like carbon dioxide that threaten climate stability

  15. Principles of ecosystem sustainability

    SciTech Connect

    Chapin, F.S. III; Torn, M.S.; Tateno, Masaki

    1996-12-01

    Many natural ecosystems are self-sustaining, maintaining an characteristic mosaic of vegetation types of hundreds to thousands of years. In this article we present a new framework for defining the conditions that sustain natural ecosystems and apply these principles to sustainability of managed ecosystems. A sustainable ecosystem is one that, over the normal cycle of disturbance events, maintains its characteristics diversity of major functional groups, productivity, and rates of biogeochemical cycling. These traits are determined by a set of four {open_quotes}interactive controls{close_quotes} (climate, soil resource supply, major functional groups of organisms, and disturbance regime) that both govern and respond to ecosystem processes. Ecosystems cannot be sustained unless the interactive controls oscillate within stable bounds. This occurs when negative feedbacks constrain changes in these controls. For example, negative feedbacks associated with food availability and predation often constrain changes in the population size of a species. Linkages among ecosystems in a landscape can contribute to sustainability by creating or extending the feedback network beyond a single patch. The sustainability of managed systems can be increased by maintaining interactive controls so that they form negative feedbacks within ecosystems and by using laws and regulations to create negative feedbacks between ecosystems and human activities, such as between ocean ecosystems and marine fisheries. Degraded ecosystems can be restored through practices that enhance positive feedbacks to bring the ecosystem to a state where the interactive controls are commensurate with desired ecosystem characteristics. The possible combinations of interactive controls that govern ecosystem traits are limited by the environment, constraining the extent to which ecosystems can be managed sustainably for human purposes. 111 refs., 3 figs., 2 tabs.

  16. Microplasma radiofrequency technology combined with triamcinolone improved the therapeutic effect on Chinese patients with hypertrophic scar and reduced the risk of tissue atrophy

    PubMed Central

    Yu, Shui; Li, Hengjin

    2016-01-01

    Objective The current study aimed to assess the value of microplasma radiofrequency technology combined with triamcinolone for the therapy of Chinese patients with hypertrophic scar. Methods A total of 120 participants with hypertrophic scars were enrolled in the current study. Participants were divided into two groups based on sex, and then randomly and evenly divided into four groups (Groups A, B, C, and D). Participants in Group A received microplasma radiofrequency technology combined with triamcinolone. Participants in Group B received microplasma radiofrequency technology combined with normal saline. Participants in Groups C and D received triamcinolone (40 and 10 mg/mL) injected directly into scar. Experienced physicians evaluated the condition of scars according to the Vancouver Scar Scale 1 month before and after the therapy. Results There was no difference in age, sex, area, height and location of scars, and Vancouver Scar Scale scores before the therapy between any groups (P>0.05 for all). Vancouver Scar Scale scores after the therapy were significantly lower than those before the therapy in all groups (P<0.05 for all). Vancouver Scar Scale scores after the therapy in Group A were significantly lower than those after the therapy in Groups B and C (P<0.05 for all). Vancouver Scar Scale scores after the therapy in Group B were significantly higher than those after the therapy in Group C (P<0.05 for all) and similar to those after the therapy in Group D (P>0.05 for all). Incidences of tissue atrophy after the therapy were significantly lower in Groups A and B than in Group C (P<0.05 for all) and similar among Groups A, B, and D (P>0.05 for all). Conclusion Microplasma radiofrequency technology combined with triamcinolone improved the therapeutic effect on Chinese patients with hypertrophic scar and reduced the risk of tissue atrophy compared with the use of either microplasma radiofrequency technology or triamcinolone injection alone. PMID:27274259

  17. Sustainable markets for sustainable energy

    SciTech Connect

    Millan, J.; Smyser, C.

    1997-12-01

    The author discusses how the Inter-American Development Bank (IDB) is involved in sustainable energy development. It presently has 50 loans and grants for non conventional renewable energy projects and ten grants for efficiency programs for $600 and $17 million respectively, representing 100 MW of power. The IDB is concerned with how to create a sustainable market for sustainable energy projects. The IDB is trying to work with government, private sector, NGOs, trading allies, credit sources, and regulators to find proper roles for such projects. He discusses how the IDB is working to expand its vision and objectives in renewable energy projects in Central and South America.

  18. Sustainability of Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  19. From Concept to Commercialisation: Student Learning in a Sustainable Engineering Innovation Project

    ERIC Educational Resources Information Center

    Schafer, Andrea I.; Richards, Bryce S.

    2007-01-01

    An interdisciplinary sustainable design project that combines membrane technology with renewable energy to provide water for remote communities and developing countries was offered to students for voluntary participation. Through continuous design stages and improvements on several prototypes, laboratory testing and several field trials in…

  20. Combined Natural Gas and Solar Technologies for Heating and Cooling in the City of NIS in Serbia

    NASA Astrophysics Data System (ADS)

    Stefanović, Velimir P.; Bojić, Milorad Lj.

    2010-06-01

    The use of conventional systems for heat and electricity production in Niš and Serbia means a constant waste of energy, and money. This problem is present in both industrial and public sector. Using conventional systems, means not only low-energy efficient systems, and technologies, but also using very "dirty" technologies, which cause heavy environment pollution. The lack of electricity in our country, and region is also present. The gas pipeline in Niš was finished not long ago, and second gas pipeline is about to be made in the next couple of years. This opens a door for implementing new technologies and the use of new methods for production of heat and electricity, while preserving our environment. This paper reports discussion of this technology with management of public institutions, which use both heat and electricity.

  1. Combining allostratigraphic and lithostratigraphic perspectives to compile subregional records of fluvial responsiveness: The case of the sustainably entrenching Palancia River watershed (Mediterranean coast, NE Spain)

    NASA Astrophysics Data System (ADS)

    Houben, Peter; Hoinkis, Ralf; Santisteban, Juan I.; Salat, Christina; Mediavilla, Rosa

    2011-06-01

    We use a combined allostratigraphic and morpholithostratigraphic approach to establish a relative stratigraphy of macroscale sediment-landform units in the Mediterranean Palancia River watershed (986-km2, NE Spain). Four alloformations signifying important changes in (sub)regional scale geomorphic valley-floor evolution were identified based on data from 1120 field sites and age determinations, and from analyzing high resolution geodata. The formation of the widespread and thick Pleistocene alloformation can be attributed to climatically-induced excessive sediment supply and flood activities during Pleistocene cold intervals - rather than representing time-lagging response to Plio/Pleistocene neotectonic uplift. Triggered by the turn to Holocene climatic conditions, three successively inset alloformations illustrate how stream grading and floodplain narrowing continuously have progressed over the Holocene. The overall degradational valley-floor evolution in the Holocene is interpreted as a response to the antecedent, overly valley-floor aggradation. Allostratigraphic and morphostratigraphic data suggest that the abandonment of the two earlier Holocene alloformations geomorphologically represents a pulsed turn toward intensified entrenchment rather than pulsed sedimentation. The most important benefit of amalgamating allostratigraphic and (morpho)lithostratigraphic concepts is that allostratigraphic ordering provides a formally conclusive approach to scale up (morpho)lithostratigraphic information from the reach scale to much larger scales of geographical extent. Consequently, applying allostratigraphic principles opens a perspective to moving forward toward analyzing the relationships between climate, neotectonics, sea level change, human impact, and fluvial response in coupled hinterland-coastal systems that require to evaluate sedimentary information at larger spatial scales.

  2. Technology.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  3. Methods for Selection of Cancer Patients and Predicting Efficacy of Combination Therapy | NCI Technology Transfer Center | TTC

    Cancer.gov

    The Lung Cancer Biomarkers Group of the National Cancer Institute (NCI) seeks parties interested in collaborative research to further co-develop methods for selecting cancer patients for combination therapy.

  4. Is rangeland agriculture sustainable?

    PubMed

    Heitschmidt, R K; Vermeire, L T; Grings, E E

    2004-01-01

    The objective of this paper is to examine the sustainability of rangeland agriculture (i.e., managed grazing) on a world-wide basis, with a focus on North America. Sustainability is addressed on three fronts: 1) ecological, 2) economic, and 3) social acceptance. Based on previous and on-going research, we suggest that employment of science-based rangeland grazing management strategies and tactics can ensure ecological sustainability. The formidable challenge in employing such technology centers around the need to balance efficiency of solar energy capture and subsequent harvest efficiencies across an array of highly spatially and temporally variable vegetation growing conditions using animals that graze selectively. Failure to meet this fundamental challenge often accelerates rangeland desertification processes, and in some instances, enhances rate and extent of the invasion of noxious weeds. We also suggest that the fundamental reason that ecologically sound grazing management technologies are often not employed in the management of grazed ecological systems is because social values drive management decisions more so than ecological science issues. This is true in both well-developed societies with substantial economic resources and in less-developed societies with few economic resources. However, the social issues driving management are often entirely different, ranging from multiple-use issues in developed countries to human day-to-day survival issues in poorly developed countries. We conclude that the long-term sustainability of rangeland agriculture in 1) developed societies depends on the ability of rangeland agriculturalists to continually respond in a dynamic, positive, proactive manner to ever-changing social values and 2) less-developed societies on their ability to address the ecological and social consequences arising from unsustainable human populations before the adoption of science-based sustainable rangeland management technologies. PMID:15471792

  5. Sustainable aquaculture systems

    SciTech Connect

    Brune, D.E.

    1994-08-01

    The goal of this paper is to examine and assess the technical feasibility of the integration of plant and/or animal aquaculture systems into a sustainable agriculture. Although most researchers tend to avoid a precise definition of sustainable aquaculture, the implication that one gets from `reading between the lines` is that a sustainable agro-ecosystem is one which recycles materials at maximum energy efficiency. The `unspoken` standard against which comparisons of sustainability are often made is that of a mature natural ecosystem at a steady state. Cost comparisons of alternative systems will be used whenever possible, however, in many cases, conventional cost/benefit analysis will be of limited value in such an analysis. For aquaculture, such an analysis can best be conducted by analyzing the possibilities of integrating nutrients, water, and energy flow from aquaculture systems both to and from, conventional agricultural systems. The various aquaculture options are then qualitatively compared as their potential, limitations, environmental soundness, productivity, socio-economic viability and the availability of supporting technology. It is important to realize that the usefulness or applicability of any sustainable or integrated aquaculture practice is highly site specific.

  6. Evaluation of two lead-based paint removal and waste stabilization technology combinations on typical exterior surfaces.

    PubMed

    Daniels, A E; Kominsky, J R; Clark, P J

    2001-10-12

    A study was conducted to demonstrate the effectiveness of a wet abrasive blasting technology to remove lead-based paint from exterior wood siding and brick substrates as well as to evaluate the effectiveness of two waste stabilization technologies to stabilize the resulting blast media (coal slag and mineral sand) paint debris thereby reducing the leachable lead content. The lead-based paint removal technology effectiveness was determined by the use of an X-ray fluorescence (XRF) spectrum analyzer (L- and K-shell). The effectiveness of the technologies to stabilize the debris was evaluated through the toxicity characteristic leaching procedure (TCLP). Wet abrasive blasting effectively removed the lead-based paint coating from both the wood and brick substrates to below the US Department of Housing and Urban Development Guideline (1mg/cm(2)) with no minimal or no damage to the underlying substrates (P<0.0001). The mean area air levels of lead-containing particulate generated during paint removal were significantly below the personal exposure limit (PEL) (P<0.0001). However, the mean personal breathing zone lead levels were approximately three times higher than the PEL. Neither of the two stabilization technologies consistently stabilized the resultant paint debris to achieve a leachable lead content below the RCRA regulatory threshold of <5 mg/l. PMID:11566404

  7. Sustainable developments

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Hundreds of diplomats, along with industry, finance, environment, and labor leaders from around the world met from April 20 to May 1 for the sixth session of the United Nations Commission for Sustainable Development (CSD), an annual follow-up conference to track the Agenda 21 program of action adopted at the 1992 Rio de Janeiro Earth Summit.During the session, which focused on freshwater management concerns and the role of industry in sustainable development, the participants discussed a number of issues about development and parity among northern and southern hemisphere countries.

  8. Sustainability, Student Affairs, and Students

    ERIC Educational Resources Information Center

    Kerr, Kathleen G.; Hart-Steffes, Jeanne S.

    2012-01-01

    Colleges and universities are developing both the next generation of leaders as well as state-of-the-art technology that allow climate reduction aspirations and triple bottom-line outcomes to become realities. Divisions of student affairs play a crucial role in the sustainability movement in colleges and universities. The technology-savvy,…

  9. Effects of the combination of aeration and biofilm technology on transformation of nitrogen in black-odor river.

    PubMed

    Pan, Mei; Zhao, Jun; Zhen, Shucong; Heng, Sheng; Wu, Jie

    2016-01-01

    Excess nitrogen in urban river networks leading to eutrophication has become one of the most urgent environmental problems. Combinations of different aeration and biofilm techniques was designed to remove nitrogen from rivers. In laboratory water tank simulation experiments, we assessed the removal efficiency of nitrogen in both the overlying water and sediments by using the combination of the aeration and biofilm techniques, and then analyzed the transformation of nitrogen during the experiments. Aeration (especially sediment aeration) combined with the biofilms techniques was proved efficient in removing nitrogen from polluted rivers. Results indicated that the combination of sediment aeration and biofilms, with the highest nitrogen removal rate from the overlying water and sediments, was the most effective combined process, which especially inhibited the potential release of nitrogen from sediments by reducing the enzyme activity. It was found that the content of dissolved oxygen in water could be restored on the basis of the application of aeration techniques ahead, and the biofilm technique would be effective in purifying water in black-odor rivers. PMID:27508370

  10. NREL's Sustainable Campus Overview

    SciTech Connect

    Rukavina, Frank; Pless, Shanti

    2015-04-06

    The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.

  11. Electrification will enable sustained prosperity

    SciTech Connect

    Linden, H.R.

    1996-10-01

    The author addresses this topic from the perspective of a technological optimist who believes by 2100 the global energy system will have achieved sustainability or, at least, closely approached it. What will drive this evolution to resource and environmental sustainability is not depletion of economically recoverable fossil fuels or the current anxiety over anthropogenic climate change. Instead, it will be an avalanche of new cost-effective and environmentally benign energy supply, transport, storage and end-use technologies that will change the global energy system even more dramatically than the technological advances of the past 100 years.

  12. Sustainable intensification in agricultural systems

    PubMed Central

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-01-01

    Background Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms ‘sustainable’ and ‘intensification’ is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. Scope and Conclusions This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural–environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and

  13. Automatic Vacuum Flushing Technology for Combined Sewer Solids: Laboratory Testing and Proposed Improvements (WERF Report INFR7SG09)

    EPA Science Inventory

    This research study included an extensive literature review on existing sewer sediment flushing technologies. An innovative vacuum flush system previously developed by the U.S. EPA was tested under laboratory conditions. The tests revealed a strong correlation between the strengt...

  14. Annual Sustainability Report FY 2014. Incorporates NREL Site Sustainability Plan

    SciTech Connect

    Rukavina, Frank

    2015-07-01

    NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'Sustaining NREL's Future Through Integration' provides insight into how NREL is successfully expanding the adoption of renewable energy technologies through integration.

  15. Effective Utilization of Information and Communication Technology (ICT) for Sustainable Manpower Development among Computer Educators in Colleges of Education in South East Geo-Political Zone of Nigeria

    ERIC Educational Resources Information Center

    Olelewe, Chijioke Jonathan; Amaka, Eugenia Ngozi

    2011-01-01

    The challenges for TVET today is to re-orient and redirect its curricula to imbue trainers and trainees on sustainable use of resources to enhance appropriate work skill development as new and employment opportunities emerge such as recycling, ICT, repair, waste management, etc. This paper is therefore focused on the effective utilization of ICT…

  16. Sustainable Development of Natural Resources in the Third World: Technological and Institutional Challenges. An International Symposium (Columbus, OH, September 3-6, 1985).

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. School of Natural Resources.

    This booket contains abstracts of papers presented at a symposium which focused on sustainable development of natural resources in third world countries. The abstracts are organized under these headings: (1) factors affecting individual's resource use decisions; (2) resource conservation and economic development; (3) research on alternative…

  17. Technology combined with a counseling protocol to stimulate physical activity of chronically ill patients in primary care.

    PubMed

    Verwey, R; van der Weegen, S; Spreeuwenberg, M; Tange, H; van der Weijden, T; de Witte, L

    2014-01-01

    An iterative user-centered design method was used to develop and test mobile technology (the It's LiFe! tool/monitor) embedded in primary care, followed by a three months feasibility study with 20 patients and three nurses. The tool consists of an accelerometer that transfers data to an app on a Smartphone, which is subsequently connected to a server. Physical activity levels are measured in minutes per day compared to pre-set activity goals, which are set by patients in dialogue with nurses. Nurses can monitor patients' physical activity via a secured website. The counseling protocol is based on the Five A's model and consists of a limited number of behavior change consultations intertwined with interaction with and responses from the tool. The technology supports nurses when performing physical activity counseling. Provided that no connectivity problems occur, the It's LiFe! intervention is feasible, and its longitudinal effects will be tested in a cluster RCT. PMID:24943553

  18. The magic of mid-face three-dimensional contour alterations combining alloplastic and soft tissue suspension technologies.

    PubMed

    Terino, Edward O; Edward, Michael

    2008-07-01

    Recent advances in the technology of implant designs and shapes, as well as improved understanding of the principles of facial aesthetics, give the plastic surgeon, for the first time, tools to precisely and permanently change faces in specific areas and with minimum morbidity. Cosmetic facial surgeons must learn and understand the zonal anatomy of the malar-midface region to be prepared for growing patient demands regarding analysis and alteration of facial cheek contours. This article describes and illustrates contemporary technology that uses alloplastic implants throughout the face. Three-dimensional changes in facial form and shape using alloplastic augmentation techniques are essential for creating aesthetic beauty and are the "final chapter" of the development of cosmetic facial surgery. PMID:18558238

  19. Y-12 Site Sustainability Plan

    SciTech Connect

    Spencer, Charles G

    2012-12-01

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan, while promoting overall sustainability and reduction of greenhouse gas emissions. The mission of the Y-12 Energy Management program is to incorporate energy-effi cient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. The plan addresses greenhouse gases, buildings, fleet management, water use, pollution prevention, waste reduction, sustainable acquisition, electronic stewardship and data centers, site innovation and government-wide support.

  20. Teaching Sustainability/Teaching Sustainably

    ERIC Educational Resources Information Center

    Bartels, Kirsten Allen, Ed.; Parker, Kelly A., Ed.

    2011-01-01

    Over the coming decades, every academic discipline will have to respond to the paradigm of more sustainable life practices because students will be living in a world challenged by competition for resources and climate change, and will demand that every academic discipline demonstrate substantial and corresponding relevance. This book takes as its…

  1. The comparison of removing plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging for near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Xu, Yuanming; Bajracharya, Suman

    2015-11-01

    Near-well ultrasonic processing technology is characterized by high adaptability, simple operation, low cost and zero pollution. The main plugs of oil production include paraffin deposition plug, polymer plug, and drilling fluid plug etc. Although some good results have been obtained through laboratory experiments and field tests, systematic and intensive studies are absent for certain major aspects, such as: effects of ultrasonic treatment for different kinds of plugs and whether effect of ultrasound-chemicals combination deplugging is better than that of ultrasonic deplugging. In this paper, the experiments of removing drilling fluid plug, paraffin deposition plug and polymer plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging respectively are carried out. Results show that the effect of ultrasound-chemical combination deplugging is clearly better than that of using ultrasonic wave and chemical deplugging agent separately, which indicates that ultrasonic deplugging and chemical deplugging can produce synergetic effects. On the one hand, ultrasonic treatment can boost the activity of chemical deplugging agent and turn chemical deplugging into dynamic chemical process, promoting chemical agent reaction speed and enhancing deplugging effect; on the other hand, chemical agent can reduce the adhesion strength of plugs so that ultrasonic deplugging effect can be improved significantly. Experimental results provide important reference for near-well ultrasonic processing technology. PMID:26186853

  2. Sustainable NREL

    ScienceCinema

    None

    2013-05-29

    The National Renewable Energy Laboratory prides itself on not only advancing the renewable energy, but "walking the talk" when it comes to sustainable practices. "When you look at our laboratories, you will see energy efficiency in action, but you'll also see renewable energy. We walk the walk and we talk the talk. We believe in it and we want to live it also."

  3. Sustainable NREL

    SciTech Connect

    2011-01-01

    The National Renewable Energy Laboratory prides itself on not only advancing the renewable energy, but "walking the talk" when it comes to sustainable practices. "When you look at our laboratories, you will see energy efficiency in action, but you'll also see renewable energy. We walk the walk and we talk the talk. We believe in it and we want to live it also."

  4. Partitioning ecosystems for sustainability.

    PubMed

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems. PMID:27209800

  5. Automation of the CCTV-mediated detection of individuals illegally carrying firearms: combining psychological and technological approaches

    NASA Astrophysics Data System (ADS)

    Darker, Iain T.; Kuo, Paul; Yang, Ming Yuan; Blechko, Anastassia; Grecos, Christos; Makris, Dimitrios; Nebel, Jean-Christophe; Gale, Alastair G.

    2009-05-01

    Findings from the current UK national research programme, MEDUSA (Multi Environment Deployable Universal Software Application), are presented. MEDUSA brings together two approaches to facilitate the design of an automatic, CCTV-based firearm detection system: psychological-to elicit strategies used by CCTV operators; and machine vision-to identify key cues derived from camera imagery. Potentially effective human- and machine-based strategies have been identified; these will form elements of the final system. The efficacies of these algorithms have been tested on staged CCTV footage in discriminating between firearms and matched distractor objects. Early results indicate the potential for this combined approach.

  6. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.

    PubMed

    Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R

    2010-04-01

    Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices. PMID:20144922

  7. Combined effect of selected non-thermal technologies on Escherichia coli and Pichia fermentans inactivation in an apple and cranberry juice blend and on product shelf life.

    PubMed

    Palgan, I; Caminiti, I M; Muñoz, A; Noci, F; Whyte, P; Morgan, D J; Cronin, D A; Lyng, J G

    2011-11-15

    The combination of novel, non-thermal technologies for preservation purposes is a recent trend in food processing research. In the present study, non-thermal hurdles such as ultraviolet light (UV) (5.3 J/cm²), high intensity light pulses (HILP) (3.3 J/cm²), pulsed electric fields (PEF) (34 kV/cm, 18 Hz, 93 μs) or manothermosonication (MTS) (4bar, 43 °C, 750 W, 20 kHz) were examined. The objective was to establish the potential of these technologies, applied individually or in paired sequences, to inactivate Escherichia coli and Pichia fermentans inoculated in a fresh blend of apple and cranberry juice. The shelf-life evaluation of selected non-thermally treated samples was conducted over 35 days and compared to pasteurised samples and untreated juices. All treatments applied individually significantly reduced (1.8-6.0 log cfu/ml) microbial counts compared to the untreated sample (p<0.01). Furthermore, UV treatment produced significantly greater inactivation (p<0.05) for E. coli compared to P. fermentans. Combinations of non-thermal hurdles consisting of UV or HILP followed by either PEF or MTS resulted in comparable reductions for both microorganisms (p ≥ 0.05) to those observed in thermally pasteurised samples (approx. 6 log cfu/ml). Thermally pasteurised samples had a shelf life exceeding 35 days, while that of UV+PEF and HILP+PEF-treated samples was 14 and 21 days, respectively. These results indicate that combinations of these non-thermal technologies could successfully reduce levels of E. coli and P. fermentans in apple and cranberry juice, although optimisation is required in order to further extend shelf life. PMID:21893360

  8. Y-12 Site Sustainability Plan

    SciTech Connect

    Sherry, T D; Kohlhorst, D P; Little, S K

    2011-12-01

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the DOE and the National Nuclear Security Administration (NNSA) vision for a commitment to energy efficiency and sustainability and to achievement of the Guiding Principles. Specifically, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan (SSPP) while promoting overall sustainability and reduction of greenhouse gas (GHG) emissions. Table ES.2 gives a comprehensive overview of Y-12's performance status and planned actions. B&W Y-12's Energy Management mission is to incorporate renewable energy and energy efficient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. During FY 2011, the site formed a sustainability team (Fig. ES.1). The sustainability team provides a coordinated approach to meeting the various sustainability requirements and serves as a forum for increased communication and consistent implementation of sustainability activities at Y-12. The sustainability team serves as an information exchange mechanism to promote general awareness of sustainability information, while providing a system to document progress and to identify resources. These resources are necessary to implement activities that support the overall goals of sustainability, including reducing the use of resources and conserving energy. Additionally, the team's objectives include: (1) Foster a Y-12-wide philosophy to conserve resources; (2) Reduce the impacts of production operations in a cost-effective manner; (3) Increase materials recycling; (4) Use a minimum amount of energy and fuel; (5) Create a minimum of waste and pollution in achieving Y-12-strategic objectives; (6) Develop and implement techniques, technologies, process modifications, and programs that support sustainable acquisition; (7) Minimize the impacts to

  9. Optimization of energy systems under the aspect of sustainability

    SciTech Connect

    Ludwig, B.

    1997-12-31

    One of the basic ideas of technology assessment (TA) is to point out alternatives to any approached problem solution. This includes, for instance, with respect to the aim of sustainable development, the requirement of better solutions for technical applications. This idea of TA can be taken as an optimization problem. Optimization of a technical application is aimed to its energy efficiency, its material intensity, or its sustainability, respectively. The application of usual optimization procedures is limited especially in the case of a multicriterial evaluation. Restraints could be nonlinear problems, or problems with many parameters, or many restrictions due to the programming effort and memory demand of the computer. Natural optimization techniques, named as selective, genetic, or evolutionary techniques, orient on principles of evolutionary biology. These techniques do not have requirements to linearity, differentiation or a certain problem structure and have often a less programming effort, for they are predestined to apply to TA. In this contribution a new optimization technique based on a combination of soft computing methods is presented and applied to energy conversion technologies. The technology mix building an energy supply system is evaluated with a fuzzy logic based approach and optimized with a genetic algorithm. The results are properties and compounds required to future energy conversion technologies under the aspects of a sustainable development.

  10. Use of gamma-irradiation technology in combination with edible coating to produce shelf-stable foods

    NASA Astrophysics Data System (ADS)

    Ouattara, B.; Sabato, S. F.; Lacroix, M.

    2002-03-01

    This research was undertaken to determine the effectiveness of low-dose gamma-irradiation combined with edible coatings to produce shelf-stable foods. Three types of commercially distributed food products were investigated: precooked shrimps, ready to cook pizzas, and fresh strawberries. Samples were coated with various formulations of protein-based solutions and irradiated at total doses between 0 and 3 kGy. Samples were stored at 4°C and evaluated periodically for microbial growth. Sensorial analysis was also performed using a nine-point hedonic scale to evaluate the organoleptic characteristics (odor, taste and appearance). The results showed significant ( p⩽0.05) combined effect of gamma-irradiation and coating on microbial growth (APCs and Pseudomonas putida). The shelf-life extension periods ranged from 3 to 10 days for shrimps and from 7 to 20 days for pizzas, compared to uncoated/unirradiated products. No significant ( p>0.05) detrimental effect of gamma-irradiation on sensorial characteristics (odor, taste, appearance) was observed. In strawberries, coating with irradiated protein solutions resulted in significant reduction of the percentage of mold contamination.

  11. An engineering-economic analysis of combined heat and power technologies in a (mu)grid application

    SciTech Connect

    Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

    2002-03-01

    This report describes an investigation at Ernesto Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) of the potential for coupling combined heat and power (CHP) with on-site electricity generation to provide power and heating, and cooling services to customers. This research into distributed energy resources (DER) builds on the concept of the microgrid (mGrid), a semiautonomous grouping of power-generating sources that are placed and operated by and for the benefit of its members. For this investigation, a hypothetical small shopping mall (''Microgrid Oaks'') was developed and analyzed for the cost effectiveness of installing CHP to provide the mGrid's energy needs. A mGrid consists of groups of customers pooling energy loads and installing a combination of generation resources that meets the particular mGrid's goals. This study assumes the mGrid is seeking to minimize energy costs. mGrids could operate independently of the macrogrid (the wider power network), but they are usually assumed to be connected, through power electronics, to the macrogrid. The mGrid in this study is assumed to be interconnected to the macrogrid, and can purchase some energy and ancillary services from utility providers.

  12. Combination Light

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Rayovac TANDEM is an advanced technology combination work light and general purpose flashlight that incorporates several NASA technologies. The TANDEM functions as two lights in one. It features a long range spotlight and wide angle floodlight; simple one-hand electrical switching changes the beam from spot to flood. TANDEM developers made particular use of NASA's extensive research in ergonomics in the TANDEM's angled handle, convenient shape and different orientations. The shatterproof, water resistant plastic casing also draws on NASA technology, as does the shape and beam distance of the square diffused flood. TANDEM's heavy duty magnet that permits the light to be affixed to any metal object borrows from NASA research on rare earth magnets that combine strong magnetic capability with low cost. Developers used a NASA-developed ultrasonic welding technique in the light's interior.

  13. [Diverse sustainability--sustainable diversity].

    PubMed

    Schmeling-Kludas, Christoph; Koch-Gromus, Uwe

    2011-08-01

    In spite of its plenitude, the scientific works of the important German psychologist Ernst August Dölle (1898-1972) are little adapted till today, mostly they are being reduced to his studies about dichotomy and duplicity. But based on his diaries of the year 1968, the authors can verify without doubt, that Dölle far ahead of his time, carried on research about sustainability and diversity. He was the first scientist worldwide to connect these two concepts. PMID:21837611

  14. Science, Open Communication, and Sustainable Development

    SciTech Connect

    Wilbanks, Thomas J; Wilbanks, John T.; Fulkerson, William

    2010-01-01

    One of the prerequisites for sustainable development is knowledge, in order to inform coping with sustainability threats and to support innovative sustainability pathways. Transferring knowledge is therefore a fundamental challenge for sustainability, in a context where external knowledge must be integrated with local knowledge in order to promote user-driven action. But effective local co-production of knowledge requires ongoing local access to existing scientific and technical knowledge so that users start on a level playing field. The information technology revolution can be a powerful enabler of such access if intellectual property obstacles can be overcome, with a potential to transform prospects for sustainability in many parts of the world.

  15. Evaluation of drinking water treatment combined filter backwash water recycling technology based on comet and micronucleus assay.

    PubMed

    Chen, Ting; Xu, Yongpeng; Liu, Zhiquan; Zhu, Shijun; Shi, Wenxin; Cui, Fuyi

    2016-04-01

    Based on the fact that recycling of combined filter backwash water (CFBW) directly to drinking water treatment plants (WTP) is considered to be a feasible method to enhance pollutant removal efficiency, we were motivated to evaluate the genotoxicity of water samples from two pilot-scale drinking water treatment systems, one with recycling of combined backwash water, the other one with a conventional process. An integrated approach of the comet and micronucleus (MN) assays was used with zebrafish (Danio rerio) to investigate the water genotoxicity in this study. The total organic carbon (TOC), dissolved organic carbon (DOC), and trihalomethane formation potential (THMFP), of the recycling process were lower than that of the conventional process. All the results showed that there was no statistically significant difference (P>0.05) between the conventional and recycling processes, and indicated that the genotoxicity of water samples from the recycling process did not accumulate in 15 day continuous recycling trial. It was worth noting that there was correlation between the concentrations of TOC, DOC, UV254, and THMFPs in water and the DNA damage score, with corresponding R(2) values of 0.68, 0.63, 0.28, and 0.64. Nevertheless, both DNA strand breaks and MN frequency of all water samples after disinfection were higher than that of water samples from the two treatment units, which meant that the disinfection by-products (DBPs) formed by disinfection could increase the DNA damage. Both the comet and MN tests suggest that the recycling process did not increase the genotoxicity risk, compared to the traditional process. PMID:27090695

  16. Using basic fibroblast growth factor nanoliposome combined with ultrasound-introduced technology to early intervene the diabetic cardiomyopathy.

    PubMed

    Zhao, Ying-Zheng; Zhang, Ming; Tian, Xin-Qiao; Zheng, Lei; Lu, Cui-Tao

    2016-01-01

    Basic fibroblast growth factor (bFGF)-loaded liposome (bFGF-lip) combined with ultrasound-targeted microbubble destruction (UTMD) technique was investigated to prevent diabetic cardiomyopathy (DCM). Cardiac function and myocardial ultrastructure were assessed. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining, immunohistochemistry staining, and Western blot assay were used to investigate the signal pathway underlying the expression of bFGF in DCM treatment. From Mason staining and TUNEL staining, bFGF-lip + UTMD group showed significant differences from the diabetes group and other groups treated with bFGF or bFGF-lip. The diabetes group showed similar results (myocardial capillary density, collagen volume fraction, and cardiac myocyte apoptosis index) to other bFGF treatment groups. Indexes from transthoracic echocardiography and hemodynamic evaluation also proved the same conclusion. These results confirmed that the abnormalities including diastolic dysfunctions, myocardial fibrosis, and metabolic disturbances could be suppressed by the different extents of twice-weekly bFGF treatments for 12 consecutive weeks (free bFGF or bFGF-lip +/- UTMD), with the strongest improvements observed in the bFGF-lip + UTMD group. The group combining bFGF-lip with UTMD demonstrated the highest level of bFGF expression among all the groups. The bFGF activated the PI3K/AKT signal pathway, causing the reduction of myocardial cell apoptosis and increase of microvascular density. This strategy using bFGF-lip and UTMD is a potential strategy in early intervention of DCM in diabetes. PMID:26937188

  17. Using basic fibroblast growth factor nanoliposome combined with ultrasound-introduced technology to early intervene the diabetic cardiomyopathy

    PubMed Central

    Zhao, Ying-Zheng; Zhang, Ming; Tian, Xin-Qiao; Zheng, Lei; Lu, Cui-Tao

    2016-01-01

    Basic fibroblast growth factor (bFGF)-loaded liposome (bFGF-lip) combined with ultrasound-targeted microbubble destruction (UTMD) technique was investigated to prevent diabetic cardiomyopathy (DCM). Cardiac function and myocardial ultrastructure were assessed. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining, immunohistochemistry staining, and Western blot assay were used to investigate the signal pathway underlying the expression of bFGF in DCM treatment. From Mason staining and TUNEL staining, bFGF-lip + UTMD group showed significant differences from the diabetes group and other groups treated with bFGF or bFGF-lip. The diabetes group showed similar results (myocardial capillary density, collagen volume fraction, and cardiac myocyte apoptosis index) to other bFGF treatment groups. Indexes from transthoracic echocardiography and hemodynamic evaluation also proved the same conclusion. These results confirmed that the abnormalities including diastolic dysfunctions, myocardial fibrosis, and metabolic disturbances could be suppressed by the different extents of twice-weekly bFGF treatments for 12 consecutive weeks (free bFGF or bFGF-lip +/− UTMD), with the strongest improvements observed in the bFGF-lip + UTMD group. The group combining bFGF-lip with UTMD demonstrated the highest level of bFGF expression among all the groups. The bFGF activated the PI3K/AKT signal pathway, causing the reduction of myocardial cell apoptosis and increase of microvascular density. This strategy using bFGF-lip and UTMD is a potential strategy in early intervention of DCM in diabetes. PMID:26937188

  18. Sustainable Astronomy

    NASA Astrophysics Data System (ADS)

    Blaha, C.; Goetz, J.; Johnson, T.

    2011-09-01

    Through our International Year of Astronomy outreach effort, we established a sustainable astronomy program and curriculum in the Northfield, Minnesota community. Carleton College offers monthly open houses at Goodsell Observatory and donated its recently "retire" observing equipment to local schools. While public evenings continue to be popular, the donated equipment was underutilized due to a lack of trained student observing assistants. With sponsorship from NASA's IYA Student Ambassador program, the sustainable astronomy project began in 2009 to generate greater interest in astronomy and train middle school and high school students as observing assistants. Carleton physics majors developed curricular materials and instituted regular outreach programs for grades 6-12. The Northfield High School Astronomy Club was created, and Carleton undergraduates taught high school students how to use telescopes and do CCD imaging. During the summer of 2009, Carleton students began the Young Astronomers Summer Experience (YASE) program for middle school students and offered a two-week, astronomy-rich observing and imaging experience at Goodsell Observatory. In concert with NASA's Summer of Innovation initiative, the YASE program was offered again in 2010 and engaged a new group of local middle school students in hands-on scientific experiments and observing opportunities. Members of the high school astronomy club now volunteer as observing assistants in the community and graduates of the YASE programs are eager to continue observing as members of a public service astronomy club when they enter the Northfield High School. These projects are training future scientists and will sustain the public's interest in astronomy long after the end of IYA 2009.

  19. Formulation and development of orodispersible sustained release tablet of domperidone.

    PubMed

    Patil, Hemlata G; Tiwari, Roshan V; Repka, Michael A; Singh, Kamalinder K

    2016-06-01

    Commercially available domperidone orodispersible tablets (ODT) are intended for immediate release of the drug, but none of them have been formulated for sustained action. The aim of the present research work was to develop and evaluate orodispersible sustained release tablet (ODT-SR) of domperidone, which has the convenience of ODT and benefits of controlled release product combined in one. The technology comprised of developing sustained release microspheres (MS) of domperidone, followed by direct compression of MS along with suitable excipients to yield ODT-SR which rapidly disperses within 30 seconds and yet the dispersed MS maintain their integrity to have a sustained drug release. The particle size of the MS was optimized to be less than 200 μm to avoid the grittiness in the mouth. The DSC thermograms of MS showed the absence of drug-polymer interaction within the microparticles, while SEM confirmed their spherical shape and porous nature. Angle of repose, compressibility and Hausner's ratio of the blend for compression showed good flowability and high percent compressibility. The optimized ODT-SR showed disintegration time of 21 seconds and matrix controlled drug release for 9 h. In-vivo pharmacokinetic studies in Wistar rats showed that the ODT-SR had a prolonged MRT of 11.16 h as compared 3.86 h of conventional tablet. The developed technology is easily scalable and holds potential for commercial exploitation. PMID:26472165

  20. Stable isotope dimethyl labeling combined with LTQ mass spectrometric detection, a quantitative proteomics technology used in liver cancer research

    PubMed Central

    TANG, BO; LI, YANG; ZHAO, LIANG; YUAN, SHENGGUANG; WANG, ZHENRAN; LI, BO; CHEN, QIAN

    2013-01-01

    Liver cancer is a common malignant disease, with high incidence and mortality rates. The study on the proteomics of liver cancer has attracted particular attention. The quantitative study method of proteomics depends predominantly on two-dimensional (2D) gel electrophoresis. In the present study we reported a rapid and accurate proteomics quantitative study method of high repeatability that includes the use of stable isotope labeling for the extraction of proteins and peptides via enzymolysis to achieve new type 2D capillary liquid chromatography-mass spectrometry separation using the separation mode of cation-exchange chromatography in conjunction with reversed-phase chromatography. LTQ OrbiTrap mass spectrometry detection was also performed. A total of 188 differential proteins were analyzed, including 122 upregulating [deuterium/hydrogen ratio (D/H) >1.5)] and 66 downregulating proteins (D/H<0.67). These proteins may play an important role in the occurrence, drug resistance, metastasis and recurrence of cancer or other pathological processes. Such a proteomics technology may provide biological data as well as a new methodological basis for liver cancer research. PMID:24648984

  1. Combination of ERG9 Repression and Enzyme Fusion Technology for Improved Production of Amorphadiene in Saccharomyces cerevisiae

    PubMed Central

    Baadhe, Rama Raju; Mekala, Naveen Kumar; Parcha, Sreenivasa Rao; Prameela Devi, Yalavarthy

    2013-01-01

    The yeast strain (Saccharomyces cerevisiae) MTCC 3157 was selected for combinatorial biosynthesis of plant sesquiterpene amorpha-4,11-diene. Our main objective was to overproduce amorpha 4-11-diene, which is a key precursor molecule of artemisinin (antimalarial drug) produced naturally in plant Artemisia annua through mevalonate pathway. Farnesyl diphosphate (FPP) is a common intermediate metabolite of a variety of compounds in the mevalonate pathway of yeast and leads to the production of ergosterols, dolichol and ubiquinone, and so forth. In our studies, FPP converted to amorphadiene (AD) by expressing heterologous amorphadiene synthase (ADS) in yeast. First, ERG9 (squalane synthase) promoter of yeast was replaced with repressible methionine (MET3) promoter by using bipartite gene fusion method. Further to overcome the loss of the intermediate FPP through competitive pathways in yeast, fusion protein technology was adopted and farnesyldiphosphate synthase (FPPS) of yeast has been coupled with amorphadiene synthase (ADS) of plant origin (Artemisia annua L.) where amorphadiene production was improved by 2-fold (11.2 mg/L) and 4-fold (25.02 mg/L) in yeast strains YCF-002 and YCF-005 compared with control strain YCF-AD (5.5 mg/L), respectively. PMID:24282652

  2. Terminator Operon Reporter: combining a transcription termination switch with reporter technology for improved gene synthesis and synthetic biology applications

    PubMed Central

    Zampini, Massimiliano; Mur, Luis A. J.; Rees Stevens, Pauline; Pachebat, Justin A.; Newbold, C. James; Hayes, Finbarr; Kingston-Smith, Alison

    2016-01-01

    Synthetic biology is characterized by the development of novel and powerful DNA fabrication methods and by the application of engineering principles to biology. The current study describes Terminator Operon Reporter (TOR), a new gene assembly technology based on the conditional activation of a reporter gene in response to sequence errors occurring at the assembly stage of the synthetic element. These errors are monitored by a transcription terminator that is placed between the synthetic gene and reporter gene. Switching of this terminator between active and inactive states dictates the transcription status of the downstream reporter gene to provide a rapid and facile readout of the accuracy of synthetic assembly. Designed specifically and uniquely for the synthesis of protein coding genes in bacteria, TOR allows the rapid and cost-effective fabrication of synthetic constructs by employing oligonucleotides at the most basic purification level (desalted) and without the need for costly and time-consuming post-synthesis correction methods. Thus, TOR streamlines gene assembly approaches, which are central to the future development of synthetic biology. PMID:27220405

  3. Terminator Operon Reporter: combining a transcription termination switch with reporter technology for improved gene synthesis and synthetic biology applications.

    PubMed

    Zampini, Massimiliano; Mur, Luis A J; Rees Stevens, Pauline; Pachebat, Justin A; Newbold, C James; Hayes, Finbarr; Kingston-Smith, Alison

    2016-01-01

    Synthetic biology is characterized by the development of novel and powerful DNA fabrication methods and by the application of engineering principles to biology. The current study describes Terminator Operon Reporter (TOR), a new gene assembly technology based on the conditional activation of a reporter gene in response to sequence errors occurring at the assembly stage of the synthetic element. These errors are monitored by a transcription terminator that is placed between the synthetic gene and reporter gene. Switching of this terminator between active and inactive states dictates the transcription status of the downstream reporter gene to provide a rapid and facile readout of the accuracy of synthetic assembly. Designed specifically and uniquely for the synthesis of protein coding genes in bacteria, TOR allows the rapid and cost-effective fabrication of synthetic constructs by employing oligonucleotides at the most basic purification level (desalted) and without the need for costly and time-consuming post-synthesis correction methods. Thus, TOR streamlines gene assembly approaches, which are central to the future development of synthetic biology. PMID:27220405

  4. Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Parrish, D. D.; Frost, G. J.; Trainer, M.

    2014-02-01

    Since 1997, an increasing fraction of electric power has been generated from natural gas in the United States. Here we use data from continuous emission monitoring systems (CEMS), which measure emissions at the stack of most U.S. electric power generation units, to investigate how this switch affected the emissions of CO2, NOx, and SO2. Per unit of energy produced, natural gas power plants equipped with combined cycle technology emit on an average 44% of the CO2 compared with coal power plants. As a result of the increased use of natural gas, CO2 emissions from U.S. fossil-fuel power plants were 23% lower in 2012 than they would have been if coal had continued to provide the same fraction of electric power as in 1997. In addition, natural gas power plants with combined cycle technology emit less NOx and far less SO2 per unit of energy produced than coal power plants. Therefore, the increased use of natural gas has led to emission reductions of NOx (40%) and SO2 (44%), in addition to those obtained from the implementation of emission control systems on coal power plants. These benefits to air quality and climate should be weighed against the increase in emissions of methane, volatile organic compounds, and other trace gases that are associated with the production, processing, storage, and transport of natural gas.

  5. Science and technology for a sustainable energy future: Accomplishments of the Energy Efficiency and Renewable Energy Program at Oak Ridge National Laboratory

    SciTech Connect

    Brown, M.A.; Vaughan, K.H.

    1995-03-01

    Accomplishments of the Energy Efficiency and Renewable Energy Program at the Oak Ridge National Laboratory are presented. Included are activities performed in the utilities, transportation, industrial, and buildings technology areas.

  6. Combining marker-less patient setup and respiratory motion monitoring using low cost 3D camera technology

    NASA Astrophysics Data System (ADS)

    Tahavori, F.; Adams, E.; Dabbs, M.; Aldridge, L.; Liversidge, N.; Donovan, E.; Jordan, T.; Evans, PM.; Wells, K.

    2015-03-01

    Patient set-up misalignment/motion can be a significant source of error within external beam radiotherapy, leading to unwanted dose to healthy tissues and sub-optimal dose to the target tissue. Such inadvertent displacement or motion of the target volume may be caused by treatment set-up error, respiratory motion or an involuntary movement potentially decreasing therapeutic benefit. The conventional approach to managing abdominal-thoracic patient set-up is via skin markers (tattoos) and laser-based alignment. Alignment of the internal target volume with its position in the treatment plan can be achieved using Deep Inspiration Breath Hold (DIBH) in conjunction with marker-based respiratory motion monitoring. We propose a marker-less single system solution for patient set-up and respiratory motion management based on low cost 3D depth camera technology (such as the Microsoft Kinect). In this new work we assess this approach in a study group of six volunteer subjects. Separate simulated treatment mimic treatment "fractions" or set-ups are compared for each subject, undertaken using conventional laser-based alignment and with intrinsic depth images produced by Kinect. Microsoft Kinect is also compared with the well-known RPM system for respiratory motion management in terms of monitoring free-breathing and DIBH. Preliminary results suggest that Kinect is able to produce mm-level surface alignment and a comparable DIBH respiratory motion management when compared to the popular RPM system. Such an approach may also yield significant benefits in terms of patient throughput as marker alignment and respiratory motion can be automated in a single system.

  7. Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes--a transition regime between bioventing and soil vapour extraction.

    PubMed

    Magalhães, S M C; Ferreira Jorge, R M; Castro, P M L

    2009-10-30

    Bioventing has emerged as one of the most cost-effective in situ technologies available to address petroleum light-hydrocarbon spills, one of the most common sources of soil pollution. However, the major drawback associated with this technology is the extended treatment time often required. The present study aimed to illustrate how an intended air-injection bioventing technology can be transformed into a soil vapour extraction effort when the air flow rates are pushed to a stripping mode, thus leading to the treatment of the off-gas resulting from volatilisation. As such, a combination of an air-injection bioventing system and a biotrickling filter was applied for the treatment of contaminated soil, the latter aiming at the treatment of the emissions resulting from the bioventing process. With a moisture content of 10%, soil contaminated with toluene at two different concentrations, namely 2 and 14 mg g soil(-1), were treated successfully using an air-injection bioventing system at a constant air flow rate of ca. 0.13 dm(3) min(-1), which led to the removal of ca. 99% toluene, after a period of ca. 5 days of treatment. A biotrickling filter was simultaneously used to treat the outlet gas emissions, which presented average removal efficiencies of ca. 86%. The proposed combination of biotechnologies proved to be an efficient solution for the decontamination process, when an excessive air flow rate was applied, reducing both the soil contamination and the outlet gas emissions, whilst being able to reduce the treatment time required by bioventing only. PMID:19501963

  8. The combination of two novel tobacco blends and filter technologies to reduce the in vitro genotoxicity and cytotoxicity of prototype cigarettes.

    PubMed

    Crooks, Ian; Scott, Ken; Dalrymple, Annette; Dillon, Debbie; Meredith, Clive

    2015-04-01

    Tobacco smoke from a combustible cigarette contains more than 6000 constituents; approximately 150 of these are identified as toxicants. Technologies that modify the tobacco blend to reduce toxicant emissions have been developed. These include tobacco sheet substitute to dilute toxicants in smoke and blend treated tobacco to reduce the levels of nitrogenous precursors and some polyphenols. Filter additives to reduce gas (vapour) phase constituents have also been developed. In this study, both tobacco blend and filter technologies were combined into an experimental cigarette and smoked to International Organisation on Standardisation and Health Canada puffing parameters. The resulting particulate matter was subjected to a battery of in vitro genotoxicity and cytotoxicity assays - the Ames test, mouse lymphoma assay, the in vitro micronucleus test and the Neutral Red Uptake assay. The results indicate that cigarettes containing toxicant reducing technologies may be developed without observing new additional genotoxic hazards as assessed by the assays specified. In addition, reductions in bacterial mutagenicity and mammalian genotoxicity of the experimental cigarette were observed relative to the control cigarettes. There were no significant differences in cytotoxicity relative to the control cigarettes. PMID:25584437

  9. The effectiveness of using the combined-cycle technology in a nuclear power plant unit equipped with an SVBR-100 reactor

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.; Dudolin, A. A.; Gospodchenkov, I. V.

    2015-05-01

    The design of a modular SVBR-100 reactor with a lead-bismuth alloy liquid-metal coolant is described. The basic thermal circuit of a power unit built around the SVBR-100 reactor is presented together with the results of its calculation. The gross electrical efficiency of the turbine unit driven by saturated steam at a pressure of 6.7 MPa is estimated at η{el/gr} = 35.5%. Ways for improving the efficiency of this power unit and increasing its power output by applying gas-turbine and combined-cycle technologies are considered. With implementing a combined-cycle power-generating system comprising two GE-6101FA gas-turbine units with a total capacity of 140 MW, it becomes possible to obtain the efficiency of the combined-cycle plant equipped with the SVBR-100 reactor η{el/gr} = 45.39% and its electrical power output equal to 328 MW. The heat-recovery boiler used as part of this power installation generates superheated steam with a temperature of 560°C, due to which there is no need to use a moisture separator/steam reheater in the turbine unit thermal circuit.

  10. Sustainability Science Needs Sustainable Data!

    NASA Astrophysics Data System (ADS)

    Downs, R. R.; Chen, R. S.

    2013-12-01

    Sustainability science (SS) is an 'emerging field of research dealing with the interactions between natural and social systems, and with how those interactions affect the challenge of sustainability: meeting the needs of present and future generations while substantially reducing poverty and conserving the planet's life support systems' (Kates, 2011; Clark, 2007). Bettencourt & Kaur (2011) identified more than 20,000 scientific papers published on SS topics since the 1980s with more than 35,000 distinct authors. They estimated that the field is currently growing exponentially, with the number of authors doubling approximately every 8 years. These scholars are undoubtedly using and generating a vast quantity and variety of data and information for both SS research and applications. Unfortunately we know little about what data the SS community is actually using, and whether or not the data that SS scholars generate are being preserved for future use. Moreover, since much SS research is conducted by cross-disciplinary, multi-institutional teams, often scattered around the world, there could well be increased risks of data loss, reduced data quality, inadequate documentation, and poor long-term access and usability. Capabilities and processes therefore need to be established today to support continual, reliable, and efficient preservation of and access to SS data in the future, especially so that they can be reused in conjunction with future data and for new studies not conceived in the original data collection activities. Today's long-term data stewardship challenges include establishing sustainable data governance to facilitate continuing management, selecting data to ensure that limited resources are focused on high priority SS data holdings, securing sufficient rights to allow unforeseen uses, and preparing data to enable use by future communities whose specific research and information needs are not yet known. Adopting sustainable models for archival

  11. Synthetic fuels, and a sustainable set of civilizations

    SciTech Connect

    Leonard, R.S.

    1996-12-31

    Described in this paper is a concept that combines a set of technologies with a set of economic and social concepts that would allow people to create sustainable ecologies for their region or country. As such it describes a possible implementation path. The technologies are : solar electricity, power satellites, wireless power transmission, electrolytic hydrogen, and synthetic liquid fuels manufactured from air, water, and electricity. Economic initiatives and policies include creating sustainable economic development regions through the use of tax incentives and tax penalties. The technologies and economies are brought together by social concepts such as Technopolis and the theory of self-organizing and self-energizing social systems, i.e. creating wealth where there was none through sweat equity. Existing organizational structures such as credit unions, kibbutz`s and agricultural and marketing cooperatives provide methods by which global marco-projects can be implemented on a local level. Some topics of this paper are : creating global markets by solving global problems or how to breakout of the chicken or egg paradox that has stymied the development of energy from space for so long ; and linking energy availability to self-help economic development programs that create sustainable cultures while benefiting both the local and global environment. 1 refs., 6 figs., 6 tabs.

  12. Sustainable NREL: From Integration to Innovation

    SciTech Connect

    2015-09-01

    NREL's sustainability practices are integrated throughout the laboratory and are essential to our mission to develop clean energy and energy efficiency technologies and practices, advance related science and engineering, and provide knowledge and innovations to integrate energy systems at all scales. Sustainability initiatives are integrated through our campus, our staff, and our environment allowing NREL to provide leadership in modeling a sustainability energy future for companies, organizations, governments, and communities.

  13. Implementing Sustainable Engineering Education through POPBL

    NASA Astrophysics Data System (ADS)

    Lioe, D. X.; Subhashini, G. K.

    2013-06-01

    This paper presents the implementation of sustainable engineering education to undergraduate student in Asia Pacific University of Technology and Innovation, Malaysia (APU) through Project-Oriented Problem Based Learning (POPBL). Sustainable engineering has already been the paramount term where it is no longer limited to environment, but also to the entire lifetime of the individual engineer. To inculcate every engineering individual with sustainability, education is the way to start off.

  14. Multi-Metric Sustainability Analysis

    SciTech Connect

    Cowlin, S.; Heimiller, D.; Macknick, J.; Mann, M.; Pless, J.; Munoz, D.

    2014-12-01

    A readily accessible framework that allows for evaluating impacts and comparing tradeoffs among factors in energy policy, expansion planning, and investment decision making is lacking. Recognizing this, the Joint Institute for Strategic Energy Analysis (JISEA) funded an exploration of multi-metric sustainability analysis (MMSA) to provide energy decision makers with a means to make more comprehensive comparisons of energy technologies. The resulting MMSA tool lets decision makers simultaneously compare technologies and potential deployment locations.

  15. Characterization of chlorinated solvent contamination in limestone using innovative FLUTe® technologies in combination with other methods in a line of evidence approach.

    PubMed

    Broholm, Mette M; Janniche, Gry S; Mosthaf, Klaus; Fjordbøge, Annika S; Binning, Philip J; Christensen, Anders G; Grosen, Bernt; Jørgensen, Torben H; Keller, Carl; Wealthall, Gary; Kerrn-Jespersen, Henriette

    2016-06-01

    Characterization of dense non-aqueous phase liquid (DNAPL) source zones in limestone aquifers/bedrock is essential to develop accurate site-specific conceptual models and perform risk assessment. Here innovative field methods were combined to improve determination of source zone architecture, hydrogeology and contaminant distribution. The FACT™ is a new technology and it was applied and tested at a contaminated site with a limestone aquifer, together with a number of existing methods including wire-line coring with core subsampling, FLUTe® transmissivity profiling and multilevel water sampling. Laboratory sorption studies were combined with a model of contaminant uptake on the FACT™ for data interpretation. Limestone aquifers were found particularly difficult to sample with existing methods because of core loss, particularly from soft zones in contact with chert beds. Water FLUTe™ multilevel groundwater sampling (under two flow conditions) and FACT™ sampling and analysis combined with FLUTe® transmissivity profiling and modeling were used to provide a line of evidence for the presence of DNAPL, dissolved and sorbed phase contamination in the limestone fractures and matrix. The combined methods were able to provide detailed vertical profiles of DNAPL and contaminant distributions, water flows and fracture zones in the aquifer and are therefore a powerful tool for site investigation. For the limestone aquifer the results indicate horizontal spreading in the upper crushed zone, vertical migration through fractures in the bryozoan limestone down to about 16-18m depth with some horizontal migrations along horizontal fractures within the limestone. Documentation of the DNAPL source in the limestone aquifer was significantly improved by the use of FACT™ and Water FLUTe™ data. PMID:27116640

  16. Characterization of chlorinated solvent contamination in limestone using innovative FLUTe® technologies in combination with other methods in a line of evidence approach

    NASA Astrophysics Data System (ADS)

    Broholm, Mette M.; Janniche, Gry S.; Mosthaf, Klaus; Fjordbøge, Annika S.; Binning, Philip J.; Christensen, Anders G.; Grosen, Bernt; Jørgensen, Torben H.; Keller, Carl; Wealthall, Gary; Kerrn-Jespersen, Henriette

    2016-06-01

    Characterization of dense non-aqueous phase liquid (DNAPL) source zones in limestone aquifers/bedrock is essential to develop accurate site-specific conceptual models and perform risk assessment. Here innovative field methods were combined to improve determination of source zone architecture, hydrogeology and contaminant distribution. The FACT™ is a new technology and it was applied and tested at a contaminated site with a limestone aquifer, together with a number of existing methods including wire-line coring with core subsampling, FLUTe® transmissivity profiling and multilevel water sampling. Laboratory sorption studies were combined with a model of contaminant uptake on the FACT™ for data interpretation. Limestone aquifers were found particularly difficult to sample with existing methods because of core loss, particularly from soft zones in contact with chert beds. Water FLUTe™ multilevel groundwater sampling (under two flow conditions) and FACT™ sampling and analysis combined with FLUTe® transmissivity profiling and modeling were used to provide a line of evidence for the presence of DNAPL, dissolved and sorbed phase contamination in the limestone fractures and matrix. The combined methods were able to provide detailed vertical profiles of DNAPL and contaminant distributions, water flows and fracture zones in the aquifer and are therefore a powerful tool for site investigation. For the limestone aquifer the results indicate horizontal spreading in the upper crushed zone, vertical migration through fractures in the bryozoan limestone down to about 16-18 m depth with some horizontal migrations along horizontal fractures within the limestone. Documentation of the DNAPL source in the limestone aquifer was significantly improved by the use of FACT™ and Water FLUTe™ data.

  17. Population and sustainable development.

    PubMed

    Visaria, P

    1989-01-01

    This paper assesses the feasibility of sustainable development for various low-income countries in the context of prospective population growth. In that context, development that is sustainable is development that does not endanger the natural systems that support life on earth. Since a short time has elapsed since the Mexico City Conference, not all the developmental goals highlighted at that meeting could be reviewed. Emphasis in this paper is placed on an assessment of recent trends in food production and availability, employment and poverty issues, with an emphasis on India, China, and a few other Asian countries on which the author has had access to information. In the view of the author, the key to sustained development in the face of likely continued population growth up to the end of the 21st century lies in technological change and effective use of the human and physical resources in developing countries. Adequate planning and judicious adaptation of the institutional framework can help to avoid the suffering and misery of millions of people currently alive and also those who will be born during further decades. PMID:12282630

  18. Day one sustainability

    NASA Astrophysics Data System (ADS)

    Orr, John; Ibell, Timothy; Evernden, Mark; Darby, Antony

    2015-05-01

    Emissions reductions targets for the UK set out in the Climate Change Act for the period to 2050 will only be achieved with significant changes to the built environment, which is currently estimated to account for 50% of the UK's carbon emissions. The socio-technological nature of Civil Engineering means that this field is uniquely placed to lead the UK through such adaptations. This paper discusses the importance of interdisciplinary teaching to produce multi-faceted team approaches to sustainable design solutions. Methods for measuring success in education are often not fit for purpose, producing good students but poor engineers. Real-world failures to apply sustainable design present a serious, difficult to detect, and ultimately economically negative situation. Techniques to replace summative examinations are presented and discussed, with the aim of enhancing core technical skills alongside those required for sustainable design. Finally, the role of our future engineers in policy-making is discussed. In addition to carbon, the provision of water and food will heavily influence the work of civil engineers in the coming decades. Leadership from civil engineers with the technical knowledge and social awareness to tackle these issues will be required. This provides both opportunities and challenges for engineering education in the UK.

  19. Globalization, Sustainable Development and Universities

    ERIC Educational Resources Information Center

    Toakley, Arthur Raymond

    2004-01-01

    Globalization is a natural outcome of the sustained technological and economic growth, which originated with the Industrial Revolution in Britain during the 18th century. This path to continuing economic growth spread initially to continental Europe and North America, and brought with it the creation of large towns and substantial social change.…

  20. Texas Sustainable School Design Guideline.

    ERIC Educational Resources Information Center

    Nicklas, Michael; Bailey, Gary; Padia, Harshad D.; Malin, Nadav

    This guide offers a detailed listing of the key practices and technologies that can help create a sustainable school. The document includes hundreds of cost-effective recommendations that can improve the energy performance and environmental quality of school designs. Each design and construction phase is addressed, from site selection through…