Science.gov

Sample records for combustion byproducts technical

  1. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  2. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  3. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  4. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  5. Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, March 1--May 31, 1995

    SciTech Connect

    Paul, B.C.; Esling, S.; Pisani, F.; Wells, T.

    1995-12-31

    Fluidized Bed Combustion of coal eliminates most emissions of S and N oxides but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements may make the technology uneconomic. Fluidized Bed residues are cementlike and when mixed with soil, produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that the residues can be mixed with soils by regular construction equipment and used in place of clays as liner material. The demonstration cap will cover an area of 7 acres and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. Materials needed to place the wells and lysimeters have been obtained. A contractor will build and deliver a mobile foam generator and spray to the field to demonstrate fugitive dust control from FBC fly ash (dust problem is one key barrier to more widespread use of FBC ash).

  6. Economic realities of coal combustion by-product utilization

    SciTech Connect

    Colmar, J.A.

    1997-09-01

    The purpose of this paper is to highlight the economic issues associated with coal combustion by-product (CCB) utilization and to discuss both technical and cost considerations of commercialization. Handling, processing, and distribution aspects as well as geographic location and competing materials will affect utilization. Several case studies including fly ash in rick, FGD gypsum vs. mined gypsum, and bottom ash vs. lightweight aggregate are presented detailing these issues. Understanding these factors will provide insight to evaluating barriers for CCB utilization which is the first step toward high volume CCB utilization.

  7. Remediation of abandoned mines using coal combustion by-products

    SciTech Connect

    Bulusu, S.; Aydilek, A.H.; Petzrick, P.; Guynn, R.

    2005-08-01

    Acid mine drainage (AMD) is a phenomenon that occurs when pyrite that is present in abandoned coal mines comes in contact with oxygen and water, which results in the formation of sulfuric acid and iron hydroxide. Grouting of an abandoned mine with alkaline materials provides a permanent reduction in acid production. This study investigates the success of coal combustion by-product (CCB)-based grout mixtures in reducing AMD. The laboratory phase included testing of grouts with different proportions of Class F fly ash, flue gas desulfurization by-product, fluidized bed combustion by-product, and quicklime, for slump, modified flow, bleed, and strength. Then the selected optimal grout mixture was injected into the Frazee mine, located in Western Maryland. Pre- and post-injection water quality data were collected to assess the long-term success of the grouting operation by analyzing mine water, surface water, and groundwater. Overall, the results indicated that CCB-based grouts can control the acid mine drainage. However, the mechanical properties of the grout are highly critical for the construction phase, and long-term monitoring is essential for evaluating the effectiveness of the grouting process.

  8. Toxic combustion by-products: Generation, separation, cleansing, containment

    SciTech Connect

    Kephart, W.; Eger, K.; Angelo, F.; Clemens, M.K.

    1995-12-31

    Focus of this paper is on diagnosis, control, and containment of potentially toxic combustion byproducts when mixed wastes are treated at elevated temperatures. Such byproducts fall into several categories: acid gases, particulates, metals, organics. Radionuclides are treated as a subset of metals, while organics are divided into two subclasses: products of incomplete combustion, and principal organic hazardous constituents. An extended flue gas cleaning system is described which can be used to contain potentially toxic organic emissions and recycle the hazrdous materials for further treatment; it uses oxygen rather than air to reduce total quantities of emissions, improve efficiency of oxidation, and minimize NOx emissions. Flue gas recycling is used for cooling and for containing all potentially toxic emissions. Three thermal treatment unit operations are used in series for more effective process control; three emission separation and containment unit operations are also used in series in the toxic emission containment system. Real time diagnostic hardware/software are used. Provision is made for automatic storage, separation of hazardous materials, commodity regeneration, and recycling of potentially harmful constituents. The greenhouse gas CO2 is recovered and not emitted to the atmosphere.

  9. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    J.Y. Hwang; X. Huang; M.G. McKimpson; R.E. Tieder; A.M. Hein; J.M. Gillis; D.C. Popko; K.L. Paxton; Z. Li; X. Liu; X. Song; R.I. Kramer

    1998-12-01

    Low NO{sub x} combustion practices are critical for reducing NO{sub x} emissions from power plants. These low NO{sub x} combustion practices, however, generate high residual carbon contents in the fly ash produced. These high carbon contents threaten utilization of this combustion by-product. This research has successfully developed a separation technology to render fly ash into useful, quality-controlled materials. This technology offers great flexibility and has been shown to be applicable to all of the fly ashes tested (more than 10). The separated materials can be utilized in traditional fly ash applications, such as cement and concrete, as well as in nontraditional applications such as plastic fillers, metal matrix composites, refractories, and carbon adsorbents. Technologies to use beneficiated fly ash in these applications are being successfully developed. In the future, we will continue to refine the separation and utilization technologies to expand the utilization of fly ash. The disposal of more than 31 million tons of fly ash per year is an important environmental issue. With continued development, it will be possible to increase economic, energy and environmental benefits by re-directing more of this fly ash into useful materials.

  10. Sandia Combustion Research: Technical review

    SciTech Connect

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  11. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  12. Aerovalve pulse combustion: Technical note

    SciTech Connect

    Richards, G.A.; Gemmen, R.S.; Narayanaswami, L.

    1994-07-01

    The authors present a mathematical model and an experimental investigation of aerodynamically valved pulse combustion. The model uses a control-volume approach to solve conservation laws in several regions of a pulse combustor. Mixing between the fresh charge and combustion products is modeled as a two-step process, with the mixing occurring slowly for a specified eddy time during each cycle, and then changing to a higher rate. Results of model simulations demonstrate that eddy time plays a significant role in determining the frequency and amplitude of combustion oscillation. The authors show that short eddy times produce steady, rather than pulsating, combustion. And they show that changes to the mixing process alter the temperature-species history of combustion gases in a manner that could prevent or promote the formation of nitrogen oxides, depending on specific mixing rates. The relatively simple control-volume approach used in this model allows rapid investigation of a wide range of geometric and operating parameters, and also defines characteristic length and time scales relevant to aerovalve pulse combustion. Experimental measurements compare favorably to model predictions. The authors place particular emphasis on time-averaged pressure differences through the combustor, which act as an indicator of pressure gain performance. They investigate both operating conditions and combustor geometry, and they show that a complex interaction between the inlet and exit flows of a combustor makes it difficult to produce general correlations among the various parameters. They use a scaling rule to produce a combustor geometry capable of producing pressure gain.

  13. The origin, fate, and health effects of combustion by-products: a research framework.

    PubMed Central

    Avakian, Maureen D; Dellinger, Barry; Fiedler, Heidelore; Gullet, Brian; Koshland, Catherine; Marklund, Stellan; Oberdörster, Günter; Safe, Stephen; Sarofim, Adel; Smith, Kirk R; Schwartz, David; Suk, William A

    2002-01-01

    Incomplete combustion processes can emit organic pollutants, metals, and fine particles. Combustion by-products represent global human and environmental health challenges that are relevant not only in heavily industrialized nations, but also in developing nations where up to 90% of rural households rely on unprocessed biomass fuels for cooking, warmth, and light. These issues were addressed at the Seventh International Congress on Combustion By-Products, which convened 4-6 June 2001 in Research Triangle Park, North Carolina. This congress included a diverse group of multidisciplinary researchers and practitioners who discussed recent developments and future goals in the control of combustion by-products and their effects of exposure on human and ecologic health. Participants recommended that interdisciplinary, coordinated research efforts should be focused to capitalize on the important potential synergisms between efforts to reduce the adverse human health effects linked to exposures to combustion by-products and broader efforts to reduce greenhouse gas emissions and save energy through efficiency. In this article we summarize the principal findings and recommendations for research focus and direction. PMID:12417488

  14. The origin, fate, and health effects of combustion by-products: a research framework.

    PubMed

    Avakian, Maureen D; Dellinger, Barry; Fiedler, Heidelore; Gullet, Brian; Koshland, Catherine; Marklund, Stellan; Oberdörster, Günter; Safe, Stephen; Sarofim, Adel; Smith, Kirk R; Schwartz, David; Suk, William A

    2002-11-01

    Incomplete combustion processes can emit organic pollutants, metals, and fine particles. Combustion by-products represent global human and environmental health challenges that are relevant not only in heavily industrialized nations, but also in developing nations where up to 90% of rural households rely on unprocessed biomass fuels for cooking, warmth, and light. These issues were addressed at the Seventh International Congress on Combustion By-Products, which convened 4-6 June 2001 in Research Triangle Park, North Carolina. This congress included a diverse group of multidisciplinary researchers and practitioners who discussed recent developments and future goals in the control of combustion by-products and their effects of exposure on human and ecologic health. Participants recommended that interdisciplinary, coordinated research efforts should be focused to capitalize on the important potential synergisms between efforts to reduce the adverse human health effects linked to exposures to combustion by-products and broader efforts to reduce greenhouse gas emissions and save energy through efficiency. In this article we summarize the principal findings and recommendations for research focus and direction. PMID:12417488

  15. COMBUSTION TECHNICAL ASSISTANCE CENTER (CTAC)

    EPA Science Inventory

    The CTAC conducts health-based toxicity assessments, reviews methods applicable to fate and transport of contaminants generated at combustion facilities and provides guidance on appropriate methods in support of EPA's RCRA Program in a timely manner. The quick turn around request...

  16. Evaluation of combustion by-products of MTBE as a component of reformulated gasoline.

    PubMed

    Franklin, P M; Koshland, C P; Lucas, D; Sawyer, R F

    2001-01-01

    Methyl tertiary-butyl ether (MTBE) is a gasoline oxygenate that is widely used throughout the US and Europe as an octane-booster and as a means of reducing automotive carbon monoxide (CO) emissions. The combustion by-products of pure MTBE have been evaluated in previous laboratory studies, but little attention has been paid to the combustion by-products of MTBE as a component of gasoline. MTBE is often used in reformulated gasoline (RFG), which has chemical and physical characteristics distinct from conventional gasoline. The formation of MTBE by-products in RFG is not well-understood, especially under "worst-case" vehicle emission scenarios such as fuel-rich operations, cold-starts or malfunctioning emission control systems, conditions which have not been studied extensively. Engine-out automotive dynamometer studies have compared RFG with MTBE to non-oxygenated RFG. Their findings suggest that adding MTBE to reformulated gasoline does not impact the high temperature flame chemistry in cylinder combustion processes. Comparison of tailpipe and exhaust emission studies indicate that reactions in the catalytic converter are quite effective in destroying most hydrocarbon MTBE by-product species. Since important reaction by-products are formed in the post-flame region, understanding changes in this region will contribute to the understanding of fuel-related changes in emissions. PMID:11219713

  17. Land application of coal combustion by-products: Use in agriculture and land reclamation. Final report

    SciTech Connect

    Horn, M.E.

    1995-06-01

    Land application of coal combustion by-products (CCBP) can prove beneficial for a number of reasons. The data presented in this survey provide a basis for optimizing the rates and timing of CCBP applications, selecting proper target soils and crops, and minimizing adverse effects on soil properties, plant responses, and groundwater quality.

  18. THE USE OF A PRB TO TREAT GROUNDWATER IMPACTED BY COAL-COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The burning of coal for the production of electricity generates combustion by-products such as boiler bottom ash and fly ash. These ashes have the potential to release arsenic (As), boron (B), chromium (Cr), molybdenum (Mo), selenium (Se), vanadium (V), and zinc (Zn) to the envi...

  19. Toxic by-products from the combustion of Kraft lignin.

    PubMed

    Font, Rafael; Esperanza, Mar; García, Angela Nuria

    2003-08-01

    Lignin samples, sub-product in the Kraft process of cellulose from eucalyptus wood, were burnt in a laboratory scale furnace at different residence temperatures and with distinct fuel-rich atmospheres. The yields of CO, CO(2), eight light hydrocarbons (methane, ethylene, ethane, propylene, acetylene, butane, etc.) and 60 semi-volatile+volatile compounds (benzene, toluene, ethylbenzene, styrene, indene, naphthalene, dibenzofuran, phenanthrene, chrysene, etc.) were determined, with nominal reactor temperatures between 800 and 1100 degrees C and residence times of the volatiles evolved and formed between 4 and 7 s. The collection of the gases and volatiles evolved was carried out with a Tedlar bag and by XAD-4 resin respectively, comparing the data obtained in both cases. The emission factor (mg/kg) of the CO was between 2500 and 90000, and under the poor-oxygen atmosphere, the emission factors of many by-toxic products were greater than 100 mg/kg. A pyrolysis run was also performed, obtaining emission factors between 30 and 3000 mg/kg, facilitating its identification. The behaviour of different compounds in the combustion runs was discussed considering three groups in accordance with their stability vs. oxygen, and two groups vs. temperature. PMID:12781238

  20. Assessment of combustion of oil shale refinery by-products in a TP-101 boiler

    NASA Astrophysics Data System (ADS)

    Sidorkin, V. T.; Tugov, A. N.; Vereshchetin, V. A.; Mel'nikov, D. A.

    2015-04-01

    The most cost-efficient method for utilization of the oil shale refinery by-products, viz., the retort gas and the shale gasoline, for power generation is combustion of these products in power-generating oil shale-fired boilers. Calculation studies carried out at the Estonian electric power plant in Narva, an enterprise of EESTI ENERGIA, have shown that recycling of the flue gases in the furnace of a TP-101 boiler enables an increase in the portion of the oil shale refinery by-products burned in the boiler from the current 7% to 40%. Recycling of the flue gases is aimed at maintaining the temperatures in the furnace at a level characteristic of combustion of oil shale and reducing the nitric oxide concentration in the retort gas burners' flame. The degree of the flue gas recycling depends on the percentage of the burnt oil shale refinery by-products in the total heat generation and increases with the increasing percentage. For the threshold value of 40% under the rated conditions, the flue gas recycling accounts for 10%. A complete changeover of the boiler to combustion of only the retort gas in place of the oil shale does not seem to be possible, since this will necessitate major modification to the TP-101 boiler heating surfaces. Considering the obtained results, as a pilot project, one boiler furnace was modified by installing six retort gas burners and a flue gas recycling system.

  1. CHARACTERIZATION OF COAL COMBUSTION BY-PRODUCTS FOR THE RE-EVOLUTION OF MERCURY INTO ECOSYSTEMS

    SciTech Connect

    A.M. Schwalb; J.A. Withum; R.M. Statnick

    2002-07-01

    The U.S. Environmental Protection Agency (EPA) and state environmental agencies are suggesting that mercury (Hg) in coal combustion by-products is re-emitted into local ecosystems by additional processing to final products (i.e., wallboard, etc.), by dissolution into groundwater, or by reactions with anaerobic bacteria. This perception may limit the opportunities to use coal combustion by-products in recycle/reuse applications. In this program, CONSOL Energy Inc., Research & Development (CONSOL) is conducting a comprehensive sampling and analytical program to address this concern. If the results of this work demonstrate that re-emissions of Hg from waste disposal and by-product utilization are over-stated, additional regulations regarding coal combustion, waste disposal, and waste material utilization will not be required. This will result in continued low energy cost that is beneficial to the national economy and stability of local economies that are dependent on coal. The main activities for this quarter were: fly ash and FGD slurry samples from four coal-fired utilities were leached and the analysis was completed; the re-volatilization study has begun; the literature review was completed.

  2. Assessment of groundwater quality impacts due to use of coal combustion byproducts to control subsidence from underground mines.

    PubMed

    Singh, G; Paul, B C

    2001-06-01

    Coal combustion byproducts are to be placed in an underground coal mine to control subsidence. The materials were characterized to determine potential groundwater impacts. No problems were found with respect to heavy or toxic metals. Coal combustion byproduct leachates are high in dissolved solids and sulfates. Chloride and boron from fly ash may also leach in initially high concentrations. Because the demonstration site is located beneath deep tight brine-bearing aquifers, no problems are anticipated at the demonstration site. PMID:11485225

  3. Use of coal combustion byproducts in biosolids stabilization: The N-Viro process

    SciTech Connect

    Logan, T.J.

    1999-07-01

    The patented N-Viro process for alkaline stabilization of municipal sewage sludge (biosolids) is a 10-year old technology that utilizes a variety of alkaline byproducts. These include cement kiln dust, lime kiln dust, flue gas desulfurization (FGD) byproducts, fluidized-bed coal combustion ashes, and Class C and F fly ashes. The alkaline byproducts are used in the N-Viro process to raise pH ({gt}12), produce heat (52--62 C) and increase solids content of the biosolids (50--65% solids). Typical operations use a blend of reactive (produces heat) and non-reactive byproducts in the process, with selection of materials being driven by local availability and cost. There are 38 N-Viro facilities in the US, Canada, Australia, the UK, and Belgium, with the majority in the eastern US. Of these, 15 use coal combustion byproducts (CCBs) on a regular basis. These facilities process more than 250,000 dry tons of biosolids a year, utilize about 125,000 tons of CCBs annually, and produce more than 1,000,000 tons of the resulting product, N-Viro Soil, per year. The use of CCBs is expected to increase dramatically in the next few years. N-Viro Soil, regulated by US EPA as an EQ biosolids, is marketed and distributed as agricultural lime, fertilizer, and as a soil substitute for reclamation and horticulture. This paper discusses the properties of alkaline materials that are required in the N-Viro process, compares those properties to that of various CCBs, and discusses the potential benefit to coal-burning power plants of recycling CCBs to beneficial uses rather than disposal.

  4. Efficacy of alum and coal combustion by-products in stabilizing manure phosphorus.

    PubMed

    Dou, Z; Zhang, G Y; Stout, W L; Toth, J D; Ferguson, J D

    2003-01-01

    Animal manures contain large amounts of soluble phosphorus (P), which is prone to runoff losses when manure is surface-applied. Here we report the efficacy of alum and three coal combustion by-products in reducing P solubility when added to dairy, swine, or broiler litter manures in a laboratory incubation study. Compared with unamended controls, alum effectively reduced readily soluble P, determined in water extracts of moist manure samples with 1 h of shaking, for all three manures. The reduction ranged from 80 to 99% at treatment rates of 100 to 250 g alum kg(-1) manure dry matter. The fluidized bed combustion fly ash (FBC) reduced readily soluble P by 50 to 60% at a rate of 400 g kg(-1) for all three manures. Flue gas desulfurization by-product (FGD) reduced readily soluble P by nearly 80% when added to swine manure and broiler litter at 150 and 250 g kg(-1). Another by-product, anthracite refuse fly ash (ANT), was ineffective for all three manures. In all cases, reduction in readily soluble P is primarily associated with inorganic phosphorus (P(i)) with little change in organic phosphorus (P(o)). Sequential extraction results indicate that the by-product treatments shifted manure P from H2O-P into a less vulnerable fraction, NaHCO3 - P, while the alum treatment shifted the P into even more stable forms, mostly NaOH-P. Such shifts in P fractions would have little influence on P availability for crops over the long-term but would retard and reduce potential losses of P following manure applications. PMID:12931906

  5. Electricity from coal and utilization of coal combustion by-products

    SciTech Connect

    Demirbas, A.

    2008-07-01

    Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

  6. Report: Combustion Byproducts and Their Health Effects: Summary of the 10th International Congress

    PubMed Central

    Dellinger, Barry; D'Alessio, Antonio; D'Anna, Andrea; Ciajolo, Anna; Gullett, Brian; Henry, Heather; Keener, Mel; Lighty, JoAnn; Lomnicki, Slawomir; Lucas, Donald; Oberdörster, Günter; Pitea, Demetrio; Suk, William; Sarofim, Adel; Smith, Kirk R.; Stoeger, Tobias; Tolbert, Paige; Wyzga, Ron; Zimmermann, Ralf

    2008-01-01

    Abstract The 10th International Congress on Combustion Byproducts and their Health Effects was held in Ischia, Italy, from June 17–20, 2007. It is sponsored by the US NIEHS, NSF, Coalition for Responsible Waste Incineration (CRWI), and Electric Power Research Institute (EPRI). The congress focused on: the origin, characterization, and health impacts of combustion-generated fine and ultrafine particles; emissions of mercury and dioxins, and the development/application of novel analytical/diagnostic tools. The consensus of the discussion was that particle-associated organics, metals, and persistent free radicals (PFRs) produced by combustion sources are the likely source of the observed health impacts of airborne PM rather than simple physical irritation of the particles. Ultrafine particle-induced oxidative stress is a likely progenitor of the observed health impacts, but important biological and chemical details and possible catalytic cycles remain unresolved. Other key conclusions were: (1) In urban settings, 70% of airborne fine particles are a result of combustion emissions and 50% are due to primary emissions from combustion sources, (2) In addition to soot, combustion produces one, possibly two, classes of nanoparticles with mean diameters of ~10 nm and ~1 nm. (3) The most common metrics used to describe particle toxicity, viz. surface area, sulfate concentration, total carbon, and organic carbon, cannot fully explain observed health impacts, (4) Metals contained in combustion-generated ultrafine and fine particles mediate formation of toxic air pollutants such as PCDD/F and PFRs. (5) The combination of metal-containing nanoparticles, organic carbon compounds, and PFRs can lead to a cycle generating oxidative stress in exposed organisms. PMID:22476005

  7. Advanced Combustion and Emission Control Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  8. Technical support for the Ohio Coal Technology Program. Volume 1, Baseline of knowledge concerning by-product characteristics: Final report

    SciTech Connect

    Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L.

    1989-08-28

    This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LRl and comprises two volumes. Volume I presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume II consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

  9. CHARACTERIZATION OF COAL COMBUSTION BY-PRODUCTS FOR THE RE-EVOLUTION OF MERCURY INTO ECOSYSTEMS

    SciTech Connect

    J.A. Withum; J.E. Locke; S.C. Tseng

    2005-03-01

    There is concern that mercury (Hg) in coal combustion by-products might be emitted into the environment during processing to other products or after the disposal/landfill of these by-products. This perception may limit the opportunities to use coal combustion by-products in recycle/reuse applications and may result in additional, costly disposal regulations. In this program, CONSOL conducted a comprehensive sampling and analytical program to include ash, flue gas desulfurization (FGD) sludge, and coal combustion by-products. This work is necessary to help identify potential problems and solutions important to energy production from fossil fuels. The program objective was to evaluate the potential for mercury emissions by leaching or volatilization, to determine if mercury enters the water surrounding an active FGD disposal site and an active fly ash slurry impoundment site, and to provide data that will allow a scientific assessment of the issue. Toxicity Characteristic Leaching Procedure (TCLP) test results showed that mercury did not leach from coal, bottom ash, fly ash, spray dryer/fabric filter ash or forced oxidation gypsum (FOG) in amounts leading to concentrations greater than the detection limit of the TCLP method (1.0 ng/mL). Mercury was detected at very low concentrations in acidic leachates from all of the fixated and more than half of the unfixated FGD sludge samples, and one of the synthetic aggregate samples. Mercury was not detected in leachates from any sample when deionized water (DI water) was the leaching solution. Mercury did not leach from electrostatic precipitator (ESP) fly ash samples collected during activated carbon injection for mercury control in amounts greater than the detection limit of the TCLP method (1.0 ng/mL). Volatilization tests could not detect mercury loss from fly ash, spray dryer/fabric filter ash, unfixated FGD sludge, or forced oxidation gypsum; the mercury concentration of these samples all increased, possibly due to

  10. Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-07-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, and a discussion of these is not repeated here. Rather, this report discusses the technical progress made during the period April 1 - June 30, 1995. A final topical report on the SEEC, Inc. demonstration of its technology for the transporting of coal combustion residues was completed during the quarter, although final printing of the report was accomplished early in July, 1995. The SEEC technology involves the use of Collapsible Intermodal Containers (CIC`s) developed by SEEC, and the transportation of such containers - filled with fly ash or other coal combustion residues - on rail coal cars or other transportation means. Copies of the final topical report, entitled {open_quotes}The Development and Testing of Collapsible Intermodal Containers for the Handling and Transport of Coal Combustion Residues{close_quotes} were furnished to the Morgantown Energy Technology Center. The Rapid Aging Test colums were placed in operation during the quarter. This test is to determine the long-term reaction of both the pneumatic and hydraulic mixtures to brine as a leaching material, and simulates the conditions that will be encountered in the actual underground placement of the coal combustion residues mixtures. The tests will continue for about one year.

  11. Landslide remediation on Ohio State Route 83 using clean coal combustion by-products

    SciTech Connect

    Payette, R.; Chen, X.Y.; Wolfe, W.; Beeghly, J.

    1995-12-31

    In the present work, a flue gas desulfurization (FGD) by-product was used to reconstruct the failed portion of a highway embankment. The construction process and the stability of the repaired embankment are examined. State Route 83 in Cumberland, Ohio has been damaged by a slow moving slide which has forced the Ohio Department of Transportation to repair the roadway several times. In the most recent repair FGD by-products obtained from American Electric Power`s Tidd PFBC plant were used to construct a wall through the failure plane to prevent further slippage. In order to evaluate the utility of using coal combustion by-products in this type of highway project the site was divided into three test sections. In the first repair section, natural soil removed form the slide area was recompacted and replaced according to standard ODOT construction practices. In the second section the natural soil was field mixed with the Tidd PFBC ash in approximately equal proportions. The third section was all Tidd ash. The three test sections were capped by a layer of compacted Tidd ash or crushed stone to provide a wearing surface to allow ODOT to open the roadway before applying a permanent asphalt surface. Measurement of slope movement as well as water levels and quality have begun at the site in order to evaluate long term project performance. The completion of this project should lead to increased acceptance of FGD materials in construction projects. Monetary savings will be realized in avoiding some of the disposal costs for the waste, as well as in the reduced reliance on alternative engineering materials.

  12. Coal slurry solids/coal fluidized bed combustion by-product mixtures as plant growth media

    USGS Publications Warehouse

    Darmody, R.G.; Green, W.P.; Dreher, G.B.

    1998-01-01

    Fine-textured, pyritic waste produced by coal cleaning is stored in slurry settling ponds that eventually require reclamation. Conventionally, reclamation involves covering the dewatered coal slurry solids (CSS) with 1.3 m of soil to allow plant growth and prevent acid generation by pyrite oxidation. This study was conducted to determine the feasiblity of a less costly reclamation approach that would eliminate the soil cover and allow direct seeding of plants into amended CSS materials. Potential acidity of the CSS would be neutralized by additions of fluidized-bed combustion by-product (FBCB), an alkaline by-product of coal combustion. The experiment involved two sources of CSS and FBCB materials from Illinois. Birdsfoot trefoil (Lotus corniculatus L.), tall fescue (Festuca arundinacea Schreb.), and sweet clover (Melilotus officinalis (L.) Lam.) were seeded in the greenhouse into pots containing mixtures of the materials. CSS-1 had a high CaCO3:FeS2 ratio and needed no FBCB added to compensate for its potential acidity. CSS-2 was mixed with the FBCB materials to neutralize potential acidity (labeled Mix A and B). Initial pH was 5.6, 8.8, and 9.2 for the CSS-1, Mix A, and Mix B materials, respectively. At the end of the 70-day experiment, pH was 5.9 for all mixtures. Tall fescue and sweet clover grew well in all the treatments, but birdsfoot trefoil had poor emergence and survival. Elevated tissue levels of B, Cd, and Se were found in some plants. Salinity, low moisture holding capacity, and potentially phytotoxic B may limit the efficacy of this reclamation method.

  13. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The paper reports on a study to evaluate organic combustion by-product emissions while feeding varying amounts of bromine (Br) and chlorine (Cl) into a pilot-scale incinerator burning surrogate waste materials. (NOTE: Adding brominated organic compounds to a pilot-scale incinerat...

  14. DETERMINING BACKGROUND EXPOSURE TO PETROLEUM AND COMBUSTION BY-PRODUCTS: COMPARISON OF MID-WESTERN AND MID-ATLANTIC REGIONS

    EPA Science Inventory

    Regional background levels of exposure to fish from petroleum and combustion by-products were determined for the state of Ohio and the mid-Atlantic region. Exposures were measured using bile metabolites that fluoresce at 290/335 nm for naphthalene(NAPH)-type compounds and at 380...

  15. COMPARISON OF MID-WESTERN AND MID-ATLANTIC REGIONS EXPOSURE CRITERIA FOR PETROLEUM AND COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    Regional background levels of exposure to fish from petroleum and combustion by-products were determined for the state of Ohio (mid-Western) and the mid-Atlantic region. Exposures were measured using bile metabolites that fluoresce at 290/335 nm for naphthalene (NAPH)-type compou...

  16. Use of coal combustion by-products for solidification/stabilization of hazardous wastes

    SciTech Connect

    Hassett, D.J.; Pflughoeft-Hassett, D.F.

    1997-05-01

    Five low-rank coal combustion fly ash samples extensively characterized in previous projects were used as a pool of candidate materials for potential use as waste stabilization agents. Two of these fly ash samples were selected because ettringite formed in the solid in long-term leaching experiments, and an associated reduction in leachate concentration of at least one trace element was noted for each sample. The stabilization experiments were designed to evaluate the removal of relatively high concentrations of boron and selenium from a simulated wastewater. Sulfate was added as one variable in order to determine if high concentrations of sulfate would impact the ability of the ettringite to include trace elements in its structure. The following conclusions can be drawn from the information obtained in this research: CCBs (coal combustion by-products) can be useful in the chemical fixation of potentially hazardous trace elements; indication of ettringite formation alone is not adequate for selecting a CCB for waste stabilization applications; moderate sulfate concentrations do not promote or inhibit trace element sorption; ettringite formation mechanisms may impact trace element fixation and need to be elucidated; laboratory demonstration of the CCB with the stabilization process being proposed is necessary to verify the efficacy of the material and process; and the final waste form must be evaluated prior to management according to the required regulatory procedures.

  17. Chemical characterization of synthetic soil from composting coal combustion and pharmaceutical by-products.

    PubMed

    Guest, C A; Johnston, C T; King, J J; Alleman, J E; Tishmack, J K; Norton, L D

    2001-01-01

    Land application of coal combustion by-products (CCBs) mixed with solid organic wastes (SOWs), such as municipal sewage sludge, has become increasingly popular as a means of productively using what were once considered waste products. Although bulk chemical and physical properties of several of these CCB-SOW materials have been reported, detailed information about their synthesis and mineralogy of the CCB-SOW materials has not been reported. In this paper, chemical and mineralogical properties of a soil-like material obtained from composting a mixture of CCBs with a pharmaceutical fermentation by-product (FB) were investigated at the laboratory and field scale. All starting materials and products were characterized by X-ray diffraction (XRD), fourier transform infrared (FFIR) spectroscopy, and elemental analyses. The results showed that the FB was strongly bound to the CCBs and could not be removed by washing. Within 2 wk of the start of a composting study, there was a rapid drop in pH from 12 to 8, an increase in temperature to 70 degrees C, and a reduction in the dissolved oxygen content, attributed to the rapid establishment of a highly active microbial population. Composting produced a soil-like material with high levels of plant nutrients, a high nutrient retention capacity, and metal contents similar to median levels of those metals reported for soils. The levels of boron and soluble salts are such that sensitive plants may initially show toxicity symptoms. However, with adequate rainfall, leaching should rapidly remove most of the B and soluble salts. With care, the material produced is safe for use as a synthetic topsoil. PMID:11215661

  18. Acidic soil amendment with a magnesium-containing fluidized bed combustion by-product

    SciTech Connect

    Stehouwer, R.C.; Dick, W.A.; Sutton, P.

    1999-02-01

    Removal of SO{sub 2} from the emissions of coal-fired boilers produces by-products that often consist of CaSO{sub 4}, residual alkalinity, and coal ash. These by-products could be beneficial to acidic soils because of their alkalinity and the ability of gypsum (CaSO{sub 4}{center{underscore}dot}2H{sub 2}O) to reduce Al toxicity in acidic subsoils. A 3-yr field experiment was conducted to determine the liming efficacy of a fluidized bed combustion boiler by-product (FBC) that contained 129 g Mg kg{sup {minus}1} as CaMg(CO{sub 3}){sub 2} and MgO and its effects on surface and subsurface soil chemistry. The FBC was mixed in the surface 10 cm of two acidic soils (Wooster silt loam, an Oxyaquic Fragiudalf, and Coshocton silt loam, an Aquultic Hapludalf) at rates of 0, 0.5, 1, and 2 times each soil's lime requirement (LR). Soils were sampled in 10-cm increments to depths ranging from 20 to 110 cm, and corn (Zea mays L.) and alfalfa (Medicago sativa L.) were grown. Application of Mg-FBC increased alfalfa yields in all six site-years, whereas it had no effect on corn grain yield in five site-years and decreased grain yield in one site-year. Plant tissue concentrations of Mg, S, and Mo were increased by Mg-FBC, while most trace elements were either unaffected or decreased. Application of Mg-FBC at one or two times LR increased surface soil pH to near 7 within 1 wk. Although surface soil pH remained near 7 for 2 yr, there was minimal effect on subjacent soil pH. Application of Mg-FBC increased surface soil concentrations of Ca, Mg, and S, which promoted downward movement of Mg and SO{sub 4}. This had different effects on subsoil chemistry in the two soils: in the high-Ca-status Wooster subsoil, exchangeable Ca was decreased and exchangeable Al was increased, whereas in the high-Al-status Coshocton subsoil, exchangeable Al was decreased and exchangeable Mg was increased. The Mg-FBC was an effective liming material and, because of the presence of both Mg and SO{sub 4}, may be

  19. Evaluation of a sequential extraction process used for determining mercury binding mechanisms to coal combustion byproducts

    SciTech Connect

    James D. Noel; Pratim Biswas; Daniel E. Giammar

    2007-07-15

    This study evaluated the selectivity and effectiveness of a sequential extraction process used to determine mercury binding mechanisms to various materials that are present in coal combustion byproducts. A six-step sequential extraction process was applied to laboratory-synthesized materials with known mercury concentrations and binding mechanisms. These materials were calcite, hematite, goethite, and titanium dioxide. Fly ash from a full-scale coal-fired power plant was also investigated. The concentrations of mercury were measured using inductively coupled plasma (ICP) mass spectrometry, whereas the major elements were measured by ICP atomic emission spectrometry. The materials were characterized by X-ray powder diffraction and scanning electron microscopy with energy dispersive spectroscopy. The sequential extraction procedure provided information about the solid phases with which mercury was associated in the solid sample. The procedure effectively extracted mercury from the target phases. The procedure was generally selective in extracting mercury. However, some steps in the procedure extracted mercury from nontarget phases, and others resulted in mercury redistribution. Iron from hematite and goethite was only leached in the reducible and residual extraction steps. Some mercury associated with goethite was extracted in the ion exchangeable step, whereas mercury associated with hematite was extracted almost entirely in the residual step. Calcium in calcite and mercury associated with calcite were primarily removed in the acidsoluble extraction step. Titanium in titanium dioxide and mercury adsorbed onto titanium dioxide were extracted almost entirely in the residual step. 42 refs., 13 figs., 2 tabs.

  20. Ashes to earth: Coal combustion by-products returned to the mine site

    SciTech Connect

    Power, C.B.

    1997-06-01

    The use of coal in the generation of electricity has grown dramatically in the last twenty years. With increasing demand for energy and deregulation in the utility industry, there is good reason to believe that coal will play an even larger role in meeting future utility fuel needs. This increased use of coal in energy production will create larger amounts of coal combustion by-products (CCBs). Add to the equation the strict limits on power plant emissions of sulfur dioxide the nitrogen oxides brought about by the 1990 Clean Air Act Amendments- and the resultant increased use of scrubbing and other emission control methods- and it is quite possible that the quantities of CCBs will grow at an even faster rate than the increase in the use of coal. Although the list of productive uses for CCBs has expanded considerably, large amounts continue to be disposed each year. According to the American Coal Ash Association, no more than 25 percent of the 90 million tons of CCBs produced in 1994 were put to beneficial use. The remainder must be dealt with in some acceptable fashion. As of 1988, coal-fired electric utilities spent about $800 million per year doing so.

  1. Combustion By-Products and their Health Effects--combustion engineering and global health in the 21st century: issues and challenges.

    PubMed

    Lomnicki, Slawo; Gullett, Brian; Stöger, Tobias; Kennedy, Ian; Diaz, Jim; Dugas, Tammy R; Varner, Kurt; Carlin, Danielle J; Dellinger, Barry; Cormier, Stephania A

    2014-01-01

    The 13th International Congress on Combustion By-Products and their Health Effects was held in New Orleans, Louisiana from May 15 to 18, 2013. The congress, sponsored by the Superfund Research Program, National Institute of Environmental Health Sciences, and National Science Foundation, brought together international academic and government researchers, engineers, scientists, and policymakers. With industrial growth, increased power needs and generation and coal consumption and their concomitant emissions, pernicious health effects associated with exposures to these emissions are on the rise. This congress provides a unique platform for interdisciplinary exchange and discussion of these topics. The formation, conversion, control, and health effects of combustion by-products, including particulate matter and associated heavy metals, persistent organic pollutants, and environmentally persistent free radicals, were discussed during the congress. This review will summarize and discuss the implications of the data presented. PMID:24434722

  2. Combustion By-Products and their Health Effects - Combustion Engineering and Global Health in the 21st Century: Issues and Challenges

    PubMed Central

    Lomnicki, Slawo; Gullett, Brian; Stöger, Tobias; Kennedy, Ian; Diaz, Jim; Dugas, Tammy R.; Varner, Kurt; Carlin, Danielle; Dellinger, Barry; Cormier, Stephania A.

    2014-01-01

    The 13th International Congress on Combustion By-Products and their Health Effects was held in New Orleans, Louisiana from May 15–18, 2013. The congress, sponsored by the Superfund Research Program, National Institute of Environmental Health Sciences, and National Science Foundation, brought together international academic and government researchers, engineers, scientists and policymakers. With industrial growth, increased power needs and generation and coal consumption and their concomitant emissions, pernicious health effects associated with exposures to these emissions are on the rise. This congress provides a unique platform for interdisciplinary exchange and discussion of these topics. The formation, conversion, control and health effects of combustion by-products, including particulate matter and associated heavy metals, persistent organic pollutants and environmentally persistent free radicals, were discussed during the congress. This review will summarize and discuss the implications of the data presented. PMID:24434722

  3. Technical Report: Rayleigh Scattering Combustion Diagnostic

    SciTech Connect

    Adams, Wyatt; Hecht, Ethan

    2015-07-29

    A laser Rayleigh scattering (LRS) temperature diagnostic was developed over 8 weeks with the goal of studying oxy-combustion of pulverized coal char in high temperature reaction environments with high concentrations of carbon dioxide. Algorithms were developed to analyze data collected from the optical diagnostic system and convert the information to temperature measurements. When completed, the diagnostic will allow for the kinetic gasification rates of the oxy-combustion reaction to be obtained, which was previously not possible since the high concentrations of high temperature CO2 consumed thermocouples that were used to measure flame temperatures inside the flow reactor where the combustion and gasification reactions occur. These kinetic rates are important for studying oxycombustion processes suitable for application as sustainable energy solutions.

  4. Effects of water treatment residuals and coal combustion byproduct amendments on properties of a sandy soil and impact on crop production – A pot experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Byproducts of coal combustion (such as fly ash: FA), livestock industry (such as chicken manure: CM, or animal manure, etc), or water treatment residuals (such as sewage sludge: SS, or incinerated sewage sludge: ISS) can be used as amendments to agricultural soils, provided that these byproducts (ap...

  5. The Springdale project: Applying constructed wetland treatment to coal combustion by-product leachate. Final report

    SciTech Connect

    Rightnour, T.A.; Hoover, K.L.

    1998-11-01

    The Springdale constructed wetland treatment system was completed in 1995 under an Electric Power Research Institute tailored collaboration agreement with Allegheny Power to test the operational and economic feasibility of using constructed wetland technologies to treat coal combustion by-product leachate. The system design incorporates an oxidation/precipitation basin, vegetated wetlands, manganese-oxidizing rock drains, an organic upflow cell, an algal uptake basin, and a greenhoused phytoremediation research facility. Influent and effluent chemical loadings to the individual system components have been monitored for a period of two years. Results show the system to be highly effectively in treating aqueous metals, with concentration reductions for the primary parameters being 98% for iron, 92% for manganese, and 71% for aluminum, along with significant reductions in other trace metals and concurrent improvements in pH and alkalinity. NPDES compliance has been achieved for all aqueous metals parameters except boron, which does not appear to be treatable by any means on this site. A cost comparison to four conventional chemical treatment alternatives indicates that capital investment would be comparable between constructed wetlands and chemical treatment, while significant long-term savings are predicted for the constructed wetland system due to lower operational and maintenance costs. The estimated 50 year present value savings for the constructed wetland system is approximately $1.271 million over the least expensive chemical treatment alternative, and $3.731 million over the most expensive. Operational and maintenance cost savings are primarily the result of lower on-site labor and lower waste disposal costs due to denser sludge formation in the wetland system.

  6. Evaluation of a sequential extraction process used for determining mercury binding mechanisms to coal combustion byproducts.

    PubMed

    Noel, James D; Biswas, Pratim; Giammar, Daniel E

    2007-07-01

    Leaching of mercury from coal combustion byproducts is a concern because of the toxicity of mercury. Leachability of mercury can be assessed by using sequential extraction procedures. Sequential extraction procedures are commonly used to determine the speciation and mobility of trace metals in solid samples and are designed to differentiate among metals bound by different mechanisms and to different solid phases. This study evaluated the selectivity and effectiveness of a sequential extraction process used to determine mercury binding mechanisms to various materials. A six-step sequential extraction process was applied to laboratory-synthesized materials with known mercury concentrations and binding mechanisms. These materials were calcite, hematite, goethite, and titanium dioxide. Fly ash from a full-scale power plant was also investigated. The concentrations of mercury were measured using inductively coupled plasma (ICP) mass spectrometry, whereas the major elements were measured by ICP atomic emission spectrometry. The materials were characterized by X-ray powder diffraction and scanning electron microscopy with energy dispersive spectroscopy. The sequential extraction procedure provided information about the solid phases with which mercury was associated in the solid sample. The procedure effectively extracted mercury from the target phases. The procedure was generally selective in extracting mercury. However, some steps in the procedure extracted mercury from nontarget phases, and others resulted in mercury redistribution. Iron from hematite and goethite was only leached in the reducible and residual extraction steps. Some mercury associated with goethite was extracted in the ion exchangeable step, whereas mercury associated with hematite was extracted almost entirely in the residual step. Calcium in calcite and mercury associated with calcite were primarily removed in the acid-soluble extraction step. Titanium in titanium dioxide and mercury adsorbed onto

  7. Environmental impact of a coal combustion-desulphurisation plant: abatement capacity of desulphurisation process and environmental characterisation of combustion by-products.

    PubMed

    Alvarez-Ayuso, E; Querol, X; Tomás, A

    2006-12-01

    The fate of trace elements in a combustion power plant equipped with a wet limestone flue gas desulphurisation (FGD) installation was studied in order to evaluate its emission abatement capacity. With this aim representative samples of feed coal, boiler slag, fly ash, limestone, FGD gypsum and FGD process water and wastewater were analysed for major and trace elements using the following techniques: inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), ion chromatography (IC), ion selective electrode (ISE) and atomic absorption spectroscopy (AAS). Mass balances were established allowing to determine the element partitioning behaviour. It was found that, together with S, Hg, Cl, F, Se and As were those elements entering in the FGD plant primarily as gaseous species. The abatement capacity of the FGD plant for such elements offered values ranged from 96% to 100% for As, Cl, F, S and Se, and about 60% for Hg. The environmental characterisation of combustion by-products (boiler slag, fly ash and FGD gypsum) were also established according to the Council Decision 2003/33/EC on waste disposal. To this end, water leaching tests (EN-12457-4) were performed, analysing the elements with environmental concern by means of the aforementioned techniques. According to the leaching behaviour of combustion by-products studied, these could be disposed of in landfills for non-hazardous wastes. PMID:16890268

  8. MERCURY AND AIR TOXIC ELEMENT IMPACTS OF COAL COMBUSTION BY-PRODUCT DISPOSAL AND UTILIZATION

    SciTech Connect

    Debra F. Pflughoeft-Hassett

    2003-07-01

    On April 3, 2003, a project kickoff meeting was held at the U.S. Department of Energy National Energy Technology Laboratory. As a result of this meeting and follow-up communications, a final work plan was developed, and a schedule of laboratory tasks was developed. Work for the remainder of the second quarter of this project focused on sample collection, initiating laboratory tests, and performing literature searchers. The final project partner, the North Dakota Industrial Commission, signed its contract for participation in the project. This effort will focus on the evaluation of coal combustion by-products (CCBs) for their potential to release mercury and other air toxic elements under different controlled laboratory conditions and will investigate the release of these same air toxic elements in select disposal and utilization field settings to understand the impact of various emission control technologies. The information collected will be evaluated and interpreted together with past Energy & Environmental Research Center (EERC) data and similar data from other studies. Results will be used to determine if mercury release from CCBs, both as currently produced and produced with mercury and other emission controls in place, is a realistic environmental issue. The proposed work will evaluate the impact of mercury and other air toxics on the disposal and/or utilization of CCBs. The project will provide data on the environmental acceptability of CCBs expected to be produced in systems with emission controls for typical disposal and utilization scenarios. The project will develop baseline information on release mechanisms of select elements in both conventional CCBs and modified or experimental CCBs. The modified or experimental CCBs will be selected to represent CCBs from systems that have improved emission controls. Controlling these emissions has high potential to change the chemical characteristics and environmental performance of CCBs. Development of reliable

  9. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    SciTech Connect

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury being

  10. Biomarkers of exposure to combustion by-products in a human population in Shanxi, China.

    PubMed

    Naufal, Ziad; Zhiwen, Li; Zhu, Li; Zhou, Guo-Dong; McDonald, Thomas; He, Ling Yu; Mitchell, Laura; Ren, Aiguo; Zhu, Huiping; Finnell, Richard; Donnelly, Kirby C

    2010-06-01

    blood. None of the polymorphisms evaluated were correlated with PAH levels or DNA adducts. For mothers, whose total PAH concentration was above the median concentration, the age-adjusted odds ratio (OR) for having a child with a NTD was 8.7. Although this suggests that PAHs may be a contributing factor to the risk of NTDs, the lack of a correlation with DNA adducts would suggest a possible non-genotoxic mechanism. Alternatively, the PAHs may be a surrogate for a different exposure that is more directly related to the birth defects. The results have shown that blood levels of PAHs may be used to identify populations exposed to elevated concentrations of combustion by-products. PMID:19277067

  11. Landslide remediation on Ohio State Route 83 using clean coal combustion by-products

    SciTech Connect

    Payette, R.; Chen, Xi You; Wolfe, W.; Beeghly, J.

    1995-12-31

    The disposal of flue gas desulfurization (FGD) by-products has become a major concern as issues of emission cleansing and landfill costs continue to rise. Laboratory tests conducted at the Ohio State University have shown that dry FGD by-products possess certain engineering properties that have proven desirable in a number of construction uses. As a follow on to the laboratory program, a field investigation into engineering uses of dry FGD wastes was initiated. In the present work, an FGD by-product was used to reconstruct the failed portion of a highway embankment. The construction process and the stability of the repaired embankment are examined.

  12. Utilization potential of coal combustion by-products: Somerset Power Plant case study: Final report

    SciTech Connect

    Baker, M. Jr.

    1987-01-01

    This report provides analyses of the potential for the sale of ash and ash-derived products for twelve distinct applications in western New York State and the Toronto metropolitan area. Some unique features of this study include the distribution of a questionnaire directed at potential by-product purchasers, interviews with questionnaire respondents interested in the purchase of by-products and a telephone survey of electric utilities using ash marketing firms. The report includes two detailed economic analyses. The first is an analysis of a conventional by-products application scenario which entails bottom ash use for anti-skid material and fly ash use for cement replacement and mineral filler in pavements. The second is an analysis of a combination conventional/hi-tech scenario which entails separation of magnetic ash, segregation of quality pozzolan and manufacture of lightweight aggregate.

  13. Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility

    SciTech Connect

    Lyke, S.E.; Moore, R.H.

    1981-01-01

    The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

  14. Water Quality and Geochemical Modeling of Water at an Abandoned Coal Mine Reclaimed With Coal Combustion By-Products

    USGS Publications Warehouse

    Haefner, Ralph J.

    2002-01-01

    An abandoned coal mine in eastern Ohio was reclaimed with 125 tons per acre of pressurized fluidized bed combustion (PFBC) by-product. Water quality at the site (known as the Fleming site) was monitored for 7 years after reclamation; samples included water from soil-suction lysimeters (interstitial water), wells, and spring sites established downgradient of the application area. This report presents a summary of data collected at the Fleming site during the period September 1994 through June 2001. Additionally, results of geochemical modeling are included in this report to evaluate the potential fate of elements derived from the PFBC by-product. Chemical analyses of samples of interstitial waters within the PFBC by-product application area indicated elevated levels of pH and specific conductance and elevated concentrations of boron, calcium, chloride, fluoride, magnesium, potassium, strontium, and sulfate compared to water samples collected in a control area where traditional reclamation methods were used. Magnesium-to-calcium (Mg:Ca) mole ratios and sulfur-isotope ratios were used to trace the PFBC by-product leachate and showed that little, if any, leachate reached ground water. Concentrations of most constituents in interstitial waters in the application-area decreased during the seven sampling rounds and approached background concentrations observed in the control area; however, median pH in the application area remained above 6, indicating that some acid-neutralizing capacity was still present. Although notable changes in water quality were observed in interstitial waters during the study period, quality of ground water and spring water remained poor. Water from the Fleming site was not potable, given exceedances of primary and secondary Maximum Contaminant Levels (MCLs) for inorganic constituents in drinking water set by the U.S. Environmental Protection Agency. Only fluoride and sulfate, which were found in higher concentrations in application

  15. Marketable products from gypsum, a coal combustion byproduct derived from a wet flue gas desulfurization process

    SciTech Connect

    Chou, M.I.M.; Ghiassi, K.; Lytle, J.M.; Chou, S.J.; Banerjee, D.D.

    1998-04-01

    For two years the authors have been developing a process to produce two marketable products, ammonium sulfate fertilizer and precipitated calcium carbonate (PCC), from wet limestone flue gas desulfurization (FGD) by-product gypsum. Phase I of the project focused on the process for converting FGD-gypsum to ammonium sulfate fertilizer with PCC produced as a by-product during the conversion. Early cost estimates suggested that the process was economically feasible when granular size ammonium sulfate crystals were produced. However, sale of the by-product PCC for high-value commercial application could further improve the economics of the process. The results of our evaluation of the market potential of the PCC by-product are reported in this paper. The most significant attributes of carbonate fillers that determine their usefulness in industry are particle size (i.e. fineness) and shape, whiteness (brightness), and mineralogical and chemical purity. The PCC produced from the FGD gypsum obtained from the Abbott Power Plant at the University of Illinois Urbana-Champaign campus are pure calcite with a CaCO{sub 3} content greater than 98%, 3% higher than the minimum requirement of 95%. However, the size, shape, and brightness of the PCC particles are suitable only for certain applications. Impurities in the gypsum from Abbott power plant influence the whiteness of the PCC products. Test results suggested that, to obtain gypsum that is pure enough to produce a high whiteness PCC for high value commercial applications, limestone with minimum color impurities should be used during the FGD process. Alternatively, purification procedures to obtain the desired whiteness of the FGD-gypsum can be used. Further improvement in the overall qualities of the PCC products should lead to a product that is adequate for high-value paper applications.

  16. Utilization of low NOx coal combustion by-products. Quarterly report, April 1 - June 30, 1996

    SciTech Connect

    1996-12-31

    This project is studying a beneficiation process to make power plant fly ash a more useful by-product. Accomplishments for this reporting period are presented for the following tasks: laboratory characterization which includes sample collection, material characterization and laboratory testing of ash processing operations; product testing including concrete, concrete block/brick, plastic fillers and activated carbon; and market and economic analysis. Appendix A contains data on fly ash material characterization--major elemental analysis by size.

  17. Prospects for Enhancing Carbon Sequestration and Reclamation of Degraded Lands with Fossil-fuel Combustion By-products.

    SciTech Connect

    Palumbo, A V.; Mccarthy, John F.; Amonette, James E.; Fisher, L S.; Wullschleger, Stan D.; Daniels, William L.

    2004-03-01

    Concern for the potential global change consequences of increasing atmospheric CO2 has prompted interest in the development of mechanisms to reduce or stabilize atmospheric CO2 .During the next several decades, a program focused on terrestrial sequestration processes could make a significant contribution to abating CO2 increases.The reclamation of degraded lands, such as mine-spoil sites, highway rights-of-way, and poorly managed lands, represents an opportunity to couple C sequestration with the use of fossil-fuel and energy by-products and other waste material, such as biosolids and organic wastes from human and animal sewage treatment facilities, to improve soil quality. Degraded lands are often characterized by acidic pH, low levels of key nutrients, poor soil structure, and limited moisture-retention capacity.Much is known about the methods to improve these soils, but the cost of implementation is often a limiting factor.However, the additional financial and environmental benefit s of C sequestration may change the economics of land reclamation activities.The addition of energy-related by-products can address the adverse conditions of these degraded lands through a variety of mechanisms, such as enhancing plant growth and capturing of organic C in long-lived soil C pools.This review examines the use of fossil-fuel combustion by-products and organic amendments to enhance C sequestration and identifies the key gaps in information that still must be addressed before these methods can be implemented on an environmentally meaningful scale.

  18. Technical evaluation: pressurized fluidized-bed combustion technology

    SciTech Connect

    Miller, S A; Vogel, G J; Gehl, S M; Hanway, Jr, J E; Henry, R F; Parker, K M; Smyk, E B; Swift, W M; Podolski, W F

    1982-04-01

    The technology of pressurized fluidized-bed combustion, particularly in its application to a coal-burning combined-cycle plant, is evaluated by examining the technical status of advanced-concept plant components - boiler system (combustor, air-handling and air-injection equipment, and heat exchangers); solids handling, injection, and ejection system; hot-gas cleanup equipment; instrumentation/control system; and the gas turbine - along with materials of plant construction. Environmental performance as well as energy efficiency are examined, and economic considerations are reviewed briefly. The evaluation concludes with a broad survey of the principal related research and development programs in the United States and other countries, a foreview of the most likely technological developments, and a summary of unresolved technical issues and problems.

  19. Investigation of the behavior of potentially hazardous trace elements in Kentucky coals and combustion byproducts

    SciTech Connect

    Robertson, J.D.; Blanchard, L.J.; Srikantapura, S.; Parekh, B.K.; Lafferty, C.J.

    1996-12-31

    The minor- and trace-element content of coal is of great interest because of the potentially hazardous impact on human health and the environment resulting from their release during coal combustion. Of the one billion tons of coal mined annually in the United States, 85-90% is consumed by coal-fired power plants. Potentially toxic elements present at concentrations as low as a few egg can be released in large quantities from combustion of this magnitude. Of special concern are those trace elements that occur naturally in coal which have been designated as potential hazardous air pollutants (HAPs) in the 1990 Amendments to the Clean Air Act. The principle objective of this work was to investigate a combination of physical and chemical coal cleaning techniques to remove 90 percent of HAP trace elements at 90 percent combustibles recovery from Kentucky No. 9 coal. Samples of this coal were first subjected to physical separation by flotation in a Denver cell. The float fraction from the Denver cell was then used as feed material for hydrothermal leaching tests in which the efficacy of dilute alkali (NaOH) and acid (HNO{sub 3}) solutions at various temperatures and pressures was investigated. The combined column flotation and mild chemical cleaning strategy removed 60-80% of trace elements with greater than 85, recovery of combustibles from very finely ground (-325 mesh) coal. The elemental composition of the samples generated at each stage was determined using particle induced X-ray emission (PIXE) analysis. PIXE is a rapid, instrumental technique that, in principle, is capable of analyzing all elements from sodium through uranium with sensitivities as low as 1 {mu}g/g.

  20. Chemical kinetic pathways for the emission of trace by-products in combustion processes

    SciTech Connect

    Pitz, W.J.; Westbrook, C.K.; Lutz, A.E.; Kee, R.J.

    1993-03-01

    A collorbative research program has been initiated to study the emissions of a wide variety of chemical species from stationary combustion systems. These product species have been included in Clean Air act legislation and their emissions must be rigidly controlled, but there is a need for a much better understanding of the physical and chemical mechanisms that produce and consume them. We are using physical and chemical mechanisms that produce and consume them. We are using numerical modeling techniques to study the chemical reactions and fluid mechanical factors that occur in industrial burners. We are examining systems including premixed and diffusion flames, and stirred and plug flow reactors in these modeling studies to establish the major factors leading to emissions of these chemicals.

  1. DURABILITY EVALUATION AND PRODUCTION OF MANUFACTURED AGGREGATES FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    M. M. Wu

    2005-02-01

    Under the cooperative agreement with DOE, the Research and Development Department of CONSOL Energy (CONSOL R&D), teamed with Universal Aggregates, LLC, to conduct a systematic study of the durability of aggregates manufactured using a variety of flue gas desulfurization (FGD), fluidized-bed combustion (FBC) and fly ash specimens with different chemical and physical properties and under different freeze/thaw, wet/dry and long-term natural weathering conditions. The objectives of the study are to establish the relationships among the durability and characteristics of FGD material, FBC ash and fly ash, and to identify the causes of durability problems, and, ultimately, to increase the utilization of FGD material, FBC ash and fly ash as a construction material. Manufactured aggregates made from FGD material, FBC ash and fly ash, and products made from those manufactured aggregates were used in the study. The project is divided into the following activities: sample collection and characterization; characterization and preparation of manufactured aggregates; determination of durability characteristics of manufactured aggregates; preparation and determination of durability characteristics of manufactured aggregate products; and data evaluation and reporting.

  2. Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities

    SciTech Connect

    K. Ladwig; B. Hensel; D. Wallschlager; L. Lee; I Murarka

    2005-10-19

    Field leachate samples are being collected from coal combustion product (CCP) management sites from several geographic locations in the United States to provide broad characterization of major and trace constituents in the leachate. In addition, speciation of arsenic, selenium, chromium, and mercury in the leachates is being determined. Through 2003, 35 samples were collected at 14 sites representing a variety of CCP types, management approaches, and source coals. Samples have been collected from leachate wells, leachate collection systems, drive-point piezometers, lysimeters, the ash/water interface at impoundments, impoundment outfalls and inlets, and seeps. Additional sampling at 23 sites has been conducted in 2004 or is planned for 2005. First-year results suggest distinct differences in the chemical composition of leachate from landfills and impoundments, and from bituminous and subbituminous coals. Concentrations of most constituents were generally higher in landfill leachate than in impoundment leachate. Sulfate, sodium, aluminum, molybdenum, vanadium, cadmium, mercury and selenium concentrations were higher in leachates for ash from subbituminous source coal. Calcium, boron, lithium, strontium, arsenic, antimony, and nickel were higher for ash from bituminous source coal. These variations will be explored in more detail when additional data from the 2004 and 2005 samples become available.

  3. Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities

    SciTech Connect

    K. Ladwig

    2005-12-31

    The overall objective of this project was to evaluate the impact of key constituents captured from power plant air streams (principally arsenic and selenium) on the disposal and utilization of coal combustion products (CCPs). Specific objectives of the project were: (1) to develop a comprehensive database of field leachate concentrations at a wide range of CCP management sites, including speciation of arsenic and selenium, and low-detection limit analyses for mercury; (2) to perform detailed evaluations of the release and attenuation of arsenic species at three CCP sites; and (3) to perform detailed evaluations of the release and attenuation of selenium species at three CCP sites. Each of these objectives was accomplished using a combination of field sampling and laboratory analysis and experimentation. All of the methods used and results obtained are contained in this report. For ease of use, the report is subdivided into three parts. Volume 1 contains methods and results for the field leachate characterization. Volume 2 contains methods and results for arsenic adsorption. Volume 3 contains methods and results for selenium adsorption.

  4. THE USE OF COAL COMBUSTION BY-PRODUCTS FOR IN SITU TREATMENT OF ACID MINE DRAINAGE

    SciTech Connect

    Geoffrey A. Canty; Jess W. Everett

    2004-09-30

    In 1994 a demonstration project was undertaken to investigate the effectiveness of using CCBs for the in situ treatment of acidic mine water. Actual injection of alkaline material was performed in 1997 with initial positive results; however, the amount of alkalinity added to the system was limited and resulted in short duration treatment. In 1999, a CBRC grant was awarded to further investigate the effectiveness of alkaline injection technology (AIT). Funds were released in fall 2001. In December 2001, 2500 tons of fluidized bed combustion (FBC) ash were injected into the wells used in the 1997 injection project. Post injection monitoring continued for 24 months. During this period the mine chemistry had gone through a series of chemical changes that manifested as stages or ''treatment phases.'' The mine system appeared to be in the midst of reestablishing equilibrium with the partial pressure of mine headspace. Alkalinity and pH appeared to be gradually increasing during this transition. As of December 2003, the pH and alkalinity were roughly 7.3 and 65 ppm, respectively. Metal concentrations were significantly lower than pre-injection levels, but iron and manganese concentrations appeared to be gradually increasing (roughly 30 ppm and 1.25 ppm, respectively). Aluminum, nickel, and zinc were less than pre-injection concentrations and did not appear to be increasing (roughly

  5. Performance and mechanism on a high durable silica alumina based cementitious material composed of coal refuse and coal combustion byproducts

    NASA Astrophysics Data System (ADS)

    Yao, Yuan

    Coal refuse and combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. Recycling is one practical solution to utilize this huge amount of solid waste through activation as substitute for ordinary Portland cement. The central goal of this dissertation is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to ordinary Portland cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economy benefit for construction and building materials. The results show that thermal activation temperature ranging from 20°C to 950°C significantly increases the workability and pozzolanic property of the coal refuse. The optimal activation condition is between 700°C to 800°C within a period of 30 to 60 minutes. Microanalysis illustrates that the improved pozzolanic reactivity contributes to the generated amorphous materials from parts of inert aluminosilicate minerals by destroying the crystallize structure during the thermal activation. In the coal refuse, kaolinite begins to transfer into metakaol in at 550°C, the chlorite minerals disappear at 750°C, and muscovite 2M1 gradually dehydroxylates to muscovite HT. Furthermore, this research examines the environmental

  6. Passive treatment of acid mine drainage using coal combustion by-products and spent mushroom substrate: Results of column study

    SciTech Connect

    Crisp, T.E.; Nairn, R.W.; Strevett, K.A.; Everett, J.

    1998-12-31

    A column study was conducted to evaluate the feasibility of using of coal combustion by-products (CCB) as alkaline materials in a field scale downflow constructed wetlands for acid mine drainage treatment. Five columns (15.24 cm in diameter and 91.44 cm high) were constructed and filled with a combination of spent mushroom substrate (SMS) and one of three alkaline materials (limestone, hydrated fly ash, or fluidized bed ash). The five mixtures utilized were 10% fluidized bed ash/40% limestone (FBA/LS), 10% fluidized bed ash (FBA), 50% limestone (LS), 50% hydrated fly ash (HFA),m and 50% sieved (>1.5 cm) hydrated fly ash (S. HFA) with the remainder as SMS on a w/w basis. Column received synthetic acid mine drainage containing: 400 mg/L iron, 59 mg/L aluminum, 11 mg/L manganese, 50% mg/L magnesium, 40 mg/L calcium, and 1200 mg/L sulfate for 5 months. Anoxic conditions in the influent reservoirs were maintained by a positive nitrogen pressure head. Flow rates of 2.0 mL/minute to each column were maintained by a multichannel peristaltic pump. For all columns, effluent acidity concentrations were less than influent acidity concentration (877{sup {minus}}30, n = 75f). Mean effluent acidity concentrations were 241 mg/L (FBA/LS), 186 mg/L (FBA), 419 mg/L (LS), {minus}28.5 mg/L (HFA), and 351 mg/L (S. HFA), respectively. While all column produced measurable alkalinity, only the HFA column produced a net alkaline discharge. The results of these column studies are applicable to the design and sizing of innovative field scale systems using alkaline-rich CCB`s.

  7. Upper profile changes over time in an Appalachian hayfield soil amended with coal combustion by-products

    SciTech Connect

    Zhou, X.; Ritchey, K.D.; Clark, R.B.; Persaud, N.; Belesky, D.P.

    2006-07-01

    This study examined longer-term effects in an abandoned Appalachian pasture soil amended with various liming materials and coal combustion by-products (CCBPs). Soil chemical and physical properties were investigated over time and depths. The results indicated limited dissolution and movement of the calcium (Ca) and magnesium (Mg) applied with the chemical amendments, except for Ca and Mg associated with sulfate. However, sufficient dissolution occurred to cause significant increases in exchangeable Ca and Mg and decreases in exchangeable Al that were reflected in corresponding increases in soil pH. These beneficial effects persisted over time and were confined to the upper 0- to 15-cm depth of the profile. The greatest benefits appeared to be in the upper 0- to 5-cm surface layer. Both Ca and Mg applied as calcitic dolomitic limestone tended to be immobilized in the upper 0- to 5-cm layer of the soil profile; Ca more so than Mg. The presence of S applied in the FGD and FBC amendments appeared to enhance the mobility of Ca and Mg. The ratio of Ca/Mg in HCl extracts from the calcitic dolomitic treatment was close to that of applied calcitic dolomite, implying that the inactive component in soil might be the original calcitic dolomite particles. Soil physical properties measured over small depth increments showed that application of the amendments improved the saturated hydraulic conductivity only in the upper 0- to 5-cm depth and had little or no significant effect on the dry bulk density and plant-available water.

  8. Determination and evaluation of hexavalent chromium in power plant coal combustion by-products and cost-effective environmental remediation solutions using acid mine drainage.

    PubMed

    Kingston, H M Skip; Cain, Randy; Huo, Dengwei; Rahman, G M Mizanur

    2005-09-01

    The chromium species leaching from a coal combustion fly ash landfill has been characterized as well as a novel approach to treat leachates rich in hexavalent chromium, Cr(VI), by using another natural waste by-product, acid mine drainage (AMD), has been investigated during this study. It is observed that as much as 8% (approximately 10 microg g(-1) in fly ash) of total chromium is converted to the Cr(VI) species during oxidative combustion of coal and remains in the resulting ash as a stable species, however, it is significantly mobile in water based leaching. Approximately 1.23 +/- 0.01 microg g(-1) of Cr(VI) was found in the landfill leachate from permanent deposits of aged fly ash. This study also confirmed the use of AMD, which often is in close proximity to coal combustion by-product landfills, is an extremely effective and economical remediation option for the elimination of hexavalent chromium in fly ash generated leachate. Speciated isotope dilution mass spectrometry (SIDMS), as described in EPA Method 6800, was used to analytically evaluate and validate the field application of the ferrous iron and chromate chemistry in the remediation of Cr(VI) runoff. PMID:16121270

  9. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The overall objective of this research effort was to provide a potentially commercial thermal treatment of fly ash to decrease the interaction between fly ash and the surfactants used to entrain air in concrete when fly ash replaces a portion of the Portland cement in oncrete. The thermal treatment resulting from this research effort, and described in this report, fulfill the above objective. This report describes the thermal treatment developed and applies the treatment to six different fly ashes subsequently used to prepare concrete test cylinders hat show little or no difference in compressibility when compared to concrete test cylinders prepared using untreated fly ash.

  10. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The purpose of this letter is to notify you that the Department of Energy Office of Fossil Energy's Innovations for Existing Plants Program has been zeroed out in the President's Fiscal Year (FY) 2008 budget.

  11. 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources.

    PubMed

    Weidemann, Eva; Andersson, Patrik L; Bidleman, Terry; Boman, Christoffer; Carlin, Danielle J; Collina, Elena; Cormier, Stephania A; Gouveia-Figueira, Sandra C; Gullett, Brian K; Johansson, Christer; Lucas, Donald; Lundin, Lisa; Lundstedt, Staffan; Marklund, Stellan; Nording, Malin L; Ortuño, Nuria; Sallam, Asmaa A; Schmidt, Florian M; Jansson, Stina

    2016-04-01

    The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants. PMID:26906006

  12. Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report

    SciTech Connect

    Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L.

    1989-08-28

    This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

  13. UNDERGROUNG PLACEMENT OF COAL PROCESSING WASTE AND COAL COMBUSTION BY-PRODUCTS BASED PASTE BACKFILL FOR ENHANCED MINING ECONOMICS

    SciTech Connect

    Y.P. Chugh; D. Biswas; D. Deb

    2002-06-01

    This project has successfully demonstrated that the extraction ratio in a room-and-pillar panel at an Illinois mine can be increased from the current value of approximately 56% to about 64%, with backfilling done from the surface upon completion of all mining activities. This was achieved without significant ground control problems due to the increased extraction ratio. The mined-out areas were backfilled from the surface with gob, coal combustion by-products (CCBs), and fine coal processing waste (FCPW)-based paste backfill containing 65%-70% solids to minimize short-term and long-term surface deformations risk. This concept has the potential to increase mine productivity, reduce mining costs, manage large volumes of CCBs beneficially, and improve the miner's health, safety, and environment. Two injection holes were drilled over the demonstration panel to inject the paste backfill. Backfilling was started on August 11, 1999 through the first borehole. About 9,293 tons of paste backfill were injected through this borehole with a maximum flow distance of 300-ft underground. On September 27, 2000, backfilling operation was resumed through the second borehole with a mixture of F ash and FBC ash. A high-speed auger mixer (new technology) was used to mix solids with water. About 6,000 tons of paste backfill were injected underground through this hole. Underground backfilling using the ''Groutnet'' flow model was simulated. Studies indicate that grout flow over 300-foot distance is possible. Approximately 13,000 tons of grout may be pumped through a single hole. The effect of backfilling on the stability of the mine workings was analyzed using SIUPANEL.3D computer program and further verified using finite element analysis techniques. Stiffness of the backfill mix is most critical for enhancing the stability of mine workings. Mine openings do not have to be completely backfilled to enhance their stability. Backfill height of about 50% of the seam height is adequate to

  14. Origin and Health Impacts of Emissions of Toxic By-Products and Fine Particles from Combustion and Thermal Treatment of Hazardous Wastes and Materials

    PubMed Central

    Cormier, Stephania A.; Lomnicki, Slawo; Backes, Wayne; Dellinger, Barry

    2006-01-01

    High-temperature, controlled incineration and thermal treatment of contaminated soils, sediments, and wastes at Superfund sites are often preferred methods of remediation of contaminated sites under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and related legislation. Although these methods may be executed safely, formation of toxic combustion or reaction by-products is still a cause of concern. Emissions of polycyclic aromatic hydrocarbons (PAHs); chlorinated hydrocarbons (CHCs), including polychlorinated dibenzo-p-dioxins and dibenzofurans; and toxic metals (e.g., chromium VI) have historically been the focus of combustion and health effects research. However, fine particulate matter (PM) and ultrafine PM, which have been documented to be related to cardiovascular disease, pulmonary disease, and cancer, have more recently become the focus of research. Fine PM and ultrafine PM are effective delivery agents for PAHs, CHCs, and toxic metals. In addition, it has recently been realized that brominated hydrocarbons (including brominated/chlorinated dioxins), redox-active metals, and redox-active persistent free radicals are also associated with PM emissions from combustion and thermal processes. In this article, we discuss the origin of each of these classes of pollutants, the nature of their association with combustion-generated PM, and the mechanisms of their known and potential health impacts. PMID:16759977

  15. Proceedings: 11th International Symposium on use and management of coal combustion by-products (CCBs). Volume 1

    SciTech Connect

    Tyson, S.S.; Blackstock, T.H.; Hunger, J.; Marshall, A.

    1995-01-01

    Topics discussed at the llth symposium on Coal Combuston By-Products (CCB) use and management included fundamental CCB use research, product marketing, applied research, CCB management and the environment, and commercial uses. There is a continuing, international research interest in CCB use because of the prospects of avoiding disposal costs and generating revenue from CCB sales. Volume One contains the following sections on: Agriculture; beneficiation of ash; clean coal by-products; concrete; and fillers and manufactured products. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  16. RESIDENTIAL WOOD COMBUSTION TECHNOLOGY REVIEW VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    This report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories -- cordwood stoves, fireplaces, masonry h...

  17. Utilization of low NO{sub x} coal combustion by-products. Quarterly report, April--June 1995

    SciTech Connect

    1995-07-01

    This project is studying a beneficiation process to make power plant fly ash a more useful by-product. The tasks include: (1) Laboratory characterization: Sample collection; Material characterization; and Lab testing of ash processing operations; (2) Pilot plant testing of the separation of carbon from fly ash; (3) Product testing: Concrete testing and Plastic fillers; and (4) Market and economic analysis. Appendices present information on material characterization, laboratory testing of a flotation process, pilot runs, and concrete testing results.

  18. WOOD PRODUCTS IN THE WASTE STREAM: CHARACTERIZATION AND COMBUSTION EMISSIONS - VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...

  19. Technical advances and new opportunities for fluidized bed combustion

    SciTech Connect

    Alliston, M.G.; Kokko, A.; Martin, B.G.; Olofsson, J.

    1997-12-31

    This paper outlines opportunities for new circulating fluidized bed (CFB) boilers, technical considerations in selecting a fluidized bed boiler, and CFB boiler configuration types and sizes. New opportunities for CFBs include fuel opportunities from coke, mine mouth coals, and waste products, and boiler application opportunities in industrial cogeneration, repowering, and developing nations. Technical considerations discussed for boiler selection are fuel flexibility and environmental aspects. Three boiler configurations are briefly described: (1) water-cooled cyclone with water-cooled loopseal, (2) integral cylindrical cyclone and loopseal, and (3) Cylindrical multi-inlet cyclone. CFB scale-up is also briefly discussed. 3 refs., 3 figs.

  20. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The addition of brominated organic compounds to the feed of a pilot-scale incinerator burning chlorinated waste has been found previously, under some circumstances, to enhance emissions of volatile and semivolatile organic chlorinated products of incomplete combustion (PiCs) incl...

  1. Waste incineration in rotary kilns: a new simulation combustion tool to support design and technical change.

    PubMed

    Lombardi, Francesco; Lategano, Emanuele; Cordiner, Stefano; Torretta, Vincenzo

    2013-07-01

    This article presents a tool based on a simplified model developed for the combustion processes in a rotary kiln incinerator (slightly inclined rotating primary combustion chamber). The model was developed with the aim of supporting the design phase of the incinerator combustion chamber and, at the same time, of investigating possible technical changes in existing plants in order to optimise the combustion process and the dimension of the rotary kiln (length, diameter) as a function of the characteristics of the fed waste. The tool has been applied and the obtained results compared with a real incineration plant operating on healthcare waste located in Rome (Italy). The mass and thermal balances were taken into account, together with kinetic parameters for the combustion of the specific waste stream. The mass balance considered only the major mass components (carbon, hydrogen, oxygen, nitrogen and sulphur). The measured external temperatures appear to be in good agreement with the simulated results. A sensitivity analysis of the plant under different operating conditions was carried out using different input flow rates and excess air ratios, and an assessment was made of the refractory and insulator properties of the kiln's behaviour. Some of the simulated results were used during the periodical maintenance to improve the refractory characteristics in order to reduce the fret and corrosion process. PMID:23635465

  2. Barriers to the increased utilization of coal combustion/desulfurization by-products by government and commercial sectors - Update 1998

    SciTech Connect

    Pflughoeft-Hassett, D.F.; Sondreal, E.A.; Steadman, E.N.; Eylands, K.E.; Dockter, B.A.

    1999-07-01

    The following conclusions are drawn from the information presented in this report: (1) Joint efforts by industry and government focused on meeting RTC recommendations for reduction/removal of barriers have met with some success. The most notable of these are the changes in regulations related to CCB utilization by individual states. Regionally or nationally consistent state regulation of CCB utilization would further reduce regulatory barriers. (2) Technology changes will continue to be driven by the CAAA, and emission control technologies are expected to continue to impact the type and properties of CCBs generated. As a result, continued RD and D will be needed to learn how to utilize new and changing CCBs in environmentally safe, technically sound, and economically advantageous ways. Clean coal technology CCBs offer a new challenge because of the high volumes expected to be generated and the different characteristics of these CCBs compared to those of conventional CCBs. (3) Industry and government have developed the RD and D infrastructure to address the technical aspects of developing and testing new CCB utilization applications, but this work as well as constant quality control/quality assurance testing needs to be continued to address both industry wide issues and issues related to specific materials, regions, or users. (4) Concerns raised by environmental groups and the public will continue to provide environmental and technical challenges to the CCB industry. It is anticipated that the use of CCBs in mining applications, agriculture, structural fills, and other land applications will continue to be controversial and will require case-by-case technical and environmental information to be developed. The best use of this information will be in the development of generic regulations specifically addressing the use of CCBs in these different types of CCB applications. (5) The development of federal procurement guidelines under Executive Order 12873 titled

  3. Mixtures of a coal combustion by-product and composted yard wastes for use as soil substitutes and amendments. Final report

    SciTech Connect

    Eckert, D.J.; McCoy, E.L.; Danneberger, T.K.

    1996-08-01

    Mixtures of coal combustion by-product (CCBP) and yard waste compost (with and without sand), and mixtures of CCBP and soil, were evaluated for use as soil substitutes and amendments for production of container-grown ornamental shrubs and trees, and for establishment and production of forage-groundcover species. Species evaluated were azalea (Rhododendron spp.), burning bush (Euonymous alatus), red maple (Acer rubrum), yew (Taxus spp.), tall fescue (Festuca arundi nacea, cv. {open_quotes}Chesapeake{close_quotes}), alfalfa, and Kentucky bluegrass (Poa pratensis L., cv. {open_quotes}Bronco{close_quotes}). All ornamental species failed to grow when planted in CCBP/compost mixtures when the CCBP concentration was greater than 30 percent by volume. Plant toxicity due to high concentrations of soluble salts and boron was responsible for the poor plant performance. When CCBP was used as a soil amendment at concentrations less than 30 percent, growth of tall fescue and Kentucky bluegrass was not affected by the mixture, and alfalfa yield increased at CCBP mixtures up to 20 percent.

  4. Analysis of markets for coal combustion by-products use in agriculture and land reclamation. Summary report of four regional marketing studies, Final report

    SciTech Connect

    Horn, M.E.

    1993-12-01

    Marketing studies in four US regions assessed the factors affecting the land application of coal combustion by-products (CCBP) as soil physical and chemical amendments. These studies were conducted under the sponsorship of the Electric Power Research Institute with additional support by utilities located in the Northeast, Southeast, Midwest, and Southwest regions of the United States, namely the Empire State Electric Energy Research Corporation (ESEERCO); Southern Company Services, Inc.; Union Electric Company; and Houston Lighting and Power Company. The Texas Municipal Power Agency also provided information and insight into CCBP disposal in Texas, thus contributing to the regional assessment of CCBP use in agriculture and reclamation in the Southwest. These case studies centered on CCBP from specific power plants and the potential for land application in regions around the plants. The studies provide estimates of (1) the types of CCBP usage possible in each region, (2) potential volumes of CCBP that could be applied, and (3) the value of CCBP as soil amendments based on increased yields or reduced commercial lime and fertilizer usage. Finally, the studies help identify steps necessary to enhance the use of CCBP as soil amendments. These steps include performing further research on the yield response of specific crops and soils to CCBP and addressing regulations that act as barriers to CCBP use.

  5. Volatiles combustion in fluidized beds. Final technical report, 4 September 1992--4 June 1995

    SciTech Connect

    Pendergrass, R.A. II; Raffensperger, C.; Hesketh, R.P.

    1996-02-29

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization are being conducted to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. A review of the work conducted under this grant is presented in this Final Technical Report. Both experimental and theoretical work have been conducted to examine the inhibition of the combustion by the fluidized bed material, sand. It has been shown that particulate phase at incipient fluidization inhibits the combustion of propane by free radical destruction at the surface of sand particles within the particulate phase. The implications of these findings is that at bed temperatures lower than the critical temperatures, gas combustion can only occur in the bubble phase or at the top surface of a bubbling fluidized bed. In modeling fluidized bed combustion this inhibition by the particulate phase should be included.

  6. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur. Sixth quarterly technical progress report, January - March 1997

    SciTech Connect

    1997-03-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  7. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur. Fifth quarterly technical progress report, December 1996

    SciTech Connect

    1996-12-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  8. Standard technical specifications: Combustion engineering plants. Volume 1, Revision 1: Specifications

    SciTech Connect

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for Combustion Engineering Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS.

  9. Use of Strontium Isotopes to Quantify Interaction of Water With Coal Combustion Byproducts in an Abandoned, Partially Grouted Coal Mine, West Virginia, U.S.A.

    NASA Astrophysics Data System (ADS)

    Hamel, B. L.; Stewart, B. W.; Kim, A.

    2005-12-01

    The Omega Coal Mine, West Virginia, was actively mined until the late 1980s. Subsequently, water filled the mine void and acid discharges developed along the mine perimeter. The mine was partially grouted in 1998 by injecting coal combustion byproducts (CCB) mixed with cement in an attempt to reduce the acid discharge and stabilize the ground surface. Discharge continued after grouting, including from the grouted portions of the mine. In this study, discharge chemistry and strontium (Sr) isotope ratios were determined to identify and quantify the extent of interaction between mine waters and the CCB material used to grout the abandoned mine. Eight sampling sites were monitored around the downdip perimeter of the mine. In general, the major and trace element chemistry of the discharges was not sufficient to distinguish between discharges that interacted with grout and those that did not. Elements that showed the most separation include potassium and arsenic, both of which were elevated in the waters that interacted with CCB grout. In contrast, strontium isotope ratios were capable of delineating discharges that were clearly from grouted portions of the mine vs. those that were derived from non-grouted areas. Discharges that bypassed the grouted portions had 87Sr/86Sr ratios ranging from 0.7151 to 0.7159, while two discharges that interacted with grout had ratios in the range of 0.7140 to 0.7146. The water treatment system inlet, which receives both grouted and ungrouted discharges, yielded intermediate isotope ratios. Leaching experiments on CCB grout, coal, and surrounding floor and roof rocks are consistent with the isotopic trends observed in the discharges. Based on these results, waters that interacted with grout received 30-40% of their strontium from the CCB grout material, suggesting that leaching of CCB is a significant contributor to discharge chemistry.

  10. Utilization of coal combustion by-products in mine reclamation and agriculture -- A summary of selected U.S. Department of Energy projects

    SciTech Connect

    Aljoe, W.W.

    1998-12-31

    Most solid coal combustion by-products (CCBs) such as fly ash, bottom ash, and flue gas desulfurization (FGD) sludge are currently disposed of in slurry ponds or landfills. While these practices may continue to be the most economical alternatives for some utilities, increasingly stringent environmental regulations and public opposition to new landfill construction are forcing many utilities to explore alternative uses for CCBs. Some alternative uses have proven to be very profitable, such as the sale of fly ash for use in cement and the production of wallboard from FGD sludge. However, in many cases such uses are not economically feasible because the physical or chemical characteristics of the CCBs are not suitable and/or the market price of the processed, recycled CCB is not competitive. Therefore, there is a need to find alternative, environmentally friendly uses for large volumes of CCBs that do not require tight quality specifications or extensive processing by the utility. To date, mine reclamation and agricultural applications appear to be the most attractive high-volume utilization methods, but the actual costs and environmental benefits of these practices need to be demonstrated and documented before the industry and regulatory agencies can accept them routinely as viable alternatives to landfilling. This paper summarizes the results of various completed and ongoing projects sponsored or cosponsored by the US Department of Energy that have been directed toward the demonstration of CCB use in mine reclamation and agriculture. Important benefits of these demonstrations include the mitigation of underground mine subsidence, abatement of acid mine drainage, increased productivity from highwall mines, improvement of mine soil productivity, inexpensive substitution for agricultural lime in growth of selected crops, and increased efficiency of cattle feeding via structural stabilization of feedlots.

  11. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    SciTech Connect

    Blaser, Richard

    1980-11-01

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

  12. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  13. MARKET ASSESSMENT AND TECHNICAL FEASIBILITY STUDY OF PRESSURIZED FLUIDIZED BED COMBUSTION ASH USE

    SciTech Connect

    A.E. Bland; T.H. Brown

    1997-04-01

    Western Research Institute, in conjunction with the Electric Power Research Institute, Foster Wheeler International, Inc. and the US Department of Energy, has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for PFBC ashes. Ashes from the Foster Wheeler Energia Oy pilot-scale circulating PFBC tests in Karhula, Finland, combusting (1) low-sulfur subbituminous and (2) high-sulfur bituminous coal, and ash from the AEP's high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at WR1. The technical feasibility study examined the use of PFBC ash in construction-related applications, including its use as a cementing material in concrete and use in cement manufacturing, fill and embankment materials, soil stabilization agent, and use in synthetic aggregate production. Testing was also conducted to determine the technical feasibility of PFBC ash as a soil amendment for acidic and sodic problem soils and spoils encountered in agricultural and reclamation applications. The results of the technical feasibility testing indicated the following conclusions. PFBC ash does not meet the chemical requirements as a pozzolan for cement replacement. However, it does appear that potential may exist for its use in cement production as a pozzolan and/or as a set retardant. PFBC ash shows relatively high strength development, low expansion, and low permeability properties that make its use in fills and embankments promising. Testing has also indicated that PFBC ash, when mixed with low amounts of lime, develops high strengths, suitable for soil stabilization applications and synthetic aggregate production. Synthetic aggregate produced from PFBC ash is capable of meeting ASTM/AASHTO specifications for many construction applications. The residual calcium carbonate and calcium sulfate in the PFE3C ash has been shown to be of value in

  14. Market Assessment and Technical Feasibility Study of Pressurized Fluidized Bed Combustion Ash Use

    SciTech Connect

    Bland, A.E.; Brown, T.H.

    1996-12-31

    Western Research Institute in conjunction with the Electric Power Research Institute, Foster Wheeler Energy International, Inc. and the U.S. Department of Energy Technology Center (METC), has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for pressurized fluidized bed combustion (PFBC) ashes. The assessment is designed to address six applications, including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) synthetic aggregate, and (5) agricultural/soil amendment applications. Ash from low-sulfur subbituminous coal-fired Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, and ash from the high-sulfur bituminous coal-fired American Electric Power (AEP) bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing. This paper addresses the technical feasibility of ash use options for PFBC unit using low- sulfur coal and limestone sorbent (karhula ash) and high-sulfur coal and dolomite sorbents (AEP Tidd ash).

  15. Management of dry flue gas desulfurization by-products in underground mines. Topical report, October 1, 1993--March 31, 1998

    SciTech Connect

    1998-09-01

    The DESEVAL-TRANS program is developed for the purpose of helping the engineer to design and economically evaluate coal combustion byproduct transportation systems that will operate between the power plant and the disposal site. The objective of the research project was to explore the technical, environmental and economic feasibility of disposing coal combustion byproducts in underground mines in Illinois. The DESEVAL-TRANS (short for Design and Evaluation of Transportation Systems) was developed in the Materials Handling and Systems Economics branch of the overall project. Four types of coal combustion byproducts were targeted for transportation and handling: Conventional fly ash; Scrubber sludge; Fluidized Bed Combustion (FBC) fly ash; and Spent-bed ash. Several transportation and handling systems that could handle these byproducts were examined. These technologies were classified under three general categories: Truck; Rail; and Container. The purpose of design models is to determine the proper number of transport units, silo capacity, loading and unloading rates, underground placement capacity, number of shifts, etc., for a given case, defined by a distance-tonnage combination. The cost computation models were developed for the determination of the operating and capital costs. An economic evaluation model, which is common to all categories, was also developed to establish the cost-per-ton of byproduct transported.

  16. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Fourth quarterly technical progress report

    SciTech Connect

    1997-01-01

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  17. PRELIMINARY ENVIRONMENTAL ASSESSMENT OF COMBUSTION MODIFICATION TECHNIQUES: VOLUME II. TECHNICAL RESULTS

    EPA Science Inventory

    The report gives preliminary methodologies, data compilation, and program priorities for assessing stationary combustion sources and NOx combustion modification technologies. Equipment characterizations and multimedia emission inventories are presented for utility and industrial ...

  18. Conversion of high carbon refinery by-products. Annual technical report, fiscal year 1995 (October 1994--September 1995)

    SciTech Connect

    1995-10-01

    The overall objective of the project is to demonstrate that a partial oxidation system, which utilizes a transport reactor, is a viable mans of converting refinery wastes, byproducts, and other low-value materials into valuable products. The primary product would be a high quality fuel gas, which could also be used as a source of hydrogen. The concept involves subjecting the hydrocarbon feed material to pyrolysis and steam gasification in a circulating bed of solids. Carbon residue formed during pyrolysis, as well as metals in the feed, are captured by the circulating solids, which are returned to the bottom of the transport reactor. Air or oxygen is introduced in this lower zone and sufficient carbon is burned, sub-stoichiometrically, to provide the necessary heat for the endothermic pyrolysis and gasification reactions. The hot solids an gases leaving this zone pass upward to contact the feed material and continue the partial oxidation process. At the end of FY94, a limited number of pyrolysis runs were made using an oil in water emulsion of Hondo crude as the feed material. It was intended to conduct these tests in the fully integrated partial oxidation mode. At the completion of the tests, it was concluded that the reactor configuration was not suitable for handling highly coking liquid hydrocarbon feeds. The decision was made to design and build a new reactor which, in addition to a better feed injection systems, includes other design features that improve the performance and reliability of the unit. The new design is also more suitable for integrated partial oxidation testing. The design, construction, and start-up of this reactor is described.

  19. Industrial application of fluidized-bed combustion, Anthracite Culm Combustion Program, A/E Technical Management Services. Final report

    SciTech Connect

    Not Available

    1981-01-01

    The Energy Research and Development Administration (now DOE) initiated the $80,000,000 Fluidized Bed Combustion Programs in 1976 and contracts were awarded to five participants. Subsequently, in 1977 there were three additional contracts awarded for the Anthracite Culm Program. The objectives were to determine which applications were most feasible, and to design, build and operate demonstration plants with capacities of 25 to 100 million Btu per hour output burning high sulfur coals and other fuels to obtain sufficient data to enable industry to scale up to larger plant sized installations. Contributions of each of the participants are discussed. Relative merits of each design approach is covered. Specific areas such as fuel feed systems, grid plate design, ignition systems, fly ash reinjection systems, particulate clean up and control systems are discussed. Remaining areas of concern are errosion, combustion efficiency and reliability.

  20. Pulsed atmospheric fluidized bed combustion. Technical progress report, July 1991--September 1991

    SciTech Connect

    Not Available

    1991-10-01

    The major accomplishments during this reporting period include completion of Task 1 and progression into Phase II, Task 2 design activities. A brief laboratory-scale test was conducted during this reporting period to confirm heat transfer coefficients for various sections of the Pulsed Atmospheric Fluidized bed Combustion (PAFBC) system. The heat transfer coefficient was determined to be approximately 50 Btu/hr ft{sup 2} {degrees}F inside the eductor and tailpipe of the pulse combustor as thin the fluidized bed. well as for the surfaces immersed within the fluidized bed. Communications with potential host sites for the Phase III field demonstration activities continued during this reporting period. These discussions along with discussions with environmental regulatory personnel in the State of Maryland indicate that the throughput of the field demonstration facility should be increased to greater than 36 million Btu/hr. An 8 in. {times} 8 in. fluidized bed unit would be too small to satisfy this requirement; its projected firing rate is only 33 million Btu/hr. Major effort during this reporting period was devoted to assessing the reasonableness of increasing the size of the field test facility from a technical and cost standpoint.

  1. Application of resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (REMPI-TOFMS) for on-line trace analysis of combustion and pyrolysis products in technical processes

    NASA Astrophysics Data System (ADS)

    Zimmermann, Ralf; Heger, H. J.; Dorfner, R.; Kettrup, A. A.; Boesl, Ulrich

    1997-05-01

    We present first applications of resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (REMPI-TOFMS) for on-line monitoring of technical water incinerator flue gases and coffee roasting process off- gases. The results were obtained with a newly developed, mobile REMPI-TOFMS device. The combination of laser induced resonance-enhanced multiphoton ionization and time-of-flight mass spectrometry represents a highly selective as well as sensitive analytical technique, well suited for species selective real-time on-line monitoring of trace-products in of-gases from thermal processes or technical incinerators. The achievable sensitivities are in the ppb-range or better for aromatic compounds. The high selectivity is due to the combination of mass- and optical selectivity, the high sensitivity is caused by the high cross sections of resonance-enhanced two photon ionization with lasers. On- line monitoring of trace chemicals, formed during combustion- or pyrolysis-processes, is useful e.g. for feed back steering of combustion processes in order to minimize the formation of hazardous byproducts or for optimization of the economic efficiency of thermal production processes.

  2. A coal-fired combustion system for industrial processing heating applications. Quarterly technical progress report, January 1995--March 1995

    SciTech Connect

    1995-04-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler fly ash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler fly ash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NOx burners on the PENELEC boilers. Therefore, a substantial portion of the required thermal input came from the fly ash.

  3. Fundamental characterization of alternate fuel effects in continuous combustion systems. Summary technical progress report, August 15, 1978-January 31, 1980

    SciTech Connect

    Blazowski, W.S.; Edelman, R.B.; Wong, E.

    1980-02-27

    The overall objective of this contract is to assist in the development of fuel-flexible combustion systems for gas turbines as well as Rankine and Stirling cycle engines. The primary emphasis of the program is on liquid hydrocarbons produced from non-petroleum resources. Fuel-flexible combustion systems will provide for more rapid transition of these alternative fuels into important future energy utilization centers (especially utility power generation with the combined cycle gas turbine). The specific technical objectives of the program are: (a) develop an improved understanding of relationships between alternative fuel properties and continuous combustion system effects, and (b) provide analytical modeling/correlation capabilities to be used as design aids for development of fuel-tolerant combustion systems. This is the second major report of the program. Key experimental findings during this reporting period concern stirred combustor soot production during operation at controlled temperature conditions, soot production as a function of combustor residence time, an improved measurement technique for total hydrocarbons and initial stirred combustor results of fuel nitrogen conversion. While the results to be presented concern a stirred combustor which utilizes premixed fuel vapor/oxidant mixtures, a new combustor which combusts liquid fuel injected into the reactor as a spray has been developed and will be described. Analytical program progress includes the development of new quasiglobal models of soot formation and assessment of needs for other submodel development.

  4. Review of the rice production cycle: by-products and the main applications focusing on rice husk combustion and ash recycling.

    PubMed

    Moraes, Carlos A M; Fernandes, Iara J; Calheiro, Daiane; Kieling, Amanda G; Brehm, Feliciane A; Rigon, Magali R; Berwanger Filho, Jorge A; Schneider, Ivo A H; Osorio, Eduardo

    2014-11-01

    One of the consequences of industrial food production activities is the generation of high volumes of waste, whose disposal can be problematic, since it occupies large spaces, and when poorly managed can pose environmental and health risks for the population. The rice industry is an important activity and generates large quantities of waste. The main solid wastes generated in the rice production cycle include straw, husk, ash, bran and broken rice. As such, the aim of this article is to present a review of this cycle, the waste generated and the identification of opportunities to use them. Owing to impacts that can be minimised with the application of rice husk ash as a by-product, this work is focused on the recycling of the main wastes. In order to achieve that, we performed theoretical research about the rice production cycle and its wastes. The findings point to the existence of an environmentally suitable use for all wastes from the rice production cycle. As rice, bran and broken rice have their main use in the food industry, the other wastes are highly studied in order to find solutions instead of landfilling. Straw can be used for burning or animal feeding. The husk can be used for poultry farming, composting or burning. In the case of burning, it has been used as biomass to power reactors to generate thermal or electrical energy. This process generates rice husk ash, which shows potential to be used as a by-product in many different applications, but not yet consolidated. PMID:25361542

  5. ENVIRONMENTAL ASSESSMENT OF UTILITY BOILER COMBUSTION MODIFICATION NOX CONTROLS: VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    The report gives results of an evaluation of combustion modification techniques for coal-, oil-, and gas-fired utility boilers, with respect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, and effect o...

  6. SITE PROGRAM EVALUATION OF THE SONOTECH PULSE COMBUSTION BURNER TECHNOLOGY - TECHNICAL RESULTS

    EPA Science Inventory

    A series of demonstration tests was performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (IRF) under the Superfund Innovative Technology Evaluation (SITE) program. These tests, twelve in all, evaluated a pulse combustion burner technology dev...

  7. Advanced combustion system for industrial boilers. Quarterly technical progress report, August 1987--October 1987

    SciTech Connect

    Attig, R.C.; Foote, J.P.; Millard, W.P.; Schulz, R.J.; Wagoner, C.L.

    1987-12-31

    The purpose of this project is to develop an advanced coal-combustion system for industrial boilers. With the new combustion system, coal could be used to replace oil and possibly gas as fuel for many industrial boilers. The advanced combustion system is comprised of several parts: (1) A new burner-design concept for coal fuels, developed from the familiar gas turbine combustor-can designs that have proven efficient, reliable, durable, and safe for the combustion of liquid fuel oils. (2) A coal storage and dense-phase feed system for injecting clean, ultrafine pulverized coal into the burner at a low velocity. (3) An automatic control system based on feedback from low-cost automotive combustion-quality transducers. A cold flow model of an initial phase of the new burner design and the associated laser flow-visualization techniques were developed during this quarter. A series of modifications of the initial cold flow model will be tested to establish details of design for the new burner. Also a 200 hp firetube boiler has been installed and tested using number 2 oil as a fuel. This boiler will be used for future combustion testing with the new burner and ultrafine pulverized coal. Additionally an ultrafine-coal injector has been designed which will be evaluated separately as a replacement for the oil gun in the firetube boiler. Two tons of deep-cleaned, ultrafine coal were received for initial tests with the coal injector.

  8. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1994--December 1994

    SciTech Connect

    1995-03-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was concentrated on conducting the 100 hour demonstration test. The test was successfully conducted from September 12th through the 16th. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler flyash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler flyash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NO{sub x} burners on the PENELEC boilers.

  9. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    SciTech Connect

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  10. Technical study on the possibilities of oil shale combustion in a fluidized bed furnace including cost estimates for a plant to be built

    NASA Astrophysics Data System (ADS)

    Kuehl, M.; Steller, P.

    1982-06-01

    The possibilities of oil shale combustion in a fluidized bed furnace were studied and the costs for a power plant were estimated. An overall concept of oil shale combustion in a fluidized bed furnace is drafted and the final plant size is established, allowing a scaling up of 200 t/hr steam. The concept was technically revised, resulting in a cost estimate of about 15% accuracy.

  11. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  12. TRACE METALS AND STATIONARY CONVENTIONAL COMBUSTION PROCESSES: VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a search of U.S. literature to identify published information about trace metals and Stationary Conventional Combustion Processes (SCCPs). The report summarizes the information found in the literature and includes specific references. It summarizes wha...

  13. Acid Rain Demonstration: The Formation of Nitrogen Oxides as a By-Product of High-Temperature Flames in Connection with Internal Combustion Engines

    NASA Astrophysics Data System (ADS)

    Driscoll, Jerry A.

    1997-12-01

    This demonstration illustrates the formation of nitrogen oxides resulting from a high temperature flame. The procedure is to burn hydrogen from a delivery tube in a 6 liter erlenmeyer flask filled with oxygen. (see original paper for safety precautions.) As the burning proceeds the water from the combustion condenses on the wall of the flask and eventually drips from the mouth of the flask. Air displaces the oxygen consumed. The nitrogen from the air reacts with the oxygen in the presence of the high temperature flame in the flask forming colorless nitric oxide which reacts further to form visible brown nitrogen dioxide in the flask. After the burn water can be introduced into the flask , capped, and shaken. An acid mist forms which slowly dissolves. An acid-base indicator will show that the solution is acid at about a pH 1-2 from nitrous and nitric acid. Nitrogen oxides do not form until the temperature is at least 1300 °C. The hydrogen flame in this demonstration is in the neighborhood of 3000 °C. Editor's Note: Please read Charles Braun's letter regarding the safety issues of the demonstration (JCE 1999, 76, 757).

  14. Analysis of enclosed internal-combustion-engine operation with water as the working fluid. Technical note

    SciTech Connect

    Rein, C.R.

    1983-09-01

    It is desirable to develop a totally enclosed system that contains an internal combustion engine and all the accessories required to produce at least 480 hp-hr of work. The system must perform underwater without external support and must release nothing but heat to the water. Most prior development has dealt with systems very similar to air breathing engines. Fuel, oxygen and a diluent gas such as nitrogen are ingested through the same kinds of intake devices used in the atmosphere. The intent is to imitate open air operation as much as possible in order to reduce hardware development. The exhaust gases are cleansed primarily of the water and carbon dioxide products of combustion and perhaps secondarily of other components such as unburned hydrocarbons, carbon monoxide, and compounds produced by reactions involving the diluent.

  15. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1995-04-01

    Experiments performed support the hypothesis that a reducing atmosphere during fluidized bed coal combustion contributes to the formation of agglomerates. Reducing conditions are imposed by controlling the amount of combustion air supplied to the combustor, 50% of theoretical in these experiments. These localized reducing conditions may arise from either poor lateral bed mixing or oxygen-starved conditions due to the coal feed locations. Deviations from steady-state operating conditions in bed pressure drop may be used to detect agglomerate formation. Interpretation of the bed pressure drop was made more straightforward by employing a moving average difference method. During steady-state operation, the difference between the moving point averages should be close to zero, within {plus_minus}0.03 inches of water. Instability within the combustor, experienced once agglomerates begin to form, can be recognized as larger deviations from zero, on the magnitude of {plus_minus}0.15 inches of water.

  16. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion. Final technical report

    SciTech Connect

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  17. Pulsed atmospheric fluidized bed combustion. Technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  18. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    SciTech Connect

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  19. 10 CFR 35.75 - Release of individuals containing unsealed byproduct material or implants containing byproduct...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... revision of NUREG-1556, Vol. 9, “Consolidated Guidance About Materials Licenses: Program-Specific Guidance... material or implants containing byproduct material. 35.75 Section 35.75 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Technical Requirements § 35.75 Release of...

  20. [Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion]. Quarterly technical progress report, October 1--December 31, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, October 1 through December 31, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/pressurized circulating fluidized bed gas source; (2) hot gas cleanup units to mate to all gas streams; (3) combustion gas turbine; (4) fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  1. Coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    1995-08-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. This includes new installations and those existing installations that were originally designed for oil or gas firing. The data generated by these projects must be sufficient for private-sector decisions on the feasibility of using coal as the fuel of choice. This work should also provide incentives for the private sector to continue and expand the development, demonstration, and application of these combustion systems. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications is being developed under contract DE-AC22-91PC91161 as part of this DOE development program. The current contract represents the third phase of a three-phase development program. Phase I of the program addressed the technical and economic feasibility of the process, and was initiated in 1987 and completed 1989. Phase II was initiated in 1989 and completed in 1990. During Phase II of the development, design improvements were made to critical components and the test program addressed the performance of the process using several different feedstocks. Phase III of the program was initiated September 1991 and is scheduled for completion in 1994. The Phase III research effort is being focused on the development of a process heater system to be used for producing value-added vitrified glass products from boiler/incinerator ashes and selected industrial wastes.

  2. A Novel High-Heat Transfer Low-NO{sub x} Natural Gas Combustion System. Final Technical Report

    SciTech Connect

    Abbasi, H.

    2004-01-01

    A novel high-heat transfer low NO(sub x) natural gas combustion system. The objectives of this program are to research, develop, test, and commercialize a novel high-heat transfer low-NO{sub x} natural gas combustion system for oxygen-, oxygen-enriched air, and air-fired furnaces. This technology will improve the process efficiency (productivity and product quality) and the energy efficiency of high-temperature industrial furnaces by at least 20%. GTI's high-heat transfer burner has applications in high-temperature air, oxygen-enriched air, and oxygen furnaces used in the glass, metals, cement, and other industries. Development work in this program is focused on using this burner to improve the energy efficiency and productivity of glass melting furnaces that are major industrial energy consumers. The following specific project objectives are defined to provide a means of achieving the overall project objectives. (1) Identify topics to be covered, problems requiring attention, equipment to be used in the program, and test plans to be followed in Phase II and Phase III. (2) Use existing codes to develop models of gas combustion and soot nucleation and growth as well as a thermodynamic and parametric description of furnace heat transfer issues. (3) Conduct a parametric study to confirm the increase in process and energy efficiency. (4) Design and fabricate a high-heat transfer low-NOx natural gas burners for laboratory, pilot- and demonstration-scale tests. (5) Test the high-heat transfer burner in one of GTI's laboratory-scale high-temperature furnaces. (6) Design and demonstrate the high-heat transfer burner on GTI's unique pilot-scale glass tank simulator. (7) Complete one long term demonstration test of this burner technology on an Owens Corning full-scale industrial glass melting furnace. (8) Prepare an Industrial Adoption Plan. This Plan will be updated in each program Phase as additional information becomes available. The Plan will include technical and

  3. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, April 1--June 30, 1992

    SciTech Connect

    Not Available

    1992-12-01

    This quarterly technical progress report summarizes work completed during the Seventh Quarter of the First Budget Period, April 1 through June 30, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion will include the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams. Combustion Gas Turbine; Fuel Cell and associated gas treatment; and Externally Fired Gas Turbine/Water Augmented Gas Turbine. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  4. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Not Available

    1992-12-01

    This quarterly technical progress report summarizes work completed during the Sixth Quarter of the First Budget Period, January 1 through March 31, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. The major emphasis during this reporting period was expanding the test facility to address system integration issues of hot particulate removal in advanced power generation systems. The conceptual design of the facility was extended to include additional modules for the expansion of the test facility, which is referred to as the Power Systems Development Facility (PSOF). A letter agreement was negotiated between Southern Company Services (SCS) and Foster Wheeler (FW) for the conceptual design of the Advanced Pressurized Fluid-Bed Combustion (APFBC)/Topping Combustor/Gas Turbine System to be added to the facility. The expanded conceptual design also included modifications to the existing conceptual design for the Hot Gas Cleanup Test Facility (HGCTF), facility layout and balance of plant design for the PSOF. Southern Research Institute (SRI) began investigating the sampling requirements for the expanded facility and assisted SCS in contacting Particulate Control Device (PCD) vendors for additional information. SCS also contacted the Electric Power Research Institute (EPRI) and two molten carbonate fuel cell vendors for input on the fuel cell module for the PSDF.

  5. Investigation of the combustion characteristics of fuel droplet arrays. Final technical report

    SciTech Connect

    Sangiovanni, J. J.

    1980-06-01

    The program was directed at establishing the nature and extent of droplet/droplet interaction and the multicomponent nature of real fuels on the ignition and combustion characteristics of spray flames. A unique free-droplet combustion experiment provided the present investigation with a well-controlled simulation of spray combustion. Various theoretical models were used. Experimental observations indicate that ignition delay times increase sharply by about three-fold when droplet spacings are reduced to less than five droplet diameters. Results of theoretical predictions indicate that as droplet spacing is made smaller, the effect of droplet/droplet interaction on ignition delay becomes increasingly more pronounced for small droplets, low gas phase temperatures, and fuels of low volatility. Although this result suggests that ignition of heavy grades of alternative liquid fuels will be inhibited in dense sprays, other theoretical and experimental results indicate that the addition of a small quantity of a volatile component to a heavy fuel shortens ignition times substantially. Observed burning times show a gradual, but substantial, increase as a result of droplet/droplet interaction; as droplet spacing is decreased from 40 to 5 diameters, burning times increase by about 60%. A compilation of data for an extensive range of experimental parameters show universally that the amount by which droplet/droplet interaction increases burning times depends only on droplet spacing and not on the fuel type or the ambient conditions. Burning times of multicomponent fuel droplets are found to be weighted heavily toward the burning time for the least volatile component. Theoretical predictions demonstrate that this independence of burning times on the initial fuel mixture proportions can be ascribed to liquid phase mass diffusion limitations.

  6. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.D.

    1993-04-01

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed boilers is in progress. Preliminary results indicate that at least five boilers were experiencing some form of bed material agglomeration. In these instances it was observed that large particles were forming within the bed which were larger that the feed. Four operators could confirm that the larger bed particles had formed due to bed particles sticking together or agglomerating. Deposit formation was reported at nine sites with these deposits being found most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Examples of these agglomerates and deposits have been received from five of the surveyed facilities. Also during this quarter, a bulk sample of Illinois No. 6 coal was obtained from the Fossil Energy Program at Ames Laboratory here at Iowa State University and prepared for combustion tests. This sample was first ground to a top-size of 3/8`` using a jaw crusher then a size fraction of 3/8`` {times} 8 (US mesh) was then obtained by sieving using a Gilson Test-Master. This size fraction was selected for the preliminary laboratory-scale experiments designed to simulate the dense bed conditions that exist in the bottom of CFB combustors. To ensure uniformity of fuel composition among combustion runs, the sized coal was riffled using, a cone and long row method and stored in bags for each experiment. During this quarter additional modifications were made to achieve better control of fluidization regimes and to aid in monitoring the hydrodynamic and chemical conditions within the reactor.

  7. Combustion properties of coal-char blends: NO{sub x} emission characteristics. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Rostam-Abadi, M.; Khan, L.; Khan, S.; Smoot, L.D.; Germane, G.J.; Eatough, C.N.

    1993-09-01

    Tests under pulverized coal combustion conditions suggest that NO{sub x} formed during release of volatile matter far exceed NO{sub x} formed during combustion of the resulting char. This is attributed to char/NO{sub x} interactions by both direct reduction of NO{sub x} by carbon and char-catalyzed reduction by CO. This implies combustion of char not only produces substantially lower NO{sub x} but the presence of char in the flame during initial stages of combustion may potentially provide catalytic activity for reduction of NO{sub x} produced from volatile nitrogen. The goal of the project is to determine if the concept of NO{sub x} reduction by char/NO{sub x} interactions, while maintaining a high combustion efficiency by co-firing coal with char, is a technically feasible way to reduce NO{sub x}, emissions. The project will provide important combustion data required to establish the feasibility of utilizing chars in industrial combustion applications and the advantages of burning coal-char blends in reducing NO{sub x} and SO{sub 2} emissions. During the reporting period, 19 runs were made with a continuous feed charring oven (CFCO) to produce 237 pounds of char(about 16%vm) required for preparing coal-char blends.

  8. Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993

    SciTech Connect

    Crelling, J.C.

    1993-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

  9. Combustion properties of coal-char blends: NO{sub x} emission characteristics. Interim final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Rostam-Abadi, M.; Khan, L.; Khan, S.; Smoot, L.D.; Germane, G.J.; Eatough, C.N.

    1993-12-31

    Under pulverized coal combustion conditions, NO{sub x} formed during the release of volatile matter far exceed NO{sub x} formed from combustion of the resulting char. It is believed that interactions of NO{sub x} with char is responsible for the reduced NO{sub x} formation from the combustion of char. The goal of this research is to assess the potential technical and economical benefits of co-firing coal-char blends in pulverized coal boilers to reduce NO{sub x}. The rationale for the proposed research is that the presence of char in the flame during the initial stages of combustion may provide catalytic activity for reduction of NO{sub x} produced from volatile nitrogen. This project is a cooperative effort between the Illinois State Geological Survey (ISGS) and BYU/ACERC. Seven hundred and fifty pounds of three coal-char blends containing 12.5%, 25%, and 50% char and 125 pounds of a coal-activated carbon blend containing 12.5% activated carbon were prepared. The volatile matter contents of the blends ranged from 27.3 to 35.6% (dry basis). Char (16.2 wt% volatile matter) was made from an Illinois No. 6 coal (Peabody Coal Company) in a continuous feed charring oven under mild gasification conditions. Nine combustion tests will be performed with the coal and blends in a 0.5--1.0 MBtu/hr combustor located at BYU. Combustion data will be analyzed to determine the effect of blend type, stoichiometry, and flame temperature on NO{sub x} formation, ignition characteristics, flame stability, and combustion efficiency. A four month no-cost extension has been requested for the project. The results of the combustion tests will be reported in the final technical report in December 1993.

  10. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, December 1, 1979-February 29, 1980

    SciTech Connect

    Garg, D; Givens, E N; Clinton, J H; Tarrer, A R; Guin, J A; Curtis, C W; Huang, S M

    1980-03-01

    This report describes work done in study of the role of coal minerals and by-product metallic wastes in coal liquefaction. Samples of Elkhorn No. 3 coal (Letcher County, Kentucky), Robena pyrite and several minerals and metallic by-product waste were acquired. The thermal behavior of various minerals and metallic by-product wastes was evaluated by thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) in the presence of hydrogen, nitrogen and air. The coal process development unit was operated for 220 hours to obtain baseline data and provide information on the catalytic activity of Robena pyrite in solvent hydrogenation and coal liquefaction. We established that the base line reaction conditions to evaluate the activity of the various minerals, metallic wastes and by-products will be a tubing-bomb reactor of 46.3 ml volume at a reaction temperature of 450/sup 0/C for reaction times of 60 minutes. The reduced pyrite, Robena pyrite and Siniola Mexico pyrite were found to give similar product distribution and coal conversion. The oil production in the cases of reduced pyrite and pyrite was 4 times higher than that of no-catalyst run. Iron oxide (Fe/sub 2/O/sub 3/) was shown to give slightly higher coal conversion and oil production that pyrites and reduced pyrite. Presulfided Co-Mo-Al was found to give the highest coal conversion and oil production. The increase in oil production in the case of Co-Mo-Al was due to the conversion of both asphaltenes and preasphaltenes.

  11. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    SciTech Connect

    Yoginder P. Chugh

    2002-10-01

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

  12. Anaerobic digestion of brewery byproducts

    SciTech Connect

    Keenan, J.D.; Kormi, I.

    1981-01-01

    Energy recovery in the brewery industry by mesophilic anaerobic digesion of process by-products is technically feasible. The maximum achievable loading rate is 6g dry substrate/L-day. CH4 gas production declines as the loading rate increases in the range 2-6 g/L day. CH4 production increases in the range 8-15 days; optimal design criteria are a 10-day detention time with a loading rate of 6 g dry substrate/L day.

  13. Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  14. Advancing natural gas combustion science and technology low NOx. Final technical report, May 1989-September 1992

    SciTech Connect

    Correa, S.M.

    1992-12-01

    The three issues of NOx, CO/UHC and dynamics were studied. First, NOx was measured in lean premixed methane combustion stabilized over a 5 cm dia. perforated-plate burner in the range 3-10 atm, inlet temperature 300-615K (80-647 F), and fuel-air equivalence ratio 0.5 - 0.8. Experimental data compared to within 50% with predictions of a stirred/plug-flow reactor model. For flames below about 1750K (2690 F), (i) NOx formation rates in post-flame gas are < 1 ppm/ms, so combustors can be lengthened to burn out CO and unburned hydrocarbons without increasing NOx and (ii) NOx formation becomes slow enough to decouple from the turbulence, so the flameholder shape can be optimized based on CO and dynamics. Second, analyses suggest that CO quenching effects are generally too small to be significant but (i) CO can be quenched in stagnation point flow of post-flame gas towards the combustor wall, (ii) CO can be quenched in turbulent eddies if unburned fuel-air premixture escapes the flame zone and pyrolyzes downstream in cooler flow, and (iii) the acoustic interaction can exacerbate CO emissions in those cases where the base CO is high (e.g., 10-100 times equilibrium levels) and the pressure fluctuations are large (e.g., 5-10% peak-to-peak). Except in these extreme cases, however, CO/UHC emissions should not be a limiting factor in the use of lean premixed combustion to minimize NOx. Last, Discrete Vortex calculations were compared with data from a 13.5 cm (5.3 in.) burner at lean conditions approaching blowoff. Strouhal shedding frequencies were detected, suggesting a role for flameholder-shed vorticity.

  15. Coal combustion under conditions of blast furnace injection. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect

    Crelling, J.C.

    1994-09-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposal is a follow-up to one funded for the 1992-93 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter samples of two feed coals and the IBCSP 112 (Herrin No. 6) were prepared for reactivity testing and compared to blast furnace coke, and char fines taken from an active blast furnace. As the initial part of a broad reactivity analysis program, these same samples were also analyzed on a thermogravimetric analyzer (TGA) to determine their combustion and reactivity properties.

  16. By-Product Feeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By-product feeds are generated from the production of food, fiber, and bio-energy products for human consumption. They include plant feedstuffs such as hulls, stalks, peels, and oil seed meals, and animal by-products such as blood meal, fats, bone meal, or processed organ meats. Some feed by-product...

  17. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Increased emphasis is placed on fundamental and generic research at Lewis Research Center with less systems development efforts. This is especially true in combustion research, where the study of combustion fundamentals has grown significantly in order to better address the perceived long term technical needs of the aerospace industry. The main thrusts for this combustion fundamentals program area are as follows: analytical models of combustion processes, model verification experiments, fundamental combustion experiments, and advanced numeric techniques.

  18. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, 1 March 1980-31 May 1980

    SciTech Connect

    Garg, D; Schweighardt, F K; Givens, E N; Clinton, J H; Tarrer, A R; Guin, J A; Curtis, C W; Huang, S M

    1980-06-01

    This report describes work done in a study of the role of coal minerals and by-product metallic wastes in coal liquefaction. The thermal behavior of various minerals and metallic by-product wastes was evaluated by thermal gravimetric analysis and differential thermal analysis in the presence of hydrogen, nitrogen, and air. The CPDU was operated for 220 hours to obtain baseline data and provide information on the catalytic activity of Robena pyrite in solvent hydrogenation and coal liquefaction. A number of minerals were screened for catalytic activity toward coal liquefaction in a tubing-bomb reactor. The catalytic activity of the minerals was assessed by comparing the product distributions both in the presence of minerals and their absence. The use of a Bronson Sonifier was initiated in March to accelerate and improve the solvent separation technique. The addition of lime to the reaction mixture practically killed the liquefaction reaction. The addition of dolomite, rutile, illite, quartz, zircon, and calcite to the reaction mixture showed no significant improvement over that of a no additive run. The addition of zinc oxide and ilmenite showed slight improvement. Robena pyrite and Co-Mo-Al showed significant improvement in coal conversion and production of benzene solubles and gases. Iron oxide (Fe/sub 2/O/sub 3/) gave the highest conversion of coal and production of benzene solubles among all the minerals tested so far.

  19. Mathematical modeling and high-speed imaging of technical combustion processes

    NASA Astrophysics Data System (ADS)

    Wolfrum, Juergen M.

    1995-05-01

    The high spectral brightness and short pulse duration of tunable high power excimer lasers allows the 2D and 3D application of techniques like laser-induces fluorescence (LIF), Mie and Rayleigh scattering for high speed imaging in industrial applications. The construction of these lasers allows easy transportation and installation to perform measurements at industrial applications. The construction of these lasers allows easy transportation and installation to perform measurements at industrial facilities which can not be moved. In combination with suitable filters and gated image-intensified CCD cameras techniques are now available to measure multidimensional distributions of temperatures and concentrations. Simultaneous measurements of temperature fields and hydroxyl radical distributions were performed to study the influence of turbulence on large premixed natural gas flames. A combination of temperature and nitric oxide concentration measurements yielded information about the correlations between NO formation and burner design in domestic gas burners. Detailed experimental studies on the carbon dioxide-laser induced ignition of CH3OH/O2-mixtures in quartz reactor are performed to supply quantitative data for direct comparison with the numerical results of a mathematical model for ignition processes in 2D geometries. Temporally and spatially resolved measurements of flame position and OH concentration are presented for different conditions and compared directly to the computational results. LIF, Rayleigh and Mie scattering were used for measurements of temperature fields, fuel and OH radical distributions in engines. Finally a novel type of combustion control system for municipal waste incinerators using fast infrared thermography to obtain information about the temperature distribution in the furnace interior is described. A fast scanner camera operating in the mid infrared was installed which allows the direct imaging of the fuel bed through the overlying

  20. Development and testing of commercial-scale, coal-fired combustion systems: Phase 3. Technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-08-01

    The US Department of Energy`s Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  1. Prototype anthracite culm combustion boiler/heater unit. Quarterly technical report No. 4, July 1-September 30, 1979

    SciTech Connect

    Not Available

    1980-01-01

    There are currently about 910 million cubic yards of anthracite culm (mine refuse) contained in 800 separate banks in a 480 square mile area in the Wilkes-Barre (W-B) anthracite mining region. Although this material represents a significant fuel value, equivalent to approximately 1.25 billion barrels of fuel oil, the culm banks have accumulated because no satisfactory method of combusting this fuel was available until the relatively recent development of the atmospheric fluidized bed (AFB) steam generator. A program was initiated in October 1978 to design, construct and evaluate a 100,000 pph AFB steam generator burning anthracite culm with the addition of fresh anthracite, if required. The unit is to demonstrate the technical, economical and environmental feasibility of producing 150 psig saturated steam for district heating in downtown W-B. Phase I of the program consists of the design of the atmospheric fluidized bed (AFB) plant and a hot model test program. Phase II of the program consists of construction, operation, testing and evaluation of the boiler and boiler plant.

  2. Development and testing of commercial-scale, coal-fired combustion systems: Phase 3, Technical progress report, October 1993--December 1993

    SciTech Connect

    1993-12-31

    The objective of this Phase III program for the development of a commercial scale, coal-fired combustion system is to develop and integrate all system components from fuel through total system controls building upon the prior Phase I and II development accomplishments of the MTCI pulse combustion technology and to then field test the complete system in order to evaluate its potential marketability. During this 13th quarter, a steam generation cost model was developed to compare the economics of steam production in the commercial-scale, coal-fired pulse combustion system with that in a natural gas- or oil-fired system. The purpose of this model is to define the competitive capital cost range for the MTCI system under a specified set of technical and economic conditions. A current preliminary estimate of the MTCI pulse coal combustion system capital cost turns out to be about $120,000 and this is within the target range of the US commercial boiler market sector. European differential fuel costs are expected to be more favorable. Several conceptual arrangements for coal reburn and char burnout were evaluated. The arrangement was selected based on the following considerations viz. utilization of the existing pulse combustor as is, minimization of footprint and vertical space requirement, good mixing of coal, steam and combustion products in the reburn section, and adequate char residence time in the char burnout section.

  3. Investigation of heat transfer and combustion in the advanced Fluidized Bed Combustor (FBC). Technical progress report No. 13, October 1996--December 1996

    SciTech Connect

    Lee, Seong W.

    1997-01-01

    This technical report summarizes the research conducted and progress achieved during the period from October 1, 1996 to December 31, 1996. Numerical simulation was acquired from the particle trajectories by means of the Reynolds Stress Model (REM) with general algebraic expressions. The typical particle trajectories for bunch particle injection were predicted by the top view, the side view, and the isolated 3-dimensional view. The simulation of particle trajectories showed top view, side view, and isolated 3-dimensional view. Numerical simulation for the bunch particle injection will be continued to understand the particle characteristics in the combustion chamber. The system test was conducted on the exploratory hot model. Thermal performance and combustion products of the test results were analyzed and predicted. The effect of cooling water on the combustion chamber was studied using the natural gas as a one of firing fuel. Without a providing of cooling water, overall combustion temperatures are increased. A computer-assisted data acquisition system was employed to measure the flue gas compositions/stack temperature. The measurement of combustion products was conducted by the gas analyzer.

  4. Molecular Beam and Surface Science Studies of Heterogeneous Reaction Kinetics Including Combustion Dynamics. Final Technical Report.

    SciTech Connect

    Sibener, S. J.

    2006-06-23

    This research program examined the heterogeneous reaction kinetics and reaction dynamics of surface chemical processes which are of direct relevance to efficient energy production, condensed phase reactions, and mateials growth including nanoscience objectives. We have had several notable scientific and technical successes. Illustrative highlights include: (1) a thorough study of how one can efficiently produce synthesis gas (SynGas) at relatively low Rh(111) catalyst temperatures via the reaction CH{sub4}+1/2 O{sub2} {r_arrow} CO+2H{sub2}. In these studies methane activation is accomplished utilizing high-kinetic energy reagents generated via supersonic molecular beams, (2) experiments which have incisively probed the partial oxidation chemistry of adsorbed 1- and 2- butene on Rh and ice, as well as partial oxidation of propene on Au; (3) investigation of structural changes which occur to the reconstructed (23x{radical}3)-Au(111) surface upon exposure to atomic oxygen, (4) a combined experimental and theoretical examination of the fundamental atomic-level rules which govern defect minimization during the formation of self-organizing stepped nanostructures, (5) the use of these relatively defect-free nanotemplates for growing silicon nanowires having atomically-dimensioned widths, (6) a combined scanning probe and atomic beam scattering study of how the presence of self-assembling organic overlayers interact with metallic supports substrates - this work hs led to revision of the currently held view of how such adsorbates reconfigure surface structure at the atomic level, (7) an inelastic He atom scattering study in which we examined the effect of chain length on the low-energy vibrations of alkanethiol striped phase self-assembled monolayers on Au(111), yielding information on the forces that govern interfacial self-assembly, (8) a study of the vibrational properties of disordered films of SF{sub6} adsorbed on Au(111), and (9) a study of the activated chemistry and

  5. Advanced byproduct recovery: Direct catalytic reduction of SO{sub 2} to elemental sulfur. First quarterly technical progress report, [October--December 1995

    SciTech Connect

    Benedek, K.; Flytzani-Stephanopoulos, M.

    1996-02-01

    The team of Arthur D. Little, Tufts University and Engelhard Corporation will be conducting Phase I of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. this catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria or zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an ongoing DOE-sponsored University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicates that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. the performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  6. Byproducts to New Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Alaska fisheries industry harvests over 2 million metric tons of wild fish annually, and after processing, over 1 million metric tons of fish byproducts are produced. This presentation will discuss current utilization of products made from fish byproducts in Alaska, and opportunities for enhanci...

  7. ENVIRONMENTAL ASSESSMENT OF NOX CONTROL ON A SPARK-IGNITED LARGE BORE RECIPROCATING INTERNAL COMBUSTION ENGINE. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    Volume I of the report gives emission results for a spark-ignited, largebore, reciprocating, internal-combustion engine operating both under baseline (normal) conditions, and with combustion modification controls to reduce NOx emissions to levels below the proposed new source per...

  8. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Harb, J.N.

    1994-01-28

    A thorough understanding of the fundamental processes which govern the mineral behavior is essential to the development of tools to predict and manage ash deposition. The purpose of the current project is to perform a fundamental study of mineral transformations and ash deposition during staged combustion of pulverized coal. Staging of combustion air is a strategy used to reduce NO{sub x} emissions from coal-fired units. It is applicable to both advanced combustion systems currently under development (e.g. HITAF) and low NO{sub x} retrofits for existing units. These low NO{sub x} combustion strategies produce fuel rich or reducing conditions in the lower furnace. Therefore, the combustion history of the coal particles is significantly changed from that experienced under normal combustion conditions. A carefully designed experimental study is needed to examine the effects of altered combustion conditions on mineral matter release, fly ash formation, particle stickiness and deposit formation. This project uses state-of-the-art analytical equipment and a well-characterized laboratory combustor to address this need. This report describes work in the initial quarter of a fundamental, three-year study of mineral transformations and ash deposition during staged combustion.

  9. The Fossil Fuel Combustion Waste Leaching Code -- including the GMIN chemical equilibrium model and the HELP water balance model. Volume 2, Technical manual for the FOWL-GH{trademark} code

    SciTech Connect

    Rai, D.

    1993-12-01

    This document is a technical reference manual for FOWL-GH{trademark}, the FOssil Fuel Combustion Waste Leaching Code. FOWL-GH{trademark} predicts the chemical composition of fifteen chemical constituents (Ba, Ca, Cd, CO{sub 3} Cr, Cu, Mo, SO{sub 4}, Sr, As, B, Ni, Se, Zn, and total dissolved solids), plus the pH (H{sup +}), as a function of time at electric utility by-product disposal sites. Boron and Zn are considered only in the ponded site option. These sites may contain fly ash, bottom ash, or flue gas desulfurization (FGD) sludges. FOWL-GH{trademark} considers both landfill and slurry pond disposal sites. FOWL-GH{trademark} is a completely restructured and recoded version of the original FOWL{trademark} model. The major improvements in FOWL-GH{trademark} are the inclusion of a chemical equilibrium model (GMIN) to perform the geochemical calculations, a recoded version of the Hydrologic Evaluation of Landfill Performance (HELP) model for water-balance calculations at landfill sites, the capability to model slurry pond sites, an enhanced user-oriented interface, improved mechanistic (thermodynamic) and empirical data for several elements, and the capability to model concentrations of highly soluble salts. This manual describes the scientific basis for the calculations in FOWL-GH{trademark}. An overview of the structure of the model is also provided. The reliability of the geochemical-module calculations is demonstrated by an extensive comparison of model calculations with experimental data from laboratory batch experiments and data collected at field disposal sites. The results show good agreement with the experimental and field data for most of the chemical constituents included in the model.

  10. Coal combustion: Effect of process conditions on char reactivity. Final technical report, September 1, 1991--May 31, 1995

    SciTech Connect

    Zygourakis, K.

    1996-02-01

    Coal utilization involves two major stages: coal pyrolysis and char combustion. Figure 1.1 summarizes the steps of these processes. During the pyrolysis stage, heated particles from plastic coals soften, swell and release their volatiles before resolidifying again. During the combustion or gasification stage, char particles may ignite and fragment as the carbon is consumed leaving behind a solid ash residue. Process conditions such as pyrolysis heating rate, heat treatment temperature, pyrolysis atmosphere, and particle size are shown to chemically and physically affect the coal during pyrolysis and the resulting char. Consequently, these pyrolysis conditions as well as the combustion conditions such as the oxygen concentration and combustion temperature affect the char reactivity and ignition phenomena during the combustion stage. Better understanding of the fundamental mechanisms of coal pyrolysis and char combustion is needed to achieve greater and more efficient utilization of coal. Furthermore, this knowledge also contributes to the development of more accurate models that describe the transient processes involved in coal combustion. The project objectives were to investigate the effect of pyrolysis conditions on the macropore structure and subsequent reactivity of chars.

  11. Control of trace metal emissions during coal combustion. Technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Ho, Thomas C.

    1996-01-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold end of the process by air-pollution control devices such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions at the hot end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process. Specifically, the technology is to employ suitable sorbents to reduce the amount of metal volatilization during combustion and capture volatized metal vapors. The objectives of this project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. The following progress has been made during the performance period from Oct. 1, 1995 through Dec. 31, 1995: (1) Additional combustion experiments involving both coal and wood pellets were carried out in the constructed quartz fluidized bed combustor. (2) A new Buck Scientific Model 210VGP Atomic Absorption spectrophotometer equipped with a continuous flow hydride generator especially for arsenic and selenium was installed for the project. (3) A paper, entitled ``Capture of Toxic Metals by Various Sorbents during Fluidized Bed Coal Combustion,`` was presented at the 1995 AIChE Annual Meeting held in Miami, November 13--17, 1995. (4) A manuscript, entitled ``Trace Metal Capture by Various Sorbents during Fluidized Bed Coal Combustion,`` was submitted to the 26th International Symposium on Combustion for presentation and for publication in the symposium proceedings. 1 ref., 3 tabs.

  12. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    SciTech Connect

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J.

    1998-12-31

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  13. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992

    SciTech Connect

    Sublette, K.L.

    1992-12-31

    With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

  14. Experimental investigation of synfuel spray characteristics and combustion dynamics. Quarterly technical progress report, January 1-March 31, 1981

    SciTech Connect

    1981-04-01

    Objective is to study both petroleum-based oils and synthetic fuels in spray combustion, by using advanced optical diagnostic techniques to study the processes of fuel injection and atomization, droplet ignition, and spray flame combustion. During this period, efforts were focused on the completion of the cold spray test facility, the design of the monodisperse droplet combustor, and the construction of an oil burner with the gathering of preliminary holography data. (DLC)

  15. Management of dry flue gas desulfurization by-products in underground mines

    SciTech Connect

    Sevim, H.

    1997-06-01

    Disposal of coal combustion by-products (CCBs) in an environmentally sound manner is a major issue facing the coal and utility industries in the US today. Disposal into abandoned sections of underground coal mines may overcome many of the surface disposal problems along with added benefits such as mitigation of subsidence and acid mine drainage. However, many of the abandoned underground coal mines are located far from power plants, requiring long distance hauling of by-products which will significantly contribute to the cost of disposal. For underground disposal to be economically competitive, the transportation and handling cost must be minimized. This requires careful selection of the system and optimal design for efficient operation. The materials handling and system economics research addresses these issues. Transportation and handling technologies for CCBs were investigated from technical, environmental and economic points of view. Five technologies were found promising: (1) Pneumatic Trucks, (2) Pressure Differential Rail Cars, (3) Collapsible Intermodal Containers, (4) Cylindrical Intermodal Tanks, and (5) Coal Hopper Cars with Automatic Retractable Tarping. The first two technologies are currently being utilized in transporting by-products from power plants to disposal sites, whereas the next three are either in development or in conceptualization phases. In this research project, engineering design and cost models were developed for the first four technologies. The engineering design models are in the form of spreadsheets and serve the purpose of determining efficient operating schedules and sizing of system components.

  16. 10 CFR 35.63 - Determination of dosages of unsealed byproduct material for medical use.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Determination of dosages of unsealed byproduct material for medical use. 35.63 Section 35.63 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Technical Requirements § 35.63 Determination of dosages of unsealed byproduct material for medical use. (a) A licensee shall...

  17. Behavior of sulfur and chlorine in coal during combustion and boiler corrosion. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Chou, C.L.; Hackley, K.C.; Donnals, G.L.; Cao, J.; Ruch, R.R.; Pan, W.P.; Shao, D.

    1992-08-01

    The goal of this project is to study the evolution of gaseous sulfur and chlorine species during temperature-controlled pyrolysis and combustion and their effect on boiler corrosion. We have been developing two techniques for determining the gas evolution profiles of sulfur and chlorine during coal pyrolysis and combustion. First, using a pyrolysis-combustion system in combination with a quadrupole gas analyzer, the evolution of sulfur dioxide (SO{sub 2}) in combustion gas during temperature-programmed coal pyrolysis-combustion was monitored. When the atmosphere of the combustion chamber was changed to a reducing condition, gaseous COS and H{sub 2}S were also detected in the combustion gas. Detection of hydrogen chloride by QGA has been improved by using a larger-diameter (75 {mu}m) capillary tubing. The HC1 evolution profile during the pyrolysis of coal IBC-109 was determined by QGA and by a chloride ion selective electrode for quantitative purposes. Second, the technique of thermogravimetry (TG) in conjunction with Fourier transform infrared (FTIR) spectroscopy was used to characterize gaseous species during coal pyrolysis. Gas evolution profiles of sulfur (SO{sub 2} and COS), chlorine (HC1), and nitrogen (NH{sub 3} and HCN) species were determined for coal IBC-109. Similar release profiles of HCI and NH{sub 3} supported an interpretation that chlorine gnd nitrogen are closely associated in coal. COS may be formed by reaction of CO with H{sub 2}S in the gas phase. A mass balance study of chlorine evolution from coal IBC-109 in a TG-FTIR experiment was completed; the chloride dissolved in solutions was determined by an ion chromatographic technique.

  18. Control of trace metal emissions during coal combustion. Technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Ho, T.C.

    1995-10-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to reduce the amount of metal volatilization during combustion and capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor.

  19. Control of trace metal emissions during coal combustion. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Ho, T.C.

    1995-07-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor.

  20. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, July 1, 1995-- September 30, 1995

    SciTech Connect

    Harb, J.N.

    1995-12-31

    Progress during the eighth quarter of a three-year study was made in three task areas: (1) analysis of coals; (3) parametric testing of the target coals, and (4) analysis of samples from the combustion tests. Routines for automated analysis of coal and mineral associations were completed and are now functional on our new ISIS system. Work on data processing which led to the development of a new means of interpreting composition information from the SEM was also completed during the quarter. This work is expected to yield substantial benefits in understanding the ash transformations during combustion. Several additional ash and deposit samples were collected this quarter. Deposition results have been explained qualitatively and samples has been mounted for quantitative analysis. A detailed characterization of mixing and coalescence was performed during the quarter. Results indicate that combustion under stage conditions does not change the chemistry of the final ash produced. Specifically, both iron and potassium distributions in long residence time ashes did not change as a function of combustion conditions. Some differences were observed in the potassium distribution at shorter residence times. There was also a difference in the size distribution of particles formed during staged combustion. The nature and significance of these differences are still under investigation.

  1. Combustion of Illinois coals and chars with natural gas. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Buckinus, R.O.; Peters, J.E.; Krier, H.

    1992-08-01

    The combined combustion of coal and natural gas offers advantageous compared to burning coal or natural gas alone. For example, low volatile coals or low volatile chars derived from treatment or gasification processes can be of limited use due to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary ``volatiles`` to enhance the combustion. Additionally, natural gas provides a clean cofiring fuel source which can enhance the usefulness of coals with high sulfur content. Addition of natural gas may reduce SO{sub x} emissions through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. In this research program, studies of combined Illinois coal and natural gas combustion provide particle ignition, burnout rates and ash characterization, helping clarify the effect of coal and natural gas and identify the controlling parameters and mechanisms. The Drop Tube Furnace Facility allows detailed measurements of coal particle combustion under well-controlled conditions. The combustion characteristics of single coal particles are determined through a novel set of diagnostic techniques including in situ simultaneous measurements of particle morphology, temperature and velocity. The emphasis of the effort in the second quarter of this project was on the understanding of the ignition enhancement, burning rate processes during cofiring, and sulfur retention in the ash.

  2. Design, construction, operation and evaluation of a Prototype Culm Combustion Boiler/Heater Unit. Quarterly technical progress report, April 1-June 30, 1983

    SciTech Connect

    Not Available

    1983-08-01

    This report provides a summary of the work performed on the Prototype Culm Combustion Boiler/Heater Unit, Phase I - Engineering Design and Analysis, Phase II - Prototype Plant Construction and Phase III - Start-Up and Operation during the period April 1, 1983 through June 30, 1983. The objectives of the program as well as the technical progress and problem areas encountered during the reporting period are presented. The Extended Test continued throughout April after which the plant was shutdown for final inspection and preparation for storage. An additional 528-1/2 hours of operation were accumulated during April bringing the total boiler operating time through the end of this quarter to 10,128 hours. Steam was delivered to the User (Cellu Products) during this time to generate steam revenue. During this period, a stack emission test was conducted which indicated particulate emissions well below the state requirement. Also, a short (100 hrs.) feasibility test was conducted using bituminous waste (gob) as fuel. The test demonstrated the successful combustion and sulfur capture characteristics of the fluidized bed combustion of this low heating value (3000 Btu/lb.), high sulfur (5%) fuel type. Data analysis and report preparation has continued throughout the period. A compilation of economic operating cost data was completed and forwarded to DOE and to Gilbert Associates of Reading, Pennsylvania for use in preparation of an operating cost analysis for the Shamokin Fluidized Bed Boiler.

  3. Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Singh, S.; Scaroni, A.; Miller, B.; Choudhry, V.

    1992-08-01

    The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through -200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc.

  4. Control of trace metal emissions during coal combustion. Technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Ho, T.C.

    1996-07-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. The observed experimental results indicated that metal capture by sorbents can be as high as 91% depending on the metal species and sorbent involved. All three sorbents tested, i.e., bauxite, zeolite and lime, were observed to be capable of capturing lead and cadmium in a various degree. Zeolite and lime were able to capture chromium. Results from thermodynamic equilibrium simulations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}(s), CdAl{sub 2}O{sub 4}(s) and CdSiO{sub 3}(s) under the combustion conditions. Additional experiments are being carried out to provide more statistically representative results for better understanding the metal capture process.

  5. Basic studies of microstructure of combusting turbulent flows. Final technical report for period ending 30 Jun 90

    SciTech Connect

    Hussain, F.

    1991-03-04

    The authors goal is to develop a state-of-the-art measurement technique--Holographic Particle Displacement Velocimetry (HPV)--which can provide instantaneous velocities everywhere in the flow field simultaneously. Another goal is to use the power of supercomputers to simulate 3D flows with heat release to study the physics of combusting turbulent flows. Computations suffer from limited flow times and Reynolds number but can provide flow properties in more detail than possible by any existing experimental techniques. Moreover, numerical simulations can provide quantities almost impossible to measure experimentally. This article discusses efforts to develop the holographic particle displacement velocimetry system and results of direct numerical simulations of combusting flows.

  6. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect

    1994-01-30

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing the system modification installation designs, completing the TSCA ash testing, and conducting additional industry funded testing. Final detailed installation designs for the integrated test system configuration are being completed.

  7. ENVIRONMENTAL ASSESSMENT OF NOX CONTROL ON A COMPRESSION IGNITION LARGE BORE RECIPROCATING INTERNAL COMBUSTION ENGINE. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    Volume I of the report gives emission results from field tests of the exhaust gas from a large-bore, compression-ignition reciprocating engine burning diesel fuel. An objective of the tests was to evaluate the operating efficiency of the engine with combustion modification NOx co...

  8. Toxic substances from coal combustion -- a comprehensive assessment. Quarterly technical progress report, 1 April 1996--30 June 1996

    SciTech Connect

    Bool, L.E. III; Senior, C.L.; Huggins, F.; Huffman, G.P.; Shah, N.

    1996-07-01

    Before electric utilities can plan or implement emissions minimization strategies for hazardous pollutants, they must have an accurate and site-specific means of predicting emissions in all effluent streams for the broad range of fuels and operating conditions commonly utilized. Development of a broadly applicable emissions model useful to utility planners first requires a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion (specifically in Phase I, As, Se, Cr, and possibly Hg). PSI Technologies (PSIT) and its team members will achieve this objective through the development of an {open_quotes}Engineering Model{close_quotes} that accurately predicts the formation and partitioning of toxic species as a result of coal combustion. The {open_quotes}Toxics Partitioning Engineering Model{close_quotes} (ToPEM) will be applicable to all conditions including new fuels or blends, low-NO{sub x} combustion systems, and new power systems being advanced by DOE in the Combustion 2000 program. This report describes the mineralogy and chemical analysis of bituminous coal samples.

  9. Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, September 1--November 30, 1991

    SciTech Connect

    Singh, Shyam

    1991-12-31

    The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through {minus}200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc. This report covers the first quarter`s progress. Major activities during this period were focused on finding the plants where a demo MTU column will be installed to prepare the samples needed to characterize the combustion behavior of slurry effluents. Also, a meeting was held at Penn State University to discuss the availability of the laboratory furnace for testing the plant coal/recovered coal fines blends.

  10. Standard technical specifications combustion engineering plants: Bases (Sections 2.0--3.3). Volume 2, Revision 1

    SciTech Connect

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/6 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes.

  11. The proceedings of the 23rd International Technical Conference on Coal Utilization and Fuel Systems

    SciTech Connect

    Sakkestad, B.A.

    1998-03-01

    This document contains the proceedings of the 23rd International Technical Conference on Coal Utilization and Fuel Systems, held March 9-13, 1998 in Clearwater, Florida. Topics included advanced combustion systems, alternative fuels, coal liquefaction, climate change strategies, international highlights, combustion by-product utilization, co-firing, fuel gas treatment, low nitrogen oxide burners, carbon dioxide mitigation, power plant upgrades, Latin American coal perspective, coal fines utilization, upgraded coal for the power industry, hot gas particulate cleanup, coal conversion, hydraulics and transportation, coal briquetting and coal beneficiation, air toxics, materials and equipment, and coal-water fuels preparation. Separate abstracts have been prepared for the individual papers presented at this conference.

  12. Combustion of Illinois coals and chars with natural gas. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Buckius, R.O.; Peters, J.E.; Krier, H.

    1992-12-31

    Combined combustion of coal and natural gas offers advantages compared to burning coal or natural gas alone. For example, low volatile coals (or chars) derived from treatment or gasification processes can be of limited use due to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary ``volatiles`` to enhance the combustion. Also, natural gas provides a clean cofiring fuel source which can enhance the usefulness of coals with high sulfur content. Addition of natural gas may reduce SO{sub x} emissions through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. This research program addresses the contributions and the mechanisms of cofiring natural gas with Illinois coal through studies of particle ignition, burning rates and ash characterization.

  13. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1992--June 1992

    SciTech Connect

    Not Available

    1992-09-03

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec`s Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

  14. OZONE BYPRODUCT FORMATION

    EPA Science Inventory

    The use of ozone for water treatment has been increasing as ozone has great potential for degrading water pollutants and inactivating viruses, Giardia cysts, and Cryptosporidium oocysts. Although it appears that ozone generates less undesirable disinfection by-products (DBPs) th...

  15. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Not Available

    1993-07-30

    Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the designs of the remaining major components of the integrated system were completed and the equipment was ordered. DOE has elected to modify the scope of the existing R&D program being conducted under this contract to include testing of a simulated TSCA incinerator ash. The modification will be in the form of an additional Task (Task 8 -- TSCA Ash Testing) to the original Statement of Work.

  16. Combustion of Illinois coals and chars with natural gas. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect

    Buckius, R.O.

    1991-12-31

    There are applications where the combined combustion of coal and natural gas offers potential advantages over the use of either coal or natural gas alone. For example, low volatile coals or low volatile chars derived from treatment or gasification processes can be of limited use during to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary ``volatiles`` to enhance the combustion. In addition, natural gas provides a clean fuel source of fuel which, in cofiring situations, can extend the usefulness of coals with high sulfur content. The addition of natural gas may reduce SO{sub x} emission through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. In this research program, studies of combined coal and natural gas combustion will provide particle ignition, burnout rates and ash characterization, that will help clarify the effect of coal and natural gas and identify the controlling parameters and mechanisms.

  17. Influence of sulfur in coals on char morphology and combustion. Technical report, 1 September 1991--30 November 1991

    SciTech Connect

    Marsh, H.

    1991-12-31

    During coal carbonization (pyrolysis), as during the combustion process of pulverized coal in a combustor, not all of the sulfur is released. Significant proportions become pat of the structure of the resultant coke and char. The combustion process of the char within the flames of the combustor in influenced dominantly by char morphology. This, in turn, controls the accessibility of oxidizing gases to the surfaces of the carbonaceous substance of the char. Mineral matter content, its extent and state of distribution, also exerts an influence on char morphology created during pyrolysis/carbonization. This complexity of coal renders it a very difficult material to study, systematically, to distinguish and separate out the contributing factors which influence combustion characteristics. Therefore, in such circumstances, it is necessary to simplify the systems by making use of model chars/cokes/carbons which can be made progressively more complex, but in a controlled way. In this way complicating influence in chars from coals can be eliminated, so enabling specific influences to be studied independently. It is important to note that preliminary work by Marsh and Gryglewicz (1990) indicated that levels of sulfur of about 3 to 5 wt % can reduce reactivities by 10 to 25%. The overall purpose of the study is to provide meaningful kinetic data to establish, quantitatively, the influence of organically-bound sulfur on the reactivity of carbons, and to ascertain if gasification catalysts are effective in the preferential removal of sulfur from the chars.

  18. DATA COLLECTION AND DATABASE DEVELOPMENT FOR CLEAN COAL TECHNOLOGY BY-PRODUCT CHARACTERISTICS AND MANAGEMENT PRACTICES

    SciTech Connect

    1998-10-01

    The primary goal of this task is to provide an easily accessible compilation of characterization information on clean coal technology (CCT) by-products to government agencies and industry to facilitate sound regulatory and management decisions. Supporting objectives are to (1) fully utilize information from previous DOE projects, (2) coordinate with industry and other research groups, (3) focus on by-products from pressurized fluidized-bed combustion (PFBC) and gasification, and (4) provide information relevant to the EPA evaluation criteria for the decision on the Resource Conservation and Recovery Act (RCRA) status of fluidized-bed combustion (FBC) by-products.

  19. Design, construction, operation, and evaluation of a prototype culm-combustion boiler/heater unit. Quarterly technical progress report, October 1-December 31, 1980

    SciTech Connect

    Not Available

    1981-02-01

    This report provides a summary of the work performed on the Prototype Culm Combustion Boiler/Heater Unit, Phase I - Engineering Design and Analysis and Phase II - Prototype Plant Construction during the period October 1, 1980 through December 31, 1980. The objectives of the program as well as the technical progress and problem areas encountered during the reporting period are presented. The final detail design effort was completed and the final design report submitted. Progress on procurement activity authorized by full Phase II release on March 20, 1980, is discussed. Following approval by DOE, a purchase order was placed with the Norflor Construction Corporation for the prototype plant construction which began in November. Construction of the access roadway installation of the electric power, sewer and water lines was completed during this reporting period. Boiler construction continued.

  20. An experimental study of the effect of a pilot flame on technically pre-mixed, self-excited combustion instabilities

    NASA Astrophysics Data System (ADS)

    O'Meara, Bridget C.

    Combustion instabilities are a problem facing the gas turbine industry in the operation of lean, pre-mixed combustors. Secondary flames known as "pilot flames" are a common passive control strategy for eliminating combustion instabilities in industrial gas turbines, but the underlying mechanisms responsible for the pilot flame's stabilizing effect are not well understood. This dissertation presents an experimental study of a pilot flame in a single-nozzle, swirl-stabilized, variable length atmospheric combustion test facility and the effect of the pilot on combustion instabilities. A variable length combustor tuned the acoustics of the system to excite instabilities over a range of operating conditions without a pilot flame. The inlet velocity was varied from 25 -- 50 m/s and the equivalence ratio was varied from 0.525 -- 0.65. This range of operating conditions was determined by the operating range of the combustion test facility. Stability at each operating condition and combustor length was characterized by measurements of pressure oscillations in the combustor. The effect of the pilot flame on the magnitude and frequency of combustor stability was then investigated. The mechanisms responsible for the pilot flame effect were studied using chemiluminescence flame images of both stable and unstable flames. Stable flame structure was investigated using stable flame images of CH* chemiluminescence emission. The effect of the pilot on stable flame metrics such as flame length, flame angle, and flame width was investigated. In addition, a new flame metric, flame base distance, was defined to characterize the effect of the pilot flame on stable flame anchoring of the flame base to the centerbody. The effect of the pilot flame on flame base anchoring was investigated because the improved stability with a pilot flame is usually attributed to improved flame anchoring through the recirculation of hot products from the pilot to the main flame base. Chemiluminescence images

  1. Finial Scientific/Technical Report: Application of a Circulating Fluidized Bed Process for the Chemical Looping Combustion of Solid Fuel

    SciTech Connect

    Dr. Wei-Ping Pan; Dr. John T. Riley

    2005-10-10

    Chemical Looping Combustion is a novel combustion technology for the inherent separation of the greenhouse gas, CO{sub 2}. In 1983, Richter and Knoche proposed reversible combustion, which utilized both the oxidation and reduction of metal. Metal associated with its oxidized form as an oxygen carrier was circulated between two reactors--oxidizer and reducer. In the reducer, the solid oxygen carrier reacts with the fuel to produce CO{sub 2}, H{sub 2}O and elemental metal only. Pure CO{sub 2} will be obtained in the exit gas stream from the reducer after H{sub 2}O is condensed. The pure CO{sub 2} is ready for subsequent sequestration. In the oxidizer, the elemental metal reacts with air to form metal oxide and separate oxygen from nitrogen. Only nitrogen and some unused oxygen are emitted from the oxidizer. The advantage of CLC compared to normal combustion is that CO{sub 2} is not diluted with nitrogen but obtained in a relatively pure form without any energy needed for separation. In addition to the energy-free purification of CO{sub 2}, the CLC process also provides two other benefits. First, NO{sub x} formation can be largely eliminated. Secondly, the thermal efficiency of a CLC system is very high. Presently, the CLC process has only been used with natural gas. An oxygen carrier based on an energy balance analysis and thermodynamics analysis was selected. Copper (Cu) seems to be the best choice for the CLC system for solid fuels. From this project, the mechanisms of CuO reduction by solid fuels may be as follows: (1) If pyrolysis products of solid fuels are available, reduction of CuO could start at about 400 C or less. (2) If pyrolysis products of solid fuels are unavailable and the reduction temperature is lower, reduction of CuO could occur at an onset temperature of about 500 C, char gasification reactivity in CO{sub 2} was lower at lower temperatures. (3) If pyrolysis products of solid fuels are unavailable and the reduction temperature is higher than 750 C

  2. Investigation of irradiated soil byproducts.

    PubMed

    Brey, R R; Rodriguez, R; Harmon, J F; Winston, P

    2001-01-01

    The high dose irradiation of windblown soil deposited onto the surface of spent nuclear fuel is of concern to long-term fuel storage stability. Such soils could be exposed to radiation fields as great as 1.08 x 10(-3) C/kg-s (15,000 R/hr) during the 40-year anticipated period of interim dry storage prior to placement at the proposed national repository. The total absorbed dose in these cases could be as high as 5 x 10(7) Gy (5 x 10(9) rads). This investigation evaluated the potential generation of explosive or combustible irradiation byproducts during this irradiation. It focuses on the production of radiolytic byproducts generated within the pore water of surrogate clays that are consistent with those found on the Idaho National Engineering and Environmental Laboratory. Synthesized surrogates of localized soils containing combinations of clay, water, and aluminum samples, enclosed within a stainless steel vessel were irradiated and the quantities of the byproducts generated measured. Two types of clays, varying primarily in the presence of iron oxide, were investigated. Two treatment levels of irradiation and a control were investigated. An 18-Mev linear accelerator was used to irradiate samples. The first irradiation level provided an absorbed dose of 3.9 x 10(5)+/-1.4 x 10(5)Gy (3.9 x 10(7)+/-1.4 x 10(7) rads) in a 3-h period. At the second irradiation level, 4.8 x 10(5)+/-2.0 x 10(5)Gy (4.8 x 10(7)+/-2.0 x 10(7) rads) were delivered in a 6-h period. When averaged over all treatment parameters, irradiated clay samples with and without iron (III) oxide (moisture content = 40%) had a production rate of hydrogen gas that was a strong function of radiation-dose. A g-value of 5.61 x 10(-9)+/-1.56 x 10(-9) mol/J (0.054+/-0.015 molecules/100-eV) per mass of pore water was observed in the clay samples without iron (III) oxide for hydrogen gas production. A g-value of 1.07 x 10(-8)+/-2.91 x 10(-9) mol/J (0.103+0.028 molecules/100-eV) per mass of pore water was observed

  3. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1994, April 1994--June 1994

    SciTech Connect

    1995-09-01

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NOx burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters. Results are described.

  4. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  5. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, July 1--September 30, 1992

    SciTech Connect

    Not Available

    1992-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; hot Gas Cleanup Units to mate to all gas streams; and Combustion Gas Turbine. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  6. Coal combustion under conditions of blast furnace injection. Technical report, 1 December 1992--28 February 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-05-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposed study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. The Amanda furnace of Armco is the only one in North America currently using coal injection and is, therefore, the only full scale testing facility available. During this quarter complete petrographic analyses of all of the samples so far collected were completed.

  7. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1994-01-30

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy awarded Vortec Corporation this Phase III contract (No. DE-AC22-91PC91161) for the development of {open_quotes}A Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes}. The effective contrast start date was September 3, 1991. The contract period of performance is 36 months. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. Final detailed installation designs for the integrated test system configuration are being completed. The equipment is being fabricated and deliveries have begun. The industry funded testing consisted of vitrifying Spent Aluminum Potliner (SPL) which is a listed hazardous waste. This testing has verified that SPL can be vitrified into a safe recyclable glass product.

  8. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, April 1, 1997--June 30, 1997

    SciTech Connect

    Harb, J.N.

    1997-08-07

    This report describes work performed in the fifteenth quarter of a fundamental study to examine the effect of staged combustion on ash formation and deposition. Efforts this quarter included addition of a new cyclone for improved particle sampling and modification of the existing sampling probe. Particulate samples were collected under a variety of experimental conditions for both coals under investigation. Deposits formed from the Black Thunder coal were also collected. Particle size and composition from the Pittsburgh No. 8 ash samples support previously reported results. In addition, the authors ability to distinguish char/ash associations has been refined and applied to a variety of ash samples from this coal. The results show a clear difference between the behavior of included and excluded pyrite, and provide insight into the extent of pyrite oxidation. Ash samples from the Black Thunder coal have also been collected and analyzed. Results indicate a significant difference in the particle size of {open_quotes}unclassifiable{close_quotes} particles for ash formed during staged combustion. A difference in composition also appears to be present and is currently under investigation. Finally, deposits were collected under staged conditions for the Black Thunder coal. Specifically, two deposits were formed under similar conditions and allowed to mature under either reducing or oxidizing conditions in natural gas. Differences between the samples due to curing were noted. In addition, both deposits showed skeletal ash structures which resulted from in-situ burnout of the char after deposition.

  9. Combustion of Illinois coals and chars with natural gas. [Quarterly] technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Buckius, R.O.; Peters, J.E.; Krier, H.

    1992-10-01

    Combined combustion of coal and natural gas offers advantages compared to burning coal or natural gas alone. For example, low volatile coals or low volatile chars derived from treatment or gasification processes can be of limited use due to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary ``volatiles`` to enhance the combustion. Additionally, natural gas provides a clean cofiring fuel source which can enhance the usefulness of coals with high sulfur content. Addition of natural gas may reduce SO{sub x} emissions through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. This research program seeks to clarify the contributions and to identify the controlling mechanisms of coining natural gas with Illinois coal through studies of particle ignition, burning rates and ash characterization. The first two quarters focused on the ignition delay measurements and their analysis, along with the incorporation of particle porosity into the burning rate model. The emphasis of the third quarter was on a more detailed understanding of the burning rate process, as well as understanding of cofiring`s effects on sulfur retention. The contributions of particle burning area to the quantification of the particle burning mechanisms have been shown to be important and continue to be investigated. Ash samples for various methane concentrations under similar other conditions have shown positive trends in reducing S0{sub 2} emission through increased sulfur capture in the ash.

  10. Chemical mechanistic approaches for the suppression of soot formation in the combustion of high energy density fuels. Final technical report

    SciTech Connect

    Santoro, R.J.

    1996-09-01

    Significant advantages can be gained by the use of high energy density fuels in volume limited applications. However, excessive soot formation that accompanies the combustion of these fuels presently limits their application. Fuel additive approaches prove attractive as they require minimal modifications to already existing equipment. In the present study, a variety of flame configurations were used to study the additive effects on soot formation. Through tests conducted on laminar diffusion flames carbon disulfide (CS2) and methanol (CH3OH) were found to be the most effective soot suppressants. Chemical interaction by either additive was found to far surpass the physical influences. However, the exact nature of the chemical action could not be established with the current set of experiments. Additionally, both of these additives were found to reduce soot formation in at least one high energy density fuel - quadricyclane (C7H8). To further validate this approach, studies were conducted using droplet flames and high-pressure spray flames.

  11. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Harb, J.N.

    1995-05-04

    Progress during the sixth quarter of a three-year study was made in two task areas: (1) parametric testing of the target coals, and (2) analysis of samples from the combustion tests. A new microanalysis system was acquired (no cost to DOE) and is now functional, although development of analysis routines for the system is still in progress. This system has significantly increased our analytical throughput and has provided increased reliability. Parametric testing of the Pittsburgh No. 8 coal (weathered) was initiated this quarter. Initial analytical results from these tests show sulfur release and iron transformations as a function of test conditions and sampling location. A new supply of Pittsburgh No. 8 coal has been shipped and will be used to contrast behavior between the oxidized (weathered) and unoxidized Pittsburgh fuels. Finally, specific tasks for the next quarter have been identified and reported.

  12. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Harb, J.N.

    1995-07-31

    Progress during the seventh quarter of a three-year study was made in four task areas: (1) analysis of coals, (2) improvements to the reactor system, (3) parametric testing of the target coals, and (4) analysis of samples from the combustion tests. A problem with our analysis system was discovered and corrected. Recent analyses of the Pittsburgh {number_sign}8 coal (after repulverizing) were redone and results are reported. A new design of the deposit probe and an air preheater were added this quarter. Parametric testing of the Pittsburgh {number_sign}8 coal continued this quarter. Analytical results from these tests show sulfur release and iron transformations as a function of test conditions and sampling location. Deposit samples were also collected from the Pittsburgh coal at three different stoichiometric ratios. Operating conditions appeared to have a significant effect on deposit formation. Finally, specific tasks for the next quarter have been identified and reported.

  13. Homogeneous chemistry of NO/sub x/ production and removal from fossil fuel combustion gases. Final technical report

    SciTech Connect

    Silver, J.A.; Gozewski, C.M.; Kolb, C.E.

    1980-11-01

    The reduction of NO/sub x/ emissions from stationary combustion sources by non-catalytic homogeneous chemical addition is a promising technique. Demonstrations in laboratory experiments and on a number of field scale combustors have shown that the addition of ammonia to the exhaust flow significantly reduces the NO concentrations in a narrow temperature range. This report summarizes the work performed to understand the detailed chemical mechanism which makes this reduction occur. A model describing the NH/sub i//NO/sub x/ chemical system is developed, and rates of the key reactions identified are measured in a high temperature fast flow reactor. Product channels for certain important reactions are also identified. The experimental results are incorporated into the computer code, and the model predictions are compared with laboratory and field test results. Possible additives other than ammonia are evaluated and discussed.

  14. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Harb, J.N.

    1996-05-01

    Progress during the tenth quarter of a three-year study of ash formation and deposition was made in several areas. One of the key contributions this quarter was the development of an algorithm to distinguish between ash particles that are associated with char particles (included) and ash particles which are excluded. This algorithm was used to determine the extent to which pyrite transformations are influenced by whether the pyrite grains are included or excluded. The results indicate that pyrite oxidation is slower for included pyrite grains. Replicate experiments were also performed for the Pittsburgh No. 8 coal (washed) under both staged and conventional conditions. An objective of these experiments was to validate the effect of staged combustion on the size distribution of ash particles as reported for the previous quarter. Analysis of the new samples and repeat analyses of previous samples showed no significant difference in the ash particle size for samples collected at stoichiometric ratios of 0.75 (before the stage) and 1.04. The number of points in the new analyses was considerably higher than in previous analyses, resulting in greater confidence. The similarity in the ash composition for samples collected under staged and conventional conditions was also verified this quarter with replicate samples and analyses. The net result is that staged combustion does not appear to have a significant impact on either ash size or composition for the Pittsburgh No. 8 coal. Finally, numerical simulations of the temperature distribution in the laboratory combustor were performed and evaluated. Also, a paper documenting the classification algorithm developed last quarter was presented at the March ACS meeting in New Orleans and published in the ACS Division of Fuel Chemistry Preprints.

  15. Gas treatment and by-products recovery of Thailand`s first coke plant

    SciTech Connect

    Diemer, P.E.; Seyfferth, W.

    1997-12-31

    Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

  16. Investigation of particulate formation during diesel spray combustion. Technical progress quarterly report, June 1, 1989--August 31, 1989

    SciTech Connect

    Not Available

    1989-12-31

    The objective of the contract is to conduct an experimental and analytical research program to investigate strategies for using coherent anti-Stokes Raman scattering (CARS) laser diagnostic techniques for detecting the degree of fuel pyrolysis and determining fuel-air ratio. Smoke and NO{sub x} production rates depend in a complex way on the local temperature, the evaporation of the diesel spray, the local fuel-air ratio, and the pyrolysis history of fuels. Furthering the ability of CARS to provide more of this information may give engine designers more insight into the combustion process and allow them to create engines which produce fewer particulates or lower amounts of NO{sub x}. Controlling the production rates is preferable to processing emissions. If they cannot be suppressed simultaneously, adjusting the tradeoff between producing particulates or NO{sub x} may be helpful if an exhaust processing method is available for one of them. During the present quarter CARS results have been obtained in the reference/calibration cell with toluene vapor. These CARS results appear very favorable for use of toluene in 1 atm spray chamber studies as a room temperature saturated vapor mixture with CO{sub x} and N{sub 2}. The results indicate that toluene is likely a better candidate than hexane for droplet effects studies. Strong toluene CH stretch resonant CARS peaks have been found and three useful resonant CARS spectral features have been found near CO{sub 2} CARS.

  17. Investigation of a rotary valving system with variable valve timing for internal combustion engines: Final technical report

    SciTech Connect

    Cross, P.C.; Hansen, C.N.

    1994-11-18

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multi-fuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this Final Report.

  18. Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 March 1993--31 May 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-09-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. The basic program is designed to determine the reactivity of both coal and its derived char under blast furnace conditions and to compare the results to similar properties of blast furnace coke. The results of the first two experiments in which coal char pyrolyzed in nitrogen at 1000{degrees}C in an EPR were reacted isothermally in air at 1000{degrees}C and 1200{degrees}C. The reactivity values of the same char in these two experiments were different by an order of magnitude. The char reactivity at 1000{degrees}C was 9.7 {times} 10{sup {minus}4} grams per minute while the reactivity. of the char at 1200{degrees}C was 1.6 {times} 10{sup {minus}3} grams per minute. These results suggest that the temperature of the blast air in the tuyere may be critical in achieving complete carbon burnout.

  19. Coal combustion under conditions of blast furnace injection. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-12-31

    A potentially new use for Illinois coal is as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. During the first phase of this project a number of the objectives were realized, specifically: (1) a blast furnace sampling system was developed and used successfully to collect samples inside an active furnace; (2) two sets of blast furnace samples were collected and petrographic analysis showed that char derived from injected coal is entering the reduction zone of the furnace; (3) a coal/char sampling probe was designed and fabricated; (4) the completion of a program of reactivity experiments on the injected coal char, blast furnace coke and Herrin No. 6 char. The results of the reactivity experiments indicate that Herrin No. 6 coal is similar or even superior to coals now being used in blast furnace injection and that additional testing is warranted.

  20. Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 December 1993--28 February 1994

    SciTech Connect

    Crelling, J.C.

    1994-06-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter a sample of the feed coal that is being used for injection into the No. 7 Blast Furnace of Inland Steel has been analyzed petrographically and compared to both the Herrin No. 6 coal and Armco feed coal. Additional characterization is underway and an advanced program of pyrolysis and reactivity testing has been initiated.

  1. Integrated methods for production of clean char and its combustion properties. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    DeBarr, J.A.; Rostam-Abadi, M.; Gullett, B.K.; Benson, S.A.

    1993-09-01

    An integrated method consisting of physical coal cleaning, mild gasification (MG) and low temperature oxidation (LTO) is proposed to produce chars with SO{sub 2} emissions at least 50% lower than those of their parent coals. MG and char desulfurization studies are conducted in both a batch fluidized-bed reactor (FBR) and in a continuous rotary tube kiln (RTK). Combustion properties and ash deposition behaviors of desulfurized chars are determined at the US EPA in a 14 kill pilotscale combustor and at UNDEERC in a drop tube furnace (DTF). This project is cost-shared with the US EPA and the US DOE through UNDEERC. During the first year of this two year project, six coals from the IBC sample program (IBC-101, 102, 104, 105, 106 and 109) were studied. Under non-optimized conditions in the FBR, desulfurized chars were made with SO{sub 2} emissions 60--71% lower than the parent coals, depending on the coal. Chars prepared from four of the six coals had SO{sub 2} emissions less than 2.5 lbs SO{sub 2}/MMBtu. Under optimum conditions, SO{sub 2} emissions of one of the coals were reduced nearly 67%, from 4.60 to 1.49 lbs SO{sub 2}/MMBtu. MG reduced the chlorine content of one coal 93%.

  2. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Harb, J.N.

    1996-02-07

    Progress during the ninth quarter of a three-year study of ash formation and deposition was made in several areas. One of the key contributions this quarter was the development of an enhanced method for classification of CCSEM data. This classification algorithm permits grouping and comparison of particles previously labeled as ``unclassifiable.`` A second analytical advancement, also made this quarter, provides more detailed information on the distribution of minerals in the coal and the potential for coalescence. This new multiple analysis technique is also applicable to ash and will permit identification of heterogeneous ash particles. Additional analyses of ash samples were also performed and it was found that the firing of Pittsburgh {number_sign}8 under staged combustion conditions yields an ash with a significantly larger particle size distribution than that obtained under conventional firing conditions, but without a significant change in composition. the size difference was noted previously, but the new classification algorithm allowed a detailed comparison of all composition groups, including unclassifiable particles, in the ashes. A mechanistic explanation for this behavior has been developed and is provided in the report. Finally, a paper documenting the new classification algorithm has been prepared and is scheduled for presentation at the March ACS meeting in New Orleans.

  3. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1993-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase 3 research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing some of the system modification installation designs, completing industry funded testing, developing a surrogate TSCA ash composition, and completing the TSCA ash Test Plan. The installation designs will be used for the equipment modifications planned for the end of CY 93. The industry funded testing consisted of vitrifying Spent Aluminum Potliner (SPL) which is a listed hazardous waste. This testing has verified that SPL can be vitrified into a safe, recyclable glass product. Some results from this testing are provided in Section 2.2.1. The surrogate TSCA ash composition was developed with input from various DOE laboratories and subcontractors. The surrogate ash consists of a mixture of MSW fly ash and bottom ash spiked with heavy metal contaminants. The levels of metal additives are sufficient to ascertain the partitioning of the contaminants between the glass and effluent flow streams. Details of the surrogate composition and the planned testing is provided in Section 4.2.2.

  4. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1992--September 1992

    SciTech Connect

    Not Available

    1992-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. ne primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order toevaluate its potential marketability. During the current reporting period, three preliminary coal-fired tests were successfully completed. These tests used industrial boiler flyash, sewer sludge ash, and waste glass collet as feedstocks. The coal-fired ash vitrification tests are considered near term potential commercial applications of the CMS technology. The waste glass cullet provided necessary dam on the effect of coal firing with respect to vitrified product oxidation state. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the proof-of-concept tests are continuing. The economic evaluation of commercial scale CMS processes is continuing. Preliminary designs for 15, 25, 100 and 400 ton/day systems are in progress. This dam will serve as input data to the life cycle cost analysis which will be-an integral part of the CMS commercialization plan.

  5. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1992--December 1992

    SciTech Connect

    Not Available

    1993-01-29

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, a majority of the effort was spent relining the separator/reservoir and the cyclone melter. The relinings were completed, the cyclonemelter was reinstalled, and the test system was returned to operational status. The wet ESP was delivered and placed on its foundation. The focus during the upcoming months will be completing the integration ofthe wet ESP and conducting the first industrial proof-of-concept test. The other system modifications are well underway with the designs of the recuperator installation and the batch/coal feed system progressing smoothly. The program is still slightly behind the original schedule but it is anticipated that it will be back on schedule by the end of the year. The commercialization planning is continuing with the identification of seven potential near-term commercial demonstration opportunities.

  6. Lightweight combustion residues-based structural materials for use in mines. Technical report, September 1--November 30, 1994

    SciTech Connect

    Chugh, Y.P.; Zhang, Y.; Ghosh, A.K.; Palmer, S.R.

    1994-12-31

    The overall goal of the project is to develop a 70--80 pcf, 2,500--3,000 psi-compressive-strength cellular concrete-type product from PCC fly ash, PCC bottom ash, and/or FBC spent bed ash alone or in suitable combination thereof. The developed combustion residue-based lightweight structural material will be used to replace wooden posts and crib members in underground mines. This report outlines the work completed in the first quarter of the project. The density gradient centrifuge (DGC) has been used to separate a power plant fly ash sample into fractions of different density. Each of the fly ash fractions obtained by DGC, an aliquot of the unseparated fly ash and an aliquot of a magnetic component of the fly ash, were digested in strong acids following the procedures outlined in ASTM 3050. Preliminary experiments have also been carried out to study the effect of mix proportions and curing regimes on the strength and density on the developed material. The DGC separation test reveals that most of the fly ash sample (approx. 90%) has a density above 1.9 g/cm{sup 3}. Indeed, nearly half of the sample has a density greater than 2.4 g/cm{sup 3}. Since only a very small amount of this fly ash has a reasonably low specific gravity, it appears unlikely at this time that enough low density material would be isolated to significantly enhance lightweight concrete production using fractionated material. A series of mixes have been made using fly ash, sodium silicate, cement, sand and water. Preliminary tests show that both cement and sodium silicate can be used as the binders to develop residues-based lightweight concrete. To date, compressive strength as high as 1,290 psi have been achieved with a density of 133 pcf, with 50 g of cement, 50 g of fly ash and 300 g of sand. Most of the work during the first quarter was done to understand the characteristics of the component materials.

  7. Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit. Quarterly technical progress report, October 1-December 21, 1981

    SciTech Connect

    Not Available

    1982-01-01

    This report provides a summary of the work performed on the Prototype Culm Combustion Boiler/Heater Unit, Phase I - Engineering Design and Analysis, Phase II - Prototype Plant Construction and Phase III - Start-Up and Operation during the period October 1, 1981 through December 31, 1981. The objectives of the program as well as the technical progress and problem areas encountered during the reporting period are presented. Seven shakedown tests were run. Start-up and shakedown testing was completed. Four parametric tests were run. Performance data are presented with the exception of boiler efficiency which will be reported once chemical analyses are completed. Total boiler operation time through the end of this quarter - 1225 h, 50 min; operating time on culm and culm/limestone - 682 h, 43 min. Inspection revealed no problems with boiler tube wear. Sulfur capture greater than 94% was demonstrated (design is 88%). A turndown of better than 4 to 1 was shown (design is 2.5 to 1). Computer control of most of the loops has been successful and manual control was also demonstrated.

  8. Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC). Technical progress report No. 1, [October 1, 1993--December 31, 1993

    SciTech Connect

    Lee, S.W.

    1994-01-01

    This technical report summarizes the research work performed and progress achieved during the period of October 1, 1993 to December 31, 1993. The newly-concept of exploratory fluidized bed based on the integrating the advantages of fluidized bed combustion (FBC) and cyclonic combustor was designed to study the gas and particle flows and to develop control techniques for gas-particle flow in the FBC. The test chamber was made of transparent acrylic tube with 6in. I.D. to facilitate visual observation. Eight nozzles (s) were made at the freeboard in different levels to provide secondary air, which will generate strong swirling flow field. The progress of this project has been on schedule. Design and fabrication of the exploratory cold test model will be continued with an arrangement of the auxiliary system. After completion of the design/fabrication of the system, the system test will be conducted for the overall system. Instrumentations for the gas/particle flow will be arranged with the auxiliary system. The electrostatic impact probe and associated signal processing units will be designed and fabricated for measuring particle mass flux.

  9. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1995

    SciTech Connect

    1995-12-31

    This document discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. Specifically, the objectives of the projects are: (1) demonstrate in a logical stepwise fashion the short-term NO{sub x} reduction capabilities of the following advanced low NO{sub x} combustion technologies: advanced overfire air (AOFA); low NO{sub x} burners (LNB); LNB with AOFA; and advanced digital controls and optimization strategies; (2) determine the dynamic, long-term emissions characteristics of each of these combustion NO{sub x} reduction methods using sophisticated statistical techniques; (3) evaluate the cost effectiveness of the low NO{sub x} combustion techniques tested; and (4) determine the effects on other combustion parameters (e.g., CO production, carbon carryover, particulate characteristics) of applying the above NO{sub x} reduction methods.

  10. 10 CFR 35.1000 - Other medical uses of byproduct material or radiation from byproduct material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Other medical uses of byproduct material or radiation from byproduct material. 35.1000 Section 35.1000 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Other Medical Uses of Byproduct Material or Radiation From Byproduct Material § 35.1000 Other medical uses of byproduct material...

  11. RESEARCH PLAN FOR MICROBIAL PATHOGENS AND DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This research plan was developed to describe research needed to support EPAs development of drinking water regulations concerning disinfectants, disinfection by-products (DBPs) and microbial pathogens, focusing on key scientific and technical information needed. The research plan...

  12. ORD RESEARCH PLAN FOR MICROBIAL PATHOGENS AND DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This research plan was developed to describe research needed to support EPAs development of drinking water regulations concerning disinfectants, disinfection by-products (DBPs) and microbial pathogens, focusing on key scientific and technical information needed. ...

  13. RESEARCH PLAN FOR MICROBIAL PATHOGENS AND DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This research plan was developed to describe research needed to support EPA's development of drinking water regulations concerning disinfectants, disinfection by-products (DBPs) and microbial pathogens, focusing on key scientific and technical information needed. The research pl...

  14. Liming efficacy and transport in soil of a dry PFBC by-product

    SciTech Connect

    Dick, W.A.

    1995-12-01

    The by-products of pressurized fluidized-bed combustion (PFBC) systems are mixtures of coal ash, anhydrite (CaSO{sub 4}), and unspent alkaline sorbent. Because PFBC by-products are alkaline and contain large concentrations of readily soluble bases (Ca and in some cases Mg) and other essential plant nutrients such as S and K, they have potential use as soil amendments, especially in acidic soils. PFBC by-products (particularly those with large Mg contents) may cause excessively high soluble salt concentrations when applied to soil. This could be detrimental to plant growth and might also impact the release of trace elements from the coal ash component of the by-product. In field experiments on three acidic soils, the liming effectiveness of a PFBC by-product, its effects on corn and alfalfa growth, and its impacts on crop, soil, and water quality were investigated.

  15. Advanced Gasification By-Product Utilization

    SciTech Connect

    Rodney Andrews; Aurora Rubel; Jack Groppo; Brock Marrs; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Zhe Lu; Harold Schobert

    2006-08-31

    With the passing of legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported. This contract was with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involved the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, assessment of the potential for leaching of Hg captured by the carbons, analysis of the slags for cement applications, and characterization of these materials for use as polymer fillers. The objectives of this

  16. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Second quarter 1992

    SciTech Connect

    Not Available

    1992-08-24

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  17. 10 CFR 962.3 - Byproduct material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Byproduct material. 962.3 Section 962.3 Energy DEPARTMENT OF ENERGY BYPRODUCT MATERIAL § 962.3 Byproduct material. (a) For purposes of this part, the term byproduct material means any radioactive material (except special nuclear material) yielded in or...

  18. 10 CFR 962.3 - Byproduct material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Byproduct material. 962.3 Section 962.3 Energy DEPARTMENT OF ENERGY BYPRODUCT MATERIAL § 962.3 Byproduct material. (a) For purposes of this part, the term byproduct material means any radioactive material (except special nuclear material) yielded in or...

  19. 10 CFR 962.3 - Byproduct material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Byproduct material. 962.3 Section 962.3 Energy DEPARTMENT OF ENERGY BYPRODUCT MATERIAL § 962.3 Byproduct material. (a) For purposes of this part, the term byproduct material means any radioactive material (except special nuclear material) yielded in or...

  20. 10 CFR 962.3 - Byproduct material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Byproduct material. 962.3 Section 962.3 Energy DEPARTMENT OF ENERGY BYPRODUCT MATERIAL § 962.3 Byproduct material. (a) For purposes of this part, the term byproduct material means any radioactive material (except special nuclear material) yielded in or...

  1. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, March 11, 1993--June 11, 1993

    SciTech Connect

    Sublette, K.L.

    1993-11-01

    There are two basic approaches to addressing the problem of SO{sub 2} and NO{sub x} emissions: (1) desulfurize (and denitrogenate) the feedstock prior to or during combustion; or (2) scrub the resultant SO{sub 2} and oxides of nitrogen from the boiler flue gases. The flue gas processing alternative has been addressed in this project via microbial reduction of SO{sub 2} and NO{sub x} by sulfate-reducing bacteria

  2. Behavior of sulfur and chlorine in coal during combustion and boiler corrosion. Final technical report, 1 September, 1992--31 August, 1993

    SciTech Connect

    Chou, C.L.; Hackley, K.C.; Cao, J.; Moore, D.M.; Xu, J.; Ruch, R.R.; Pan, W.P.; Upchurch, M.L.; Cao, H.B.

    1993-12-31

    The goals of this project are to investigate the behavior of sulfur and chlorine during pyrolysis and combustion of Illinois coals, the chemistry and mineralogy of boiler deposits, the effects of combustion gases on boiler materials, and remedial measures to reduce the sulfur and chlorine compounds in combustion gases. Replicate determinations of chlorine and sulfur evolution during coal pyrolysis-gas combustion were conducted using a pyrolysis apparatus in conjunction with a quadrupole gas analyzer. HCl is the only gaseous chlorine species measured in combustion gases. Pyrolysis of coal IBC-109 spiked with NaCl solution shows a strong peak of HCl evolution above 700C. The absence of this peak during pyrolysis of Illinois coal indicates that little chlorine in Illinois coal occurs in the NaCl form. Evolution of sulfur during coal pyrolysis was studied; the sulfur evolution profile may be explained by the sulfur forms in coal. To determine the fate of sulfur and chlorine during combustion, a set of six samples of boiler deposits from superheater and reheater tubes of an Illinois power plant was investigated. Scanning electron microscopy shows microscopic calcium sulfate droplets on cenospheres. Superheater deposits are high in mullite, hematite, and cristobalite, whereas a reheater deposit is enriched in anhydrite. The chlorine content is very low, indicating that most of the chlorine in the feed coal is lost as volatile HCl during he combustion process. The profiles of SO{sub 2} released during combustion experiments at 825 C indicate that calcium hydroxide added to the coal has a significant effect on reducing the SO{sub 2} vapors in combustion gases.

  3. 10 CFR 35.1000 - Other medical uses of byproduct material or radiation from byproduct material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Other medical uses of byproduct material or radiation from... MATERIAL Other Medical Uses of Byproduct Material or Radiation From Byproduct Material § 35.1000 Other medical uses of byproduct material or radiation from byproduct material. A licensee may use...

  4. 10 CFR 35.1000 - Other medical uses of byproduct material or radiation from byproduct material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Other medical uses of byproduct material or radiation from... MATERIAL Other Medical Uses of Byproduct Material or Radiation From Byproduct Material § 35.1000 Other medical uses of byproduct material or radiation from byproduct material. A licensee may use...

  5. 10 CFR 35.1000 - Other medical uses of byproduct material or radiation from byproduct material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Other medical uses of byproduct material or radiation from... MATERIAL Other Medical Uses of Byproduct Material or Radiation From Byproduct Material § 35.1000 Other medical uses of byproduct material or radiation from byproduct material. A licensee may use...

  6. 10 CFR 35.1000 - Other medical uses of byproduct material or radiation from byproduct material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Other medical uses of byproduct material or radiation from... MATERIAL Other Medical Uses of Byproduct Material or Radiation From Byproduct Material § 35.1000 Other medical uses of byproduct material or radiation from byproduct material. A licensee may use...

  7. Chemical production from industrial by-product gases: Final report

    SciTech Connect

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  8. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  9. REDUCTION IN ACIDITY PARAMETERS 6 YEARS AFTER SURFACE APPLICATION OF CA-CONTAINING BY-PRODUCTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanical incorporation of limestone in hill lands can lead to soil loss. An alternative is to surface-apply Ca sources that are more soluble such as coal combustion by-product (CCB) gypsum. Gypsum is known to improve grass yield on acid soil for several years after application, but longevity of ...

  10. POTENTIAL ABATEMENT PRODUCTION AND MARKETING OF BYPRODUCT SULFURIC ACID IN THE U.S

    EPA Science Inventory

    The report gives results of an evaluation of the market potential for sulfur and sulfuric acid byproducts of combustion in power plant boilers. (Air quality regulations require control of SOx emissions from power plant boilers. Recovery of sulfur in useful form would avoid waste ...

  11. ADVANCED GASIFICATION BY-PRODUCT UTILIZATION

    SciTech Connect

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; M. Mercedes Maroto-Valer; Zhe Lu; Harold Schobert

    2005-04-01

    The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2003 to August 31, 2004. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  12. Combustion 2000

    SciTech Connect

    2000-06-30

    This report presents work carried out under contract DE-AC22-95PC95144 ''Combustion 2000 - Phase II.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: {lg_bullet} thermal efficiency (HHV) {ge} 47% {lg_bullet} NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) {lg_bullet} coal providing {ge} 65% of heat input {lg_bullet} all solid wastes benign {lg_bullet} cost of electricity {le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: {lg_bullet} Task 2.2.4 Pilot Scale Testing {lg_bullet} Task 2.2.5.2 Laboratory and Bench Scale Activities

  13. Coal Combustion Products Extension Program

    SciTech Connect

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be

  14. Reduction of fuel side costs due to biomass co-combustion.

    PubMed

    Wils, Andrea; Calmano, Wolfgang; Dettmann, Peter; Kaltschmitt, Martin; Ecke, Holger

    2012-03-15

    The feasibility and influence of co-combustion of woody biomass on the fuel side costs is discussed for three hard coal power plants located in Berlin, Germany. Fuel side costs are defined as the costs resulting from flue gas cleaning and by-products. To have reliable data, co-firing tests were conducted in two power plants (i.e., slag tap furnace and circulating fluidising bed combustion). The amount of wood which was co-fired varied at levels below 11% of the fuel heat input. Wood chips originating from landscape management were used. The analyses show that co-combustion of woody biomass can lower the fuel side costs and that the co-combustion at a level below 10% of the thermal capacity is technically feasible without major problems. Furthermore, a flexible spreadsheet tool was developed for the calculation of fuel side costs and suggestions for operational improvements were made. For example, the adaptation of the Ca/S ratio (mass ratio of calcium in limestone to sulphur in the fuel) in one plant could reduce the fuel side costs up to 135 k€ yr(-1) (0.09 €M Wh(-1)). PMID:21514049

  15. Waste (By-Product) Utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter deals with different aspects of seafood processing byproducts. The production yield for whole raw seafoods varies greatly and depends on how it is processed. The fish processing industry generally calculates yield based on a gutted fish with head on, which typically averages about 40%. ...

  16. Chemistry, mineralogy, and artifical weathering of PFBC by-products

    SciTech Connect

    Fowler, R.K.; Soto, U.I.; Bigham, J.M.

    1995-11-01

    Chemical and mineralogical analyses were performed on spent bed residues and cyclone ashes acquired from the TIDD pressurized fluidized bed combustion (PFBC) demonstration plant operated by American Electric Power in Brilliant, OH. The cyclone ashes were composed of fly ash, dolomite, anhydrite, periclase, and calcite in decreasing order of abundance. By comparison, bed residues contained less dolomite and fly ash but more anhydrite, calcite and periclase. All samples were highly alkaline with paste pH values ranging from 9.9 to 12.3. The major element chemistry of the by-products was dominated by Ca, Mg, S, Fe, Al and Si. All materials met the criteria for ceiling concentrations of Cd, Cr, Cu, Pb, Mo, Ni, Se and Zn as defined for land application of sewage sludges. Arsenic exceeded the ceiling level in one of six samples. An artificial weathering study was conducted to evaluate the impact of PFBC by-products on water quality in mined land reclamation. The study was performed using two mine spoils (pH 3.8 and 5.6) mixed with cyclone ash at rates of 0, 10, 20 and 40 wt % by-product. The composition of leachates from the mixtures was mostly a function of rate of by-product application and equilibration time. In general, the addition of PFBC by-product increased pH, conductivity, and the concentrations of dissolved Ca, K, Mg, Mo, Na, S, and Sr whereas the concentrations of Al, Fe, and Mn decreased. Six metals (Ag, As, Ba, Cd, Cr, and Pb) regulated by the Resource Conservation Recovery Act were below concentration levels defined for drinking water standards. No significant alteration of native spoil minerals was observed over the course of the study; however, hydration/precipitation reactions resulted in the rapid formation of gypsum. No evidence of ettringite crystallization was available after 132 days of periodic leaching.

  17. Device for improved combustion

    SciTech Connect

    Polomchak, R.W.; Yacko, M.

    1988-03-08

    A device for improved combustion is described comprising: a tubular housing member having a first end and a second end, the first and second ends each having a circular opening therethrough; a combustion chamber disposed about the second end of the-tubular-housing member; a first conduit member extending from the first end of the tubular housing member and in fluid communication with the circular opening in the first end of the tubular housing member so as to allow the passage of air therethrough; a second conduit member axially disposed within the first conduit member and extending through the first conduit member and through the tubular housing member to the circular opening the second end of the tubular housing member so as to allow the passage of fuel therethrough; means for effecting turbulence in the air passing through the tubular housing member; means for effecting turbulence in the fuel passing through the second conduit member; means for intermixing and emitting the turbulent air and the fuel in a mushroom shaped configuration with the turbulent air surrounding the mushroom shaped configuration so as to substantially eliminate noxious waste gases as by-product of combustion of the air and fuel mixture.

  18. Combustion characterization of the blend of plant coal and recovered coal fines. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Singh, S.; Scaroni, A.; Miller, B.; Choudhry, V.

    1992-12-31

    The overall objective of this proposed research program was to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples were prepared as 100% plant coal, 90% plant coal/10% fines, 85% plant coal/15% fines, and 80% plant coal /20% fines with a particle size distribution of 70% passing through {minus}200 mesh size. The plant coal and recovered coal fines were obtained from the Randolph Preparation Plant of Peabody Coal Co., Marissa, IL. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace was used mainly to measure the emissions and ash deposition study, while the drop tube furnace was used to determine burning profile, combustion efficiency, etc. The burning profile of the plant coal and the three blends was determined in a thermogravimetric analyzer. Results indicated slower burning of the blends due to low volatile matter and oxidized coal particles. Combustion emissions of these samples were determined in the down-fired combustor, while relative ignition temperatures were determined in the drop tube furnace. Chemical composition of ashes were analyzed to establish a correlation with their respective ash fusion temperatures. Overall study of these samples suggested that the blended samples had combustion properties similar to the original plant coal. In other words, flames were stable under identical firing rates of approximately 200,000 Btu`s/hr and 25% excess air. CO, NO{sub x}, and SO{sub x}, were similar to each other and within the experimental error. Combustion efficiency of 99{sup +}% was achievable. Ash chemical analysis of each sample revealed that slagging and fouling should not be different from each other.

  19. Macroscopic to microscopic studies of flue gas desulfurization byproducts for acid mine drainage mitigation

    SciTech Connect

    Robbins, E.I.; Kalyoncu, R.S.; Finkelman, R.B.; Matos, G.R.; Barsotti, A.F.; Haefner, R.J.; Rowe, G.L. Jr.; Savela, C.E.; Eddy, J.I.

    1996-12-31

    The use of flue gas desulfurization (FGD) systems to reduce SO{sub 2} emissions has resulted in the generation of large quantities of byproducts. These and other byproducts are being stockpiled at the very time that alkaline materials having high neutralization potential are needed to mitigate acid mine drainage (AMD). FGD byproducts are highly alkaline materials composed primarily of unreacted sorbents (lime or limestone and sulfates and sulfites of Ca). The American Coal Ash Association estimated that approximately 20 million tons of FGD material were generated by electric power utilities equipped with wet lime-limestone PGD systems in 1993. Less than 5% of this material has been put to beneficial use for agricultural soil amendments and for the production of wallboard and cement. Four USGS projects are examining FGD byproduct use to address these concerns. These projects involve (1) calculating the volume of flue gas desulfurization (FGD) byproduct generation and their geographic locations in relation to AMD, (2) determining byproduct chemistry and mineralogy, (3) evaluating hydrology and geochemistry of atmospheric fluidized bed combustion byproduct as soil amendment in Ohio, and (4) analyzing microbial degradation of gypsum in anoxic limestone drains in West Virginia.

  20. SOLVENT FIRE BY-PRODUCTS

    SciTech Connect

    Walker, D; Samuel Fink, S

    2006-05-22

    Southwest Research Institute (SwRI) conducted a burn test of the Caustic-Side Solvent Extraction (CSSX) solvent to determine the combustion products. The testing showed hydrogen fluoride gas is not a combustion product from a solvent fire when up to 70% of the solvent is consumed. The absence of HF in the combustion gases may reflect concentration of the modifier containing the fluoride groups in the unburned portion. SwRI reported results for other gases (CO, HCN, NOx, formaldehyde, and hydrocarbons). The results, with other supporting information, can be used for evaluating the consequences of a facility fire involving the CSSX solvent inventory.

  1. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Fourth quarter 1992

    SciTech Connect

    Not Available

    1992-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x } reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB tong-term data collected show the full load NO{sub x} emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO{sub x} emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term, full load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stack particulate emissions issue is resolved.

  2. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1995

    SciTech Connect

    1997-05-01

    On September 30, 1993, the U.S. Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SITJC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC-30252). Under the agreement SIUC will develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mine workings, and assess the environmental impact of such underground placements. This report discusses the technical progress achieved during the period October 1 - December 31, 1995. Rapid Aging Test columns were placed in operation during the second quarter of 1995, and some preliminary data were acquired during this quarter. These data indicate that the highly caustic pH is initially generated in the pneumatic mix, but that such pH is short lived. The initial pH rapidly declines to the range of 8 to 9. Leachates in this pH range will have little or no effect on environmental concerns. Dedicated sampling equipment was installed in the groundwater monitoring wells at the proposed placement site at the Peabody Number 10 mine. Also, the groundwater monitoring wells were {open_quotes}developed{close_quotes} during the quarter to remove the fines trapped in the sand pack and screen. A new procedure was used in this process, and proved successful. A series of tests concerning the geotechnical characteristics of the pneumatic mixes were conducted. Results show that both moisture content and curing time have a direct effect on the strength of the mixes. These are, of course, the expected general results. The Christmas holidays and the closing of the University during an extended period affected the progress of the program during the quarter. However, the program is essentially on schedule, both technically and fiscally, and any delays will be overcome during the first quarter of 1996.

  3. Bioinspiration and Biomimicry: Possibilities for Cotton Byproducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The byproducts from cotton gins have commonly been referred to as cotton gin trash or cotton gin waste primarily because the lint and seed were the main focus of the operation and the byproducts were a financial liability that did not have a consistent market. Even though the byproducts were called ...

  4. Computational Combustion

    SciTech Connect

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  5. 10 CFR 35.75 - Release of individuals containing unsealed byproduct material or implants containing byproduct...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... material or implants containing byproduct material. 35.75 Section 35.75 Energy NUCLEAR REGULATORY... containing unsealed byproduct material or implants containing byproduct material. (a) A licensee may... material or implants containing byproduct material if the total effective dose equivalent to any...

  6. 10 CFR 35.75 - Release of individuals containing unsealed byproduct material or implants containing byproduct...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... material or implants containing byproduct material. 35.75 Section 35.75 Energy NUCLEAR REGULATORY... containing unsealed byproduct material or implants containing byproduct material. (a) A licensee may... material or implants containing byproduct material if the total effective dose equivalent to any...

  7. 10 CFR 35.75 - Release of individuals containing unsealed byproduct material or implants containing byproduct...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... material or implants containing byproduct material. 35.75 Section 35.75 Energy NUCLEAR REGULATORY... containing unsealed byproduct material or implants containing byproduct material. (a) A licensee may... material or implants containing byproduct material if the total effective dose equivalent to any...

  8. 10 CFR 35.75 - Release of individuals containing unsealed byproduct material or implants containing byproduct...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... material or implants containing byproduct material. 35.75 Section 35.75 Energy NUCLEAR REGULATORY... containing unsealed byproduct material or implants containing byproduct material. (a) A licensee may... material or implants containing byproduct material if the total effective dose equivalent to any...

  9. Simulating Combustion

    NASA Astrophysics Data System (ADS)

    Merker, G.; Schwarz, C.; Stiesch, G.; Otto, F.

    The content spans from simple thermodynamics of the combustion engine to complex models for the description of the air/fuel mixture, ignition, combustion and pollutant formation considering the engine periphery of petrol and diesel engines. Thus the emphasis of the book is on the simulation models and how they are applicable for the development of modern combustion engines. Computers can be used as the engineers testbench following the rules and recommendations described here.

  10. Spray combustion stability project

    NASA Technical Reports Server (NTRS)

    Jeng, San-Mou; Litchford, Ron J.

    1990-01-01

    This report summarizes research activity on the Spray Combustion Stability Project, characterizes accomplishments and current status, and discusses projected future work. The purpose is to provide a concise conceptual overview of the research effort so the reader can quickly assimilate the gist of the research results and place them within the context of their potential impact on liquid rocket engine design technology. Therefore, this report does not elaborate on many of the detailed technical aspects of the research program.