Science.gov

Sample records for comet nucleus samples

  1. Comet nucleus sample return mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.

  2. Comet nucleus and asteroid sample return missions

    NASA Astrophysics Data System (ADS)

    Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; McMillan, C.

    During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.

  3. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; Mcmillan, C.

    1992-01-01

    During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.

  4. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  5. Comet nucleus and asteroid sample return missions

    NASA Astrophysics Data System (ADS)

    1992-06-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  6. Isotopic microanalysis of returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Zinner, Ernst

    1989-01-01

    If isotopic measurements of interplanetary dust particles (IDPs) and primitive meteorites can serve as a guide to the isotopic analysis of returned comet nucleus material, an essential requirement will be the capability for microanalysis. The reason is that in both types of extraterrestrial samples large isotopic heterogeneities on a small spatial scale have become apparent once it was possible to measure isotopes in small samples. In the discovery of large isotopic anomalies the ion microprobe has played a significant role because of its high spatial resolution for isotopic ratio measurements. The largest isotopic anomalies in C, N, O, Mg, Si, Ca and Ti found to date were measured by ion microprobe mass spectrometry. The most striking examples are D/H measurements in IDPs and isotopic measurements of C, N and Si in SiC from the CM chondrites Murray and Murchison.

  7. Analysis of Returned Comet Nucleus Samples

    NASA Astrophysics Data System (ADS)

    Chang, Sherwood

    1997-12-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  8. Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Chang, Sherwood (Compiler)

    1997-01-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  9. Analytical study of comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Albee, A. L.

    1989-01-01

    Analytical procedures for studying and handling frozen (130 K) core samples of comet nuclei are discussed. These methods include neutron activation analysis, x ray fluorescent analysis and high resolution mass spectroscopy.

  10. Triple F—a comet nucleus sample return mission

    NASA Astrophysics Data System (ADS)

    Küppers, Michael; Keller, H. U.; Kührt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.; Ehrenfreund, P.; Knollenberg, J.; Mottola, S.; Rathke, A.; Weiss, P.; Zolensky, M.; Akim, E.; Basilevsky, A.; Galimov, E.; Gerasimov, M.; Korablev, O.; Lomakin, I.; Marov, M.; Martynov, M.; Nazarov, M.; Zakharov, A.; Zelenyi, L.; Aronica, A.; Ball, A. J.; Barbieri, C.; Bar-Nun, A.; Benkhoff, J.; Biele, J.; Biver, N.; Blum, J.; Bockelée-Morvan, D.; Botta, O.; Bredehöft, J.-H.; Capaccioni, F.; Charnley, S.; Cloutis, E.; Cottin, H.; Cremonese, G.; Crovisier, J.; Crowther, S. A.; Epifani, E. M.; Esposito, F.; Ferrari, A. C.; Ferri, F.; Fulle, M.; Gilmour, J.; Goesmann, F.; Gortsas, N.; Green, S. F.; Groussin, O.; Grün, E.; Gutiérrez, P. J.; Hartogh, P.; Henkel, T.; Hilchenbach, M.; Ho, T.-M.; Horneck, G.; Hviid, S. F.; Ip, W.-H.; Jäckel, A.; Jessberger, E.; Kallenbach, R.; Kargl, G.; Kömle, N. I.; Korth, A.; Kossacki, K.; Krause, C.; Krüger, H.; Li, Z.-Y.; Licandro, J.; Lopez-Moreno, J. J.; Lowry, S. C.; Lyon, I.; Magni, G.; Mall, U.; Mann, I.; Markiewicz, W.; Martins, Z.; Maurette, M.; Meierhenrich, U.; Mennella, V.; Ng, T. C.; Nittler, L. R.; Palumbo, P.; Pätzold, M.; Prialnik, D.; Rengel, M.; Rickman, H.; Rodriguez, J.; Roll, R.; Rost, D.; Rotundi, A.; Sandford, S.; Schönbächler, M.; Sierks, H.; Srama, R.; Stroud, R. M.; Szutowicz, S.; Tornow, C.; Ulamec, S.; Wallis, M.; Waniak, W.; Weissman, P.; Wieler, R.; Wurz, P.; Yung, K. L.; Zarnecki, J. C.

    2009-03-01

    The Triple F ( Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA’s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  11. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.; Ehrenfreund, P.; Knollenberg, J.; Mottola, S.; Weiss, P.; Zolensky, M.; Akim, E.; Basilevsky, A.; Galimov, E.; Gerasimov, M.; Korablev, O.; Charnley, S.; Nittler, L. R.; Sandford, S.; Weissman, P.

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  12. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  13. Workshop on Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume contains abstracts that were accepted by the Program Committee for presentation at the workshop on the analysis of returned comet nucleus samples held in Milpitas, California, January 16 to 18, 1989. The abstracts deal with the nature of cometary ices, cryogenic handling and sampling equipment, origin and composition of samples, and spectroscopic, thermal and chemical processing methods of cometary nuclei. Laboratory simulation experimental results on dust samples are reported. Some results obtained from Halley's comet are also included. Microanalytic techniques for examining trace elements of cometary particles, synchrotron x ray fluorescence and instrument neutron activation analysis (INAA), are presented.

  14. Analysis of organic compounds in returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.

    1989-01-01

    Techniques for analysis of organic compounds in returned comet nucleus samples are described. Interstellar, chondritic and transitional organic components are discussed. Appropriate sampling procedures will be essential to the success of these analyses. It will be necessary to return samples that represent all the various regimes found in the nucleus, e.g., a complete core, volatile components (deep interior), and crustal components (surface minerals, rocks, processed organics such as macromolecular carbon and polymers). Furthermore, sampling, storage, return, and distribution of samples must be done under conditions that preclude contamination of the samples by terrestrial matter.

  15. Electron Spin Resonance (ESR) Studies of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1997-01-01

    Electron Spin Resonance (ESR) studies have been carried out on organic and inorganic free radicals generated by gamma-ray and/or UV-irradiation and trapped in ice matrices. It is suggested that the concentration of these free radicals together with their thermal stability can be used as an accurate built-in geothermometer and radiation probe for returned comet nucleus sample studies. ESR studies have also been carried out on paramagnetic (Mn(2+), Ti(3+), and Fe(3+)) and ferromagnetic (ferric oxide and metallic iron) centers known to be present in terrestrial and extraterrestrial samples. The presence or absence of these magnetic centers coupled with their characteristic ESR lineshape can be used to investigate the shock effects, quenching/cooling rate and oxidation-reduction conditions in the formation and subsequent evolution of returned comet nucleus samples.

  16. Solar Sail Application to Comet Nucleus Sample Return

    NASA Technical Reports Server (NTRS)

    Taylor, Travis S.; Moton, Tryshanda T.; Robinson, Don; Anding, R. Charles; Matloff, Gregory L.; Garbe, Gregory; Montgomery, Edward

    2003-01-01

    Many comets have perihelions at distances within 1.0 Astronomical Unit (AU) from the sun. These comets typically are inclined out of the ecliptic. We propose that a solar sail spacecraft could be used to increase the inclination of the orbit to match that of these 1.0 AU comets. The solar sail spacecraft would match the orbit velocity for a short period of time, which would be long enough for a container to be injected into the comet's nucleus. The container would be extended from a long durable tether so that the solar sail would not be required to enter into the potentially degrading environment of the comet s atmosphere. Once the container has been filled with sample material, the tether is retracted. The solar sail would then lower its inclination and fly back to Earth for the sample return. In this paper, we describe the selection of cometary targets, the mission design, and the solar sailcraft design suitable for sail-comet rendezvous as well as possible rendezvous scenarios.

  17. Electron Spin Resonance (ESR) studies of returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1989-01-01

    The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H2O, NH3, CH4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed.

  18. Mechanical and SEM analysis of artificial comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Thiel, K.; Kochan, H.; Roessler, K.; Gruen, E.; Schwehm, G.; Hellmann, H.; Hsiung, P.; Koelzer, G.

    1989-01-01

    Since 1987 experiments dealing with comet nucleus phenomena have been carried out in the DFVLR space simulation chambers. The main objective of these experiments is a better understanding of thermal behavior, surface phenomena and especially the gas dust interaction. As a function of different sample compositions and exposure to solar irradiation (xenon-bulbs) crusts of different hardness and thickness were measured. The measuring device consists of a motor driven pressure foot (5 mm diameter), which is pressed into the sample. The applied compressive force is electronically monitored. The microstructure of the crust and dust residuals is investigated by scanning electron microscopy (SEM) techniques. Stress-depth profiles of an unirradiated and an irradiated model comet are given.

  19. Mineralogy and Petrology of COMET WILD2 Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Bland, Phil; Bradley, John; Brearley, Adrian; Brennan, Sean; Bridges, John; Brownlee, Donald; Butterworth, Anna; Dai, Zurong; Ebel, Denton

    2006-01-01

    The sample return capsule of the Stardust spacecraft will be recovered in northern Utah on January 15, 2006, and under nominal conditions it will be delivered to the new Stardust Curation Laboratory at the Johnson Space Center two days later. Within the first week we plan to begin the harvesting of aerogel cells, and the comet nucleus samples they contain for detailed analysis. By the time of the LPSC meeting we will have been analyzing selected removed grains for more than one month. This presentation will present the first results from the mineralogical and petrological analyses that will have been performed.

  20. Workshop on Analysis of Returned Comet Nucleus Samples

    NASA Astrophysics Data System (ADS)

    Chang, Sherwood

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  1. Concepts for the curation, primary examination, and allocation of comet nucleus samples by a comet sample receiving laboratory

    NASA Astrophysics Data System (ADS)

    Stoffler, D.

    1991-04-01

    The Comet Nucleus Sample Return Mission Rosetta, a cornerstone mission of ESA jointly planned with NASA, requires the implementation of a highly sophisticated curatorial facility for the returned samples. A concept for the instrumentation and the mode of operation of a Comet Sample Receiving Laboratory (CSRL) is proposed. The main elements of the facility are (1) cryogenic evacuated cabinets with robotic manipulators; (2) devices for sample dissection, aliquotization, phase separation, and thin section preparation; and (3) instrumentation for nondestructive chemical and physical analyses and facilities for destructive mineralogical, textural, and (micro)chemical analyses. It is recommended that a very detailed primary sample examination and analysis be performed on a small representative fraction of the samples at the P-T-conditions of the parent comet nucleus before sample aliquots are released to principle investigators. The CSRL should be staffed with top rank personnel and supervised by an international peer review panel which may also be responsible for the selection of investigators and the allocation of samples.

  2. Mineralogy and Petrology of Comet Wild 2 Nucleus Samples

    SciTech Connect

    Zolensky, M E; Zega, T J; Yano, H; Wirick, S; Westphal, A J; Weisberg, M K; Weber, I; Warren, J L; Velbel, M A; Tsuchiyama, A; Tsou, P; Toppani, A; Tomioka, N; Tomeoka, K; Teslich, N; Taheri, M; Susini, J; Stroud, R; Stephan, T; Stadermann, F J; Snead, C J; Simon, S B; Siminovici, A; See, T H; Robert, F; Rietmeijer, F M; Rao, W; Perronnet, M C; Papanastassiou, D A; Okudaira, K; Ohsumi, K; Ohnishi, I; Nakanura-Messenger, K; Nakamura, T; Mostefaoui, S; Mikouchi, T; Meibom, A; Matrajt, G; Marcus, M A; Leroux, H; Lemelle, L; Le, L; Lanzirotti, A; Langenhorst, F; Krot, A N; Keller, L P; Kearsley, A T; Joswiak, D; Jacob, D; Ishii, H; Harvey, R; Hagiya, K; Grossman, L; Graham, G A; Gounelle, M; Gillet, P; Genge, M J; Flynn, G; Ferrior, T; Fallon, S; Ebel, D S; Dai, Z R; Cordier, P; Chi, M; Butterworth, A L; Brownlee, D E; Bridges, J C; Brennan, S; Brearley, A; Bradley, J P; Bleuet, P; Bland, P A; Bastien, R

    2006-10-11

    The bulk of the Wild 2 samples appear to be weakly-constructed mixtures of nanometerscale grains with occasional much larger (>1{micro}m) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in Wild 2 require a wide range of formation conditions, probably reflecting different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and absence of hydrous phases indicate that Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require large-scale radial transport in the early protoplanetary disk. The nature of cometary solids is of fundamental importance to our understanding of the early solar nebula and protoplanetary history. Until now we have had to study comets from afar using spectroscopy, or settle for analyses of interplanetary dust particles (IDPs) of uncertain provenance. We report here mineralogical and petrographic analyses of particles derived directly from Comet Wild 2. All of the Wild 2 particles we have thus far examined have been modified in various ways by the capture process. All particles that may have been loose aggregates, ''traveling sand piles'', disaggregated into individual components with the larger, denser components penetrating more deeply into the aerogel. Individual grains experienced a wide range of heating effects that range from excellent preservation to melting (Fig. 1); such behavior was expected (1, 2 ,3). What is remarkable is the extreme variability of these modifications and the fact that severely modified and unmodified materials can be found within a micrometer of each other, requiring tremendous local temperature gradients. Fortunately, we have an internal gauge of impact collection heating. Fe-Ni sulfides are ubiquitous in the Wild 2 samples, are very sensitive indicators of

  3. A comet nucleus sample return mission using solar electric earth gravity assist

    NASA Astrophysics Data System (ADS)

    Kawaguchi, J.

    The paper presents the Comet Nucleus Sample and Return (CNSR) Mission strategy using electric propulsion. The mission objective is very clear and may provide clues to the understanding of the origin of the solar system and of life. The target comet here is an extinct comet, to which a concrete and promising sample collection scenario was constructed. The essence of this paper lies in the use of its novel energy accumulation ring located around the Earth trajectory that gains the angular momentum that results in the high speed Earth swing-by after one or one and a half year quasi-synchronous flight. The spacecraft returns back to the Earth at a specific period regardless of how large the relative excess velocity is gained. This is the essence of the scheme. While the targets accessed via the scheme shown are limited, this strategy enables even a NASA DISCOVERY class, small spacecraft to perform the valuable CNSR mission. The plan is found feasible, and the launch window is open in 2005 and the spacecraft can return the sample back to the Earth in only eight years. Another window in 2009-2010 is also provided. A concrete proposal is shown for the comet Wilson-Harrington (W.H.) here. The ISAS of Japan opens the window to the international organizations for collaboration in this mission.

  4. Hummingbird Comet Nucleus Analysis Mission

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  5. Thermal histories of the samples of two KOSI comet nucleus simulation experiments

    NASA Technical Reports Server (NTRS)

    Spohn, T.; Benkhoff, J.; Klinger, J.; Gruen, E.; Kochan, H.

    1989-01-01

    Temperatures recorded during two KOSI comet nucleus simulation experiments strongly suggest that heat transport by vapor flow into the interior of the sample is very important. Two comet nucleus simulation experiments have been done by the KOSI team in a big space simulator. The thermal evolution of the sample during insolation and the results of simplified thermal evolution calculations are discussed. The observed thermal histories cannot be explained by a simple model with heat transferred by heat conduction at a constant conductivity, so a coupled heat and mass transfer problem was considered. The porous ice matrix was assumed to have a constant thermal conductivity and to be in thermal equilibrium with vapor in the pores, the internal pressure being the vapor pressure. The vapor was modelled as an ideal gas because, at the temperatures relevant to the problem, the mean free path length of the vapor molecules is large in comparison with the pore dimensions. The heat capacity at constant volume per unit mass of the two phase mixture was also assumed constant. The vapor was allowed to flow and transfer heat in response to an internal pressure gradient.

  6. Comet Odyssey: Comet Surface Sample Return

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Bradley, J.; Smythe, W. D.; Brophy, J. R.; Lisano, M. E.; Syvertson, M. L.; Cangahuala, L. A.; Liu, J.; Carlisle, G. L.

    2010-10-01

    Comet Odyssey is a proposed New Frontiers mission that would return the first samples from the surface of a cometary nucleus. Stardust demonstrated the tremendous power of analysis of returned samples in terrestrial laboratories versus what can be accomplished in situ with robotic missions. But Stardust collected only 1 milligram of coma dust, and the 6.1 km/s flyby speed heated samples up to 2000 K. Comet Odyssey would collect two independent 800 cc samples directly from the surface in a far more benign manner, preserving the primitive composition. Given a minimum surface density of 0.2 g/cm3, this would return two 160 g surface samples to Earth. Comet Odyssey employs solar-electric propulsion to rendezvous with the target comet. After 180 days of reconnaissance and site selection, the spacecraft performs a "touch-and-go” maneuver with surface contact lasting 3 seconds. A brush-wheel sampler on a remote arm collects up to 800 cc of sample. A duplicate second arm and sampler collects the second sample. The samples are placed in a return capsule and maintained at colder than -70 C during the return flight and at colder than -30 C during re-entry and for up to six hours after landing. The entire capsule is then refrigerated and transported to the Astromaterials Curatorial Facility at NASA/JSC for initial inspection and sample analysis by the Comet Odyssey team. Comet Odyssey's planned target was comet 9P/Tempel 1, with launch in December 2017 and comet arrival in June 2022. After a stay of 300 days at the comet, the spacecraft departs and arrives at Earth in May 2027. Comet Odyssey is a forerunner to a flagship Cryogenic Comet Sample Return mission that would return samples from deep below the nucleus surface, including volatile ices. This work was supported by internal funds from the Jet Propulsion Laboratory.

  7. Supporting online materials for mineralogy and petrology of Comet81P/Wild 2 nucleus samples

    SciTech Connect

    Zolensky, Michael E.; Zega, Thomas J.; Yano, Hajime; Wirick, Sue; Westphal, Andrew J.; Weisberg, Mike K.; Weber, Iris; Warren, Jack L.; Velbel, Michael A.; Tsuchiyama, Akira; Tsou, Peter; Toppani, Alice; Tomioka, Naotaka; Tomeoka, Kazushige; Teslich, Nick; Taheri, Mitra; Susini, Jean; Stroud, Rhonda; Stephan, Thomas; Stadermann, Frank J.; Snead, Christopher J.; Simon, Steven B.; Simionovici, Alexandre; See,Thomas H.; Robert Francois; Rietmeijer, Frans J.M.; Rao, William; Perronnet, Murielle C.; Papanastassiou, Dimitri A.; Okudaira, Kyoko; Ohsumi, Kazumasa; Ohnishi, Ichiro; Nakamura-Messenger, Keilo; Nakamura,Tomoki; Mostefaoui, Smail; Mikouchi, Takashi; Meibom, Anders; Matrajt,Graciela; Marcus, Matthew A.; Leroux, Hugues; Lemelle, Laurence; Antonio,Loan Le; Lanzirotti, Antonio; Langenhorst, Falko; Krot, Alexander N.; Keller, Lindsay P.; Kearsley, Anton T.; Joswiak, Davis; Jacob, Damien; Ishii, Hope; Harvey, Ralph; Hagiya, Kenji; Grossman, Lawrence; Grossman,Jeffrey N.; Graham, Giles A.; Gounelle, Matthieu; Gillet, Philippe; Genge, Matthew J.; Flynn, George; Ferroir, Tristan; Fallow, Stewart; Ebel, Denton S.; Dai, Zu Rong; Cordier, Patrick; Clark, Benton; Chi,Miaofang; Butterworth, Anna L.; Brownlee, Donald E.; Bridges, John C.; Brennan, Sean; Brearley, Adrian; Bradley, John P.; Bleuet, Pierre; Bland,Phil A.; Bastien, Ron

    2006-01-01

    The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.

  8. Mineralogy and petrology of comet 81P/wild 2 nucleus samples

    USGS Publications Warehouse

    Zolensky, M.E.; Zega, T.J.; Yano, H.; Wirick, S.; Westphal, A.J.; Weisberg, M.K.; Weber, I.; Warren, J.L.; Velbel, M.A.; Tsuchiyama, A.; Tsou, P.; Toppani, A.; Tomioka, N.; Tomeoka, K.; Teslich, N.; Taheri, M.; Susini, J.; Stroud, R.; Stephan, T.; Stadermann, F.J.; Snead, C.J.; Simon, S.B.; Simionovici, A.; See, T.H.; Robert, F.; Rietmeijer, F.J.M.; Rao, W.; Perronnet, M.C.; Papanastassiou, D.A.; Okudaira, K.; Ohsumi, K.; Ohnishi, I.; Nakamura-Messenger, K.; Nakamura, T.; Mostefaoui, S.; Mikouchi, T.; Meibom, A.; Matrajt, G.; Marcus, M.A.; Leroux, H.; Lemelle, L.; Le, L.; Lanzirotti, A.; Langenhorst, F.; Krot, A.N.; Keller, L.P.; Kearsley, A.T.; Joswiak, D.; Jacob, D.; Ishii, H.; Harvey, R.; Hagiya, K.; Grossman, L.; Grossman, J.H.; Graham, G.A.; Gounalle, M.; Gillet, P.; Genge, M.J.; Flynn, G.; Ferroir, T.; Fallon, S.; Ebel, D.S.; Dai, Z.R.; Cordier, P.; Clark, B.; Chi, M.; Butterworth, A.L.; Brownlee, D.E.; Bridges, J.C.; Brennan, S.; Brearley, A.; Bradley, J.P.; Bleuet, P.; Bland, P.A.; Bastien, R.

    2006-01-01

    The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.

  9. Measurements of long-lived cosmogenic nuclides in returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Kohl, C. P.; Arnold, J. R.

    1989-01-01

    Measurements of long lived cosmic ray produced radionuclides have given much information on the histories and rates of surface evolution for meteorites, the Moon and the Earth. These nuclides can be equally useful in studying cometary histories and post nebular processing of cometary surfaces. The concentration of these nuclides depends on the orbit of the comet (cosmic ray intensity changes with distance from the sun), the depth of the sampling site in the comet surface, and the rate of continuous evolution of the surface (erosion rate of surface materials). If the orbital parameters and the sampling depth are known, production rates of cosmogenic nuclides can be fairly accurately calculated by theoretical models normalized to measurement on lunar surface materials and meteoritic samples. Due to the continuous evaporation of surface materials, it is expected that the long lived radioactivities will be undersaturated. Accurate measurements of the degree of undersaturation in nuclides of different half-lives allows for the determination of the rate of surface material loss over the last few million years.

  10. The Mineralogy of Comet Wild-2 Nucleus Samples - What We Think We Know And What We Do Not Know

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.

    2007-01-01

    The sample return capsule of the Stardust spacecraft was successfully recovered in northern Utah on January 15, 2006, and its cargo of coma grains from Comet Wild-2 has now been the subject of intense investigation by approximately 200 scientists scattered across five continents. We can now perform mineralogical and petrographic analyses of particles derived directly from the Jupiter-family Comet Wild-2

  11. Nucleus model for periodic Comet Tempel 2

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    Observational data obtained primarily during 1988 are analyzed and synthesized to develop a comprehensive physical model for the nucleus of Periodic Comet Tempel 2, one of the best studied members of Jupiter's family of short-period comets. It is confirmed that a previous investigation provided reliable information on the comet's spin-axis orientation, which implies and obliquity of 54 degrees of the orbit plane to the equatorial plane and which appears to have varied little - if at all - with time. This conclusion is critical for fitting a triaxial ellipsoid to approximate the figure of the nucleus.

  12. The bare nucleus of comet Neujmin 1

    NASA Technical Reports Server (NTRS)

    Campins, Humberto; A'Hearn, Michael F.; Mcfadden, Lucy-Ann

    1987-01-01

    Simultaneous visible and infrared observations of comet P/Neujmin 1 1984c are presented which show that the comet has a large (mean radius 10 km), dark (geometric albedo 2-3 percent) nucleus with a surface which is mostly inert material but which still shows a low level of gaseous activity. This is the first physical evidence that cometary nuclei can leave behind an inert body after the coma activity ceases. No asteroid or asteroid class has been found to match the reflectance and albedo of this comet except possibly some D asteroids.

  13. Nucleus of Comet P/Arend-Rigaux

    SciTech Connect

    Brooke, T.Y.; Knacke, R.F.

    1986-07-01

    Photometry data at 1-20 microns taken of Comet P/Arend-Rigaux are reported. The observations were carried out to test the possibility of observing the nuclei of low activity, nearly extinct comets at visible and IR wavelengths. The data were collected in February 1985 using the NASA 3 m IR telescope on Mauna Kea. The comet was at 1.67 AU heliocentric distance at the time. Attempts were made to detect rotation of the core on the bases of variations in the J, H and K light curves. The images obtained were those of a rotating nucleus with a radius of 4.0-6.2 km surrounded by a faint coma. The comet had a geometric albedo of 0.01-0.03 and a near-IR red slope that exhibited no evidence of the presence of ice. 32 references.

  14. A Model of Comet Nucleus Rotation

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Jorda, L.; Rickman, H.; Thomas, N.

    2000-10-01

    Modelling cometary rotation is of particular interest for the preparation of space missions to comets. For example, the mapping phase during the ROSETTA mission must be planned keeping in mind that, unlike most asteroids, the rotational state of most short-period comets might be complex (excited). The modelling of cometary nucleus rotation can also provide us with important parameters that are needed to interpret coma structures or to build time-dependent thermal models of the nucleus. We combine a general three-dimensional model for the nucleus shape, surface properties, and insolation with a simplified thermal model to calculate the local time-dependent activity and consequently the non-gravitational forces acting on the nucleus. The torque of this force is then used to numerically solve the forced Euler equations for a homogeneously outgassing irregularly-shaped cometary nucleus. We will discuss the results of our model for comets 46P/Wirtanen, the target of the ROSETTA mission, and 19P/Borrelly, the target of DEEP-SPACE 1 and derive some generalized inferences.

  15. Nucleus of Comet IRAS-Araki-Alcock (1983 VII)

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1988-01-01

    Optical, radar, infrared, UV, and microwave-continuum observations of Comet IRAS-Araki-Alcok were obtained in May 1983, the week of the comet's close approach to earth. The comet has a nucleus dimension and a rotation period which are similar to those of Comet Halley, but a different morphological signature (a persisting sunward fan-shaped coma). Time variations are noted in the projected nucleus cross section. Results suggest significant limb-darkening effects in the relevant domains of radio waves, and that the comet's interior must be extremely cold. It is found that the thermal-infrared fluxes from the inner coma of the comet are dominated by the nucleus.

  16. Comet Borrelly Nucleus Found to the Side

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Deep Space 1 flew by comet Borrelly on September 22, 2001 and took these measurements with its plasma instruments between 90,000 kilometers (56,000 miles) and 2,000 kilometers (1,200 miles) away. These data show that the flow of ions around the comet's rocky, icy nucleus (the center of the deep V-shaped feature) is not centered on the comet's nucleus as scientists expected before the Borrelly flyby. Ions in the turbulent flow are heated to about 1 million Kelvin (2 million degrees Fahrenheit) causing the bands of ions to appear broad and jagged compared to the solar wind.

    Deep Space 1 completed its primary mission testing ion propulsion and 11 other advanced, high-risk technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to undertake this chancy but exciting, and ultimately successful, encounter with the comet. More information can be found on the Deep Space 1 home page at http://nmp.jpl.nasa.gov/ds1/ .

    Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, D.C. The California Institute of Technology manages JPL for NASA.

  17. Comet nucleus impact probe feasibility study

    NASA Technical Reports Server (NTRS)

    Castro, A. J.

    1980-01-01

    A top level listing of the comet nucleus impact probe (CNIP) feasibility experiments requirements are presented. A conceptual configuration which shows that the feasibility of engineering the experiment is possible and describes the candidate hardware is discussed. The design studies required in order to design the operating experiment are outlined. An overview of a program plan used to estimate a rough order of magnitude cost for the CNIP experiment is given.

  18. The observation of comets by the "COMET"!! - Disintegrated nucleus of comet LINEAR (C/1999 S4)

    NASA Astrophysics Data System (ADS)

    Fukushima, Hideo

    2001-03-01

    We, COMET (Comet Observation Mitaka Eager Team), are operating a 50-cm reflector not only for social education open to the public, but also for wide purpose such as students' observation practice and our own researches. The availability of occupying telescope time makes us possible to carry out long-term monitoring observations of comets, which resulted in great contribution to the cometary science. In this article, a present stutus of our monitoring observation is introduced, together with a short documentary story of comet LINEAR (C/1999 S4), of which nucleus was disintegrated against high expectation of being a naked-eye object.

  19. SOCCER: Comet Coma Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Uesugi, K. T.; Tsou, Peter

    1994-01-01

    Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.

  20. The primordial nucleus of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Davidsson, Bjorn; Sierks, Holger; Guettler, Carsten; Marzari, Francesco; Pajola, Maurizio; Rickman, Hans; A'Hearn, Michael; Auger, Anne-Therese; El-Maarry, Mohamed; Fornasier, Sonia; Gutierrez, Pedro; Keller, Horst Uwe; Massironi, Matteo; Snodgrass, Colin; Vincent, Jean-Baptiste; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Barucci, Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Cremonese, Gabriele; Da Deppo, Vania; Debei, Stefano; De Cecco, Mariolino; Feller, Clement; Fulle, Marco; Groussin, Olivier; Hviid, Stubbe; Hoefner, Sebastian; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Joerg; Kovacs, Gabor; Kramm, Joerg-Rainer; Kuehrt, Ekkehard; Kueppers, Michael; La Forgia, Fiorangela; Lara, Luisa; Lazzarin, Monica; Lopez Moreno, Jose; Moissl-Fraund, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Thomas, Nicolas; Tubiana, Cecilia

    2015-11-01

    Observations of Comet 67P/Churyumov-Gerasimenko by Rosetta show that the nucleus is bi-lobed, extensively layered, has a low bulk density, a high dust-to-ice mass ratio (implying high porosity), and weak strength except for a thin sintered surface layer. The comet is rich in supervolatiles (CO, CO2, N2), may contain amorphous water ice, and displays little to no signs of aqueous alteration. Lack of phyllosilicates in Stardust samples from Comet 81P/Wild 2 provides further support that comet nuclei did not contain liquid water.These properties differ from those expected for 50-200 km diameter bodies in the primordial disk. We find that thermal processing due to Al-26, combined with collisional compaction, creates a population of medium-sized bodies that are comparably dense, compacted, strong, heavily depleted in supervolatiles, containing little to no amorphous water ice, and that have experienced extensive aqueous alteration. Irregular satellites Phoebe and Himalia are potential representatives of this population. Collisional rubble piles inherit these properties from their parents. We therefore conclude that observed comet nuclei are primordial rubble piles, and not collisional rubble piles.We propose a concurrent comet and TNO formation scenario that is consistent with these observations. We argue that TNOs form due to streaming instabilities at sizes of about 50-400 km and that about 350 of these grow slowly in a low-mass primordial disk to the size of Triton, causing little viscous stirring during growth. We propose a dynamically cold primordial disk, that prevents medium-sized TNOs from breaking into collisional rubble piles, and allows for the survival of primordial rubble-pile comets. We argue that comets form by hierarchical agglomeration out of material that remains after TNO formation. This slow growth is necessary to avoid thermal processing by Al-26, and to allow comet nuclei to incorporate 3 Myr old material from the inner Solar System, found in

  1. HUBBLE DETECTION OF COMET NUCLEUS AT FRINGE OF SOLAR SYSTEM

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is sample data from NASA's Hubble Space Telescope that illustrates the detection of comets in the Kuiper Belt, a region of space beyond the orbit of the planet Neptune. This pair of images, taken with the Wide Field Planetary Camera 2 (WFPC2), shows one of the candidate Kuiper Belt objects found with Hubble. Believed to be an icy comet nucleus several miles across, the object is so distant and faint that Hubble's search is the equivalent of finding the proverbial needle-in-haystack. Each photo is a 5-hour exposure of a piece of sky carefully selected such that it is nearly devoid of background stars and galaxies that could mask the elusive comet. The left image, taken on August 22, 1994, shows the candidate comet object (inside circle) embedded in the background. The right picture, take of the same region one hour forty-five minutes later shows the object has apparently moved in the predicted direction and rate of motion for a kuiper belt member. The dotted line on the images is a possible orbit that this Kuiper belt comet is following. A star (lower right corner) and a galaxy (upper right corner) provide a static background reference. In addition, other objects in the picture have not moved during this time, indicating they are outside our solar system. Through this search technique astronomers have identified 29 candidate comet nuclei belonging to an estimated population of 200 million particles orbiting the edge of our solar system. The Kupier Belt was theorized 40 years ago, and its larger members detected several years ago. However, Hubble has found the underlying population of normal comet-sized bodies. Credit: A. Cochran (University of Texas) and NASA

  2. 3200 Phaethon, Asteroid or Comet Nucleus?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Benkhoff, Johannes

    2015-08-01

    Physico-chemical modeling is central to understand the important physical processes in small solar system bodies. We have developed a computer simulation, SUISEI, that includes the physico-chemical processes relevant to comets within a global modeling framework. Our goals are to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a 3-D model of gas and heat transport in porous sub-surface layers in the interior of the nucleus.We present results on the application of SUISEI to the near-Sun object, Phaethon. Discovered in 1983 and classified as an asteroid, it has recently exhibited an active dust coma. Phaethon has long been associated as the source of the Geminids meteor shower so the dust activity provides a clear link to the meteor shower. The observed dust activity would traditionally lead to Phaethon being also classified as a comet (e.g., 2060-95P/Chiron, 133P/Elst-Pizarro). This is unusual since the orbit of Phaethon has a perihelion of 0.14 AU, resulting in surface temperatures of more than 1025K, much too hot for water ice or other volatiles to exist near the surface and drive the activity. This situation and others such as the “Active Asteroids” necessitates a revision of how we understand and classify these small asteroid-comet transition objects.We conclude the following for Phaethon:1. It is likely to contain relatively pristine volatiles in its interior despite repeated near perihelion passages of 0.14 AU during its history in its present orbit,2. Steady water gas fluxes at perihelion and throughout its orbit are insufficient to entrain the currently observed dust production,3. Thermal gradients into the surface as well as those caused by diurnal rotation are consistent with the mechanism of dust release due to thermal fracture,4. The initial large gas release during the first perihelion passage may be sufficient to produce enough dust to explain

  3. Comet coma sample return instrument

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  4. Comet sample acquisition for ROSETTA lander mission

    NASA Astrophysics Data System (ADS)

    Marchesi, M.; Campaci, R.; Magnani, P.; Mugnuolo, R.; Nista, A.; Olivier, A.; Re, E.

    2001-09-01

    ROSETTA/Lander is being developed with a combined effort of European countries, coordinated by German institutes. The commitment for such a challenging probe will provide a unique opportunity for in-situ analysis of a comet nucleus. The payload for coring, sampling and investigations of comet materials is called SD2 (Sampling Drilling and Distribution). The paper presents the drill/sampler tool and the sample transfer trough modeling, design and testing phases. Expected drilling parameters are then compared with experimental data; limited torque consumption and axial thrust on the tool constraint the operation and determine the success of tests. Qualification campaign involved the structural part and related vibration test, the auger/bit parts and drilling test, and the coring mechanism with related sampling test. Mechanical check of specimen volume is also reported, with emphasis on the measurement procedure and on the mechanical unit. The drill tool and all parts of the transfer chain were tested in the hypothetical comet environment, charcterized by frozen material at extreme low temperature and high vacuum (-160°C, 10-3 Pa).

  5. Figure Caption for pair of images of 'Comet Nucleus Q

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Figure Caption for pair of images of 'Comet Nucleus Q'. 21Jul94 Last Look at the Q-nuclei First image - March 30, 1994. Two Q-nuclei and a split nucleus, P. Second image - July 20, 1994. at T - 10 hours. Both nuclei still show no sign of further fragmentation, although the coma near each is being stretched out along the direction of motion. Both images were taken with the WFPC2 Planetary Camera using a red filter. Credit: H. A. Weaver and T. E. Smith

  6. Study of Comet Nucleus Gamma-Ray Spectrometer Penetration System

    NASA Technical Reports Server (NTRS)

    Adams, G. L.; Amundsen, R. J.; Beardsley, R. W.; Cash, R. H.; Clark, B. C.; Knight, T. C. D.; Martin, J. P.; Monti, P.; Outteridge, D. A.; Plaster, W. D.

    1986-01-01

    A penetrator system has been suggested as an approach for making in situ measurements of the composition and physical properties of the nucleus of a comet. This study has examined in detail the feasibility of implementing the penetrator concept. The penetrator system and mission designs have been developed and iterated in sufficient detail to provide a high level of confidence that the concept can be implemented within the constraints of the Mariner Mark 2 spacecraft.

  7. Sampling the stuff of a comet

    SciTech Connect

    Knacke, R.

    1987-03-01

    The composition of the clouds around Comet Halley during its perihelion passage was examined using intercept spacecraft, IUE, ICE and Pioneer Venus spacecraft, and ground-based instruments. Spectral data showed that the dust emitted in jets was mainly carbon, hydrogen, oxygen and nitrogen (CHON), with additives of Fe, Si, and Mg. The C abundance is similar to that in the sun and in the galactic stellar abundances, which supports the model of comets as proto-stellar nebula material. The nucleus was observed to shed 16 tons of water per second, a rate which at times may have doubled. Noticeably absent from the spectra were CH/sub 4/ lines, an absence common in interstellar clouds. The possibilities that the comet contains a large deuterium-hydrogen ratio and carbonaceous material are discussed.

  8. Calculated dynamical evolution of the nucleus of comet Hartley 2

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid

    2013-04-01

    The nucleus of comet Hartley 2 has a relatively regular dumbbell shape with unequal heads. The narrow part of elongated shape contains a relatively smooth region whose covering material is highly different in its shallow structure compared to other parts of this celestial body. The surface of crudely spherical parts of the nucleus is different from the surface of the "neck", which implies a hypothesis that the shape of the nucleus of Hartley 2 is indicative of destruction of this celestial body occurring in our days. The nucleus rotates around its axis passing through the center of mass, and centrifugal forces arise. This process is hindered by gravitation between parts of the nucleus and gradual slowing of rotation due to body lengthening because of the increase in the moment of inertia (proportional to R2) and due to friction losses in the neck material. We posed the task to determine centrifugal and gravitational forces in the neck (and, respectively, the strains of stretching and compression), the moment of inertia of the body and supply of its rotational energy E, the volume of the nucleus and its average density, and the position of the barycenter and center of rotation. It can be assumed that these forces cause slow but progressive lengthening of the neck which should eventually result in fragmentation of the nucleus. Centrifugal forces can be found as a result of summation of forces produced by parts of the body. According to the calculation model, the total stretching forces in the section passing through the narrowest cut of the neck are 1.21E6 N. The corresponding compression forces in the section passing through the narrow section are 1.04E6 N. The comparison of these values indicates a paradoxical result: stretching strains dominate in the neck, while compressions are dominant in the section passing through the common center of mass. The excess of stretching strains in the neck is 11%. The inference is as follows: the right part of the neck and the

  9. Low encounter speed comet COMA sample return missions

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Yen, C. W.; Albee, A. L.

    1994-01-01

    Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar-system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. The study of comets, and more especially, of material from them, provides an understanding of the physical, chemical, and mineralogical processes operative in the formation and earliest development of the solar systems. These return samples will provide valuable information on comets and serve as a rosetta stone for the analytical studies conducted on interplanetary dust particles over the past two decades, and will provide much needed extraterrestrial samples for the planetary materials community since the Apollo program. Lander sample return missions require rather complex spacecraft, intricate operations, and costly propulsion systems. By contrast, it is possible to take a highly simplified approach for sample capture and return in the case of a comet. In the past, we have considered Earth free-return trajectory to the comet, in which passive collectors intercept dust and volatiles from the cometary coma. However, standard short period cometary free-return trajectories results in the comet to the spacecraft encounter speeds in the range of 10 km/s. At these speeds the kinetic energy of the capture process can render significant modification of dust structure, change of solid phase as well as the lost of volatiles components. This paper presents a class of new missions with trajectories with significant reduction of encounter speeds by incorporating gravity assists and deep space maneuvering. Low encounter speed cometary flyby sample return will enable a marked increase in the value of the return science. Acquiring thousands of samples from a known comet and thousands of images of a comet nucleus would be space firsts. Applying new approach in flight mechanics to generate a new class of low encounter speed cometary sample return

  10. The primordial nucleus of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Davidsson, B. J. R.; Sierks, H.; Güttler, C.; Marzari, F.; Pajola, M.; Rickman, H.; A'Hearn, M. F.; Auger, A.-T.; El-Maarry, M. R.; Fornasier, S.; Gutiérrez, P. J.; Keller, H. U.; Massironi, M.; Snodgrass, C.; Vincent, J.-B.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Feller, C.; Fulle, M.; Groussin, O.; Hviid, S. F.; Höfner, S.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Moissl-Fraund, R.; Mottola, S.; Naletto, G.; Oklay, N.; Thomas, N.; Tubiana, C.

    2016-07-01

    Context. We investigate the formation and evolution of comet nuclei and other trans-Neptunian objects (TNOs) in the solar nebula and primordial disk prior to the giant planet orbit instability foreseen by the Nice model. Aims: Our goal is to determine whether most observed comet nuclei are primordial rubble-pile survivors that formed in the solar nebula and young primordial disk or collisional rubble piles formed later in the aftermath of catastrophic disruptions of larger parent bodies. We also propose a concurrent comet and TNO formation scenario that is consistent with observations. Methods: We used observations of comet 67P/Churyumov-Gerasimenko by the ESA Rosetta spacecraft, particularly by the OSIRIS camera system, combined with data from the NASA Stardust sample-return mission to comet 81P/Wild 2 and from meteoritics; we also used existing observations from ground or from spacecraft of irregular satellites of the giant planets, Centaurs, and TNOs. We performed modeling of thermophysics, hydrostatics, orbit evolution, and collision physics. Results: We find that thermal processing due to short-lived radionuclides, combined with collisional processing during accretion in the primordial disk, creates a population of medium-sized bodies that are comparably dense, compacted, strong, heavily depleted in supervolatiles like CO and CO2; they contain little to no amorphous water ice, and have experienced extensive metasomatism and aqueous alteration due to liquid water. Irregular satellites Phoebe and Himalia are potential representatives of this population. Collisional rubble piles inherit these properties from their parents. Contrarily, comet nuclei have low density, high porosity, weak strength, are rich in supervolatiles, may contain amorphous water ice, and do not display convincing evidence of in situ metasomatism or aqueous alteration. We outline a comet formation scenario that starts in the solar nebula and ends in the primordial disk, that reproduces these

  11. The rate of formation of clusters on the surface of the comet's nucleus

    NASA Astrophysics Data System (ADS)

    Shoyokubov, Shoayub

    2016-07-01

    The paper describes the positive and negative clusters ions formation rate on the surface of comet nucleus under the influence of corpuscular solar wind particles taking into account the experimentally calculated coefficients of secondary ion emission.

  12. Collisions between the nucleus of Comet Halley and dust from its own meteoroid stream

    NASA Astrophysics Data System (ADS)

    Williams, I. P.; Hughes, D. W.; McBride, N.; Wu, Z.

    1993-01-01

    As Comet Halley orbits the Sun it continuously ploughs through its own meteoroid stream. We show that the collision velocity between the stream meteoroids and the surface of the cometary nucleus is far from negligible, the mean value being about 4.0 km/s. Half of the collisions occur when the comet is close to perihelion. The total amount of its own dust hit by Comet Halley per orbit is around 17 g, and this damages a mere 8 x 10 exp -8 percent of the surface of the nucleus.

  13. Comet coma sample return via Giotto II

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    1985-01-01

    A comet coma sample return is possible with a low-cost flyby mission. Collecting coma materials and returning them to earth can be accomplished in a free-return trajectory. Intact capture of coma dust, preserving the cometary dust mineralogy, is possible at low encounter speeds. Samples from a known cometary source can then be compared with the wealth of information on meteorites and interplanetary dust. Sample return via Giotto II is a unique, low-cost NASA/ESA cooperative opportunity. With ESA providing the Giotto spacecraft and payload and NASA the sample return capability, first-class science can be accomplished at a very low cost for both NASA and ESA. This paper focuses on the sample return aspects, including sample return objectives, sample collection techniques, experimental work to verify collection concepts, and some of the characteristics of the cometary targets for sample return.

  14. Optical image of a cometary nucleus: 1980 flyby of Comet Encke

    NASA Technical Reports Server (NTRS)

    Wells, W. C.; Benson, R. S.; Anderson, A. D.; Gal, G.

    1974-01-01

    The feasibility was investigated of obtaining optical images of a cometary nucleus via a flyby of Comet Encke. A physical model of the dust cloud surrounding the nucleus was developed by using available physical data and theoretical knowledge of cometary physics. Using this model and a Mie scattering code, calculations were made of the absolute surface brightness of the dust in the line of sight of the on-board camera and the relative surface brightness of the dust compared to the nucleus. The brightness was calculated as a function of heliocentric distance and for different phase angles (sun-comet-spacecraft angle).

  15. Characterization of the NASA EPOXI Mission Target Comet Nucleus 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Lisse, Carey; A'Hearn, Michael; Farnham, Tony; Fernandez, Yanga; Groussin, Olivier; Meech, Karen; Reach, William

    2008-03-01

    In July 2007 NASA selected the EPOXI mission for flight operations. This mission utilizes the Deep Impact flyby spacecraft, which survived encounter with comet 9P/Tempel (T1) unscathed after returning, in conjunction with Spitzer, a wealth of data on the primordial makeup of comets. EPOXI will rendezvous with comet 103P/Hartley2 (H2) and obtain comparable remote imaging observations of the nucleus surface. However, little is known about its nucleus, not its size, rotation rate, or albedo. Mission success depends critically on the ability of the EPOXI spacecraft to navigate to the comet and make accurate, non-saturated measurements. Despite robust targeting algorithms, large uncertainties in size, shape, albedo, and rotational state significantly degrade the probability that the spacecraft will view a sunlit portion of the surface. We propose here to use Spitzer's MIPS 24 um imaging camera to characterize the nucleus of comet 103P/Hartley2. Observing the comet at 5 different epochs will allow easy detection of the moving object vs. background stellar sources, as well as providing a gross measure of the rotational variability. The derived science will add directly to the JFC nucleus survey of Fernandez et al (PID 30908), and the comet trail survey of Reach et al (PID 3119). Our proposal calls for characterization of H2 during the 11 Aug - 20 Sep 3008 observability window, the only one available during Cycle 5, when the comet will be 5.4 AU from the Sun and 5.0 AU from Spitzer, well outside the ice line and thus inactive. The characterization involves fixed- single mode, dithered MIPS maps of the region immediately surrounding the comet, performed 5 times to verify the motion of the target. The total telescope time requested is 2.64 hours.

  16. Comprehensive model for the nucleus of Periodic Comet Tempel 2 and its activity

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    A comprehensive synergistic physical model for the nucleus of Periodic Comet Tempel 2 was developed on the basis of observations carried out in 1988. The model includes the best possible estimates of the comet's bulk properties (including the dimensions and the approximate shape), information on its state of rotation, and the characterization of its activity. The model is shown to be consistent with all lines of evidence that are currently available, including relevant information from earlier apparitions.

  17. Comets

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    2006-01-01

    Spectroscopy of comets, in the X-ray and far-ultraviolet from space, and in the near infrared and millimeter from the ground, have revealed a wealth of new information, particularly about the molecular constituents that make up the volatile fraction of the comet s nucleus. Interpretation of these data requires not only proper wavelengths for identification but also information about the photolytic and excitation processes at temperatures typical of the inner coma (70-100 K) that lead to the observed spectral signatures. Several examples, mainly from Far Ultraviolet Spectroscopic Explorer and Hubble Space Telescope spectra of comets observed during the last few years, will be given to illustrate some of the current issues.

  18. COMETS!

    NASA Astrophysics Data System (ADS)

    Eicher, David J.; Levy, David H.

    2013-11-01

    Foreword David H. Levy; Preface; Acknowledgments; 1. Strange lights in the sky; 2. Great comets of the past; 3. What are comets?; 4. Comets of the modern era; 5. Comets in human culture; 6. Where comets live; 7. The expanding science of comets; 8. Observing comets; 9. Imaging comets; Glossary; Bibliography; Index.

  19. Comet C/2011 J2 (LINEAR) nucleus splitting: Dynamical and structural analysis

    NASA Astrophysics Data System (ADS)

    Manzini, Federico; Oldani, Virginio; Hirabayashi, Masatoshi; Behrend, Raoul; Crippa, Roberto; Ochner, Paolo; Pina, José Pablo Navarro; Haver, Roberto; Baransky, Alexander; Bryssinck, Eric; Dan, Andras; De Queiroz, Josè; Frappa, Eric; Lavayssiere, Maylis

    2016-07-01

    After the discovery of the breakup event of comet C/2011 J2 in August 2014, we followed the primary body and the main fragment B for about 120 days in the context of a wide international collaboration. From the analysis of all published magnitude estimates we calculated the comet's absolute magnitude H=10.4, and its photometric index n=1.7. We also calculated a water production of only 110 kg/s at the perihelion. These values are typical of a low-activity, long-period or new comet. Analysis of the motion of fragment B over the observation period showed that the first breakout event likely occurred between 12 July and 30 July 2014. Nucleus B remained persistently visible throughout the 4-month observation period. The projected separation velocity of nucleus B from the parent body was 4.22 m/s at the time of the breakup and 12.7 m/s at the end of the observation period, suggesting that nucleus B was subjected to a constant deceleration a = 6.87 • 10-7 m / s2 . The spin period of the main nucleus was estimated as 4.56 h±0.05 h by photometric analysis. The structural analysis of the comet showed a cohesive strength of the nucleus greater than ~0.9 kPa; assuming a bulk density of 500 kg/m3, with a rotation period of 4.56 h the cometary nucleus might have failed structurally, especially if the body was elongated. These results suggest that the nucleus of comet C/2011 J2 has an elongated shape, with a ratio of the semi-minor axis to the semi-major axis β < 0.675 ; the semi-major axis of the pristine nucleus could be larger than 8 km. From this study, we propose that rotational disruption, possibly combined with sublimation pressure, was a reasonable explanation for the breakup event in comet C/2011 J2.

  20. Rotation states of the nucleus of Comet Halley compatible with spacecraft images

    NASA Astrophysics Data System (ADS)

    Abergel, A.; Bertaux, J. L.

    1990-07-01

    The positions of the nucleus of Comet Halley have been interpreted, for the observations conducted by the flybys of Vegas 1 and 2 and Giotto, with a pure rotation motion and a period of about 54 hours. Comparisons with ground-based estimates of either the angular momentum or the instantaneous rotation axis of the nucleus indicate that the observed rotation axis during the three spacecraft encounters was moving; on this basis it is suggested that the rotation rate of the nucleus cannot be simple, for all that it may not be far from a pure rotation.

  1. MRO HiRISE Observations of the Nucleus of Comet C/2013 A1 (Siding Spring)

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.; Delamere, W. A.; Heyd, R.; Mattson, S.; Tamppari, L.; Zurek, R. W.; Schaller, C.; Block, K.; Polit, A. T.; Milkovich, S. M.; Hansen, C. J.; Thomas, N.; Cremonese, G.

    2014-12-01

    Comet C/2013 A1 (Siding Spring) will pass Mars at a distance of 131,000 ± 3,000 km on Oct 19, 2014. Mars Reconnaissance Orbiter (MRO) will observe the comet on multiple orbits within 2.5 days before and after closest approach. The HiRISE telescope has a 50 cm aperture and an instantaneous field of view of one micro-radian per pixel, so the best image will have a scale near 131 m/pixel. If imaging is successful (i.e., not too smeared) and if the nucleus is larger than ~200 m diameter, this will provide the first resolved images of the nucleus of a long-period comet. Previous resolved images cover the nuclei of short-period comets, whose surfaces have been processed by many close passes by the sun. The encounter velocity is 56 km/s, so the best observations of the nucleus are only possible a few hours near closest approach, as seen from portions of 3 MRO orbits. A total of 20 HiRISE observations are planned for these 3 orbits, with exposure times varying from 0.13 to 2.5 s to cover a range of potential brightness. The HiRISE CCDs are operated at much higher temperatures, 20-30C, than those used for astronomical observations, so the maximum exposure time is limited by dark current signal. HiRISE objectives are to measure the shape and dimensions of the nucleus, determine its albedo (currently unknown for long-period comets), measure the rotation period and axis, and observe the inner coma for bright jets or outbursts. The phase angles range from 90 to 107 degrees, which will make imaging the nucleus challenging. The fast relative motions and changing geometries of the comet and MRO also make it challenging to acquire unsmeared images, since the image must pass directly down the 128 lines used for time-delay integration (TDI). Although the comet's trajectory is probably well known (as nongravitational effects have not been detected), the exact timing is uncertain. Small timing errors could result in the image passing down the TDI rows at an angle, producing smeared

  2. THE NUCLEUS OF MAIN-BELT COMET 259P/GARRADD

    SciTech Connect

    MacLennan, Eric M.; Hsieh, Henry H. E-mail: emaclenn@utk.edu

    2012-10-10

    We present observations of the main-belt comet 259P/Garradd, previously known as P/2008 R1 (Garradd), obtained in 2011 and 2012 using the Gemini North Telescope on Mauna Kea in Hawaii and the SOAR telescope at Cerro Pachon in Chile, with the goal of computing the object's phase function and nucleus size. We find an absolute magnitude of H{sub R} = 19.71 {+-} 0.05 mag and slope parameter of G{sub R} = -0.08 {+-} 0.05 for the inactive nucleus, corresponding to an effective nucleus radius of r{sub e} = 0.30 {+-} 0.02 km, assuming an R-band albedo of p{sub R} = 0.05. We also revisit observations reported for 259P while it was active in 2008 to quantify the dust mass loss and compare the object with other known main-belt comets.

  3. Non-destructive analyses of cometary nucleus samples using synchrotron radiation

    SciTech Connect

    Flynn, G.J.; Sutton, S.R.; Rivers, M.L.

    1989-01-01

    Trace element abundances and abundance patterns in meteorites have proven to be diagnostic indicators of nebular and parent body fractionations, formation temperature, thermal metamorphism and, co-genesis. If comets are more primitive samples of the solar nebula than the meteorites, then trace element abundances in the returned comet nucleus samples should be better indicators of primitive solar nebula conditions than those of meteorites. Comet nucleus samples are likely to consist of a mixture of ices and mineral grains. To provide a complete picture of the elemental distributions, trace element abundance data on the bulk material, as well as separated mineral grains and ices, will be required. This paper discusses the present and future analytical capabilities. 22 refs., 2 figs.

  4. A homogeneous nucleus for comet 67P/Churyumov-Gerasimenko from its gravity field.

    PubMed

    Pätzold, M; Andert, T; Hahn, M; Asmar, S W; Barriot, J-P; Bird, M K; Häusler, B; Peter, K; Tellmann, S; Grün, E; Weissman, P R; Sierks, H; Jorda, L; Gaskell, R; Preusker, F; Scholten, F

    2016-02-01

    Cometary nuclei consist mostly of dust and water ice. Previous observations have found nuclei to be low-density and highly porous bodies, but have only moderately constrained the range of allowed densities because of the measurement uncertainties. Here we report the precise mass, bulk density, porosity and internal structure of the nucleus of comet 67P/Churyumov-Gerasimenko on the basis of its gravity field. The mass and gravity field are derived from measured spacecraft velocity perturbations at fly-by distances between 10 and 100 kilometres. The gravitational point mass is GM = 666.2 ± 0.2 cubic metres per second squared, giving a mass M = (9,982 ± 3) × 10(9) kilograms. Together with the current estimate of the volume of the nucleus, the average bulk density of the nucleus is 533 ± 6 kilograms per cubic metre. The nucleus appears to be a low-density, highly porous (72-74 per cent) dusty body, similar to that of comet 9P/Tempel 1. The most likely composition mix has approximately four times more dust than ice by mass and two times more dust than ice by volume. We conclude that the interior of the nucleus is homogeneous and constant in density on a global scale without large voids. The high porosity seems to be an inherent property of the nucleus material. PMID:26842054

  5. A homogeneous nucleus for comet 67P/Churyumov-Gerasimenko from its gravity field

    NASA Astrophysics Data System (ADS)

    Pätzold, M.; Andert, T.; Hahn, M.; Asmar, S. W.; Barriot, J.-P.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Grün, E.; Weissman, P. R.; Sierks, H.; Jorda, L.; Gaskell, R.; Preusker, F.; Scholten, F.

    2016-02-01

    Cometary nuclei consist mostly of dust and water ice. Previous observations have found nuclei to be low-density and highly porous bodies, but have only moderately constrained the range of allowed densities because of the measurement uncertainties. Here we report the precise mass, bulk density, porosity and internal structure of the nucleus of comet 67P/Churyumov-Gerasimenko on the basis of its gravity field. The mass and gravity field are derived from measured spacecraft velocity perturbations at fly-by distances between 10 and 100 kilometres. The gravitational point mass is GM = 666.2 ± 0.2 cubic metres per second squared, giving a mass M = (9,982 ± 3) × 109 kilograms. Together with the current estimate of the volume of the nucleus, the average bulk density of the nucleus is 533 ± 6 kilograms per cubic metre. The nucleus appears to be a low-density, highly porous (72-74 per cent) dusty body, similar to that of comet 9P/Tempel 1. The most likely composition mix has approximately four times more dust than ice by mass and two times more dust than ice by volume. We conclude that the interior of the nucleus is homogeneous and constant in density on a global scale without large voids. The high porosity seems to be an inherent property of the nucleus material.

  6. Deep Space 1 photometry of the nucleus of Comet 19P/Borrelly

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Hicks, M. D.; Soderblom, L. A.; Britt, D.; Oberst, J.; Hillier, J. K.

    2004-01-01

    The NASA-JPL Deep Space 1 Mission (DS1) encountered the short-period Jupiter-family Comet 19P/Borrelly on September 22, 2001, about 8 days after perihelion. DS1's payload contained a remote-sensing package called MICAS (Miniature Integrated Camera Spectrometer) that included a 1024 square CCD and a near IR spectrometer with ˜12 nm resolution. Prior to its closest approach of 2171 km, the remote-sensing package on the spacecraft obtained 25 CCD images of the comet and 45 near-IR spectra (L. Soderblom et al., 2002, Science 296, 1087-1091). These images provided the first close-up view of a comet's nucleus sufficiently unobscured to perform quantitative photometric studies. At closest approach, corresponding to a resolution of 47 meters per pixel, the intensity of the coma was less than 1% of that of the nucleus. An unprecedented range of high solar phase angles (52-89 degrees), viewing geometries that are in general attainable only when a comet is active, enabled the first quantitative and disk resolved modeling of surface photometric physical parameters, including the single particle phase function and macroscopic roughness. The disk-integrated geometric albedo of Borrelly's nucleus is 0.029±0.006, comparable to the dark hemisphere of Iapetus, the lowest albedo C-type asteroids, and the uranian rings. The Bond albedo, 0.009±0.002, is lower than that of any Solar System object measured. Such a low value may enhance the heating of the nucleus and sublimation of volatiles, which in turn causes the albedo to decrease even further. A map of normal reflectance of Borrelly shows variations far greater than those seen on asteroids. The two main terrain types, smooth and mottled, exhibit mean normal reflectances of 0.03 and 0.022. The physical photometric parameters of Borrelly's nucleus are typical of other small dark bodies, particularly asteroids, except preliminary modeling results indicate its regolith may be substantially fluffier. The nucleus exhibits significant

  7. The nonmagnetic nucleus of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Auster, Hans-Ulrich; Apathy, Istvan; Berghofer, Gerhard; Fornacon, Karl-Heinz; Remizov, Anatoli; Carr, Chris; Güttler, Carsten; Haerendel, Gerhard; Heinisch, Philip; Hercik, David; Hilchenbach, Martin; Kührt, Ekkehard; Magnes, Werner; Motschmann, Uwe; Richter, Ingo; Russell, Christopher T.; Przyklenk, Anita; Schwingenschuh, Konrad; Sierks, Holger; Glassmeier, Karl-Heinz

    2015-07-01

    Knowledge of the magnetization of planetary bodies constrains their origin and evolution, as well as the conditions in the solar nebular at that time. On the basis of magnetic field measurements during the descent and subsequent multiple touchdown of the Rosetta lander Philae on the comet 67P/Churyumov-Gerasimenko (67P), we show that no global magnetic field was detected within the limitations of analysis. The Rosetta Magnetometer and Plasma Monitor (ROMAP) suite of sensors measured an upper magnetic field magnitude of less than 2 nanotesla at the cometary surface at multiple locations, with the upper specific magnetic moment being <3.1 × 10-5 ampere-square meters per kilogram for meter-size homogeneous magnetized boulders. The maximum dipole moment of 67P is 1.6 × 108 ampere-square meters. We conclude that on the meter scale, magnetic alignment in the preplanetary nebula is of minor importance.

  8. COSAC prepares for sampling and in situ analysis of cometary matter from comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Goesmann, F.; Raulin, F.; Bredehöft, J. H.; Cabane, M.; Ehrenfreund, P.; MacDermott, A. J.; McKenna-Lawlor, S.; Meierhenrich, U. J.; Muñoz Caro, G. M.; Szopa, C.; Sternberg, R.; Roll, R.; Thiemann, W. H.-P.; Ulamec, S.

    2014-11-01

    The comet rendezvous mission Rosetta will be the first mission to encounter and land on a comet nucleus. After a 10-year journey Rosetta is set for rendezvous with Comet 67P/Churyumov-Gerasimenko. The mission goal is: to study the origin of comets; the relationship between cometary and interstellar material and its implications for the origin of the solar system. The Rosetta spacecraft with an overall mass of about 3000 kg was launched in March 2004 and brought into cometary orbit towards comet 67P/Churyumov-Gerasimenko with 4 gravity assist maneuvers. On its way Rosetta passed and observed two asteroids, (2867) Šteins in 2008 and (21) Lutetia in 2010, respectively. In June 2011 Rosetta entered into hibernation and woke up - as planned - on January 20, 2014. In November 2014 Rosetta's Philae lander and 10 science instruments will be deployed onto the surface of comet 67P/Churyumov-Gerasimenko. This will be followed by the first ever in situ investigation of a comet nucleus. Onboard Philae is the COmetary SAmpling and Composition experiment (COSAC), one of two evolved gas analysers that will investigate organic compounds within the material of the nucleus. Data from the COSAC instrument are expected to provide important insights into the early history of our solar system and contribute to our knowledge of small bodies that may have seeded the early Earth through impacts. In this paper we review recent developments in cometary science, including data on target comet 67P/Churyumov-Gerasimenko. We report on laboratory measurements and the calibration of the COSAC instrument as well as the preparation for operations on the nucleus of comet 67P/Churyumov-Gerasimenko.

  9. Velocity of Ejection of Meteor Particle from the Nucleus of Comets

    NASA Astrophysics Data System (ADS)

    Safarov, Abduljalol; Ibadinov, Khursand

    2016-07-01

    The time and velocity of dust particles of anomalous tail of comets was determine. Velocity ejection of dust particles from the nuclei of comets C/1851 U1, C/1877 G1, C/1921 E1, C/1925 V1, C/1962 C1, C/1969 T1, C/1975 V2, 2P/1924 and 26P/1927 F1 reaching up to 0.4 km/s can be attributed to the removal of large dust particles from the surface of the icy nucleus of comet sublimating molecules. In comets C/1823 Y1, C/1844 Y1, C/1882 R1, C/1883 D1, C/1888 R1, C/1892 E1, D/1894 F1, C/1910 A1, C/1921 E1, C/1922 U1, C/1930 D1, C/1930 O1, C/1931 P1, C/1932 M1, C/1935 A1, C/1954 O1, C/1961 O1, C/1963 A1, C/1968 H1, C/1973 E1, C/1980 P1, C/1984 N2, C/1987 P1, C/1995 O1, C/1999 H1, C/1999 T2, C/1999 S4, C/2002 T7, C/2004 F4, C/2004 Q2, 6P/1950, 7P/1869 G1, 7P/1933, 10P/1930, 19P/1918, 34P/1938 J1, 35P/1939, 67P/1982, 73P/1930 J1, 96P/1986 J1 and 109P/1862 O1 ejection velocity (up to a few km/s) of the particles of anomalous tail from the nuclei significantly exceed the thermal velocity of the molecules sublimating ice nuclei. Such velocity may be explained by the removal of particles from the surface of the nucleus after the collision of the comet nucleus with meteoroids

  10. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  11. Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Davidsson, B.; El-Maarry, M. R.; Fornasier, S.; Giacomini, L.; Gracia-Berná, A. G.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kührt, E.; La Forgia, F.; Lai, I. L.; Liao, Y.; Marschall, R.; Massironi, M.; Mottola, S.; Pajola, M.; Poch, O.; Pommerol, A.; Preusker, F.; Scholten, F.; Su, C. C.; Wu, J. S.; Vincent, J.-B.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; de Cecco, M.; Fulle, M.; Groussin, O.; Gutierrez, P. J.; Kramm, J.-R.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Michalik, H.; Naletto, G.; Agarwal, J.; Güttler, C.; Oklay, N.; Tubiana, C.

    2015-11-01

    Context. We present an investigation of the surface properties of areas on the nucleus of comet 67P/Churyumov-Gerasimenko. Aims: We aim to show that transport of material from one part of the cometary nucleus to another is a significant mechanism that influences the appearance of the nucleus and the surface thermal properties. Methods: We used data from the OSIRIS imaging system onboard the Rosetta spacecraft to identify surface features on the nucleus that can be produced by various transport mechanisms. We used simple calculations based on previous works to establish the plausibility of dust transport from one part of the nucleus to another. Results: We show by observation and modeling that "airfall" as a consequence of non-escaping large particles emitted from the neck region of the nucleus is a plausible explanation for the smooth thin deposits in the northern hemisphere of the nucleus. The consequences are also discussed. We also present observations of aeolian ripples and ventifacts. We show by numerical modeling that a type of saltation is plausible even under the rarified gas densities seen at the surface of the nucleus. However, interparticle cohesive forces present difficulties for this model, and an alternative mechanism for the initiation of reptation and creep may result from the airfall mechanism. The requirements on gas density and other parameters of this alternative make it a more attractive explanation for the observations. The uncertainties and implications are discussed.

  12. Comet Samples Returned by Stardust, Insight into the Origin of Comets and Crystalline Silicates in Disks

    NASA Astrophysics Data System (ADS)

    Brownlee, D. E.; Joswiak, D.; Matrajt, G.; Tsou, P.

    2009-12-01

    The comet samples returned by the NASA Stardust mission contain abundant crystalline silicates that are very similar to inner solar materials found in primitive asteroidal meteorites. Isotopic compositions indicate that the bulk of the silicates from comet Wild 2 formed in the solar nebula and that the pre-solar content is less than in primitive meteorites. It appears that the bulk of the coarse-grained components of this Jupiter Family Comet formed in the inner regions of the solar nebula and were transported to the edge of the solar system where Kuiper Belt comets accreted. The data is consistent with substantial large-scale radial transport of micron to millimeter grains in the solar nebula. The isotopic, elemental and mineralogical compositions of the majority of Wild 2 silicates as well as the textural relationship between phases do not appear to be compatible with origin by 1000 K annealing of pre-solar grains.

  13. Challenges of deflecting an asteroid or comet nucleus with a nuclear burst

    SciTech Connect

    Bradley, Paul A; Plesko, Cathy S; Clement, Ryan R. C.; Conlon, Le Ann M; Weaver, Robert P; Guzik, Joyce A; Pritchett - Sheets, Lori A; Huebner, Walter F

    2009-01-01

    There are many natural disasters that humanity has to deal with over time. These include earthquakes, tsunamis, hurricanes, floods, asteroid strikes, and so on. Some of these disasters occur slowly enough that some advance warning is possible for affected areas. In this case, the response is to evacuate the affected area and deal wilh the damage later. The Katrina and Rita hurricane evacuations on the U.S. Gulf Coasl in 2005 demonstrated the chaos that can result from such a response. In contrast with other natural disasters, it is likely that an asteroid or comet nucleus on a collision course with Earth will be detected with enough warning time to possibly deflect it away. Thanks to Near-Earth Object (NED) surveys, people are working towards a goal of cataloging at least 90% of all near-Earth objects with diameters larger than {approx} 140 meters in the next fifteen years. The important question then, is how to mitigate the threat from an asteroid or comet nucleus found to be on a collision course with Earth. In this paper. we briefly review some possible deflection methods, describe their good and bad points, and then embark on a more detailed description of using nuclear munitions in a standoff mode to deflect the asteroid or comet nucleus before it can hit Earth.

  14. The nucleus of comet 67P through the eyes of the OSIRIS cameras

    NASA Astrophysics Data System (ADS)

    Guettler, Carsten; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; OSIRIS Team; Capaccioni, Fabrizio; Filacchione, Gianrico; Ciarniello, Mauro; Erard, Stephane; Rinaldi, Giovanna; Tosi, Federico

    2015-11-01

    The Rosetta spacecraft is studying comet 67P/Churyumov-Gerasimenko from a close distance since August 2014. Onboard the spacecraft, the two scientific cameras, the OSIRIS narrow- and the wide-angle camera, are observing the cometary nucleus, its activity, as well as the dust and gas environment.This overview paper will cover OSIRIS science from the early arrival and mapping phase, the PHILAE landing, and the escort phase including the two close fly-bys. With a first characterization of global physical parameters of the nucleus, the OSIRIS cameras also provided the data to reconstruct a 3D shape model of the comet and a division into morphologic sub-units. From observations of near-surface activity, jet-like features can be projected onto the surface and active sources can be correlated with surface features like cliffs, pits, or flat planes. The increase of activity during and after perihelion in August 2015 showed several outbursts, which were seen as strong, collimated jets originating from the southern hemisphere.A comparison of results between different Rosetta instruments will give further inside into the physics of the comet's nucleus and its coma. The OSIRIS and VIRTIS instruments are particularly well suited to support and complement each other. With an overlap in spectral range, one instrument can provide the best spatial resolution while the other is strong in the spectral resolution. A summary on collaborative efforts will be given.

  15. The Resolved Nucleus and Coma of Comet Siding Spring from MRO Observations

    NASA Astrophysics Data System (ADS)

    Farnham, Tony L.; Delamere, W. Alan; Kelley, Michael S. P.; Heyd, Rodney; Li, Jian-Yang

    2015-11-01

    Comet Siding Spring (C/2013 A1) is a dynamically new comet discovered on January 4, 2013. On October 19, 2014, just 6 days pefore perihelion, Siding Spring made an historic close approach (C/A) to Mars, closing to a distance of only 140,500 km. We used the HiRISE camera on the Mars Reconaissance Orbiter to observe the comet from October 17-20 (C/A-60 hr to C/A+15 hrs) obtaining 122 images, primarily in broadband filters centered near 500 (BG) and 700 (RED) nm, with another filter near 900 (IR) nm added near close approach. The HiRISE pixel scale in these observations is as small as 138 m/pix, essentially making this event a fortuitous natural flyby of a dynamically new comet.Enhancement of the closest approach images using both an unsharp mask and a coma fitting and subtraction routine, reveals a sharply-defined crescent that changes its appearance as the viewing geometry varies during the comet's passage. The crescent is likely the illuminated limb of the nucleus, making this the first occasion on which the nucleus of a dynamically new comet has been resolved. Preliminary analyses indicate that the nucleus is elongated (prolate ellipsoid) with a length on the order of a kilometer.Photometric measurements of the coma in a constant 48-km radius aperture show brightness variations in the RED filter sequence, with a periodicity of 8.1 hr. Because this is a measure of dust production, the single-peaked lightcurve represents the rotation period of the nucleus. During the observations, one primary fan feature is seen in the coma. The lightcurve variations, with amplitude of ~40% (60-140%) of the average brightness in the 48 km aperture, correlate to the feature visibility, indicating that the jet that produces it is the primary source of activity. The shape and direction of the fan suggests that the source is near a pole, producing a cone of dust around the spin axis. We anticipate that the long time baseline and wide range of viewpoints covered in the MRO images will be

  16. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Filacchione, G; De Sanctis, M C; Capaccioni, F; Raponi, A; Tosi, F; Ciarniello, M; Cerroni, P; Piccioni, G; Capria, M T; Palomba, E; Bellucci, G; Erard, S; Bockelee-Morvan, D; Leyrat, C; Arnold, G; Barucci, M A; Fulchignoni, M; Schmitt, B; Quirico, E; Jaumann, R; Stephan, K; Longobardo, A; Mennella, V; Migliorini, A; Ammannito, E; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M I; Carlson, R; Carsenty, U; Colangeli, L; Combes, M; Combi, M; Crovisier, J; Drossart, P; Encrenaz, T; Federico, C; Fink, U; Fonti, S; Ip, W H; Irwin, P; Kuehrt, E; Langevin, Y; Magni, G; McCord, T; Moroz, L; Mottola, S; Orofino, V; Schade, U; Taylor, F; Tiphene, D; Tozzi, G P; Beck, P; Biver, N; Bonal, L; Combe, J-Ph; Despan, D; Flamini, E; Formisano, M; Fornasier, S; Frigeri, A; Grassi, D; Gudipati, M S; Kappel, D; Mancarella, F; Markus, K; Merlin, F; Orosei, R; Rinaldi, G; Cartacci, M; Cicchetti, A; Giuppi, S; Hello, Y; Henry, F; Jacquinod, S; Reess, J M; Noschese, R; Politi, R; Peter, G

    2016-01-21

    Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation. PMID:26760209

  17. Crystallization, sublimation, and gas release in the interior of a porous comet nucleus

    NASA Technical Reports Server (NTRS)

    Prialnik, Dina

    1992-01-01

    A numerical code is developed for evolutionary calculations of the thermal structure and composition of a porous comet nucleus made of water ice, in amorphous or crystalline form, other volatiles, dust, and gases trapped in amorphous ice. Bulk evaporation, crystallization, gas release, and free (Knudsen) flow of gases through the pores are taken into account. The numerical scheme yields exact conservation laws for mass and energy. The code is used to study the effect of bulk evaporation of ice in the interior of a comet nucleus during crystallization. It is found that evaporation controls the temperature distribution; the vapor prevents cooling of the crystallized layer of ice, by recondensation and release of latent heat. Thus high temperatures are maintained below the surface of the nucleus and down to depths of tens or hundreds of meters, even at large heliocentric distances, as long as crystallization goes on. Gas trapped in the ice and released during the phase transition flows both toward the interior and toward the surface and out of the nucleus. The progress of crystallization is largely determined by the contribution of gas fluxes to heat transfer.

  18. Comets.

    NASA Astrophysics Data System (ADS)

    Merlin, J. C.

    Contents: 1. Introduction. 2. Comet observation now and in the past. 3. The observation of known comets. 4. Drawing comets. 5. Estimating the total magnitude. 6. Photoelectric photometry of comets. 7. Cometary photography. 8. Searching for comets. 9. Mathematical techniques. 10. IAU Telegram code.

  19. HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE NUCLEUS OF COMET C/2012 S1 (ISON)

    SciTech Connect

    Lamy, Philippe L.; Toth, Imre; Weaver, Harold A.

    2014-10-10

    We report on the analysis of several sequences of broadband visible images of comet C/2012 S1 (ISON) taken with the Wide Field Camera 3 of the Hubble Space Telescope on 2013 April 10, May 8, October 9, and November 1 in an attempt to detect and characterize its nucleus. Whereas the overwhelming coma precluded the detection of the nucleus in the first two sequences, the contrast was sufficient in early October to unambiguously retrieve the signal from the nucleus. Two images taken within a few minutes led to similar V magnitudes for the nucleus of 21.97 and 22.0 with a 1σ uncertainty of 0.065. Assuming a standard value for the geometric albedo (0.04) and a linear phase function with a coefficient of 0.04 mag deg{sup –1}, these V values imply that the nucleus radius is 0.68 ± 0.02 km. Although this result does depend on these two assumptions, we argue that the radius most likely lies in the range 0.6-0.9 km. This result is consistent with the constraints derived from the water production rates reported by Combi et al. The last sequence of images in 2013 November revealed temporal variation of the innermost coma. If attributed to a single rotating jet, this coma brightness variation suggests the rotational period of the nucleus may be close to ∼10.4 hr.

  20. The nucleus of Comet Borrelly: A study of morphology and surface brightness

    USGS Publications Warehouse

    Oberst, J.; Howington-Kraus, E.; Kirk, R.; Soderblom, L.; Buratti, B.; Hicks, M.; Nelson, R.; Britt, D.

    2004-01-01

    Stereo images obtained during the DS1 flyby were analyzed to derive a topographic model for the nucleus of Comet 19P/Borrelly for morphologic and photometric studies. The elongated nucleus has an overall concave shape, resembling a peanut, with the lower end tilted towards the camera. The bimodal character of surface-slopes and curvatures support the idea that the nucleus is a gravitational aggregate, consisting of two fragments in contact. Our photometric modeling suggests that topographic shading effects on Borrelly's surface are very minor (<10%) at the given resolution of the terrain model. Instead, albedo effects are thought to dominate Borrelly's large variations in surface brightness. With 90% of the visible surface having single scattering albedos between 0.008 and 0.024, Borrelly is confirmed to be among the darkest of the known Solar System objects. Photometrically corrected images emphasize that the nucleus has distinct, contiguous terrains covered with either bright or dark, smooth or mottled materials. Also, mapping of the changes in surface brightness with phase angle suggests that terrain roughness at subpixel scale is not uniform over the nucleus. High surface roughness is noted in particular near the transition between the upper and lower end of the nucleus, as well as near the presumed source region of Borrelly's main jets. Borrelly's surface is complex and characterized by distinct types of materials that have different compositional and/or physical properties. ?? 2003 Elsevier Inc. All rights reserved.

  1. Two independent and primitive envelopes of the bilobate nucleus of comet 67P.

    PubMed

    Massironi, Matteo; Simioni, Emanuele; Marzari, Francesco; Cremonese, Gabriele; Giacomini, Lorenza; Pajola, Maurizio; Jorda, Laurent; Naletto, Giampiero; Lowry, Stephen; El-Maarry, Mohamed Ramy; Preusker, Frank; Scholten, Frank; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; A'Hearn, Michael F; Agarwal, Jessica; Auger, Anne-Thérèse; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Besse, Sebastien; Bodewits, Dennis; Capanna, Claire; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Groussin, Olivier; Gutiérrez, Pedro J; Güttler, Carsten; Hviid, Stubbe F; Ip, Wing-Huen; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Lin, Zhong-Yi; Lopez Moreno, Josè J; Magrin, Sara; Michalik, Harald; Mottola, Stefano; Oklay, Nilda; Pommerol, Antoine; Thomas, Nicolas; Tubiana, Cecilia; Vincent, Jean-Baptiste

    2015-10-15

    The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary and primordial processes. The peculiar bilobed shape of comet 67P/Churyumov-Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes. Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov-Gerasimenko is an accreted body of two distinct objects with 'onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov-Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently. PMID:26416730

  2. Physical Characteristics of Asteroid-like Comet Nucleus C/2001 OG108 (LONEOS)

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Fernandez, Y. R.; Pravec, P.; French, L. M.; Farnham, T. L.; Gaffey, M. J.; Hardersen, P. S.; Kusnirak, P.; Sarounova, L.; Sheppard, S. S.

    2003-01-01

    For many years several investigators have suggested that some portion of the near-Earth asteroid population may actually be extinct cometary nuclei. Evidence used to support these hypotheses was based on: observations of asteroid orbits and associated meteor showers (e.g. 3200 Phaethon and the Geminid meteor shower); low activity of short period comet nuclei, which implied nonvolatile surface crusts (e.g. Neujmin 1, Arend-Rigaux); and detections of transient cometary activity in some near-Earth asteroids (e.g. 4015 Wilson-Harrington). Recent investigations have suggested that approximately 5-10% of the near- Earth asteroid population may be extinct comets. However if members of the near-Earth asteroid population are extinct cometary nuclei, then there should be some objects within this population that are near their final stages of evolution and so should demonstrate only low levels of activity. The recent detections of coma from near-Earth object 2001 OG108 have renewed interest in this possible comet-asteroid connection. This paper presents the first high quality ground-based near-infrared reflectance spectrum of a comet nucleus combined with detailed lightcurve and albedo measurements.

  3. Two independent and primitive envelopes of the bilobate nucleus of comet 67P

    NASA Astrophysics Data System (ADS)

    Massironi, Matteo; Simioni, Emanuele; Marzari, Francesco; Cremonese, Gabriele; Giacomini, Lorenza; Pajola, Maurizio; Jorda, Laurent; Naletto, Giampiero; Lowry, Stephen; El-Maarry, Mohamed Ramy; Preusker, Frank; Scholten, Frank; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; A'Hearn, Michael F.; Agarwal, Jessica; Auger, Anne-Thérèse; Barucci, M. Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Besse, Sebastien; Bodewits, Dennis; Capanna, Claire; da Deppo, Vania; Davidsson, Björn; Debei, Stefano; de Cecco, Mariolino; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Groussin, Olivier; Gutiérrez, Pedro J.; Güttler, Carsten; Hviid, Stubbe F.; Ip, Wing-Huen; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M.; Lazzarin, Monica; Lin, Zhong-Yi; Lopez Moreno, Josè J.; Magrin, Sara; Michalik, Harald; Mottola, Stefano; Oklay, Nilda; Pommerol, Antoine; Thomas, Nicolas; Tubiana, Cecilia; Vincent, Jean-Baptiste

    2015-10-01

    The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary and primordial processes. The peculiar bilobed shape of comet 67P/Churyumov-Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes. Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov-Gerasimenko is an accreted body of two distinct objects with `onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov-Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently.

  4. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cecile; Duprat, Jean; Bardin, Noemie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Rémusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin; COSIMA Team

    2015-08-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. The Rosetta mission currently carries dust analyzers capable of measuring dust flux, sizes, physical properties and compositions of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko (COSIMA, GIADA, MIDAS), as well as gas analyzers (ROSINA, PTOLEMY, COSAC). A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system. We will present the implications of the analyses of samples in the laboratory and in space to a better understanding of the early protoplanetary disk.

  5. Photometry of dust grains of comet 67P and connection with nucleus regions

    NASA Astrophysics Data System (ADS)

    Cremonese, G.; Simioni, E.; Ragazzoni, R.; Bertini, I.; La Forgia, F.; Pajola, M.; Oklay, N.; Fornasier, S.; Lazzarin, M.; Lucchetti, A.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; A'Hearn, M. F.; Agarwal, J.; Barucci, M. A.; Bertaux, J.-L.; Da Deppo, V.; Davidsson, B.; De Cecco, M.; Debei, S.; Fulle, M.; Groussin, O.; Güttler, C.; Gutierrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kramm, J.-R.; Kueppers, M.; Kürt, E.; Lara, L. M.; Magrin, S.; Lopez Moreno, J. J.; Marzari, F.; Mottola, S.; Naletto, G.; Preusker, F.; Scholten, F.; Thomas, N.; Tubiana, C.; Vincent, J.-B.

    2016-04-01

    Aims: Multiple pairs of high-resolution images of the dust coma of comet 67P/Churyumov-Gerasimenko have been collected by OSIRIS onboard Rosetta allowing extraction and analysis of dust grain tracks. Methods: We developed a quasi automatic method to recognize and to extract dust tracks in the Osiris images providing size, FWHM and photometric data. The dust tracks characterized by a low signal-to-noise ratio were checked manually. We performed the photometric analysis of 70 dust grain tracks observed on two different Narrow Angle Camera images in the two filters F24 and F28, centered at λ = 480.7 nm and at λ = 743.7 nm, respectively, deriving the color and the reddening of each one. We then extracted several images of the nucleus observed with the same filters and with the same phase angle to be compared with the dust grain reddening. Results: Most of the dust grain reddening is very similar to the nucleus values, confirming they come from the surface or subsurface layer. The histogram of the dust grain reddening has a secondary peak at negative values and shows some grains with values higher than the nucleus, suggesting a different composition from the surface grains. One hypothesis comes from the negative values point at the presence of hydrated minerals in the comet.

  6. The Nucleus of Main-belt Comet 259P/Garradd

    NASA Astrophysics Data System (ADS)

    MacLennan, Eric M.; Hsieh, Henry H.

    2012-10-01

    We present observations of the main-belt comet 259P/Garradd, previously known as P/2008 R1 (Garradd), obtained in 2011 and 2012 using the Gemini North Telescope on Mauna Kea in Hawaii and the SOAR telescope at Cerro Pachon in Chile, with the goal of computing the object's phase function and nucleus size. We find an absolute magnitude of HR = 19.71 ± 0.05 mag and slope parameter of GR = -0.08 ± 0.05 for the inactive nucleus, corresponding to an effective nucleus radius of re = 0.30 ± 0.02 km, assuming an R-band albedo of pR = 0.05. We also revisit observations reported for 259P while it was active in 2008 to quantify the dust mass loss and compare the object with other known main-belt comets. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  7. Peculiar Near-nucleus Outgassing of Comet 17P/Holmes during its 2007 Outburst

    NASA Astrophysics Data System (ADS)

    Qi, Chunhua; Hogerheijde, Michiel R.; Jewitt, David; Gurwell, Mark A.; Wilner, David J.

    2015-01-01

    We present high angular resolution Submillimeter Array observations of the outbursting Jupiter family comet 17P/Holmes on 2007 October 26-29, achieving a spatial resolution of 2.''5, or ~3000 km at the comet distance. The observations resulted in detections of the rotational lines CO 3-2, HCN 4-3, H13CN 4-3, CS 7-6, H2CO 31, 2-21, 1, H2S 22, 0-21, 1, and multiple CH3OH lines, along with the associated dust continuum at 221 and 349 GHz. The continuum has a spectral index of 2.7 ± 0.3, slightly steeper than blackbody emission from large dust particles. From the imaging data, we identify two components in the molecular emission. One component is characterized by a relatively broad line width (~1 km s-1 FWHM) exhibiting a symmetric outgassing pattern with respect to the nucleus position. The second component has a narrower line width (<0.5 km s-1 FWHM) with the line center redshifted by 0.1-0.2 km s-1 (cometocentric frame), and shows a velocity shift across the nucleus position with the position angle gradually changing from 66° to 30° within the four days of observations. We determine distinctly different CO/HCN ratios for each of the components. For the broad-line component we find CO/HCN < 7, while in the narrow-line component, CO/HCN = 40 ± 5. We hypothesize that the narrow-line component originates from the ice grain halo found in near-nucleus photometry, believed to be created by sublimating recently released ice grains around the nucleus during the outburst. In this interpretation, the high CO/HCN ratio of this component reflects the more pristine volatile composition of nucleus material released in the outburst.

  8. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; de Sanctis, M. C.; Capaccioni, F.; Raponi, A.; Tosi, F.; Ciarniello, M.; Cerroni, P.; Piccioni, G.; Capria, M. T.; Palomba, E.; Bellucci, G.; Erard, S.; Bockelee-Morvan, D.; Leyrat, C.; Arnold, G.; Barucci, M. A.; Fulchignoni, M.; Schmitt, B.; Quirico, E.; Jaumann, R.; Stephan, K.; Longobardo, A.; Mennella, V.; Migliorini, A.; Ammannito, E.; Benkhoff, J.; Bibring, J. P.; Blanco, A.; Blecka, M. I.; Carlson, R.; Carsenty, U.; Colangeli, L.; Combes, M.; Combi, M.; Crovisier, J.; Drossart, P.; Encrenaz, T.; Federico, C.; Fink, U.; Fonti, S.; Ip, W. H.; Irwin, P.; Kuehrt, E.; Langevin, Y.; Magni, G.; McCord, T.; Moroz, L.; Mottola, S.; Orofino, V.; Schade, U.; Taylor, F.; Tiphene, D.; Tozzi, G. P.; Beck, P.; Biver, N.; Bonal, L.; Combe, J.-Ph.; Despan, D.; Flamini, E.; Formisano, M.; Fornasier, S.; Frigeri, A.; Grassi, D.; Gudipati, M. S.; Kappel, D.; Mancarella, F.; Markus, K.; Merlin, F.; Orosei, R.; Rinaldi, G.; Cartacci, M.; Cicchetti, A.; Giuppi, S.; Hello, Y.; Henry, F.; Jacquinod, S.; Reess, J. M.; Noschese, R.; Politi, R.; Peter, G.

    2016-01-01

    Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet’s formation.

  9. Comet 19P/Borrelly in Three Dimensions: Coma and Nucleus

    NASA Astrophysics Data System (ADS)

    Soderblom, L. A.

    2002-12-01

    On September 22, 2001 the ion propulsion-powered NASA-JPL Deep Space 1 (DS1) spacecraft passed 2171 km from the nucleus of 19P/Borrelly with a relative velocity of 16.5 km/sec. The advanced technology Miniature Integrated Camera and Spectrometer (MICAS) aboard DS1, collected 25 high resolution images of the coma, jets and nucleus of the Jupiter-family short-period comet. These images were acquired at over a wide range of phase angles allowing detailed characterization of the surface topography of the nucleus, the three-dimensional characteristics of the coma, and the relationships between the two. The very low albedo, elongate nucleus exhibits large albedo variations and complex geology. Observations starting a few days before and extending up to encounter show a prominent jet emanating roughly normal to long axis of nucleus from a broad central depression into a direction about 35 degrees from the sun line (RA: 223 degrees and DEC: -15 degrees). Both fan-like and highly collimated jets are observed in the near-nucleus coma. The collimated jets have cylindrical cores (about 0.5 km x 5 km in dimension) and bubble-shaped bright bases; two are traceable to darker circular patches on the nucleus. The main jet is evidently co-aligned with the rotation axis. This places the sub-solar point only 30 degrees from the pole and, therefore, the pole is in constant sunlight around perihelion. Such an orientation for the pole would also represent a stable rotation of the nucleus around its short axis.

  10. A Portrait of the Nucleus of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Lamy, Philippe L.; Toth, Imre; Davidsson, Björn J. R.; Groussin, Olivier; Gutiérrez, Pedro; Jorda, Laurent; Kaasalainen, Mikko; Lowry, Stephen C.

    2007-02-01

    In 2003, comet 67P/Churyumov Gerasimenko was selected as the new target of the Rosetta mission as the most suitable alternative to the original target, comet 46P/Wirtanen, on the basis of orbital considerations even though very little was known about the physical properties of its nucleus. In a matter of a few years and based on highly focused observational campaigns as well as thorough theoretical investigations, a detailed portrait of this nucleus has been established that will serve as a baseline for planning the Rosetta operations and observations. In this review article, we present a novel method to determine the size and shape of a cometary nucleus: several visible light curves were inverted to produce a size scale free three dimensional shape, the size scaling being imposed by a thermal light curve. The procedure converges to two solutions which are only marginally different. The nucleus of comet 67P/Churyumov Gerasimenko emerges as an irregular body with an effective radius (that of the sphere having the same volume) = 1.72 km and moderate axial ratios a/b = 1.26 and a/c = 1.5 to 1.6. The overall dimensions measured along the principal axis for the two solutions are 4.49 4.75 km, 3.54 3.77 km and 2.94 2.92 km. The nucleus is found to be in principal axis rotation with a period = 12.4 12.7 h. Merging all observational constraints allow us to specify two regions for the direction of the rotational axis of the nucleus: RA = 220°+50° -30° and Dec = -70° ± 10° (retrograde rotation) or RA = 40°+50° -30° and Dec = +70°± 10° (prograde), the better convergence of the various determinations presently favoring the first solution. The phase function, although constrained by only two data points, exhibits a strong opposition effect rather similar to that of comet 9P/Tempel 1. The definition of the disk integrated albedo of an irregular body having a strong opposition effect raises problems, and the various alternatives led to a R-band geometric albedo in the

  11. The Nucleus of Comet 9P-Tempel 1: Shape and Geology from Two Flybys

    NASA Technical Reports Server (NTRS)

    Thomas, P.; A'Hearn, M.; Belton, M. J. S.; Brownlee, D.; Carcich, B.; Hermalyn, B.; Klaasen, K.; Sackett, S.; Schultz, P. H.; Veverka, J.; Bhaskaran, S.; Bodewits, D.; Chesley, S.; Clark, B.; Farnham, T.; Groussin, O.; Harris, J.; Kissel, J.; Li, J.-Y; Meech, K.; Melosh, J.; Quick, A.; Richardson, J.; Sunshine, J.; Wellnitz, D.

    2012-01-01

    The nucleus of comet Tempel 1 has been investigated at close range during two spacecraft missions separated by one comet orbit of the Sun, 5 1/2 years. The combined imaging covers 70% of the surface of this object which has a mean radius of 2.83 +/- 0.1 km. The surface can be divided into two terrain types: rough, pitted terrain and smoother regions of varying local topography. The rough surface has round depressions from resolution limits (10 m/pixel) up to 1 km across, spanning forms from crisp steep-walled pits, to subtle albedo rings, to topographic rings, with all ranges of morphologic gradation. Three gravitationally low regions of the comet have smoother terrain, parts of which appear to be deposits from minimally modified flows, with other parts likely to be heavily eroded portions of multiple layer piles. Changes observed between the two missions are primarily due to backwasting of scarps bounding one of these probable flow deposits. This style of erosion is also suggested by remnant mesa forms in other areas of smoother terrain. The two distinct terrains suggest either an evolutionary change in processes, topographically- controlled processes, or a continuing interaction of erosion and deposition.

  12. The nucleus of Comet 9P/Tempel 1: Shape and geology from two flybys

    NASA Astrophysics Data System (ADS)

    Thomas, P.; A'Hearn, M.; Belton, M. J. S.; Brownlee, D.; Carcich, B.; Hermalyn, B.; Klaasen, K.; Sackett, S.; Schultz, P. H.; Veverka, J.; Bhaskaran, S.; Bodewits, D.; Chesley, S.; Clark, B.; Farnham, T.; Groussin, O.; Harris, A.; Kissel, J.; Li, J.-Y.; Meech, K.; Melosh, J.; Quick, A.; Richardson, J.; Sunshine, J.; Wellnitz, D.

    2013-02-01

    The nucleus of comet Tempel 1 has been investigated at close range during two spacecraft missions separated by one comet orbit of the Sun, 5½ years. The combined imaging covers ˜70% of the surface of this object which has a mean radius of 2.83 ± 0.1 km. The surface can be divided into two terrain types: rough, pitted terrain and smoother regions of varying local topography. The rough surface has round depressions from resolution limits (˜10 m/pixel) up to ˜1 km across, spanning forms from crisp steep-walled pits, to subtle albedo rings, to topographic rings, with all ranges of morphologic gradation. Three gravitationally low regions of the comet have smoother terrain, parts of which appear to be deposits from minimally modified flows, with other parts likely to be heavily eroded portions of multiple layer piles. Changes observed between the two missions are primarily due to backwasting of scarps bounding one of these probable flow deposits. This style of erosion is also suggested by remnant mesa forms in other areas of smoother terrain. The two distinct terrains suggest either an evolutionary change in processes, topographically-controlled processes, or a continuing interaction of erosion and deposition.

  13. Trajectory analysis for the nucleus and dust of comet C/2013 A1 (Siding Spring)

    SciTech Connect

    Farnocchia, Davide; Chesley, Steven R.; Chodas, Paul W.; Tricarico, Pasquale; Kelley, Michael S. P.; Farnham, Tony L.

    2014-08-01

    Comet C/2013 A1 (Siding Spring) will experience a high velocity encounter with Mars on 2014 October 19 at a distance of 135,000 km ± 5000 km from the planet center. We present a comprehensive analysis of the trajectory of both the comet nucleus and the dust tail. The nucleus of C/2013 A1 cannot impact on Mars even in the case of unexpectedly large nongravitational perturbations. Furthermore, we compute the required ejection velocities for the dust grains of the tail to reach Mars as a function of particle radius and density and heliocentric distance of the ejection. A comparison between our results and the most current modeling of the ejection velocities suggests that impacts are possible only for millimeter to centimeter size particles released more than 13 AU from the Sun. However, this level of cometary activity that far from the Sun is considered extremely unlikely. The arrival time of these particles spans a 20-minute time interval centered at 2014 October 19 at 20:09 TDB, i.e., around the time that Mars crosses the orbital plane of C/2013 A1. Ejection velocities larger than currently estimated by a factor >2 would allow impacts for smaller particles ejected as close as 3 AU from the Sun. These particles would reach Mars from 19:13 TDB to 20:40 TDB.

  14. An Overview of the Comet Nucleus TOUR Discovery Mission and a Description of Neutral Gas and Ion Measurements Planned

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Veverka, Joe; Niemann, Hasso; Harpold, Dan; Chiu, Mary; Reynolds, Edward; Owen, Toby; Kasprzak, Wayne; Patrick, Ed; Raaen, Eric

    2001-01-01

    The CONTOUR (Comet Nucleus TOUR) Mission led by its Principal Investigator Professor Joseph Veverka of Cornell is presently under development at the Johns Hopkins Applied Physics Laboratory for launch in July of 2002 with a flyby of Comet Encke scheduled for November 3, 2003 at a solar distance of 1.07 au. A robust Whipple dust shield is designed to allow a close nucleus approach distance (less than 150 km). The 2nd nominal CONTOUR target is Comet Schwassmann-Wachmann 3, although the spacecraft can alternately be directed to a new comet if such an interesting target is discovered. CONTOUR contains 4 instruments: an imaging spectrometer (CRISP) developed at APL that will obtain both high resolution nucleus images through 8 filters and IR spectra (800 to 2550 nm) of the nucleus, a narrow field of view forward imager (CFI) to locate the target days before the encounter, a dust composition time of flight mass spectrometer (CIDA) provided by Dr. J. Kissel and von Hoemer & Sulger, GmbH, and a mass spectrometer (NGIMS) provided by Goddard Space Flight Center to measure neutral gas and ambient ions. Laboratory calibration of the NGIMS has now been completed. NGIMS also includes an in-flight calibration system that we plan to exercise before and after each comet encounter. We will provide an overview of the CONTOUR Mission and discuss more specifically the NGIMS measurement goals for this mission.

  15. Seasonal Evolution on the Nucleus of Comet C/2013 A1 (Siding Spring)

    NASA Astrophysics Data System (ADS)

    Li, Jian-Yang; Samarasinha, Nalin H.; Kelley, Michael S. P.; Farnham, Tony L.; Bodewits, Dennis; Lisse, Carey M.; Mutchler, Max J.; A'Hearn, Michael F.; Delamere, W. Alan

    2016-02-01

    We observed Comet C/Siding Spring using the Hubble Space Telescope (HST) during its close approach to Mars. The high spatial resolution images obtained through the F689M, F775W, and F845M filters reveal the characteristics of the dust coma. The dust production rate of C/Siding Spring, quantified by Afρ, is 590 ± 30, 640 ± 30, and 670 ± 30 cm in a 420 km radius aperture at a 38° solar phase angle through the three filters, respectively, consistent with other observations at a similar time and geometry, and with model predictions based on earlier measurements. The dust expansion velocity is ˜150-250 m s-1 for micron-sized dust grains, similar to the speeds found for other comets. The coma has a color slope of (5.5 ± 1.5)%/100 nm between 689 and 845 nm, similar to previous HST measurements at comparable aperture sizes, consistent with the lack of color dependence on heliocentric distance for almost all previously observed active comets. The rotational period of the nucleus of C/Siding Spring is determined from the periodic brightness variation in the coma to be 8.00 ± 0.08 hr, with no excited rotational state detected. The dust coma shows a broad and diffuse fan-shaped feature in the sunward direction, with no temporal morphological variation observed. The projected orientation of the dust feature, combined with the previous analysis of the coma morphology and other characteristics, suggests secular activity evolution of the comet in its inner solar system passage as one previously observed active region turns off whereas new regions exposed to sunlight due to seasonal illumination change.

  16. PECULIAR NEAR-NUCLEUS OUTGASSING OF COMET 17P/HOLMES DURING ITS 2007 OUTBURST

    SciTech Connect

    Qi, Chunhua; Gurwell, Mark A.; Wilner, David J.; Hogerheijde, Michiel R.; Jewitt, David

    2015-01-20

    We present high angular resolution Submillimeter Array observations of the outbursting Jupiter family comet 17P/Holmes on 2007 October 26-29, achieving a spatial resolution of 2.''5, or ∼3000 km at the comet distance. The observations resulted in detections of the rotational lines CO 3-2, HCN 4-3, H{sup 13}CN 4-3, CS 7-6, H{sub 2}CO 3{sub 1,} {sub 2}-2{sub 1,} {sub 1}, H{sub 2}S 2{sub 2,} {sub 0}-2{sub 1,} {sub 1}, and multiple CH{sub 3}OH lines, along with the associated dust continuum at 221 and 349 GHz. The continuum has a spectral index of 2.7 ± 0.3, slightly steeper than blackbody emission from large dust particles. From the imaging data, we identify two components in the molecular emission. One component is characterized by a relatively broad line width (∼1 km s{sup –1} FWHM) exhibiting a symmetric outgassing pattern with respect to the nucleus position. The second component has a narrower line width (<0.5 km s{sup –1} FWHM) with the line center redshifted by 0.1-0.2 km s{sup –1} (cometocentric frame), and shows a velocity shift across the nucleus position with the position angle gradually changing from 66° to 30° within the four days of observations. We determine distinctly different CO/HCN ratios for each of the components. For the broad-line component we find CO/HCN < 7, while in the narrow-line component, CO/HCN = 40 ± 5. We hypothesize that the narrow-line component originates from the ice grain halo found in near-nucleus photometry, believed to be created by sublimating recently released ice grains around the nucleus during the outburst. In this interpretation, the high CO/HCN ratio of this component reflects the more pristine volatile composition of nucleus material released in the outburst.

  17. I. T. - R. O. C. K. S. Comet Nuclei Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Dalcher, N.

    2009-04-01

    Ices, organics and minerals recording the chemical evolution of the outer regions of the early solar nebula are the main constituents of comets. Because comets maintain the nearly pristine nature of the cloud where they formed, the analyses of their composition, structure, thermodynamics and isotope ratios will increase our understanding of the processes that occurred in the early phases of the solar system as well as the Interstellar Medium (ISM) Cloud that predated the formation of the solar nebula [1]. While the deep impact mission aimed at determining the internal structure of comet Temple1's nuclei [e.g. 3], the stardust mission sample return has dramatically increased our understanding of comets. Its first implications indicated that some of the comet material originated in the inner solar system and was later transported outward beyond the freezing line [4]. A wide range of organic compounds identified within different grains of the aerogel collectors has demonstrated the heterogeneity in their assemblages [5]. This suggests either many histories associated with these material or possibly analytical constraints imposed by capture heating of Wild2 material in silica aerogel. The current mission ROSETTA, will further expand our knowledge about comets considerably through rigorous in situ analyses of a Jupiter Family Comet (JFC). As the next generation of comet research post ROSETTA, we present the comet nuclei sample return mission IT - ROCKS (International Team - Return Of Comet's Key Samples) to return several minimally altered samples from various locations of comet 88P/Howell, a typical JFC. The mission scenario includes remote sensing of the comet's nucleus with onboard instruments similar to the ROSETTA instruments [6, 7, 8] (VIS, IR, Thermal IR, X-Ray, Radar) and gas/dust composition measurements including a plasma science package. Additionally two microprobes [9] will further investigate the physical properties of the comet's surface. Retrieving of the

  18. EVIDENCE FOR FRESH FROST LAYER ON THE BARE NUCLEUS OF COMET HALE-BOPP AT 32 AU DISTANCE

    SciTech Connect

    Szabo, Gyula M.; Kiss, Laszlo L.; Pal, Andras; Kiss, Csaba; Sarneczky, Krisztian; Juhasz, Attila; Hogerheijde, Michiel R.

    2012-12-10

    Here, we report that the activity of comet Hale-Bopp ceased between late 2007 and 2009 March, at about 28 AU distance from the Sun. At that time, the comet resided at a distance from the Sun that exceeded the freeze-out distance of regular comets by an order of magnitude. A Herschel Space Observatory PACS scan was taken in mid-2010, in the already inactive state of the nucleus. The albedo has been found to be surprisingly large (8.1% {+-} 0.9%), which exceeds the value known for any other comets. With re-reduction of archive Hubble Space Telescope images from 1995 and 1996, we confirm that the pre-perihelion albedo resembled that of an ordinary comet and was smaller by a factor of two than the post-activity albedo. Our further observations with the Very Large Telescope also confirmed that the albedo increased significantly by the end of the activity. We explain these observations by proposing gravitational redeposition of icy grains toward the end of the activity. This is plausible for such a massive body in a cold environment, where gas velocity is lowered to the range of the escape velocity. These observations also show that giant comets are not just the upscaled versions of the comets we know but can be affected by processes that are yet to be fully identified.

  19. Seasonal effects on the nucleus of comet 67P revealed by Rosetta/VIRTIS

    NASA Astrophysics Data System (ADS)

    Tosi, Federico; Capaccioni, Fabrizio; Filacchione, Gianrico; Erard, Stéphane; Rouseeau, Batiste; Combe, Jean-Philippe; Capria, Maria Teresa; Leyrat, Cédric; Longobardo, Andrea; Bockelée-Morvan, Dominique; Kappel, David; Arnold, Gabriele; Fonti, Sergio; Mancarella, Francesca; Kuehrt, Ekkehard; Mottola, Stefano

    2016-04-01

    We describe thermal effects on the nucleus of comet 67P. Due to the overall low thermal inertia of the nucleus surface, the surface temperature is essentially dominated by the instantaneous value of the solar incidence angle and the heliocentric distance. However, for each location, the smallest achievable value of insolation angle depends on the season and topography. Given the substantial obliquity of comet 67P, seasons are such that the northern hemisphere is mainly illuminated at aphelion while the southern hemisphere receives most insolation soon after perihelion. In addition, the heliocentric distance strongly affects the surface temperature, all other parameters being equal. This is a larger effect in comets than in asteroids, due to the wide range of heliocentric distance values spanned by comets. When Rosetta started its global mapping observation campaign, in early August 2014, hyperspectral images acquired by the VIRTIS imaging spectrometer onboard the Rosetta Orbiter covered only the northern regions of the cometary surface, and the equatorial belt became gradually unveiled, while the southern region has been revealed from 2015 onwards. In parallel, the comet's heliocentric distance has been decreasing from ˜3.6 AU down to 1.24 AU, the distance at which the perihelion passage occurred on 13 August 2015. By relating surface temperatures as measured by VIRTIS to three variables: solar incidence angle, true local solar time and heliocentric distance, we aim to separate the relative contributions due to season and to the heliocentric distance. To do this, we use both VIRTIS-M data (namely data from the mapping spectrometer covering the 1-5 μm range, available up to April 2015, i.e. before the failure of the IR cryocooler) and VIRTIS-H data (namely data from the high-resolution point spectrometer covering the 2-5 μm range), and we focus in particular on three regions: one in the northern hemisphere, one in the equatorial region and one in the southern

  20. On the search for trajectories for a cometary nucleus sample return mission

    NASA Technical Reports Server (NTRS)

    Schobert, D.; Igenbergs, E.; Loeb, H.; Stuhlinger, E.

    1986-01-01

    The steps in the procedure for the generation of single trajectories for a comet nucleus sample return mission described by Stuhlinger et al. (1985) are discussed. The following assumptions are made for such a mission: (1) the spacecraft is equipped with an ion propulsion system supplied by solar cells, and (2) the comet has a low inclination and a period of about six years. The calculation of a specific trajectory incorporates the following main parameters: (1) the spacecraft mass at the beginning of the mission and the hyperbolic excess velocity, (2) the mass as a function of the injection energy, and (3) the available thrust level. The limitation of a supply of solar electric power to the region within 3 AU of the sun and the placement of permanent in-situ experiments at the comet are discussed. It is concluded that single trajectories for a nucleus sample return mission can be generated. A further step would be an integration of single solutions into classes of trajectories.

  1. Rosetta/OSIRIS: Nucleus morphology and activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Sierks, Holger

    2015-08-01

    Introduction: The Rosetta mission of the European Space Agency arrived on August 6, 2014, at the target comet 67P/Churyumov-Gerasimenko after 10 years of cruise. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. It comprises a Narrow Angle Camera (NAC) for broad-band nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field coma investigations.OSIRIS images the nucleus and the coma of comet 67P/C-G from the arrival throughout early mapping phase, PHILAE landing, and escort phase with close fly-by beginning of the year 2015.The team paper presents the surface morphology and activity of the nucleus as seen in gas, dust, and local jets and the larger scale coma studied by OSIRIS.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politéchnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany.Additional Information: The OSIRIS team is H. Sierks, C. Barbieri, P. Lamy, R. Rodrigo, D. Koschny, H. Rickman, J. Agarwal, M. A'Hearn, I. Bertini, F. Angrilli, M. A. Barucci, J. L. Bertaux, G. Cremonese, V. Da Deppo, B. Davidsson, S. Debei, M. De Cecco, S. Fornasier, M. Fulle, O. Groussin, C. Güttler, P. Gutierrez, S. Hviid, W. Ip, L. Jorda, H. U. Keller, J. Knollenberg, R. Kramm, E. Kührt, M. Küppers, L. Lara, M. Lazzarin, J. J. Lopez, S. Lowry, S. Marchi, F. Marzari, H. Michalik, S. Mottola, G. Naletto, N. Oklay, L

  2. Millimeter and Submillimeter Observations of Comet 67P's Nucleus, Gas, and Dust with the Rosetta/MIRO Instrument

    NASA Astrophysics Data System (ADS)

    Hofstadter, Mark

    2016-04-01

    The Microwave Instrument for the Rosetta Orbiter (MIRO) has been making measurements of comet 67P/C-G since June 2014, when the comet was 3.92 AU from the Sun and Rosetta was approximately 400,000 km from the nucleus. Those first observations were spatially unresolved measurements of the 556 GHz water line, used to infer the abundance and velocity of water vapor in the coma (Gulkis et al. 2015, Science 347). In the almost two years since that time, as the spacecraft has moved closer to the nucleus and the comet has become more active (perihelion at 1.2 AU from the Sun occurred in August 2015), MIRO's submillimeter spectrometer (working at frequencies near 550 GHz, or wavelengths near 0.5 mm) has been used to determine the velocity, abundance, and spatial distribution of H216O, H217O, H218O, CH3OH, NH3, and CO in the coma as a function of time (e.g. water is discussed by Biver et al. 2015 and Lee et al. 2015, Astron. and Astrophys. 583). In addition to its submillimeter spectrometer, MIRO has two broad band continuum channels operating at wavelengths near 0.5 and 1.6 millimeter. These channels are designed to probe the nucleus ˜1 millimeter to 10 cm below the surface. Data have been used to infer properties such as thermal inertia, porosity, and ice content as functions of location, depth, and time (e.g. Schloerb et al. 2015 and Choukroun et al. 2015, Astron. and Astrophys. 583). These channels have also been used to map the distribution of relatively large dust grains (radius > ˜1 mm) in the inner coma of the comet, with the potential to constrain models of dust acceleration, cooling, and fragmentation. This talk will review the latest results from MIRO's measurements of the nucleus, coma, and dust, and discuss some of the processes that couple these components of the comet.

  3. The STARDUST Discovery Mission: Data from the Encounter with Comet Wild 2 and the Expected Sample Return

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2004-01-01

    On January 2,2004, the STARDUST spacecraft made the closest ever flyby (236 km) of the nucleus of a comet - Comet Wild 2. During the fly by the spacecraft collected samples of dust from the coma of the comet. These samples will be returned to Earth on January 15,2006. After a brief preliminary examination to establish the nature of the returned samples, they will be made available to the general scientific community for study. In addition to its aerogel dust collector, the STARDUST spacecraft was also equipped with instruments that made in situ measurements of the comet during the flyby. These included several dust impact monitors, a mass spectrometer, and a camera. The spacecraft's communication system was also used to place dynamical constraints on the mass of the nucleus and the number of impacts the spacecraft had with large particles. The data taken by these instruments indicate that the spacecraft successfully captured coma samples. These instruments, particularly the camera, also demonstrated that Wild 2 is unlike any other object in the Solar System previously visited by a spacecraft. During my talk I will discuss the scientific goals of the STARDUST mission and provide an overview of its design and flight to date. I will then end with a description of the exciting data returned by the spacecraft during the recent encounter with Wild 2 and discuss what these data tell us about the nature of comets. It will probably come as no surprise that the encounter data raise as many (or more) new questions as they answer old ones.

  4. Comets

    NASA Video Gallery

    Did you know that comets seen streaking across the night sky may have brought the building blocks of life to our planet billions of years ago? Join NASA in learning more about these fascinating obj...

  5. Development of Sample Handling and Analytical Expertise For the Stardust Comet Sample Return

    SciTech Connect

    Bradley, J; Bajt, S; Brennan, S; Graham, G; Grant, P; Hutcheon, I; Ishii, H; Pianetta, P; Toppani, A; Westphal, A

    2006-02-09

    NASA's Stardust mission returned to Earth in January 2006 with ''fresh'' cometary particles from a young Jupiter family comet. The cometary particles were sampled during the spacecraft flyby of comet 81P/Wild-2 in January 2004, when they impacted low-density silica aerogel tiles and aluminum foils on the sample tray assembly at approximately 6.1 km/s. This LDRD project has developed extraction and sample recovery methodologies to maximize the scientific information that can be obtained from the analysis of natural and man-made nano-materials of relevance to the LLNL programs.

  6. Estimating the strength of the nucleus material of comet 67P Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Krasil'nikov, S. S.; Shiryaev, A. A.; Mall, U.; Keller, H. U.; Skorov, Yu. V.; Mottola, S.; Hviid, S. F.

    2016-07-01

    Consideration is given to the estimates for the strength of the consolidated material forming the bulk of the nucleus of comet 67P Churyumov-Gerasimenko and those for the strength of the surface material overlying the consolidated material at the sites of the first and last contact of the Philae lander with the nucleus. The strength of the consolidated material was estimated by analyzing the terrain characteristics of the steep cliffs, where the material is exposed on the surface. Based on these estimates, the tensile strength of the material is in the range from 1.5 to 100 Pa; the shear strength, from ˜13 to ⩾30 Pa; and the compressive strength, from 30 to 150 Pa, possibly up to 1.5 kPa. These are very low strength values. Given the dependence of the measurement results on the size of the measured object, they are similar to those of fresh dry snow at -10°C. The (compressive) strength of the surface material at the site of the first touchdown of Philae on the nucleus is estimated from the measurements of the dynamics of the surface impact by the spacecraft's legs and the geometry of the impact pits as 1-3 kPa. For comparison with the measurement results for ice-containing materials in terrestrial laboratories, it needs to be taken into account that the rate of deformation by Philae's legs is four orders of magnitude higher than that in typical terrestrial measurements, leading to a possible overestimation of the strength by roughly an order of magnitude. There was an attemp to put one of the MUPUS sensors into the surface material at the site of the last contact of Philae with the nucleus. Noticeable penetration of the tester probe was not achieved that led to estimation of the minimum compressive strength of the material to be ⩾4 MPa4 This fairly high strength appears to indicate the presence of highly porous ice with grains "frozen" at contacts.

  7. Global Shape and Topography of the Nucleus of Comet 67P/C-G from ROSETTA/OSIRIS Images

    NASA Astrophysics Data System (ADS)

    Jorda, L.; Gaskell, R.; Hviid, S.; Capanna, C.; Groussin, O.; Gutierrez, P.; Lamy, P.; Scholten, F.; Preusker, F.; Kaasalainen, M.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Mottola, S.; Sierks, H.; Snodgrass, C.; Thomas, N.; Toth, I.; Vincent, J.-B.

    2014-04-01

    The ROSETTA spacecraft will approach the nucleus of comet P/Churyumov-Gerasimenko in early August 2014 after a successful wake-up on January 20, 2014. The OSIRIS instrument is a set of two cameras aboard ROSETTA: the Narrow Angle Camera and the Wide Angle Camera which have fields-of-view of 2.2° and about 12° respectively. Both cameras are equipped with a 2K by 2K CCD detector. The two cameras have been successfully re-commissioned at the end of March 2014. Observations during the approach and first bound orbits in July-August 2014 will allow to map the surface of the nucleus with OSIRIS at a scale as small as 1 m/pixel. The images will be used to reconstruct the 3D global topography of the nucleus at high-resolution with a combination of two advanced reconstruction techniques: stereophotogrammetry and stereophotoclinometry. The reconstructed global shape will be used to determine the bulk density of the nucleus with an accuracy of a few percent and to localize and quantitatively characterize the main topographic features at its surface. It will also allow us to identify the different types of terrains present at the surface of the nucleus. We will describe and discuss the bulk properties of the nucleus (bulk shape, density and moments of inertia) against those of other comets observed from the ground or by previous space probes. We will also identify the main topographic features from a combined analysis of images and global digital terrain models and compare them with those identified at the surface of comets P/Borrelly, P/Wild 2 and P/Tempel 1 by previous space probes. Finally, we will propose a preliminary interpretation for the processes involved in their formation.

  8. Earth's 2006 Encounter with Comet 73P/Schwassmann-Wachmann: Products of Nucleus Fragmentation Seen in Closeup

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    2007-01-01

    The large numbers of nucleus fragments observed are a spectacular illustration of the process of cascading fragmentation in progress, a concept introduced to interpret the properties of the Kreutz system of sungrazers and comet D/1993 F2. The objective is to describe the fragmentation sequence and hierarchy of comet 73P, the nature of the fragmentation process and observed events, and the expected future evolution of this comet. The orbital arc populated by the fragments refers to an interval of 3.74 days in the perihelion time. This result suggests that they all could be products (but not necessarily first-generation fragments) of two 1995 events, in early September (involving an enormous outburst) and at the beginning of November. The interval of perihelion times is equivalent to a range of about 2.5 m/s in separation velocity or 0.00012 the Sun's attraction in nongravitational deceleration. Their combined effect suggests minor orbital momentum changes acquired during fragmentation and decelerations compatible with survival over two revolutions about the Sun. Fragment B is a likely first-generation product of one of the 1995 events. From the behavior of the primary fragment C, 73P is not a dying comet, even though fragment B and others were episodically breaking up into many pieces. Each episode began with the sudden appearance of a starlike nucleus condensation and a rapidly expanding outburst, followed by a development of jets, and a gradual tailward extension of the fading condensation, until the discrete masses embedded in it could be resolved. In April-May, this debris traveled first to the southwest, but models show their eventual motion toward the projected orbit. Fainter fragments were imaged over limited time, apparently because of their erratic activity (interspersed with periods of dormancy) rather than improptu disintegration. A dust trail joining the fragments and reminiscent of comet 141P/Machholz suggests that cascading fragmentation exerts itself

  9. Constraints on the nucleus of comet C/2012 S1 (ISON) from the Hubble Space Telescope observations

    NASA Astrophysics Data System (ADS)

    Lamy, P.; Toth, I.; Li, J.; Weaver, H.

    2014-07-01

    Comet C/2012 S1 (ISON) was both a dynamically new comet, visiting the inner solar system for the first time since being scattered and deeply frozen in the Oort Cloud, and a sungrazing comet. This unique combination made it an attractive target for the Hubble Space Telescope. It was observed on 10 April 2013 when the comet was 4.15 au from the Sun, 4.24 au from the Earth, and at a phase angle of 13.7°, henceforth well before C/ISON crossed the ''snow line'' (2.5--3 au), avoiding strong activity driven by water-ice sublimation and, thus, potentially increasing the chance of detecting its nucleus. The observations were performed over three separate orbits spanning a time interval of 18 hours using the Wide Field Camera 3 (WFC3) UVIS detector to image C/ISON through two broadband filters, the ''wide-V'' F606W and ''blue'' F438W filters (Li at al. 2013). The twelve images obtained with the F606W filter were analyzed using our well-proven technique of fitting a parametric model of the expected surface brightness to the observed images (e.g., Lamy et al. 2006). The model consists of an unresolved point source and a coma specified by a power law, both convolved with the point spread function of the telescope. The nucleus is basically undetected, which imposes an upper limit of its radius of ˜0.3 km. However, the analysis is complicated by the so-called ''breathing'' of the WFC3 camera, an uncontrolled slight defocus which distorts the PSF. We investigated this question in detail and considered various cases of defocus. We will report on this effort and the resulting robust upper limit which we can put on the size of the nucleus of C/ISON.

  10. Fireball on 6 July 2002 over the Mediterranean Sea is a fragment of the comet's nucleus

    NASA Astrophysics Data System (ADS)

    Churyumov, Klim; Kruchinenko, Vitaly G.; Churyumova, Tetyana; Mozgova, Alyona

    2015-03-01

    Today has been known for a considerable number of cases, the explosion of large meteoroids in Earth's atmosphere. This is confirmed by the data of registrations of fireballs by devices and the results of measurements in the atmosphere of bright light flashes by photodiodes Corporation ``Sandia Laboratories", which were installed on geostationary satellites of the United States, and also by data of measurements of acoustic-gravitational waves from the thermal explosions of meteoroids [ReVelle D.O. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves, Near-Earth Objects, Ed. Remo J. Annals of the New York Academy of Sciences 882, 284-302, 1997]. The work [Brown P., Spalding R.E., ReVelle D.O. et al. The flux of small near-Earth objects colliding with the Earth, Nature 420, 314-316, 2002.] shows the results of processing the observations of flashes of large meteoroids in Earth's atmosphere, obtained with the help of geostationary satellites of the United States. Over 8.5 years (from February 1994 to September 2002) 300 such events were registered. On July 6, 2002 r over the Mediterranean Sea a bright fireball was registered. The energy of the meteoroid explosion that caused the phenomenon of the car, was 26 kilotons of TNT [Brown et al., 2002]. We believe that this energy refers to the height of the full bracking of the meteoroid. At a speed of 20.3 km/s adopted by the authors, body mass at this height is 5 × 108 g, and when entering the Earth's atmosphere, it was about 7 × 108 g. Based on the obtained values of the mass, we conclude that the exploded meteoroid, causing a phenomenon of the fireball was a fragment of the comet nucleus. In processing the density of the body were taken 1 g/cm 3 and the initial velocity (~30 km/s).

  11. The activity and size of the nucleus of comet Hale-Bopp (C/1995 O1) [see comment].

    PubMed

    Weaver, H A; Feldman, P D; A'Hearn, M F; Arpigny, C; Brandt, J C; Festou, M C; Haken, M; McPhate, J B; Stern, S A; Tozzi, G P

    1997-03-28

    Analysis of Hubble Space Telescope (HST) images of comet Hale-Bopp (C/1995 O1) suggests that the effective diameter of the nucleus is between 27 to 42 kilometers, which is at least three times larger than that of comet P/Halley. The International Ultraviolet Explorer and HST spectra showed emissions from OH (a tracer of H2O) and CS (a tracer of CS2) starting in April 1996, and from the CO Cameron system (which primarily traces CO2) starting in June 1996. The variation of the H2O production rate with heliocentric distance was consistent with sublimation of an icy body near its subsolar point. The heliocentric variation in the production rates of CS2 and dust was different from that of H2O, which implies that H2O sublimation did not control the CS2 or dust production during these observations. PMID:9072959

  12. Study of sampling systems for comets and Mars

    NASA Technical Reports Server (NTRS)

    Amundsen, R. J.; Clark, B. C.

    1987-01-01

    Several aspects of the techniques that can be applied to acquisition and preservation of samples from Mars and a cometary nucleus were examined. Scientific approaches to sampling, grounded in proven engineering methods are the key to achieving the maximum science value from the sample return mission. If development of these approaches for collecting and preserving does not preceed mission definition, it is likely that only suboptimal techniques will be available because of the constraints of formal schedule timelines and the normal pressure to select only the most conservative and least sophisticated approaches when development has lagged the mission milestones. With a reasonable investment now, before the final mission definition, the sampling approach can become highly developed, ready for implementation, and mature enough to help set the requirements for the mission hardware and its performance.

  13. Modeling and Simulation of a Tethered Harpoon for Comet Sampling

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.

    2014-01-01

    This paper describes the development of a dynamic model and simulation results of a tethered harpoon for comet sampling. This model and simulation was done in order to carry out an initial sensitivity analysis for key design parameters of the tethered system. The harpoon would contain a canister which would collect a sample of soil from a cometary surface. Both a spring ejected canister and a tethered canister are considered. To arrive in close proximity of the spacecraft at the end of its trajectory so it could be captured, the free-flying canister would need to be ejected at the right time and with the proper impulse, while the tethered canister must be recovered by properly retrieving the tether at a rate that would avoid an excessive amplitude of oscillatory behavior during the retrieval. The paper describes the model of the tether dynamics and harpoon penetration physics. The simulations indicate that, without the tether, the canister would still reach the spacecraft for collection, that the tether retrieval of the canister would be achievable with reasonable fuel consumption, and that the canister amplitude upon retrieval would be insensitive to variations in vertical velocity dispersion.

  14. Deep Space 1 photometry of the nucleus of Comet P/19 Borrelly

    NASA Technical Reports Server (NTRS)

    Buratti, B. J.; Britt, D.; Oberst, J.; Soderblom, L. A.; Hillier, J. K.; Hicks, M. D.

    2002-01-01

    The NASA-JPL Deep Space 1 Mission (DS1) encountered the short-period Jupiter-family comet 19/P Borrelly on September 22, 2001, about 8 days after perihelion. DS1's payload contained a remote-sensing package that included a 1024 square CCD and a near IR spectrometer with 12nm resolution. Prior to its closest approach, the remote-sensing package on the spacecraft obtained 25 CCD images of the comet and 45 near-IR spectra.

  15. Parametric Dielectric Model Of Comet 67p/churyumov-gerasimenko: Implications On Sounding Cometary Nucleus Using Radar Tomography

    NASA Astrophysics Data System (ADS)

    Kataria, Tiffany; Heggy, E.; Clifford, S. M.; Lasue, J.; Kofman, W.

    2008-09-01

    The Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) onboard the ROSETTA mission will probe the nucleus of comet 67P/Churyumov-Gerasimenko in 2014. The variations in signal attenuations to be observed in the 90 MHz-radar tomographies is expected to depend mainly on the three-dimensional variations of the dielectrical properties of the cometary material as a function of porosity, temperature, and mineralogical composition. To explore the parametric space associated with the variations of these parameters and their impacts on the observed dielectrical properties inverted from the CONSERT data, we use the current state of knowledge from the observations made by Tempel-1 and Hayabusa to develop parametric dielectric models of possible internal structures of 67P/C-G. The first model reflects the layered-pile structure proposed by Belton et al. (2007), and the second reflects the rubble-pile model proposed by Weissman et al. (1986). The relative complex dielectric permittivities assigned to each dielectric model are based on laboratory measurements of chondrite dust/water ice mixtures, and are varied as a function of dust fraction, porosity and temperature. For the layered pile model, where porosity is assumed constant at the level of 70% and temperature 20m below the surface is 40 K, the dielectric constant varies mainly as a function of dust fraction, ranging between 4.386-i0.0121 in the pure surface dust mantle to 2.081-i0.000182 in one of the inner ice-rich layers. The modeled dielectric permittivities are consistent with the expected deep penetration of the CONSERT wave through the nucleus. Preliminary results suggest that the changes in the physical properties of the nucleus induce substantial variation in the dielectric properties of cometary material that can be identified in the radar tomography.

  16. Global and Spatially Resolved Photometric Properties of the Nucleus of Comet 67P/C-G from OSIRIS Images

    NASA Astrophysics Data System (ADS)

    Lamy, P.

    2014-04-01

    Following the successful wake-up of the ROSETTA spacecraft on 20 January 2014, the OSIRIS imaging system was fully re-commissioned at the end of March 2014 confirming its initial excellent performances. The OSIRIS instrument includes two cameras: the Narrow Angle Camera (NAC) and the Wide Angle Camera (WAC) with respective fieldsofview of 2.2° and 12°, both equipped with 2K by 2K CCD detectors and dual filter wheels. The NAC filters allow a spectral coverage of 270 to 990 nm tailored to the investigation of the mineralogical composition of the nucleus of comet P/Churyumov- Gerasimenko whereas those of the WAC (245-632 nm) aim at characterizing its coma [1]. The NAC has already secured a set of four complete light curves of the nucleus of 67P/C-G between 3 March and 24 April 2014 with a primary purpose of characterizing its rotational state. A preliminary spin period of 12.4 hours has been obtained, similar to its very first determination from a light curve obtained in 2003 with the Hubble space telescope [2]. The NAC and WAC will be recalibrated in the forthcoming weeks using the same stellar calibrators VEGA and the solar analog 16 Cyg B as for past inflight calibration campaigns in support of the flybys of asteroids Steins and Lutetia. This will allow comparing the pre- and post-hibernation performances of the cameras and correct the quantum efficiency response of the two CCD and the throughput for all channels (i.e., filters) if required. The accurate photometric analysis of the images requires utmost care due to several instrumental problems, the most severe and complex to handle being the presence of optical ghosts which result from multiple reflections on the two filters inserted in the optical beam and on the thick window which protects the CCD detector from cosmic ray impacts. These ghosts prominently appear as either slightly defocused images offset from the primary images or large round or elliptical halos. We will first present results on the global

  17. VIRTIS-Rosetta observations of the nucleus of 67P/Churyumov-Gerasimenko during the Comet Characterisation phase (July-August 2014)

    NASA Astrophysics Data System (ADS)

    Capaccioni, Fabrizio; Filacchione, Gianrico; Erard, Stephane; Arnold, Gabriele; Capria, Maria Teresa; De Sanctis, Maria Cristina; Bockelee-Morvan, Dominique; Tosi, Federico; Leyrat, Cedric; Tozzi, Gian Paolo; Drossart, Pierre; Ciarniello, Mauro; Raponi, Andrea; Piccioni, Giuseppe; Formisano, Michelangelo; Schmitt, Bernard; Migliorini, Alessandra; Longobardo, Andrea; Palomba, Ernesto; Kuehrt, Ekkehard; Flamini, Enrico

    2014-11-01

    The paper will describe the major results obtained during the comet nucleus characterization phase, July-August 2014, of the Rosetta Mission by the instrument VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer), the dual channel spectrometer onboard Rosetta. The nucleus observations in this phase were performed in a wide range of illumination conditions and with spatial sampling varying from the initial 500m down to 20m. VIRTIS covers the spectral range from 0.25 to 5micron with a mapping channel (VIRTIS-M) and the range 2-5micron with a High Spectral Resolution channel (VIRTIS-H). Both channels have been used to generate maps correlated to various properties (temperature, albedo, composition) of the illuminated areas. Special emphasis was placed on mapping those surface regions considered reachable areas for the Philae Lander descent, and to those area in the “neck” of the nucleus which from the very early Osiris observations did show hints of surface outgassing activity. Authors acknowledge the support from national funding agencies, ASI, DLR and CNES.

  18. Suprathermal electrons near the nucleus of comet 67P/Churyumov-Gerasimenko at 3 AU: Model comparisons with Rosetta data

    NASA Astrophysics Data System (ADS)

    Madanian, H.; Cravens, T. E.; Rahmati, A.; Goldstein, R.; Burch, J.; Eriksson, A. I.; Edberg, N. J. T.; Henri, P.; Mandt, K.; Clark, G.; Rubin, M.; Broiles, T.; Reedy, N. L.

    2016-06-01

    Observations of the coma near the nucleus of comet 67P/Churyumov-Gerasimenko (67P) made by the IES (Ion and Electron Sensor) instrument onboard the Rosetta Orbiter during late 2014 showed that electron fluxes greatly exceeded solar wind electron fluxes. The IES is part of the Rosetta Plasma Consortium. This paper reports on electron energy spectra measured by IES near the nucleus as well as approximate densities and average energies for the suprathermal electrons when the comet was at a heliocentric distance of about 3 AU. Comparisons are made with electron densities measured by other instruments. The high electron densities observed (e.g., ne ≈ 10-100 cm-3) must be associated with the cometary ion density enhancement created mainly by the photoionization of cometary gas by solar radiation; there are other processes that also contribute. Quasineutrality requires that the electron and ion densities be the same, and under certain conditions an ambipolar electric field is required to achieve quasi-neutrality. We present the results of a test particle model of cometary ion pickup by the solar wind and a two-stream electron transport code and use these results to interpret the IES data. We also estimate the effects on the electron spectrum of a compression of the electron fluid parcel. The electrons detected by IES can have energies as high as about 100-200 eV near the comet on some occasions, in which case the hot electrons can significantly enhance ionization rates of neutrals via impact ionization.

  19. Shape, Density, and Geology of the Nucleus of Comet 103P/Hartley 2

    NASA Technical Reports Server (NTRS)

    Thomas, P.C.; A'hearn, Michael F.; Veverka, Joseph; Belton, Michael J. S.; Kissel, Jochen; Belton, Michael J. S.; Klaasen, Kenneth P.; McFadden, Lucy A.; Melosh, H. Jay; Schultz, Peter H.; Besse, Sebastien; Carcich, Brian T.; Farnham, Tony L.; Groussin, Olivier; Hermalyn, Brendan; Li, Jian-Yang; Lindler, Don J.; Lisse, Carey M.; Meech, Karen; Richardson, James E.

    2013-01-01

    Data from the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) mission show Comet 103P/Hartley 2 is a bi-lobed, elongated, nearly axially symmetric comet 2.33 km in length. Surface features are primarily small mounds <40 m across, irregularly-shaped smooth areas on the two lobes, and a smooth but variegated region forming a “waist” between the two lobes. Assuming parts of the comet body approach the shape of an equipotential surface, the mean density of Hartley 2 is modeled to be 200–400 kg /cubic m.. Such a mean density suggests mass loss per orbit of >1%. The shape may be the evolutionary product of insolation, sublimation, and temporary deposition of materials controlled by the object’s complex rotation.

  20. Ion trap mass spectrometry on a comet nucleus: the Ptolemy instrument and the Rosetta space mission.

    PubMed

    Todd, John F J; Barber, Simeon J; Wright, Ian P; Morgan, Geraint H; Morse, Andrew D; Sheridan, Simon; Leese, Mark R; Maynard, Jon; Evans, Suzanne T; Pillinger, Colin T; Drummond, Duncan L; Heys, Samantha C; Huq, S Ejaz; Kent, Barry J; Sawyer, Eric C; Whalley, Martin S; Waltham, Nicholas R

    2007-01-01

    In May 2014, the Rosetta spacecraft is scheduled to rendezvous with the comet Churyumov-Gerasimenko ('67P'). One of the instruments on board the 'Lander' which will descend on to the surface of the comet is a miniaturised GC/MS system that incorporates an ion trap mass spectrometer, specially developed for isotope ratio analysis. This article describes the development and optimisation of the ion trap for this unique application, and presents a summary of the range of pre-programmed experiments that will contribute to the characterisation of the solid and volatile cometary materials. PMID:17154436

  1. Curation and Analysis of Samples from Comet Wild-2 Returned by NASA's Stardust Mission

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, Keiko; Walker, Robert M.

    2015-01-01

    The NASA Stardust mission returned the first direct samples of a cometary coma from comet 81P/Wild-2 in 2006. Intact capture of samples encountered at 6 km/s was enabled by the use of aerogel, an ultralow dense silica polymer. Approximately 1000 particles were captured, with micron and submicron materials distributed along mm scale length tracks. This sample collection method and the fine scale of the samples posed new challenges to the curation and cosmochemistry communities. Sample curation involved extensive, detailed photo-documentation and delicate micro-surgery to remove particles without loss from the aerogel tracks. This work had to be performed in highly clean facility to minimize the potential of contamination. JSC Curation provided samples ranging from entire tracks to micrometer-sized particles to external investigators. From the analysis perspective, distinguishing cometary materials from aerogel and identifying the potential alteration from the capture process were essential. Here, transmission electron microscopy (TEM) proved to be the key technique that would make this possible. Based on TEM work by ourselves and others, a variety of surprising findings were reported, such as the observation of high temperature phases resembling those found in meteorites, rarely intact presolar grains and scarce organic grains and submicrometer silicates. An important lesson from this experience is that curation and analysis teams must work closely together to understand the requirements and challenges of each task. The Stardust Mission also has laid important foundation to future sample returns including OSIRIS-REx and Hayabusa II and future cometary nucleus sample return missions.

  2. VIRTIS/Rosetta Observes Comet 67P/Churyumov-Gerasimenko: Nucleus and Coma Derived Composition and Physical Properties.

    NASA Astrophysics Data System (ADS)

    Capaccioni, F.; Filacchione, G.; Erard, S.; Arnold, G.; De Sanctis, M. C.; Bockelée-Morvan, D.; Leyrat, C.; Tosi, F.; Ciarniello, M.; Raponi, A.; Migliorini, A.; Quirico, E.; Rinaldi, G.; Schmitt, B.; Carlson, R. W.; Combi, M. R.; Fink, U.; Tozzi, G. P.; Palomba, E.; Longobardo, A.; Formisano, M.; Debout, V.; Drossart, P.; Piccioni, G.; Fougere, N.

    2015-12-01

    The paper will describe the major results obtained throughout the nominal mission by the instrument VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer), the dual channel spectrometer onboard Rosetta, on the surface composition and thermal properties of the nucleus of comet 67P/Churyumov-Gerasimenko and on the 2D distribution of H2O and CO2 in the coma. VIRTIS is a dual channel spectrometer; VIRTIS-M (M for Mapper) is a hyper spectral imager covering a wide spectral range from 0.25 through 5μm. VIRTIS-M uses a slit and a scan mirror to generate images with spatial resolution of 250 μrad over a FOV of 3.7°. The second channel is VIRTIS-H (H for High-resolution), a point spectrometer with high spectral resolution (λ/Δλ=3000 @3μm) in the range 2-5 μm. The nucleus observations have been performed in a wide range of conditions with best spatial resolution of 2.5m. The surface temperature has been determined since the first distant observations when the nucleus filled one single VIRTIS-M pixel and continuously monitored since. Maximum temperature determined until April 2015 are as high as 300K at the subsolar point. Modeling of the thermophysical properties allowed to derive the thermal inertia of the crust. The VIRTIS composition analysis has showed evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 μm), the spectral slopes in VIS and IR ranges (5-25 and 1.5-5 % kÅ-1) and the broad absorption feature in the 2.9-3.6 μm range present across the entire illuminated surface, are compatible with a surface crust made of a complex mixture of dark disordered poly-aromatic compounds, opaque minerals and several chemical species containing: -COOH, CH2 / CH3, -OH (in Alcohols) and possibly NH4+. Both channels are contributing to the determination of the spatial distribution of H2O and CO2 in the coma; their abundances as a function of altitude

  3. The Nucleus and Coma of Comet 67P/C-G at Millimeter and Submillimeter Wavelengths as seen by MIRO

    NASA Astrophysics Data System (ADS)

    Hofstadter, M. D.; Gulkis, S.; Allen, M.; Von Allmen, P.; Beaudin, G.; Biver, N.; Bockelée-Morvan, D.; Choukroun, M.; Crovisier, J.; Encrenaz, P.; Encrenaz, T.; Frerking, M. A.; Hartogh, P.; Ip, W. H.; Janssen, M. A.; Jarchow, C.; Keihm, S. J.; Lee, S.; Lellouch, E.; Leyrat, C.; Rezac, L.; Schloerb, F. P.; Spilker, T. R.

    2015-12-01

    The Microwave Instrument on the Rosetta Orbiter (MIRO) makes submillimeter- and millimeter-wavelength observations of Comet 67P/Churyumov-Gerasimenko. Broadband continuum measurements at wavelengths of 0.5 and 1.6 mm probe the thermal and dielectric properties of the nucleus subsurface. High-resolution spectroscopic measurements of 8 molecular lines in the submillimeter (H2O, H217O, H218O, CO, NH3, and three lines of CH3OH) constrain the abundance, velocity, and temperature of gases in the coma. These measurements allow MIRO to study the nucleus and coma as a coupled system. Using its two continuum channels, MIRO has mapped the thermal properties of the nucleus subsurface (depths from millimeters to tens of centimeters), and generally finds its properties to be consistent with very porous, dusty material. We see temperature variations due to diurnal and seasonal changes in insolation, and also see evidence for subsurface ice in some regions. This talk will provide an update on our observations of variations over time, variations with temperature, and variations in composition. We also will report on our attempts to detect the continuum thermal emission of dust in the coma. MIRO's spectroscopic observations have shown the abundance and velocity of gas as it comes off the nucleus to vary with time and location. The regions MIRO sees as particularly active are generally consistent with activity reported by other instruments. Moving away from the nucleus, MIRO is sensitive to the three-dimensional structure of the coma. We will present an update on our understanding of that structure, which is influenced by the shape of the nucleus, nucleus rotation, and processes acting within and on the coma. Our ultimate goal is to develop a coupled model of the nucleus and coma, tracing the processes by which solar heating of the surface drives sublimation of subsurface ice and generation of dust, and how gases and dust evolve in the coma. Part of this work was conducted at the Jet

  4. Studying comets with NEOWISE

    NASA Astrophysics Data System (ADS)

    Stevenson, R.; Bauer, J.; Kramer, E.; Fernández, Y.; Mainzer, A.; Grav, T.; Masiero, J.

    2014-07-01

    The Wide-Field Infrared Survey Explorer (WISE) mission detected more than 150 comets during its all-sky survey between January 2010 and February 2011. The comets were imaged at 4 infrared wavelengths (3.4, 4.6, 12, and 22 microns). The large sample of both long-period and Jupiter-family comets observed at a range of heliocentric distances allows for systematic comparison of the properties of both dynamical families. Nucleus diameters and albedos, dust comae temperatures, CO and CO_{2} emission rates, and dust tail and trail morphologies are some of the properties studied with the WISE data. This work is being continued by the reactivated NEOWISE mission [1]. In 2013, the WISE spacecraft was brought out of hibernation to resume discovering, tracking, and characterizing small bodies in the Solar System by imaging the sky at solar elongations of ˜90° at wavelengths of 3.4 and 4.6 microns. Since NEOWISE resumed its all-sky survey on December 23, 2013, 10 comets have been observed, including one previously-unknown long-period comet -- C/2014 C3 (NEOWISE). Of particular interest are the NEOWISE observations of comet C/2013 A1 (Siding Spring), which will have a close encounter with Mars in October 2014. NEOWISE observed this comet in January 2014 and will observe it twice more before the comet's close approach to Mars. NEOWISE will continue to operate until early 2017, greatly enhancing our understanding of cometary properties as studied in the infrared.

  5. Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Hasselmann, P. H.; Barucci, M. A.; Feller, C.; Besse, S.; Leyrat, C.; Lara, L.; Gutierrez, P. J.; Oklay, N.; Tubiana, C.; Scholten, F.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Fulle, M.; Groussin, O.; Güttler, C.; Hviid, S. F.; Ip, W.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Matz, K.-D.; Michalik, H.; Moreno, F.; Mottola, S.; Naletto, G.; Pajola, M.; Pommerol, A.; Preusker, F.; Shi, X.; Snodgrass, C.; Thomas, N.; Vincent, J.-B.

    2015-11-01

    Context. The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. Aims: We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The observations presented here were performed during July and the beginning of August 2014, during the approach phase, when OSIRIS was mapping the surface of the comet with several filters at different phase angles (1.3°-54°). The resolution reached up to 2.1 m/px. Methods: The OSIRIS images were processed with the OSIRIS standard pipeline, then converted into I/F radiance factors and corrected for the illumination conditions at each pixel using the Lommel-Seeliger disk law. Color cubes of the surface were produced by stacking registered and illumination-corrected images. Furthermore, photometric analysis was performed both on disk-averaged photometry in several filters and on disk-resolved images acquired with the NAC orange filter, centered at 649 nm, using Hapke modeling. Results: The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13 ± 0.01 in the HG system formalism and an absolute magnitude Hv(1,1,0) = 15.74 ± 0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at ~290 nm that is possibly due to SO2 ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3°-54° phase angle range. The geometric albedo of the comet is 6.5 ± 0.2% at 649 nm, with

  6. The gas distribution of comet Halley and its relation to the nucleus rotation

    NASA Technical Reports Server (NTRS)

    Cochran, Anita L.; Trout, Anthony P.

    1994-01-01

    We used a set of spatially resolved spectra of comet Halley to explore whether the gas distribution profile could be inverted to yield information on the rotation of the comet. The data were obtained both pre- and post-perihelion. The pre-perihelion data showed reasonable symmetry and so were used to define the lifetimes against photodissociation of the various molecules. These lifetimes were then used to define the lifetimes against photodissociation of the various molecules. These lifetimes were then used along with a nonsteady-state vectorial model to fit the post-perihelion gas distribution profiles. The resulting molecular lightcurves are compared with the photometric lightcurves of Schlicher et al. (1990) to show that the rotational information is encoded in the observed gas distribution within the coma. The molecular lightcurves can differentiate between the preferred Schlicher et al. average period and the period they find for the same time interval as the spectra.

  7. Dynamic Acquisition and Retrieval Tool (DART) for Comet Sample Return : Session: 2.06.Robotic Mobility and Sample Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bonitz, Robert; Kulczycki, Erick; Aisen, Norman; Dandino, Charles M.; Cantrell, Brett S.; Gallagher, William; Shevin, Jesse; Ganino, Anthony; Haddad, Nicolas; Walkemeyer, Phillip; Backes, Paul; Shiraishi, Lori

    2013-01-01

    The 2011 Decadal Survey for planetary science released by the National Research Council of the National Academies identified Comet Surface Sample Return (CSSR) as one of five high priority potential New Frontiers-class missions in the next decade. The main objectives of the research described in this publication are: develop a concept for an end-to-end system for collecting and storing a comet sample to be returned to Earth; design, fabricate and test a prototype Dynamic Acquisition and Retrieval Tool (DART) capable of collecting 500 cc sample in a canister and eject the canister with a predetermined speed; identify a set of simulants with physical properties at room temperature that suitably match the physical properties of the comet surface as it would be sampled. We propose the use of a dart that would be launched from the spacecraft to impact and penetrate the comet surface. After collecting the sample, the sample canister would be ejected at a speed greater than the comet's escape velocity and captured by the spacecraft, packaged into a return capsule and returned to Earth. The dart would be composed of an inner tube or sample canister, an outer tube, a decelerator, a means of capturing and retaining the sample, and a mechanism to eject the canister with the sample for later rendezvous with the spacecraft. One of the significant unknowns is the physical properties of the comet surface. Based on new findings from the recent Deep Impact comet encounter mission, we have limited our search of solutions for sampling materials to materials with 10 to 100 kPa shear strength in loose or consolidated form. As the possible range of values for the comet surface temperature is also significantly different than room temperature and testing at conditions other than the room temperature can become resource intensive, we sought sample simulants with physical properties at room temperature similar to the expected physical properties of the comet surface material. The chosen

  8. Carbon in comet dust

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.

    1990-01-01

    The association of Halley particle results with data from existing meteoritic materials that can be analyzed in the laboratory is discussed. Comet samples must exist in present collections of meteoritic materials and the Halley results provide clues for identifying them. Although it is not presently possible to positively identify cometary meteorites or cometary interplanetary dust (IDP) samples, it is possible to determine which materials are similar to Halley dust and which ones are distinctly unlike Halley. The properties of these existing Halley-compatible samples provide insight into the possible properties of cometary material. Positive identification of meteoritic comet samples or direct samples returned from a comet nucleus would of course revolutionize our ability to study carbonaceous matter in comets. Modern analytical techniques are very powerful and it is possible to perform elemental, chemical, mineralogical and even limited isotopic analysis on micron-size particles. There is an important synergism between the laboratory studies of collected samples and astronomical data from comets and interstellar grains. To fully interpret results there must be convincing methods for associating a particular class or classes of meteoritic material with comets. Ultimately this will be done by direct comet sample return such as the Rosetta mission under development by ESA. At the present time the only links that can be made involve comparison with sample properties and measurable properties of comets. Unfortunately there is at present no known unique property of cometary dust that allows its absolute identification in the laboratory. The results from Halley encounters and observation do provide much new information on cometary grains. The Halley grain compositions, density, size distribution and scattering properties all provide a basis for future investigations. Other Halley properties such as the presence of polyoxymethylene and the 3.4um emission feature could

  9. Cometary science. On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Sierks, Holger; Barbieri, Cesare; Lamy, Philippe L; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F; Angrilli, Francesco; Auger, Anne-Therese; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Besse, Sebastien; Bodewits, Dennis; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Gutierrez-Marques, Pablo; Gutiérrez, Pedro J; Güttler, Carsten; Hoekzema, Nick; Hviid, Stubbe F; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, J Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Leyrat, Cédric; Lopez Moreno, Josè J; Magrin, Sara; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Pertile, Marco; Preusker, Frank; Sabau, Lola; Scholten, Frank; Snodgrass, Colin; Thomas, Nicolas; Tubiana, Cecilia; Vincent, Jean-Baptiste; Wenzel, Klaus-Peter; Zaccariotto, Mirco; Pätzold, Martin

    2015-01-23

    Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss. PMID:25613897

  10. On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Sierks, Holger; Barbieri, Cesare; Lamy, Philippe L.; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F.; Angrilli, Francesco; Auger, Anne-Therese; Barucci, M. Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Besse, Sebastien; Bodewits, Dennis; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Gutierrez-Marques, Pablo; Gutiérrez, Pedro J.; Güttler, Carsten; Hoekzema, Nick; Hviid, Stubbe F.; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, J. Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M.; Lazzarin, Monica; Leyrat, Cédric; Lopez Moreno, Josè J.; Magrin, Sara; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Pertile, Marco; Preusker, Frank; Sabau, Lola; Scholten, Frank; Snodgrass, Colin; Thomas, Nicolas; Tubiana, Cecilia; Vincent, Jean-Baptiste; Wenzel, Klaus-Peter; Zaccariotto, Mirco; Pätzold, Martin

    2015-01-01

    Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.

  11. Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations

    NASA Astrophysics Data System (ADS)

    Groussin, O.; Jorda, L.; Auger, A.-T.; Kührt, E.; Gaskell, R.; Capanna, C.; Scholten, F.; Preusker, F.; Lamy, P.; Hviid, S.; Knollenberg, J.; Keller, U.; Huettig, C.; Sierks, H.; Barbieri, C.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Agarwal, J.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Gutiérrez, P. J.; Güttler, C.; Ip, W.-H.; Kramm, J.-R.; Küppers, M.; Lazzarin, M.; Lara, L. M.; Lopez Moreno, J. J.; Marchi, S.; Marzari, F.; Massironi, M.; Michalik, H.; Naletto, G.; Oklay, N.; Pommerol, A.; Pajola, M.; Thomas, N.; Toth, I.; Tubiana, C.; Vincent, J.-B.

    2015-11-01

    Aims: We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material (tensile, shear, and compressive strengths). Methods: We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface (Imhotep, Ash, Seth, Hathor, and Agilkia), using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies (overhangs, collapsed structures, boulders, cliffs, and Philae's footprint) and mechanical considerations. Results: The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain morphology: i) low-slope terrains (0-20°) are covered by a fine material and contain a few large (>10 m) and isolated boulders; ii) intermediate-slope terrains (20-45°) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from <1 m to 10 m for the majority of them; and iii) high-slope terrains (45-90°) are cliffs that expose a consolidated material and do not show boulders or fine materials. The best range for the tensile strength of overhangs is 3-15 Pa (upper limit of 150 Pa), 4-30 Pa for the shear strength of fine surface materials and boulders, and 30-150 Pa for the compressive strength of overhangs (upper limit of 1500 Pa). The strength-to-gravity ratio is similar for 67P and weak rocks on Earth. As a result of the low compressive strength, the interior of the nucleus may have been compressed sufficiently to initiate diagenesis, which could have contributed to the formation of layers. Our value for the tensile strength is comparable to that of dust aggregates formed by gravitational instability and tends to favor

  12. Comet Bennett 1970 II.

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.; Miller, F. D.

    1973-01-01

    The model for dust comets, formulated by Finson and Probstein, which had previously been tested only on Comet Arend-Roland 1957 III, has been successfully applied to three calibrated photographic plates of Comet Bennett. The size distribution, emission rate, and initial velocities of dust particles emitted from the comet's nucleus are given.

  13. Analysis of the Touch-And-Go Surface Sampling Concept for Comet Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Mandic, Milan; Acikmese, Behcet; Bayard, David S.; Blackmore, Lars

    2012-01-01

    This paper studies the Touch-and-Go (TAG) concept for enabling a spacecraft to take a sample from the surface of a small primitive body, such as an asteroid or comet. The idea behind the TAG concept is to let the spacecraft descend to the surface, make contact with the surface for several seconds, and then ascend to a safe location. Sampling would be accomplished by an end-effector that is active during the few seconds of surface contact. The TAG event is one of the most critical events in a primitive body sample-return mission. The purpose of this study is to evaluate the dynamic behavior of a representative spacecraft during the TAG event, i.e., immediately prior, during, and after surface contact of the sampler. The study evaluates the sample-collection performance of the proposed sampling end-effector, in this case a brushwheel sampler, while acquiring material from the surface during the contact. A main result of the study is a guidance and control (G&C) validation of the overall TAG concept, in addition to specific contributions to demonstrating the effectiveness of using nonlinear clutch mechanisms in the sampling arm joints, and increasing the length of the sampling arms to improve robustness.

  14. Infrared Spectroscopy of Comet Wild-2 Samples Returned by the Stardust Mission.

    NASA Astrophysics Data System (ADS)

    Keller, L.; Bajt, S.; Borg, J.; Brucato, J.; Colangeli, L.; D'Hendecourt, L.; Djouadi, Z.; Flynn, G.; Grossemy, F.; Matrajt, G.; Mennella, V.; Palumbo, M.; Rotundi, A.; Wooden, D.

    2006-12-01

    Comets are widely believed to be repositories of the building blocks of the solar system that include both presolar and early nebular matter. The nature of these organic and inorganic materials in comets is inferred through the analysis and interpretation of features in their infrared (IR) spectra, especially the mid- and far-IR parts of the spectrum where organic materials and minerals have diagnostic bands. With bonafide samples of a specific comet now returned by the Stardust mission, their detailed analysis provides a direct test of current hypotheses regarding the chemical and mineralogical composition of comets based largely on astronomical measurements, comet encounter missions and laboratory analyses of cometary IDPs. Indigenous organic matter from Comet Wild-2 was collected by the Stardust mission and survived capture. It is associated with discrete particles and as finely disseminated material within impact cavities in the aerogel collection medium. Fourier transform infrared (FTIR) measurements of extracted particles and in situ measurements from individual impact tracks show absorption features in the C-H stretching region that are consistent with long chain aliphatic hydrocarbons. Extracted terminal particles and some of the particles from the base of the impact cavity also show sharp features in mid- and far-IR spectra consistent with crystalline silicates, including enstatite, olivine and diopside. Amorphous silicates are also a major component of comet Wild-2 samples. Indeed, despite complications due to overlap with the aerogel Si-O feature, the majority of Wild-2 particles analyzed to date with IR spectroscopy are dominated by amorphous silicates, although the thermal effects of the particle collection are still being assessed. No FTIR evidence for hydrated silicates or carbonates has been observed to date in any of the extracted particles. The presence of the crystalline silicates in the Wild-2 samples indicates that it is not an assemblage of

  15. Editorial of the special issue - "Rosetta and Philae at comet 67P/Churyumov-Gerasimenko"

    NASA Astrophysics Data System (ADS)

    Ulamec, Stephan; Taylor, Matthew G. G. T.

    2016-08-01

    Giotto, the first european/ESA - interplanetary space probe had not flown by Halley's comet, yet, when the first plans for the next mission to investigate a comet were being made. back in 1984, Rosetta became part of ESAs horizon 2000 programme, originally envisioned as a comet nucleus sample return mission.

  16. Twentieth century light curves and the nucleus of comet P/Tempel 2

    NASA Technical Reports Server (NTRS)

    Rickman, Hans; Festou, Michel C.; Tancredi, Gonzalo; Kamel, L.

    1992-01-01

    Observations of P/Tempel 2 from 1899 to 1988 corresponding to 13 apparitions are analyzed in order to estimate the perihelion asymmetry of the gas production curve for different periods of its evolution. Using the correlation found by Festou et al. (1990) between the perihelion asymmetries and the delay in perihelion passage due to the action of nongravitational forces, we estimate the mass of the comet to be M approximately equals 1.6 plus or minus 0.5 x 10(exp 14) kg. Assuming a volume of 500 cu km, based on nuclear observations, a density of 0.3 plus or minus 0.1 g/cu cm is obtained.

  17. Hot OH and CN: Evidence for organic molecules close to the nucleus of comet Halley

    NASA Astrophysics Data System (ADS)

    Clairemidi, J.; Moreels, G.

    1989-12-01

    During the encounter session of Vega 2 with comet Halley on 6 Mar. 1986, advantage was taken of the approach motion and of the resulting zoom effect to assemble the monochromatic charts produced by a three channel spectrometer in composite images at selected wavelengths. Two jets are clearly apparent in most of the monochromatic images. The OH and CN emission originating from the jets exhibit a pronounced peculiarity. The bands located at 309 and 388 nm show an excess of emission at 305 and 383 nm. The proposed mechanism, specific to the jets, is the photodissociation of one or several organic molecules of the type A-OH or B-CN which would release hot OH and CN when submitted to the solar UV flux. These organic molecules would be a component of the envelope of the CHON submicronic grains dragged by the gaseous jets. They provide an additional argument in favor of the similarity between cometary and interstellar matter.

  18. COMETARY SCIENCE. The nonmagnetic nucleus of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Auster, Hans-Ulrich; Apathy, Istvan; Berghofer, Gerhard; Fornacon, Karl-Heinz; Remizov, Anatoli; Carr, Chris; Güttler, Carsten; Haerendel, Gerhard; Heinisch, Philip; Hercik, David; Hilchenbach, Martin; Kührt, Ekkehard; Magnes, Werner; Motschmann, Uwe; Richter, Ingo; Russell, Christopher T; Przyklenk, Anita; Schwingenschuh, Konrad; Sierks, Holger; Glassmeier, Karl-Heinz

    2015-07-31

    Knowledge of the magnetization of planetary bodies constrains their origin and evolution, as well as the conditions in the solar nebular at that time. On the basis of magnetic field measurements during the descent and subsequent multiple touchdown of the Rosetta lander Philae on the comet 67P/Churyumov-Gerasimenko (67P), we show that no global magnetic field was detected within the limitations of analysis. The Rosetta Magnetometer and Plasma Monitor (ROMAP) suite of sensors measured an upper magnetic field magnitude of less than 2 nanotesla at the cometary surface at multiple locations, with the upper specific magnetic moment being <3.1 × 10(-5) ampere-square meters per kilogram for meter-size homogeneous magnetized boulders. The maximum dipole moment of 67P is 1.6 × 10(8) ampere-square meters. We conclude that on the meter scale, magnetic alignment in the preplanetary nebula is of minor importance. PMID:25873744

  19. The 67P/Churyumov-Gerasimenko comet: colors, albedo variations and inhomogeneity of the nucleus from the ROSETTA/OSIRIS images

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Leyrat, C.; Barucci, M. A.; Hasselmann, P. H.; Thomas, N.; Kueppers, M.; Sierks, H.; Oklay, N.; Snodgrass, C.; Tubiana, C.; Vincent, J. B.; Jorda, L.; Keller, H. U.; Hviik, S.; Magrin, S.; Massironi, M.; Besse, S.; Pajola, M.

    2014-04-01

    Rosetta is the cornerstone mission of the European Space Agency devoted to the study of the minor bodies. Launched on 2 March 2004, Rosetta has as primary target the comet 67P/Churyumov-Gerasimenko, a short period comet of the Jupiter's family. On its journey to the comet, after three Earth and one Mars gravity assist manoeuvres, Rosetta flew by two selected asteroids, 2867 Steins, in September 2008, and 21 Lutetia in July 2010. In June 2011, Rosetta was placed in hibernation for 31 months to save its power resources, and it was successfully reactivated on January 2014, before the rendez-vous maneuver to the comet at 4 AU from the Sun. The spacecraft will orbit and perform long-term exploration of the cometary nucleus and coma, including its innermost part, for more than 1 year and a half, following the comet up to its perihelion at 1.37 AU and shortly after it. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are on board Rosetta, including imaging cameras, spectrometers, dust analysers, radio science experiment, and the Philae lander that will land on the nucleus in November 2014. In this work we will present the results on the 67P nucleus physical-chemical properties derived from the OSIRIS images acquired during the comet approach phase and the first bound orbits in July-August 2014. OSIRIS is constituted of aWide Angle Camera (WAC) and a Narrow Angle Camera (NAC) [1]. The NAC camera will obtain high resolution images with different filters in the near UV-near IR range. Those filters are optimised for the mineralogical studies of the nucleus. The WAC camera has a wide field of view (12×12 degrees) and narrow band filters devoted to the study of the gaseous species of the coma. In the July-August 2014 timeframe, OSIRIS will map the entire surface of the comet with several filters in the 250-1000 nm range, at different phase angles (5- 50 degrees), and with a resolution up to 1 m/px with the NAC

  20. GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Della Corte, V.; Rotundi, A.; Fulle, M.; Gruen, E.; Weissman, P.; Sordini, R.; Ferrari, M.; Ivanovski, S.; Lucarelli, F.; Accolla, M.; Zakharov, V.; Mazzotta Epifani, E.; Lopez-Moreno, J. J.; Rodriguez, J.; Colangeli, L.; Palumbo, P.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Green, S. F.; Lamy, P. L.; McDonnell, J. A. M.; Mennella, V.; Molina, A.; Morales, R.; Moreno, F.; Ortiz, J. L.; Palomba, E.; Perrin, J. M.; Rietmeijer, F. J. M.; Rodrigo, R.; Zarnecki, J. C.; Cosi, M.; Giovane, F.; Gustafson, B.; Herranz, M. L.; Jeronimo, J. M.; Leese, M. R.; Lopez-Jimenez, A. C.; Altobelli, N.

    2015-11-01

    Context. During the period between 15 September 2014 and 4 February 2015, the Rosetta spacecraft accomplished the circular orbit phase around the nucleus of comet 67P/Churyumov-Gerasimenko (67P). The Grain Impact Analyzer and Dust Accumulator (GIADA) onboard Rosetta monitored the 67P coma dust environment for the entire period. Aims: We aim to describe the dust spatial distribution in the coma of comet 67P by means of in situ measurements. We determine dynamical and physical properties of cometary dust particles to support the study of the production process and dust environment modification. Methods: We analyzed GIADA data with respect to the observation geometry and heliocentric distance to describe the coma dust spatial distribution of 67P, to monitor its activity, and to retrieve information on active areas present on its nucleus. We combined GIADA detection information with calibration activity to distinguish different types of particles that populate the coma of 67P: compact particles and fluffy porous aggregates. By means of particle dynamical parameters measured by GIADA, we studied the dust acceleration region. Results: GIADA was able to distinguish different types of particles populating the coma of 67P: compact particles and fluffy porous aggregates. Most of the compact particle detections occurred at latitudes and longitudes where the spacecraft was in view of the comet's neck region of the nucleus, the so-called Hapi region. This resulted in an oscillation of the compact particle abundance with respect to the spacecraft position and a global increase as the comet moved from 3.36 to 2.43 AU heliocentric distance. The speed of these particles, having masses from 10-10 to 10-7 kg, ranged from 0.3 to 12.2 m s-1. The variation of particle mass and speed distribution with respect to the distance from the nucleus gave indications of the dust acceleration region. The influence of solar radiation pressure on micron and submicron particles was studied. The

  1. Physical Properties of the Nucleus of Comet 28P/Neujmin 1

    NASA Astrophysics Data System (ADS)

    Mueller, B. E. A.; Heinrichs, A. M.; Samarasinha, N. H.

    2002-09-01

    Comet 28P/Neujmin 1 was observed in April 2002 for 4 consecutive nights at the CTIO 1.5m telescope in the broadband V, R, and I filters. The rotational lightcurve observations in R yield a preliminary rotation period of 12.7+/- 0.1 hours, in excellent agreement with determinations from Delahodde et al. (2001) and Jewitt and Meech (1988). Our observations in R cover 80% of the rotational phase for a double peaked lightcurve. The peak to peak variation in the lightcurve is 0.56 mag, giving a lower limit of the nuclear axial ratio a/b of 1.7. Our V and I observations partially cover a rotational phase and show no evidence of a variation in the V-R or R-I colors. Colors and an effective radius will also be determined. Our lightcurve analysis will be put into context with all previous data. For this purpose we will apply model simulations and will present the results at the meeting. This work was supported by a grant from the NASA Planetary Astronomy Program. AMH acknowledges funds from the NSF Research Experience for Undergraduates (REU) Program. References: Delahodde, Meech, Hainaut, & Dotto 1981. A&A 376, 672 Jewitt & Meech 1988. Ap.J. 328, 974

  2. Measurements of the near-nucleus coma of comet 67P/Churyumov-Gerasimenko with the Alice far-ultraviolet spectrograph on Rosetta

    NASA Astrophysics Data System (ADS)

    Feldman, Paul D.; A'Hearn, Michael F.; Bertaux, Jean-Loup; Feaga, Lori M.; Parker, Joel Wm.; Schindhelm, Eric; Steffl, Andrew J.; Stern, S. Alan; Weaver, Harold A.; Sierks, Holger; Vincent, Jean-Baptiste

    2015-11-01

    Aims: The Alice far-ultraviolet spectrograph onboard Rosetta is designed to observe emissions from various atomic and molecular species from within the coma of comet 67P/ Churyumov-Gerasimenko and to determine their spatial distribution and evolution with time and heliocentric distance. Methods: Following orbit insertion in August 2014, Alice made observations of the inner coma above the limbs of the nucleus of the comet from cometocentric distances varying between 10 and 80 km. Depending on the position and orientation of the slit relative to the nucleus, emissions of atomic hydrogen and oxygen were initially detected. These emissions are spatially localized close to the nucleus and spatially variable with a strong enhancement above the comet's neck at northern latitudes. Weaker emission from atomic carbon and CO were subsequently detected. Results: Analysis of the relative line intensities suggests photoelectron impact dissociation of H2O vapor as the source of the observed H i and O i emissions. The electrons are produced by photoionization of H2O. The observed C i emissions are also attributed to electron impact dissociation, of CO2, and their relative brightness to H i reflects the variation of CO2 to H2O column abundance in the coma.

  3. Motion of Dust Structures in the Circumnuclear Region of Comet Hale-Bopp and Rotation of the Cometary Nucleus

    NASA Astrophysics Data System (ADS)

    Churyumov, K. I.; Evtushevskii, A. M.; Kravtsov, F. I.

    2001-01-01

    The motion of dust structures in the circumnuclear region of comet Hale-Bopp is studied. About 270 envelope images were obtained with the AZT-8 reflector (D = 0.7 m, F = 28 m) and the Filin-3 image intensifier. We carried out our observations at the observational station of the Astronomical Observatory of Shevchenko Kiev State University in the village of Lesniki (near Kiev). The recording from the image-intensifier screen was made on Foto-100 film during 23 nights from March 24 to May 10, 1997. The circumnuclear region was imaged both in white light (without filters) and with IHW CO^+ (λ_ef = 426 nm), C_3 (λ_ef = 496 nm), C_2 (λ_ef = 514 nm), and RC (red continuum, λ_ef = 684 nm) narrow-band interference filters. Based on our measurements of the radial expansion of dust structures, we determined the velocities, 0.61-1.99 km s^-1 accelerations, from -18.3 × 10^-3 to 4.0 × 10^-3 m s^-2 and rotation period of the cometary nucleus, 111.41^h +/- 0.05^h.

  4. Non-destructive trace element microanalysis of as-received cometary nucleus samples using synchrotron x ray fluorescence

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.

    1989-01-01

    The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique.

  5. Discrete sources of cryovolcanism on the nucleus of Comet 29P/Schwassmann-Wachmann and their origin

    NASA Astrophysics Data System (ADS)

    Miles, Richard

    2016-07-01

    Evidence for long-lived sources of cryovolcanism on the nucleus of the Comet 29P/Schwassmann-Wachmann has been found from a study of its times of outburst (t0) and the morphological development of inner coma structures. Analysis of data from the Minor Planet Center observations archive spanning 2002-2014 and other observations have yielded 64 outburst times of mainly well-observed events with a median timing uncertainty of 0.40 d. Outbursts comprise largely (i) isolated explosive events; or (ii) multiple outbursts occurring typically within 5-15 d of each other. On rare occasions, a form of continuous or gradually increasing activity is manifest, appearing to be the result of a series of mini-outbursts. Quasi-periodicity in t0 is manifested as an excess of outbursts every 52-60 d, along with a paucity of events every ∼30 d and ∼90 d. Seasonal changes in activity are evident from the temporal analysis of the outburst data. An unambiguous periodicity of 57.6 ± 0.4 d has been found in the times of 26 outbursts during 2010-2014, with all active sources at that time localised within a longitude span of ∼135-150°. Cluster analysis of t0 data for 2002-2010 and 2010-2014, and HST imaging from 1996 confirm and refine the apparent periodicity, indicating that outbursts appear to be grouped in longitude centred on at least 6 circumferential locations. Sources of activity generally persist for at least 10-20 yr, and some appear discrete in nature, able to re-outburst after a single day-night cycle. Given that outbursts are triggered by solar heating, the analysis yields a value for the mean solar day of 57.71 ± 0.06 d, equivalent to a sidereal rotation period of 57.09 ± 0.06 d, assuming the more probable prograde direction of spin. A novel outburst mechanism is outlined in which some cometary ices, principally solid CH4, confined under pressure (>12 kPa) beneath a stabilisation crust, begin to melt and absorb supervolatile gases, mainly CO and N2. These gases

  6. Aerobraking strategies for the sample of comet coma earth return mission

    NASA Technical Reports Server (NTRS)

    Abe, Takashi; Kawaguchi, Jun'ichiro; Uesugi, Kuninori; Yen, Chen-Wan L.

    1990-01-01

    The results of a study to the validate the applicability of the aerobraking concept to the SOCCER (sample of comet coma earth return) mission using a six-DOF computer simulation of the aerobraking process are presented. The SOCCER spacecraft and the aerobraking scenario and power supply problem are briefly described. Results are presented for the spin effect, payload exposure problem, and sun angle effect.

  7. Searching for Amino Acids in Meteorites and Comet Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elsila

    2010-01-01

    Chemistry plays an important role in the interdisciplinary field of astrobiology, which strives to understand the origin, distribution, and evolution of life throughout the universe. Chemical techniques are used to search for and characterize the basic ingredients for life, from the elements through simple molecules and up to the more complex compounds that may serve as the ingredients for life. The Astrobiology Analytical Laboratory at NASA Goddard uses state-of-the-art laboratory analytical instrumentation in unconventional ways to examine extraterrestrial materials and tackle some of the big questions in astrobiology. This talk will discuss some of the instrumentation and techniques used for these unique samples, as well as some of our most interesting results. The talk will present two areas of particular interest in our laboratory: (1) the search for chiral excesses in meteoritic amino acids, which may help to explain the origin of homochirality in life on Earth; and (2) the detection of amino acids and amines in material returned by NASA's Stardust mission, which rendevouzed with a cornet and brought back cometary particles to the Earth.

  8. The Preliminary Examination of Organics in the Returned Stardust Samples from Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Aleon, J.; Alexander, C.; Butterworth, A.; Clemett, S. J.; Cody, G.; Cooper, G.; Dworkin, J. P.; Flynn, G. J.; Gilles, M. K.

    2006-01-01

    The primary objective of STARDUST is to collect coma samples from comet 8lP/Wild 2. These samples were collected by impact onto aerogel tiles on Jan 2, 2004 when the spacecraft flew through the comet's coma at a relative velocity of about 6.1 km/sec. Measurements of dust impacts on the front of the spacecraft suggest that the aerogel particle collector was impacted by 2800 +/- 500 particles larger than 15 micron in diameter. Following recovery of the Sample Return Capsule (SRC) on Jan 15, 2006, the aerogel collector trays will be removed in a clean room at JSC. After documentation of the collection, selected aerogel tiles will be removed and aerogel and cometary samples will be extracted for study. A number of different extraction techniques will be used, each optimized for the analytical technique that is to be used. The STARDUST Mission will carry out a 6 month preliminary examination (PE) of a small portion of the returned samples. The examination of the samples will be made by a number of subteams that will concentrate on specific aspects of the samples. One of these is the Organics PE Team (see the author list above for team members). These team members will use a number of analytical techniques to produce a preliminary characterization of the abundance and nature of the organics (if any) in the returned samples.

  9. Halley's Comet

    NASA Technical Reports Server (NTRS)

    Newburn, R. L., Jr.; Yeomans, D. K.

    1982-01-01

    Since 240 B.C., Chinese observers have documented a nearly unbroken record of scientifically useful observations of Periodic Comet Halley (P/Halley). Investigations of the comet's motion by Western astronomers are discussed, taking into account the first successful prediction of a cometary return by Halley (1705), computations conducted by Rosenberger (1830), and studies performed by Cowell and Crommelin (1910). Comet Halley's motion and nongravitational forces are considered along with meteor showers associated with P/Halley. The physical properties of P/Halley are examined, giving attention to the visual observations, the light curve of P/Halley, the coma, the tails, direct photographs, spectrograms, and the emission spectrum of P/Halley. Other subjects explored are related to the cometary nucleus, the mass of P/Halley, the rotation period and axial inclination, the composition, a nominal model of P/Halley's coma, and plans for investigations in connection with the coming apparition of Comet Halley.

  10. Organics in the samples returned from comet 81P/Wild 2 by the Stardust Spacecraft

    NASA Astrophysics Data System (ADS)

    Sandford, Scott A.

    2008-10-01

    The Stardust Mission collected samples from Comet 81P/Wild 2 on 2 Jan 2004 and returned these samples to Earth on 15 Jan 2006. After recovery, a six month preliminary examination was done on a portion of the samples. Studies of the organics in the samples were made by the Organics Preliminary Examination Team (PET) - a worldwide group of over 55 scientists. This paper provides a brief overview of the findings of the Organics PET. Organics in the samples were studied using a multitude of analytical techniques including spatial determination of C and heteroatom elemental abundances (STXM), functional group identification (micro-FTIR/Raman, C,N,O-XANES), and specific molecular identification of certain classes of organics (HPLC-LIF, L2MS, TOF-SIMS). Analyses were also made of spacecraft components and environmental samples collected near the recovered returned capsule to assess contamination issues. The distribution of organics (abundance, functionality, and relative elemental abundances of C,N,O) is heterogeneous both within and between particles. They are an unequilibrated reservoir that experienced little parent body processing after incorporation into the comet. Some organics look like those seen in IDPs (and to a lesser extent, meteorites), while new aromatic-poor and highly labile organics, not seen in meteoritic materials, are also present. The organics are O,N-rich compared to meteoritic organics. Some of the organics have an interstellar heritage, as evidenced by D and 15N enrichments.

  11. Properties of the Nucleus, Dust Coma, and Gas Coma of Comet 29P/Schwassmann-Wachmann 1 As Observed By WISE/NEOWISE

    NASA Astrophysics Data System (ADS)

    Fernandez, Yanga R.; Bauer, J. M.; Lisse, C. M.; Grav, T.; Mainzer, A. K.; Masiero, J. R.; Walker, R. G.; Meech, K. J.

    2012-10-01

    We present our analysis of mid-infrared imaging of comet 29P/Schwassmann-Wachmann 1 by the Wide-field Infrared Survey Explorer (WISE) [1,2]. The comet was observed on May 3-4, 2010 - not in strong outburst - with imaging at 3.4, 4.6, 12, and 22 microns (a.k.a. bands W1, W2, W3, and W4). W1 and W2 were sensitive to the reflected-sunlight continuum and W3 and W4 to thermal emission. The comet's coma was seen in all bands, with a point-source clearly embedded in W1, W3, and W4 imaging. A coma-fitting technique [3,4] let us photometrically extract this point-source from the images, thereby letting us measure the nucleus's size, W1-band geometric albedo, and infrared beaming. The dust coma was most clearly seen at bands W1, W3, and W4, letting us estimate the dust production rate, extract spatially-resolved information about the dust albedo and color temperature, and constrain the grain composition and size distribution. W2 imaging shows a coma whose radial surface-brightness profile and photometry suggest we are seeing a gas component, specifically emission from CO and/or CO2, i.e. high-abundance species with emission lines within the bandpass. This lets us estimate 29P’s gas production rate and dust-to-gas ratio independently from earlier methods. We present a comparison of our dust, gas, and nucleus results to those from earlier studies of this comet. References: [1] E. L. Wright et al. 2010, AJ, 140, 1868. [2] A. K. Mainzer et al. 2011, ApJ, 731, 53. [3] C. M. Lisse et al. 1999, Icarus, 140, 189. [4] P. L. Lamy et al. 2004, in Comets II, pp. 223-264. Acknowledgements: This publication makes use of data products from (1) WISE, which is a joint project of UCLA and JPL/Caltech, funded by NASA; and (2) NEOWISE, which is a project of JPL/Caltech, funded by the Planetary Science Division of NASA.

  12. Evolution of the ultraviolet coma of comet Austin (1982g.)

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Ahearn, M. F.; Schleicher, D. G.; Festou, M. C.; Wallis, M. K.; Burton, W. M.; Hughes, D. W.; Keller, H. U.; Benvenuti, P.

    1984-01-01

    Ultraviolet spectra of comet Austin (1982) obtained in July 1982 at heliocentric distances ranging from 1.10 to 0.81 AU preperihelion with the IUE reveal that the comet is very similar in chemical composition and appearance to comet Bradfield (1979X). In addition, the derived H2O production rate is found to vary with heliocentric distance as r to the -3.6, similar to the r to the -3.7 behavior found for comet Bradfield. It is pointed out, however, that the limited sample rate precludes the observation of the short-term variations which could be produced by a rotating nonuniform cometary nucleus.

  13. Short-wavelength infrared (1.3-2.6 μm) observations of the nucleus of Comet 19P/Borrelly

    USGS Publications Warehouse

    Soderblom, L.A.; Britt, D.T.; Brown, R.H.; Buratti, B.J.; Kirk, R.L.; Owen, T.C.; Yelle, R.V.

    2004-01-01

    During the last two minutes before closest approach of Deep Space 1 to Comet 19P/Borrelly, a long exposure was made with the short-wavelength infrared (SWIR) imaging spectrometer. The observation yielded 46 spectra covering 1.3–2.6 μm; the footprint of each spectrum was ∼160 m × width of the nucleus. Borrelly's highly variegated and extremely dark 8-km-long nucleus exhibits a strong red slope in its short-wavelength infrared reflection spectrum. This slope is equivalent to J–K and H–K colors of ∼0.82 and ∼0.43, respectively. Between 2.3–2.6 μm thermal emission is clearly detectable in most of the spectra. These data show the nucleus surface to be hot and dry; no trace of H2O ice was detected. The surface temperature ranged continuously across the nucleus from ⩽300 K near the terminator to a maximum of ∼340 K, the expected sub-solar equilibrium temperature for a slowly rotating body. A single absorption band at ∼2.39 μm is quite evident in all of the spectra and resembles features seen in nitrogen-bearing organic molecules that are reasonable candidates for compositional components of cometary nuclei. However as of yet the source of this band is unknown.

  14. Adaptation of G-TAG Software for Validating Touch-and-Go Comet Surface Sampling Design Methodology

    NASA Technical Reports Server (NTRS)

    Mandic, Milan; Acikmese, Behcet; Blackmore, Lars

    2011-01-01

    The G-TAG software tool was developed under the R&TD on Integrated Autonomous Guidance, Navigation, and Control for Comet Sample Return, and represents a novel, multi-body dynamics simulation software tool for studying TAG sampling. The G-TAG multi-body simulation tool provides a simulation environment in which a Touch-and-Go (TAG) sampling event can be extensively tested. TAG sampling requires the spacecraft to descend to the surface, contact the surface with a sampling collection device, and then to ascend to a safe altitude. The TAG event lasts only a few seconds but is mission-critical with potentially high risk. Consequently, there is a need for the TAG event to be well characterized and studied by simulation and analysis in order for the proposal teams to converge on a reliable spacecraft design. This adaptation of the G-TAG tool was developed to support the Comet Odyssey proposal effort, and is specifically focused to address comet sample return missions. In this application, the spacecraft descends to and samples from the surface of a comet. Performance of the spacecraft during TAG is assessed based on survivability and sample collection performance. For the adaptation of the G-TAG simulation tool to comet scenarios, models are developed that accurately describe the properties of the spacecraft, approach trajectories, and descent velocities, as well as the models of the external forces and torques acting on the spacecraft. The adapted models of the spacecraft, descent profiles, and external sampling forces/torques were more sophisticated and customized for comets than those available in the basic G-TAG simulation tool. Scenarios implemented include the study of variations in requirements, spacecraft design (size, locations, etc. of the spacecraft components), and the environment (surface properties, slope, disturbances, etc.). The simulations, along with their visual representations using G-View, contributed to the Comet Odyssey New Frontiers proposal

  15. Comet C/2011 W3 (Lovejoy): Orbit Determination, Outbursts, Disintegration of Nucleus, Dust-tail Morphology, and Relationship to New Cluster of Bright Sungrazers

    NASA Astrophysics Data System (ADS)

    Sekanina, Zdenek; Chodas, Paul W.

    2012-10-01

    We describe the physical and orbital properties of C/2011 W3. After surviving perihelion passage, the comet was observed to undergo major physical changes. The permanent loss of the nuclear condensation and the formation of a narrow spine tail were observed first at Malargue, Argentina, on December 20 and then systematically at Siding Spring, Australia. The process of disintegration culminated with a terminal fragmentation event on December 17.6 UT. The postperihelion dust tail, observed for ~3 months, was the product of activity over <2 days. The nucleus' breakup and crumbling were probably caused by thermal stress due to the penetration of the intense heat pulse deep into the nucleus' interior after perihelion. The same mechanism may be responsible for cascading fragmentation of sungrazers at large heliocentric distances. The delayed response to the hostile environment in the solar corona is at odds with the rubble-pile model, since the residual mass of the nucleus, estimated at ~1012 g (equivalent to a sphere 150-200 m across) just before the terminal event, still possessed nontrivial cohesive strength. The high production rates of atomic oxygen, observed shortly after perihelion, are compatible with a subkilometer-sized nucleus. The spine tail—the product of the terminal fragmentation—was a synchronic feature, whose brightest part contained submillimeter-sized dust grains, released at velocities of up to 30 m s-1. The loss of the nuclear condensation prevented an accurate orbital-period determination by traditional techniques. Since the missing nucleus must have been located on the synchrone, whose orientation and sunward tip have been measured, we compute the astrometric positions of this missing nucleus as the coordinates of the points of intersection of the spine tail's axis with the lines of forced orbital-period variation, derived from the orbital solutions based on high-quality preperihelion astrometry from the ground. The resulting orbit gives 698

  16. COMET C/2011 W3 (LOVEJOY): ORBIT DETERMINATION, OUTBURSTS, DISINTEGRATION OF NUCLEUS, DUST-TAIL MORPHOLOGY, AND RELATIONSHIP TO NEW CLUSTER OF BRIGHT SUNGRAZERS

    SciTech Connect

    Sekanina, Zdenek; Chodas, Paul W. E-mail: Paul.W.Chodas@jpl.nasa.gov

    2012-10-01

    We describe the physical and orbital properties of C/2011 W3. After surviving perihelion passage, the comet was observed to undergo major physical changes. The permanent loss of the nuclear condensation and the formation of a narrow spine tail were observed first at Malargue, Argentina, on December 20 and then systematically at Siding Spring, Australia. The process of disintegration culminated with a terminal fragmentation event on December 17.6 UT. The postperihelion dust tail, observed for {approx}3 months, was the product of activity over <2 days. The nucleus' breakup and crumbling were probably caused by thermal stress due to the penetration of the intense heat pulse deep into the nucleus' interior after perihelion. The same mechanism may be responsible for cascading fragmentation of sungrazers at large heliocentric distances. The delayed response to the hostile environment in the solar corona is at odds with the rubble-pile model, since the residual mass of the nucleus, estimated at {approx}10{sup 12} g (equivalent to a sphere 150-200 m across) just before the terminal event, still possessed nontrivial cohesive strength. The high production rates of atomic oxygen, observed shortly after perihelion, are compatible with a subkilometer-sized nucleus. The spine tail-the product of the terminal fragmentation-was a synchronic feature, whose brightest part contained submillimeter-sized dust grains, released at velocities of up to 30 m s{sup -1}. The loss of the nuclear condensation prevented an accurate orbital-period determination by traditional techniques. Since the missing nucleus must have been located on the synchrone, whose orientation and sunward tip have been measured, we compute the astrometric positions of this missing nucleus as the coordinates of the points of intersection of the spine tail's axis with the lines of forced orbital-period variation, derived from the orbital solutions based on high-quality preperihelion astrometry from the ground. The

  17. Morphology of the nucleus of Comet 67P/Churyumov--Gerasimenko from stereo and high spatial resolution OSIRIS-NAC images

    NASA Astrophysics Data System (ADS)

    Lamy, P. L.; Groussin, O.; Romeuf, D.; Auger, A. T.; Jorda, L.; Capanna, C.; Faury, G.

    2015-12-01

    The Narrow Angle Camera (NAC) of the OSIRIS imaging system aboard ESA's Rosetta spacecraft has acquired images of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko at scales down to 0.2 m/pixel. We employ a variety of techniques to characterize its morphology. Digital terrain modeling (DTM), indispensable for quantitative morphological analysis is performed using stereophotoclinometry (SPC). Depending upon the observational coverage, the resolution of the DTMs exceeds 1 m in the most favorable cases. The ultimate stereographic analysis is performed by exploiting pairs of images able to produce anaglyphs whose spatial resolution surpasses that of the DTMs. Digital image filtering and contrast enhancement techniques are applied on the original images as appropriate. We first concentrate on the dust covered terrains possibly resulting from airfall deposits, on the quasi circular depressions or basins possibly connected to collapses of the underground terrain, and on large scarps that suggest extensive mass disruption. We pay special attention to lithologies that may give clues to the subsurface structure of the nucleus. Our ultimate goal is to understand the processes at work on the nucleus, directly or indirectly connected to its activity as there appears to a variety of processes far beyond what was classically considered in the past, for instance airfall deposits, surface dust transport, mass wasting, and insolation weathering.

  18. Subaru/COMICS Mid-Infrared Observation of the Near-Nucleus Region of Comet 17P/Holmes at the Early Phase of an Outburst

    NASA Astrophysics Data System (ADS)

    Watanabe, Jun-Ichi; Honda, Mitsuhiko; Ishiguro, Masateru; Ootsubo, Takafumi; Sarugaku, Yuki; Kadono, Toshihiko; Sakon, Itsuki; Fuse, Tetsuharu; Takato, Naruhisa; Furusho, Reiko

    2009-08-01

    Mid-infrared 8--25μm imaging and spectroscopic observations of the comet 17P/Holmes in the early phase of its outburst in brightness were performed on 2007 October 25--28UT using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the 8.2-m Subaru Telescope. We detected an isolated dust cloud that moved toward the south-west direction from the nucleus. The 11.2μm peak of a crystalline silicate feature onto a broad amorphous silicate feature was also detected both in the central condensation of the nucleus and an isolated dust cloud. The color temperature of the isolated dust cloud was estimated to be ˜200K, which is slightly higher than the black-body temperature. Our analysis of the motion indicates that the isolated cloud moved anti-sunward. We propose several possibilities for the motion of the cloud: fluffy dust particles in the isolated cloud started to depart from the nucleus due to radiation pressure almost as soon as the main outburst occurred, or dust particles moved by some other anti-sunward forces, such as a rocket effect and photophoresis when the surrounding dust coma became optically thin. The origin and the nature of the isolated dust cloud are discussed in this paper.

  19. Morphology of the nucleus of Comet 67P/Churyumov-Gerasimenko from stereo and high spatial resolution OSIRIS-NAC images

    NASA Astrophysics Data System (ADS)

    Lamy, Philippe; Groussin, Olivier; Romeuf, David; Thomas, Nicolas; Auger, Anne-Thérèse; Jorda, Laurent; Gaskell, Robert; Capanna, Claire; Llebaria, Antoine

    2015-04-01

    The Narrow Angle Camera (NAC) of the OSIRIS imaging system aboard ESA's Rosetta spacecraft has acquired images of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko at scales down to 0.2 m/pixel. We employ a variety of techniques to characterize its morphology. Digital terrain modeling (DTM), indispensable for quantitative morphological analysis is performed using stereophotoclinometry (SPC). Depending upon the observational coverage, the resolution of the DTMs exceed 1 m in the most favorable cases. The ultimate stereographic analysis is performed by exploiting pairs of images able to produce anaglyphs whose spatial resolution surpasses that of the DTMs. Digital image filtering and contrast enhancement techniques are applied on the original images as appropriate. We first concentrate on the dust covered terrains possibly resulting from airfall deposits, on the quasi-circular depressions or basins possibly connected to collapses of the underground terrain, and on large scarps that suggest extensive mass disruption. We pay special attention to lithologies that may give clues to the subsurface structure of the nucleus. Our ultimate goal is to understand the processes at work on the nucleus, directly or indirectly connected to its activity as there appears to a variety of processes far beyond what was classicaly considered in the past, for instance airfall deposits, surface dust transport, mass wasting, and insolation weathering.

  20. Modeling the nucleus and jets of comet 81P/Wild 2 based on the Stardust encounter data

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek; Brownlee, Donald E.; Economou, Thanasis E.; Tuzzolino, Anthony J.; Green, Simon F.

    2004-01-01

    We interpret the nucleus properties and jet activity from the Stardust spacecraft imaging and the onboard dust monitoring system data. Triangulation of 20 jets shows that 2 emanate from the nucleus dark side and 16 emanate from sources that are on slopes where the Sun's elevation is greater than predicted from the fitted triaxial ellipsoid. Seven sources, including five in the Mayo depression, coincide with relatively bright surface spots. Fitting the imaged jets, the spikelike temporal distribution of dust impacts indicates that the spacecraft crossed thin, densely populated sheets of particulate ejecta extending from small sources on the rotating nucleus, consistent with an emission cone model.

  1. The Light Curve Of The Dust Cloud Ejected By The Collision Between The Deep Impact Projectile And The Nucleus Of Comet 9P/Tempel 1

    NASA Astrophysics Data System (ADS)

    Kueppers, Michael; Rengel, M.; Keller, H. U.; Gutiérrez, P. J.; Hviid, S. F.

    2007-10-01

    When Deep Impact fired its projectile into the nucleus of comet 9P/Tempel 1, a cloud made of dust and icy grains was ejected from the impact crater. The dust was subsequently accelerated by gas drag. About a week after the impact event, the dust cloud had dispersed due to its expansion and the force exerted by solar radiation pressure. The light curve of the dust cloud contains information about its formation and evolution: The time scale of production of impact created material can be derived from the time scale of the brightness increase. The velocity distribution of the cloud is indicative of acceleration processes in the inner coma of the comet. Finally, the abundance of large dust particles created by the impact can be estimated from the brightness of the cloud several days after the impact when small particles have been pushed away by radiation pressure. Here we analyze data obtained by the Narrow Angle Camera (NAC) of OSIRIS onboard the ESA spacecraft Rosetta to derive the velocity distribution of the dust cloud from an inversion of its light curve. OSIRIS observed comet Tempel 1 near-continuously for more than two weeks around the impact. A model of the expansion of the ejecta is compared to the light curve seen by the NAC. We derive a broad velocity distribution of the dust particles, which peaks at around 225 m/s, in good agreement with published estimates. The velocities suggest that the impact ejecta were quickly accelerated by gas in the cometary coma. We will discuss implications of our results for the evolution of the dust cloud during the first hours after the impact and provide estimates of the released dust mass. OSIRIS is funded by the agencies ASI, CNES, DLR, the Spanish Space Program (Ministerio de Educación y Ciencia), SNSB, and ESA.

  2. Detection of changes of the surface morphology of the nucleus of comet 67P/Churyumov-Gerasimenko - Implications for the erosion

    NASA Astrophysics Data System (ADS)

    Lamy, Philippe; Groussin, Olivier; El-Maarry, M. R.; Faury, Guillaume; Auger, Anne-Thérèse

    2016-07-01

    Search for morphological changes at the surface of the nucleus of comet 67P/Churyumov-Gerasimenko (67/P C-G) since its perihelion passage in August 2015 has been a major objective of the OSIRIS team in order to understand the erosion processes. At time of writing, the changes detected so far at a distance of 48 km (that is a pixel scale of 90 cm for the OSIRIS Narrow Angle Camera) are subtle even in regions which were the most exposed to solar illumination around perihelion time: Imhotep, Khonsu and Khepry. In this presentation, we will concentrate on the Khepry region where several changes of different kinds have been positively detected: disappearance of several bright spots, localized receding of a large part (roughly 40 x 130 m) of the surface by approximately 12 m (that could result from either erosion or localized collapse), and appearance of several new boulders. As the Rosetta-comet distance will keep decreasing, we hope to report further changes at the COSPAR conference. We will finally confront quantitative estimates of the putative eroded mass with independent evidences coming from in-situ as well as remote-sensing observations carried over several past apparitions.

  3. Bright ice spots on the nucleus of comet 67P/Churyumov-Gerasimenko as observed by Rosetta OSIRIS and VIRTIS instruments

    NASA Astrophysics Data System (ADS)

    Barucci, Maria Antonietta; Fulchignoni, Marcello; Pommerol, Antoine; Erard, Stéphane; Oklay, Nilda; Tosi, Federico; Capaccioni, Fabrizio; Sierks, Holger; Filacchione, Gianrico; Bockelee-Morvan, Dominique; Guettler, Carsten; Fornasier, Sonia; Raponi, Andrea; Deshapriya, J. D. P.; Feller, Clement; Ciarniello, Mauro; Leyrat, Cedric

    2016-07-01

    Since the Rosetta mission arrived at the comet 67P/Churyumov-Gerasimenko (67/P C-G) on August 2014, the comet nucleus has been mapped by both OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System), and VIRTIS (Visible Infrared Thermal Imaging Spectrometer) acquiring a huge quantity of surface's images and spectra, producing the most detailed maps at the highest spatial resolution of a cometary nucleus. The OSIRIS imaging system (NAC & WAC) has a set of filters at different wavelengths from the ultraviolet (269 nm) to the near-infrared (989 nm). The OSIRIS imaging system has been the first instrument with the capability to map a comet surface at a high resolution reaching a maximum resolution of 11cm/px during the closest fly-by on February 14, 2015 at a distance of about 6 km from the nucleus surface while the VIRTIS spectro-imager (with two channels M and H) operates from 0.25 to 5m with medium and high spectral resolution. The spectral analysis on global scale from the VIRTIS data indicates that the nucleus presents different terrains covered by a very dark and dehydrated organic-rich material [1]. OSIRIS images indicate a morphologically complex and dark surface with a variety of terrain types and several intricate features [2]. The surface shows albedo variation and from the spectrophotometric analysis a large heterogeneity on the surface properties [3, 4, 5]. Limited evidences of exposed H2O ice have been found on the surface of 67/P C-G up to now [6, 7, 8], even though ices are considered to be a major constituent of cometary nuclei. The aim of this work is, taking advantage of the high resolution of the OSIRIS images, i) to detect the bright spots at all dimensions by albedo and spectral slope analyses, ii) to select those spots which could be resolved by VIRTIS and iii ) to deeply analyse the corresponding spectra. The OSIRIS analysis has been carried out on the colours and spectrophotometry of the whole 67/P C-G nucleus from images acquired

  4. Distribution of water around the nucleus of comet 67P/Churyumov-Gerasimenko at 3.4 AU from the Sun as seen by the MIRO instrument on Rosetta

    NASA Astrophysics Data System (ADS)

    Biver, N.; Hofstadter, M.; Gulkis, S.; Bockelée-Morvan, D.; Choukroun, M.; Lellouch, E.; Schloerb, F. P.; Rezac, L.; Ip, W. H.; Jarchow, C.; Hartogh, P.; Lee, S.; von Allmen, P.; Crovisier, J.; Leyrat, C.; Encrenaz, P.

    2015-11-01

    The Microwave Instrument on the Rosetta Orbiter (MIRO) has been observing the coma of comet 67P/Churyumov-Gerasimenko almost continuously since June 2014 at wavelengths near 0.53 mm. We present here a map of the water column density in the inner coma (within 3 km from nucleus center) when the comet was at 3.4 AU from the Sun. Based on the analysis of the HO and HO (110-101) lines, we find that the column density can vary by two orders of magnitude in this region. The highest column density is observed in a narrow region on the dayside, close to the neck and north pole rotation axis of the nucleus, while the lowest column density is seen against the nightside of the nucleus where outgassing seems to be very low. We estimate that the outgassing pattern can be represented by a Gaussian distribution in a solid angle with FWHM ≈ 80°.

  5. LCOGT Network observations of spacecraft target comets

    NASA Astrophysics Data System (ADS)

    Lister, Tim; Knight, Matthew M.; Snodgrass, Colin; Samarasinha, Nalin H.

    2015-01-01

    Las Cumbres Observatory Global Telescope (LCOGT) network currently has 12 telescopes at 6 locations in the northern and southern hemispheres with expansion plans for more. This network is versatile and can respond rapidly to target of opportunity events and also perform long term monitoring of slowly changing astronomical phenomena.We have been using the LCOGT Network to perform photometric monitoring of comet 67P/Churyumov-Gerasimenko to support the ESA Rosetta comet mission and of C/2013 A1 (Siding Spring) as part of the ground-based observation teams for these important comets. This broadband photometry will allow a vital link between the detailed in-situ measurements made by the spacecraft and the global properties of the coma, at a time when the comet is only visible for short periods from single sites. The science we can extract includes the rotational state of the nucleus, characterization of the nucleus' activity, gas and dust properties in the coma (e.g., outflow velocities), chemical origin of gas species in the coma, and temporal behavior of the coma structure when the comet is close to the sun. Comet Siding Spring is a dynamically new comet on its first approach to the Sun that will pass close to Mars, so we can directly sample the composition of an original unaltered remnant of the protoplanetary disc. We will also be making use of specialized comet filters available at LCOGT's 2-m Faulkes Telescope North (FTN) to obtain a unique data set on comet C/2013 A1 (Siding Spring), as part of a large worldwide campaign. As one of only two robotic telescope equipped with cometary narrowband filters in the Northern hemisphere and having the largest aperture plus a high quality site, FTN can provide critical regular monitoring that cannot be achieved by any other single facility in the campaign.

  6. Application of Solar Electric Propulsion to a Comet Surface Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Mike; Coverstone, Victoria; Woo, Byoungsam

    2004-01-01

    Current NSTAR (planned for the Discovery Mission: Dawn) and NASA's Evolutionary Xenon Thruster based propulsion systems were compared for a comet surface sample return mission to Tempe1 1. Mission and systems analyses were conducted over a range of array power for each propulsion system with an array of 12 kW EOL at 1 AU chosen for a baseline. Engine configurations investigated for NSTAR included 4 operational engines with 1 spare and 5 operational engines with 1 spare. The NEXT configuration investigated included 2 operational engines plus 1 spare, with performance estimated for high thrust and high Isp throttling modes. Figures of merit for this comparison include Solar Electric Propulsion dry mass, average engine throughput, and net non-propulsion payload returned to Earth flyby.

  7. THE NUCLEUS OF COMET 10P/TEMPEL 2 IN 2013 AND CONSEQUENCES REGARDING ITS ROTATIONAL STATE: EARLY SCIENCE FROM THE DISCOVERY CHANNEL TELESCOPE

    SciTech Connect

    Schleicher, David G.; Knight, Matthew M.; Levine, Stephen E.

    2013-11-01

    We present new lightcurve measurements of Comet 10P/Tempel 2 carried out with Lowell Observatory's Discovery Channel Telescope in early 2013 when the comet was at aphelion. These data represent some of the first science obtained with this new 4.3 m facility. With Tempel 2 having been observed to exhibit a small but ongoing spin-down in its rotation period for over two decades, our primary goals at this time were two-fold. First, to determine its current rotation period and compare it to that measured shortly after its most recent perihelion passage in 2010, and second, to disentangle the spin-down from synodic effects due to the solar day and Earth's orbital motion and to determine the sense of rotation, i.e., prograde or retrograde. At our midpoint of 2013 February 24, the observed synodic period is 8.948 ± 0.001 hr, exactly matching the predicted prograde rotation solution based on 2010 results, and yields a sidereal period of the identical value due to the solar and Earth synodic components just canceling out during the interval of the 2013 observations. The retrograde solution is ruled out because the associated sidereal periods in 2010 and 2013 are quite different even though we know that extremely little outgassing, needed to produce torques, occurred in this interval. With a definitive sense of rotation, the specific amounts of spin-down to the sidereal period could be assessed. The nominal values imply that the rate of spin-down has decreased over time, consistent with the secular drop in water production since 1988. Our data also exhibited an unexpectedly small lightcurve amplitude which appears to be associated with viewing from a large, negative sub-Earth latitude, and a lightcurve shape deviating from a simple sinusoid implying a highly irregularly shaped nucleus.

  8. Comet composition and density analyzer

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1982-01-01

    Distinctions between cometary material and other extraterrestrial materials (meteorite suites and stratospherically-captured cosmic dust) are addressed. The technique of X-ray fluorescence (XRF) for analysis of elemental composition is involved. Concomitant with these investigations, the problem of collecting representative samples of comet dust (for rendezvous missions) was solved, and several related techniques such as mineralogic analysis (X-ray diffraction), direct analysis of the nucleus without docking (electron macroprobe), dust flux rate measurement, and test sample preparation were evaluated. An explicit experiment concept based upon X-ray fluorescence analysis of biased and unbiased sample collections was scoped and proposed for a future rendezvous mission with a short-period comet.

  9. Autonomous Onboard Science Data Analysis for Comet Missions

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Tran, Daniel Q.; McLaren, David; Chien, Steve A.; Bergman, Larry; Castano, Rebecca; Doyle, Richard; Estlin, Tara; Lenda, Matthew

    2012-01-01

    Coming years will bring several comet rendezvous missions. The Rosetta spacecraft arrives at Comet 67P/Churyumov-Gerasimenko in 2014. Subsequent rendezvous might include a mission such as the proposed Comet Hopper with multiple surface landings, as well as Comet Nucleus Sample Return (CNSR) and Coma Rendezvous and Sample Return (CRSR). These encounters will begin to shed light on a population that, despite several previous flybys, remains mysterious and poorly understood. Scientists still have little direct knowledge of interactions between the nucleus and coma, their variation across different comets or their evolution over time. Activity may change on short timescales so it is challenging to characterize with scripted data acquisition. Here we investigate automatic onboard image analysis that could act faster than round-trip light time to capture unexpected outbursts and plume activity. We describe one edge-based method for detect comet nuclei and plumes, and test the approach on an existing catalog of comet images. Finally, we quantify benefits to specific measurement objectives by simulating a basic plume monitoring campaign.

  10. Ultraviolet observations of comets

    NASA Technical Reports Server (NTRS)

    Code, A. D.; Houck, T. E.; Lillie, C. F.

    1972-01-01

    The first observations of a comet in the vacuum ultraviolet were obtained on January 14, 1970, when OAO-2 recorded the spectrum of the bright comet Tago-Sato-Kosaka (1969g). The observations revealed, among other things, the predicted extensive hydrogen Lyman alpha halo. OAO-2 continued to collect spectrophotometric measurements of this comet throughout January of that year; a photograph of the nucleus in Lyman alpha revealed finer scale structures. In February of 1970, the bright comet Bennet (1969i) became favorable for space observations. On the basis of the OAO discovery, OGO-V made several measurements of comet Bennet with low spatial resolution photometers. Comet Enke was detected by OGO in January of 1971 at a large heliocentric distance from its Lyman alpha emission.

  11. The impact of lymphocyte isolation on induced DNA damage in human blood samples measured by the comet assay.

    PubMed

    Bausinger, Julia; Speit, Günter

    2016-09-01

    The comet assay is frequently used in human biomonitoring for the detection of exposure to genotoxic agents. Peripheral blood samples are most frequently used and tested either as whole blood or after isolation of lymphocytes (i.e. peripheral blood mononuclear cells, PBMC). To investigate a potential impact of lymphocyte isolation on induced DNA damage in human blood samples, we exposed blood ex vivo to mutagens with different modes of genotoxic action. The comet assay was performed either directly with whole blood at the end of the exposure period or with lymphocytes isolated directly after exposure. In addition to the recommended standard protocol for lymphocyte isolation, a shortened protocol was established to optimise the isolation procedure. The results indicate that the effects of induced DNA strand breaks and alkali-labile sites induced by ionising radiation and alkylants, respectively, are significantly reduced in isolated lymphocytes. In contrast, oxidative DNA base damage (induced by potassium bromate) and stable bulky adducts (induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide; BPDE) seem to be less affected. Our findings suggest that in vivo-induced DNA damage might also be reduced in isolated lymphocytes in comparison with the whole blood depending of the types of DNA damage induced. Because only small genotoxic effects can generally be expected in human biomonitoring studies with the comet assay after occupational and environmental exposure to genotoxic agents, any loss might be relevant and should be avoided. The possibility of such effects and their potential impact on variability of comet assay results in human biomonitoring should be considered when performing or evaluating such kind of studies. PMID:27154923

  12. Carbon XANES Data from Six Aerogel Picokeystones Cut from the Top and Bottom Sides of the Stardust Comet Sample Tray

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Frank, D.; Sandford, S. A.; Zolensky, M. E.; Tsou, P.; Peltzer, C.; Jacobsen, C.

    2009-01-01

    Great care and a large effort was made to minimize the amount of organic matter contained within the flight aerogel used to collect Comet 81P/Wild 2 samples. Even so, by the very nature of the production process and silica aerogel s affinity for volatile organics keeping silica aerogel free from organics is a monumental task. Silica aerogel from three production batches was flown on the Stardust sample return mission. All 3 types had layered densities varying from 5mg/ml to 50 mg/ml where the densest aerogel was farthest away from the collection area. A 2 step gelation process was used to make the flight aerogel and organics used in this process were tetraethylorthosilicate, ethanol and acetonitrile. Both ammonium hydroxide and nitric acid were also used in the aerogel production process. The flight aerogel was baked at JPL at 300 C for 72 hours, most of the baking was done at atmosphere but twice a day the oven was pumped to 10 torr for hour [1]. After the aerogel was baked it was stored in a nitrogen purged cabinet until flight time. One aerogel cell was located in the SRC away from any sample collection area as a witness to possible contamination from out gassing of the space craft, re-entry gases and any other organic encounter. This aerogel was aerogel used in the interstellar collection sample tray and is the least dense of the 3 batches of aerogel flown. Organics found in the witness tile include organics containing Si-CH3 bonds, amines and PAHS. Besides organic contamination, hot spots of calcium were reported in the flight aerogel. Carbonates have been detected in comet 81P/Wild2 samples . During preflight analyses, no technique was used to analyze for carbonates in aerogel. To determine if the carbonates found in 81P/Wild2 samples were from the comet, it is necessary to analyze the flight aerogel for carbonate as well as for organics.

  13. Thermal evolution of Comet P/Tempel 1 - Representing the group of targets for the CRAF and CNSR missions

    NASA Technical Reports Server (NTRS)

    Bar-Nun, Akiva; Heifet, Eyal; Prialnik, Dina

    1989-01-01

    A numerical definition of the thermal evolution of spherically symmetric models of the nucleus in the orbit of Comet P/Tempel-1 is presently used to ascertain the properties of the outer layers of comets under consideration for the future Comet Rendezvous and Asteroid Flyby and the Comet Nucleus Sample Return missions. Evolutionary sequences are computed for different values of density, dust/ice mass ratio, and the dust fraction not lost with ice sublimation. It is found that inner and outer surface temperatures of the dust mantle are comparatively insensitive to parameter changes, and that the total thickness of the crystalline ice layer between the dust mantle and the amorphous ice core will make it difficult for the comet-mission probes to sample pristine ice.

  14. Comet formation

    NASA Astrophysics Data System (ADS)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  15. Application of solar electric propulsion to comet and asteroid rendezvous and docking /CARD/ missions with sample return.

    NASA Technical Reports Server (NTRS)

    Odom, P. R.; Cikanek, H. A.; Allen, L. C.

    1972-01-01

    Summary of a feasibility study of CARD mission/system concepts for comet Encke and asteroid Eros missions in the late 1970s. A common planetary vehicle employing a modular SEP (solar electric propulsion) system and a direct rendezvous/docking mode with a staged science/sampling module appears feasible based on 1973 technology. The SEP system utilizes 3.5-kW, 3500-sec Isp mercury ion thrusters and rollout solar arrays sized at 36 (Encke) and 13 (Eros) kW based on the Titan III family launch vehicles. Science payloads, sampling concepts, and supporting spacecraft subsystems are defined. Problem areas are identified, and programmatic considerations are discussed.

  16. Gas release in comet nuclei

    NASA Technical Reports Server (NTRS)

    Prialnik, Dina; Bar-Nun, Akiva

    1990-01-01

    Processes taking place during the evolution of a comet nucleus are examined, taking into account the release of gas on crystallization and the gas flow through the porous nucleus. In particular, the stresses caused by the gas pressure, the contribution of gas flow to the heat transfer, and the rate of gas emission by the comet along its orbit were determined using a model of spherically symmetric comet nucleus made of porous amorphous ice, with 10 percent CO gas trapped in it. Several values of density and pore size are considered, and for each combination of parameters, the model is evolved for 20-30 revolutions in Comet P/Halley's orbit. It is shown that a model of 0.2 g/cu cm density reproduces well many of the light-curve and activity characteristics of Comet P/Halley.

  17. Collecting Comet Samples by ER-2 Aircraft: Cosmic Dust Collection During the Draconid Meteor Shower in October 2012

    NASA Technical Reports Server (NTRS)

    Bastien, Ron; Burkett, P. J.; Rodriquez, M.; Frank, D.; Gonzalez, C.; Robinson, G.-A.; Zolensky, M.; Brown, P.; Campbell-Brown, M.; Broce, S.; Kapitzke, M.; Moes, T.; Steel, D.; Williams, T.; Gearheart, D.

    2014-01-01

    Many tons of dust grains, including samples of asteroids and comets, fall from space into the Earth's atmosphere each day. NASA periodically collects some of these particles from the Earth's stratosphere using sticky collectors mounted on NASA's high-flying aircraft. Sometimes, especially when the Earth experiences a known meteor shower, a special opportunity is presented to associate cosmic dust particles with a known source. NASA JSC's Cosmic Dust Collection Program has made special attempts to collect dust from particular meteor showers and asteroid families when flights can be planned well in advance. However, it has rarely been possible to make collections on very short notice. In 2012, the Draconid meteor shower presented that opportunity. The Draconid meteor shower, originating from Comet 21P/Giacobini-Zinner, has produced both outbursts and storms several times during the last century, but the 2012 event was not predicted to be much of a show. Because of these predictions, the Cosmic Dust team had not targeted a stratospheric collection effort for the Draconids, despite the fact that they have one of the slowest atmospheric entry velocities (23 km/s) of any comet shower, and thus offer significant possibilities of successful dust capture. However, radar measurements obtained by the Canadian Meteor Orbit Radar during the 2012 Draconids shower indicated a meteor storm did occur October 8 with a peak at 16:38 (+/-5 min) UTC for a total duration of approximately 2 hours.

  18. Characterizing water/rock interaction in simulated comet nuclei via calorimetry: Tool for in-situ science, laboratory analysis, and sample preservation

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Gooding, James L.

    1991-01-01

    Although results from the Giotto and Vega spacecraft flybys of comet P/Halley indicate a complex chemistry for both the ices and dust in the nucleus, carbonaceous chondrite meteorites are still regarded as useful analogs for the rocky components. Carbonaceous chondrites mixed with water enable simulation of water/rock interactions which may occur in cometary nuclei. Three general types of interactions can be expected between water and minerals at sub-freezing temperatures: heterogeneous nucleation of ice by insoluble minerals; adsorption of water vapor by hygroscopic phases; and freezing and melting point depression of liquid water sustained by soluble minerals. Two series of experiments were performed in a differential scanning calorimeter (DSC) with homogenized powders of the following whole-rock meteorites and comparison samples: Allende (CV3), Murchison (CM2), Orgueil (CI), Holbrook (L6), and Pasamonte (eucrite) meteorites as well as on peridotite (PCC-1, USGS), saponite (Sap-Ca-1, CMS), montmorillonite (STx-1, CMS), and serpentine (Franciscan Formation, California). Results are briefly discussed.

  19. Comet Halley and nongravitational forces

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1977-01-01

    The motion of comet Halley is investigated over the 1607-1911 interval. The required nongravitational-force model was found to be most consistent with a rocket-type thrust from the vaporization of water ice in the comet's nucleus. The nongravitational effects are time-independent over the investigated interval.

  20. Observations of Periodic Comet 2P/Encke: Physical Properties of the Nucleus and First Visual-Wavelength Detection of Its Dust Trail

    NASA Technical Reports Server (NTRS)

    Lowry, Stephen C.; Weissman, Paul R.; Sykes, Mark V.; Reach, William T.

    2003-01-01

    We are conducting an observational program designed to determine the overall distributions of size, shape, rotation period, and surface characteristics of cometary nuclei. Here, we present results from a study of the Jupiter- family comet 2P/Encke based on observations from Steward Observatory's 2.3m Bok Telescope at Kitt Peak. This comet has been observed extensively in the past and was one of the primary flyby targets of the recently failed CONTOUR mission.

  1. Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Bleuet, P.; Borg, J.; Bradley, J.; Brenker, F.; Brennan, S.; Bridges, J.; Brownlee, D. E.; Bullock, E.; Clark, B. C.; Papanastassiou, D. A.; Schwandt, C. S.; See, T. H.; Taylor, S.; Tsou, P.

    2006-01-01

    We measured the chemical compositions of material from 23 particles in aerogel and residue in 7 craters in aluminum foil, collected during passage of the Stardust spacecraft through the coma of Comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size-scale analyzed, 180 nanograms. The mean chemical composition of this Wild 2 material agrees with the CI meteorite composition for the refractory elements Mg, Si, Cr, Fe, and Ni to 35%, and for Ca and Mn to 50%. The data suggest the moderately volatile elements Cu, Zn, and Ga may be enriched in this Wild 2 material.

  2. The gas production rate of periodic comet d'Arrest

    NASA Technical Reports Server (NTRS)

    Festou, Michel C.; Feldman, Paul D.; Ahearn, Michael F.

    1992-01-01

    Comet P/d'Arrest is a potential target for a rendezvous mission to a short period comet. Its light curve is rather peculiar, the comet being active only after perihelion passage. One apparition out of two is easy to observe from the ground. The 1995 apparition of the comet will offer a unique opportunity to characterize the outgassing properties of its nucleus.

  3. EPOXI at Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Belton, Michael J. S.; Delamere, W. Alan; Feaga, Lori M.; Hampton, Donald; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Jessica M.; Meech, Karen J.; Melosh, H. Jay; Schultz, Peter H.; Sunshine, Jessica M.; Thomas, Peter C.; Veverka, Joseph; Wellnitz, Dennis D.; Yeomans, Donald K.; Besse, Sebastien; Bodewits, Dennis; Bowling, Timothy J.; Carcish, Brian T.; Collins, Steven M.; Farnham, Tony F.; Groussin, Oliver; Hermalyn, Brendan; Kelley, Michael S.

    2011-01-01

    Understanding how comets work, i,e., what drives their activity, is crucial to using comets to study the early solar system. EPOXI flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus. taking both images and spectra. Unlike large, relatively inactive nuclei, this nncleus is outgassing primarily due to CO2, which drags chnnks of ice out of the nnclens. It also shows significant differences in the relative abundance of volatiles from various parts of the nucleus.

  4. Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust

    SciTech Connect

    Flynn,G.; Bleuet, P.; Borg, J.; Bradley, J.; Brenker, F.; Brennan, S.; Bridges, J.; Brownlee, D.; Bullock, E.; et al.

    2006-01-01

    We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ({approx}180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.

  5. Elemental composition of Comet 81P/Wild2 samples collected byStardust

    SciTech Connect

    Flynn, G.J.; Bleuet, P.; Borg, J.; Bradley, J.P.; Brenker, F.E.; Brennan, S.; Bridges, J.; Brownlee, D.E.; Bullock, E.S.; Burghammer,Manfred; Clark, B.C.; Dai, Zu Rong; Daghlian, C.P.; Djouadi, Z.; Fakra,S; Ferroir, T.; Floss, C.; Franchi, I.A.; Gainsforth, Z.; Gallien, J.P.; Gillet, P.; Grant, P.G.; Graham, G.A.; Green, S.F.; Grossemy, F.; Heck,P.R.; Herzog, G.F.; Hoppe, P.; Horz, F.; Huth, J.; Ignatyev, K.; Ishii,H.A.; Janssens, K.; Joswiak, D.; Kearsley, A.T.; Khodja, H.; Lanzirotti,A.; Leitner, J.; Lemelle, L.; Leroux, H.; Luening, K.; MacPherson, G.J.; Marhas, K.K.; Marcus, M.A.; Matrajt, G.; Nakamura, T.; Nakamura-Messenger, K.; Nakano, T.; Newville, M.; Papanastassiou, D.A.; Pianette, P.; Rao, William; Riekel, C.; Rietmeijer, F.J.M.; Rost, D.; Schwandt, C.S.; See, T.H.; Sheffield-Parker, J.; Simionovici, A.; Sitnitsky, Ilona; Snead, C.J.; Stadermann, F.J.; Stephan, T.; Stroud,R.M.; Susini, J.; Suzuki, Y.; Sutton, S.R.; Taylor, S.; Teslich, N.; Troadec, D.; Tsou, P.; Tsuchiyama, A.; Uesugi, K.; Vekemans, B.; Vicenzi,E.P.; Vincze, L.; Westphal, A.J.; Wozniakiewicz, P.; Zinner, E.; Zolensky, M.E.

    2006-01-01

    We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ({approx}180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.

  6. Physical aging in comets

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.

    1991-01-01

    The question of physical aging in cometary nuclei is addressed in order to elucidate the relationship between the past conditions in the protosolar nebula and the present state of the cometary nucleus, and to understand the processes that will physically and chemically alter the nucleus as a function of time. Attention is given to some of the processes that might be responsible for causing aging in comets, namely, radiation damage in the upper layers of the nucleus during the long residences in the Oort cloud, processing from heating and collisions within the Oort cloud, loss of highly volatile species from the nucleus on the first passage through the inner solar system, buildup of a dusty mantle, which can eventually prohibit further sublimation, and a change in the porosity, and hence the thermal properties, of the nucleus. Recent observations suggest that there are distinct differences between 'fresh' Oort cloud comets and thermally processed periodic comets with respect to intrinsic brightness and rate of change of activity as a function of distance.

  7. Piece of a Comet

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image shows a comet particle collected by the Stardust spacecraft. The particle is made up of the silicate mineral forsterite, also known as peridot in its gem form. It is surrounded by a thin rim of melted aerogel, the substance used to collect the comet dust samples. The particle is about 2 micrometers across.

  8. HUBBLE SEES MINI-COMET FRAGMENTS FROM COMET LINEAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [lower right] In one stunning Hubble picture the fate of the mysteriously vanished solid nucleus of Comet LINEAR has been settled. The Hubble picture shows that the comet nucleus has been reduced to a shower of glowing 'mini-comets' resembling the fiery fragments from an exploding aerial firework. This is the first time astronomers have ever gotten a close-up look at what may be the smallest building blocks of cometary nuclei, the icy solid pieces called 'cometesimals', which are thought to be less than 100 feet across. The farthest fragment to the left, which is now very faint, may be the remains of the parent nucleus that fragmented into the cluster of smaller pieces to the right. The comet broke apart around July 26, when it made its closest approach to the Sun. The picture was taken with Hubble's Wide Field Planetary Camera 2 on August 5, 2000, when the comet was at a distance of 64 million miles (102 million kilometers) from Earth. Credit: NASA, Harold Weaver (the Johns Hopkins University), and the HST Comet LINEAR Investigation Team [upper left] A ground-based telescopic view (2.2-meter telescope) of Comet LINEAR taken on August 5, at nearly the same time as the Hubble observations. The comet appears as a diffuse elongated cloud of debris without any visible nucleus. Based on these images, some astronomers had concluded that the ices in the nucleus had completely vaporized, leaving behind a loose swarm of dust. Hubble's resolution was needed to pinpoint the remaining nuclei (inset box shows HST field of view as shown in lower right). Credit: University of Hawaii

  9. Stardust Curation at Johnson Space Center: Photo Documentation and Sample Processing of Submicron Dust Samples from Comet Wild 2 for Meteoritics Science Community

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Zolensky, M. E.; Bastien, R.; See, T. H.; Warren, J. L.; Bevill, T. J.; Cardenas, F.; Vidonic, L. F.; Horz, F.; McNamara, K. M.; Allen, C. C.; Westphal, A. J.; Snead, C.; Ishii, H. A.; Brownlee, D.

    2007-01-01

    Dust particles released from comet 81P/Wild-2 were captured in silica aerogel on-board the STARDUST spacecraft and successfully returned to the Earth on January 15, 2006. STARDUST recovered thousands of particles ranging in size from 1 to 100 micrometers. The analysis of these samples is complicated by the small total mass collected ( < 1mg), its entrainment in the aerogel collection medium, and the fact that the cometary dust is comprised of submicrometer minerals and carbonaceous material. During the six month Preliminary Examination period, 75 tracks were extracted from the aerogel cells , but only 25 cometary residues were comprehensively studied by an international consortium of 180 scientists who investigated their mineralogy/petrology, organic/inorganic chemistry, optical properties and isotopic compositions. These detailed studies were made possible by sophisticated sample preparation methods developed for the STARDUST mission and by recent major advances in the sensitivity and spatial resolution of analytical instruments.

  10. The TRAPPIST comet survey

    NASA Astrophysics Data System (ADS)

    Jehin, E.; Opitom, C.; Manfroid, J.; Hutsemékers, D.; Gillon, M.

    2014-07-01

    distribution of several species among which OH, NH, CN, C2 and C3 as well as ions like CO+. The dust production rates (Afrho) and color of the dust are determined through four dust continuum bands (UC, BC, GC, RC). Such regular measurements are rare because of the lack of observing time on larger telescopes. Yet they are very valuable as they show how the gas production rate of each species evolves with respect to the distance to the Sun. Those observations allow to determine the composition of the comets and the chemical class to which they belong (rich or poor in carbon for instance [3]), possibly revealing the origin of those classes but also if there are some changes of the abundance ratios along the orbit (evolutionary effects). Indeed with half a dozen of comets observed each year --- and as long as possible along their orbit --- this program will provide a good statistical sample after a few years. We will present the results of this monitoring after three years of operations. Thanks to the way the telescope is operated, follow-up of split comets and of special outburst events is possible right after an alert is given and can bring important information on the nature of comets. In addition to providing the productions rates of the different species through a proper photometric calibration, image analysis can reveal coma features (jets, fans, tails), that can lead to the detection of active regions and measure the rotation period of the nucleus. The monitoring is also useful to assess the gas and dust activity of a given comet in order to prepare more detailed observations with larger telescopes. Such data can be obtained at any time under request. Finally a dozen of faint comets (V < 20) are monitored once a week through B, V, Rc, Ic filters and magnitudes and positions are sent to the MPC.

  11. Metallic atoms and ions in comets: Comet Halley 1986 3

    NASA Technical Reports Server (NTRS)

    Ibadov, S.

    1992-01-01

    The origin of metallic atoms and ions in the cometary comae is investigated theoretically. Two effects are revealed in the comas of bright comets: (1) the Na anomalous type effect is possible within the gas-dust jets of comet P/Halley 1986 3 due to cooling cometary dust by cryogenic gas flow from the nucleus; and (2) the production of ions of refractory elements (Fe(+), Si(+), etc.) at large heliocentric distances is possible in the comas of the Halley type dusty comets due to high-velocity impacts between cometary and zodiacal dust particles. Spectral observations of comets with high sensitivity and spatial resolution are important for studying both comets and interplanetary dust.

  12. Anatomy of a Busted Comet

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version (Figure 1)

    NASA's Spitzer Space Telescope captured the picture on the left of comet Holmes in March 2008, five months after the comet suddenly erupted and brightened a millionfold overnight. The contrast of the picture has been enhanced on the right to show the anatomy of the comet.

    Every six years, comet 17P/Holmes speeds away from Jupiter and heads inward toward the sun, traveling the same route typically without incident. However, twice in the last 116 years, in November 1892 and October 2007, comet Holmes mysteriously exploded as it approached the asteroid belt. Astronomers still do not know the cause of these eruptions.

    Spitzer's infrared picture at left hand side of figure 1, reveals fine dust particles that make up the outer shell, or coma, of the comet. The nucleus of the comet is within the bright whitish spot in the center, while the yellow area shows solid particles that were blown from the comet in the explosion. The comet is headed away from the sun, which lies beyond the right-hand side of figure 1.

    The contrast-enhanced picture on the right shows the comet's outer shell, and strange filaments, or streamers, of dust. The streamers and shell are a yet another mystery surrounding comet Holmes. Scientists had initially suspected that the streamers were small dust particles ejected from fragments of the nucleus, or from hyerpactive jets on the nucleus, during the October 2007 explosion. If so, both the streamers and the shell should have shifted their orientation as the comet followed its orbit around the sun. Radiation pressure from the sun should have swept the material back and away from it. But pictures of comet Holmes taken by Spitzer over time show the streamers and shell in the same configuration, and not pointing away from the sun. The observations have left astronomers stumped.

    The horizontal line seen in the contrast-enhanced picture is a trail of debris

  13. CO2 Orbital Trends in Comets

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2014-12-01

    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  14. A Post-Stardust Mission View of Jupiter Family Comets

    NASA Technical Reports Server (NTRS)

    Zolensky, M.

    2011-01-01

    Before the Stardust Mission, many persons (including the mission team) believed that comet nuclei would be geologically boring objects. Most believed that comet nucleus mineralogy would be close or identical to the chondritic interplanetary dust particles (IDPs), or perhaps contain mainly amorphous nebular condensates or that comets might even be composed mainly of preserved presolar material [1]. Amazingly, the results for Comet Wild 2 (a Jupiter class comet) were entirely different. Whether this particular comet will ultimately be shown to be typical or atypical will not be known for a rather long time, so we describe our new view of comets from the rather limited perspective of this single mission.

  15. Atlas of Great Comets

    NASA Astrophysics Data System (ADS)

    Stoyan, Ronald; Dunlop, Storm

    2015-01-01

    Foreword; Using this book; Part I. Introduction: Cometary beliefs and fears; Comets in art; Comets in literature and poetry; Comets in science; Cometary science today; Great comets in antiquity; Great comets of the Middle Ages; Part II. The 30 Greatest Comets of Modern Times: The Great Comet of 1471; Comet Halley 1531; The Great Comet of 1556; The Great Comet of 1577; Comet Halley, 1607; The Great Comet of 1618; The Great Comet of 1664; Comet Kirch, 1680; Comet Halley, 1682; The Great Comet of 1744; Comet Halley, 1759; Comet Messier, 1769; Comet Flaugergues, 1811; Comet Halley, 1835; The Great March Comet of 1843; Comet Donati, 1858; Comet Tebbutt, 1861; The Great September Comet of 1882; The Great January Comet of 1910; Comet Halley, 1910; Comet Arend-Roland, 1956; Comet Ikeya-Seki, 1965; Comet Bennett, 1970; Comet Kohoutek, 1973-4; Comet West, 1976; Comet Halley, 1986; Comet Shoemaker-Levy 9, 1994; Comet Hyakutake, 1996; Comet Hale-Bopp, 1997; Comet McNaught, 2007; Part III. Appendices; Table of comet data; Glossary; References; Photo credits; Index.

  16. A Comet's Missing Light

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    comets experienced very similar radiation fields as they passed perihelion. They also show that the properties of the Suns corona experienced by each comet like its density and magnetic field topology were roughly the same.Bryans and Pesnell argue that, as both comets appear to have encountered similar solar conditions, the most likely explanation for ISONs lack of detectable EUV emission is that it didnt deposit as much material in its orbit as Lovejoy did. They show that this would happen if ISONs nucleus were four times smaller in radius than Lovejoys, spanning a mere 5070 meters in comparison to Lovejoys 200300 meters.This conclusion is consistent with white-light observations of ISON that suggest that, though it might have started out significantly larger than Lovejoy, ISON underwent dramatic mass loss as it approached the Sun. By the time it arrived at perihelion, it was likely no longer large enough to create a strong EUV signal resulting in the non-detection of this elusive comet with SDO and other telescopes.CitationPaul Bryans and W. Dean Pesnell 2016 ApJ 822 77. doi:10.3847/0004-637X/822/2/77

  17. DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES

    SciTech Connect

    Salvato, M.; Hasinger, G.; Ilbert, O.; Rau, A.; Brusa, M.; Bongiorno, A.; Civano, F.; Elvis, M.; Zamorani, G.; Vignali, C.; Comastri, A.; Bardelli, S.; Bolzonella, M.; Cappelluti, N.; Aussel, H.; Le Floc'h, E.; Mainieri, V.; Capak, P.; Caputi, K.; and others

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy {sigma}{sub {Delta}z/(1+z{sub s{sub p{sub e{sub c)}}}}}{approx}0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg{sup 2} of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by {Delta}z > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H{sub AB} = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.

  18. Comets - Chemistry and chemical evolution

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1982-01-01

    Research on the chemical composition and conditions in comets and their possible role in the origin of life on earth is surveyed. The inorganic and organic compounds and ions indicated in the ultraviolet and visible spectra of comets are noted, and evidence for the existence of at least a small proportion of complex organic molecules in comets is presented. It is then pointed out that while cometary material could have reached the earth and provided volatile elements from which biochemical compounds could have formed, it is unlikely that a cometary nucleus could have withstood the temperatures and pressures necessary to sustain an environment in which life could have originated.

  19. Maverick Comet Splits during Dramatic Outburst

    NASA Astrophysics Data System (ADS)

    1996-01-01

    this process is almost always accompanied by a significant brightening. For instance, the nucleus of comet Shoemaker-Levy 9 broke up into at least 21 individual pieces when it passed very close to Jupiter on July 8, 1992; this was the reason that it became bright enough to be detected some eight months later. In the case of SW-3, the opening of rifts and the subsequent splitting took place far from any planet and must in some way have been caused by increased solar heating. Nevertheless, it is not yet known exactly which physical and chemical processes are involved. It will now be interesting to continue the observations of the individual nuclei as long as possible. From accurate positional measurements, it may later become possible to perform a backwards extrapolation and determine the exact conditions of the splitting process (time, involved forces) and thereby cast more light on the physical aspects of this event. SW-3: Still a Possible Rosetta Target? The break-up of a solar system object is a dramatic and relatively rare event. We are here directly witnessing the ageing of a comet, perhaps even the prelude to its death. Earlier measurements indicate that the diameter of SW-3's nucleus is smaller than about 3 kilometres, but since we do not know the size of the pieces that broke off (this may be indicated by how long they will remain active), nor their number (we may only see the largest), we cannot yet determine with any certainty the remaining lifetime of the main nucleus. At the first glance, this seems to indicate that SW-3 must be removed from the list of potential targets for the Rosetta mission - we cannot risk that it no longer exists when the space probe arrives ! On the other hand, due to the break-up there is now a lot of ``fresh'' cometary material on the surface of the nucleus and around it, i.e. matter that has remained unchanged since the beginning of the solar system, some 4,500 million years ago. The possibility to gain direct access to a sample of

  20. Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Walker, Robert M.

    2015-01-01

    Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.

  1. Great Comets

    NASA Astrophysics Data System (ADS)

    Burnham, Robert

    2000-05-01

    Spectacular and mysterious objects that come and go in the night sky, comets have dwelt in our popular culture for untold ages. As remnants from the formation of the Solar system, they are objects of key scientific research and space missions. As one of nature's most potent and dramatic dangers, they pose a threat to our safety--and yet they were the origin of our oceans and perhaps even life itself. This beautifully illustrated book tells the story of the biggest and most awe-inspiring of all comets: those that have earned the title "Great." Robert Burnham focuses on the Great comets Hyakutake in 1996 and Hale-Bopp in 1997, which gripped attention worldwide because, for many, they were the first comets ever seen. He places these two recent comets in the context of their predecessors from past ages, among them the famous Comet Halley. Great Comets explains the exciting new discoveries that have come from these magnificent objects and profiles the spaceprobes to comets due for launch in the next few years. The book even takes a peek behind Hollywood's science-fiction fantasies to assess the real risks humanity faces from potential impacts of both comets and asteroids. For everyone interested in astronomy, this exciting book reveals the secrets of the Great Comets and provides essential tools for keeping up to date with comet discoveries in the future. Robert Burnham has been an amateur astronomer since the mid-1950s. He has been a senior editor of Astronomy magazine (1986-88) and is the author of many books and CD-ROMS, including Comet Hale-Bopp: Find and Enjoy the Great Comet and Comet Explorer.

  2. Rotation period of comet Donati

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1978-01-01

    Consideration is given to the rotation period of comet Donati (1858 VI) whose haloes were approximate parabolic envelopes having foci near the apparent nucleus and vertices toward the sun forward from the tail axis. The regularity and sharpness of the halves suggest that they represent the repetitive ejection of material from an active area which is exposed to solar radiation as the cometary nucleus rotates. Bobrovnikov's results (1954) are used to evaluate the linear expansion velocity of such haloes. This calculation is applied to the comet and a linear correction is used to assess the results.

  3. Infrared observations of comets

    NASA Astrophysics Data System (ADS)

    Hobbs, R. W.

    1981-10-01

    Infrared observation are important for deducing a great deal about properties of the cometary dust surrounding the cometary nucleus. All observations in the infrared are limited to long period comets. Three features of the spectrum which seem to be present in nearly all of the comets observed are discussed. First, there is a peak in the spectrum in the near infrared and visible wavelength, which can be attributed to scattered sunlight. This feature, as expected, gets fainter as a comet recedes from the sun. The second dominant feature in the spectrum is a broad peak in the infrared which is attributed to the thermal emission of the dust in the coma. This part of the spectrum also gets dimmer as the comet gets further from the sun but, at the same time the peak of the spectrum shifts to longer wavelengths, indicating that the dust from which this radiation arises is cooling as the comets recedes. The other feature in the spectrum which is noted is the emission feature at about 10 microns attributed to emission from metallic silicates. T.M.

  4. Bow Shocks at Comets

    NASA Astrophysics Data System (ADS)

    Coates, Andrew J.

    2009-11-01

    Comets provide a wonderful laboratory to study the interaction of a fast flowing plasma, the solar wind, with neutral gas from the comet. On ionization, the more massive newly-born cometary ions are assimilated into the solar wind flow, eventually causing its deceleration via this `mass loading'. One of the effects of this is the cometary bow shock. The exploration of comet Halley by an armada of spacecraft in 1986, as well as the in-situ exploration of comets Giacobini-Zinner (1985), Grigg-Skjellerup (1992) and Borrelly (2001), has revealed important results on the behavior of these weak shocks and showed that mass loading plays a key role. In 2014, the Rosetta mission will provide the first observations of the formation of the cometary bow shock as a comet, Churyumov-Gerasimenko, nears the Sun. Rosetta will also provide the first measurements of the collision-dominated near-nucleus region. Here, we briefly review what we know about cometary bow shocks, and we examine the prospects for Rosetta.

  5. CO2 Orbital Trends in Comets

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Bodewits, Dennis; Feaga, Lori; Knight, Matthew; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2016-08-01

    Carbon dioxide is a primary volatile in comet nuclei, and potentially a major contributor to comet activity (i.e., the process of mass loss). However, CO2 cannot be observed directly from the ground, and past surveys of this molecule in comets were limited to space-borne snapshot observations. This situation limits our understanding of the behavior of CO2 in comets, and its role in driving comet mass loss. To address this deficiency, we were awarded a Cy11 Spitzer program designed to quantify the production rate of CO2 on >month-long timescales for 21 comets. We request an additional 269~hr in Cy13 to complete the Spitzer portion of our survey, and to add three more comets (46P/Wirtanen and 2 Target of Opportunity Oort cloud comets). Our survey is designed to probe the orbital trends of CO2 production in the comet population. We aim to: 1) examine the role of CO2 in the persistent post-perihelion activity observed in Jupiter-family comets; 2) measure the seasonal variations of CO2/H2O as a proxy for nucleus heterogeneity, when possible; 3) search for orbital trends sensitive to cumulative insolation as a proxy for nucleus layering; and 4) examine how Oort cloud comets evolve by comparing dynamically new and old targets. The final data set will allow us to investigate the effects of heating on the evolution of comets, if nucleus structures can be inferred through activity, and set the stage for JWST investigations into comet activity and composition.

  6. Vaporization in comets - The icy grain halo of Comet West

    NASA Technical Reports Server (NTRS)

    Ahearn, M. F.; Cowan, J. J.

    1980-01-01

    The variation with heliocentric distance of the production rates of various species in Comet West (1975n = 1976 VI) is explained with a cometary model consisting of a CO2 dominated nucleus plus a halo of icy grains of H2O or clathrate hydrate. It is concluded that the parents of CN and C3 are released primarily from the nucleus but that the parent of C2 is released primarily from the halo of icy grains.

  7. Rosetta following a living comet

    NASA Astrophysics Data System (ADS)

    Accomazzo, Andrea; Ferri, Paolo; Lodiot, Sylvain; Pellon-Bailon, Jose-Luis; Hubault, Armelle; Porta, Roberto; Urbanek, Jakub; Kay, Ritchie; Eiblmaier, Matthias; Francisco, Tiago

    2016-09-01

    The International Rosetta Mission was launched on 2nd March 2004 on its 10 year journey to rendezvous with comet 67P Churyumov-Gerasimenko. Rosetta performed comet orbit insertion on the 6th of August 2014, after which it characterised the nucleus and orbited it at altitudes as low as a few kilometres. In November 2014 Rosetta delivered the lander Philae to perform the first soft landing ever on the surface of a comet. The critical landing operations have been conducted with remarkable accuracy and will constitute one of the most important achievements in the history of spaceflight. After this critical operation, Rosetta began the escort phase of the comet in its journey in the Solar System heading to the perihelion, reached in August 2015. Throughout this period, the comet environment kept changing with increasing gas and dust emissions. A first phase of bound orbits was followed by a sequence of complex flyby segments which allowed the scientific instruments to perform in depth investigation of the comet environment and nucleus. The unpredictable nature of the comet activity forced the mission control team to implement unplanned changes to the flight plan prepared for this mission phase and to plan the whole mission in a more dynamic way than originally conceived. This paper describes the details of the landing operations and of the main comet escort phase. It also includes the mission status as achieved after perihelion and the findings about the evolution of the comet and its environment from a mission operations point of view. The lessons learned from this unique and complex operations phase and the plans for the next mission phases, which include a mission extension into 2016, are also described.

  8. Optical Studies of Active Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    This grant was to support optical studies of comets close enough to the sun to be outgassing. The main focus of the observations was drawn to the two extraordinarily bright comets Hyakutake and Hale-Bopp, but other active comets were also studied in detail during the period of funding. Major findings (all fully published) under this grant include: (1) Combined optical and submillimeter observations of the comet/Centaur P/Schwassmann-Wachmann 1 were used to study the nature of mass loss from this object. The submillimeter observations show directly that the optically prominent dust coma is ejected by the sublimation of carbon monoxide. Simultaneous optical-submillimeter observations allowed us to test earlier determinations of the dust mass loss rate. (2) We modelled the rotation of cometary nuclei using time-resolved images of dust jets as the primary constraint. (3) We obtained broad-band optical images of several comets for which we subsequently attempted submillimeter observations, in order to test and update the cometary ephemerides. (4) Broad-band continuum images of a set of weakly active comets and, apparently, inactive asteroids were obtained in BVRI using the University of Hawaii 2.2-m telescope. These images were taken in support of a program to test the paradigm that many near-Earth asteroids might be dead or dormant comets. We measured coma vs. nucleus colors in active comets (finding that coma particle scattering is different from, and cannot be simply related to, nucleus color). We obtained spectroscopic observations of weakly active comets and other small bodies using the HIRES spectrograph on the Keck 10-m telescope. These observation place sensitive limits to outgassing from these bodies, aided by the high (40,000) spectral resolution of HIRES.

  9. ESA Unveils Its New Comet Chaser.

    NASA Astrophysics Data System (ADS)

    1999-07-01

    into the surface immediately on impact. By this time, the warmth of the Sun will probably have begun to vapourise parts of the nucleus, initiating some form of surface outgassing. For a period of about a month, data from the lander's eight experiments will be relayed to Earth via the orbiter. They will send back unique information on the nature and composition of the nucleus. Samples for chemical analysis will be taken of the organic crust and ices to a depth of at least 20 cm. Other instruments will measure characteristics such as near-surface strength, density, texture, porosity and thermal properties. Meanwhile, as Comet Wirtanen approaches the Sun, the Rosetta orbiter will fly alongside it, mapping its surface and studying changes in its activity. As its icy nucleus evaporates, 12 experiments on the orbiter will map its surface and study the dust and gas particles it ejects. For the first time, scientists will be able to monitor at close quarters the dramatic changes which take place as a comet plunges sunwards at a speed of 46,000 kph. The stream of data will include a mass of new information about the comet's changes in behaviour as it approaches the Sun, including: * variations in the temperature of the nucleus, * changing intensity and location of gas and dust jets on the nucleus, * the amount of gas and dust emitted from the nucleus, * the size, composition and impact velocity of dust particles, * the nature of the comet's interaction with the charged particles of the solar wind. By mission's end in July 2013, Rosetta will have spent almost two years chasing the comet for millions of kilometres through space. It will also have returned a treasure trove of data, which will enable us to learn more about how the planets formed and where we came from. Why Rosetta? Space exploration is all about discovering the unknown. Just as, 200 years ago, the discovery of the Rosetta Stone eventually enabled Champollion to unravel the mysteries of ancient Egyptian

  10. Submillimeter Studies of Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Morgan, Thomas (Technical Monitor)

    2002-01-01

    This proposal supported observations of comets at submillimeter wavelengths. The prime science objectives were to use rotational transitions in molecules to measure the compositions and outgassing rates of the comets. The second science objectives focussed on the use of the submillimeter continuum radiation to provide a measure of the solid particle content and production rate in the comets. Both quantities provide fundamental constraints on the nature of these primitive bodies. The gas and dust measurements provide context for NASA's on-going and future studies of comets using in-situ spacecraft. Submillimeter continuum data, in particular, samples the largest particles in the cometary dust grain size distribution. These particles contain the bulk of the mass and present potential hazards to spacecraft when inside the dust coma.

  11. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J.-P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J.-F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy \\sigma _{\\Delta z/(1+z_{spec})}\\sim 0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H AB = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band. Based on observations by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under

  12. Observations performed by the SESAME/Permittivity Probe during the descent and after the landing of Philae upon the nucleus of Comet Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Le Gall, Alice; Hamelin, Michel; Caujolle-Bert, Sylvain; Lethuillier, Anthony; Ciarletti, Valerie; Grard, Réjean

    2015-04-01

    The Permittivity Probe (PP), a component of the SESAME instrument on board Rosetta's Lander Philae, was operated prior to the separation of Philae from Rosetta, during the descent and at the location of the final landing site. The working principle of PP consists in measuring, with a receiving dipole, the voltage induced in the medium by a current of known phase and amplitude injected by a transmitting antenna. The primary objective of PP is to analyse the electrical properties of the comet surface material down to a depth of about 2 m, and to record their variations with temperature, solar illumination and heliocentric distance. These observations are particularly sensitive to the concentration of water ice at the landing site. The second objective of the instrument is to monitor the spectrum of the electromagnetic and electrostatic waves generated by the interaction between the comet and the solar wind at frequencies of up to 20 kHz. The measurements performed during the descent were mainly devoted to the calibration of the instrument in its nominal configuration, with deployed landing gear and away from the Rosetta spacecraft influence, in an environment of known permittivity, either a vacuum or a plasma whose density and temperature would have been derived from the LAP and MIP data. This approach is unfortunately invalidated owing to the fact the PP receiver was most of the time saturated by the operation of the CONSERT radar during the descent, an interference which seemed to have been minimized during in-flight interference tests, but which was significantly stronger after separation of Philae from Rosetta. Nevertheless, it was possible to recover some information about the instrument's transmitter and receiver performances then used during the analysis of the data measured on the cometary surface. Undisturbed measurements were fortunately performed at the landing site, under various solar illuminations, using the three feet of Philae as transmitting and

  13. Halley's Comet.

    ERIC Educational Resources Information Center

    Carey, Tom

    1985-01-01

    Provides tips for viewing Comet Halley in the Northeast including best viewing dates from November 1985-January 1986. Discusses going south to view the comet in March-April 1986 and gives specific information about accommodations for the Halley Rally in Everglades National Park, southernmost site in the contiguous 48 states. (JHZ)

  14. Comet Borrelly's Varied Landscape

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In this Deep Space 1 image of comet Borrelly, sunlight illuminates the bowling-pin shaped nucleus from directly below. At this distance, many features are become vivid on the surface of the nucleus, including a jagged line between day and night on the comet, rugged terrain on both ends with dark patches, and smooth, brighter terrain near the center. The smallest discernable features are about 110 meters (120 yards) across.

    Deep Space 1 completed its primary mission testing ion propulsion and 11 other advanced, high-risk technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to undertake this chancy but exciting, and ultimately successful, encounter with the comet. More information can be found on the Deep Space 1 home page at http://nmp.jpl.nasa.gov/ds1/ .

    Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, D.C. The California Institute of Technology manages JPL for NASA.

  15. Jets on comet Borrelly

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This very long exposure was taken by NASA's Deep Space 1 to show detailed structures in the faint parts of comet Borrelly's inner coma. As a result, the nucleus has been greatly over-exposed and its shape appears distorted. The main jet extends to the lower right about 30 degrees off the Sun-line. Faint structures in the coma stretch from the nucleus in all directions. The surface of Borrelly is composed of a mixture of dust and water ice, and as the comet approaches the Sun the ice sublimes. Dust carried outward by expanding gas makes the jets visible.

    Deep Space 1 completed its primary mission testing ion propulsion and 11 other advanced, high-risk technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to undertake this chancy but exciting, and ultimately successful, encounter with the comet. More information can be found on the Deep Space 1 home page at http://nmp.jpl.nasa.gov/ds1/ .

    Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, D.C. The California Institute of Technology manages JPL for NASA.

  16. The World of Comets

    NASA Astrophysics Data System (ADS)

    Guillemin, Amédée; Glaisher, James

    2010-10-01

    1. Beliefs and superstitions relative to comets; 2. Cometary astronomy up to the time of Newton; 3. The motions and orbits of comets; 4. Periodical comets; 5. Periodical comets; 6. The world of comets and cometary systems; 7. Physical and chemical constitution of comets; 8. Physical transformations of comets; 9. Mass and density of comets; 10. The light of comets; 11. Theory of cometary phenomena; 12. Comets and shooting stars; 13. Comets and the earth; 14. Physical influences of comets; 15. Some questions about comets; Tables.

  17. Comet Tempel 2: Orbit, ephemerides and error analysis

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1978-01-01

    The dynamical behavior of comet Tempel 2 is investigated and the comet is found to be very well behaved and easily predictable. The nongravitational forces affecting the motion of this comet are the smallest of any comet that is affected by nongravitational forces. The sign and time history of these nongravitational forces imply (1) a direct rotation of the comet's nucleus and (2) the comet's ability to outgas has not changed substantially over its entire observational history. The well behaved dynamical motion of the comet, the well observed past apparitions, the small nongravitational forces and the excellent 1988 ground based observing conditions all contribute to relatively small position and velocity errors in 1988 -- the year of a proposed rendezvous space mission to this comet. To assist in planned ground based and earth orbital observations of this comet, ephemerides are given for the 1978-79, 1983-84 and 1988 apparitions.

  18. In-situ chemical and isotopic analysis of a comet by Ptolemy

    NASA Astrophysics Data System (ADS)

    Morse, A. D.; Barber, S. J.; Leese, M. R.; Morgan, G. H.; Sheridan, S.; Wright, I. P.; Zarnecki, J. C.; Pillinger, C. T.

    2003-04-01

    Ptolemy is a Gas Chromatograph - Mass Spectrometer, one of the instruments on board the Rosetta Lander, intended to land on comet Wirtanen. Ptolemy is designed to measure the composition and isotope ratios of gases released from comet samples during pyrolysis or combustion. The total mass of the instrument is 4.6 kg and it fits into a space of 33 x 25 x 11 cm. Following touchdown on the comet nucleus, comet samples are obtained by the SD2 instrument, which drills a core sample and loads it into one of 26 ovens on a carousel. One of the ovens already contains a molecular sieve absorbent so that the comet "atmosphere" can also be sampled. The sample is then heated by the oven and the gases released are transferred to the Ptolemy instrument. Within Ptolemy, the raw sample gases can be chemically processed to convert them into molecules suitable for isotopic analysis. The processed sample mixture gas is injected into one of three GC columns to separate it into its constituent components before analysis by the mass spectrometer. An ion trap mass spectrometer has been used as this gives considerable reduction of mass, power and volume, compared to standard magnetic sector mass spectrometers normally used for isotopic analysis. Laboratory experiments have shown that an ion trap is capable of measuring carbon and nitrogen isotope ratios to a precision of +/- 20 per mil or better. We will present data from the Flight instrument plus results of ongoing characterisation studies using the identical Qualification Model.

  19. The 2009 Apparition of methuselah comet 107P/Wilson-Harrington: A case of comet rejuvenation?

    NASA Astrophysics Data System (ADS)

    Ferrín, Ignacio; Hamanowa, Hiromi; Hamanowa, Hiroko; Hernández, Jesús; Sira, Eloy; Sánchez, Albert; Zhao, Haibin; Miles, Richard

    2012-09-01

    detectors than on 1949. This is good evidence to conclude that this object is very near extinction and belongs to the graveyard of comets. In a Remaining Revolutions vs. Water-Budget Age plot, we have identified the region of the graveyard, and 107P is a member of this group. (8) Using the amplitude of the secular light curve (ASEC) vs. Diameter (DEFFE) diagram (Fig. 15), we show that 107P is the most evolved object in the current data base of comets. In the classification scheme of Ferrín (PSS, 58, 365-391, 2010), 107P is a methuselah comet (WB-AGE=7800>100 comet years), medium size (1.4nucleus, fast rotating (PROT=6.093 h<7 h), belonging to the graveyard of comets (the region with ASEC<1 mag in Fig. 15 or 1.000 cycomet is temporarily being rejuvenated due to a trend of apparitions with decreasing perihelion distances. (9) Since the general flow of the sample is down and to the left in the ASEC vs. DEFFE diagram, and since this flow has been going on for centuries, and since dwarf comets evolve much more rapidly than large comets, the existence of a significant population of dormant and extinct comets located in the lower left region of the diagram is predicted. This is the graveyard. Three comets have been identified as members of the graveyard, 107P, 133P and D/1891W1 Blanpain.

  20. Radar observations of Comet Halley

    NASA Technical Reports Server (NTRS)

    Campbell, D. B.; Harmon, J. K.; Shapiro, I. I.

    1989-01-01

    Five nights of Arecibo radar observations of Comet Halley are reported which reveal a feature in the overall average spectrum which, though weak, seems consistent with being an echo from the comet. The large radar cross section and large bandwidth of the feature suggest that the echo is predominantly from large grains which have been ejected from the nucleus. Extrapolation of the dust particle size distribution to large grain sizes gives a sufficient number of grains to account for the echo. The lack of a detectable echo from the nucleus, combined with estimates of its size and rotation rate from spacecraft encounters and other data, indicate that the nucleus has a surface of relatively high porosity.

  1. Detecting active comets with SDSS

    SciTech Connect

    Solontoi, Michael; Ivezic, Zeljko; West, Andrew A.; Claire, Mark; Juric, Mario; Becker, Andrew; Jones, Lynne; Hall, Patrick B.; Kent, Steve; Lupton, Robert H.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2010-12-01

    Using a sample of serendipitously discovered active comets in the Sloan Digital Sky Survey (SDSS), we develop well-controlled selection criteria for greatly increasing the efficiency of comet identification in the SDSS catalogs. After follow-up visual inspection of images to reject remaining false positives, the total sample of SDSS comets presented here contains 19 objects, roughly one comet per 10 million other SDSS objects. The good understanding of selection effects allows a study of the population statistics, and we estimate the apparent magnitude distribution to r {approx} 18, the ecliptic latitude distribution, and the comet distribution in SDSS color space. The most surprising results are the extremely narrow range of colors for comets in our sample (e.g. root-mean-square scatter of only {approx}0.06 mag for the g-r color), and the similarity of comet colors to those of jovian Trojans. We discuss the relevance of our results for upcoming deep multi-epoch optical surveys such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope (LSST), and estimate that LSST may produce a sample of about 10,000 comets over its 10-year lifetime.

  2. Craters on comets

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste; Oklay, Nilda; Marchi, Simone; Höfner, Sebastian; Sierks, Holger

    2015-03-01

    This paper reviews the observations of crater-like features on cometary nuclei. We compare potential crater sizes and morphologies, and we discuss the probability of impacts between small asteroids in the Main Belt and a comet crossing this region of the Solar System. Finally, we investigate the fate of the impactor and its chances of survival on the nucleus. We find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous cometary nucleus, two specific crater morphologies can be formed: a central pit surrounded by a shallow depression, or a pit, deeper than typical craters observed on rocky surfaces. After the impact, it is likely that a significant fraction of the projectile will remain in the crater. During its two years long escort of comet 67P/Churyumov-Gerasimenko, ESA's mission Rosetta should be able to detect specific silicates signatures at the bottom of craters or crater-like features, as evidence of this contamination. For large craters, structural changes in the impacted region, in particular compaction of material, will affect the local activity. The increase of tensile strength can extinct the activity by preventing the gas from lifting up dust grains. On the other hand, material compaction can help the heat flux to travel deeper in the nucleus, potentially reaching unexposed pockets of volatiles, and therefore increasing the activity. Ground truth data from Rosetta will help us infer the relative importance of those two effects.

  3. ISO's analysis of Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    1997-03-01

    The European Space Agency's Infrared Space Observatory ISO inspected Comet Hall-Bopp during the spring and autumn of 1996. The need to keep ISO's telescope extremely cold restricts the spacecraft's pointing in relation to the Sun and the Earth and it ruled out observations at other times. The analyses of the 1996 observations are not yet complete, but already they give new insight into the nature of comets. Comet Hale-Bopp is believed to be a large comet with a nucleus up to 40 kilometres wide. It was discovered in July 1995 by two American astronomers working independently, Alan Hale and Thomas Bopp. At that time, the comet was a billion kilometres away from the Sun, but 200 times brighter than Halley's Comet was, when at a comparable distance. Comet Hale-Bopp will make its closest approach to the Earth on 22 March, and its closest approach to the Sun (perihelion) on 1 April 1997. Some scientific results from ISO The discovery of Comet Hale-Bopp occurred before ISO's launch in November 1995. When first observed by ISO in March and April 1996, the comet was still 700 million kilometres from the Sun, and almost as far from the Earth and ISO. With its privileged view of infrared wavebands inaccessible from the Earth's surface, ISO's photometer ISOPHOT discovered that carbon dioxide was an important constituent of the comet's emissions of vapour.ISOPHOT measured the temperature of the dust cloud around Comet Hale-Bopp. In March 1996, when the comet was still more than 700 million kilometres from the Sun, the dust cloud was at minus 120 degrees C. When ISOPHOT made similar observations in October 1996, the comet was 420 million kilometres from the Sun, and the dust cloud had warmed to about minus 50 degrees C. Intensive observations of Comet Hale-Bopp were also made by ISO's Short-Wave Spectrometer SWS, the Long-Wave Spectrometer LWS, and the ISOPHOT spectrometer PHOT-S. Results are due for publication at the end of March. They will give details about the composition

  4. Comet culture

    NASA Astrophysics Data System (ADS)

    Lusher, Rebekah

    2011-10-01

    Rebekah Lusher describes an exhibition in the new Caroline Lucretia Gallery at the Herschel Museum of Astronomy in Bath: Omens and Inspirations: Ice, Dust and Fire - the Story of the Great Comet of 1811.

  5. Vaporization in Comets; outbursts from Comet Schwassmann-Wachmann 1

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.; Ahearn, M. F.

    1982-01-01

    Revised estimates are presented which show that the total mass and kinetic energy in a typical Comet P/Schassmann-Wachmann 1 outburst are lower than previously estimated, and that this mass is comparable to the mass of gas vaporized, as inferred from recent observations of CO(+) in this comet. The storage of energy suggested by many authors is therefore not neccessary. A simple equilibrium vaporization of CO2 or CO which is suddenly exposed, on a nucleus that is otherwise primarily composed of H2O, is proposed. Under these conditions, calculations of the variation of vaporization with rotational phase indicate that the mechanism can quantitatively produce outbursts of the size observed.

  6. Photographic observations of comets at Lowell Observatory. [Halley's comet

    NASA Technical Reports Server (NTRS)

    Giclas, H. L.

    1981-01-01

    Observations of Halley's comet at Lowell Observatory cover a period from November 10, 1909 to May 17, 1911: 334 direct photographs were taken, 118 objective prism spectra, and 32 slit spectrograms of the nucleus, many of them including 5 arc minutes of the surrounding coma. Just one morning's observations are illustrated as an example of utilizing every possible resource available at the Observatory at the time. Observational improvements developed since then are described and some suggestions for the coming return of Halley's comet are made.

  7. Active processes in cometary nucleus and new meteoroid swarms

    NASA Astrophysics Data System (ADS)

    Ibadinov, Kh. I.; Buriev, A. M.; Safarov, A. G.; Rahmonov, A. A.

    2015-07-01

    Based on the catalogs of comets capable of nucleus splitting and comets with abnormal tail 30 short-Jupiter-family comets were identified, which are capable of producing meteoroid swarms that do not intersect the Earth's orbit, but are of interest for drafting of space missions and studying the distribution of meteoroid streams.

  8. Comet Halley - The orbital motion

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1977-01-01

    The orbital motion of Comet Halley is investigated over the interval from A.D. 837 to 2061. Using the observations from 1607 through 1911, least-squares differential orbit corrections were successfully computed using the existing model for the nongravitational forces. The nongravitational-force model was found to be consistent with the outgassing-rocket effect of a water-ice cometary nucleus and, prior to the 1910 return, these forces are time-independent for nearly a millennium. For the 1986 return, viewing conditions are outlined for the comet and the related Orionid and Eta Aquarid meteor showers.

  9. An inside look at Halley's comet

    NASA Astrophysics Data System (ADS)

    Beatty, J. K.

    1986-05-01

    The 1985-1986 emergence of Halley's comet, the first since the advent of the space age, was explored by a variety of spacecraft. The Vega 1, launched by the USSR together with the Eastern-block alliance, passed 5523 miles from the comet's nucleus at 7:20:06 Universal time. It indicated that the comet was about 300 miles closer to the sun than had been predicted. The Japanese spacecraft, Suisei, was created to map the distribution of neutral hydrogen atoms outside Halley's visible coma. Its pictures indicated that the comet's output of water varied between 25 and 60 tons per second. Five days after the Vega 2's passage through the comet, the Giotto (sponsored by the European Space Agency) probe appeared. Giotto's close approach took place 3.1 minutes after midnight UT on March 14th; the craft had passed 376 miles from its target. Giotto's data indicated that the nucleus was bigger than expected, and that the comet was composed primarily of water, CO2 and N2. The Vegas and Giotto found that as the solar wind approaches Halley, it slows gradually and the solar magnetic lines embedded in the wind begin to pile up. Pick-up ions, from the comet's halo of neutral hydrogen, were found in this solar wind. Sensors on the Vega spacecraft found a variety of plasma waves propagating inside the bow wave. In order to synthesize all the results, a conference on the exploration of Halley's comet will be held this October.

  10. Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81P/Wild 2

    NASA Astrophysics Data System (ADS)

    Sandford, Scott A.; Bajt, Saša; Clemett, Simon J.; Cody, George D.; Cooper, George; Degregorio, Bradley T.; de Vera, Vanessa; Dworkin, Jason P.; Elsila, Jamie E.; Flynn, George J.; Glavin, Daniel P.; Lanzirotti, Antonio; Limero, Thomas; Martin, Mildred P.; Snead, Christopher J.; Spencer, Maegan K.; Stephan, Thomas; Westphal, Andrew; Wirick, Sue; Zare, Richard N.; Zolensky, Michael E.

    2010-03-01

    Numerous potential sources of organic contaminants could have greatly complicated the interpretation of the organic portions of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft. Measures were taken to control and assess potential organic (and other) contaminants during the design, construction, and flight of the spacecraft, and during and after recovery of the sample return capsule. Studies of controls and the returned samples suggest that many of these potential sources did not contribute any significant material to the collectors. In particular, contamination from soils at the recovery site and materials associated with the ablation of the heatshield do not appear to be significant problems. The largest source of concern is associated with the C present in the original aerogel. The relative abundance of this carbon can vary between aerogel tiles and even within individual tiles. This C was fortunately not distributed among a complex mixture of organics, but was instead largely present in a few simple forms (mostly as Si-CH3 groups). In most cases, the signature of returned cometary organics can be readily distinguished from contaminants through their different compositions, nonterrestrial isotopic ratios, and/or association with other cometary materials. However, some conversion of the carbon indigenous to the flight aerogel appears to have happened during particle impact, and some open issues remain regarding how this C may be processed into new forms during the hypervelocity impact collection of the comet dust.

  11. Assessment and Control of Organic and other Contaminants Associated with the Stardust Sample Return from Comet 81P/Wild 2

    SciTech Connect

    Sandford, S.; Bajt, S; Clemett, S; Cody, G; Cooper, G; Degregorio, B; de Vera, V; Dworkin, J; Flynn, G; et al.

    2010-01-01

    Numerous potential sources of organic contaminants could have greatly complicated the interpretation of the organic portions of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft. Measures were taken to control and assess potential organic (and other) contaminants during the design, construction, and flight of the spacecraft, and during and after recovery of the sample return capsule. Studies of controls and the returned samples suggest that many of these potential sources did not contribute any significant material to the collectors. In particular, contamination from soils at the recovery site and materials associated with the ablation of the heatshield do not appear to be significant problems. The largest source of concern is associated with the C present in the original aerogel. The relative abundance of this carbon can vary between aerogel tiles and even within individual tiles. This C was fortunately not distributed among a complex mixture of organics, but was instead largely present in a few simple forms (mostly as Si-CH{sub 3} groups). In most cases, the signature of returned cometary organics can be readily distinguished from contaminants through their different compositions, nonterrestrial isotopic ratios, and/or association with other cometary materials. However, some conversion of the carbon indigenous to the flight aerogel appears to have happened during particle impact, and some open issues remain regarding how this C may be processed into new forms during the hypervelocity impact collection of the comet dust.

  12. Assessment and Control of Organic and Other Contaminants Associated with the Stardust Sample Return from Comet 81P/Wild 2

    SciTech Connect

    Sanford, S.; Bajt, S; Clemett, S; Cody, G; Cooper, G; Degregorio, B; DeVera, V; Dworkin, J; Elsila, J; et al.

    2010-01-01

    Numerous potential sources of organic contaminants could have greatly complicated the interpretation of the organic portions of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft. Measures were taken to control and assess potential organic (and other) contaminants during the design, construction, and flight of the spacecraft, and during and after recovery of the sample return capsule. Studies of controls and the returned samples suggest that many of these potential sources did not contribute any significant material to the collectors. In particular, contamination from soils at the recovery site and materials associated with the ablation of the heatshield do not appear to be significant problems. The largest source of concern is associated with the C present in the original aerogel. The relative abundance of this carbon can vary between aerogel tiles and even within individual tiles. This C was fortunately not distributed among a complex mixture of organics, but was instead largely present in a few simple forms (mostly as Si-CH{sub 3} groups). In most cases, the signature of returned cometary organics can be readily distinguished from contaminants through their different compositions, nonterrestrial isotopic ratios, and/or association with other cometary materials. However, some conversion of the carbon indigenous to the flight aerogel appears to have happened during particle impact, and some open issues remain regarding how this C may be processed into new forms during the hypervelocity impact collection of the comet dust.

  13. Aggregate dust particles at comet 67P/Churyumov-Gerasimenko.

    PubMed

    Bentley, Mark S; Schmied, Roland; Mannel, Thurid; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Levasseur-Regourd, Anny-Chantal; Weber, Iris; Jessberger, Elmar K; Ehrenfreund, Pascale; Koeberl, Christian; Havnes, Ove

    2016-01-01

    Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the Solar System. Cometary dust was previously considered to comprise irregular, fluffy agglomerates on the basis of interpretations of remote observations in the visible and infrared and the study of chondritic porous interplanetary dust particles that were thought, but not proved, to originate in comets. Although the dust returned by an earlier mission has provided detailed mineralogy of particles from comet 81P/Wild, the fine-grained aggregate component was strongly modified during collection. Here we report in situ measurements of dust particles at comet 67P/Churyumov-Gerasimenko. The particles are aggregates of smaller, elongated grains, with structures at distinct sizes indicating hierarchical aggregation. Topographic images of selected dust particles with sizes of one micrometre to a few tens of micrometres show a variety of morphologies, including compact single grains and large porous aggregate particles, similar to chondritic porous interplanetary dust particles. The measured grain elongations are similar to the value inferred for interstellar dust and support the idea that such grains could represent a fraction of the building blocks of comets. In the subsequent growth phase, hierarchical agglomeration could be a dominant process and would produce aggregates that stick more easily at higher masses and velocities than homogeneous dust particles. The presence of hierarchical dust aggregates in the near-surface of the nucleus of comet 67P also provides a mechanism for lowering the tensile strength of the dust layer and aiding dust release. PMID:27582221

  14. Aggregate dust particles at comet 67P/Churyumov–Gerasimenko

    NASA Astrophysics Data System (ADS)

    Bentley, Mark S.; Schmied, Roland; Mannel, Thurid; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Levasseur-Regourd, Anny-Chantal; Weber, Iris; Jessberger, Elmar K.; Ehrenfreund, Pascale; Koeberl, Christian; Havnes, Ove

    2016-09-01

    Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the Solar System. Cometary dust was previously considered to comprise irregular, fluffy agglomerates on the basis of interpretations of remote observations in the visible and infrared and the study of chondritic porous interplanetary dust particles that were thought, but not proved, to originate in comets. Although the dust returned by an earlier mission has provided detailed mineralogy of particles from comet 81P/Wild, the fine-grained aggregate component was strongly modified during collection. Here we report in situ measurements of dust particles at comet 67P/Churyumov–Gerasimenko. The particles are aggregates of smaller, elongated grains, with structures at distinct sizes indicating hierarchical aggregation. Topographic images of selected dust particles with sizes of one micrometre to a few tens of micrometres show a variety of morphologies, including compact single grains and large porous aggregate particles, similar to chondritic porous interplanetary dust particles. The measured grain elongations are similar to the value inferred for interstellar dust and support the idea that such grains could represent a fraction of the building blocks of comets. In the subsequent growth phase, hierarchical agglomeration could be a dominant process and would produce aggregates that stick more easily at higher masses and velocities than homogeneous dust particles. The presence of hierarchical dust aggregates in the near-surface of the nucleus of comet 67P also provides a mechanism for lowering the tensile strength of the dust layer and aiding dust release.

  15. High Resolution 3D Radar Imaging of Comet Interiors

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  16. Physical processes in comets

    NASA Technical Reports Server (NTRS)

    Newburn, Ray L., Jr.

    1991-01-01

    Post-Halley comets are known to be irregular objects with most nucleus activity very localized and with the dust coma capable of fragmentation and apparently being a source of gas. Older, 1-D strategies which assume steady isotropic outflow of material can give poor time-and-space averaged results, at best. With 2-D data, images through interference filters, it is hoped that: dust structures can be seen that give evidence of the proper geometry for data reduction; gradients along the axes of symmetry and evidence of fragmentation can be studied; and that evidence for gas abundance gradients associated with the dust can be found. High quality data from brighter comets can then be used to suggest improved data reduction procedures for fainter ones. To obtain such data, large image-quality interference filters were procured for use with a charge coupled device (CCD) camera at Lick Observatory, where the scale of the 1 m Nickel reflector is ideal for brighter comets. Whenever possible, data is taken simultaneously with other telescopes and equipment, especially spectroscopy at the Lick 3 m or infrared photometry at the Infrared Telescope Facility (IRTF) on Mauna Kea.

  17. Dynamic sublimation pressure and the catastrophic breakup of Comet ISON

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan K.; Johnson, Brandon C.; Bowling, Timothy; Jay Melosh, H.; Minton, David; Lisse, Carey M.; Battams, Karl

    2015-09-01

    Previously proposed mechanisms have difficulty explaining the disruption of Comet C/2012 S1 (ISON) as it approached the Sun. We describe a novel cometary disruption mechanism whereby comet nuclei fragment and disperse through dynamic sublimation pressure, which induces differential stresses within the interior of the nucleus. When these differential stresses exceed its material strength, the nucleus breaks into fragments. We model the sublimation process thermodynamically and propose that it is responsible for the disruption of Comet ISON. We estimate the bulk unconfined crushing strength of Comet ISON's nucleus and the resulting fragments to be 0.5 Pa and 1-9 Pa, respectively, assuming typical Jupiter Family Comet (JFC) albedos. However, if Comet ISON has an albedo similar to Pluto, this strength estimate drops to 0.2 Pa for the intact nucleus and 0.6-4 Pa for its fragments. Regardless of assumed albedo, these are similar to previous strength estimates of JFCs. This suggests that, if Comet ISON is representative of dynamically new comets, then low bulk strength is a primordial property of some comet nuclei, and not due to thermal processing during migration into the Jupiter Family.

  18. Coordinated analysis of Comet 81P/Wild-2 dust samples: Nanoscale measurements of its organic/ inorganic chemical and isotopic composition and optical properties

    NASA Astrophysics Data System (ADS)

    Messenger, K. N.; Messenger, S. R.; Clemett, S. J.; Keller, L. P. Class='hr'>; Zolensky, M. E.

    2006-12-01

    Dust particles released from comet 81P/Wild-2 were captured in silica aerogel on-board the STARDUST spacecraft and successfully returned to the Earth on January 15, 2006. This is the first sample of extraterrestrial materials returned from beyond the moon. STARDUST recovered thousands of particles ranging in size from 1 to 100 micrometers. The analysis of these samples is complicated by the small total mass collected (< 1 mg), its entrainment in the aerogel collection medium, and the fact that the cometary dust is comprised of submicrometer minerals and carbonaceous material. During the six month preliminary examination period, 75 tracks were extracted from the aerogel cells and 25 cometary grains were fully studied by an international collaboration among 150 scientists who investigated their mineralogy/petrology, organic/inorganic chemistry, optical properties and isotopic compositions. This scientific consortium was made possible by sophisticated sample preparation methods developed for the STARDUST mission and by recent major advances in the sensitivity and spatial resolution of analytical instruments. Coordinated and replicate analyses of the samples were made possible by subdividing individual particles into 50 nm-thick sections by ultramicrotomy, providing up to 100 sections from a 20 um particle. We present results of a coordinated study of comet Wild 2 dust samples in which individual particles were analyzed by FTIR microspectroscopy, field emission scanning-transmission electron microscopy (STEM), and isotopic measurements with a NanoSIMS 50L ion microprobe. The STEM is equipped with a thin window energy- dispersive X-ray (EDX) spectrometer that was used to acquire spectrum images that contained a high count- rate EDX spectrum in each pixel, enabling the determination of the nm-scale spatial distribution of quantitative element abundances. These samples were later analyzed by the JSC NanoSIMS 50L ion microprobe, which acquired 100 nm spatial resolution C

  19. A comet engulfs Mars: MAVEN observations of comet Siding Spring's influence on the Martian magnetosphere

    NASA Astrophysics Data System (ADS)

    Espley, Jared R.; DiBraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper; Combi, Michael; Luhmann, Janet; Ma, Yingjuan; Jia, Yingdong; Jakosky, Bruce

    2015-11-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000 km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  20. A Comet Engulfs Mars: MAVEN Observations of Comet Siding Spring's Influence on the Martian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Espley, Jared R.; Dibraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper S.; Combi, Michael; Luhmann, Janet; Ma, Yingjuan

    2015-01-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000?km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  1. Spectrophotometry of faint comets: The asteroid approach

    NASA Technical Reports Server (NTRS)

    Degewij, J.

    1981-01-01

    Observing programs at optical (0.35-0.8 micron) and near-infrared (1.1-2.4 micron) wavelengths, directed at the acquisition of reflection spectra of faint and distant comets, are described. The ultimate goal is to obtain spectrophotometric measurements of comets for which a significant part of the light is expected to be reflected by the solid surface of the nucleus.

  2. The Comet Halley archive: Summary volume

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek (Editor); Fry, Lori (Editor)

    1991-01-01

    The contents are as follows: The Organizational History of the International Halley Watch; Operations of the International Halley Watch from a Lead Center Perspective; The Steering Group; Astrometry Network; Infrared Studies Network; Large-Scale Phenomena Network; Meteor Studies Network; Near-Nucleus Studies Network; Photometry and Polarimetry Network; Radio Science Network; Spectroscopy and Spectrophotometry Network; Amateur Observation Network; Use of the CD-ROM Archive; The 1986 Passage of Comet Halley; and Recent Observations of Comet Halley.

  3. Thermal modeling of Halley's comet

    USGS Publications Warehouse

    Weissman, P.R.; Kieffer, H.H.

    1984-01-01

    The comet thermal model of Weissman and Kieffer is used to calculate gas production rates and other parameters for the 1986 perihelion passage of Halley's Comet. Gas production estimates are very close to revised pre-perihelion estimates by Newburn based on 1910 observations of Halley; the increase in observed gas production post-perihelion may be explained by a variety of factors. The energy contribution from multiply scattered sunlight and thermal emission by coma dust increases the total energy reaching the Halley nucleus at perihelion by a factor of 2.4. The high obliquity of the Halley nucleus found by Sekanina and Larson may help to explain the asymmetry in Halley's gas production rates around perihelion. ?? 1984.

  4. Interstellar and cometary ices: Molecular emission from comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; DeVries, C. H.; Dickens, J. E.; Lovell, A. J.; Schloerb, F. P.; Senay, M.; Jewitt, D.; Matthews, H. E.

    1997-01-01

    Observations of rotational translations of neutral molecules, radicals and ions in the comet Hale-Bopp are reported on. Sample spectra and maps of the emission for the J = 1 to 0 transition of HCN, the J = 2 to 1 transition of CS and the J = 1 to 0 transition of HCO+ are presented. While the emission from HCN is typically centered on the position of the nucleus and is symmetric, the emission from HCO+ exhibits multiple peaks, together with evidence for acceleration away from the nucleus.

  5. The C-12/C-13 abundance ratio in Comet Halley

    SciTech Connect

    Wyckoff, S.; Lindholm, E.; Wehinger, P.A.; Peterson, B.A.; Zucconi, J.M.

    1989-04-01

    The individual (C-13)N rotational lines in Comet Halley are resolved using high-resolution spectra of the CN B2Sigma(+)-X2Sigma(+) (0,0) band. The observe C-12/C-13 abundance ratio excludes a site of origin for the comet near Uranus and Neptune and suggests a condensation environment quite distinct from other solar system bodies. Two theories are presented for the origin of Comet Halley. One theory suggest that the comet originated 4.5 Gyr ago in an inner Oort cloud at a heliocentric distance greater than 100 AU where chemical fractionation led to the C-13 enrichment in the CN parent molecule prior to condensation of the comet nucleus. According to the other, more plausible theory, the comet nucleus condensed relatively recently from the interstellar medium which has become enriches in C-13 and was subsequently gravitationally captured by the solar system. 107 refs.

  6. Comparative CO/CO2 Production in NEOWISE-Observed Comets

    NASA Astrophysics Data System (ADS)

    Bauer, James M.; Stevenson, Rachel; Kramer, Emily; Grav, Tommy; Mainzer, A.; Masiero, Joseph; Cutri, Roc; Dailey, John; Sonnett, Sarah; Nugent, Carolyn; Meech, Karen; Walker, Russ; Lisse, Carey; Waszczak, Adam; Lucas, Andrew; Blair, Nathan; Wright, Edward

    2014-11-01

    NEOWISE [1,2] is the NASA Planetary Division-funded mission that utilizes data from the Wide-Field Infrared Survey Explorer (WISE) spacecraft to detect and characterize moving objects. NEOWISE has provided a large statistical sampling of comets in various states of activity, containing a variety of types of comets. This data set provides a unique opportunity to discern the trends in their observable properties and compare the ensemble properties between comet types, and may allow us to discern subtypes. The WISE spacecraft has discovered 22 new cometary bodies and observed over 160 comets, yielding the largest sample of comets yet observed at thermal-IR wavelengths. This collection offers a diverse range of comet behavior including highly active and inactive bodies from both long period comet (LPC) and short period comet (SPC) populations. We have conducted analyses of the physical properties of the NEOWISE-observed comets. In particular, our analysis constrains the quantity and nature of the ejected coma dust for large particles, and provides estimates of the nucleus sizes and albedos, as well as the production rates and extent of the CO/CO2 gas species. WISE is sensitive to CO and CO2 emission lines that fall within the 4.6 micron band pass (W2), at 4.3 and 4.7 microns, respectively. The quantity of dust present is found from the signal in the three other bands, centered at 3.4, 12, & 22 microns, and the dust signal in W2 is deduced, such that excess signal in W2 can be identified. We find detectable signal excess in nearby comets ~1AU distance from the Sun, as well as those as distant as 4.5AU, and approximately a third of both LPCs and SPCs show 4.6 micron infrared excess in our data. We will discuss in depth the production rates for the CO/CO2 gas species derived from the entire sample of comets. Acknowledgements: This work was supported by NEOWISE, which is a project of JPL/CalTech, funded by the Planetary Science Division of NASAReferences: [1] Mainzer, A

  7. Comet Siding Spring at Mars: Using MRO to Interpret HST Imaging of Comets

    NASA Astrophysics Data System (ADS)

    Li, Jian-Yang

    2014-10-01

    Comet C/Siding Spring is a dynamically new (DN) comet, and will approach Mars to within 135,000 km on October 19, 2014. This encounter presents the first ever opportunity for us to observe a DN comet from close distances. The planned observations from the Mars Reconnaissance Orbiter (MRO) can potentially resolve the nucleus to 140 m/pix, and trace the dust and gas activity to their sources on the nucleus. This "natural flyby" will allow us to directly compare a DN comet with previous comet flyby mission targets (all highly evolved comets), and generalize those mission results to more comets. We propose to observe C/Siding Spring with seven HST orbits during its Mars encounter. These observations will take advantage of this rare opportunity to study the evolution of C/Siding Spring, use the MRO observations to help us interpret HST observations of comets in general, and put the MRO observations into a broader context. We plan to image the dust coma with filters F689M and F845M, and the cyanogen coma with filter FQ387N. Comparisons with previous HST observations when the comet was far from the Sun, combined with MRO observations, will allow us to study the evolution of the coma of C/Siding Spring, and tie it to the sources on the nucleus. Putting MRO and HST observations together, we can reconstruct the 3-D structure in the inner coma, and study the possible chemical heterogeneity on the nucleus. HST is needed because of the unfavorable observing conditions from the ground, the specific timing of our observations, and its high resolution and high sensitivity. This proposal is part of a coordinated observing campaign of C/Siding Spring both from the ground and from space.

  8. Halley's comet - Its size and decay rate

    NASA Astrophysics Data System (ADS)

    Wallis, M. K.; Wickramasinghe, N. C.

    1985-09-01

    The outgassing rates inferred from the 1910 apparition and the brightness decay over the previous two millenia are compatible with the minimum nuclear brightness currently observed if the comet nucleus is small, 1.8 - 2.7 km radius with an albedo of 0.1 - 0.2. Outgassing is faster than from a bare nucleus of dirty H2O-ice, which is attributed either to a hot microdust coma or to an organic polymer composition. Halley's comet will decay away within another 45 - 65 apparitions.

  9. Comets: chemistry and chemical evolution.

    PubMed

    Donn, B

    1982-01-01

    Lasting commitment to cosmic chemistry and an awareness of the fascinating role of comets in that study was a consequence of an association with Harold Urey early in my astronomical career. Urey's influence on cometary research spread as colleagues with whom I was associated, in turn, developed their own programs in cometary chemistry. One phase of the Chicago research shows that Whipple's icy nucleus would be below about 250 K. This property, combined with their small internal pressure, means cometary interiors remain essentially unchanged during their lifetime. Observations of cometary spectra indicate that they are rich in simple organic species. Experiments on comet-like ice mixture suggests that the extensive array of interstellar molecules also may be found in comets. The capture of cometary debris by the earth or the impact of comets would have been an early source of biochemically significant molecules. Recent hypotheses on radiogenic heating and melting of water ice in the central zone of nuclei do not seem consistent with recent observations or ideas of structure. Thus comets are not a likely place for life to develop. PMID:7097774

  10. Lessons learnt from Comets Tempel and Wild: Implications for the Rosetta Lander

    NASA Astrophysics Data System (ADS)

    Ulamec, S.; Biele, J.; Bohnhardt, H.; Espinasse, S.; Gaudon, P.; Goesmann, F.; Knollenberg, J.; Kuhrt, E.; Richter, L.; Roll, R.

    "Rosetta" is a Cornerstone Mission of the previous Horizon 2000 ESA Programme. Its goal is to rendezvous with comet 67/P Churyumov-Gerasimenko after a 10 years cruise and to study both its nucleus and coma through an orbiting spacecraft and a landed platform. The latter, named "Philae", has been designed to land softly on the comet nucleus and is equipped with 10 scientific instruments to perform in-situ studies of the cometary material. Philae has been provided by an international consortium with participation of Germany (lead), France, Italy, UK, Finland, Ireland, Hungary and Austria. Philae will perform scientific investigations to get a first in-situ analysis of primordial material from the early solar system directly on a cometary nucleus, as well as study its structure and physical properties. Rosetta has successfully been launched on March 2nd, 2004 from Kourou in French Guyane. Since then two missions to comets, Deep Impact to comet Tempel 1 (July 2005) and the return of samples from comet Wild 2 by Stardust (January 2006), have improved our understanding of these bodies considerably. The paper will discuss, in how far this partly revised image of the nature of comets could influence the mission of Philae. Due to the different scenario of Rosetta, compared to flyby and impact missions, certain parallels, however, are difficult to be drawn. The surface properties of the nucleus are important for safe landing and anchoring. The instruments performance is partly depending on the sample material. The delivery of the Lander to the surface of the comet is foreseen in November 2014 at a distance of about 3 Astronomical Units (AU) to the sun. This will take place after a phase of close investigation of Churyumov-Gerasimenko by the Rosetta Orbiter instruments. After landing first science operations sequence of about 120 hours is planned, when several instruments and sub-systems can be operated simultaneously. In the following long term operations phase, relying on