Science.gov

Sample records for community atmosphere model

  1. Community Atmosphere Model

    Energy Science and Technology Software Center (ESTSC)

    2004-10-18

    The Community Atmosphere Model (CAM) is an atmospheric general circulation model that solves equations for atmospheric dynamics and physics. CAM is an outgrowth of the Community Climate Model at the National Center for Atmospheric Research (NCAR) and was developed as a joint collaborative effort between NCAR and several DOE laboratories, including LLNL. CAM contains several alternative approaches for advancing the atmospheric dynamics. One of these approaches uses a finite-volume method originally developed by personnel atmore » NASNGSFC, We have developed a scalable version of the finite-volume solver for massively parallel computing systems. FV-CAM is meant to be used in conjunction with the Community Atmosphere Model. It is not stand-alone.« less

  2. Performance Engineering in the Community Atmosphere Model

    SciTech Connect

    Worley, P; Mirin, A; Drake, J; Sawyer, W

    2006-05-30

    The Community Atmosphere Model (CAM) is the atmospheric component of the Community Climate System Model (CCSM) and is the primary consumer of computer resources in typical CCSM simulations. Performance engineering has been an important aspect of CAM development throughout its existence. This paper briefly summarizes these efforts and their impacts over the past five years.

  3. A Community Atmosphere Model with Superparameterized Clouds

    SciTech Connect

    Randall, David; Branson, Mark; Wang, Minghuai; Ghan, Steven J.; Craig, Cheryl; Gettelman, A.; Edwards, Jim

    2013-06-18

    In 1999, National Center for Atmospheric Research (NCAR) scientists Wojciech Grabowski and Piotr Smolarkiewicz created a "multiscale" atmospheric model in which the physical processes associated with clouds were represented by running a simple high-resolution model within each grid column of a lowresolution global model. In idealized experiments, they found that the multiscale model produced promising simulations of organized tropical convection, which other models had struggled to produce. Inspired by their results, Colorado State University (CSU) scientists Marat Khairoutdinov and David Randall created a multiscale version of the Community Atmosphere Model (CAM). They removed the cloud parameterizations of the CAM, and replaced them with Khairoutdinov's high-resolution cloud model. They dubbed the embedded cloud model a "super-parameterization," and the modified CAM is now called the "SP-CAM." Over the next several years, many scientists, from many institutions, have explored the ability of the SP-CAM to simulate tropical weather systems, the day-night changes of precipitation, the Asian and African monsoons, and a number of other climate processes. Cristiana Stan of the Center for Ocean-Land-Atmosphere Interactions found that the SP-CAM gives improved results when coupled to an ocean model, and follow-on studies have explored the SP-CAM's utility when used as the atmospheric component of the Community Earth System Model. Much of this research has been performed under the auspices of the Center for Multiscale Modeling of Atmospheric Processes, a National Science Foundation (NSF) Science and Technology Center for which the lead institution is CSU.

  4. Improving the Performance Scalability of the Community Atmosphere Model

    SciTech Connect

    Mirin, Arthur; Worley, Patrick H

    2012-01-01

    The Community Atmosphere Model (CAM), which serves as the atmosphere component of the Community Climate System Model (CCSM), is the most computationally expensive CCSM component in typical configurations. On current and next-generation leadership class computing systems, the performance of CAM is tied to its parallel scalability. Improving performance scalability in CAM has been a challenge, due largely to algorithmic restrictions necessitated by the polar singularities in its latitude-longitude computational grid. Nevertheless, through a combination of exploiting additional parallelism, implementing improved communication protocols, and eliminating scalability bottlenecks, we have been able to more than double the maximum throughput rate of CAM on production platforms. We describe these improvements and present results on the Cray XT5 and IBM BG/P. The approaches taken are not specific to CAM and may inform similar scalability enhancement activities for other codes.

  5. Subcycled dynamics in the Spectral Community Atmosphere Model, version 4

    SciTech Connect

    Taylor, Mark; Evans, Katherine J; Hack, James J; Worley, Patrick H

    2010-01-01

    To gain computational efficiency, a split explicit time integration scheme has been implemented in the CAM spectral Eulerian dynamical core. In this scheme, already present in other dynamical core options within the Community Atmosphere Model, version 4 (CAM), the fluid dynamics portion of the model is subcycled to allow a longer time step for the parameterization schemes. The physics parameterization of CAM is not subject to the stability restrictions of the fluid dynamics, and thus finer spatial resolutions of the model do not require the physics time step to be reduced. A brief outline of the subcycling algorithm implementation and resulting model efficiency improvement is presented. A discussion regarding the effect of the climate statistics derived from short model runs is provided.

  6. Reference aquaplanet climate in the Community Atmosphere Model, Version 5

    NASA Astrophysics Data System (ADS)

    Medeiros, Brian; Williamson, David L.; Olson, Jerry G.

    2016-03-01

    Fundamental characteristics of the aquaplanet climate simulated by the Community Atmosphere Model, Version 5.3 (CAM5.3) are presented. The assumptions and simplifications of the configuration are described. A 16 year long, perpetual equinox integration with prescribed SST using the model's standard 1° grid spacing is presented as a reference simulation. Statistical analysis is presented that shows similar aquaplanet configurations can be run for about 2 years to obtain robust climatological structures, including global and zonal means, eddy statistics, and precipitation distributions. Such a simulation can be compared to the reference simulation to discern differences in the climate, including an assessment of confidence in the differences. To aid such comparisons, the reference simulation has been made available via earthsystemgrid.org. Examples are shown comparing the reference simulation with simulations from the CAM5 series that make different microphysical assumptions and use a different dynamical core.

  7. Reference aquaplanet climate in the Community Atmosphere Model, Version 5

    DOE PAGESBeta

    Medeiros, Brian; Williamson, David L.; Olson, Jerry G.

    2016-03-18

    In this study, fundamental characteristics of the aquaplanet climate simulated by the Community Atmosphere Model, Version 5.3 (CAM5.3) are presented. The assumptions and simplifications of the configuration are described. A 16 year long, perpetual equinox integration with prescribed SST using the model’s standard 18 grid spacing is presented as a reference simulation. Statistical analysis is presented that shows similar aquaplanet configurations can be run for about 2 years to obtain robust climatological structures, including global and zonal means, eddy statistics, and precipitation distributions. Such a simulation can be compared to the reference simulation to discern differences in the climate, includingmore » an assessment of confidence in the differences. To aid such comparisons, the reference simulation has been made available via earthsystemgrid.org. Examples are shown comparing the reference simulation with simulations from the CAM5 series that make different microphysical assumptions and use a different dynamical core.« less

  8. Energy considerations in the Community Atmosphere Model (CAM)

    DOE PAGESBeta

    Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; Toniazzo, Thomas; Yudin, Valery; Taylor, Mark

    2015-06-30

    An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for themore » state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.« less

  9. Energy considerations in the Community Atmosphere Model (CAM)

    SciTech Connect

    Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; Toniazzo, Thomas; Yudin, Valery; Taylor, Mark

    2015-06-30

    An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for the state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.

  10. Energy considerations in the Community Atmosphere Model (CAM)

    NASA Astrophysics Data System (ADS)

    Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; Toniazzo, Thomas; Taylor, Mark; Yudin, Valery

    2015-09-01

    An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for the state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.

  11. COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (ONE ATMOSPHERE)

    EPA Science Inventory

    This task supports ORD's strategy by providing responsive technical support of EPA's mission and provides credible state of the art air quality models and guidance. This research effort is to develop and improve the Community Multiscale Air Quality (CMAQ) modeling system, a mu...

  12. Simulating Springtime Temperature Patterns in the Community Atmosphere Model Coupled to the Community Land Model Using Prognostic Leaf Area.

    NASA Astrophysics Data System (ADS)

    Levis, Samuel; Bonan, Gordon B.

    2004-12-01

    Observations show that emergence of foliage in springtime slows surface air temperature warming as a result of greater transpiration. Model simulations with the Community Atmosphere Model coupled to the Community Land Model confirm that evapotranspiration contributes to this pattern and that this pattern occurs more reliably with prognostic leaf area as opposed to prescribed leaf area. With prescribed leaf area, leaves emerge independent of prevailing environmental conditions, which may preclude photosynthesis from occurring. In contrast, prognostic leaf area ensures that leaves emerge when conditions are favorable for photosynthesis, and thus transpiration. These results reveal a dynamic coupling between the atmosphere and vegetation in which the observed reduction in the springtime warming trend only occurs when photosynthesis, stomatal conductance, and leaf emergence are synchronized with the surface climate.


  13. Studies of meteoric smoke particles in the middle and upper atmosphere using a Whole Atmosphere Community Climate Model

    NASA Astrophysics Data System (ADS)

    FENG, W.; Plane, J. M.; Chipperfield, M.; Marsh, D. R.; Janches, D.; Bardeen, C.

    2013-12-01

    We have developed the first global model of meteoric metals in the atmosphere by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of six metals (Na, Fe, K, Mg, Si and Ca) based on ~200 chemical reactions, and a treatment of the injection of meteoric constituents into the atmosphere by considering the astronomical properties of the meteoric influx. This model performs reasonably well in simulating the main features of the atomic metal layers (i.e., peak densities, total column abundances, seasonal variability) in the mesosphere/lower thermosphere region compared with the currently available measurements made by satellite and lidar. The WACCM model including these six metals also simulates the neutral and ionized metal--containing species as well as individual dominant reservoir species (FeOH, Mg(OH)2, NaHCO3 and Si(OH)4) below 90 km. Therefore, the self-consistent model is able to generate meteoric smoke particles (MSPs) explicitly because these are predominantly composed of ablated Fe, Mg, Na and Si. The microphysical processes of the MSPs are calculated by the CARMA (Community Aerosol and Radiation Model for Atmosphere) module in WACCM to allow for the coagulation of aerosol/dust particles. We will present the modelled global distribution of MSPs and discuss some key dynamical and chemical processes controlling the distribution of MSPs in the middle and upper atmosphere.

  14. A new general circulation model for Mars based on the NCAR Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Urata, Richard A.; Toon, Owen B.

    2013-09-01

    We introduce and present results from a new general circulation model for Mars adapted from the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM) version 3.1 terrestrial model. The radiative transfer has been replaced with a two-stream correlated-k scheme with carbon dioxide gas absorption coefficients suited for Mars. A time-invariant dust field is assumed with a Conrath (Conrath, B.J. [1975]. Icarus 24, 34-46) vertical distribution. Carbon dioxide is allowed to sublimate and condense at the surface, and the mass is removed from the atmosphere. The topography is averaged from MOLA data. The surface albedos and thermal inertias are derived from TES observations. The model is freely distributed to interested users. Comparisons between model temperatures, and spacecraft and Lander observations show agreement within ±10 K, depending on dust concentration. The annual pressure cycle is typically within 20 Pa of Viking Lander observations, however the model underestimates the surface pressure during southern summer, possibly due to increased dust activity that is not reflected in the model. Predicted model boundary layer depths are typically within a few hundred meters of observations, and tend to depend inversely on surface pressure, agreeing with observations.

  15. Collaborative Project. A Flexible Atmospheric Modeling Framework for the Community Earth System Model (CESM)

    SciTech Connect

    Gettelman, Andrew

    2015-10-01

    In this project we have been upgrading the Multiscale Modeling Framework (MMF) in the Community Atmosphere Model (CAM), also known as Super-Parameterized CAM (SP-CAM). This has included a major effort to update the coding standards and interface with CAM so that it can be placed on the main development trunk. It has also included development of a new software structure for CAM to be able to handle sub-grid column information. These efforts have formed the major thrust of the work.

  16. Integrating Cloud Processes in the Community Atmosphere Model, Version 5.

    SciTech Connect

    Park, S.; Bretherton, Christopher S.; Rasch, Philip J.

    2014-09-15

    This paper provides a description on the parameterizations of global cloud system in CAM5. Compared to the previous versions, CAM5 cloud parameterization has the following unique characteristics: (1) a transparent cloud macrophysical structure that has horizontally non-overlapped deep cumulus, shallow cumulus and stratus in each grid layer, each of which has own cloud fraction, mass and number concentrations of cloud liquid droplets and ice crystals, (2) stratus-radiation-turbulence interaction that allows CAM5 to simulate marine stratocumulus solely from grid-mean RH without relying on the stability-based empirical empty stratus, (3) prognostic treatment of the number concentrations of stratus liquid droplets and ice crystals with activated aerosols and detrained in-cumulus condensates as the main sources and evaporation-sedimentation-precipitation of stratus condensate as the main sinks, and (4) radiatively active cumulus. By imposing consistency between diagnosed stratus fraction and prognosed stratus condensate, CAM5 is free from empty or highly-dense stratus at the end of stratus macrophysics. CAM5 also prognoses mass and number concentrations of various aerosol species. Thanks to the aerosol activation and the parameterizations of the radiation and stratiform precipitation production as a function of the droplet size, CAM5 simulates various aerosol indirect effects associated with stratus as well as direct effects, i.e., aerosol controls both the radiative and hydrological budgets. Detailed analysis of various simulations revealed that CAM5 is much better than CAM3/4 in the global performance as well as the physical formulation. However, several problems were also identifed, which can be attributed to inappropriate regional tuning, inconsistency between various physics parameterizations, and incomplete model physics. Continuous efforts are going on to further improve CAM5.

  17. Polar ozone depletion and trends as represented by the Whole Atmospheric Community Climate Model (WACCM)

    NASA Astrophysics Data System (ADS)

    Kinnison, Douglas; Solomon, Susan; Ivy, Diane; Mills, Michael; Neely, Ryan, III; Schmidt, Anja; Garcia, Rolando; Smith, Anne

    2016-04-01

    The Whole Atmosphere Community Climate Model, Version 4 (WACCM4) is a comprehensive numerical model, spanning the range of altitude from the Earth's surface to the lower thermosphere [Garcia et al., JGR, 2007; Kinnison et al., JGR, 2007; Marsh et al., J. of Climate, 2013]. WACCM4 is based on the framework of the NCAR Community Atmosphere Model, version 4 (CAM4), and includes all of the physical parameterizations of CAM4 and a finite volume dynamical core for the tracer advection. This version has a detailed representation of tropospheric and middle atmosphere chemical and physical processes. Simulations completed for the SPARC Chemistry Climate Model Initiative (CCMI), REFC1, REFC2, SENSC2, and REFC1SD scenarios are examined (see Eyring et al., SPARC Newsletter, 2013). Recent improvements in model representation of orographic gravity wave processes strongly impact temperature and therefore polar ozone depletion as well as its subsequent recovery. Model representation of volcanic events will also be shown to be important for ozone loss. Evaluation of polar ozone depletion processes (e.g., dehydration, denitrification, chemical activation) with key observations will be performed and the impact on future ozone recovery will be identified.

  18. CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model

    SciTech Connect

    Lamarque, J.-F.; Emmons, L.; Hess, Peter; Kinnison, Douglas E.; Tilmes, S.; Vitt, Francis; Heald, C. L.; Holland, Elisabeth A.; Lauritzen, P. H.; Neu, J.; Orlando, J. J.; Rasch, Philip J.; Tyndall, G. S.

    2012-03-27

    We discuss and evaluate the representation of atmospheric chemistry in the global Community Atmosphere Model (CAM) version 4, the atmospheric component of the Community Earth System Model (CESM). We present a variety of configurations for the representation of tropospheric and stratospheric chemistry, wet removal, and online and offline meteorology. Results from simulations illustrating these configurations are compared with surface, aircraft and satellite observations. Major biases include a negative bias in the high-latitude CO distribution, a positive bias in upper-tropospheric/lower-stratospheric ozone, and a positive bias in summertime surface ozone (over the United States and Europe). The tropospheric net chemical ozone production varies significantly between configurations, partly related to variations in stratosphere-troposphere exchange. Aerosol optical depth tends to be underestimated over most regions, while comparison with aerosol surface measurements over the United States indicate reasonable results for sulfate, especially in the online simulation. Other aerosol species exhibit significant biases. Overall, the model-data comparison indicates that the offline simulation driven by GEOS5 meteorological analyses provides the best simulation, possibly due in part to the increased vertical resolution (52 levels instead of 26 for online dynamics). The CAM-chem code as described in this paper, along with all the necessary datasets needed to perform the simulations described here, are available for download at www.cesm.ucar.edu.

  19. Coupling the Community Atmospheric Model (CAM) with the Statistical Spectral Interpolation (SSI) System under ESMF

    NASA Technical Reports Server (NTRS)

    daSilva, Arlindo

    2004-01-01

    The first set of interoperability experiments illustrates the role ESMF can play in integrating the national Earth science resources. Using existing data assimilation technology from NCEP and the National Weather Service, the Community Atmosphere Model (CAM) was able to ingest conventional and remotely sensed observations, a capability that could open the door to using CAM for weather as well as climate prediction. CAM, which includes land surface capabilities, was developed by NCAR, with key components from GSFC. In this talk we will describe the steps necessary for achieving the coupling of these two systems.

  20. Convective organization in the super-parameterized community atmosphere model with constant surface temperature

    NASA Astrophysics Data System (ADS)

    Kuang, Z.

    2015-12-01

    Organization in a moist convecting atmosphere is investigated using the super-parameterized community atmosphere model (SPCAM) in aquaplanet setting with constant surface temperature, with and without planetary rotation. Without radiative and surface feedbacks, convective organization is dominated by convectively coupled gravity waves without planetary rotation and convectively coupled equatorial waves when there is planetary rotation. This behavior is well captured when the cloud resolving model (CRM) in SPCAM is replaced by its linear response function, computed following Kuang (2010), for the state of radiative convective equilibrium (RCE). With radiative feedback, however, convection self-aggregates, and with planetary rotation, the tropical zonal wavenumber-frequency spectrum features a red noise background. These behaviors in the presence of the radiative feedback are not captured when the CRM is replaced by its linear response function around the RCE state with radiative feedback included in the construction. Implications to organization in a moist convecting atmosphere will be discussed. Kuang, Z., Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implication to the dynamics of convectively coupled waves, J. Atmos. Sci., 67, 941-962, (2010)

  1. Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations

    NASA Astrophysics Data System (ADS)

    Kay, Jennifer E.; Bourdages, Line; Miller, Nathaniel B.; Morrison, Ariel; Yettella, Vineel; Chepfer, Helene; Eaton, Brian

    2016-04-01

    Spaceborne lidar observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite are used to evaluate cloud amount and cloud phase in the Community Atmosphere Model version 5 (CAM5), the atmospheric component of a widely used state-of-the-art global coupled climate model (Community Earth System Model). By embedding a lidar simulator within CAM5, the idiosyncrasies of spaceborne lidar cloud detection and phase assignment are replicated. As a result, this study makes scale-aware and definition-aware comparisons between model-simulated and observed cloud amount and cloud phase. In the global mean, CAM5 has insufficient liquid cloud and excessive ice cloud when compared to CALIPSO observations. Over the ice-covered Arctic Ocean, CAM5 has insufficient liquid cloud in all seasons. Having important implications for projections of future sea level rise, a liquid cloud deficit contributes to a cold bias of 2-3°C for summer daily maximum near-surface air temperatures at Summit, Greenland. Over the midlatitude storm tracks, CAM5 has excessive ice cloud and insufficient liquid cloud. Storm track cloud phase biases in CAM5 maximize over the Southern Ocean, which also has larger-than-observed seasonal variations in cloud phase. Physical parameter modifications reduce the Southern Ocean cloud phase and shortwave radiation biases in CAM5 and illustrate the power of the CALIPSO observations as an observational constraint. The results also highlight the importance of using a regime-based, as opposed to a geographic-based, model evaluation approach. More generally, the results demonstrate the importance and value of simulator-enabled comparisons of cloud phase in models used for future climate projection.

  2. Aerosol specification in single-column Community Atmosphere Model version 5

    NASA Astrophysics Data System (ADS)

    Lebassi-Habtezion, B.; Caldwell, P. M.

    2015-03-01

    Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important). By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm-3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.

  3. Aerosol specification in single-column Community Atmosphere Model version 5

    DOE PAGESBeta

    Lebassi-Habtezion, B.; Caldwell, P. M.

    2015-03-27

    Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important).more » By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm−3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.« less

  4. CMAQ (Community Multi-Scale Air Quality) atmospheric distribution model adaptation to region of Hungary

    NASA Astrophysics Data System (ADS)

    Lázár, Dóra; Weidinger, Tamás

    2016-04-01

    For our days, it has become important to measure and predict the concentration of harmful atmospheric pollutants such as dust, aerosol particles of different size ranges, nitrogen compounds, and ozone. The Department of Meteorology at Eötvös Loránd University has been applying the WRF (Weather Research and Forecasting) model several years ago, which is suitable for weather forecasting tasks and provides input data for various environmental models (e.g. DNDC). By adapting the CMAQ (Community Multi-scale Air Quality) model we have designed a combined ambient air-meteorological model (WRF-CMAQ). In this research it is important to apply different emission databases and a background model describing the initial distribution of the pollutant. We used SMOKE (Sparse Matrix Operator Kernel Emissions) model for construction emission dataset from EMEP (European Monitoring and Evaluation Programme) inventories and GEOS-Chem model for initial and boundary conditions. Our model settings were CMAQ CB05 (Carbon Bond 2005) chemical mechanism with 108 x 108 km, 36 x 36 km and 12 x 12 km grids for regions of Europe, the Carpathian Basin and Hungary respectively. i) The structure of the model system, ii) a case study for Carpathian Basin (an anticyclonic weather situation at 21th September 2012) are presented. iii) Verification of ozone forecast has been provided based on the measurements of background air pollution stations. iv) Effects of model attributes (f.e. transition time, emission dataset, parameterizations) for the ozone forecast in Hungary are also investigated.

  5. A spectral transform dynamical core option within the Community Atmosphere Model (CAM4)

    SciTech Connect

    Evans, Katherine J; Mahajan, Salil; Branstetter, Marcia L; McClean, Julie L.; Caron, Julie M.; Maltrud, Matthew E.; Hack, James J; Bader, David C; Neale, Rich

    2014-01-01

    A spectral transform dynamical core with an 85 spectral truncation resolution (T85) within the Community Atmosphere Model (CAM), version 4, is evaluated within the recently released Community Earth System Model, version 1.0 (CESM) global climate model. The spectral dynamical core option provides a well-known base within the climate model community from which to assess climate behavior and statistics, and its relative computational efficiency for smaller computing platforms allows it to be extended to perform climate length simulations using high-resolution configurations in the near term. To establish the characteristics of the CAM4 T85, an ensemble of simulations covering the present day observational period using forced sea surface temperatures and prescribed sea-ice extent are evaluated. Overall, the T85 ensemble attributes and biases are similar to a companion ensemble of simulations using the one degree finite volume (FV1) dynamical core, relative to observed and model derived datasets. Notable improvements with T85 compared to FV1 include the representation of wintertime Arctic sea level pressure and summer precipitation over the Western Indian subcontinent. The mean and spatial patterns of the land surface temperature trends over the AMIP period are generally well simulated with the T85 ensemble relative to observations, however the model is not able to capture the extent nor magnitude of changes in temperature extremes over the boreal summer, where the changes are most dramatic. Biases in the wintertime Arctic surface temperature and annual mean surface stress fields persist with T85 as with the CAM3 version of T85.

  6. Numerical Errors in Coupling Micro- and Macrophysics in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Gardner, D. J.; Caldwell, P.; Sexton, J. M.; Woodward, C. S.

    2014-12-01

    In this study, we investigate numerical errors in version 2 of the Morrison-Gettelman microphysics scheme (MG2) and its coupling to a development version of the macrophysics (condensation/evaporation) scheme used in version 5 of the Community Atmosphere Model (CAM5). Our analysis is performed using a modified version of the Kinematic Driver (KiD) framework, which combines the full macro- and microphysics schemes from CAM5 with idealizations of all other model components. The benefit of this framework is that its simplicity makes diagnosing problems easier and its efficiency allows us to test a variety of numerical schemes. Initial results suggest that numerical convergence requires time steps much shorter than those typically used in CAM5.

  7. The Implementation of the Finite-Volume Dynamical Core in the Community Atmosphere Model

    SciTech Connect

    Sawyer, W B; Mirin, A A

    2005-07-26

    A distributed memory message-passing parallel implementation of a finite-volume discretization of the primitive equations in the Community Atmosphere Model 3.0 is presented. These three-dimensional equations can be decoupled into a set of two-dimensional equations by the introduction of a floating vertical coordinate, resulting in considerable potential parallelism. Subsequent analysis of the data dependencies --in particular those arising from the polar singularity of the latitude-longitude coordinate system--suggests that two separate domain decompositions should be employed, each tailored for a different part of the model. The implementation requires that data be periodically redistributed between these two decompositions. Furthermore, data from nearest neighbors are kept in halo regions, which are updated between iterations. These data movements are optimized through one-sided communication primitives and multithreading. The resulting algorithm is shown to scale to very large machine configurations, even for relatively coarse resolutions.

  8. The Implementation of the Finite-Volume Dynamical Core in the Community Atmosphere Model

    SciTech Connect

    Sawyer, W B; Mirin, A A

    2004-11-30

    A distributed memory message-passing parallel implementation of a finite-volume discretization of the primitive equations in the Community Atmosphere Model is presented. These three-dimensional equations can be decoupled into a set of two-dimensional equations by the introduction of a floating vertical coordinate, resulting in considerable potential parallelism. Subsequent analysis of the data dependencies--in particular those arising from the polar singularity of the latitude-longitude coordinate system--suggests that two separate domain decompositions should be employed, each tailored for a different part of the model. The implementation requires that data be periodically redistributed between these two decompositions. Furthermore, data from nearest neighbors are kept in halo regions, which are updated between iterations. These data movements are optimized through one-sided communication primitives and multithreading. The resulting algorithm is shown to scale to very large machine configurations, even for relatively coarse resolutions.

  9. CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model.

    SciTech Connect

    Dennis, John; Edwards, Jim; Evans, Kate J; Guba, O; Lauritzen, Peter; Mirin, Art; St.-Cyr, Amik; Taylor, Mark; Worley, Patrick H

    2012-01-01

    The Community Atmosphere Model (CAM) version 5 includes a spectral element dynamical core option from NCAR's High-Order Method Modeling Environment. It is a continuous Galerkin spectral finite element method designed for fully unstructured quadrilateral meshes. The current configurations in CAM are based on the cubed-sphere grid. The main motivation for including a spectral element dynamical core is to improve the scalability of CAM by allowing quasi-uniform grids for the sphere that do not require polar filters. In addition, the approach provides other state-of-the-art capabilities such as improved conservation properties. Spectral elements are used for the horizontal discretization, while most other aspects of the dynamical core are a hybrid of well tested techniques from CAM's finite volume and global spectral dynamical core options. Here we first give a overview of the spectral element dynamical core as used in CAM. We then give scalability and performance results from CAM running with three different dynamical core options within the Community Earth System Model, using a pre-industrial time-slice configuration. We focus on high resolution simulations of 1/4 degree, 1/8 degree, and T340 spectral truncation.

  10. A scalable implementation of a finite-volume dynamical core in the Community Atmosphere Model

    SciTech Connect

    Mirin, A A; Sawyer, W B

    2004-09-24

    A distributed memory message-passing parallel implementation of a finite-volume discretization of the primitive equations in the Community Atmosphere Model is presented. Due to the data dependencies resulting from the polar singularity of the latitude-longitude coordinate system, we employ two separate domain decompositions within the dynamical core--one in latitude/level space, and the other in longitude/latitude space. This requires that the data be periodically redistributed between these two decompositions. In addition, the domains contain halo regions that cover the nearest neighbor data dependencies. A combination of several techniques, such as one-sided communication and multithreading, are presented to optimize data movements. The resulting algorithm is shown to scale to very large machine configurations, even for relatively coarse resolutions.

  11. A Scalable Implementation of a Finite-Volume Dynamical Core in the Community Atmosphere Model

    SciTech Connect

    Sawyer, W; Mirin, A

    2004-06-25

    A distributed memory message-passing parallel implementation of a finite-volume discretization of the primitive equations in the Community Atmosphere Model is presented. Due to the data dependencies resulting from the polar singularity of the latitude-longitude coordinate system, it is necessary to employ two separate domain decompositions within the dynamical core. Data must be periodically redistributed between these two decompositions. In addition, the domains contain halo regions that cover the nearest neighbor data dependencies. A combination of several techniques, such as one-sided communication and multithreading, are presented to optimize data movements. The resulting algorithm is shown to scale to very large machine configurations, even for relatively coarse resolutions.

  12. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE PAGESBeta

    Scanza, R. A.; Mahowald, N.; Ghan, S.; Zender, C. S.; Kok, J. F.; Liu, X.; Zhang, Y.

    2014-07-02

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as +0.05 W m−2 for both CAM4 and CAM5 simulations with mineralogy and compare this both with simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 W m−2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 W m−2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in-situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  13. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE PAGESBeta

    Scanza, R. A.; Mahowald, N.; Ghan, S.; Zender, C. S.; Kok, J. F.; Liu, X.; Zhang, Y.; Albani, S.

    2015-01-15

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm−2 for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm−2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 Wm−2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  14. Assessment of Indian summer monsoon simulation by Community Atmosphere Model (CAM3)

    NASA Astrophysics Data System (ADS)

    Das, Sukanta Kumar; Deb, Sanjib Kumar; Kishtawal, C. M.; Pal, P. K.

    2012-07-01

    Seasonal prediction of Indian Summer Monsoon (ISM) has been attempted for the current year 2011 using Community Atmosphere Model (CAM) developed at the National Centre for Atmospheric Research (NCAR). First, 30 years of model climatology starting from 1981 to 2010 has been generated to capture the variability of ISM over the Indian region using 30 seasonal simulations. The simulated model climatology has been validated with different sets of observed climatology, and it was observed that the simulated climatological rainfall is affected by model bias. Subsequently, a bias correction procedure using the Tropical Rainfall Measuring Mission (TRMM) 3B43 rainfall has been proposed. The bias-corrected rainfall climatology shows both spatial and temporal variability of ISM satisfactorily. Further, four sets of 10-member ensemble simulations of ISM 2009 and 2010 have been performed in hindcast mode using observed sea surface temperature (SST) and persistence of April SST anomaly, and it has been found that the bias-corrected model rainfall captures the seasonal variability of ISM reasonably well with some discrepancies in these two contrasting monsoon years. With this positive background, the seasonal prediction of ISM 2011 has been carried out in forecast mode with the assumption of persistence of May SST anomaly from June through September 2011. The model assessment shows an 11% deficiency in All-India Rainfall (AIR) of ISM 2011. In particular, the monthly accumulated rains are predicted to be 101% (17.6 cm), 86% (24.3 cm), 83% (21.0 cm) and 95% (15.5 cm) of normal AIR for the months of June, July, August and September, respectively.

  15. Subcolumns in the Community Atmosphere Model Sampled From a Higher Order Closure Moist Turbulence Parameterization

    NASA Astrophysics Data System (ADS)

    Thayer-Calder, K.; Larson, V. E.; Gettelman, A.; Craig, C.; Goldhaber, S.; Schanen, D.

    2013-12-01

    Global climate models (GCMs) have long had trouble representing climate variability that is highly dependent on convective variability. Convective clouds operate on scales far too small to actually simulate on a large GCM grid. To rectify these issues, GCM development is moving in several directions simultaneously. While much work is focusing on improved convective parameterizations, some modelers are increasing resolution to the point where deep convective clouds can be resolved on the grid scale. Others are using a super-parameterized approach, where small-scale models are embedded within the large-scale grid. Our study utilizes a new approach to modeling convective variability that attempts to model coupled convective and microphysics processes more explicitly than traditional parameterizations. Using the new Community Atmosphere Model (CAM) subcolumn framework, we create several instances of local cloudy or clear air profiles within the large-scale GCM grid. Each sub-column is instantiated through Latin-Hypercube sampling of double-gaussian PDFs predicted by a higher-order closure cloud parameterization known as CLUBB (Cloud Layers Unified By Binormals). The CAM microphysics code then runs with each instance, and the resulting heat and moisture tendencies are averaged and returned to the GCM in the same way as traditional parameterizations. Here, we present results from single-column simulations of CAM using this sub-column approach to coupling the moist turbulence parameterization to the microphysics scheme.

  16. “World avoided” simulations with the Whole Atmosphere Community Climate Model

    NASA Astrophysics Data System (ADS)

    Garcia, Rolando R.; Kinnison, Douglas E.; Marsh, Daniel R.

    2012-12-01

    We use the Whole Atmosphere Community Climate Model, coupled to a deep ocean model, to investigate the impact of continued growth of halogenated ozone depleting substances (ODS) in the absence of the Montreal Protocol. We confirm the previously reported result that the growth of ODS leads to a global collapse of the ozone layer in mid-21st century, with column amounts falling to 100 DU or less at all latitudes. We also show that heterogeneous activation of chlorine in the lower stratosphere hastens this collapse but is not essential to produce it. The growth of ODS, which are also greenhouse gases, produces a radiative forcing of 4 W m-2by 2070, nearly equal that of the non-ODS greenhouse gases CO2, CH4, and N2O in the RCP4.5 scenario of IPCC. This leads to surface warming of over 2 K in the tropics, 6 K in the Arctic, and close to 4 K in Antarctica in 2070 compared to the beginning of the century. We explore the reversibility of these impacts following complete cessation of ODS emissions in the mid-2050s. We find that impacts are reversed on various time scales, depending on the atmospheric lifetime of the ODS that cause them. Thus ozone in the lower stratosphere in the tropics and subtropics recovers very quickly because the ODS that release chlorine and bromine there (e.g., methyl chloroform and methyl bromide) have short atmospheric lifetimes and are removed within a few years. On the other hand, ozone depletion in the polar caps and global radiative forcing depend on longer-lived ODS, such that much of these impacts persist through the end of our simulations in 2070.

  17. Boreal winter MJO teleconnection in the Community Atmosphere Model version 5 with the Unified Convection parameterization

    SciTech Connect

    Yoo, Changhyun; Park, Sungsu; Kim, Daehyun; Yoon, Jin-Ho; Kim, Hye-Mi

    2015-10-15

    The Madden-Julian Oscillation (MJO), the dominant mode of tropical intraseasonal variability, influences weather and climate in the extratropics through atmospheric teleconnection. In this study, two simulations using the Community Atmosphere Model version 5 (CAM5) - one with the default shallow and deep convection schemes and the other with the Unified Convection scheme (UNICON) - are employed to examine the impacts of cumulus parameterizations on the simulation of the boreal wintertime MJO teleconnection in the Northern Hemisphere. We demonstrate that the UNICON substantially improves the MJO teleconnection. When the UNICON is employed, the simulated circulation anomalies associated with the MJO better resemble the observed counterpart, compared to the simulation with the default convection schemes. Quantitatively, the pattern correlation for the 300-hPa geopotential height anomalies between the simulations and observation increases from 0.07 for the default schemes to 0.54 for the UNICON. These circulation anomalies associated with the MJO further help to enhance the surface air temperature and precipitation anomalies over North America, although room for improvement is still evident. Initial value calculations suggest that the realistic MJO teleconnection with the UNICON is not attributed to the changes in the background wind, but primarily to the improved tropical convective heating associated with the MJO.

  18. A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model

    SciTech Connect

    Covey, C; Brandon, S; Bremer, P T; Domyancis, D; Garaizar, X; Johannesson, G; Klein, R; Klein, S A; Lucas, D D; Tannahill, J; Zhang, Y

    2011-10-27

    Uncertainty quantification (UQ) is a fundamental challenge in the numerical simulation of Earth's weather and climate, and other complex systems. It entails much more than attaching defensible error bars to predictions: in particular it includes assessing low-probability but high-consequence events. To achieve these goals with models containing a large number of uncertain input parameters, structural uncertainties, etc., raw computational power is needed. An automated, self-adapting search of the possible model configurations is also useful. Our UQ initiative at the Lawrence Livermore National Laboratory has produced the most extensive set to date of simulations from the US Community Atmosphere Model. We are examining output from about 3,000 twelve-year climate simulations generated with a specialized UQ software framework, and assessing the model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of the input parameters we vary are related to the boundary layer, clouds, and other sub-grid scale processes. Our simulations prescribe surface boundary conditions (sea surface temperatures and sea ice amounts) to match recent observations. Fully searching this 21+ dimensional space is impossible, but sensitivity and ranking algorithms can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination. Bayesian statistical constraints, employing a variety of climate observations as metrics, also seem promising. Observational constraints will be important in the next step of our project, which will compute sea surface temperatures and sea ice interactively, and will study climate change due to increasing atmospheric carbon dioxide.

  19. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE PAGESBeta

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Model computational expense is estimated, and sensitivity to the number of subcolumns is investigated. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in shortwave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation.« less

  20. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; Weber, J. K.; Larson, V. E.; Wyant, M. C.; Wang, M.; Guo, Z.; Ghan, S. J.

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Model computational expense is estimated, and sensitivity to the number of subcolumns is investigated. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in shortwave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation.

  1. Immersion freezing by natural dust based on a soccer ball model with the Community Atmospheric Model version 5: climate effects

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Liu, Xiaohong

    2014-12-01

    We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 736-741) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the three SBM parameters. Changes of mean contact angle and the number of surface sites lead to changes of cloud properties in Arctic in spring, which could be attributed to the transport of dust ice nuclei to this region. In winter, significant changes of cloud properties induced by these two parameters mainly occur in northern hemispheric mid-latitudes (e.g., East Asia). In comparison, no obvious changes of cloud properties caused by changes of standard deviation can be found in all the seasons. These results are valuable for understanding the heterogeneous ice nucleation behavior, and useful for guiding the future model developments.

  2. Uniformly rotating global radiative-convective equilibrium in the Community Atmosphere Model, version 5

    NASA Astrophysics Data System (ADS)

    Reed, Kevin A.; Chavas, Daniel R.

    2015-12-01

    A standard atmospheric general circulation model is run in a uniformly rotating global radiative-convective equilibrium configuration to explore the equilibrium state, including the statistics of its constituent tropical cyclones, and its sensitivity to horizontal resolution. The Community Atmosphere Model 5 (CAM5) is run at the conventional resolution of approximately 100 km grid spacing and a high resolution of 25 km grid spacing globally. The setup uses an aqua-planet configuration with spatially uniform, diurnally varying insolation, uniform fixed sea surface temperatures, and a uniform rotation rate equal to that at 10°N. The resulting state is one in which tropical cyclones fill the global domain, such that storm count and outer storm size covary strongly. At higher resolution, the storm inner core is more intense and compact but the size of the outer circulation decreases only marginally, and storm count increases in a manner consistent with this decrease in size. Furthermore, the size of the wind field and precipitation fields are highly correlated. A simple analytical model is found to robustly reproduce the radial structure of the broad outer storm circulation. Finally, the minimum central pressure is demonstrated to be an exclusive function of peak azimuthal-mean wind speed and outer storm size. Despite significant changes in the statistics of storm count, intensity, and structure, the mean environment, including the potential intensity, is nearly identical for both simulations. Results are compared with the nonrotating case from a prior study, and a generalized conceptual framework for the interpretation of aggregation with or without rotation is proposed.

  3. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE PAGESBeta

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-06-30

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  4. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    SciTech Connect

    Thayer-Calder, Katherine; Gettelman, A.; Craig, Cheryl; Goldhaber, Steve; Bogenschutz, Peter; Chen, Chih-Chieh; Morrison, H.; Hoft, Jan; Raut, E.; Griffin, Brian M.; Weber, J. K.; Larson, Vincent E.; Wyant, M. C.; Wang, Minghuai; Guo, Zhun; Ghan, Steven J.

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations.This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, perceptible water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.

  5. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; Weber, J. K.; Larson, V. E.; Wyant, M. C.; Wang, M.; Guo, Z.; Ghan, S. J.

    2015-06-01

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.

  6. Biosphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR community climate model. Technical note. [NCAR (National Center for Atmospheric Research)

    SciTech Connect

    Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J.

    1993-08-01

    A comprehensive model of land-surface processes has been under development suitable for use with various National Center for Atmospheric Research (NCAR) General Circulation Models (GCMs). Special emphasis has been given to describing properly the role of vegetation in modifying the surface moisture and energy budgets. The result of these efforts has been incorporated into a boundary package, referred to as the Biosphere-Atmosphere Transfer Scheme (BATS). The current frozen version, BATS1e is a piece of software about four thousand lines of code that runs as an offline version or coupled to the Community Climate Model (CCM).

  7. Inclusion of Ice Microphysics in the NCAR Community Atmospheric Model Version 3 (CAM3)

    SciTech Connect

    Liu, Xiaohong; Penner, Joyce E.; Ghan, Steven J.; Wang, M.

    2007-09-15

    A prognostic equation for ice crystal number concentration together with an ice nucleation scheme are implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model Version 3 (CAM3) with the aim of studying the indirect effect of aerosols on cold clouds. The effective radius of ice crystals which is used in the radiation and gravitational settlement calculations is now calculated from model predicted mass and number of ice crystals rather than diagnosed as a function of temperature. We add a water vapor deposition scheme to replace the condensation and evaporation (C-E) in the standard CAM3 for ice clouds. The repartitioning of total water into liquid and ice in mixed-phase clouds as a function of temperature is removed, and ice supersaturation is allowed. The predicted ice water content in the modified CAM3 is in better agreement with the Aura MLS data than that in the standard CAM3. The cirrus cloud fraction near the tropical tropopause, which is underestimated in the standard CAM3, is increased, and the cold temperature bias there is reduced by 1-2 °K. However, an increase in the cloud fraction in polar regions makes the underestimation of downwelling shortwave radiation in the standard CAM3 even worse. A sensitivity test reducing the threshold relative humidity with respective to ice (RHi) for heterogeneous ice nucleation from 120% to 105% (representing nearly perfert ice nuclei) increases the global cloud cover by 1.7%, temperature near the tropical tropopause by 4-5 °K, and water vapor in the stratosphere by 50-90%.

  8. Parametric Behaviors of CLUBB in Simulations of Low Clouds in the Community Atmosphere Model (CAM)

    SciTech Connect

    Guo, Zhun; Wang, Minghuai; Qian, Yun; Larson, Vincent E.; Ghan, Steven J.; Ovchinnikov, Mikhail; Bogenschutz, Peter; Gettelman, A.; Zhou, Tianjun

    2015-07-03

    In this study, we investigate the sensitivity of simulated low clouds to 14 selected tunable parameters of Cloud Layers Unified By Binormals (CLUBB), a higher order closure (HOC) scheme, and 4 parameters of the Zhang-McFarlane (ZM) deep convection scheme in the Community Atmosphere Model version 5 (CAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is applied to study the responses of simulated cloud fields to tunable parameters. Our results show that the variance in simulated low-cloud properties (cloud fraction and liquid water path) can be explained by the selected tunable parameters in two different ways: macrophysics itself and its interaction with microphysics. First, the parameters related to dynamic and thermodynamic turbulent structure and double Gaussians closure are found to be the most influential parameters for simulating low clouds. The spatial distributions of the parameter contributions show clear cloud-regime dependence. Second, because of the coupling between cloud macrophysics and cloud microphysics, the coefficient of the dissipation term in the total water variance equation is influential. This parameter affects the variance of in-cloud cloud water, which further influences microphysical process rates, such as autoconversion, and eventually low-cloud fraction. This study improves understanding of HOC behavior associated with parameter uncertainties and provides valuable insights for the interaction of macrophysics and microphysics.

  9. Parametric behaviors of CLUBB in simulations of low clouds in the Community Atmosphere Model (CAM)

    NASA Astrophysics Data System (ADS)

    Guo, Zhun; Wang, Minghuai; Qian, Yun; Larson, Vincent E.; Ghan, Steven; Ovchinnikov, Mikhail; Bogenschutz, Peter A.; Gettelman, Andrew; Zhou, Tianjun

    2015-09-01

    In this study, we investigate the sensitivity of simulated low clouds to 14 selected tunable parameters of Cloud Layers Unified By Binormals (CLUBB), a higher-order closure (HOC) scheme, and four parameters of the Zhang-McFarlane (ZM) deep convection scheme in the Community Atmosphere Model version 5 (CAM5). A Quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is applied to study the responses of simulated cloud fields to tunable parameters. Our results show that the variance in simulated low-cloud properties (cloud fraction and liquid water path) can be explained by the selected tunable parameters in two different ways: macrophysics itself and its interaction with microphysics. First, the parameters related to dynamic and thermodynamic turbulent structure and double Gaussian closure are found to be the most influential parameters for simulating low clouds. The spatial distributions of the parameter contributions show clear cloud-regime dependence. Second, because of the coupling between cloud macrophysics and cloud microphysics, the coefficient of the dissipation term in the total water variance equation is influential. This parameter affects the variance of in-cloud cloud water, which further influences microphysical process rates, such as autoconversion, and eventually low-cloud fraction. This study improves understanding of HOC behavior associated with parameter uncertainties and provides valuable insights for the interaction of macrophysics and microphysics.

  10. Toward a more efficient and scalable checkpoint/restart mechanism in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Anantharaj, Valentine

    2015-04-01

    The number of cores (both CPU as well as accelerator) in large-scale systems has been increasing rapidly over the past several years. In 2008, there were only 5 systems in the Top500 list that had over 100,000 total cores (including accelerator cores) whereas the number of system with such capability has jumped to 31 in Nov 2014. This growth however has also increased the risk of hardware failure rates, necessitating the implementation of fault tolerance mechanism in applications. The checkpoint and restart (C/R) approach is commonly used to save the state of the application and restart at a later time either after failure or to continue execution of experiments. The implementation of an efficient C/R mechanism will make it more affordable to output the necessary C/R files more frequently. The availability of larger systems (more nodes, memory and cores) has also facilitated the scaling of applications. Nowadays, it is more common to conduct coupled global climate simulation experiments at 1 deg horizontal resolution (atmosphere), often requiring about 103 cores. At the same time, a few climate modeling teams that have access to a dedicated cluster and/or large scale systems are involved in modeling experiments at 0.25 deg horizontal resolution (atmosphere) and 0.1 deg resolution for the ocean. These ultrascale configurations require the order of 104 to 105 cores. It is not only necessary for the numerical algorithms to scale efficiently but the input/output (IO) mechanism must also scale accordingly. An ongoing series of ultrascale climate simulations, using the Titan supercomputer at the Oak Ridge Leadership Computing Facility (ORNL), is based on the spectral element dynamical core of the Community Atmosphere Model (CAM-SE), which is a component of the Community Earth System Model and the DOE Accelerated Climate Model for Energy (ACME). The CAM-SE dynamical core for a 0.25 deg configuration has been shown to scale efficiently across 100,000 cpu cores. At this

  11. Structure of the migrating diurnal tide in the Whole Atmosphere Community Climate Model (WACCM)

    NASA Astrophysics Data System (ADS)

    Chang, Loren; Palo, Scott; Hagan, Maura; Richter, Jadwiga; Garcia, Rolando; Riggin, Dennis; Fritts, David

    As part of an ongoing effort to understand the migrating diurnal tide generated by the NCAR Whole Atmosphere Community Climate Model, version 3 (WACCM3), we compare the WACCM3 migrating diurnal tide in the horizontal wind and temperature fields to similar results from the Global Scale Wave Model (GSWM). The WACCM3 diurnal tidal wind fields are also compared to tropical radar measurements at Kauai (22°N, 200.2°E) and Rarotonga (21.3°S, 199.7°E). The large-scale features of the WACCM3 results, such as the global spatial structure and the semiannual amplitude variation are in general agreement with past tidal studies; however, several differences do exist. WACCM3 exhibits a much higher degree of hemispheric asymmetry, lower overall amplitudes around the equinoxes, and peaks which are more confined in latitude when compared with the GSWM. Factors which may contribute to such differences between WACCM3 and GSWM are the solar heating profiles from ozone and water vapor, dissipation, and the zonal mean zonal winds. We find that the internally generated heating in WACCM3 and eddy dissipation values are both smaller than the values specified in the GSWM; the eddy dissipation fields and zonal mean zonal winds of the two models also display measurable differences in spatial structure. Comparisons with radar data show several differences in spatial and seasonal structure. In particular, the diurnal tide zonal winds in WACCM3 above Kauai are considerably larger in amplitude than those observed in the radar data, due to contributions from nonmigrating tidal components including wave numbers eastward 1 through 3, westward 2, and stationary components, which interfere constructively with the migrating component around equinox in WACCM3.

  12. Predicting Cloud Droplet Number Concentration in Community Atmosphere Model (CAM)-Oslo

    SciTech Connect

    Storelvmo, Trude; Kristjansson, J. E.; Ghan, Steven J.; Kirkevag, A.; Seland, O.; Iversen, T.

    2006-12-22

    A continuity equation for cloud droplet number concentration is implemented in an extended version of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 2.0.1 (CAM-2.0.1). The new continuity equation for cloud droplet number concentration consists of a nucleation term and several microphysical sink terms. The nucleation term is calculated based on a parameterization of activation of cloud condensation nuclei. A sub-grid distribution of vertical velocity is used to determine the range of supersaturations found within each model grid box. This supersaturation combined with the hygroscopicity of the aerosols present will determine the number of Cloud Condensation Nuclei (CCN) activated into cloud droplets. The aerosol types considered in this study are sea salt, sulfate, black carbon, organic carbon and mineral dust. The horizontal and vertical distributions of sulfate and carbonaceous aerosols are calculated based on AEROCOM (http://nansen.ipsl.jussieu.fr/AEROCOM) sources. These are combined with the background aerosols, which are a combination of sea salt, mineral dust and sulfate dependent on soil type, wind speed and location (Arctic, Antarctic, maritime, desert or continental). The resulting aerosol size distributions are multimodal, allowing sulfate, black carbon and organic carbon to be both internally and externally mixed with the background aerosols. Microphysical sink terms for cloud droplets are obtained from a prognostic cloud water scheme, assuming a direct proportionality between loss of cloud water and loss of cloud droplets. Based on the framework described above, the cloud droplet number concentration and cloud droplet effective radius can be determined. The resulting cloud radiative forcings (CRF) can hereafter be calculated. By comparing the CRF for two different model runs, one with pre-industrial aerosol sources and the other with sources corresponding to present day, the indirect effect of aerosols can be

  13. The Sensitivity of Simulated Tropical Cyclones to Tunable Physical Parameters in Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    He, F.; Posselt, D. J.

    2014-12-01

    The inability to explicitly resolve the sub-grid scale physical processes (e.g. cloud, precipitation and convection) of atmospheric general circulation models (AGCMs) greatly limits their performance in simulating tropical cyclones (TCs) and predicting their future changes. To address it, this study carried out a total of 92 simulations and investigated the sensitivity of TC simulation to 24 physical parameters that control the deep convection, shallow convection, turbulence, cloud microphysics and cloud macrophysics processes in Community Atmosphere Model version 5 (CAM5). The Reed-Jablonowski TC test case is utilized and run at horizontal resolution of 0.5°×0.5° with 30 vertical levels. The sensitivity is assessed by the uncertainty each parameter exerts on simulated TC while perturbing it from its minimum to maximum with other 23 parameters set to their default value. The uncertainty is characterized by changes on simulated TC intensity (measured by absolute maximum wind speed at 100 m above surface), precipitation rate, shortwave cloud radiative forcing (SWCF), longwave cloud radiative forcing (LWCF), cloud liquid water path (LWP) and cloud ice water path (IWP), the latter five of which are quantified by their area-weighted value over the tropical cyclone region. Both the relative importance among these 24 physical parameters on TC simulation and the response function describing how they affect the six TC characteristics are quantified. It is found that the simulated TC intensity is most sensitive to the parcel fractional mass entrainment rate in Zhang-McFarlane (ZM) deep convection scheme. Decreasing this parameter enables a change from tropical depression to Category-4 storm. In contrast, other 23 physical parameters cause intensity uncertainty within 10 m/s. The precipitation rate, SWCF, LWP and IWP are also found to receive major impact from parameters in ZM deep convection scheme while the LWCF is dominated by parameters both in ZM deep convection and

  14. Modeling land-surface processes and land-atmosphere interactions in the community weather and regional climate WRF model (Invited)

    NASA Astrophysics Data System (ADS)

    Chen, F.; Barlage, M. J.

    2013-12-01

    The Weather Research and Forecasting (WRF) model has been widely used with high-resolution configuration in the weather and regional climate communities, and hence demands its land-surface models to treat not only fast-response processes, such as plant evapotranspiration that are important for numerical weather prediction but also slow-evolving processes such as snow hydrology and interactions between surface soil water and deep aquifer. Correctly representing urbanization, which has been traditionally ignored in coarse-resolution modeling, is critical for applying WRF to air quality and public health research. To meet these demands, numerous efforts have been undertaken to improve land-surface models (LSM) in WRF, including the recent implementation of the Noah-MP (Noah Multiple-Physics). Noah-MP uses multiple options for key sub-grid land-atmosphere interaction processes (Niu et al., 2011; Yang et al., 2011), and contains a separate vegetation canopy representing within- and under-canopy radiation and turbulent processes, a multilayer physically-based snow model, and a photosynthesis canopy resistance parameterization with a dynamic vegetation model. This paper will focus on the interactions between fast and slow land processes through: 1) a benchmarking of the Noah-MP performance, in comparison to five widely-used land-surface models, in simulating and diagnosing snow evolution for complex terrain forested regions, and 2) the effects of interactions between shallow and deep aquifers on regional weather and climate. Moreover, we will provide an overview of recent improvements of the integrated WRF-Urban modeling system, especially its hydrological enhancements that takes into account the effects of lawn irrigation, urban oasis, evaporation from pavements, anthropogenic moisture sources, and a green-roof parameterization.

  15. The Madden-Julian Oscillation in the National Center for Atmospheric Research Community Atmospheric Model-2 with the Tiedtke Convective Scheme

    SciTech Connect

    Liu, P; Wang, B; Sperber, K R; Li, T; Meehl, G A

    2004-07-26

    The boreal winter Madden-Julian oscillation (MJO) remains very weak and irregular in structure in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 2 (CAM2) as in its direct predecessor, the Community Climate Model version 3 (CCM3). The standard version of CAM2 uses the deep convective scheme of Zhang and McFarlane (1995), as in CCM3, with the closure dependent on convective available potential energy (CAPE). Here, sensitivity tests using several versions of the Tiedtke (1989) convective scheme are conducted. Typically, the Tiedtke convection scheme gives an improved mean state, intraseasonal variability, space-time power spectra, and eastward propagation compared to the standard version of the model. Coherent eastward propagation of MJO related precipitation is also much improved, particularly over the Indian-western Pacific Oceans. Sensitivity experiments show that enhanced downdrafts in the Tiedtke scheme reduces the amplitude of the MJO but to a lesser extent than when this scheme is closed on CAPE to represent deep convections. A composite life cycle of the model MJO indicates that over the Indian Ocean wind induced surface heat exchange functions, while over the western/central Pacific Ocean aspects of frictional moisture convergence are evident in the maintenance and eastward propagation of the oscillation.

  16. Effects of elevated atmospheric carbon dioxide on biomass and carbon accumulation in a model regenerating longleaf pine community.

    PubMed

    Runion, G B; Davis, M A; Pritchard, S G; Prior, S A; Mitchell, R J; Torbert, H A; Rogers, H H; Dute, R R

    2006-01-01

    Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this

  17. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    SciTech Connect

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; Gettelman, Andrew; Jablonowski, Christiane

    2014-11-05

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations reveals both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.

  18. Diagnosing the possible dynamics controlling Sahel precipitation in the short-range ensemble community atmospheric model hindcasts

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-heng; Lin, Yen-heng; Lo, Min-hui; Yang, Shu-chih

    2016-01-01

    The actual dynamics and physical mechanisms affecting the Sahel precipitation pattern and amplitude in the climate models remain under debate due to the inconsistent drying and rainfall variability/pattern among them. We diagnose the boreal summer rainfall pattern in the Sahel and its possible causes using short-range ensemble hindcasts based on NCAR community atmospheric model with the local ensemble transform Kalman filter (CAM-LETKF) data assimilation. The CAM-LETKF assimilation was conducted using 64 ensemble members with an assimilation cycle of 6-h. By comparing the superior and inferior groups within these 64 ensembles, we confirmed the influence of the Atlantic in the West Sahel rainfall (a robust feature in the ensembles) and a severe model bias resulting from erroneously modeled locations and magnitudes of low-level Sahara heat low (SHL) and African easterly jet (AEJ). This bias is highly related to atmospheric jet dynamics as shown in recent studies and local wave instability triggered mainly by the boundary-layer temperature gradient and amplified by land-atmosphere interactions. In particular, our results demonstrated that more accurate divergence and convergence fields resulting from improved SHL and AEJ in the superior groups enabled more accurate rainbelt patterns to be discerned, thus improving the ensemble mean model hindcast prediction by more than 25 % in precipitation and 16 % in temperature. We concluded that the use of low-resolution climate models to project future rainfall in the Sahel requires caution because the model hindcasts may quickly diverge even the same boundary conditions and forcings are applied. The model bias may easily grow up within a few months in the short-range CAM-LETKF hindcast, let along the free model centennial simulations. Unconstrained future climate model projections for the Sahel must more effectively capture the short-term key boundary-layer dynamics in the boreal summer to be credible regardless model dynamics

  19. Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5

    SciTech Connect

    Liu, Xiaohong; Easter, Richard C.; Ghan, Steven J.; Zaveri, Rahul A.; Rasch, Philip J.; Shi, Xiangjun; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, Francis; Conley, Andrew; Park, S.; Neale, Richard; Hannay, Cecile; Ekman, A. M.; Hess, Peter; Mahowald, N.; Collins, William D.; Iacono, Michael J.; Bretherton, Christopher S.; Flanner, M. G.; Mitchell, David

    2012-05-21

    A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven-lognormal modes (MAM7), and a three-lognormal mode version (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most ({approx}90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that freshly emitted POM and BC are wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging process increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and

  20. How much does sea spray aerosol organic matter impact clouds and radiation? Sensitivity studies in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Burrows, S. M.; Liu, X.; Elliott, S.; Easter, R. C.; Singh, B.; Rasch, P. J.

    2015-12-01

    Submicron marine aerosol particles are frequently observed to contain substantial fractions of organic material, hypothesized to enter the atmosphere as part of the primary sea spray aerosol formed through bubble bursting. This organic matter in sea spray aerosol may affect cloud condensation nuclei and ice nuclei concentrations in the atmosphere, particularly in remote marine regions. Members of our team have developed a new, mechanistic representation of the enrichment of sea spray aerosol with organic matter, the OCEANFILMS parameterization (Burrows et al., 2014). This new representation uses fields from an ocean biogeochemistry model to predict properties of the emitted aerosol. We have recently implemented the OCEANFILMS representation of sea spray aerosol composition into the Community Atmosphere Model (CAM), and performed sensitivity experiments and comparisons with alternate formulations. Early results from these sensitivity simulations will be shown, including impacts on aerosols, clouds, and radiation. References: Burrows, S. M., Ogunro, O., Frossard, A. A., Russell, L. M., Rasch, P. J., and Elliott, S. M.: A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria, Atmos. Chem. Phys., 14, 13601-13629, doi:10.5194/acp-14-13601-2014, 2014.

  1. Atmospheric Modeling

    EPA Science Inventory

    Although air quality models have been applied historically to address issues specific to ambient air quality standards (i.e., one criteria pollutant at a time) or welfare (e.g.. acid deposition or visibility impairment). they are inherently multipollutant based. Therefore. in pri...

  2. ONE-ATMOSPHERE DYNAMICS DESCRIPTION IN THE MODELS-3 COMMUNITY MULTI-SCALE QUALITY (CMAQ) MODELING SYSTEM

    EPA Science Inventory

    This paper proposes a general procedure to link meteorological data with air quality models, such as U.S. EPA's Models-3 Community Multi-scale Air Quality (CMAQ) modeling system. CMAQ is intended to be used for studying multi-scale (urban and regional) and multi-pollutant (ozon...

  3. Climate simulations with a new air-sea turbulent flux parameterization in the National Center for Atmospheric Research Community Atmosphere Model (CAM3)

    NASA Astrophysics Data System (ADS)

    Ban, Junmei; Gao, Zhiqiu; Lenschow, Donald H.

    2010-01-01

    This study examines climate simulations with the National Center for Atmospheric Research Community Atmosphere Model version 3 (NCAR CAM3) using a new air-sea turbulent flux parameterization scheme. The current air-sea turbulent flux scheme in CAM3 consists of three basic bulk flux equations that are solved simultaneously by an iterative computational technique. We recently developed a new turbulent flux parameterization scheme where the Obukhov stability length is parameterized directly by using a bulk Richardson number, an aerodynamic roughness length, and a heat roughness length. Its advantages are that it (1) avoids the iterative process and thus increases the computational efficiency, (2) takes account of the difference between z0m and z0h and allows large z0m/z0h, and (3) preserves the accuracy of iteration. An offline test using Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) data shows that the original scheme overestimates the surface fluxes under very weak winds but the new scheme gives better results. Under identical initial and boundary conditions, the original CAM3 and CAM3 coupled with the new turbulent flux scheme are used to simulate the global distribution of air-sea surface turbulent fluxes, and precipitation. Comparisons of model outputs against the European Remote Sensing Satellites (ERS), the Objectively Analyzed air-sea Fluxes (OAFlux), and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) show that: (1) the new scheme produces more realistic surface wind stress in the North Pacific and North Atlantic trade wind belts and wintertime extratropical storm track regions; (2) the latent heat flux in the Northern Hemisphere trade wind zones shows modest improvement in the new scheme, and the latent heat flux bias in the western boundary current region of the Gulf Stream is reduced; and (3) the simulated precipitation in the new scheme is closer to observation in the Asian monsoon

  4. The Social Network of Tracer Variations and O(100) Uncertain Photochemical Parameters in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Labute, M.; Chowdhary, K.; Debusschere, B.; Cameron-Smith, P. J.

    2014-12-01

    Simulating the atmospheric cycles of ozone, methane, and other radiatively important trace gases in global climate models is computationally demanding and requires the use of 100's of photochemical parameters with uncertain values. Quantitative analysis of the effects of these uncertainties on tracer distributions, radiative forcing, and other model responses is hindered by the "curse of dimensionality." We describe efforts to overcome this curse using ensemble simulations and advanced statistical methods. Uncertainties from 95 photochemical parameters in the trop-MOZART scheme were sampled using a Monte Carlo method and propagated through 10,000 simulations of the single column version of the Community Atmosphere Model (CAM). The variance of the ensemble was represented as a network with nodes and edges, and the topology and connections in the network were analyzed using lasso regression, Bayesian compressive sensing, and centrality measures from the field of social network theory. Despite the limited sample size for this high dimensional problem, our methods determined the key sources of variation and co-variation in the ensemble and identified important clusters in the network topology. Our results can be used to better understand the flow of photochemical uncertainty in simulations using CAM and other climate models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC).

  5. High Resolution Aqua Planet Simulations With the Community Atmospheric Model (CAM) Using the HOMME Spectral Element Dynamical Core

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Edwards, J.; St. Cyr, A.; Lauritzen, P.

    2008-12-01

    We will describe recent high resolution Aqua planet simulation results from CAM/HOMME, a highly scalable cubed-sphere based atmospheric model that has been integrated into the Community Climate System Model (CCSM). Aqua planet simulations have no known "correct" answer, so we evaluate the simulations using the Williamson equivalent resolution model inter-comparison methodology. Our highest resolution simulations, performed using 56,000 processors of the LLNL BG/L system at 1/8 degree horizontal result ion, show a well resolved Nastrom-Gage type transition from k-3 to k-5/3 in the kinetic energy spectra. CAM/HOMME uses a 4th order spectral element discretization for the dynamics coupled with monotone (2nd order) or sign-preserving (3rd order) advection scheme and a hyper-viscosity term for dissipation. We use a new, "compatible" formulation of the spectral element method, meaning it has discrete analogs of several key properties of the spherical div, grad and curl operators. This allows the method to locally conserve both mass and energy and (in 2D) relative vorticity. The conservation is possible even when the equations are not written in conservation form, making it the first atmospheric model in the CCSM to conserve both mass and energy. The tracer advection is consistent with the hydrostatic mass equation. Monotone or sign-preserving tracer advection is obtained with the spectral element horizontal discretization on vertically Lagrangian surfaces combined with a PPM based vertical remap.

  6. Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in-situ observations

    NASA Astrophysics Data System (ADS)

    Eidhammer, T.; Morrison, H.; Bansemer, A.; Gettelman, A.; Heymsfield, A. J.

    2014-09-01

    Detailed measurements of ice crystals in cirrus clouds were used to compare with results from the Community Atmospheric Model Version 5 (CAM5) global climate model. The observations are from two different field campaigns with contrasting conditions: Atmospheric Radiation Measurements Spring Cloud Intensive Operational Period in 2000 (ARM-IOP), which was characterized primarily by midlatitude frontal clouds and cirrus, and Tropical Composition, Cloud and Climate Coupling (TC4), which was dominated by anvil cirrus. Results show that the model typically overestimates the slope parameter of the exponential size distributions of cloud ice and snow, while the variation with temperature (height) is comparable. The model also overestimates the ice/snow number concentration (0th moment of the size distribution) and underestimates higher moments (2nd through 5th), but compares well with observations for the 1st moment. Overall the model shows better agreement with observations for TC4 than for ARM-IOP in regards to the moments. The mass-weighted terminal fall speed is lower in the model compared to observations for both ARM-IOP and TC4, which is partly due to the overestimation of the size distribution slope parameter. Sensitivity tests with modification of the threshold size for cloud ice to snow autoconversion (Dcs) do not show noticeable improvement in modeled moments, slope parameter and mass weighed fall speed compared to observations. Further, there is considerable sensitivity of the cloud radiative forcing to Dcs, consistent with previous studies, but no value of Dcs improves modeled cloud radiative forcing compared to measurements. Since the autoconversion of cloud ice to snow using the threshold size Dcs has little physical basis, future improvement to combine cloud ice and snow into a single category, eliminating the need for autoconversion, is suggested.

  7. Surprising Resilience of the Madden-Julian Oscillation to Extreme Climate Cooling in the Superparameterized Community Atmosphere Model.

    NASA Astrophysics Data System (ADS)

    Pritchard, M. S.; Yang, D.

    2014-12-01

    We test the hypothesis that radiative convective equilibrium (RCE) self-aggregation is a good metaphor for the maintenance of the Madden-Julian Oscillation by imposing extreme cooling in the Superparameterized Community Atmosphere Model (SPCAM) v. 3.0 in a uniform SST configuration. The expectation is that - like RCE self-aggregation - SPCAM's simulated MJO should shut down at sea surface temperatures significantly less than 25 degrees Celsius. Remarkably, the MJO in SPCAM is resilient to extreme cooling down to one degree Celsius. With cooling, the simulated MJO becomes more barotropic and its zonal wavelength decreases. The amplitude decrease and horizontal scale contraction are consistent with the theoretical prediction from Yang and Ingersoll (2014, GRL).

  8. Aviation 2006 NOx-induced effects on atmospheric ozone and HOx in Community Earth System Model (CESM)

    NASA Astrophysics Data System (ADS)

    Khodayari, A.; Tilmes, S.; Olsen, S. C.; Phoenix, D. B.; Wuebbles, D. J.; Lamarque, J.-F.; Chen, C.-C.

    2014-09-01

    The interaction between atmospheric chemistry and ozone (O3) in the upper troposphere-lower stratosphere (UTLS) presents a major uncertainty in understanding the effects of aviation on climate. In this study, two configurations of the atmospheric model from the Community Earth System Model (CESM), Community Atmosphere Model with Chemistry, Version 4 (CAM4) and Version 5 (CAM5), are used to evaluate the effects of aircraft nitrogen oxide (NOx = NO + NO2) emissions on ozone and the background chemistry in the UTLS. CAM4 and CAM5 simulations were both performed with extensive tropospheric and stratospheric chemistry including 133 species and 330 photochemical reactions. CAM5 includes direct and indirect aerosol effects on clouds using a modal aerosol module (MAM), whereby CAM4 uses a bulk aerosol module, which can only simulate the direct effect. To examine the accuracy of the aviation NOx-induced ozone distribution in the two models, results from the CAM5 and CAM4 simulations are compared to ozonesonde data. Aviation NOx emissions for 2006 were obtained from the AEDT (Aviation Environmental Design Tool) global commercial aircraft emissions inventory. Differences between simulated O3 concentrations and ozonesonde measurements averaged at representative levels in the troposphere and different regions are 13% in CAM5 and 18% in CAM4. Results show a localized increase in aviation-induced O3 concentrations at aviation cruise altitudes that stretches from 40° N to the North Pole. The results indicate a greater and more disperse production of aviation NOx-induced ozone in CAM5, with the annual tropospheric mean O3 perturbation of 1.2 ppb (2.4%) for CAM5 and 1.0 ppb (1.9%) for CAM4. The annual mean O3 perturbation peaks at about 8.2 ppb (6.4%) and 8.8 ppb (5.2%) in CAM5 and CAM4, respectively. Aviation emissions also result in increased hydroxyl radical (OH) concentrations and methane (CH4) loss rates, reducing the tropospheric methane lifetime in CAM5 and CAM4 by 1.69 and

  9. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    DOE PAGESBeta

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; et al

    2014-11-05

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less

  10. The quasi 2 day wave activities during 2007 austral summer period as revealed by Whole Atmosphere Community Climate Model

    NASA Astrophysics Data System (ADS)

    Gu, Sheng-Yang; Liu, Han-Li; Pedatella, N. M.; Dou, Xiankang; Li, Tao; Chen, Tingdi

    2016-03-01

    The quasi 2 day wave (QTDW) observed during 2007 austral summer period is well reproduced in an reanalysis produced by the data assimilation version of the Whole Atmosphere Community Climate Model (WACCM + Data Assimilation Research Testbed) developed at National Center for Atmospheric Research (NCAR). It is found that the QTDW peaked 3 times from January to February but with different zonal wave numbers. Diagnostic analysis shows that the mean flow instabilities, refractive index, and critical layers of QTDWs are fundamental for their propagation and amplification, and thus, the temporal variations of the background wind are responsible for the different wave number structures at different times. The westward propagating wave number 2 mode (W2) grew and maximized in the first half of January, when the mean flow instabilities related to the summer easterly jet were enclosed by the critical layers of the westward propagating wave number 3 (W3) and wave number 4 (W4) modes. This prevented W3 and W4 from approaching and extracting energy from the unstable region. The W2 decayed rapidly thereafter due to the recession of critical layer and thus the lack of additional amplification by the mean flow instability. The W3 peaked in late January, when the instabilities were still encircled by the critical layer of W4. The attenuation of W3 afterward was also due to the disappearance of critical layer and thus the lack of overreflection. Finally, the W4 peaked in late February when both the instability and critical layer were appropriate.

  11. A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5

    SciTech Connect

    Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

    2013-11-08

    In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model

  12. Effect of Scale Coupling Frequency on Simulated Climatology in the Uncoupled Superparameterized Community Atmosphere Model v. 3.0

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pritchard, M. S.

    2014-12-01

    Recent attempts to accelerate cloud superparameterization for climate simulation by using reduced cloud resolving model (CRM) extents unsatisfyingly amplify upper tropospheric temperature biases and liquid water condensate. The effect of scale coupling frequency, fscale, is investigated as a candidate strategy to remedy these biases by compensating for CRM-trapped subsidence. Significant sensitivity to fscale is found in the 10-year climatology of a superparameterized version of NCAR Community Atmosphere Model 3.0. Higher fscale improves both long wave cloud forcing (LWCF) and short wave cloud forcing (SWCF) in a systematic manner that scales quasi-linearly with increased fscale. In addition, a systematic quasi-linear mid-tropospheric warming associated with faster updraft is observed with higher fscale. These improvements suggest fscale is a useful tuning parameter in superparamtereized global climate models to improve mean state cloud forcing biases and can help remedy the too cold mid-troposphere thermal bias associated with the trapped subsidence when using reduced CRM setups. However, inconsistent LWCF response with ice water path (IWP), e.g. lower LWCF with more IWP, and confounding surface flux responses, e.g. increasing surface flux with fscale, need be further investigated.

  13. The Mean Climate of the Community Atmosphere Model (CAM4) in Forced SST and Fully Coupled Experiments

    SciTech Connect

    Neale, Richard B.; Richter, Jadwiga; Park, Sungsu; Lauritzen, Peter H.; Vavrus, Stephen J.; Rasch, Philip J.; Zhang, Minghua

    2013-07-01

    The Community Atmosphere Model, version 4 (CAM4), was released as part of the Community Climate System Model, version 4 (CCSM4). The finite volume (FV) dynamical core is now the default because of its superior transport and conservation properties. Deep convection parameterization changes include a dilute plume calculation of convective available potential energy (CAPE) and the introduction of convective momentum transport (CMT). An additional cloud fraction calculation is now performed following macrophysical state updates to provide improved thermodynamic consistency. A freeze-drying modification is further made to the cloud fraction calculation in very dry environments (e.g., the Arctic), where cloud fraction and cloud water values were often inconsistent in CAM3. In CAM4 the FV dynamical core further degrades the excessive trade-wind simulation, but reduces zonal stress errors at higher latitudes. Plume dilution alleviates much of the midtropospheric tropical dry biases and reduces the persistent monsoon precipitation biases over the Arabian Peninsula and the southern Indian Ocean. CMT reduces much of the excessive trade-wind biases in eastern ocean basins. CAM4 shows a global reduction in cloud fraction compared to CAM3, primarily as a result of the freeze-drying and improved cloud fraction equilibrium modifications. Regional climate feature improvements include the propagation of stationary waves from the Pacific into midlatitudes and the seasonal frequency of Northern Hemisphere blocking events. A 1° versus 2° horizontal resolution of the FV dynamical core exhibits superior improvements in regional climate features of precipitation and surface stress. Finally, improvements in the fully coupled mean climate between CAM3 and CAM4 are also more substantial than in forced sea surface temperature (SST) simulations.

  14. Climate Simulations Using the Community Atmosphere Model Coupled with a Multi-Variate PDF-Based Cloud Scheme

    NASA Astrophysics Data System (ADS)

    Bogenschutz, P.; Gettelman, A.; Larson, V. E.; Morrison, H.; Chen, C. C.; Thayer-Calder, K.; Craig, C.

    2014-12-01

    Supported by funding through a Climate Process Team (CPT), we have implemented a multi-variate probability density function (PDF) cloud and turbulence scheme into NCAR's Community Atmosphere Model (CAM). The parameterization is known as Cloud Layers Unified by Bi-normals (CLUBB) and is an incomplete third-order turbulence closure centered around a double-Gaussian assumed PDF. CLUBB replaces the existing planetary boundary layer, shallow convection, and cloud macrophysics schemes in CAM with a unified parameterization that drives one double moment microphysics scheme. This presentation documents the performance of CAM-CLUBB for both prescribed sea surface temeprature (SST) and coupled simulations. We will discuss the improved mean state climate, such as improved stratocumulus to cumulus transitions, that can result when compared to CAM5. In addition, CAM-CLUBB is able to improve many long-standing issues that many general circulation models (GCMs) struggle to realistically simulate; such as the Madden-Julian Oscillation (MJO), diurnal cycle of precipitation, and the frequency and intensity of precipitation. We will also discuss preliminary work being done to use CLUBB as a deep convection scheme in CAM.

  15. A Sensitivity Analysis of Cloud Properties to CLUBB Parameters in the Single-Column Community Atmosphere Model (SCAM5)

    SciTech Connect

    Guo, Zhun; Wang, Minghuai; Qian, Yun; Larson, Vincent E.; Ghan, Steven J.; Ovchinnikov, Mikhail; Bogenschutz, Peter; Zhao, Chun; Lin, Guang; Zhou, Tianjun

    2014-09-01

    In this study, we investigate the sensitivity of simulated shallow cumulus and stratocumulus clouds to selected tunable parameters of Cloud Layers Unified by Binormals (CLUBB) in the single column version of Community Atmosphere Model version 5 (SCAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is adopted to study the responses of simulated cloud fields to tunable parameters. One stratocumulus and two shallow convection cases are configured at both coarse and fine vertical resolutions in this study.. Our results show that most of the variance in simulated cloud fields can be explained by a small number of tunable parameters. The parameters related to Newtonian and buoyancy-damping terms of total water flux are found to be the most influential parameters for stratocumulus. For shallow cumulus, the most influential parameters are those related to skewness of vertical velocity, reflecting the strong coupling between cloud properties and dynamics in this regime. The influential parameters in the stratocumulus case are sensitive to the choice of the vertical resolution while little sensitivity is found for the shallow convection cases, as eddy mixing length (or dissipation time scale) plays a more important role and depends more strongly on the vertical resolution in stratocumulus than in shallow convections. The influential parameters remain almost unchanged when the number of tunable parameters increases from 16 to 35. This study improves understanding of the CLUBB behavior associated with parameter uncertainties.

  16. Sensitivity of precipitation to parameter values in the community atmosphere model version 5

    SciTech Connect

    Johannesson, Gardar; Lucas, Donald; Qian, Yun; Swiler, Laura Painton; Wildey, Timothy Michael

    2014-03-01

    One objective of the Climate Science for a Sustainable Energy Future (CSSEF) program is to develop the capability to thoroughly test and understand the uncertainties in the overall climate model and its components as they are being developed. The focus on uncertainties involves sensitivity analysis: the capability to determine which input parameters have a major influence on the output responses of interest. This report presents some initial sensitivity analysis results performed by Lawrence Livermore National Laboratory (LNNL), Sandia National Laboratories (SNL), and Pacific Northwest National Laboratory (PNNL). In the 2011-2012 timeframe, these laboratories worked in collaboration to perform sensitivity analyses of a set of CAM5, 2° runs, where the response metrics of interest were precipitation metrics. The three labs performed their sensitivity analysis (SA) studies separately and then compared results. Overall, the results were quite consistent with each other although the methods used were different. This exercise provided a robustness check of the global sensitivity analysis metrics and identified some strongly influential parameters.

  17. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  18. Regional Biases in Droplet Activation Parameterizations: Strong Influence on Aerosol Second Indirect Effect in the Community Atmosphere Model v5.

    NASA Astrophysics Data System (ADS)

    Morales, R.; Nenes, A.

    2014-12-01

    Aerosol-cloud interactions constitute one of the most uncertain aspects of anthropogenic climate change estimates. The magnitude of these interactions as represented in climate models strongly depends on the process of aerosol activation. This process is the most direct physical link between aerosols and cloud microphysical properties. Calculation of droplet number in GCMs requires the computation of new droplet formation (i.e., droplet activation), through physically based activation parameterizations. Considerable effort has been placed in ensuring that droplet activation parameterizations have a physically consistent response to changes in aerosol number concentration. However, recent analyses using an adjoint sensitivity approach showed that parameterizations can exhibit considerable biases in their response to other aerosol properties, such as aerosol modal diameter or to the aerosol chemical composition. This is a potentially important factor in estimating aerosol indirect effects since changes in aerosol properties from pre-industrial times to present day exhibit a very strong regional signature. In this work we use the Community Atmosphere Model (CAM5) to show that the regional imprint of the changes in aerosol properties during the last century interacts with the droplet activation parameterization in a way that these biases are amplified over climatically relevant regions. Two commonly used activation routines, the CAM5 default, Abdul-Razzak and Ghan parameterization, as well as the Fountoukis and Nenes parameterization are used in this study. We further explored the impacts of Nd parameterization biases in the first and second aerosol indirect effects separately, by performing simulations were droplet number was not allowed to intervene in the precipitation initiation process. The simulations performed show that an unphysical response to changes in the diameter of accumulation mode aerosol translates into extremely high Nd concentrations over South

  19. Sensitivity Studies of Dust Ice Nuclei Effect on Cirrus Clouds with the Community Atmosphere Model CAM5

    NASA Technical Reports Server (NTRS)

    Liu, Xiaohong; Zhang, Kai; Jensen, Eric J.; Gettelman, Andrew; Barahona, Donifan; Nenes, Athanasios; Lawson, Paul

    2012-01-01

    In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0+/-0.1Wm (sup-2) (1 uncertainty) and 2.4+/-0.1Wm (sup-2), respectively due to the presence of dust IN, with the net cloud forcing change of -0.40+/-0.20W m(sup-2). Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205-230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190- 205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (greater than 200 L(sup-1) and underestimate the frequency of low ice crystal number concentration (less than 30 L(sup-1) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.

  20. Sensitivity Studies of Dust Ice Nuclei Effect on Cirrus Clouds with the Community Atmosphere Model CAM5

    SciTech Connect

    Liu, Xiaohong; Shi, Xiangjun; Zhang, Kai; Jensen, Eric; Gettelman, A.; Barahona, Donifan; Nenes, Athanasios; Lawson, Paul

    2012-12-19

    In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0 ± 0.1 W m-2 (1σ uncertainty) and 2.4 ± 0.1 W m-2, respectively due to the presence of dust IN, with the net cloud forcing change of -0.40 ± 0.20 W m-2. Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205–230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190–205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (> 200 L-1) and underestimate the frequency of low ice crystal number concentration (< 30 L-1) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.

  1. Nonisothermal Pluto atmosphere models

    SciTech Connect

    Hubbard, W.B.; Yelle, R.V.; Lunine, J.I. )

    1990-03-01

    The present thermal profile calculation for a Pluto atmosphere model characterized by a high number fraction of CH4 molecules encompasses atmospheric heating by solar UV flux absorption and conductive transport cooling to the surface of Pluto. The stellar occultation curve predicted for an atmosphere of several-microbar surface pressures (which entail the existence of a substantial temperature gradient close to the surface) agrees with observations and implies that the normal and tangential optical depth of the atmosphere is almost negligible. The minimum period for atmospheric methane depletion is calculated to be 30 years. 29 refs.

  2. Improved Low-cloud Simulation from the Community Atmosphere Model with an Advanced Third-order Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Cheng, A.; Xu, K.

    2013-12-01

    This presentation describes the implementation and testing of an advanced third-order turbulence closure, an intermediately-prognostic higher-order turbulence closure (IPHOC), into the Community Atmosphere Model version 5 (CAM5). The third-order turbulence closure introduces a joint double-Gaussian distribution of liquid water potential temperature, total water mixing ratio, and vertical velocity to represent the subgrid scale variations including skewed turbulence circulations. The distribution is inferred from the first-, second-, and third-order moments of the variables given above and is used to diagnose cloud fraction and grid-mean liquid water mixing ratio, as well as the buoyancy term and fourth-order terms in the equations describing the evolution of the second- and third-order moments. In addition, a diagnostic planetary boundary layer (PBL) height approach has been incorporated in IPHOC in order to resolve the strong inversion above PBL for the coarse general circulation model (GCM) vertical grid-spacing. The IPHOC replaces PBL, shallow convection, and cloud macrophysics parameterizations in CAM5. The coupling of CAM5 with IPHOC (CAM5-IP) represents a more unified treatment of boundary layer and shallow convective processes. Results from global climate simulations are presented and suggest that CAM5-IP can provide a better treatment of boundary layer clouds and processes when compared to CAM5. The global annual mean low cloud fraction and precipitation are compared among CAM5, CAM5-IP, and a multi-scale modeling framework model with IPHOC (MMF-IP). The low cloud amounts near the west coast of the subtropical continents are well produced in CAM5-IP and are more abundant than in other two models. The global mean liquid water path is the closest to the SSM/I observation. The cloud structures from CAM5-IP, represented by the cloud fraction and cloud water content at 15°S transect, compare well with the CloudSat/CALIPSO observations. The shallow cumulus

  3. Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5

    SciTech Connect

    Qian, Yun; Yan, Huiping; Hou, Zhangshuan; Johannesson, G.; Klein, Stephen A.; Lucas, Donald; Neale, Richard; Rasch, Philip J.; Swiler, Laura P.; Tannahill, John; Wang, Hailong; Wang, Minghuai; Zhao, Chun

    2015-04-10

    We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics. Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.

  4. Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5

    DOE PAGESBeta

    Qian, Yun; Yan, Huiping; Hou, Zhangshuan; Johannesson, G.; Klein, Stephen A.; Lucas, Donald; Neale, Richard; Rasch, Philip J.; Swiler, Laura P.; Tannahill, John; et al

    2015-04-10

    We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics.more » Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.« less

  5. Southern Hemisphere Sea Ice and the Atmospheric Boundary Layer in a High-Resolution Simulation of the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Ordóñez, A.; Bitz, C. M.

    2015-12-01

    Increasing the horizontal resolution of the sea ice and ocean components in a global climate model has been shown to affect the extent of sea ice and the strength of atmosphere/ocean fluxes. Since existing high-resolution (0.1°) coupled simulations include a dynamical ocean, it is difficult to pinpoint how these results are influenced by the resolution of the sea ice. This project takes a closer look at the impact of sea ice resolution on ocean/atmosphere interactions in the Southern Hemisphere using the Community Earth System Model (CESM1-CAM5) in a slab ocean configuration. In this set-up, sea ice and mixed layer ocean models on a 0.1° grid (high resolution) or 1° grid (standard resolution) are coupled with atmosphere and land models run at the same 0.5° resolution. The high resolution model can produce fine scale, open water areas within the ice pack that facilitate air/sea flux exchanges and reduce the stability of the lower atmosphere in the model. Correlations between sea ice concentration and boundary layer variables will be described at different spatial scales to understand the effects of resolving small scale features. Finally, a kernel feedback analysis will be shown on a 0.1°, double CO2 run to look at the impact of sea ice resolution on the regional lapse rate feedback.

  6. Modeling atmospheric particle deposition

    NASA Astrophysics Data System (ADS)

    Jackson, Msafiri M.

    Experimentally determined dry deposition velocities for atmospheric particles in the size range of 5-80 μm in diameter have been shown to be greater than predictions made with the current state-of-the-art (Sehmel-Hodgson) model which is based on wind tunnel experiment, particularly at higher wind speed. In this research, a model to predict the atmospheric dry deposition velocities of particles has been developed that is similar to a model developed for particle deposition in vertical pipes. The model uses a sigmoid curve to correlate nondimensional inertial deposition velocity (Vdi+) with dimensionless particle relaxation time (/tau+) and flow Reynolds number (Re). Vdi+ obtained from data collected in the atmosphere with particle size classifier system and a flat greased plate, Re, and /tau+ for particles between 1 and 100 μm diameter were fit with a sigmoid curve using the least square procedure to obtain coefficients for the sigmoid curve. Deposition velocities data for particles between 0.06 and 4 μm diameter developed by Sehmel-Hodgson model were used to introduce a Schmidt number (Sc) term to take care of Brownian diffusion. The atmospheric plate deposition velocity model is a function of Vst (Stokes settling velocity), V* (friction velocity), /tau+, Re, and Sc. Model application to 62 atmospheric data set revealed that: generated flux predictions agreed well with atmospheric measurements, and its performance is better than Sehmel-Hodgson model. By comparing the sigmoid curve coefficients developed for vertical pipe data with the coefficients developed for atmospheric data it is concluded that, the two types of deposition are similar when the effects of Re and /tau+ are properly considered. Sensitivity analysis for the model has revealed three distinct regions based on particle size. Of the three physical parameters (/tau+, Re, Sc) in the model, not more than two controls the deposition in any of the identified regions. The plate deposition model which is

  7. Solar Atmosphere Models

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.

    2002-12-01

    This contribution honoring Kees de Jager's 80th birthday is a review of "one-dimensional" solar atmosphere modeling that followed on the initial "Utrecht Reference Photosphere" of Heintze, Hubenet & de Jager (1964). My starting point is the Bilderberg conference, convened by de Jager in 1967 at the time when NLTE radiative transfer theory became mature. The resulting Bilderberg model was quickly superseded by the HSRA and later by the VAL-FAL sequence of increasingly sophisticated NLTE continuum-fitting models from Harvard. They became the "standard models" of solar atmosphere physics, but Holweger's relatively simple LTE line-fitting model still persists as a favorite of solar abundance determiners. After a brief model inventory I discuss subsequent work on the major modeling issues (coherency, NLTE, dynamics) listed as to-do items by de Jager in 1968. The present conclusion is that one-dimensional modeling recovers Schwarzschild's (1906) finding that the lower solar atmosphere is grosso modo in radiative equilibrium. This is a boon for applications regarding the solar atmosphere as one-dimensional stellar example - but the real sun, including all the intricate phenomena that now constitute the mainstay of solar physics, is vastly more interesting.

  8. Implementation of the chemistry module MECCA (v2.5) in the modal aerosol version of the Community Atmosphere Model component (v3.6.33) of the Community Earth System Model

    SciTech Connect

    Long, M. S.; Keene, W. C.; Easter, Richard C.; Sander, R.; Kergweg, A.; Erickson, D.; Liu, Xiaohong; Ghan, Steven J.

    2013-02-22

    A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM; v3.6.33) and the Max Planck Institute for Chemistry’s Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA; v2.5) to provide enhanced resolution of multiphase processes, particularly those involving inorganic halogens, and associated impacts on atmospheric composition and climate. Three Rosenbrock solvers (Ros-2, Ros-3, RODAS-3) were tested in conjunction with the basic load-balancing options available to modal-CAM (1) to establish an optimal configuration of the implicitly-solved multiphase chemistry module that maximizes both computational speed and repeatability of Ros- 2 and RODAS-3 results versus Ros-3, and (2) to identify potential implementation strategies for future versions of this and similar coupled systems. RODAS-3 was faster than Ros-2 and Ros-3 with good reproduction of Ros-3 results, while Ros-2 was both slower and substantially less reproducible relative to Ros-3 results. Modal-CAM with MECCA chemistry was a factor of 15 slower than modal-CAM using standard chemistry. MECCA chemistry integration times demonstrated a systematic frequency distribution for all three solvers, and revealed that the change in run-time performance was due to a change in the frequency distribution of chemical integration times; the peak frequency was similar for all solvers. This suggests that efficient chemistry-focused load-balancing schemes can be developed that rely on the parameters of this frequency distribution.

  9. Initial Examination of the Long Term Thermosphere Changes As Seen in the Whole Atmosphere Community Climate Model - eXtended (WACCM-X) J. M. McInerney, L. Qian, and H.-L Liu

    NASA Astrophysics Data System (ADS)

    McInerney, J. M.; Qian, L.; Liu, H.

    2013-12-01

    It has been over two decades since the projection that, not only will the human induced increase in atmospheric CO2 produce a warming in the troposphere, it will also produce a cooling in the middle to upper atmosphere into the 21st century with significant consequences. The thermospheric density decrease associated with this projected upper atmosphere cooling due to greenhouse gases has been confirmed by observations, in particular satellite drag measurements, and by various modeling studies. Recent studies also suggest potential impacts from the lower atmosphere on thermosphere dynamics such as atmospheric thermal tides and gravity waves. With the current advance of whole atmosphere climate models which extend from the ground through the thermosphere, it is now possible to include effects of these and other lower atmosphere processes in modeling studies of long term thermospheric changes. One such whole atmosphere model under development at the National Center for Atmospheric Research (NCAR) is the Whole Atmosphere Community Climate Model - eXtended (WACCM-X). WACCM-X is a self consistent climate model extending from the ground to approximately 500 kilometers and is based on the Whole Atmosphere Community Climate Model (WACCM) / Community Atmosphere Model (CAM) component of the Community Earth System Model (CESM). Although an interactive ionosphere module is not complete, the globally averaged structure of thermosphere temperature and neutral species from WACCM-X are reasonable compared with the NCAR global mean model. In this study, we will examine a transient WACCM-X simulation from 1955 to 2005 with realistic tropospheric CO2 input and solar and geomagnetic forcing. The preliminary study will focus on the long term changes in the thermosphere from this simulation, in particular the secular changes of thermosphere neutral density and temperature due to anthropogenic forcing.

  10. Atmospheric prediction model survey

    NASA Technical Reports Server (NTRS)

    Wellck, R. E.

    1976-01-01

    As part of the SEASAT Satellite program of NASA, a survey of representative primitive equation atmospheric prediction models that exist in the world today was written for the Jet Propulsion Laboratory. Seventeen models developed by eleven different operational and research centers throughout the world are included in the survey. The surveys are tutorial in nature describing the features of the various models in a systematic manner.

  11. ATMOSPHERIC MODEL DEVELOPMENT

    EPA Science Inventory

    This task provides credible state of the art air quality models and guidance for use in implementation of National Ambient Air Quality Standards for ozone and PM. This research effort is to develop and improve air quality models, such as the Community Multiscale Air Quality (CMA...

  12. Modeling of Cometary Atmospheres

    NASA Technical Reports Server (NTRS)

    Gombosi, Tamas

    2004-01-01

    The NASA supported project 'Modeling of Cometary Atmospheres' has been quite successful in broadening our understanding of the cometary environment. We list peer reviewed publications and conference presentation that have been made as a result of studies performed under this project. Following the list we present details of a selection of the results.

  13. Solar flare model atmospheres

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.

    1993-01-01

    Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.

  14. Quantifying sources of black carbon in western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Wang, H.; Hegg, D. A.; Qian, Y.; Doherty, S. J.; Dang, C.; Ma, P.-L.; Rasch, P. J.; Fu, Q.

    2015-11-01

    The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source-receptor relationships for atmospheric BC and its deposition to snow over western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over northwestern USA and western Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based positive matrix factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.

  15. Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Wang, H.; Hegg, D. A.; Qian, Y.; Doherty, S. J.; Dang, C.; Ma, P.-L.; Rasch, P. J.; Fu, Q.

    2015-05-01

    The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source-receptor relationships for atmospheric BC and its deposition to snow over Western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over the Northwest USA and West Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based Positive Matrix Factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.

  16. Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    DOE PAGESBeta

    Zhang, R.; Wang, H.; Hegg, D. A.; Qian, Y.; Doherty, S. J.; Dang, C.; Ma, P.-L.; Rasch, P. J.; Fu, Q.

    2015-05-04

    The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source-receptor relationships for atmospheric BC and its deposition to snow over Western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over the Northwest USA andmore » West Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based Positive Matrix Factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.« less

  17. Quantifying sources of black carbon in western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    DOE PAGESBeta

    Zhang, R.; Wang, H.; Hegg, D. A.; Qian, Y.; Doherty, S. J.; Dang, C.; Ma, P.-L.; Rasch, P. J.; Fu, Q.

    2015-11-18

    The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source–receptor relationships for atmospheric BC and its deposition to snow over western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over northwestern USA and westernmore » Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based positive matrix factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.« less

  18. Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    SciTech Connect

    Zhang, Rudong; Wang, Hailong; Hegg, D. A.; Qian, Yun; Doherty, Sarah J.; Dang, Cheng; Ma, Po-Lun; Rasch, Philip J.; Fu, Qiang

    2015-11-18

    The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source-receptor relationships for atmospheric BC and its deposition to snow over Western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over the Northwest USA and West Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based Positive Matrix Factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.

  19. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Liu, X.; Ma, P.-L.; Wang, H.; Tilmes, S.; Singh, B.; Easter, R. C.; Ghan, S. J.; Rasch, P. J.

    2016-02-01

    Atmospheric carbonaceous aerosols play an important role in the climate system by influencing the Earth's radiation budgets and modifying the cloud properties. Despite the importance, their representations in large-scale atmospheric models are still crude, which can influence model simulated burden, lifetime, physical, chemical and optical properties, and the climate forcing of carbonaceous aerosols. In this study, we improve the current three-mode version of the Modal Aerosol Module (MAM3) in the Community Atmosphere Model version 5 (CAM5) by introducing an additional primary carbon mode to explicitly account for the microphysical ageing of primary carbonaceous aerosols in the atmosphere. Compared to MAM3, the four-mode version of MAM (MAM4) significantly increases the column burdens of primary particulate organic matter (POM) and black carbon (BC) by up to 40 % in many remote regions, where in-cloud scavenging plays an important role in determining the aerosol concentrations. Differences in the column burdens for other types of aerosol (e.g., sulfate, secondary organic aerosols, mineral dust, sea salt) are less than 1 %. Evaluating the MAM4 simulation against in situ surface and aircraft observations, we find that MAM4 significantly improves the simulation of seasonal variation of near-surface BC concentrations in the polar regions, by increasing the BC concentrations in all seasons and particularly in cold seasons. However, it exacerbates the overestimation of modeled BC concentrations in the upper troposphere in the Pacific regions. The comparisons suggest that, to address the remaining model POM and BC biases, future improvements are required related to (1) in-cloud scavenging and vertical transport in convective clouds and (2) emissions of anthropogenic and biomass burning aerosols.

  20. Reference and Standard Atmosphere Models

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Roberts, Barry C.; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    This paper describes the development of standard and reference atmosphere models along with the history of their origin and use since the mid 19th century. The first "Standard Atmospheres" were established by international agreement in the 1920's. Later some countries, notably the United States, also developed and published "Standard Atmospheres". The term "Reference Atmospheres" is used to identify atmosphere models for specific geographical locations. Range Reference Atmosphere Models developed first during the 1960's are examples of these descriptions of the atmosphere. This paper discusses the various models, scopes, applications and limitations relative to use in aerospace industry activities.

  1. Validation of cloud forcing simulated by the National Center for Atmospheric Research Community Climate Model using observations from the Earth Radiation Budget Experiment

    NASA Technical Reports Server (NTRS)

    Soden, B. J.

    1992-01-01

    Satellite measurements of the effect of clouds on the top of atmosphere radiative energy budget are used to validate model simulations from the National Center for Atmospheric Research Community Climate Model (NCAR CCM). The ability of the NCAR CCM to reproduce the monthly mean global distribution and temporal variability on both daily and seasonal time scales is assessed. The comparison reveals several deficiencies in the CCM cloud representation. Most notable are the difficulties in properly simulating the effect of clouds on the planetary albedo. This problem arises from discrepancies in the model's portrayal of low-level cloudiness and leads to significant errors in the absorbed solar radiation simulated by the model. The CCM performs much better in simulating the effect of clouds on the longwave radiation emitted to space, indicating its relative success in capturing the vertical distribution of cloudiness. The daily variability of the radiative effects of clouds in both the shortwave and longwave spectral regions is systematically overestimated. Analysis of the seasonal variations illustrates a distinct lack of coupling in the seasonal changes in the radiative effects of cloudiness between the tropics and mid-latitudes and between the Northern and Southern Hemisphere. Much of this problem also arises from difficulties in simulating low-level cloudiness, placing further emphasis on the need for better model parameterizations of boundary layer clouds.

  2. Model atmospheres for Betelgeuse.

    NASA Technical Reports Server (NTRS)

    Fay, T. D.; Johnson, H. R.

    1973-01-01

    Detailed comparison of a series of stellar atmospheric models at effective temperatures of 3800 and 3500 K with scanner observations of Betelgeuse (alpha Ori, M2 Iab). The atmospheres are hydrostatic, flux-constant, LTE atmospheres which include the opacity of H2O, CO, CN, and atomic line blanketing. To reduce the flux shortward of 6000 A enough to agree with observations requires either strong atomic line blanketing (or a similar opacity source) or significant reddening, or (likely) both. The visual extinction (an estimate of which depends strongly on the line blanketing, especially in the 1- to 2-micron region) lies between 0.4 and 2.0 mag. Comparison of predicted strengths of observed CO and CN features with observations and of predicted column densities of CO, OH, NH, and H2O with published column densities suggests that C/H may be less than its solar value by about a factor of 10 and C/O may be less than 0.6 in Betelgeuse.

  3. Global Reference Atmosphere Model (GRAM)

    NASA Technical Reports Server (NTRS)

    Woodrum, A. W.

    1989-01-01

    GRAM series of four-dimensional atmospheric model validated by years of data. GRAM program, still available. More current are Gram 86, which includes atmospheric data from 1986 and runs on DEC VAX, and GRAM 88, which runs on IBM 3084. Program generates altitude profiles of atmospheric parameters along any simulated trajectory through atmosphere, and also useful for global circulation and diffusion studies.

  4. Community Multiscale Air Quality Model

    EPA Science Inventory

    The U.S. EPA developed the Community Multiscale Air Quality (CMAQ) system to apply a “one atmosphere” multiscale and multi-pollutant modeling approach based mainly on the “first principles” description of the atmosphere. The multiscale capability is supported by the governing di...

  5. High altitude atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Hedin, Alan E.

    1988-01-01

    Five empirical models were compared with 13 data sets, including both atmospheric drag-based data and mass spectrometer data. The most recently published model, MSIS-86, was found to be the best model overall with an accuracy around 15 percent. The excellent overall agreement of the mass spectrometer-based MSIS models with the drag data, including both the older data from orbital decay and the newer accelerometer data, suggests that the absolute calibration of the (ensemble of) mass spectrometers and the assumed drag coefficient in the atomic oxygen regime are consistent to 5 percent. This study illustrates a number of reasons for the current accuracy limit such as calibration accuracy and unmodeled trends. Nevertheless, the largest variations in total density in the thermosphere are accounted for, to a very high degree, by existing models. The greatest potential for improvements is in areas where we still have insufficient data (like the lower thermosphere or exosphere), where there are disagreements in technique (such as the exosphere) which can be resolved, or wherever generally more accurate measurements become available.

  6. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data

    DOE PAGESBeta

    Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; Boyle, Jim; McFarlane, Sally A.

    2009-07-23

    Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within themore » mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.« less

  7. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data

    SciTech Connect

    Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; Boyle, Jim; McFarlane, Sally A.

    2009-07-23

    Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within the mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.

  8. Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of Community Atmospheric Model (CAM3)

    NASA Astrophysics Data System (ADS)

    Li, Fuyu; Collins, William D.; Wehner, Michael F.; Williamson, David L.; Olson, Jerry G.; Algieri, Christopher

    2011-10-01

    One key question regarding current climate models is whether the projection of climate extremes converges to a realistic representation as the spatial and temporal resolutions of the model are increased. Ideally the model extreme statistics should approach a fixed distribution once the resolutions are commensurate with the characteristic length and time scales of the processes governing the formation of the extreme phenomena of interest. In this study, a series of AGCM runs with idealized 'aquaplanet-steady-state' boundary conditions have been performed with the Community Atmosphere Model CAM3 to investigate the effect of horizontal resolution on climate extreme simulations. The use of the aquaplanet framework highlights the roles of model physics and dynamics and removes any apparent convergence in extreme statistics due to better resolution of surface boundary conditions and other external inputs. Assessed at a same large spatial scale, the results show that the horizontal resolution and time step have strong effects on the simulations of precipitation extremes. The horizontal resolution has a much stronger impact on precipitation extremes than on mean precipitation. Updrafts are strongly correlated with extreme precipitation at tropics at all the resolutions, while positive low-tropospheric temperature anomalies are associated with extreme precipitation at mid-latitudes.

  9. Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of the Community Atmosphere Model (CAM)

    SciTech Connect

    Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G.; Algieri, C.

    2011-03-01

    One key question regarding current climate models is whether the projection of climate extremes converges to a realistic representation as the spatial and temporal resolutions of the model are increased. Ideally the model extreme statistics should approach a fixed distribution once the resolutions are commensurate with the characteristic length and time scales of the processes governing the formation of the extreme phenomena of interest. In this study, a series of AGCM runs with idealized 'aquaplanet-steady-state' boundary conditions have been performed with the Community Atmosphere Model CAM3 to investigate the effect of horizontal resolution on climate extreme simulations. The use of the aquaplanet framework highlights the roles of model physics and dynamics and removes any apparent convergence in extreme statistics due to better resolution of surface boundary conditions and other external inputs. Assessed at a same large spatial scale, the results show that the horizontal resolution and time step have strong effects on the simulations of precipitation extremes. The horizontal resolution has a much stronger impact on precipitation extremes than on mean precipitation. Updrafts are strongly correlated with extreme precipitation at tropics at all the resolutions, while positive low-tropospheric temperature anomalies are associated with extreme precipitation at mid-latitudes.

  10. Aerosol Effects on Cirrus through Ice Nucleation in the Community Atmosphere Model CAM5 with a Statistical Cirrus Scheme

    SciTech Connect

    Wang, Minghuai; Liu, Xiaohong; Zhang, Kai; Comstock, Jennifer M.

    2014-09-01

    A statistical cirrus cloud scheme that tracks ice saturation ratio in the clear-sky and cloudy portion of a grid box separately has been implemented into NCAR CAM5 to provide a consistent treatment of ice nucleation and cloud formation. Simulated ice supersaturation and ice crystal number concentrations strongly depend on the number concentrations of heterogeneous ice nuclei (IN), subgrid temperature formulas and the number concentration of sulfate particles participating in homogeneous freezing, while simulated ice water content is insensitive to these perturbations. 1% to 10% dust particles serving as heterogeneous IN is 20 found to produce ice supersaturaiton in better agreement with observations. Introducing a subgrid temperature perturbation based on long-term aircraft observations of meso-scale motion produces a better hemispheric contrast in ice supersaturation compared to observations. Heterogeneous IN from dust particles significantly alter the net radiative fluxes at the top of atmosphere (TOA) (-0.24 to -1.59 W m-2) with a significant clear-sky longwave component (0.01 to -0.55 W m-2). Different cirrus treatments significantly perturb the net TOA anthropogenic aerosol forcing from -1.21 W m-2 to -1.54 W m-2, with a standard deviation of 0.10 W m-2. Aerosol effects on cirrus clouds exert an even larger impact on the atmospheric component of the radiative fluxes (two or three times the changes in the TOA radiative fluxes) and therefore on the hydrology cycle through the fast atmosphere response. This points to the urgent need to quantify aerosol effects on cirrus clouds through ice nucleation and how these further affect the hydrological cycle.

  11. Climate and atmospheric modeling studies

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The climate and atmosphere modeling research programs have concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global model, and an upper ocean model. Principal applications were the study of the impact of CO2, aerosols, and the solar 'constant' on climate.

  12. Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Womack, A. M.; Artaxo, P. E.; Ishida, F. Y.; Mueller, R. C.; Saleska, S. R.; Wiedemann, K. T.; Bohannan, B. J. M.; Green, J. L.

    2015-11-01

    Fungi are ubiquitous in the atmosphere and may play an important role in atmospheric processes. We investigated the composition and diversity of fungal communities over the Amazon rainforest canopy and compared these communities to fungal communities found in terrestrial environments. We characterized the total fungal community and the metabolically active portion of the community using high-throughput DNA and RNA sequencing and compared these data to predictions generated by a mass-balance model. We found that the total community was primarily comprised of fungi from the phylum Basidiomycota. In contrast, the active community was primarily composed of members of the phylum Ascomycota and included a high relative abundance of lichen fungi, which were not detected in the total community. The relative abundance of Basidiomycota and Ascomycota in the total and active communities was consistent with our model predictions, suggesting that this result was driven by the relative size and number of spores produced by these groups. When compared to other environments, fungal communities in the atmosphere were most similar to communities found in tropical soils and leaf surfaces. Our results demonstrate that there are significant differences in the composition of the total and active fungal communities in the atmosphere, and that lichen fungi, which have been shown to be efficient ice nucleators, may be abundant members of active atmospheric fungal communities over the forest canopy.

  13. Thermal atmospheric models

    NASA Technical Reports Server (NTRS)

    Johnson, Hollis Ralph

    1987-01-01

    The static thermal atmosphere is described and its predictions are compared to observations both to test the validity of the classic assumptions and to distinguish and describe those spectral features with diagnostic value.

  14. The Role of Circulation Features on Black Carbon Transport into the Arctic in the Community Atmosphere Model Version 5 (CAM5)

    SciTech Connect

    Ma, Po-Lun; Rasch, Philip J.; Wang, Hailong; Zhang, Kai; Easter, Richard C.; Tilmes, S.; Fast, Jerome D.; Liu, Xiaohong; Yoon, Jin-Ho; Lamarque, Jean-Francois

    2013-05-28

    Current climate models generally under-predict the surface concentration of black carbon (BC) in the Arctic due to the uncertainties associated with emissions, transport, and removal. This bias is also present in the Community Atmosphere Model Version 5.1 (CAM5). In this study, we investigate the uncertainty of Arctic BC due to transport processes simulated by CAM5 by configuring the model to run in an “offline mode” in which the large-scale circulations are prescribed. We compare the simulated BC transport when the offline model is driven by the meteorology predicted by the standard free-running CAM5 with simulations where the meteorology is constrained to agree with reanalysis products. Some circulation biases are apparent: the free-running CAM5 produces about 50% less transient eddy transport of BC than the reanalysis-driven simulations, which may be attributed to the coarse model resolution insufficient to represent eddies. Our analysis shows that the free-running CAM5 reasonably captures the essence of the Arctic Oscillation (AO), but some discernable differences in the spatial pattern of the AO between the free-running CAM5 and the reanalysis-driven simulations result in significantly different AO modulation of BC transport over Northeast Asia and Eastern Europe. Nevertheless, we find that the overall climatological circulation patterns simulated by the free-running CAM5 generally resembles those from the reanalysis products, and BC transport is very similar in both simulation sets. Therefore, the simulated circulation features regulating the long-range BC transport is unlikely the most important cause of the large under-prediction of surface BC concentration in the Arctic.

  15. Models of Mars' atmosphere (1974)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Atmospheric models for support of design and mission planning of space vehicles that are to orbit the planet Mars, enter its atmosphere, or land on the surface are presented. Quantitative data for the Martian atmosphere were obtained from Earth-base observations and from spacecraft that have orbited Mars or passed within several planetary radii. These data were used in conjunction with existing theories of planetary atmospheres to predict other characteristics of the Martian atmosphere. Earth-based observations provided information on the composition, temperature, and optical properties of Mars with rather coarse spatial resolution, whereas spacecraft measurements yielded data on composition, temperature, pressure, density, and atmospheric structure with moderately good spatial resolution. The models provide the temperature, pressure, and density profiles required to perform basic aerodynamic analyses. The profiles are supplemented by computed values of viscosity, specific heat, and speed of sound.

  16. Using satellite and in-situ observations to evaluate short-term forecasts of cloud-topped boundary layers with the Community Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Williamson, D.; Hannay, C.; Olson, J.; Bretherton, C.; Park, S.; Koehler, M.

    2008-12-01

    The South East Pacific (SEP) has the most persistent stratocumulus deck in the world. Until recently, only sparse observations of the SEP were available. In the last few years, new satellite observations, research cruise data and buoy measurements have become available and give new prospects to improve our understanding and modeling of boundary layer clouds over the SEP. Stratocumulus are among the worst-simulated tropical clouds in climate models. However, it is difficult to take advantage of in-situ observations to understand the causes of the stratocumulus bias in climate simulations because limited observation periods are difficult to compare with model climatological statistics. Applying climate model in short-term forecasts can be extremely valuable to evaluate parameterizations against a limited-period observation. If the model is started from realistic conditions, the systematic errors in short forecasts are predominantly due to parameterization errors. This is because the large-scale circulation stays close to the observed state in these short-range runs. Therefore, it is possible to gain insight into the parameterization deficiencies and to diagnose the processes behind the drift away from reality. Here we evaluate short-term forecasts of the SEP with the Community Atmospheric Model (CAM) against a set of satellite and in-situ observations. The forecasts are analyzed from ECWMF analysis. The simulated period is October 2006, which corresponds to the SEP stratocumulus maximum. The set of observations was gathered for the Pre-VOCALS Model assessment* and includes a week of in-situ data (sounding, ship remote sensing and aerosols) and satellite observations (GOES, MODIS, ISCCP, AMSR-E, SSMI, Quikscat, CloudSat, CALIPSO, AIRS and COSMIC/GPS) We use this testbed to examine the forecast errors in CAM3 and to assess new parameterizations for the next generation model, CAM4. In particular, we evaluate the performance of a new moist turbulence/shallow cumulus

  17. Modeling of Atmosphere Revitalization

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, James; Kittredge, Kenneth

    2012-01-01

    NASA's AES is pioneering new approaches for future human missions beyond Earth orbit. All spacecraft systems must be minimized with respect to mass, power, and volume. Here, we show work related to improving system efficiency and reliability for water separation systems on crewed vehicles and the initial development of COMSOL simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project

  18. Global Reference Atmosphere Model (GRAM)

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Blocker, Rhonda; Justus, C. G.

    1993-01-01

    4D model provides atmospheric parameter values either automatically at positions along linear path or along any set of connected positions specified by user. Based on actual data, GRAM provides thermal wind shear for monthly mean winds, percent deviation from standard atmosphere, mean vertical wind, and perturbation data for each position.

  19. Lagrangian Modeling of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-08-01

    Like watching a balloon borne by the breeze, a Lagrangian model tracks a parcel of air as it flows through the atmosphere. Whether running forward or backward in time, Lagrangian models offer a powerful tool for tracking and understanding the fates, or origins, of atmospheric flows. In the AGU monograph Lagrangian Modeling of the Atmosphere, editors John Lin, Dominik Brunner, Christoph Gerbig, Andreas Stohl, Ashok Luhar, and Peter Webley explore the nuances of the modeling technique. In this interview Eos talks to Lin about the growing importance of Lagrangian modeling as the world settles on climate change mitigation strategies, the societal value of operational modeling, and how recent advances are making it possible to run these complex calculations at home.

  20. Titan atmospheric models intercomparison

    NASA Astrophysics Data System (ADS)

    Pernot, P.

    2008-09-01

    Several groups over the world have developed independently models of the photochemistry of Titan. The Cassini mission reveals daily that the chemical complexity is beyond our expectations e. g. observation of heavy positive and negative ions..., and the models are updated accordingly. At this stage, there is no consensus on the various input parameters, and it becomes increasingly difficult to compare outputs form different models. An ISSI team of experts of those models will be gathered shortly to proceed to an intercomparison, i.e. to assess how the models behave, given identical sets of inputs (collectively defined). Expected discrepancies will have to be elucidated and reduced. This intercomparison will also be an occasion to estimate explicitly the importance of various physicalchemical processes on model predictions versus observations. More robust and validated models are expected from this study for the interpretation of Titanrelated data.

  1. Old-field Community, Climate and Atmospheric Manipulation

    SciTech Connect

    Aimee Classen

    2009-11-01

    We are in the process of finishing a number of laboratory, growth chamber and greenhouse projects, analyzing data, and writing papers. The projects reported addressed these subjects: How do climate and atmospheric changes alter aboveground plant biomass and community structure; Effects of multiple climate changes factors on plant community composition and diversity: what did we learn from a 5-year open-top chamber experiment using constructed old-field communities; Do atmospheric and climatic change factors interact to alter woody seedling emergence, establishment and productivity; Soil moisture surpasses elevated CO{sub 2} and temperature in importance as a control on soil carbon dynamics; How do climate and atmospheric changes alter belowground root and fungal biomass; How do climate and atmospheric changes alter soil microarthropod and microbial communities; How do climate and atmospheric changes alter belowground microbial function; Linking root litter diversity and microbial functioning at a micro scale under current and projected CO{sub 2} concentrations; Multifactor climate change effects on soil ecosystem functioning depend on concurrent changes in plant community composition; How do climate and atmospheric changes alter aboveground insect populations; How do climate and atmospheric changes alter festuca endophyte infection; How do climate and atmospheric changes soil carbon stabilization.

  2. Range reference atmosphere models

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Galusha, B. W.

    1983-01-01

    A description is given of the methods used to establish the statistical parameters and models for wind and various thermodynamic quantities at an altitude of 0-70 km for nine geographical locations. It is noted that wind is modeled as a vector quantity using the bivariate normal probability function. With the five parameters of the bivariate normal distribution, the distribution for wind speed is derived as a generalized Rayleigh distribution. In addition, the frequency of wind direction is derived, and the conditional distribution of wind speed given the wind direction is derived. It is pointed out that these and other wind models are consistent with the rigorous mathematical properties of the bivariate normal probability theory. The thermodynamic quantities are consistent with the hydrostatic equation and the equation of state for the mean values. With these methods, many statistical relationships can be derived.

  3. ATMOSPHERIC MODEL EVALUATION

    EPA Science Inventory

    Evaluation of the Models-3/CMAQ is conducted in this task. The focus is on evaluation of ozone, other photochemical oxidants, and fine particles using data from both routine monitoring networks and special, intensive field programs. Two types of evaluations are performed here: pe...

  4. Models for infrared atmospheric radiation

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1976-01-01

    Line and band models for infrared spectral absorption are discussed. Radiative transmittance and integrated absorptance of Lorentz, Doppler, and voigt line profiles were compared for a range of parameters. It was found that, for the intermediate path lengths, the combined Lorentz-Doppler (Voigt) profile is essential in calculating the atmospheric transmittance. Narrow band model relations for absorptance were used to develop exact formulations for total absorption by four wide band models. Several continuous correlations for the absorption of a wide band model were compared with the numerical solutions of the wide band models. By employing the line-by-line and quasi-random band model formulations, computational procedures were developed for evaluating transmittance and upwelling atmospheric radiance. Homogeneous path transmittances were calculated for selected bands of CO, CO2, and N2O and compared with experimental measurements. The upwelling radiance and signal change in the wave number interval of the CO fundamental band were also calculated.

  5. Effects of preexisting ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)

    NASA Astrophysics Data System (ADS)

    Shi, X.; Liu, X.; Zhang, K.

    2014-07-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 106 m-2) is obviously less than that from the LP (8.46 × 106 m-2) and BN (5.62 × 106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W

  6. Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)

    NASA Astrophysics Data System (ADS)

    Shi, X.; Liu, X.; Zhang, K.

    2015-02-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmosphere Model version 5.3 (CAM5.3), the effects of pre-existing ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of the cirrus cloud rather than in the whole area of the cirrus cloud. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The pre-existing ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and pre-existing ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 106 m-2) is less than that from the LP (8.46 × 106 m-2) and BN (5.62 × 106 m-2) parameterizations. As a result, the experiment using the KL parameterization predicts a much smaller anthropogenic aerosol long-wave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2) and BN (0.39 W m-2) parameterizations.

  7. Effects of Pre-Existing Ice Crystals on Cirrus Clouds and Comparison between Different Ice Nucleation Parameterizations with the Community Atmosphere Model (CAM5)

    SciTech Connect

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-01-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably.Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24×106 m-2) is obviously less than that from the LP (8.46×106 m-2) and BN (5.62×106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2

  8. A Community-oriented CEOS Atmospheric Composition Portal (ACP)

    NASA Astrophysics Data System (ADS)

    Bernonville, S.; Goussev, O.; Falke, S.; Lindsay, F.; Lynnes, C. S.; Yang, W.; Zhao, P.; Johnson, J.

    2012-04-01

    The Atmospheric Composition Constellation (ACC) and the Workgroup for Information Systems and Services (WGISS) within the Committee on Earth Observation Satellites (CEOS) is developing a portal to support interoperability among the atmospheric composition research and applications communities. The CEOS Atmospheric Composition Portal (ACP) is defining approaches for providing data access, tools and contextual guidance for an international suite of remote sensing datasets. An initial prototype provides access to data services and analysis tools hosted by the World Data Center for Remote Sensing of the Atmosphere (WDC-RSAT), NASA's Goddard Earth Sciences Data and Information Services Center (GES DISC) and DataFed. Distributed access to data is implemented via interoperability standards, including the Open Geospatial Consortium's (OGC) Web Map Service (WMS) and Web Coverage Service (WCS). A fundamental aspect to the design, implementation and evolution of the ACP is community collaboration. The portal is intended as a community resource that is created through collaboration across remotely sensed atmospheric composition data organizations and used by a variety of groups across the climate, air quality, and stratospheric ozone domains. The implementation of interoperability standards in the ACP has involved coordination on identifying the most applicable standards and the definition of community-specific conventions to ensure consistent adoption of standards. This presentation includes an overview of the ACP, its community oriented approach, and use of community-conventions in achieving standards-based interoperability.

  9. Community College Model Characteristics.

    ERIC Educational Resources Information Center

    Raby, Rosalind Latiner

    This paper argues that community college models, especially in developing countries, can be victims of the vocational school fallacy, which holds that that two-year vocational/technical schools that ignore a general education foundation may not be an optimal means for solving worker needs. In addition, globalization has hastened a mirroring of the…

  10. Chemical modeling of exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Venot, O.; Agúndez, M.

    2015-12-01

    The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered. To improve our knowledge about exoplanetary systems, more accurate observations are needed and that is why the Exoplanet Characterisation Observatory (EChO) is an essential space mission. Thanks to its large spectral coverage and high spectral resolution, EChO will provide exoplanetary spectra with an unprecedented accuracy, allowing to improve our understanding of exoplanets. In this work, we review what has been done to date concerning the chemical modeling of exoplanet atmospheres and what are the main characteristics of warm exoplanet atmospheres, which are one of the main targets of EChO. Finally we will present the ongoing developments that are necessary for the chemical modeling of exoplanet atmospheres.

  11. Community noise model

    SciTech Connect

    Not Available

    1989-09-01

    MVMA has sponsored a study to assist the motor vehicle manufacturers and others in assessing the impact of motor vehicle noise on the community. As part of this study, a computer model was developed to quantify, by mathematical simulation, the impact of traffic noise on the community, with particular emphasis on passenger cars, light trucks and vans under 10,000 pounds gross vehicle weight rating. The primary objective of the program was to evaluate the incremental changes in exposure to traffic noise which would result from the promulgation of various new-vehicle emission standards and to compare these incremental changes with those which result from alternative approaches to vehicle noise abatement. The model is available for use on microcomputers and is capable of evaluating local, as well as national, noise control strategies.

  12. Incorporation of the thermal radiative effect of CH4, N2O, CF2Cl2, and CFCl3 into the National Center for Atmospheric Research community climate model

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chyung; Shi, Guang-Yu; Kiehl, Jeffrey T.

    1991-05-01

    This paper documents the incorporation of the radiative effect of trace gases CH4, N2O, CF2Cl2, and CFCl3 into the National Center for Atmospheric Research community climate model (CCMl) longwave scheme, which presently includes the radiative effect of H2O, CO2, and O3. This development is intended for using the CCMl to study the combined greenhouse effect of increasing atmospheric CO2, CH4, CF2Cl2, CFCl3, and N2O. The radiative effect of the trace gases in a homogeneous layer is parameterized based on Wang and Shi's (1988) analytical expression for the total band absorptance. For an inhomogeneous path, a scaling approximation is used to calculate the effective total band model parameters. The same treatment of the overlapping gaseous absorption bands used in the present CCMl scheme is adopted for the new trace gases.

  13. Incorporation of the thermal radiative effect of CH4, N2O, CF2Cl2, and CFCl3 into the National Center for Atmospheric Research community climate model

    NASA Astrophysics Data System (ADS)

    Kiehl, Jeffrey T.

    1991-05-01

    This paper documents the incorporation of the radiative effect of trace gases CH4, N2O, CF2Cl2, and CFCl3 into the National Center for Atmospheric Research Community climate model (CCM1) longwave scheme, which presently includes the radiative effect of H2O, CO2, and O3. This development is intended for using the CCM1 to study the combined greenhouse effect of increasing atmospheric CO2, CH4, CF2Cl2, CFCl3, and N2O. The radiative effect of the trace gases in a homogeneous layer is parameterized based on Wang and Shi's (1988) analytical expression for the total band absorptance. For an inhomogeneous path, a scaling approximation is used to calculate the effective total band model parameters. The same treatment of the overlapping gaseous absorption bands used in the present CCM1 scheme is adopted for the new trace gases.

  14. A Global Atmospheric Model of Meteoric Iron

    NASA Technical Reports Server (NTRS)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  15. Multiwavelength Modeling of Nove Atmospheres

    NASA Technical Reports Server (NTRS)

    Huschildt, P. H.

    2001-01-01

    LMC 1988 #1 was a slow, CO type, dust forming classical nova. It was the first extragalactic nova to be observed with the IUE satellite. We have successfully fitted observed ultraviolet and optical spectra of LMC 1988 #1 taken within the first two months of its outburst (when the atmosphere was still optically thick) with synthetic spectra computed using PHOENIX nova model atmospheres. The synthetic spectra reproduce most of the features seen in the spectra and provide V band magnitudes consistent with the observed light curve. The fits are improved by increasing the CNO abundances to 10 times the solar values. The bolometric luminosity of LMC 1988 #1 was approximately constant at 2 x 10(exp 38) ergs per second at a distance of 47.3 kpc for the first 2 months of the outburst until the formation of the dust shell.

  16. Photochemical modeling of Titan's atmosphere

    PubMed

    Toublanc, D; Parisot, J P; Brillet, J; Gautier, D; Raulin, F; McKay, C P

    1995-01-01

    We have developed a new photochemical model of Titan's atmosphere which includes all the important compounds and reactions in spherical geometry from the surface to 1240 km. Compared to the previous model of Yung et al. (1984, Astrophys. J. Suppl. 55, 465-506), the most significant recent change in the reactions used is the updated methane photodissociation scheme (Mordaunt et al. 1993, J. Chem. Phys. 98(3), 2054-2065). Moreover, the transfer of the solar radiation in the atmosphere and the photolysis rates have been calculated by using a Monte Carlo code. Finally, the eddy diffusion coefficient profile is adjusted in order to fit the mean vertical distribution of HCN retrieved from millimeter groundbased observations of Tanguy et al. (1990, Icarus, 85, 43-57) using new values for the boundary flux of atomic nitrogen (Strobel et al. 1992, Icarus 100, 512-526). We have run the model in both steady-state and diurnal modes, with 62 speices involved in 249 reactions. There is little difference between diurnal and steady-state results. Overall our results are in a closer agreement with the abundances inferred from the Voyager infrared measurements at the equator than the Yung et al. results. We find that the catalytic scheme for H recombination invoked by Yung et al. only slightly improves the model results and we conclude that this scheme is not essential to fit observations. PMID:11538950

  17. Atmospheric cloud water contains a diverse bacterial community

    SciTech Connect

    Kourtev, P. S.; Hill, Kimberly A.; Shepson, Paul B.; Konopka, Allan

    2011-06-15

    Atmospheric cloud water contains an active microbial community which can impact climate, human health and ecosystem processes in terrestrial and aquatic systems. Most studies on the composition of microbial communities in clouds have been performed with orographic clouds that are typically in direct contact with the ground. We collected water samples from cumulus clouds above the upper U.S. Midwest. The cloud water was analyzed for the diversity of bacterial phylotypes by denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene amplicons. DGGE analyses of bacterial communities detected 17e21 bands per sample. Sequencing confirmed the presence of a diverse bacterial community; sequences from seven bacterial phyla were retrieved. Cloud water bacterial communities appeared to be dominated by members of the cyanobacteria, proteobacteria, actinobacteria and firmicutes.

  18. Frontiers in Atmospheric Chemistry Modelling

    NASA Astrophysics Data System (ADS)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frederik; Rouïl, Laurence

    2013-04-01

    The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA). Besides the technical challenge, which demonstrated the robustness of the selected air quality model, we discuss the added value in terms of air pollution modelling and decision support. The comparison with in-situ observations shows that model biases are significantly improved despite some spurious added spatial variability attributed to shortcomings in the emission downscaling process and coarse resolution of the meteorological fields. The increased spatial resolution is clearly beneficial for the detection of exceedances and exposure modelling. We reveal small scale air pollution patterns that highlight the contribution of city plumes to background air pollution levels. Up to a factor 5 underestimation of the fraction of population exposed to detrimental levels of pollution can be obtained with a coarse simulation if subgrid scale correction such as urban increments are ignored. This experiment opens new perspectives for environmental decision making. After two decades of efforts to reduce air pollutant emissions across Europe, the challenge is now to find the optimal trade-off between national and local air quality management strategies. While the first approach is based on sectoral strategies and energy policies, the later builds upon new alternatives such as urban development. The strategies, the decision pathways and the involvement of individual citizen differ, and a compromise based on cost and efficiency must be found. We illustrated how high performance computing in atmospheric science can contribute to this

  19. Multiwavelength Modeling of Nova Atmospheres

    NASA Technical Reports Server (NTRS)

    Hauschildt, P. H.; Starrfield, S.

    1997-01-01

    We have analyzed the early optically thick ultraviolet spectra of Nova OS And 1986 using a grid of spherically symmetric, non-LTE, line-blanketed, expanding model atmospheres and synthetic spectra with the following set of parameters: 5,000 less than or equal to T(sub model) less than or equal to 60,000K, solar abundances, (rho)(alpha) r(sup -3), v(sub max) = 2000 km/s, L = 6 x 10(exp 4) solar luminosity, and a statistical or microturbulent velocity of 50 km/s. We used the synthetic spectra to estimate the model parameters corresponding to the observed IUE spectra. The fits to the observations were then iteratively improved by changing the parameters of the model atmospheres, in particular T(sub model) and the abundances, to arrive at the best fits to the optically thick pseudo-continuum and the features found in the IUE spectra. The IUE spectra show two different optically thick subphases. The earliest spectra, taken a few days after maximum optical light, show a pseudo-continuum created by overlapping absorption lines. The later observations, taken approximately 3 weeks after maximum light, show the simultaneous presence of allowed, semi-forbidden, and forbidden lines in the observed spectra. Analysis of these phases indicate that OS And 86 had solar metallicities except for Mg which showed evidence of being underabundant by as much as a factor of 10. We determine a distance of 5.1 kpc to OS And 86 and derive a peak bolometric luminosity of approximately 5 x 10(exp 4) solar luminosity. The computed nova parameters provide insights into the physics of the early outburst and explain the spectra seen by IUE. Lastly, we find evidence in the later observations for large non-LTE effects of Fe II which, when included, lead to much better agreement with the observations.

  20. Lithosphere - Atmosphere - Ionosphere Circuit Model

    NASA Astrophysics Data System (ADS)

    Kereselidze, Z.; Kachakhidze, N.; Kachakhidze, M.

    2012-04-01

    There are offered possibilities of original LAI circuit model. The problem concerns of existence of self-generated electromagnetic oscillations in the segment of LAI system, which are results of tectonic stress developing in the focus area of expected earthquake. By this model the main (lowest) frequency of these electromagnetic oscillations frequency spectrum is expressed analytically by following formula: ω = β c l where β(ω) is the coefficient depended on the frequency and geological characteristics of the medium and approximate to one, c-is the speed of light, and l- the length of the fault in the focus of the expected earthquake. On the base of relevant diagnosis of experimental data, the model gives us possibility to discuss the problem about location, time of occurrence and intensity of an expected earthquake with certain accuracy. In addition to it, considered model does not block the fall-unstable model of earthquake preparing and electromagnetic phenomena accompanied earthquake preparing process. On the contrary, the imagination of physical picture may be simplified in the separate stage of earthquakes preparing. Namely, it is possible to reliably separate series of foreshocks and aftershocks. By this point of view, the certain optimism about using of EM emission as earthquake precursor of full value may be expressed. The base of such optimism is developing of various phenomena connected to VLF emission many times fixed in the surroundings of epicentral area and cosmic space (changing of intensity of electro-telluric current, perturbations of geomagnetic field in forms of irregular pulsations or regular short-period pulsations, perturbations of atmospheric electric field, perturbations of ionosphere critical frequency and TEC, variations of height of lower ionosphere, parameters of ionospheric medium: changing of specific dielectric conductivity and spectrum of MGD waves in it, atmospheric-ionospheric discharging and etc.).

  1. Does Changing Atmospheric Model Resolution Affect Atmospheric Feedbacks?

    NASA Astrophysics Data System (ADS)

    Tett, S. F.; Wehner, M. F.; Stone, D. A.

    2014-12-01

    Simulations of the Community Atmosphere Model version 5.1 (CAM5.1) at horizontal resolutions of approximately 2, 1 and 0.25 degrees driven with climatological sea surface temperatures (SST) and 1990 forcings were carried out. The 1 and 2 degree CAM5.1 configurations used the default parameter values with the 0.25 degree CAM5.1 using the 1 degree configuration except the physics timestep being halved. Perturbed experiments, using CAM5.1, in which either SST is uniformly increased by 2K or CO2 doubled werealso carried out using the same configurations. A ``Cess'' type feedback analysis (twice change in 2xCO2/change in 2K simulations) was used to diagnose a ``Cess'' sensitivity. This sensitivity increased slightly with resolution due to changes in both the response to the uniform SST increase and to doubling CO2. This appears to arise from differing changes in tropical cloudsas resolution increases. Our results suggest that uncertainty in climate sensitivity is not strongly impacted by changing horizontal resolution up to 25 km. Thus, uncertainty in parameterisation likely remain the leading source of uncertainty in climate sensitivity.

  2. Atmospheric Models for Mars Aerocapture

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2005-01-01

    level Mars atmospheric model. Applications include systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Typical Mars aerocapture periapsis altitudes (for systems with rigid- aeroshell heat shields) are about 50 km. This altitude is above the 0-40 km height range covered by Mars Global Surveyor Thermal Emission Spectrometer (TES) nadir observations. Recently, TES limb sounding data have been made available, spanning more than two Mars years (more than 200,000 data profiles) with altitude coverage up to about 60 km, well within the height range of interest for aerocapture. Results are presented comparing Mars-GRAM atmospheric density with densities from TES nadir and limb sounding observations. A new Mars-GRAM feature is described which allows individual TES nadir or limb profiles to be extracted from the large TES databases, and to be used as an optional replacement for standard Mars-GRAM background (climatology) conditions. For Monte-Carlo applications such as aerocapture guidance and control studies, Mars-GRAM perturbations are available using these TES profile background conditions.

  3. Atmospheric Models for Aeroentry and Aeroassist

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2004-01-01

    Eight destinations in the Solar System have sufficient atmosphere for aeroentry, aeroassist, or aerobraking/aerocapture: Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune, plus Saturn's moon Titan. Engineering-level atmospheric models for Earth, Mars, Titan, and Neptune have been developed for use in NASA s systems analysis studies of aerocapture applications. Development has begun on a similar atmospheric model for Venus. An important capability of these models is simulation of quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Characteristics of these atmospheric models are compared, and example applications for aerocapture are presented. Recent Titan atmospheric model updates are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan. Recent and planned updates to the Mars atmospheric model, in support of future Mars aerocapture systems analysis studies, are also presented.

  4. Atmospheric Models for Aeroentry and Aeroassist

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2005-01-01

    Eight destinations in the Solar System have sufficient atmosphere for aeroentry, aeroassist, or aerobraking/aerocapture: Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune, plus Saturn's moon Titan. Engineering-level atmospheric models for Earth, Mars, Titan, and Neptune have been developed for use in NASA's systems analysis studies of aerocapture applications. Development has begun on a similar atmospheric model for Venus. An important capability of these models is simulation of quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Characteristics of these atmospheric models are compared, and example applications for aerocapture are presented. Recent Titan atmospheric model updates are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan. Recent and planned updates to the Mars atmospheric model, in support of future Mars aerocapture systems analysis studies, are also presented.

  5. Community Building: Imagining New Models.

    ERIC Educational Resources Information Center

    Northwest Education, 1998

    1998-01-01

    School-community collaborations are partnerships that can take different forms and serve many purposes. An overview of some partnership models is provided in this text. It shows how schools can play a central role in the revitalization of a community by serving as community centers and by fostering school-based enterprises. Ways in which students…

  6. Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: Analyses in the Community Earth System Model 1 (CESM1)

    SciTech Connect

    Subin, Zachary M.; Murphy, Lisa N.; Li, Fiyu; Bonfils, Celine; Riley, William J.

    2012-01-15

    We used a lake thermal physics model recently coupled into the Community Earth System Model 1 (CESM1) to study the effects of lake distribution in present and future climate. Under present climate, correcting the large underestimation of lake area in CESM1 (denoted CCSM4 in the configuration used here) caused 1 °C spring decreases and fall increases in surface air temperature throughout large areas of Canada and the US. Simulated summer surface diurnal air temperature range decreased by up to 4 °C, reducing CCSM4 biases. These changes were much larger than those resulting from prescribed lake disappearance in some present-day permafrost regions under doubled-CO2 conditions. Correcting the underestimation of lake area in present climate caused widespread high-latitude summer cooling at 850 hPa. Significant remote changes included decreases in the strength of fall Southern Ocean westerlies. We found significantly different winter responses when separately analysing 45-yr subperiods, indicating that relatively long simulations are required to discern the impacts of surface changes on remote conditions. We also investigated the surface forcing of lakes using idealised aqua-planet experiments which showed that surface changes of 2 °C in the Northern Hemisphere extra-tropics could cause substantial changes in precipitation and winds in the tropics and Southern Hemisphere. Shifts in the Inter-Tropical Convergence Zone were opposite in sign to those predicted by some previous studies. Zonal mean circulation changes were consistent in character but much larger than those occurring in the lake distribution experiments, due to the larger magnitude and more uniform surface forcing in the idealised aqua-planet experiments.

  7. Theory and modeling of stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Hubeny, Ivan

    2010-08-01

    I will briefly outline basic concepts of the stellar atmospheres theory. After summarizing basic structural equations describing a stellar atmospheres, an emphasis is given to describing efficient numerical methods developed to deal with the stellar atmosphere problem, namely the method of complete linearization ant its recent variants, and the whole class of methods known by name Accelerated Lambda Iteration. In the next part of the lectures I will briefly summarize existing computer codes, with an emphasis on our code TLUSTY, and list some of the most useful grids of model atmospheres that are publicly available. Next, I will show how the model atmospheres and synthetic spectra are used in quantitative stellar spectroscopy in order to determine basic stellar parameters and chemical abundances. Finally, I will briefly describe an application of model atmosphere theory and models to related objects, such as accretion disks around various accretors, and atmospheres of substellar-mass objects-extrasolar giant planets and brown dwarfs.

  8. Titan atmosphere models, 1973. [Saturn satellite

    NASA Technical Reports Server (NTRS)

    Divine, N.

    1974-01-01

    The composition and structure of the atmosphere of Titan, based on theory and on spectroscopic and infrared data, is reviewed for the development of numerical engineering models. Light, nominal, and heavy atmospheres are described and tabulated, and their profiles of radius, temperature, pressure, and density are illustrated. Corresponding descriptions of atmospheric dynamics, condensates and surfaces are outlined.

  9. Processing Community Model Output: An Approach to Community Accessibility (Invited)

    NASA Astrophysics Data System (ADS)

    Shea, D.; Haley, M.

    2009-12-01

    The Community Climate System Model (CCSM) is a fully-coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. The major components are models of the atmosphere, land, ocean and sea-ice. In both the development and production phases, the model output must be analyzed by developers and a diverse community of climate researchers. To facilitate community accessibility to the data, two decisions were made: (a) each component model would archive results in netCDF format (b) a supported and portable software analysis tool would be made available. NetCDF (network Common Data Format) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. It is available for a large variety of programming languages and many software tools can be used to manipulate and display data in netCDF files. After a 'competition' which included commercial and public domain software products, the NCAR Command Language (NCL) was selected as the 'official' analysis tool for CCSM analysis. NCL is a portable, supported software product for file handling, computations and high-quality graphics. Subsequently, a development team consisting of software engineers and scientists was created to collaborate to develop a tool capable of addressing the evolving and diverse needs of the climate modeling and observational research communities. The process of educating the user community about netCDF and NCL includes hundreds of online examples and numerous 'hands-on' workshops. The latter are held 3-to-5 times per year at NCAR and external locations.

  10. REGIONAL MODELING OF THE ATMOSPHERIC TRANSPORT AND DEPOSITION OF ATRAZINE

    EPA Science Inventory

    A version of the Community Multiscale Air Quality (CMAQ) model has been developed by the U.S. EPA that is capable of addressing the atmospheric fate, transport and deposition of some common trace toxics. An initial, 36-km rectangular grid-cell application for atrazine has been...

  11. Trajectory Software With Upper Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Barrett, Charles

    2012-01-01

    The Trajectory Software Applications 6.0 for the Dec Alpha platform has an implementation of the Jacchia-Lineberry Upper Atmosphere Density Model used in the Mission Control Center for International Space Station support. Previous trajectory software required an upper atmosphere to support atmosphere drag calculations in the Mission Control Center. The Functional operation will differ depending on the end-use of the module. In general, the calling routine will use function-calling arguments to specify input to the processor. The atmosphere model will then compute and return atmospheric density at the time of interest.

  12. Dispersion modeling of air pollutants in the atmosphere: a review

    NASA Astrophysics Data System (ADS)

    Leelőssy, Ádám; Molnár, Ferenc; Izsák, Ferenc; Havasi, Ágnes; Lagzi, István; Mészáros, Róbert

    2014-09-01

    Modeling of dispersion of air pollutants in the atmosphere is one of the most important and challenging scientific problems. There are several natural and anthropogenic events where passive or chemically active compounds are emitted into the atmosphere. The effect of these chemical species can have serious impacts on our environment and human health. Modeling the dispersion of air pollutants can predict this effect. Therefore, development of various model strategies is a key element for the governmental and scientific communities. We provide here a brief review on the mathematical modeling of the dispersion of air pollutants in the atmosphere. We discuss the advantages and drawbacks of several model tools and strategies, namely Gaussian, Lagrangian, Eulerian and CFD models. We especially focus on several recent advances in this multidisciplinary research field, like parallel computing using graphical processing units, or adaptive mesh refinement.

  13. Optical models of the molecular atmosphere

    NASA Technical Reports Server (NTRS)

    Zuev, V. E.; Makushkin, Y. S.; Mitsel, A. A.; Ponomarev, Y. N.; Rudenko, V. P.; Firsov, K. M.

    1986-01-01

    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered.

  14. Accurate astronomical atmospheric dispersion models in ZEMAX

    NASA Astrophysics Data System (ADS)

    Spanò, P.

    2014-07-01

    ZEMAX provides a standard built-in atmospheric model to simulate atmospheric refraction and dispersion. This model has been compared with other ones to assess its intrinsic accuracy, critical for very demanding application like ADCs for AO-assisted extremely large telescopes. A revised simple model, based on updated published data of the air refractivity, is proposed by using the "Gradient 5" surface of Zemax. At large zenith angles (65 deg), discrepancies up to 100 mas in the differential refraction are expected near the UV atmospheric transmission cutoff. When high-accuracy modeling is required, the latter model should be preferred.

  15. ONE ATMOSPHERE MODELING FOR AIR QUALITY: BUILDING PARTNERSHIPS THAT TRANSITION RESEARCH INTO APPLICATIONS

    EPA Science Inventory

    The Community Miultiscale Air Quality (CMAQ) modeling system is a "one atmosphere" chemical transport model that simulates the transport and fate of air pollutants from urban to continental scales and from daily to annual time intervals.

  16. VIIRS Atmospheric Products in the Community Satellite Processing Package (CSPP)

    NASA Astrophysics Data System (ADS)

    Cureton, G. P.; Gumley, L.; Mindock, S.; Martin, G.; Garcia, R. K.; Strabala, K.

    2012-12-01

    The Cooperative Institute for Meteorological Satellite Studies (CIMSS) has a long history of supporting the Direct Broadcast (DB) community for various sensors, recently with the International MODIS/AIRS Processing Package (IMAPP) for the NASA EOS polar orbiters Terra and Aqua. CIMSS has continued this effort into the NPP/JPSS (previously NPOESS) era with the development of the Community Satellite Processing Package (CSPP), supporting the VIIRS, CrIS and ATMS sensors on the Suomi National Polar-orbiting Partnership (Suomi NPP) spacecraft. In time it is intended that CSPP will support GOES-R, JPSS and other geostationary and polar orbiting platforms. Here we focus on the implementation and usage of the Visible Infrared Imaging Radiometer Suite (VIIRS) atmospheric product sub-packages within CSPP, which are based on the Interface Data Processing Segment (IDPS) code as implemented by Raytheon in the Algorithm Development Library (ADL). The VIIRS atmospheric algorithms available in CSPP include the Cloud Mask, Active Fires, Cloud Optical Properties, Cloud Top Parameters, and the Aerosol Optical Thickness algorithms. Each ADL sub-package consists of a binary executable and a series of configuration XML files. A series of python scripts handle ancillary data retrieval and preparation for ingest into ADL, manage algorithm execution, and provide a variety of execution options which are of utility in operational and algorithm development settings. Examples of these options, applied to operational and direct-broadcast VIIRS SDR data, are described.

  17. Linking Hydrology and Atmospheric Sciences in Continental Water Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    David, C. H.; Gochis, D. J.; Maidment, D. R.; Wilhelmi, O.

    2006-12-01

    Atmospheric observation and model output datasets as well as hydrologic datasets are increasingly becoming available on a continental scale. Although the availability of these datasets could allow large-scale water dynamics modeling, the different objects and semantics used in atmospheric science and hydrology set barriers to their interoperability. Recent work has demonstrated the feasibility for modeling terrestrial water dynamics for the continental United States of America. Continental water dynamics defines the interaction of the hydrosphere, the land surface and subsurface at spatial scales ranging from point to continent. The improved version of the National Hydrographic Dataset (NHDPlus, an integrated suite of geospatial datasets stored in a vector and raster GIS format) was used as hydrologic and elevation data input to the Noah community Land Surface Model, developed at NCAR. Noah was successfully run on a watershed in the Ohio River Basin with NHDPlus inputs. The use of NHDPlus as input data for Noah is a crucial improvement for community modeling efforts allowing users to by-pass much of the time consumed in Digital Elevation Model and hydrological network processing. Furthermore, the community Noah land surface model, in its hydrologically-enhanced configuration, is capable of providing flow inputs for a river dynamics model. Continued enhancement of Noah will, as a consequence, be beneficial to the atmospheric science community as well as to the hydrologic community. Ongoing research foci include using a diversity of weather drivers as an input to Noah, and investigation of how to use land surface model outputs for river forecasting, using both the ArcHydro and OpenMI frameworks.

  18. Restricting 32-128 km horizontal scales hardly affects the MJO in the Superparameterized Community Atmosphere Model v.3.0 but the number of cloud-resolving grid columns constrains vertical mixing

    NASA Astrophysics Data System (ADS)

    Pritchard, Michael S.; Bretherton, Christopher S.; DeMott, Charlotte A.

    2014-09-01

    The effects of artificially restricting the 32-128 km horizontal scale regime on MJO dynamics in the Superparameterized Community Atmosphere Model v.3.0 have been explored through reducing the extent of its embedded cloud resolving model (CRM) arrays. Two and four-fold reductions in CRM extent (from 128 to 64 km and 32 km) produce statistical composite MJO signatures with spatial scale, zonal phase speed, and intrinsic wind-convection anomaly structure that are all remarkably similar to the standard SPCAM's MJO. This suggests that the physics of mesoscale convective organization on 32-128 km scales are not critical to MJO dynamics in SPCAM and that reducing CRM extent may be a viable strategy for 400% more computationally efficient analysis of superparameterized MJO dynamics. However several unexpected basic state responses caution that extreme CRM domain reduction can lead to systematic mean state issues in superparameterized models. We hypothesize that an artificial limit on the efficiency of vertical updraft mixing is set by the number of grid columns available for compensating subsidence in the embedded CRM arrays. This can lead to reduced moisture ventilation supporting too much liquid cloud and thus an overly strong cloud shortwave radiative forcing, particularly in regions of deep convection.

  19. ATMOSPHERIC DEPOSITION MODELING AND MONITORING OF NUTRIENTS

    EPA Science Inventory

    This talk presents an overview of the capabilities and roles that regional atmospheric deposition models can play with respect to multi-media environmental problems. The focus is on nutrient deposition (nitrogen). Atmospheric deposition of nitrogen is an important contributor to...

  20. The Community Climate System Model: CCSM3

    SciTech Connect

    Collins, W D; Blackmon, M; Bitz, C; Bonan, G; Bretherton, C S; Carton, J A; Chang, P; Doney, S; Hack, J J; Kiehl, J T; Henderson, T; Large, W G; McKenna, D; Santer, B D; Smith, R D

    2004-12-27

    A new version of the Community Climate System Model (CCSM) has been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for atmosphere and land and a 1-degree grid for ocean and sea-ice. The new system incorporates several significant improvements in the scientific formulation. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land-atmosphere fluxes, ocean mixed-layer processes, and sea-ice dynamics. There are significant improvements in the sea-ice thickness, polar radiation budgets, equatorial sea-surface temperatures, ocean currents, cloud radiative effects, and ENSO teleconnections. CCSM3 can produce stable climate simulations of millenial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean-atmosphere fluxes in western coastal regions, the spectrum of ENSO variability, the spatial distribution of precipitation in the Pacific and Indian Oceans, and the continental precipitation and surface air temperatures. We conclude with the prospects for extending CCSM to a more comprehensive model of the Earth's climate system.

  1. Modeling the atmospheric chemistry of TICs

    NASA Astrophysics Data System (ADS)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  2. GLOBAL REFERENCE ATMOSPHERIC MODELS FOR AEROASSIST APPLICATIONS

    NASA Technical Reports Server (NTRS)

    Duvall, Aleta; Justus, C. G.; Keller, Vernon W.

    2005-01-01

    Aeroassist is a broad category of advanced transportation technology encompassing aerocapture, aerobraking, aeroentry, precision landing, hazard detection and avoidance, and aerogravity assist. The eight destinations in the Solar System with sufficient atmosphere to enable aeroassist technology are Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Saturn's moon Titan. Engineering-level atmospheric models for five of these targets - Earth, Mars, Titan, Neptune, and Venus - have been developed at NASA's Marshall Space Flight Center. These models are useful as tools in mission planning and systems analysis studies associated with aeroassist applications. The series of models is collectively named the Global Reference Atmospheric Model or GRAM series. An important capability of all the models in the GRAM series is their ability to simulate quasi-random perturbations for Monte Carlo analysis in developing guidance, navigation and control algorithms, for aerothermal design, and for other applications sensitive to atmospheric variability. Recent example applications are discussed.

  3. A Community Assessment Model Appropriate for the Iranian Community

    PubMed Central

    HOLAKOUIE NAIENI, Kourosh; AHMADVAND, Alireza; AHMADNEZHAD, Elham; ALAMI, Ali

    2014-01-01

    Abstract Background Community assessment is one of the core competencies for public health professionals; mainly because it gives them a better understanding of the strengths and drawbacks of their jurisdictions. We planned to recognize an appropriate model that provides a conceptual framework for the Iranian community. Methods This study was conducted in Tehran, during 2009-2010 and consisted of two parts: a review of the literature and qualitative interview with selected experts as well as focus group discussion with health field staff. These steps were done to develop a conceptual framework: planning for a steering committee, forming a working committee, re-viewing community assessment models and projects, preparing the proposed model draft, in-depth interview and focused group discussions with national experts, finalizing the draft, and preparing the final model. Results Three different models published and applied routinely in different contexts. The 2008 North Carolina Community Assessment model was used as a reference. Ten national and 18 international projects were compared to the reference and one and six projects were completely compatible with this model, respectively. Conclusion Our final proposed model takes communities through eight steps to complete a collaborative community assessment: form a community assessment team, solicit community participation and gain inter-sectoral collaboration, establish a working committee, empower the community, collect and analyze community's primary and secondary statistics, solicit community input to select health priorities, evaluate the community assessment and develop the community assessment document, an develop the community action plans. PMID:25988092

  4. NEW DEVELOPMENTS IN THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL

    EPA Science Inventory

    CMAQ model research and development is currently following two tracks at the Atmospheric Modeling Division of the USEPA. Public releases of the community model system for research and policy analysis is continuing on an annual interval with the latest release scheduled for Augus...

  5. Space Weather Modeling Services at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2006-01-01

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the Rapid Prototyping Centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide a description of the current CCMC status, discuss current plans, research and development accomplishments and goals, and describe the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.

  6. Combined eye-atmosphere visibility model

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.

    1981-01-01

    Existing models of the optical characteristics of the eye are combined with a recent model of optical characteristics of the atmosphere given by its modulation transfer function. This combination results in the combined eye-atmosphere performance given by the product of their modulation transfer functions. An application for the calculation of visibility thresholds in the case of a two-halves field is given.

  7. An online educational atmospheric global circulation model

    NASA Astrophysics Data System (ADS)

    Navarro, T.; Schott, C.; Forget, F.

    2015-10-01

    As part of online courses on exoplanets of Observatoire de Paris, an online tool designed to vizualise outputs of the Laboratoire de Métérologie Dynamique (LMD) Global Circulation Model (GCM) for various atmospheric circulation regimes has been developed. It includes the possibility for students to visualize 1D and 2D plots along with animations of atmospheric quantities such as temperature, winds, surface pressure, mass flux, etc... from a state-of-the-art model.

  8. An assessment model for atmospheric composition

    NASA Technical Reports Server (NTRS)

    Prather, Michael J. (Editor)

    1988-01-01

    Predicting future perturbations to global air quality and climate requires, as a prerequisite, prognostic models for the composition of the Earth's atmosphere. Such assessment models are needed to evaluate the impact on our environment of different social choices that affect emissions of the photochemically and radiatively important trace gases. Our presentation here of a prototype assessment model is intended to encourage public scientific discussions of the necessary components of the model and their interactions, with the recognition that models similar to this will likely be used by the Environmental Protection Agency and other regulatory agencies in order to assess the effect of changes in atmospheric composition on climate over the next century.

  9. Validation of Space Weather Models at Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; Zheng, Y.; MacNeice, P. J.; Shim, J.; Taktakishvili, A.; Chulaki, A.

    2011-01-01

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership to support the research and developmental work necessary to substantially increase space weather modeling capabilities and to facilitate advanced models deployment in forecasting operations. Space weather models and coupled model chains hosted at the CCMC range from the solar corona to the Earth's upper atmosphere. CCMC has developed a number of real-time modeling systems, as well as a large number of modeling and data products tailored to address the space weather needs of NASA's robotic missions. The CCMC conducts unbiased model testing and validation and evaluates model readiness for operational environment. CCMC has been leading recent comprehensive modeling challenges under GEM, CEDAR and SHINE programs. The presentation will focus on experience in carrying out comprehensive and systematic validation of large sets of. space weather models

  10. Atmosphere of Mars: Mariner IV Models Compared.

    PubMed

    Fjeldbo, G; Fjeldbo, W C; Eshleman, V R

    1966-09-23

    Three classes of models for the atmosphere of Mars differ in identifying the main ionospheric layer measured by Mariner IV as being analogous to a terrestrial F(2), F(1), or E layer. At an altitude of several hundred kilometers, the relative atmospheric mass densities for these models (in the order named) are approximately 1, 10(2), and 10(4), and the temperatures are roughly 100 degrees , 200 degrees , and 400 degrees K. Theory and observation are in best agreement for an F, s model, for which photodissociation of CO(2), and diffusive separation result in an atomic-oxygen upper atmosphere, with O(+) being the principal ion in the isothermal topside of the ionosphere. The mesopause temperature minimum would be at or below the freezing point of CO(2), and dry ice particles would be expected to form. However, an F(1) model, with molecular ions in a mixed and warmer upper atmosphere, might result if photodissociation and diffusive separation are markedly less than would be expected from analogy with Earth's upper atmosphere. The E model proposed by Chamberlain and McElroy appears very unlikely; it is not compatible with the measured ionization profile unless rather unlikely assumptions are made about the values, and changes with height, of the effective recombination coefficient and the average ion mass. Moreover our theoretical heat-budget computations for the atmospheric region probed by Mariner IV indicate markedly lower temperatures and temperature gradients than were obtained for the E model. PMID:17749730

  11. Modeling Callisto's Ionosphere: Insight Into Callisto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Hartkorn, O. A.; Saur, J.; Strobel, D. F.

    2015-12-01

    We develop a kinetic model of the ionosphere of Jupiter's moon Callisto within a prescribed neutral atmosphere composed of O2 and CO2. We calculate the electron energy distribution as a function of space by solving the Boltzmann equation and assuming a stationary balance between local sources and sinks of electrons and electron energy. Electron transport within the ionosphere is neglected, whereas we approximate the electron transport out of the ionosphere into the Jovian magnetosphere. Photoionization is believed to be the major electron source within Callisto's atmosphere. Therefore, we calculate the energy dependent photoelectron spectrum as source term of the Boltzmann equation. The resulting Boltzmann equation is solved rigorously delivering electron distribution functions at every point of Callisto's atmosphere. From these distribution functions, we calculate electron densities and electron impact generated UV emissions from Callisto's atmosphere. The calculated electron densities and UV emissions are compared with observations of the Galileo spacecraft [Kliore et al., 2002] and the Hubble Space Telescope [Cunningham et al., 2015]. Based on these comparisons, we test a physically motivated atmosphere model including asymmetries that depend on Callisto's orbital phase, similar to Europa's atmosphere [Plainaki et al., 2013]. As a result, we gain knowledge about Callisto's atmospheric density and its atmospheric asymmetries.

  12. Chemical uncertainties in modeling hot Jupiters atmospheres

    NASA Astrophysics Data System (ADS)

    Hebrard, Eric; Domagal-Goldman, Shawn

    2015-11-01

    Most predictions and interpretations of observations in beyond our Solar System have occurred through the use of 1D photo-thermo-chemical models. Their predicted atmospheric compositions are highly dependent on model parameters. Chemical reactions are based on empirical parameters that must be known at temperatures ranging from 100 K to above 2500 K and at pressures from millibars to hundreds of bars. Obtained from experiments, calculations and educated-guessed estimations, these parameters are always evaluated with substantial uncertainties. However, although of practical use, few models of exoplanetary atmospheres have considered these underlying chemical uncertainties and their consequences. Recent progress has been made recently that allow us to (1) evaluate the accuracy and precision of 1D models of planetary atmospheres, with quantifiable uncertainties on their predictions for the atmospheric composition and associated spectral features, (2) identify the ‘key parameters’ that contribute the most to the models predictivity and should therefore require further experimental or theoretical analysis, (3) reduce and optimize complex chemical networks for their inclusion in multidimensional atmospheric models.First, a global sampling approach based on low discrepancy sequences has been applied in order to propose error bars on simulations of the atmospheres HD 209458b and HD 189733b, using a detailed kinetic model derived from applied combustion models that was methodically validated over a range of temperatures and pressures typical for these hot Jupiters. A two-parameters temperature-dependent uncertainty factor has been assigned to each considered rate constant. Second, a global sensitivity approach based on high dimensional model representations (HDMR) has been applied in order to identify those reactions which make the largest contributions to the overall uncertainty of the simulated results. The HDMR analysis has been restricted to the most important

  13. A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-Column and Global Results

    SciTech Connect

    Gettelman, A.; Morrison, H.; Ghan, Steven J.

    2008-08-11

    The global performance of a new 2-moment cloud microphysics scheme for a General Circulation Model (GCM) is presented and evaluated relative to observations. The scheme produces reasonable representations of cloud particle size and number concentration when compared to observations, and represents expected and observed spatial variations in cloud microphysical quantities. The scheme has smaller particles and higher number concentrations over land than the standard bulk microphysics in the GCM, and is able to balance the radiation budget of the planet with 60% the liquid water of the standard scheme, in better agreement with observations. The new scheme treats both the mixing ratio and number concentration of rain and snow, and is therefore able to differentiate the two key regimes, consisting of drizzle in shallow warm clouds and larger rain drops in deeper cloud systems. The modeled rain and snow size distributions are consistent with observations.

  14. Constraining the Influence of Natural Variability to Improve Estimates of Global Aerosol Indirect Effects in a Nudged Version of the Community Atmosphere Model 5

    SciTech Connect

    Kooperman, G. J.; Pritchard, M. S.; Ghan, Steven J.; Wang, Minghuai; Somerville, Richard C.; Russell, Lynn

    2012-12-11

    Natural modes of variability on many timescales influence aerosol particle distributions and cloud properties such that isolating statistically significant differences in cloud radiative forcing due to anthropogenic aerosol perturbations (indirect effects) typically requires integrating over long simulations. For state-of-the-art global climate models (GCM), especially those in which embedded cloud-resolving models replace conventional statistical parameterizations (i.e. multi-scale modeling framework, MMF), the required long integrations can be prohibitively expensive. Here an alternative approach is explored, which implements Newtonian relaxation (nudging) to constrain simulations with both pre-industrial and present-day aerosol emissions toward identical meteorological conditions, thus reducing differences in natural variability and dampening feedback responses in order to isolate radiative forcing. Ten-year GCM simulations with nudging provide a more stable estimate of the global-annual mean aerosol indirect radiative forcing than do conventional free-running simulations. The estimates have mean values and 95% confidence intervals of -1.54 ± 0.02 W/m2 and -1.63 ± 0.17 W/m2 for nudged and free-running simulations, respectively. Nudging also substantially increases the fraction of the world’s area in which a statistically significant aerosol indirect effect can be detected (68% and 25% of the Earth's surface for nudged and free-running simulations, respectively). One-year MMF simulations with and without nudging provide global-annual mean aerosol indirect radiative forcing estimates of -0.80 W/m2 and -0.56 W/m2, respectively. The one-year nudged results compare well with previous estimates from three-year free-running simulations (-0.77 W/m2), which showed the aerosol-cloud relationship to be in better agreement with observations and high-resolution models than in the results obtained with conventional parameterizations.

  15. NESTED GRID MESOSCALE ATMOSPHERIC CHEMISTRY MODEL

    EPA Science Inventory

    A nested grid version of the Regional Acid Deposition Model (RADM) has been developed. he horizontal grid interval size of the nested model is 3 times smaller than that of RADM (80/3 km 26.7 km). herefore the nested model is better able to simulate mesoscale atmospheric processes...

  16. THE ATMOSPHERIC MODEL EVALUATION (AMET): METEOROLOGY MODULE

    EPA Science Inventory

    An Atmospheric Model Evaluation Tool (AMET), composed of meteorological and air quality components, is being developed to examine the error and uncertainty in the model simulations. AMET matches observations with the corresponding model-estimated values in space and time, and the...

  17. Atmospheric radiation model for water surfaces

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Gaskill, D. W.; Lierzer, J. R.

    1982-01-01

    An atmospheric correction model was extended to account for various atmospheric radiation components in remotely sensed data. Components such as the atmospheric path radiance which results from singly scattered sky radiation specularly reflected by the water surface are considered. A component which is referred to as the virtual Sun path radiance, i.e. the singly scattered path radiance which results from the solar radiation which is specularly reflected by the water surface is also considered. These atmospheric radiation components are coded into a computer program for the analysis of multispectral remote sensor data over the Great Lakes of the United States. The user must know certain parameters, such as the visibility or spectral optical thickness of the atmosphere and the geometry of the sensor with respect to the Sun and the target elements under investigation.

  18. Low surface pressure models for Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Caldwell, J.

    1978-01-01

    The inversion model for the atmosphere of Titan is reviewed. The basic features of the model are: a cold surface (80 K), a warm stratosphere (160 K) and a low surface pressure (20 mbar). The model is consistent with all existing thermal infrared spectrophotometry, but it cannot preclude the existence of an opaque, cloud, thick atmosphere. The model excludes other gases than methane as bulk constituents. Radio wavelengths observations, including recent data from the very large array, are discussed. These long wavelength observations may be the only direct means of sampling the surface environment before an entry probe or flyby.

  19. New Atmospheric Turbulence Model for Shuttle Applications

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Campbell, C. W.; Doubleday, M. K.; Johnson, D. L.

    1990-01-01

    An updated NASA atmospheric turbulence model, from 0 to 200 km altitude, which was developed to be more realistic and less conservative when applied to space shuttle reentry engineering simulation studies involving control system fuel expenditures is presented. The prior model used extreme turbulence (3 sigma) for all altitudes, whereas in reality severe turbulence is patchy within quiescent atmospheric zones. The updated turublence model presented is designed to be more realistic. The prior turbulence statistics (sigma and L) were updated and were modeled accordingly.

  20. ATMOSPHERIC MERCURY SIMULATION USING THE CMAQ MODEL: FORMULATION DESCRIPTION AND ANALYSIS OF WET DEPOSITION RESULTS

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system has recently been adapted to simulate the emission, transport, transformation and deposition of atmospheric mercury in three distinct forms; elemental mercury gas, reactive gaseous mercury, and particulate mercury. Emis...

  1. Infrared radiation models for atmospheric methane

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.

    1986-01-01

    Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.

  2. Community Service Models for Schizophrenia

    PubMed Central

    2005-01-01

    Schizophrenia is a chronic relapsing and remitting mental illness with lifetime prevalence between 0.40 to 1.4 percent. Most people with schizophrenia are treated in psychiatric units of local general hospitals for short periods of time when acutely ill. With the worldwide trend toward closure of asylums and institutions in the 1950s, there has been an increasing focus on treatment in the community. Community mental health teams (CMHT) are the kernel of community treatment. Although their composition and modus operandi differ according to patient need, all models claim superiority over outcomes of long inpatient stay. Case management, assertive outreach, and crisis resolution sometimes compete for resources. What is the evidence for their efficacy? What is the right mix of their use? As we discuss these, we propose that there may be room for the application of established industry models of service delivery, such as Just-in-Time (JIT), in the treatment of patients with schizophrenia. PMID:21179632

  3. Users of middle atmosphere models remarks

    NASA Technical Reports Server (NTRS)

    Gamble, Joe

    1987-01-01

    The procedure followed for shuttle operations is to calculate descent trajectories for each potential shuttle landing site using the Global Reference Atmosphere Model (GRAM) to interactively compute density along the flight path 100 times to bound the statistics. The purpose is to analyze the flight dynamics, along with calculations of heat loads during reentry. The analysis program makes use of the modified version of the Jacchia-70 atmosphere, which includes He bulges over the poles and seasonal latitude variations at lower altitudes. For the troposphere, the 4-D Model is used up to 20 km, Groves from 30 km up to 90 km. It is extrapolated over the globe and faired into the Jacchia atmosphere between 90 and 115 km. Since data on the Southern Hemisphere was lacking, what was done was that the data was flipped over and lagged 6 months. Sometimes when winds are calculated from pressure data in the model there appear to be discontinuities. Modelers indicated that the GRAM was not designed to produce winds, but good wind data is needed for the landing phase of shuttle operations. Use of atmospheric models during reentry is one application where it is obvious that a single integrated atmosphere model is required.

  4. Ozone reference models for the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Pitts, M. C.; Young, D. F.

    1990-01-01

    Data on monthly latitudinal variations in middle-atmosphere vertical ozone profiles are presented, based on extensive Nimbus-7, AE-2, and SME satellite measurements from the period 1978-1982. The coverage of the data sets, the characteristics of the sensors, and the analysis techniques applied are described, and the results are compiled in tables and graphs. These ozone data are intended to supplement the models of the 1986 COSPAR International Reference Atmosphere.

  5. Community Radiative Transfer Model Applications - A Study of the Retrieval of Trace Gases in the Atmosphere from Cross-track Infrared Sounder (CrIS) Data of a Full-spectral Resolution

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Nalli, N. R.; Tan, C.; Zhang, K.; Iturbide, F.; Wilson, M.; Zhou, L.

    2015-12-01

    The Community Radiative Transfer Model (CRTM) [3] operationally supports satellite radiance assimilation for weather forecasting, sensor data verification, and the retrievals of satellite products. The CRTM has been applied to UV and visible sensors, infrared and microwave sensors. The paper will demonstrate the applications of the CRTM, in particular radiative transfer in the retrieva algorithm. The NOAA Unique CrIS/ATMS Processing System (NUCAPS) operationally generates vertical profiles of atmospheric temperature (AVTP) and moisture (AVMP) from Suomi NPP Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) measurements. Current operational CrIS data have reduced spectral resolution: 1.25 cm-1 for a middle wave band and 2.5 cm-1 for a short-wave wave band [1]. The reduced spectral data largely degraded the retrieval accuracy of trace gases. CrIS full spectral data are also available now which have single spectral resolution of 0.625 cm-1 for all of the three bands: long-wave band, middle wave band, and short-wave band. The CrIS full-spectral resolution data is critical to the retrieval of trace gases such as O3, CO [2], CO2, and CH4. In this paper, we use the Community Radiative Transfer Model (CRTM) to study the impact of the CrIS spectral resolution on the retrieval accuracy of trace gases. The newly released CRTM version 2.2.1 can simulates Hamming-apodized CrIS radiance of a full-spectral resolution. We developed a small utility that can convert the CRTM simulated radiance to un-apodized radiance. The latter has better spectral information which can be helpful to the retrievals of the trace gases. The retrievals will be validated using both NWP model data as well as the data collected during AEROSE expeditions [4]. We will also discuss the sensitivity on trace gases between apodized and un-apodized radiances. References[1] Gambacorta, A., et al.(2013), IEEE Lett., 11(9), doi:10.1109/LGRS.2014.230364, 1639-1643. [2] Han, Y., et

  6. Modeling the Atmospheric Structure and Dynamics of the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.

    1999-01-01

    Models of the general circulation and climate system of Mars have reached a high level of maturity, but observations to validate them have lacked the kind of global and temporal coverage required. However, we are now on the verge of a new era in Mars exploration as Mars Global Surveyor, and the now enroute Mars Climate Orbiter, will provide daily global coverage of the atmosphere for two Mars years. In the coming years, data from these missions will test the predictions of general circulation models (GCM's) whose results have perhaps become too accepted as truth. This talk will review what GCM's tell us about Mars, what their weaknesses are, and what the latest results imply for their future. Additional information is contained in the original extended abstract.

  7. New atmospheric model of Epsilon Eridani

    NASA Astrophysics Data System (ADS)

    Vieytes, Mariela; Fontenla, Juan; Buccino, Andrea; Mauas, Pablo

    2016-05-01

    We present a new semi-empirical model of the atmosphere of the widely studied K-dwarf Epsilon Eridani (HD 22049). The model is build to reproduce the visible spectral observations from 3800 to 6800 Angstrom and the h and k Mg II lines profiles. The computations were carried out using the Solar-Stellar Radiation Physical Modeling (SSRPM) tools, which calculate non-LTE population for the most important species in the stellar atmosphere. We show a comparison between the synthetic and observed spectrum, obtaining a good agreement in all the studied spectral range.

  8. Impacts of Asian dust events on atmospheric fungal communities

    NASA Astrophysics Data System (ADS)

    Jeon, Eun Mi; Kim, Yong Pyo; Jeong, Kweon; Kim, Ik Soo; Eom, Suk Won; Choi, Young Zoo; Ka, Jong-Ok

    2013-12-01

    The composition of atmospheric fungi in Seoul during Asian dust events were assessed by culturing and by molecular methods such as mold specific quantitative PCR (MSQPCR) and internal transcribed spacer cloning (ITS cloning). Culturable fungal concentrations in the air were monitored from May 2008 to July 2011 and 3 pairs of ITS clone libraries, one during Asian dust (AD) day and the other during the adjacent non Asian dust (NAD) day for each pair, were constructed after direct DNA extraction from total suspended particles (TSP) samples. In addition, six aeroallergenic fungi in the atmosphere were also assessed by MSQPCR from October, 2009 to November, 2011. The levels of the airborne culturable fungal concentrations during AD days was significantly higher than that of NAD days (P < 0.005). In addition, the correlation of culturable fungal concentrations with particulate matters equal to or less than 10 μm in aerodynamic diameter (PM10) concentrations was observed to be high (0.775) for the AD days while correlation coefficients of PM10 as well as other particulate parameters with airborne fungal concentrations were significantly negative for the NAD days during intensive monitoring periods (May to June, 2008). It was found that during AD days several airborne allergenic fungal levels measured with MSQPCR increased up to 5-12 times depending on the species. Comparison of AD vs. NAD clones showed significant differences (P < 0.05) in all three cases using libshuff. In addition, high proportions of uncultured soil fungus isolated from semi-arid regions were observed only in AD clone libraries. Thus, it was concluded that AD impacts not only airborne fungal concentrations but also fungal communities.

  9. GUIDELINE FOR FLUID MODELING OF ATMOSPHERIC DIFFUSION

    EPA Science Inventory

    The fundamental principles for fluid modeling of flow and dispersion of pollutants in the atmospheric boundary layer are reviewed. The usefulness of fluid models are evaluated from both scientific and engineering viewpoints. Because many detailed decisions must be made during the...

  10. Parallel Computatinal Technology for Atmospheric Turbulence Modeling

    NASA Astrophysics Data System (ADS)

    Bian, Randy X.

    1997-08-01

    Desktop Atmospheric Turbulence Diffussion Modeling System (DATDMS) is used by analysts with varied backgrounds for performing air quality assessment and emergency response activities. This modeling system must be robust, well documented, have minimal and well controlled user inputs, and have clear outputs. Existing coarse-grained parallel computers can provide significant increases in computation speed in desktop atmospheric dispersion modeling without considerable increases in hardware cost. This increased speed will allow for significant improvements to be made in the scientific foundations of these applied models, in the form of more advanced diffusion schemes and better representation of the wind and turbulence fields. This is especially attractive for emergency response applications where speed and accuracy are of utmost importance. This presentation describes one particular application of coarse-grained parallel computer technology to a desktop complex terrain atmospheric dispersion modeling system. By comparing performance characteristics of the coarse-grained parallel version of the model with the single-processor version, we will demonstrate that applying coarse-grained parallel computer technology to desktop atmospheric dispersion modeling systems will allow us to address critical issues facing future requirements of this class of dispersion models.

  11. Modeling Atmospheric Energy Deposition (by energetic ions)

    NASA Astrophysics Data System (ADS)

    Parkinson, C. D.; Brain, D. A.; Lillis, R. J.; Liemohn, M. W.; Bougher, S. W.

    2011-12-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. Such modeling has been previously done for Earth, Mars and Jupiter using a guiding center precipitation model with extensive collisional physics. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation that can perform calculations for cases where there is only a weak or nonexistent magnetic field that includes detailed physical interaction with the atmosphere (i.e. collisional physics). We show initial efforts to apply a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Venus, Mars, and Titan. A systematic study of the ionization, excitation, and energy

  12. Chemical kinetics and modeling of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  13. Infrared radiation models for atmospheric ozone

    NASA Technical Reports Server (NTRS)

    Kratz, David P.; Ces, Robert D.

    1988-01-01

    A hierarchy of line-by-line, narrow-band, and broadband infrared radiation models are discussed for ozone, a radiatively important atmospheric trace gas. It is shown that the narrow-band (Malkmus) model is in near-precise agreement with the line-by-line model, thus providing a means of testing narrow-band Curtis-Godson scaling, and it is found that this scaling procedure leads to errors in atmospheric fluxes of up to 10 percent. Moreover, this is a direct consequence of the altitude dependence of the ozone mixing ratio. Somewhat greater flux errors arise with use of the broadband model, due to both a lesser accuracy of the broadband scaling procedure and to inherent errors within the broadband model, despite the fact that this model has been tuned to the line-by-line model.

  14. Atmospheric Modeling And Sensor Simulation (AMASS) study

    NASA Technical Reports Server (NTRS)

    Parker, K. G.

    1984-01-01

    The capabilities of the atmospheric modeling and sensor simulation (AMASS) system were studied in order to enhance them. This system is used in processing atmospheric measurements which are utilized in the evaluation of sensor performance, conducting design-concept simulation studies, and also in the modeling of the physical and dynamical nature of atmospheric processes. The study tasks proposed in order to both enhance the AMASS system utilization and to integrate the AMASS system with other existing equipment to facilitate the analysis of data for modeling and image processing are enumerated. The following array processors were evaluated for anticipated effectiveness and/or improvements in throughput by attachment of the device to the P-e: (1) Floating Point Systems AP-120B; (2) Floating Point Systems 5000; (3) CSP, Inc. MAP-400; (4) Analogic AP500; (5) Numerix MARS-432; and (6) Star Technologies, Inc. ST-100.

  15. Tagging Water Sources in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Bosilovich, M.

    2003-01-01

    Tagging of water sources in atmospheric models allows for quantitative diagnostics of how water is transported from its source region to its sink region. In this presentation, we review how this methodology is applied to global atmospheric models. We will present several applications of the methodology. In one example, the regional sources of water for the North American Monsoon system are evaluated by tagging the surface evaporation. In another example, the tagged water is used to quantify the global water cycling rate and residence time. We will also discuss the need for more research and the importance of these diagnostics in water cycle studies.

  16. Using the Community Readiness Model in Native Communities.

    ERIC Educational Resources Information Center

    Jumper-Thurman, Pamela; Plested, Barbara A.; Edwards, Ruth W.; Helm, Heather M.; Oetting, Eugene R.

    The effects of alcohol and other drug abuse are recognized as a serious problem in U.S. communities. Policy efforts and increased law enforcement have only a minimal impact if prevention strategies are not consistent with the community's level of readiness, are not culturally relevant, and are not community-specific. A model has been developed for…

  17. Coupling approaches used in atmospheric entry models

    NASA Astrophysics Data System (ADS)

    Gritsevich, M. I.

    2012-09-01

    While a planet orbits the Sun, it is subject to impact by smaller objects, ranging from tiny dust particles and space debris to much larger asteroids and comets. Such collisions have taken place frequently over geological time and played an important role in the evolution of planets and the development of life on the Earth. Though the search for near-Earth objects addresses one of the main points of the Asteroid and Comet Hazard, one should not underestimate the useful information to be gleaned from smaller atmospheric encounters, known as meteors or fireballs. Not only do these events help determine the linkages between meteorites and their parent bodies; due to their relative regularity they provide a good statistical basis for analysis. For successful cases with found meteorites, the detailed atmospheric path record is an excellent tool to test and improve existing entry models assuring the robustness of their implementation. There are many more important scientific questions meteoroids help us to answer, among them: Where do these objects come from, what are their origins, physical properties and chemical composition? What are the shapes and bulk densities of the space objects which fully ablate in an atmosphere and do not reach the planetary surface? Which values are directly measured and which are initially assumed as input to various models? How to couple both fragmentation and ablation effects in the model, taking real size distribution of fragments into account? How to specify and speed up the recovery of a recently fallen meteorites, not letting weathering to affect samples too much? How big is the pre-atmospheric projectile to terminal body ratio in terms of their mass/volume? Which exact parameters beside initial mass define this ratio? More generally, how entering object affects Earth's atmosphere and (if applicable) Earth's surface? How to predict these impact consequences based on atmospheric trajectory data? How to describe atmospheric entry

  18. Radiation environment models and the atmospheric cutoff

    NASA Technical Reports Server (NTRS)

    Konradi, Andrei; Hardy, Alva C.; Atwell, William

    1987-01-01

    The limitations of radiation environment models are examined by applying the model to the South Atlantic anomaly (SAA). The local magnetic-field-intensity (in gauss) and McIlwain (1961) drift-shell-parameter contours in the SAA are analyzed. It is noted that it is necessary to decouple the atmospheric absorption effects from the trapped radiation models in order to obtain accurate radiation dose predictions. Two methods for obtaining more accurate results are proposed.

  19. Intercomparison of atmospheric dispersion models

    NASA Astrophysics Data System (ADS)

    Caputo, Marcelo; Giménez, Marcelo; Schlamp, Miguel

    An intercomparison between Gaussian, Gaussian segmented plumes and Lagrangian codes is presented. The codes chosen for the simulation of a gaseous emission under real meteorological conditions were AERMOD, HPDM, PCCOSYMA and HYSPLIT. The emission source was located at 37.35°N and 78.24°W in a flat terrain. The meteorological data were obtained from RAMS code output. The AERMOD and HPDM meteorological preprocessors results were analyzed. The main differences found are originated in the sensible heat flux (SHTF) and u* (friction velocity) computation, whose values impact directly on the Monin-Obukov length and mixing height calculation. These differences and the strong dependence of the results on them indicate that more development should still be done in order to improve the algorithms for the meteorological variables calculations, mainly during stable conditions. A more realistic description is performed by the segmented Gaussian plume model (PCCOSYMA) respect to the Gaussian ones (AERMOD, HPDM) because it limits the plume length along the wind direction. It also predicts reasonably well the contaminant cloud rotation respect to the Lagrangian code (HYSPLIT) as no major difference between the wind field and the wind at the source location is present in the analyzed case. During the stable hours, HPDM calculates the most stable situation and the lowest mixing heights. Because of this there is a considerable discrepancy in the maximum ground level concentration respect to the other codes. While during the unstable hours HPDM calculates the most unstable situation, nevertheless the maximum ground level concentrations predicted by all the Gaussian and Lagrangian codes are comparable.

  20. Coupled land surface/hydrologic/atmospheric models

    NASA Technical Reports Server (NTRS)

    Pielke, Roger; Steyaert, Lou; Arritt, Ray; Lahtakia, Mercedes; Smith, Chris; Ziegler, Conrad; Soong, Su Tzai; Avissar, Roni; Wetzel, Peter; Sellers, Piers

    1993-01-01

    The topics covered include the following: prototype land cover characteristics data base for the conterminous United States; surface evapotranspiration effects on cumulus convection and implications for mesoscale models; the use of complex treatment of surface hydrology and thermodynamics within a mesoscale model and some related issues; initialization of soil-water content for regional-scale atmospheric prediction models; impact of surface properties on dryline and MCS evolution; a numerical simulation of heavy precipitation over the complex topography of California; representing mesoscale fluxes induced by landscape discontinuities in global climate models; emphasizing the role of subgrid-scale heterogeneity in surface-air interaction; and problems with modeling and measuring biosphere-atmosphere exchanges of energy, water, and carbon on large scales.

  1. The Intermediate Complexity Atmospheric Research Model

    NASA Astrophysics Data System (ADS)

    Gutmann, Ethan; Clark, Martyn; Rasmussen, Roy; Arnold, Jeffrey; Brekke, Levi

    2015-04-01

    The high-resolution, non-hydrostatic atmospheric models often used for dynamical downscaling are extremely computationally expensive, and, for a certain class of problems, their complexity hinders our ability to ask key scientific questions, particularly those related to hydrology and climate change. For changes in precipitation in particular, an atmospheric model grid spacing capable of resolving the structure of mountain ranges is of critical importance, yet such simulations can not currently be performed with an advanced regional climate model for long time periods, over large areas, and forced by many climate models. Here we present the newly developed Intermediate Complexity Atmospheric Research model (ICAR) capable of simulating critical atmospheric processes two to three orders of magnitude faster than a state of the art regional climate model. ICAR uses a simplified dynamical formulation based off of linear theory, combined with the circulation field from a low-resolution climate model. The resulting three-dimensional wind field is used to advect heat and moisture within the domain, while sub-grid physics (e.g. microphysics) are processed by standard and simplified physics schemes from the Weather Research and Forecasting (WRF) model. ICAR is tested in comparison to WRF by downscaling a climate change scenario over the Colorado Rockies. Both atmospheric models predict increases in precipitation across the domain with a greater increase on the western half. In contrast, statistically downscaled precipitation using multiple common statistical methods predict decreases in precipitation over the western half of the domain. Finally, we apply ICAR to multiple CMIP5 climate models and scenarios with multiple parameterization options to investigate the importance of uncertainty in sub-grid physics as compared to the uncertainty in the large scale climate scenario. ICAR is a useful tool for climate change and weather forecast downscaling, particularly for orographic

  2. ATMOSPHERIC HEALTH EFFECTS FRAMEWORK (AHEF) MODEL

    EPA Science Inventory

    The Atmospheric and Health Effects Framework (AHEF) is used to assess theglobal impacts of substitutes for ozone-depleting substances (ODS). The AHEF is a series of FORTRAN modeling modules that collectively form a simulation framework for (a) translating ODS production into emi...

  3. The Community Earth System Model: A Framework for Collaborative Research

    SciTech Connect

    Hurrell, Jim; Holland, Marika M.; Gent, Peter R.; Ghan, Steven J.; Kay, Jennifer; Kushner, P.; Lamarque, J.-F.; Large, William G.; Lawrence, David M.; Lindsay, Keith; Lipscomb, William; Long , Matthew; Mahowald, N.; Marsh, D.; Neale, Richard; Rasch, Philip J.; Vavrus, Steven J.; Vertenstein, Mariana; Bader, David C.; Collins, William D.; Hack, James; Kiehl, J. T.; Marshall, Shawn

    2013-09-30

    The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of earth system interactions across multiple time and space scales. This global coupled model is a natural evolution from its predecessor, the Community Climate System Model, following the incorporation of new earth system capabilities. These include the ability to simulate biogeochemical cycles, atmospheric chemistry, ice sheets, and a high-top atmosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new predictive capabilities and increasing our collective knowledge about the behavior and interactions of the earth system. Simulations with numerous configurations of the CESM have been provided to the Coupled Model Intercomparison Project Phase 5 (CMIP5) and are being analyzed by the broader community of scientists. Additionally, the model source code and associated documentation are freely available to the scientific community to use for earth system studies, making it a true community tool. Here we describe this earth modeling system, its various possible configurations, and illustrate its capabilities with a few science highlights.

  4. Global Reference Atmospheric Model and Trace Constituents

    NASA Technical Reports Server (NTRS)

    Justus, C.; Johnson, D.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    Global Reference Atmospheric Model (GRAM-99) is an engineering-level model of the Earth's atmosphere. It provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0-27 km, thermodynamics and winds are based on National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. Above 120 km, GRAM is based on the NASA Marshall Engineering Thermosphere (MET) model. In the intervening altitude region, GRAM is based on Middle Atmosphere Program (MAP) climatology that also forms the basis of the 1986 COSPAR Intemationa1 Reference Atmosphere (CIRA). MAP data in GRAM are augmented by a specially-derived longitude variation climatology. Atmospheric composition is represented in GRAM by concentrations of both major and minor species. Above 120 km, MET provides concentration values for N2, O2, Ar, O, He, and H. Below 120 km, species represented also include H2O, O3, N2O, CO, CH, and CO2. Water vapor in GRAM is based on a combination of GUACA, Air Force Geophysics Laboratory (AFGL), and NASA Langley Research Center climatologies. Other constituents below 120 km are based on a combination of AFGL and h4AP/CIRA climatologies. This report presents results of comparisons between GRAM Constituent concentrations and those provided by the Naval Research Laboratory (NRL) climatology of Summers (NRL,/MR/7641-93-7416, 1993). GRAM and NRL concentrations were compared for seven species (CH4, CO, CO2, H2O, N2O, O2, and O3) for months January, April, July, and October, over height range 0-115 km, and latitudes -90deg to + 90deg at 10deg increments. Average GRAM-NRL correlations range from 0.878 (for CO) to 0.975 (for O3), with an average over all seven species of 0.936 (standard deviation 0.049).

  5. Modelling Ebola within a community.

    PubMed

    Leander, R N; Goff, W S; Murphy, C W; Pulido, S A

    2016-08-01

    The 2014 Ebola epidemic was the largest on record. It evidenced the need for improved models of the spread of Ebola. In this research we focus on modelling Ebola within a small village or community. Specifically, we investigate the potential of basic Susceptible-Exposed-Infectious-Recovered (SEIR) models to describe the initial Ebola outbreak, which occurred in Meliandou, Guinea. Data from the World Health Organization is used to compare the accuracy of various models in order to select the most accurate models of transmission and disease-induced responses. Our results suggest that (i) density-dependent transmission and mortality-induced behavioural changes shaped the course of the Ebola epidemic in Meliandou, while (ii) frequency-dependent transmission, disease-induced emigration, and infection-induced behavioural changes are not consistent with the data from this epidemic. PMID:27019423

  6. Improved reference models for middle atmosphere ozone

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Pitts, M. C.; Chen, C.

    1990-01-01

    This paper describes the improvements introduced into the original version of ozone reference model of Keating and Young (1985, 1987) which is to be incorporated in the next COSPAR International Reference Atmosphere (CIRA). The ozone reference model will provide information on the global ozone distribution (including the ozone vertical structure as a function of month and latitude from 25 to 90 km) combining data from five recent satellite experiments: the Nimbus 7 LIMS, Nimbus 7 SBUV, AE-2 Stratospheric Aerosol Gas Experiment (SAGE), Solar Mesosphere Explorer (SME) UV Spectrometer, and SME 1.27 Micron Airglow. The improved version of the reference model uses reprocessed AE-2 SAGE data (sunset) and extends the use of SAGE data from 1981 to the 1981-1983 time period. Comparisons are presented between the results of this ozone model and various nonsatellite measurements at different levels in the middle atmosphere.

  7. Improved reference models for middle atmosphere ozone

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Pitts, M. C.; Chen, C.

    1989-01-01

    Improvements are provided for the ozone reference model which is to be incorporated in the COSPAR International Reference Atmosphere (CIRA). The ozone reference model will provide considerable information on the global ozone distribution, including ozone vertical structure as a function of month and latitude from approximately 25 to 90 km, combining data from five recent satellite experiments (Nimbus 7 LIMS, Nimbus 7 SBUV, AE-2 SAGE, Solar Mesosphere Explorer (SME) UVS, and SME IR). The improved models are described and use reprocessed AE-2 SAGE data (sunset) and extend the use of SAGE data from 1981 to the period 1981-1983. Comparisons are shown between the ozone reference model and various nonsatellite measurements at different levels in the middle atmosphere.

  8. Atmospheric Climate Model Experiments Performed at Multiple Horizontal Resolutions

    SciTech Connect

    Phillips, T; Bala, G; Gleckler, P; Lobell, D; Mirin, A; Maxwell, R; Rotman, D

    2007-12-21

    This report documents salient features of version 3.3 of the Community Atmosphere Model (CAM3.3) and of three climate simulations in which the resolution of its latitude-longitude grid was systematically increased. For all these simulations of global atmospheric climate during the period 1980-1999, observed monthly ocean surface temperatures and sea ice extents were prescribed according to standard Atmospheric Model Intercomparison Project (AMIP) values. These CAM3.3 resolution experiments served as control runs for subsequent simulations of the climatic effects of agricultural irrigation, the focus of a Laboratory Directed Research and Development (LDRD) project. The CAM3.3 model was able to replicate basic features of the historical climate, although biases in a number of atmospheric variables were evident. Increasing horizontal resolution also generally failed to ameliorate the large-scale errors in most of the climate variables that could be compared with observations. A notable exception was the simulation of precipitation, which incrementally improved with increasing resolution, especially in regions where orography plays a central role in determining the local hydroclimate.

  9. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    EPA Science Inventory

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  10. Dynamic model of the Earth's upper atmosphere

    NASA Technical Reports Server (NTRS)

    Slowey, J. W.

    1984-01-01

    An initial modification to the MSF/J70 Thermospheric Model, in which the variations due to sudden geomagnetic disturbances upon the Earth's upper atmospheric density structure were modeled is presented. This dynamic model of the geomagnetic variation included is an improved version of one which SAO developed from the analysis of the ESRO 4 mass spectrometer data that was incorporated in the Jacchia 1977 model. The variation with geomagnetic local time as well as with geomagnetic latitude are included, and also the effects due to disturbance of the temperature profiles in the region of energy deposition.

  11. The importance of accurate atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Payne, Dylan; Schroeder, John; Liang, Pang

    2014-11-01

    This paper will focus on the effect of atmospheric conditions on EO sensor performance using computer models. We have shown the importance of accurately modeling atmospheric effects for predicting the performance of an EO sensor. A simple example will demonstrated how real conditions for several sites in China will significantly impact on image correction, hyperspectral imaging, and remote sensing. The current state-of-the-art model for computing atmospheric transmission and radiance is, MODTRAN® 5, developed by the US Air Force Research Laboratory and Spectral Science, Inc. Research by the US Air Force, Navy and Army resulted in the public release of LOWTRAN 2 in the early 1970's. Subsequent releases of LOWTRAN and MODTRAN® have continued until the present. Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns. The paper will demonstrate the importance of using validated models and local measured meteorological, atmospheric and aerosol conditions to accurately simulate the atmospheric transmission and radiance. Frequently default conditions are used which can produce errors of as much as 75% in these values. This can have significant impact on remote sensing applications.

  12. High-resolution Martian atmosphere modeling

    NASA Technical Reports Server (NTRS)

    Egan, W. G.; Fischbein, W. L.; Smith, L. L.; Hilgeman, T.

    1980-01-01

    A multilayer radiative transfer, high-spectral-resolution infrared model of the lower atmosphere of Mars has been constructed to assess the effect of scattering on line profiles. The model takes into accout aerosol scattering and absorption and includes a line-by-line treatment of scattering and absorption by CO2 and H2O. The aerosol complex indices of refraction used were those measured on montmorillonite and basalt chosen on the basis of Mars ir data from the NASA Lear Airborne Observatory. The particle sizes and distribution were estimated using Viking data. The molecular line treatment employs the AFGL line parameters and Voigt profiles. The modeling results indicate that the line profiles are only slightly affected by normal aerosol scattering and absorption, but the effect could be appreciable for heavy loading. The technique described permits a quantitative approach to assessing and correcting for the effect of aerosols on lineshapes in planetary atmospheres.

  13. Modeling atmospheric pressure plasmas for biomedical applications

    NASA Astrophysics Data System (ADS)

    Graves, David

    2007-10-01

    The use of cold, atmospheric pressure plasmas for biomedical treatments is an exciting new application in gaseous electronics. Investigations to date include various tissue treatments and surgery, bacterial destruction, and the promotion of wound healing, among others. In this talk, I will present results from modeling the `plasma needle,' an atmospheric pressure plasma configuration that has been explored by several groups around the world. The biomedical efficacy of the plasma needle has been demonstrated but the mechanisms of cell and tissue modification or bacterial destruction are only just being established. One motivation for developing models is to help interpret experiments and evaluate postulated mechanisms. The model reveals important elements of the plasma needle sustaining mechanisms and operating modes. However, the extraordinary complexity of plasma-tissue interactions represents a long-term challenge for this burgeoning field.

  14. Atmospheric models for post- giant impact planets

    NASA Astrophysics Data System (ADS)

    Lupu, R.; Zahnle, K. J.; Marley, M. S.; Schaefer, L. K.; Fegley, B.; Morley, C.; Cahoy, K.; Freedman, R. S.; Fortney, J. J.

    2013-12-01

    the reflected and emergent flux. We find that these atmospheres are dominated by H2O and CO2, while the formation of CH4, and NH3 is quenched due to short dynamical timescales. Other important constituents are HF, HCl, NaCl, and SO2. These are apparent in the emerging spectra, and can be indicative that an impact has occurred. Estimates including photochemistry and vertical mixing show that these atmospheres are enhanced in sulfur-bearing species, particularly SO2, one of the most important absorbers. At this stage we do not address cloud formation and aerosol opacity. Estimated luminosities for post-impact planets, although lower than predicted by previous models, show that the hottest post-giant-impact planets will be detectable with the planned 30 m-class telescopes. Finally, we use the models to describe the cooling of a post-impact terrestrial planet and briefly investigate its time evolution, which ends as the planet transitions into a more conventional steam atmosphere runaway greenhouse. This calculation brings a significant improvement over previous runaway greenhouse models, by including additional opacity sources and comprehensive line lists for H2O and CO2. We find that the cooling timescale for post-giant impact Earths ranges between about 10^5 and 10^6 years, where the slower cooling is associated with the planet going through a runaway greenhouse stage.

  15. Atomic Oscillator Strengths for Stellar Atmosphere Modeling

    NASA Astrophysics Data System (ADS)

    Ruffoni, Matthew; Pickering, Juliet C.

    2015-08-01

    In order to correctly model stellar atmospheres, fundamental atomic data must be available to describe atomic lines observed in their spectra. Accurate, laboratory-measured oscillator strengths (f-values) for Fe peak elements in neutral or low-ionisation states are particularly important for determining chemical abundances.However, advances in astronomical spectroscopy in recent decades have outpaced those in laboratory astrophysics, with the latter frequently being overlooked at the planning stages of new projects. As a result, numerous big-budget astronomy projects have been, and continue to be hindered by a lack of suitable, accurately-measured reference data to permit the analysis of expensive astronomical spectra; a problem only likely to worsen in the coming decades as spectrographs at new facilities increasingly move to infrared wavelengths.At Imperial College London - and in collaboration with NIST, Wisconsin University and Lund University - we have been working with the astronomy community in an effort to provide new accurately-measured f-values for a range of projects. In particular, we have been working closely with the Gaia-ESO (GES) and SDSS-III/APOGEE surveys, both of which have discovered that many lines that would make ideal candidates for inclusion in their analyses have poorly defined f-values, or are simply absent from the database. Using high-resolution Fourier transform spectroscopy (R ~ 2,000,000) to provide atomic branching fractions, and combining these with level lifetimes measured with laser induced fluorescence, we have provided new laboratory-measured f-values for a range of Fe-peak elements, most recently including Fe I, Fe II, and V I. For strong, unblended lines, uncertainties are as low as ±0.02 dex.In this presentation, I will describe how experimental f-values are obtained in the laboratory and present our recent work for GES and APOGEE. In particular, I will also discuss the strengths and limitations of current laboratory

  16. Physically-Derived Dynamical Cores in Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Lin, Shian-Kiann

    1999-01-01

    The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model of Lin and Rood (QJRMS, 1997) is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.

  17. Physically-Derived Dynamical Cores in Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Lin, Shian-Jiann

    1999-01-01

    The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.

  18. A global electric circuit model within a community climate model

    NASA Astrophysics Data System (ADS)

    Lucas, G. M.; Baumgaertner, A. J. G.; Thayer, J. P.

    2015-12-01

    To determine the complex dependencies of currents and electric fields within the Global Electric Circuit (GEC) on the underlying physics of the atmosphere, a new modeling framework of the GEC has been developed for use within global circulation models. Specifically, the Community Earth System Modeling framework has been utilized. A formulation of atmospheric conductivity based on ion production and loss mechanisms (including galactic cosmic rays, radon, clouds, and aerosols), conduction current sources, and ionospheric potential changes due to the influence of external current systems are included. This paper presents a full description of the calculation of the electric fields and currents within the model, which now includes several advancements to GEC modeling as it incorporates many processes calculated individually in previous articles into a consistent modeling framework. This framework uniquely incorporates effects from the troposphere up to the ionosphere within a single GEC model. The incorporation of a magnetospheric potential, which is generated by a separate magnetospheric current system, acts to modulate or enhance the surface level electric fields at high-latitude locations. This produces a distinct phasing signature with the GEC potential that is shown to depend on the observation location around the globe. Lastly, the model output for Vostok and Concordia, two high-latitude locations, is shown to agree with the observational data obtained at these sites over the same time period.

  19. Parallel computing in atmospheric chemistry models

    SciTech Connect

    Rotman, D.

    1996-02-01

    Studies of atmospheric chemistry are of high scientific interest, involve computations that are complex and intense, and require enormous amounts of I/O. Current supercomputer computational capabilities are limiting the studies of stratospheric and tropospheric chemistry and will certainly not be able to handle the upcoming coupled chemistry/climate models. To enable such calculations, the authors have developed a computing framework that allows computations on a wide range of computational platforms, including massively parallel machines. Because of the fast paced changes in this field, the modeling framework and scientific modules have been developed to be highly portable and efficient. Here, the authors present the important features of the framework and focus on the atmospheric chemistry module, named IMPACT, and its capabilities. Applications of IMPACT to aircraft studies will be presented.

  20. Atmospheric analysis modeling in support of Seasat

    NASA Technical Reports Server (NTRS)

    Langland, R. A.; Stephens, P. L.

    1978-01-01

    Atmospheric objective analysis models were developed and tested in preparation for assessing the utility of Seasat data. Of the several discretionary procedures in such computer programs, the effects of three were examined and documented: (1) the effect of varying the weights in the pattern conserving techniques; (2) the effect of varying the data influence region; (3) the effect of including wind information in analysis of mass-structure variables. The problem of inserting bogus reports is also examined.

  1. Advanced Numerical Modeling of Turbulent Atmospheric Flows

    NASA Astrophysics Data System (ADS)

    Kühnlein, Christian; Dörnbrack, Andreas; Gerz, Thomas

    The present chapter introduces the method of computational simulation to predict and study turbulent atmospheric flows. This includes a description of the fundamental approach to computational simulation and the practical implementation using the technique of large-eddy simulation. In addition, selected contributions from IPA scientists to computational model development and various examples for applications are given. These examples include homogeneous turbulence, convective boundary layers, heated forest canopy, buoyant thermals, and large-scale flows with baroclinic wave instability.

  2. Modeling atmospheric concentrations and deposition of Hg

    SciTech Connect

    Shannon, J.D.

    1994-06-01

    The deleterious effects on ecosystems of mercury pollution are well established and fish advisories are in effect for many lakes in North America. Because methylation and other transformation processes in ecosystems can alter the original speciation of deposited Hg, a decrease in atmospheric loading of Hg in all forms is highly desirable. The contribution to Hg deposition by emissions from current anthropogenic activities relative to the deposition contribution by emissions from natural processes must be estimated to establish what fraction of atmospheric loading to watersheds and ecosystems is at least potentially amenable to control actions. Additional modeling questions concern source-receptor relationships (SRR) for major point sources and for emissions aggregated over geopolitical regions or emission sectors, because of the usefulness of SRR in comparing effectiveness of alternate control strategies. Modeling of atmospheric Hg is less advanced than that of some other widespread air pollution problems such as acid deposition. Nonetheless, several promising studies have been made for northern Europe and North America. For this study of Hg deposition in eastern North America we extend modeling techniques used extensively and successfully during the last 15 years for concentrations and deposition of SO{sub x} and NO{sub x} over regional scales, with parameterization rates adjusted to suitable values for Hg transformation and removal.

  3. Gravity Waves in Polar Mesosphere and Lower Thermosphere Revealed in a Whole-atmospheric Global Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Song, I. S.; Jee, G.; Kim, B. M.

    2015-12-01

    Mesoscale gravity waves are simulated by carrying out the specified chemistry whole atmosphere community climate model (SC-WACCM) at the horizontal resolution of about 25 km to understand the origin of gravity waves in the polar mesosphere and lower thermosphere (MLT) and their propagation properties throughout the whole atmosphere. Modeled gravity waves are also compared with gravity-wave activities estimated from meteor radar observations made in Antarctica by Korea Polar Research Institute. For this comparison, SC-WACCM is initialized at a specific date and time using atmospheric state variables from the ground to the thermosphere obtained from various data sets such as operational analyses and empirical wind and temperature model results. Model initial conditions are corrected for mass and dynamical balance to reduce spurious waves due to initial shocks. At conference, preliminary results of the mesoscale SC-WACCM simulation and its comparison with observations will be presented.

  4. Synergies Between Grace and Regional Atmospheric Modeling Efforts

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Springer, A.; Ohlwein, C.; Hartung, K.; Longuevergne, L.; Kollet, S. J.; Keune, J.; Dobslaw, H.; Forootan, E.; Eicker, A.

    2014-12-01

    In the meteorological community, efforts converge towards implementation of high-resolution (< 12km) data-assimilating regional climate modelling/monitoring systems based on numerical weather prediction (NWP) cores. This is driven by requirements of improving process understanding, better representation of land surface interactions, atmospheric convection, orographic effects, and better forecasting on shorter timescales. This is relevant for the GRACE community since (1) these models may provide improved atmospheric mass separation / de-aliasing and smaller topography-induced errors, compared to global (ECMWF-Op, ERA-Interim) data, (2) they inherit high temporal resolution from NWP models, (3) parallel efforts towards improving the land surface component and coupling groundwater models; this may provide realistic hydrological mass estimates with sub-diurnal resolution, (4) parallel efforts towards re-analyses, with the aim of providing consistent time series. (5) On the other hand, GRACE can help validating models and aids in the identification of processes needing improvement. A coupled atmosphere - land surface - groundwater modelling system is currently being implemented for the European CORDEX region at 12.5 km resolution, based on the TerrSysMP platform (COSMO-EU NWP, CLM land surface and ParFlow groundwater models). We report results from Springer et al. (J. Hydromet., accept.) on validating the water cycle in COSMO-EU using GRACE and precipitation, evapotranspiration and runoff data; confirming that the model does favorably at representing observations. We show that after GRACE-derived bias correction, basin-average hydrological conditions prior to 2002 can be reconstructed better than before. Next, comparing GRACE with CLM forced by EURO-CORDEX simulations allows identifying processes needing improvement in the model. Finally, we compare COSMO-EU atmospheric pressure, a proxy for mass corrections in satellite gravimetry, with ERA-Interim over Europe at

  5. Atmospheric model intercomparison project: Monsoon simulations

    SciTech Connect

    Sperber, K.R.; Palmer, T.N.

    1994-06-01

    The simulation of monsoons, in particular the Indian summer monsoon, has proven to be a critical test of a general circulation model`s ability to simulate tropical climate and variability. The Monsoon Numerical Experimentation Group has begun to address questions regarding the predictability of monsoon extremes, in particular conditions associated with El Nino and La Nina conditions that tend to be associated with drought and flood conditions over the Indian subcontinent, through a series of seasonal integrations using analyzed initial conditions from successive days in 1987 and 1988. In this paper the authors present an analysis of simulations associated with the Atmospheric Model Intercomparison Project (AMIP), a coordinated effort to simulate the 1979--1988 decade using standardized boundary conditions with approximately 30 atmospheric general circulation models. The 13 models analyzed to date are listed. Using monthly mean data from these simulations they have calculated indices of precipitation and wind shear in an effort to access the performance of the models over the course of the AMIP decade.

  6. Observations and Modeling of Tropical Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Laraia, Anne

    2016-01-01

    This thesis is a comprised of three different projects within the topic of tropical atmospheric dynamics. First, I analyze observations of thermal radiation from Saturn's atmosphere and from them, determine the latitudinal distribution of ammonia vapor near the 1.5-bar pressure level. The most prominent feature of the observations is the high brightness temperature of Saturn's subtropical latitudes on either side of the equator. After comparing the observations to a microwave radiative transfer model, I find that these subtropical bands require very low ammonia relative humidity below the ammonia cloud layer in order to achieve the high brightness temperatures observed. We suggest that these bright subtropical bands represent dry zones created by a meridionally overturning circulation. Second, I use a dry atmospheric general circulation model to study equatorial superrotation in terrestrial atmospheres. A wide range of atmospheres are simulated by varying three parameters: the pole-equator radiative equilibrium temperature contrast, the convective lapse rate, and the planetary rotation rate. A scaling theory is developed that establishes conditions under which superrotation occurs in terrestrial atmospheres. The scaling arguments show that superrotation is favored when the off-equatorial baroclinicity and planetary rotation rates are low. Similarly, superrotation is favored when the convective heating strengthens, which may account for the superrotation seen in extreme global-warming simulations. Third, I use a moist slab-ocean general circulation model to study the impact of a zonally-symmetric continent on the distribution of monsoonal precipitation. I show that adding a hemispheric asymmetry in surface heat capacity is sufficient to cause symmetry breaking in both the spatial and temporal distribution of precipitation. This spatial symmetry breaking can be understood from a large-scale energetic perspective, while the temporal symmetry breaking requires

  7. Decadal Periodicities in a Venus Atmosphere General Circulation Model

    NASA Astrophysics Data System (ADS)

    Parish, Helen; Schubert, G.; Covey, C.; Walterscheid, R.; Grossman, A.; Lebonnois, S.

    2010-10-01

    We have modified a 3-dimensional Earth-based climate model, CAM (Community Atmosphere Model), to simulate the dynamics of Venus' atmosphere. We have removed Earth-related processes and introduced parameters appropriate for Venus. We use a simplified Newtonian cooling approximation for the radiation scheme, without seasonal or diurnal cycles or topography. We use a high resolution (1 degree in latitude and longitude) to take account of small-scale dynamical processes that might be important on Venus. Rayleigh friction is used to represent surface drag and to prevent upper boundary wave reflection. The simulations generate superrotation at cloud heights with wind velocities comparable to those found in measurements. We find a significant decadal oscillation in the zonal winds at cloud top heights and below. A vacillation cycle is seen in the cloud top mid-latitude zonal jets which wax and wane on an approximate 10 year cycle. The decadal oscillations we find may be excited by an instability near the surface, possibly a symmetric instability. Analyses of angular momentum transport show that the jets are built up by poleward transport by a meridional circulation while angular momentum is redistributed to lower latitudes primarily by transient eddies. Observations suggest that a cyclic variation similar to that found in the model might occur in the real Venus atmosphere. Observations by Mariner 10, Pioneer Venus, and Venus Express reveal variability in cloud top wind magnitudes and in the structure of Venus' cloud level mid-latitude jets with timescales of 5 to 10 years. Oscillations in CO composition and in temperature above the cloud tops also exhibit a periodicity around 10 years and changes in the atmospheric SO2 content over 40 years show a periodicity around 20 to 25 years. Venus' atmosphere must be observed over multi-year time scales and below the clouds if we are to understand its dynamics.

  8. Solar abundances and 3D model atmospheres

    NASA Astrophysics Data System (ADS)

    Ludwig, Hans-Günter; Caffau, Elisabetta; Steffen, Matthias; Bonifacio, Piercarlo; Freytag, Bernd; Cayrel, Roger

    2010-03-01

    We present solar photospheric abundances for 12 elements from optical and near-infrared spectroscopy. The abundance analysis was conducted employing 3D hydrodynamical (CO5BOLD) as well as standard 1D hydrostatic model atmospheres. We compare our results to others with emphasis on discrepancies and still lingering problems, in particular exemplified by the pivotal abundance of oxygen. We argue that the thermal structure of the lower solar photosphere is very well represented by our 3D model. We obtain an excellent match of the observed center-to-limb variation of the line-blanketed continuum intensity, also at wavelengths shortward of the Balmer jump.

  9. Modeling of Revitalization of Atmospheric Water

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2014-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of the water desiccant subsystem of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  10. Observation and Modeling of Atmospheric Peroxyformic Acid

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Liang, H.; Huang, D.; Huang, L.; Wu, Q.; Wu, H.

    2015-12-01

    The existence and importance of peroxyformic acid (PFA) in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(O)O2) and formaldehyde or the hydroperoxyl radical (HO2) were likely to be the major source and degradation into formic acid (FA) was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(O)O2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(O)O2 and PFA chemistry on radical cycling was dependent on the yield of HC(O)O2 radical from HC(O) + O2 reaction. When this yield exceeded 50%, the HC(O)O2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(O)O2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  11. Modeling the mineralogy of atmospheric dust sources

    NASA Astrophysics Data System (ADS)

    Claquin, T.; Schulz, M.; Balkanski, Y. J.

    1999-09-01

    The variability of atmospheric dust mineralogy influences the impact of desert dust on the Earth's radiative budget and biogeochemical cycles. Until now, atmospheric transport models have assumed that dust was a constant homogeneous mixture, hence neglecting this variability. The lack of mineralogical data in arid areas prevented a better description of the atmospheric dust composition, and we propose here a new formulation to estimate the mineral content of arid surfaces on a global scale. First, we collect a Database of Arid Soil Surface Mineralogy for eight major minerals: quartz, feldspar, calcite, gypsum, illite, kaolinite, smectite, and hematite, both for the clay and silt fraction. On the basis of this, we formulate a Mean Mineralogical Table that relates classical soil types to surface mineralogy. We use this table and the geographical distribution of soil types given in the Food and Agriculture Organization Soil Map of the World to obtain the mineralogy of arid surfaces globally. In order to validate these results, we present a compilation of measured mineralogical composition of dust samples with identified sources. The correlation between observed dust mineralogy and those inferred from soil types in corresponding areas is between 0.70 and 0.94. We then calculate the maps of the single scattering albedo and of the ratio of infrared extinction to visible extinction for the erodible fraction of arid areas. Mineralogical maps presented here will be used in future studies with an emission scheme in a global transport model.

  12. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  13. A photochemical model of the martian atmosphere.

    PubMed

    Nair, H; Allen, M; Anbar, A D; Yung, Y L; Clancy, R T

    1994-09-01

    The factors governing the amounts of CO, O2, and O3 in the martian atmosphere are investigated using a minimally constrained, one-dimensional photochemical model. We find that the incorporation of temperature-dependent CO2 absorption cross sections leads to an enhancement in the water photolysis rate, increasing the abundance of OH radicals to the point where the model CO abundance is smaller than observed. Good agreement between models and observations of CO, O2, O3, and the escape flux of atomic hydrogen can be achieved, using only gas-phase chemistry, by varying the recommended rate constants for the reactions CO + OH and OH + HO2 within their specified uncertainties. Similar revisions have been suggested to resolve discrepancies between models and observations of the terrestrial mesosphere. The oxygen escape flux plays a key role in the oxygen budget on Mars; as inferred from the observed atomic hydrogen escape, it is much larger than recent calculations of the exospheric escape rate for oxygen. Weathering of the surface may account for the imbalance. Quantification of the escape rates of oxygen and hydrogen from Mars is a worthwhile objective for an upcoming martian upper atmospheric mission. We also consider the possibility that HOx radicals may be catalytically destroyed on dust grains suspended in the atmosphere. Good agreement with the observed CO mixing ratio can be achieved via this mechanism, but the resulting ozone column is much higher than the observed quantity. We feel that there is no need at this time to invoke heterogeneous processes to reconcile models and observations. PMID:11539176

  14. An exploration of Saturn's atmospheric dynamics with Global Climate Modeling

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Guerlet, Sandrine; Indurain, Mikel; Meurdesoif, Yann; Millour, Ehouarn; Sylvestre, Mélody; Dubos, Thomas; Fouchet, Thierry

    2015-04-01

    A decade of Cassini observations has yielded a new vision on the dynamical phenomena in Saturn's troposphere and stratosphere. Several puzzling signatures (equatorial oscillations with a period of about half a Saturn year, interhemispheric circulations affecting the hydrocarbons' distribution, including possible effects of rings shadowing, sudden warming associated with the powerful 2010 Great White Spot) cannot be explained by current photochemical and radiative models, which do not include dynamics. We therefore suspect that 1. the observed anomalies arise from large-scale dynamical circulations and 2. those large-scale dynamical motions are driven by atmospheric waves, eddies, and convection, in other words fundamental mechanisms giving birth to, e.g., the Quasi-Biennal Oscillation and Brewer-Dobson circulation in the Earth's middle atmosphere. We explore the plausibility of this scenario using our new Global Climate Modeling (GCM) for Saturn. To build this model, we firstly formulated dedicated physical parameterizations for Saturn's atmosphere, with a particular emphasis on radiative computations (using a correlated-k radiative transfer model, with radiative species and spectral discretization tailored for Saturn) aimed at both efficiency and accuracy, and validated them against existing Cassini observations. A second step consisted in coupling this radiative model to an hydrodynamical solver to predict the three-dimensional evolution of Saturn's tropospheric and stratospheric flow. We will provide an analysis of the first results of those dynamical simulations, with a focus on the development of baroclinic and barotropic instability, on eddy vs. mean flow interactions, and how this could relate to the enigmatic signatures observed by Cassini. Preliminary high-resolution simulations with a new icosahedral dynamical solver adapted to high-performance computing will also be analyzed. Perspectives are twofold: firstly, broadening our fundamental knowledge of

  15. Arctic Storms in a Regionally Refined Atmospheric General Circulation Model

    NASA Astrophysics Data System (ADS)

    Roesler, E. L.; Taylor, M.; Boslough, M.; Sullivan, S.

    2014-12-01

    Regional refinement in an atmospheric general circulation model is a new tool in atmospheric modeling. A regional high-resolution solution can be obtained without the computational cost of running a global high-resolution simulation as global climate models have increasing ability to resolve smaller spatial scales. Previous work has shown high-resolution simulations, i.e. 1/8 degree, and variable resolution utilities have resolved more fine-scale structure and mesoscale storms in the atmosphere than their low-resolution counterparts. We will describe an experiment designed to identify and study Arctic storms at two model resolutions. We used the Community Atmosphere Model, version 5, with the Spectral Element dynamical core at 1/8-degree and 1 degree horizontal resolutions to simulate the climatological year of 1850. Storms were detected using a low-pressure minima and vorticity maxima - finding algorithm. It was found the high-resolution 1/8-degree simulation had more storms in the Northern Hemisphere than the low-resolution 1-degree simulation. A variable resolution simulation with a global low resolution of 1-degree and a high-resolution refined region of 1/8 degree over a region in the Arctic is planned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-16460A

  16. The Community Climate System Model Version 4

    SciTech Connect

    Gent, Peter R.; Danabasoglu, Gokhan; Donner, Leo J.; Holland, Marika M.; Hunke, Elizabeth C.; Jayne, Steve R.; Lawrence, David M.; Neale, Richard; Rasch, Philip J.; Vertenstein, Mariana; Worley, Patrick; Yang, Zong-Liang; Zhang, Minghua

    2011-10-01

    The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all the CCSM components, and documents fully coupled pre-industrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1{sup o} results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4{sup o} resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in the CCSM4 producing El Nino/Southern Oscillation variability with a much more realistic frequency distribution than the CCSM3, although the amplitude is too large compared to observations. They also improve the representation of the Madden-Julian Oscillation, and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the deep ocean density structure, especially in the North Atlantic. Changes to the CCSM4 land component lead to a much improved annual cycle of water storage, especially in the tropics. The CCSM4 sea ice component uses much more realistic albedos than the CCSM3, and the Arctic sea ice concentration is improved in the CCSM4. An ensemble of 20th century simulations runs produce an excellent match to the observed September Arctic sea ice extent from 1979 to 2005. The CCSM4 ensemble mean increase in globally-averaged surface temperature between 1850 and 2005 is larger than the observed increase by about 0.4 C. This is consistent with the fact that the CCSM4 does not include a representation of the indirect effects of aerosols, although other factors may come into play. The CCSM4 still has significant biases, such as the mean precipitation distribution in the tropical Pacific Ocean, too much low cloud in the Arctic, and the latitudinal distributions of short-wave and long-wave cloud forcings.

  17. CIDGA - Coupling of Interior Dynamic models with Global Atmosphere models

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Plesa, Ana-Catalina; Breuer, Doris

    2010-05-01

    Atmosphere temperatures and in particular the surface temperatures mostly depend on the solar heat flux and the atmospheric composition. The latter can be influenced by interior processes of the planet, i.e. volcanism that releases greenhouse gases such as H2O, CO2 and methane into the atmosphere and plate tectonics through which atmospheric CO2 is recycled via carbonates into the mantle. An increasing concentration of greenhouse gases in the atmosphere results in an increase of the surface temperature. Changes in the surface temperature on the other hand may influence the cooling behaviour of the planet and hence influence its volcanic activity [Phillips et al., 2001]. This feedback relation between mantle convection and atmosphere is not very well understood, since until now mostly either the interior dynamic of a planet or its atmosphere was investigated separately. 2D or 3D mantle convection models to the authors' knowledge haven't been coupled to the atmosphere so far. We have used the 3D spherical simulation code GAIA [Hüttig et al., 2008] including partial melt production and coupled it with the atmosphere module CIDGA using a gray greenhouse model for varying H2O concentrations. This way, not only the influence of mantle dynamics on the atmosphere can be investigated, but also the recoupling effect, that the surface temperature has on the mantle dynamics. So far, we consider one-plate planets without crustal and thus volatile recycling. Phillips et al. [2001] already investigated the coupling effect of the surface temperature on mantle dynamics by using simple parameterized convection models for Venus. In their model a positive feedback mechanism has been observed, i.e., an increase of the surface temperature leads to an increase of partial melt and hence an increase of atmosphere density and surface temperature. Applying our model to Venus, we show that an increase of surface temperature leads not only to an increase of partial melt in the mantle; it also

  18. Atmospheric transmittance model for photosynthetically active radiation

    SciTech Connect

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana; Pop, Nicolina; Calinoiu, Delia

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  19. Sensors and Apps for Community-Based Atmospheric Monitoring

    EPA Science Inventory

    Recent advances in both sensors and wireless communication provide opportunities for improved exposure assessment and increasing community involvement in reducing levels of human exposure to airborne contaminants. These new technologies can enhance data collection to answer scien...

  20. Jacchia-Lineberry upper atmosphere density model

    NASA Technical Reports Server (NTRS)

    Mueller, A. C.

    1982-01-01

    A series of increasingly accurate models which are a careful blend of empirical and theoretical formulae were developed. The exospheric temperature is assumed to be a function of: (1) the average and daily variations in the solar flux, (2) the average and three hourly variations in the geomagnetic index, (3) the angle between the position vector and the axis of the unsymmetric atmospheric bulge, and (4) the angle between the position vector and the geomagnetic pole. The exospheric temperature is related to the density by the solution of the diffusion equilibrium equations for the different constituents of the atmosphere as a function of altitude. Other variations are modeled directly as changes in the density. They are: (1) changes due to the semiannual effect, and (2) changes due to the seasonal latitudinal effect. The causes for these variations are not exactly known but may be modeled sufficiently by empirical formulae. The Jacchia model is assumed to be valid over the altitude range of 90 to 2500 km. The residuals between the observed density from satellite drag observations and the computed densities show the mean relative error to be generally less than 10 percent with occasional peak errors near 50 percent.

  1. Long-Term Variability in a Coupled Atmosphere Biosphere Model.

    NASA Astrophysics Data System (ADS)

    Delire, Christine; Foley, Jonathan A.; Thompson, Starley

    2004-10-01

    A fully coupled atmosphere biosphere model, version 3 of the NCAR Community Climate Model (CCM3) and the Integrated Biosphere Simulator (IBIS), is used to illustrate how vegetation dynamics may be capable of producing long-term variability in the climate system, particularly through the hydrologic cycle and precipitation. Two simulations of the global climate are conducted with fixed climatological sea surface temperatures: one including vegetation as a dynamic boundary condition, and the other keeping vegetation cover fixed. A comparison of the precipitation power spectra over land from these two simulations shows that dynamic interactions between the atmosphere and vegetation enhance precipitation variability at time scales from a decade to a century, while damping variability at shorter time scales.In these simulations, the two-way coupling between the atmosphere and the dynamic vegetation cover introduces persistent precipitation anomalies in several ecological transition zones: between forest and grasslands in the North American midwest, in southern Africa, and at the southern limit of the tropical forest in the Amazon basin, and between savanna and desert in the Sahel, Australia, and portions of the Arabian Peninsula. These regions contribute most to the long-term variability of the atmosphere vegetation system.Slow changes in the vegetation cover, resulting from a “red noise” integration of high-frequency atmospheric variability, are responsible for generating this long-term variability. Lead and lag correlation between precipitation and vegetation leaf area index (LAI) shows that LAI influences precipitation in the following years, and vice versa. A mechanism involving changes in LAI resulting in albedo, roughness, and evapotranspiration changes is proposed.


  2. Supermodeling With A Global Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Wiegerinck, Wim; Burgers, Willem; Selten, Frank

    2013-04-01

    In weather and climate prediction studies it often turns out to be the case that the multi-model ensemble mean prediction has the best prediction skill scores. One possible explanation is that the major part of the model error is random and is averaged out in the ensemble mean. In the standard multi-model ensemble approach, the models are integrated in time independently and the predicted states are combined a posteriori. Recently an alternative ensemble prediction approach has been proposed in which the models exchange information during the simulation and synchronize on a common solution that is closer to the truth than any of the individual model solutions in the standard multi-model ensemble approach or a weighted average of these. This approach is called the super modeling approach (SUMO). The potential of the SUMO approach has been demonstrated in the context of simple, low-order, chaotic dynamical systems. The information exchange takes the form of linear nudging terms in the dynamical equations that nudge the solution of each model to the solution of all other models in the ensemble. With a suitable choice of the connection strengths the models synchronize on a common solution that is indeed closer to the true system than any of the individual model solutions without nudging. This approach is called connected SUMO. An alternative approach is to integrate a weighted averaged model, weighted SUMO. At each time step all models in the ensemble calculate the tendency, these tendencies are weighted averaged and the state is integrated one time step into the future with this weighted averaged tendency. It was shown that in case the connected SUMO synchronizes perfectly, the connected SUMO follows the weighted averaged trajectory and both approaches yield the same solution. In this study we pioneer both approaches in the context of a global, quasi-geostrophic, three-level atmosphere model that is capable of simulating quite realistically the extra

  3. Effect of elevated atmospheric CO/sub 2/ on plant communities. Final report

    SciTech Connect

    Bazzaz, F.A.

    1984-10-01

    We have studied the effects of elevated atmospheric carbon dioxide on communities of colonizing annual plants, crop plants, and deciduous forest trees. We observe differential effects on different species with regard to growth, biomass, phenology, resource allocation, photosynthesis, water-use efficiency, flowering, and fruiting. We conclude that competitive relations among plants are likely to change as global atmospheric CO/sub 2/ increases, and that therefore there will be longterm changes in the composition of natural communities. More research will be necessary before any but the very broadest conclusions can be made about what direction these community changes are likely to take. 10 references, 9 figures.

  4. Temporal Dynamics of Bacterial and Fungal Community Composition in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Emerson, J. B.; Perring, A. E.; Schwarz, J. P.; Fahey, D. W.; Fierer, N.

    2014-12-01

    There is increasing evidence for significant microbial influences on atmospheric chemistry, cloud condensation, and ice nuclei concentrations, with known health impacts, yet we have a limited understanding of the types, abundances, and spatiotemporal dynamics of bacteria and fungi in the atmosphere. Here we use culture-independent molecular approaches, including targeted gene sequencing and quantitative PCR, to characterize bacterial and fungal community composition and abundance in the atmospheric boundary layer. We present results from 32 air samples, collected via vacuum filtration at 10 m and 250 m on the Boulder Atmospheric Observatory tower (Erie, CO) between November 2013 and April 2014. Samples were collected at night, and each sample was integrated over consecutive nights for approximately two weeks. Significant temporal shifts in bacterial and fungal community composition were observed over the course of the study, corresponding to changing bacterial and fungal concentrations. Within the same sampling time periods, bacterial and fungal communities from the near-surface atmosphere (10 m) were generally similar to those aloft (250 m), although coupled temporal and altitudinal effects were observed in some cases, particularly for fungi. Overall, our results indicate that bacterial and fungal communities exhibit minimal vertical stratification throughout the nocturnal atmospheric boundary layer but show a high degree of variability on two-week timescales. This study paves the way for further research into the connections between boundary layer microbiology, atmospheric dynamics, emissions, and local meteorology.

  5. New Data for Early Earth Atmospheric Modelling

    NASA Astrophysics Data System (ADS)

    Blackie, D.; Stark, G.; Lyons, J. R.; Pickering, J.; Smith, P. L.; Thorne, A.

    2010-12-01

    The timing of the oxygenation of the Earth’s atmosphere is a central issue in understanding the Earth’s paleoclimate. The discovery of mass-independent fractionation (MIF) of sulphur isotopes deposited within Archean and Paleoproterozoic rock samples (> 2.4 Gyrs) and the transition to mass-dependent fractionation found in younger samples, could provide a marker for the rise in oxygen concentrations in the Earth’s atmosphere [1]. Laboratory experiments [2; 3] suggest isotopic self shielding during gas phase photolysis of SO2 present at wavelengths shorter than 220 nm as the dominant mechanism for MIF. The UV absorption of SO2 is dominated by the C1B2-X1A1 electronic system which comprises strong vibrational bands extending from 170 - 230 nm. Within an atmosphere consisting of low O2 and O3 concentrations, such as that predicted for the early Earth, UV radiation would penetrate deep into the ancient Earth’s atmosphere in the 180 - 220 nm range driving the photolysis of SO2. We have conducted the first ever high resolution measurements of the photo absorption cross sections of several isotopologues of SO2, namely 32SO2, 33SO2, 34SO2 and 36SO2, using the Imperial College UV Fourier transform spectrometer [4] which is ideal for high resolution, broad-band, VIS/UV measurements. The cross sections are being measured at Imperial College at initial resolutions of 1.0 cm-1 which will be increased to resolutions < 0.5 cm-1 for inclusion in photochemical models of the early Earth’s atmosphere in order to more reliably interpret the sulphur isotope ratios found in ancient rock samples [5]. For discussion and interpretation of the photochemical models see the abstract by Lyons et al.(this meeting). References [1] J. Farquhar and B.A. Wing. Earth and Planetary Science Letters, 213:1-13, 2003. [2] J. Farquhar, J. Savarino, S. Airieau, and M.H Thiemens. Journal of Geophysical Research,106:32829-32839, 2001. [3] A. Pen and R. N. Clayton.Geochimica et Cosmochimica Acta

  6. The National Science Foundation's Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) Student Community

    NASA Astrophysics Data System (ADS)

    Sox, L.; Duly, T.; Emery, B.

    2014-12-01

    The National Science Foundation sponsors Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) Workshops, which have been held every summer, for the past 29 years. CEDAR Workshops are on the order of a week long and at various locations with the goal of being close to university campuses where CEDAR type scientific research is done. Although there is no formal student group within the CEDAR community, the workshops are very student-focused. Roughly half the Workshop participants are students. There are two Student Representatives on the CEDAR Science Steering Committee (CSSC), the group of scientists who organize the CEDAR Workshops. Each Student Representative is nominated by his or her peers, chosen by the CSSC and then serves a two year term. Each year, one of the Student Representatives is responsible for organizing and moderating a day-long session targeted for students, made up of tutorial talks, which aim to prepare both undergraduate and graduate students for the topics that will be discussed in the main CEDAR Workshop. The theme of this session changes every year. Past themes have included: upper atmospheric instrumentation, numerical modeling, atmospheric waves and tides, magnetosphere-ionosphere coupling, equatorial aeronomy and many others. Frequently, the Student Workshop has ended with a panel of post-docs, researchers and professors who discuss pressing questions from the students about the next steps they will take in their careers. As the present and past CSSC Student Representatives, we will recount a brief history of the CEDAR Workshops, our experiences serving on the CSSC and organizing the Student Workshop, a summary of the feedback we collected about the Student Workshops and what it's like to be student in the CEDAR community.

  7. PCMDI analysis of candidate atmospheric models for CCSM

    SciTech Connect

    Wehner, M F; Taylor, K; Doutriaux, C; AchutaRao, K; Gleckler, P; Hnilo, J; Boyle, J

    2000-12-13

    This report is intended to give a summary analysis of the candidate model configurations under consideration by NCAR for the atmospheric component of next version of the Community Climate System Model (CCSM). Intercomparison results are presented for each of the models available prior to the Atmospheric Model Working Group (AMWG) meeting, December 12-14, 2000. We present four types of figures in this report. The traditional methods of viewing zonal mean surface fields, latitude-longitude maps and zonal mean latitude-height cross sections are straightforward. In each of these cases, we present DJF and JJA climatological averages and a difference from an observational or reanalysis data set. The fourth method of analyzing the candidates' model performance involves the use of ''performance portraits'' and is explained in detail on following pages. As stated by NCAR and the AMWG, the information included in this report should be considered proprietary to NCAR and is not to be cited, consistent with the disclaimer on the AMWG password protected web pages. We deliberately have deferred our conclusions in this printed report to our presentation. Rather, we encourage you to draw your own conclusions based on these figures and other information made available at the AMWG meeting.

  8. ACCLAIM: A Model for Leading the Community.

    ERIC Educational Resources Information Center

    Vaughan, George B.; Gillett-Karam, Rosemary

    1993-01-01

    Advocates an approach to community college leadership based on community-based programming. Describes North Carolina State University's Academy for Community College Leadership Advancement, Innovation, and Modeling (ACCLAIM) and its components (i.e., continuing education, fellows program, information development/dissemination, and university…

  9. The Jeffrey Town Model for Community Development

    ERIC Educational Resources Information Center

    Gordon, Ivy Veronica

    2014-01-01

    The Jeffrey Town model for community development has been effectively applied to the rural community of Jeffrey Town in Jamaica with Information and Computer Technology (ICT) as a key element. The farmer's association is the vehicle that has driven the change. Included is a brief outline of the community plus highlights of the tangible and…

  10. Atmosphere - system analysis: models and data

    NASA Astrophysics Data System (ADS)

    Elbern, H.; Bittner, M.

    2003-04-01

    The presentation introduces an AFO2000 section with focus on earth observation issues in a broader sense. Satellite retrieval improvements, chemical data assimilation, humidity and cloud processes, as well as UT/LS chemistry are part of an activity, where the question is adressed how we can observe the earth's atmosphere to attain a picture as comprehensive as possible. With advanced algorithms the problem is adressed, to what extent processes, which are observed in nature, are understood by model simulations. A joint analysis is envisaged, i.e. all available information from measurements are to be combined with complex numerical models, so that a consistent picture of the atmosphere and its evolution is generated. Alternatively, in the case of discrepancies, we are able to identify significant deficiencies in our understanding of the system. In addition to numerical models, this approach requires computationally highly demanding algorithms. These are adopted from Inverse Modelling theory and allow for consistent analyses in an objective sense. Due to its continuous measurements, ENVISAT will play a central role by serving to confront chemistry transport models with data over long periods. Not all trace gases can by far be observed from space. However, under certain conditions, their distribution can be inferred by models in the framework of advanced space-time chemistry data assimilation methods, an inverse technique. Further assimilation efforts include global reconstruction of ozone profiles and of other constituents by numerical modelling and subsequent provision for scientific use. Archived data are also taken to extend the available time series. Efforts are undertaken to improve retrieval algorithms to infer concentration profiles directly from satellite data. Apart from satellite data remote sensing techniques in-situ-observations are also applied during field campaigns. An outstanding problem in atmospheric research, which requires such a combined use of

  11. A Stochastic Model of the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Gu, Yeming; Jefferies, John T.; Lindsey, Charles; Avrett, E. H.

    1997-07-01

    We present a model for the lower solar atmosphere based on continuum observations of the Sun spanning the 2-1200 μm wavelength range. We have shown that the data, in particular the center-to-limb brightness profiles at 50-350 μm, cannot be accounted for by any model which is plane-parallel and homogeneous in the height range in which this radiation is formed. We accordingly set out to develop a two-component model as the natural generalization. Making use of a theory for radiation transfer in a stochastic multi-component atmosphere, we find that one can indeed obtain an inhomogeneous model which satisfies center-to-limb data over the 2-1200 μm range. This composite model is made up of hot ``flux tubes'' randomly embedded in a cool medium, the flux tubes expanding to occupy an increasing proportion of the atmosphere as we move up in height. The cool ambient component shows a monotonic decrease in temperature in the range defined by the data. The temperature in the hot component is constant at about 6500 K up to about 400 km and increases monotonically above that height. The center-to-limb observations demand that the gas in the interiors of the flux tubes be recessed downward with respect to a hydrostatic equilibrium distribution of density. This appears to constitute a chromospheric Wilson depression consistent with a magnetic field of about 120 G in the flux-tube interior at a height of about 600 km. The new model is shown to be consistent with other spectral measurements independent of those used to define it. It gives a very good fit to the 0.5 μm continuum intensities across the disk, and provides an excellent accounting for the disk-center brightness temperature in the center of the 3-2 R14 CO line at 4.667 μm. A boundary temperature of less than about 3000 K in the cold component is suggested from the limb-darkening data available for this line. In an appendix we mention a procedure for an analogous study based on the intensities of multiplet lines

  12. Fungi in the future: Interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities

    DOE PAGESBeta

    Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael; Dumbrell, Alex J.; Helgason, Thorunn

    2015-01-05

    Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO2) and ozone (O3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean (Glycine max) grown under elevated and ambient atmospheric concentrations of both CO2 and O3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO2 altered the community composition of AM fungi, increasingmore » the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.« less

  13. Fungi in the future: Interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities

    SciTech Connect

    Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael; Dumbrell, Alex J.; Helgason, Thorunn

    2015-01-05

    Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO2) and ozone (O3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean (Glycine max) grown under elevated and ambient atmospheric concentrations of both CO2 and O3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO2 altered the community composition of AM fungi, increasing the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.

  14. Fungi in the future: interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities

    PubMed Central

    Cotton, T E Anne; Fitter, Alastair H; Miller, R Michael; Dumbrell, Alex J; Helgason, Thorunn

    2015-01-01

    Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO2) and ozone (O3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean (Glycine max) grown under elevated and ambient atmospheric concentrations of both CO2 and O3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO2 altered the community composition of AM fungi, increasing the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi. PMID:25560980

  15. Fungi in the future: interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities.

    PubMed

    Cotton, T E Anne; Fitter, Alastair H; Miller, R Michael; Dumbrell, Alex J; Helgason, Thorunn

    2015-03-01

    Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO2 ) and ozone (O3 ) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean (Glycine max) grown under elevated and ambient atmospheric concentrations of both CO2 and O3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO2 altered the community composition of AM fungi, increasing the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi. PMID:25560980

  16. An Institutional Accountability Model for Community Colleges.

    ERIC Educational Resources Information Center

    Harbour, Clifford P.

    2003-01-01

    Proposes a model for managing a community college's accountability environment and shows how it can be applied. Reports that the model is premised on the pluralistic perspective of accountability (Kearns), and uses Christensen's value network for building the community college model. (Contains 37 references.) (AUTH/NB)

  17. The Community Climate System Model, Version 2.

    NASA Astrophysics Data System (ADS)

    Kiehl, Jeffrey T.; Gent, Peter R.

    2004-10-01

    The Community Climate System Model, version 2 (CCSM2) is briefly described. A 1000-yr control simulation of the present day climate has been completed without flux adjustments. Minor modifications were made at year 350, which included all five components using the same physical constants. There are very small trends in the upper-ocean, sea ice, atmosphere, and land fields after year 150 of the control simulation. The deep ocean has small but significant trends; however, these are not large enough that the control simulation could not be continued much further. The equilibrium climate sensitivity of CCSM2 is 2.2 K, which is slightly larger than the Climate System Model, version 1 (CSM1) value of 2.0 K.Several aspects of the control simulation's mean climate and interannual variability are described, and good and bad properties of the control simulation are documented. In particular, several aspects of the simulation, especially in the Arctic region, are much improved over those obtained in CSM1. Other aspects, such as the tropical Pacific region simulation, have not been improved much compared to those in CSM1. Priorities for further model development are discussed in the conclusions section.


  18. The Atmospheric Radionuclide Transport Model (ARTM) - Validation of a long-term atmospheric dispersion model

    NASA Astrophysics Data System (ADS)

    Hettrich, Sebastian; Wildermuth, Hans; Strobl, Christopher; Wenig, Mark

    2016-04-01

    In the last couple of years, the Atmospheric Radionuclide Transport Model (ARTM) has been developed by the German Federal Office for Radiation Protection (BfS) and the Society for Plant and Reactor Security (GRS). ARTM is an atmospheric dispersion model for continuous long-term releases of radionuclides into the atmosphere, based on the Lagrangian particle model. This model, developed in the first place as a more realistic replacement for the out-dated Gaussian plume models, is currently being optimised for further scientific purposes to study atmospheric dispersion in short-range scenarios. It includes a diagnostic wind field model, allows for the application of building structures and multiple sources (including linear, 2-and 3-dimensional source geometries), and considers orography and surface roughness. As an output it calculates the activity concentration, dry and wet deposition and can model also the radioactive decay of Rn-222. As such, ARTM requires to undergo an intense validation process. While for short-term and short-range models, which were mainly developed for examining nuclear accidents or explosions, a few measurement data-sets are available for validation, data-sets for validating long-term models are very sparse and the existing ones mostly prove to be not applicable for validation. Here we present a strategy for the validation of long-term Lagrangian particle models based on the work with ARTM. In our validation study, the first part we present is a comprehensive analysis of the model sensitivities on different parameters like e.g. (simulation grid size resolution, starting random number, amount of simulation particles, etc.). This study provides a good estimation for the uncertainties of the simulation results and consequently can be used to generate model outputs comparable to the available measurements data at various distances from the emission source. This comparison between measurement data from selected scenarios and simulation results

  19. [Development of model communities (Cool Communities)]. Final report

    SciTech Connect

    1998-09-01

    This report covers progress in the Cool Communities program and is intended to detail specific accomplishments during the year and to provide a limited amount of background information about the program and its progress over the past three years. The Cool Communities project is driven by local partnerships among business, citizens, government, and guided by a Local Advisory Committee of representatives from these organizations. A national overview of the program is given in the first section. The second section describes specific accomplishments in each of the model communities in Dade County, Atlanta, Frederick, Tucson, Springfield, Austin, and the Davis Monthan Air Force Base.

  20. Comparison of Cenozoic atmospheric general circulation model simulations

    SciTech Connect

    Barron, E.J.

    1985-01-01

    Paleocene, Eocene, Miocene and present day (with polar ice) geography are specified as the lower boundary condition in a mean annual, energy balance ocean version of the Community Climate Model (CCM), a spectral General Circulation Model of the Atmosphere developed at the National Center for Atmospheric Research. This version of the CCM has a 4.5/sup 0/ latitudinal and 7.5/sup 0/ longitudinal resolution with 9 vertical levels and includes predictions for pressure, winds, temperature, evaporation, precipitation, cloud cover, snow cover and sea ice. The model simulations indicate little geographically-induced climates changes from the Paleocene to the Miocene, but substantial differences between the Miocene and the present simulations. The simulated climate differences between the Miocene and present day include: 1) cooler present temperatures (2/sup 0/C in tropics, 15-35 C in polar latitudes) with the exception of warmer subtropical desert conditions, 2) a generally weaker present hydrologic cycle, with greater subtropical aridity, 3) strengthened present day westerly jets with a slight poleward displacement, and 4) the largest regional climate changes associated with Antarctica. The results of the climate model sensitivity experiments have considerable implications for understanding how geography influences climate.

  1. Numerical Modelling of Mesoscale Atmospheric Dispersion.

    NASA Astrophysics Data System (ADS)

    Moran, Michael D.

    Mesoscale atmospheric dispersion is more complicated than smaller-scale dispersion because the mean wind field can no longer be considered steady or horizontally homogeneous over mesoscale time and space scales. Wind shear also plays a more important role on the mesoscale, and horizontal dispersion can be enhanced and even dominated by vertical wind shear through either the simultaneous or delayed interaction of horizontal differential advection and vertical mixing over one or two diurnal periods. The CSU mesoscale atmospheric dispersion modelling system has been used in this study to simulate the transport and diffusion of a perfluorocarbon gas for episodic releases made during two North American mesoscale dispersion field experiments, the 1980 Great Plains tracer experiment and the 1983 Cross-Appalachian Tracer Experiment (CAPTEX). Ground -level and elevated tracer concentrations were measured out to distances of 600 km from the source in the first experiment and 1100 km in the second. The physiography of the two experimental domains was quite different, permitting isolation and examination of the roles of terrain forcing and differential advection in mesoscale atmospheric dispersion. Suites of numerical experiments of increasing complexity were carried out for both case studies. The experiments differed in the realism of their representation of both the synoptic-scale flow and the underlying terrain. The Great Plains nocturnal low-level jet played an important role in the first case while temporal changes in the synoptic -scale flow were very significant in the second case. The contributions of differential advection and mesoscale deformation to mesoscale dispersion dominated those of small-scale turbulent diffusion for both cases, and Pasquill's (1962) delayed-shear-enhancement mechanism for lateral dispersion was found to be particularly important. This study was also the first quantitative evaluation of the CSU mesoscale dispersion modelling system with

  2. Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Kittredge, Kenneth; Xoker, Robert F.; Cummings, Ramona; Gomez, Carlos F.

    2012-01-01

    "NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the development of atmosphere revitalization models and simulations. A companion paper discusses the hardware design and sorbent screening and characterization effort in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.

  3. Modeling agriculture in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Drewniak, B.; Song, J.; Prell, J.; Kotamarthi, V. R.; Jacob, R.

    2013-04-01

    The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types - maize, soybean, and spring wheat - into the coupled carbon-nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements for soybean, but not as well for maize. CLM-Crop yields were comparable with observations in countries such as the United States, Argentina, and China, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation, in agreement with other modeling studies. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model - simulating agriculture in a realistic way, complete with fertilizer and residue management

  4. Atmospheric River Model Simulation Diagnostics and Performance Metrics

    NASA Astrophysics Data System (ADS)

    Waliser, D. E.; Guan, B.; Kim, J.; Leung, L. R.; Ralph, F. M.

    2014-12-01

    Atmospheric Rivers (ARs) are narrow, elongated, synoptic jets of water vapor. These systems account for over 90% of the poleward transport of water vapor in mid-latitudes and thus are a key mechanism in help establish the water and energy cycles of the planet. Many of the intense wintertime hydrological (flood and drought-ending precipitation) events in the US western states (as well as in other continents) occur in conjunction with land-falling AR events. Despite the important role of the ARs in our climate and weather systems, there have been few broad characterizations of model performance of ARs for global weather and climate models (GCMs), in terms of their role in global climate or impacts associated with extreme weather. Part of the challenge has been the lack of a comprehensive set of observation-based model simulation diagnostics and performance metrics. Based on the objectives and support from three activities: 1) the CalWater 2 AR project, 2) the Year of Tropical Convection (YOTC) and GEWEX Atmospheric System Study (GASS) multi-model experiment on Vertical Structure and Physical Processes of Weather & Climate, and 3) a new NASA effort examining the value added by dynamic regional climate model (RCM) downscaling, we are working to develop a comprehensive set of AR simulation diagnostics and model performance metrics for RCMs and GCMs. Application of these diagnostics and metrics will afford: 1) a baseline characterization of model representations of synoptic features, impacts, and multi-scale interactions, 2) an ability to guide model development and assess proposed improvements, 3) quantify the evolution in forecast skill, as well as 4) estimate predictability of AR characteristics and impacts. The purpose of this presentation is to initiate a more formal dialogue of this activity with the community, present a preliminary set of diagnostics/metrics and illustrate their utility through application to the 27 GCMs that contributed simulations to the YOTC

  5. Comparing the Degree of Land-Atmosphere Interaction in Four Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Dirmeyer, Paul A.; Hahmann, Andrea N.; Ijpelaar, Ruben; Tyahla, Lori; Cox, Peter; Suarez, Max J.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Land-atmosphere feedback, by which (for example) precipitation-induced moisture anomalies at the land surface affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated feedback strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective inter-model comparison of land-atmosphere feedback strength. The experiment essentially consists of an ensemble of simulations in which each member simulation artificially maintains the same time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicates the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that feedback strength does indeed vary significantly between the AGCMs.

  6. Radiation Belt Electron Dynamics: Modeling Atmospheric Losses

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.

    2003-01-01

    The first year of work on this project has been completed. This report provides a summary of the progress made and the plan for the coming year. Also included with this report is a preprint of an article that was accepted for publication in Journal of Geophysical Research and describes in detail most of the results from the first year of effort. The goal for the first year was to develop a radiation belt electron model for fitting to data from the SAMPEX and Polar satellites that would provide an empirical description of the electron losses into the upper atmosphere. This was largely accomplished according to the original plan (with one exception being that, for reasons described below, the inclusion of the loss cone electrons in the model was deferred). The main concerns at the start were to accurately represent the balance between pitch angle diffusion and eastward drift that determines the dominant features of the low altitude data, and then to accurately convert the model into simulated data based on the characteristics of the particular electron detectors. Considerable effort was devoted to achieving these ends. Once the model was providing accurate results it was applied to data sets selected from appropriate periods in 1997, 1998, and 1999. For each interval of -30 to 60 days, the model parameters were calculated daily, thus providing good short and long term temporal resolution, and for a range of radial locations from L = 2.7 to 3.9. .

  7. Lithosphere-Atmosphere-Ionosphere coupling model

    NASA Astrophysics Data System (ADS)

    Kachakhidze, M. K., III

    2015-12-01

    The present work offers interpretation of a mechanism of formation of hypothetic ideal electromagnetic contour, creation of which is envisaged in incoming earthquake focal zone. Model of generation of EM emissions detected before earthquake is based on physical analogues of distributed and conservative systems and focal zones. According to the model the process of earthquake preparation from the moment of appearance of cracks in the system, including completion of series of foreshocks, earthquake and aftershocks, are entirely explained by oscillating systems.According to the authors of the work electromagnetic emissions in radio diapason is more universal and reliable than other anomalous variations of various geophysical phenomena in earthquake preparation period; Besides, VLF/LF electromagnetic emissions might be declared as the main precursor of earthquake because it might turn out very useful with the view of prediction of large (M5) inland earthquakes and to govern processes going on in lithosphere-atmosphere-ionosphere coupling (LAIC) system. Based on this model, in case of electromagnetic emissions spectrum monitoring in the period that precedes earthquake it is possible to determine, with certain accuracy, the time, location and magnitude of an incoming earthquake simultaneously.The present item considers possible physical mechanisms of the geophysical phenomena, which may accompany earthquake preparation process and expose themselves several months, weeks or days prior to earthquakes. Such as: Changing of intensity of electro-telluric current in focal area; Perturbations of geomagnetic field in forms of irregular pulsations or regular short-period pulsations; Perturbations of atmospheric electric field; Irregular changing of characteristic parameters of the lower ionosphere (plasma frequency, electron concentration, height of D layer, etc.); Irregular perturbations reaching the upper ionosphere, namely F2-layer, for 2-3 days before the earthquake

  8. Model atmospheres for cool stars. [varying chemical composition

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1974-01-01

    This report contains an extensive series of model atmospheres for cool stars having a wide range in chemical composition. Model atmospheres (temperature, pressure, density, etc.) are tabulated, along with emergent energy flux distributions, limb darkening, and information on convection for selected models. The models are calculated under the usual assumptions of hydrostatic equilibrium, constancy of total energy flux (including transport both by radiation and convection) and local thermodynamic equilibrium. Some molecular and atomic line opacity is accounted for as a straight mean. While cool star atmospheres are regimes of complicated physical conditions, and these atmospheres are necessarily approximate, they should be useful for a number of kinds of spectral and atmospheric analysis.

  9. Four-Dimensional Global Reference-Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Johnson, Dale; Blocker, Rhonda S.

    1988-01-01

    Four-Dimensional Global Reference Atmosphere Model (GRAM) computer program developed from empirical atmospheric model generating values for pressure, density, temperature, and winds, from ground to orbital altitudes. Is amalgamation of two empirical atmospheric models for low and high atmosphere with newly-developed latitude-and longitude-dependent model for middle atmosphere. UNIVAC version written in UNIVAC FORTRAN. DEC VAX version of GRAM written in FORTRAN 77. Applications include simulation of reentry trajectories of external tanks, studies of global circulation and diffusion and generation of plots or data for comparison.

  10. Modelling atmospheric scatterers using spacecraft observations

    NASA Technical Reports Server (NTRS)

    Rages, Kathy A.

    1992-01-01

    Voyager images of Triton indicate considerable spatial variability in the concentration of at least two different scattering components in the atmosphere. Data from high phase angle limb scans were fit to Mie scattering models to derive mean particle sizes, number densities, and vertical extent for both types of scattering material at ten different locations between 15 deg S and 70 deg S. These fits reveal a thin haze at latitudes equatorward of 25-30 deg S. The imaging data can be fit reasonably well by both conservatively scattering and absorbing hazes with particle sizes near 0.18 micron and optical depths of order 0.001-0.01. Rayleigh scattering haze fits the imaging data somewhat less well, and can be totally ruled out by combining the imaging and UVS measurements. At high southern latitudes, Triton displays clouds below an altitude of approximately 8 km, as well as the haze at higher altitudes. The clouds have particle sizes which may range from 0.7-2.0 microns, or may be near 0.25 micron. The atmospheric optical depth poleward of 30 deg S must be generally greater than 0.1, but need not be more than 0.3. Horizontal inhomogeneities are quite noticeable, especially at longitudes east of (i.e., higher than) 180 deg.

  11. Modeling agriculture in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Drewniak, B.; Song, J.; Prell, J.; Kotamarthi, V. R.; Jacob, R.

    2012-12-01

    The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types - maize, soybean, and spring wheat - into the coupled carbon-nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements. CLM-Crop yields were comparable with observations in some regions, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model - simulating agriculture in a realistic way, complete with fertilizer and residue management practices. Results are encouraging, with improved representation of human influences on the land surface and the potentially

  12. A Community Hydrometeorology Laboratory for Fostering Collaborative Research by the Atmospheric and Hydrologic Sciences

    USGS Publications Warehouse

    Warner, T.T.; Yates, D.N.; Leavesley, G.H.

    2000-01-01

    A new community laboratory for fostering collaborative research between the atmospheric and hydrologie sciences communities is described. This facility, located at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, allows scientists from both communities to more easily focus resources and attention on interdisciplinary problems in atmospheric, hydrologic, and other related sciences. Researchers can remotely access the computing tools to use them or to download them to their own facility, or they can visit NCAR and use the laboratory with other scientists in joint research projects. An application of this facility is described, where scientists from NCAR, the University of Colorado, and the United States Geological Survey used quantitative precipitation estimates from weather radar to simulate a flash flood in the Buffalo Creek watershed in the mountainous Front Range near Denver, Colorado.

  13. Modeling atmospheric O 2 over Phanerozoic time

    NASA Astrophysics Data System (ADS)

    Berner, R. A.

    2001-03-01

    A carbon and sulfur isotope mass balance model has been constructed for calculating the variation of atmospheric O 2 over Phanerozoic time. In order to obtain realistic O 2 levels, rapid sediment recycling and O 2-dependent isotope fractionation have been employed by the modelling. The dependence of isotope fractionation on O 2 is based, for carbon, on the results of laboratory photosynthesis experiments and, for sulfur, on the observed relation between oxidation/reduction recycling and S-isotope fractionation during early diagenetic pyrite formation. The range of fractionations used in the modeling agree with measurements of Phanerozoic sediments by others. Results, derived from extensive sensitivity analysis, suggest that there was a positive excursion of O 2 to levels as high as 35% during the Permo-Carboniferous. High O 2 at this time agrees with independent modeling, based on the abundances of organic matter and pyrite in sediments, and with the occurrence of giant insects during this period. The cause of the excursion is believed to be the rise of vascular land plants and the consequent increased production of O 2 by the burial in sediments of lignin-rich organic matter that was resistant to biological decomposition.

  14. FORest Canopy Atmosphere Transfer (FORCAsT) 1.0: a 1-D model of biosphere-atmosphere chemical exchange

    NASA Astrophysics Data System (ADS)

    Ashworth, K.; Chung, S. H.; Griffin, R. J.; Chen, J.; Forkel, R.; Bryan, A. M.; Steiner, A. L.

    2015-11-01

    Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentrations of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase) is of particular importance in this process. The FORCAsT (FORest Canopy Atmosphere Transfer) 1-D model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs) and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOAs) from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS) during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign in the summer of 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs) for both the modelling and measurement communities.

  15. Aeras: A next generation global atmosphere model

    SciTech Connect

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not components of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.

  16. Greenhouse models of the atmosphere of Titan.

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1973-01-01

    The greenhouse effect is calculated for a series of Titanian atmosphere models with different proportions of methane, hydrogen, helium, and ammonia. A computer program is used in temperature-structure calculations based on radiative-convective thermal transfer considerations. A brightness temperature spectrum is derived for Titan and is compared with available observational data. It is concluded that the greenhouse effect on Titan is generated by pressure-induced transitions of methane and hydrogen. The helium-to-hydrogen ratio is found to have a maximum of about 1.5. The surface pressure is estimated to be at least 0.4 atm, with a daytime temperature of about 155 K at the surface. The presence of methane clouds in the upper troposphere is indicated. The clouds have a significant optical depth in the visible, but not in the thermal, infrared.

  17. Aeras: A next generation global atmosphere model

    DOE PAGESBeta

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  18. A photochemical model of the martian atmosphere

    NASA Technical Reports Server (NTRS)

    Nair, Hari; Allen, Mark; Anbar, Ariel D.; Yung, Yuk L; Clancy, R. Todd

    1994-01-01

    The factors governing the amounts of CO, O2, and O3 in the martian atmposphere are investigated using a minimally constrained, one-dimensional photochemical model. We find that the incorporation of temperature-dependent CO2 absorption cross sections leads to an enhancement in the water photolysis rate, increasing the abundance of OH radicals to the point where the model CO abundance is smaller that observed. Good agreement between models and observations of CO, O2, O3, and the escape flux of atomic hydrogen can be achieved, using only gas-phase chemistry, by varying the recommended rate constraints for the reaction CO + OH and OH + HO2 within their specified uncertainties. The oxygen escape flux plays a key role in the oxygen budget on Mars; as inferred from the observed atomic hydrogen escape, it is much larger than recent calculations of the exospheric escape rate for oxygen. Weathering of the surface may account for the imbalance. We also consider the possiblity that HO(x) radicals may be catalytically destroyed on dust grains suspended in the atmosphere. Good agreement with the observed CO mixing ratio can be achieved via this mechanism, but the resulting ozone column is much higher than the observed quantity.

  19. Temporal trends in earth-atmosphere system reflectance factor for sagebrush steppe vegetation communities

    NASA Technical Reports Server (NTRS)

    Strong, Laurence L.

    1987-01-01

    Four consecutive Landsat-5 Thematic Mapper acquisitions were used to examine trends in earth-atmosphere system reflectance factors of sagebrush steppe vegetation communities following soil moisture recharge from snow melt. Significant differences in trends between vegetation communities correspond to known differences in the initiation and duration of active vegetation growth. Information on short-term vegetation processes are a valuable supplement to estimates of total vegetation cover which can be obtained using satellite brightness images at less frequent temporal intervals.

  20. Metabolic Network Modeling of Microbial Communities

    PubMed Central

    Biggs, Matthew B.; Medlock, Gregory L.; Kolling, Glynis L.

    2015-01-01

    Genome-scale metabolic network reconstructions and constraint-based analysis are powerful methods that have the potential to make functional predictions about microbial communities. Current use of genome-scale metabolic networks to characterize the metabolic functions of microbial communities includes species compartmentalization, separating species-level and community-level objectives, dynamic analysis, the “enzyme-soup” approach, multi-scale modeling, and others. There are many challenges inherent to the field, including a need for tools that accurately assign high-level omics signals to individual community members, new automated reconstruction methods that rival manual curation, and novel algorithms for integrating omics data and engineering communities. As technologies and modeling frameworks improve, we expect that there will be proportional advances in the fields of ecology, health science, and microbial community engineering. PMID:26109480

  1. Evaluation of atmospheric chemical models using aircraft data (Invited)

    NASA Astrophysics Data System (ADS)

    Freeman, S.; Grossberg, N.; Pierce, R.; Lee, P.; Ngan, F.; Yates, E. L.; Iraci, L. T.; Lefer, B. L.

    2013-12-01

    Air quality prediction is an important and growing field, as the adverse health effects of ozone (O3) are becoming more important to the general public. Two atmospheric chemical models, the Realtime Air Quality Modeling System (RAQMS) and the Community Multiscale Air Quality modeling system (CMAQ) are evaluated during NASA's Student Airborne Research Project (SARP) and the NASA Alpha Jet Atmospheric eXperiment (AJAX) flights. CO, O3, and NOx data simulated by the models are interpolated using an inverse distance weighting in space and a linear interpolation in time to both the SARP and AJAX flight tracks and compared to the CO, O3, and NOx observations at those points. Results for the seven flights included show moderate error in O3 during the flights, with RAQMS having a high O3 bias (+15.7 ppbv average) above 6 km and a low O3 bias (-17.5 ppbv average) below 4km. CMAQ was found to have a low O3 bias (-13.0 ppbv average) everywhere. Additionally, little bias (-5.36% RAQMS, -11.8% CMAQ) in the CO data was observed with the exception of a wildfire smoke plume that was flown through on one SARP flight, as CMAQ lacks any wildfire sources and RAQMS resolution is too coarse to resolve narrow plumes. This indicates improvement in emissions inventories compared to previous studies. CMAQ additionally incorrectly predicted a NOx plume due to incorrectly vertically advecting it from the surface, which caused NOx titration to occur, limiting the production of ozone. This study shows that these models perform reasonably well in most conditions; however more work must be done to assimilate wildfires, improve emissions inventories, and improve meteorological forecasts for the models.

  2. Model flames in a hydrostatic atmosphere

    NASA Astrophysics Data System (ADS)

    Caceres Calleja, Alvaro

    A model flame system based on the advection-diffusion-reaction method is defined and used to numerically study the problem of a flame propagating up an initially hydrostatic atmosphere, in 2-D. We identify and characterize the flame's steady states over a range of parameters, in the case where the gravitational scale height is much greater than the size of the flame, which itself is much greater than the flame's laminar width. We observe both laminar and turbulent steady flames and verify that, for strong enough gravity G, the turbulent flame speed is independent of the laminar flame speed and scales like the square root of GL, where L is the size of our domain. As this scaling law is commonly used to implement flame subgrid models, one of the aims of this thesis is to understand its robustness. We describe the flame geometry and discuss its relationship with the flame speed. The flow statistics inside turbulent flames are measured and found to be gaussian and isotropic, corresponding to strong mixing.

  3. Numerical analysis and modeling of atmospheric phenomena

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.

    1994-01-01

    For the past 22 years Grant NGR 22-009-727 has been supporting research in the Center for Meteorology and Physical Oceanography (and its predecessors) in a wide variety of diagnostic and modeling studies of atmospheric and ocean phenomena. Professor Jule Charney was the initial Principal Investigator. Professor Peter Stone joined him as co-Principal Investigator in 1975 and became the sole Principal Investigator in 1981. During its lifetime the Grant has supported in whole or in part 11 Master's theses, 14 Ph.D. theses, and 45 papers published in refereed scientific journals. All of these theses and papers (with bibliographic references) are listed below. All but one of the theses were used to fulfill the requirements for MIT (Massachusetts Institute of Technology) degrees and are available from the MIT libraries. The one exception is F. Chen's Ph.D. thesis which was for a Harvard degree and is available from the Harvard libraries. In addition to the work described in the citations listed below, the Grant has supported Research Assistant Amy Solomon during the past two years to carry out a study of how baroclinic adjustment is affected by vertical resolution, vertical temperature structure, and dissipation. Ms. Solomon plans to use this project for her Ph.D. thesis. Support for this project will continue under NASA Grant NAG 5-2490, 'The Factors Controlling Poleward Heat Transport in Climate Models.'

  4. Middle atmosphere density and models. Technical report

    SciTech Connect

    Champion, K.

    1987-04-09

    The 80 to 130 km altitude region is our old ionosphere - the region of the atmosphere that no one seems to be interested in, and yet the critical region for shuttle entry and atmospheric braking. Comparison between the Air Force reference atmosphere and Shuttle IMU data shows large fluctuations at high latitudes. New data sources are available now, such as the Arecibo and Millstone Hill ionospheric scatter radars.

  5. A Conceptual Model of Rhetorical Community.

    ERIC Educational Resources Information Center

    Ehrenhaus, Peter

    A conceptual model of the rhetorical community that addresses the sociodramatic processes through which social order evolves, is maintained, can change, and is threatened is presented in this paper. Following an introduction, the paper identifies the various uses of rhetorical vision and rhetorical community that are found in fantasy theme…

  6. Small Business Training Models for Community Growth.

    ERIC Educational Resources Information Center

    Jellison, Holly M., Ed.

    Nine successful community college programs for small business management training are described in this report in terms of their college and economic context, purpose, offerings, delivery modes, operating and marketing strategies, community outreach, support services, faculty and staff, evaluation, and future directions. The model programs are…

  7. Atmospheric Weather Noise Characteristics in 20th Century Coupled Atmosphere-Ocean Model Simulations

    NASA Astrophysics Data System (ADS)

    Colfescu, Ioana; Schneider, Edwin

    2016-04-01

    The statistical characteristics of the atmospheric internal variability (hereafter weather noise) for surface pressure (PS) in 20th century simulations of a coupled general circulation model are documented. The weather noise is determined from post-industrial (1871-1998) Community Climate System Model 3 simulations by removing the SST and externally forced responses from the total fields.The forced responses are found from atmosphere-only simulations forced by the SST and external forcing of the coupled runs. The spatial patterns of the main modes of weather noise variability of the noise are found for boreal winter and summer from empirical orthogonal function (EOF) analyses performed globally, and for various regions, including the North Atlantic, the North Pacific, and the equatorial Pacific. The temporal characteristics of the modes are illustrated by power spectra and probability density functions (PDF) of the principal components (PC). Our findings show that, for two different realizations of weather noise, the variability is dominated by large scale spatial structures of the weather noise that resemble observed patterns, and that their relative amplitudes in the CGCM and AGCM simulations are very similar. The regional expression of the seasonally dependent AO-like or AAO-like dominant global pattern is also found in the regional analyses, giving similar PCs. The PCs in the CGCM and the corresponding SST forced AGCM simulations are uncorrelated, but the spectra and PDFs of the CGCM and AGCM PCs are similar. The temporal structures of the PCs are white at timescales larger than few months, so that these modes can be thought of as stochastic forcings (in time) for the climate system. The PDFs of the weather noise PCs are not statistically distinguishable from Gaussian distributions with the same standard deviation. The PDFs do not change substantially between the first and second half of the 20th century.

  8. Fungal community responses to past and future atmospheric CO2 differ by soil type

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils sequester and release substantial atmospheric carbon, but the biological responses of soils to rising CO2 are not well understood. We studied fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250-500 ppm) on two soil types, a black clay and a sandy...

  9. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  10. Model Atmospheres for Novae in Outburst: Summary of Research

    NASA Technical Reports Server (NTRS)

    Hauschildt, Peter H.

    1999-01-01

    This paper presents a final report and summary of research on Model Atmospheres for Novae in Outburst. Some of the topics include: 1) Detailed NLTE (non-local thermodynamic equilibrium) Model Atmospheres for Novae during Outburst: II. Modeling optical and ultraviolet observations of Nova LMC 1988 #1; 2) A Non-LTE Line-Blanketed Stellar Atmosphere Model of the Early B Giant epsilon CMa; 3) Spectroscopy of Low Metallicity Stellar atmospheres; 4) Infrared Colors at the Stellar/Substellar Boundary; 5) On the abundance of Lithium in T CrB; 6) Numerical Solution of the Expanding Stellar Atmosphere Problem; and 7) The NextGen Model Atmosphere grid for 3000 less than or equal to T (sub eff) less than or equal to 10000K.

  11. Atmospheric Modeling And Sensor Simulation (AMASS) study

    NASA Technical Reports Server (NTRS)

    Parker, K. G.

    1985-01-01

    A 4800 band synchronous communications link was established between the Perkin-Elmer (P-E) 3250 Atmospheric Modeling and Sensor Simulation (AMASS) system and the Cyber 205 located at the Goddard Space Flight Center. An extension study of off-the-shelf array processors offering standard interface to the Perkin-Elmer was conducted to determine which would meet computational requirements of the division. A Floating Point Systems AP-120B was borrowed from another Marshall Space Flight Center laboratory for evaluation. It was determined that available array processors did not offer significantly more capabilities than the borrowed unit, although at least three other vendors indicated that standard Perkin-Elmer interfaces would be marketed in the future. Therefore, the recommendation was made to continue to utilize the 120B ad to keep monitoring the AP market. Hardware necessary to support requirements of the ASD as well as to enhance system performance was specified and procured. Filters were implemented on the Harris/McIDAS system including two-dimensional lowpass, gradient, Laplacian, and bicubic interpolation routines.

  12. A downscaling scheme for atmospheric variables to drive soil-vegetation-atmosphere transfer models

    NASA Astrophysics Data System (ADS)

    Schomburg, A.; Venema, V.; Lindau, R.; Ament, F.; Simmer, C.

    2010-09-01

    For driving soil-vegetation-transfer models or hydrological models, high-resolution atmospheric forcing data is needed. For most applications the resolution of atmospheric model output is too coarse. To avoid biases due to the non-linear processes, a downscaling system should predict the unresolved variability of the atmospheric forcing. For this purpose we derived a disaggregation system consisting of three steps: (1) a bi-quadratic spline-interpolation of the low-resolution data, (2) a so-called `deterministic' part, based on statistical rules between high-resolution surface variables and the desired atmospheric near-surface variables and (3) an autoregressive noise-generation step. The disaggregation system has been developed and tested based on high-resolution model output (400m horizontal grid spacing). A novel automatic search-algorithm has been developed for deriving the deterministic downscaling rules of step 2. When applied to the atmospheric variables of the lowest layer of the atmospheric COSMO-model, the disaggregation is able to adequately reconstruct the reference fields. Applying downscaling step 1 and 2, root mean square errors are decreased. Step 3 finally leads to a close match of the subgrid variability and temporal autocorrelation with the reference fields. The scheme can be applied to the output of atmospheric models, both for stand-alone offline simulations, and a fully coupled model system.

  13. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  14. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.; Wmo Gaw, Epa Aqs, Epa Castnet, Capmon, Naps, Airbase, Emep, Eanet Ozone Datasets, All Other Contributors To

    2015-07-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8), SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  15. Atmospheric Backscatter Model Development for CO Sub 2 Wavelengths

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Kent, G.; Yue, G. K.

    1982-01-01

    The results of investigations into the problems of modeling atmospheric backscatter from aerosols, in the lowest 20 km of the atmosphere, at CO2 wavelengths are presented, along with a summary of the relevant aerosol characteristics and their variability, and a discussion of the measurement techniques and errors involved. The different methods of calculating the aerosol backscattering function, both from measured aerosol characteristics and from optical measurements made at other wavelengths, are discussed in detail, and limits are placed on the accuracy of these methods. The effects of changing atmospheric humidity and temperature on the backscatter are analyzed and related to the actual atmosphere. Finally, the results of modeling CO2 backscatter in the atmosphere are presented and the variation with height and geographic location discussed, and limits placed on the magnitude of the backscattering function. Conclusions regarding modeling techniques and modeled atmospheric backscatter values are presented in tabular form.

  16. Community-specific biogeochemical responses to atmospheric nitrogen deposition in subalpine meadow ecosystems of the Cascade Range

    NASA Astrophysics Data System (ADS)

    Poinsatte, J. P.; Rochefort, R.; Evans, R. D.

    2014-12-01

    Elevated anthropogenic nitrogen (N) emissions result in higher rates of atmospheric N deposition (Ndep) that can saturate sensitive ecosystems. Consequences of increased Ndep include higher emissions of greenhouse gases, eutrophication of watersheds, and deterioration of vegetation communities. Most of the annual N deposition at higher elevations in the Cascades is stored in snowpack until spring snowmelt when it is released as a pulse that can be assimilated by plant and microbial communities, or lost as gaseous emissions or leachate. The relative magnitude of these fluxes is unknown, particularly with accelerated rates of snowpack loss due to climate change. We quantified storage of Ndep in winter snowpack and determined impacts of Ndep on biogeochemical processes in a lush-herbaceous community characterized by Valeriana sitchensis and Lupinus latifolius, a heath-shrub community characterized by Phyllodoce empetriformis and Cassiope mertensiana, and a wet-sedge community dominated by Carex nigricans. These communities were selected to represent early, mid, and late snowmelt vegetation regimes prevalent throughout the Cascades. Ammonium (NH4+) was the dominant form of Ndep in winter snowpack and Ndep rates were higher than anticipated based on nearby National Atmospheric Deposition Program (NADP) measurements. Vegetation N uptake was the dominant N sink in the ecosystem, with the highest growing season uptake occurring in the lush-herbaceous community, while soil N leaching was the dominant N loss, with the lush-herbaceous also having the highest rates. Microbial biomass N fluctuated substantially across the growing season, with high biomass N immediately after snowmelt and again 30 days following snow release. Soil nitrous oxide (N2O) emissions peaked 30 days following snowmelt for all three communities and were greatest in the wet sedge community. These results indicate that subalpine communities have unique responses to Ndep that vary throughout the growing

  17. Application of the Regional Atmospheric Modeling System to the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Rafkin, Scot C. R.

    1998-01-01

    The core dynamics of the Regional Atmospheric Modeling System (RAMS), a widely used and powerful mesoscale Earth model, is adapted to the Martian Atmosphere and applied in the study of aeolian surface features. In particular, research efforts focused on the substitution of Martian planetary and atmospheric properties such as rotation rate, and thermodynamic constants in place of hard-wired Earth properties. Application of the model was restricted to three-dimensional flow impinging upon impact craters, and the search for plausible wind patterns that could produce the so-called light and dark streaks downwind of topographic barriers.

  18. Peformance Tuning and Evaluation of a Parallel Community Climate Model

    SciTech Connect

    Drake, J.B.; Worley, P.H.; Hammond, S.

    1999-11-13

    The Parallel Community Climate Model (PCCM) is a message-passing parallelization of version 2.1 of the Community Climate Model (CCM) developed by researchers at Argonne and Oak Ridge National Laboratories and at the National Center for Atmospheric Research in the early to mid 1990s. In preparation for use in the Department of Energy's Parallel Climate Model (PCM), PCCM has recently been updated with new physics routines from version 3.2 of the CCM, improvements to the parallel implementation, and ports to the SGIKray Research T3E and Origin 2000. We describe our experience in porting and tuning PCCM on these new platforms, evaluating the performance of different parallel algorithm options and comparing performance between the T3E and Origin 2000.

  19. The Community Transition Center (CTC) Model.

    ERIC Educational Resources Information Center

    Coker, Charles C.; Costello, James

    This paper describes the Community Transition Center (CTC) model, being tested in six districts in rural Wisconsin. The model is a way of conceptualizing and organizing the employment-related needs of mainstreamed mildly handicapped youths who are exiting secondary schools. The model emphasizes the role of secondary school transition programming,…

  20. Atomic hydrogen distribution. [in Titan atmospheric model

    NASA Technical Reports Server (NTRS)

    Tabarie, N.

    1974-01-01

    Several possible H2 vertical distributions in Titan's atmosphere are considered with the constraint of 5 km-A a total quantity. Approximative calculations show that hydrogen distribution is quite sensitive to two other parameters of Titan's atmosphere: the temperature and the presence of other constituents. The escape fluxes of H and H2 are also estimated as well as the consequent distributions trapped in the Saturnian system.

  1. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  2. Coupled groundwater-atmosphere modeling: effects on atmospheric boundary layer development

    NASA Astrophysics Data System (ADS)

    Chow, F. K.; Maxwell, R. M.; Kollet, S. J.; Daniels, M. H.; Rihani, J. F.

    2007-12-01

    Newly-developed coupled land-atmosphere models which incorporate both subsurface and atmospheric moisture dynamics have the potential to change our understanding of the hydrologic cycle. This presentation describes the effects of coupled groundwater-atmosphere modeling on simulations of the atmospheric boundary layer. Both field observations and simulations indicate strong sensitivity of atmospheric dynamics to land-surface conditions, in particular surface soil moisture. Simulations of atmospheric flow in Owens Valley (California) and in the Riviera Valley (Switzerland) show strong sensitivity to land-surface conditions, thus motivating the need for more accurate representations of soil moisture. In addition to influences from weather and seasonal changes, soil moisture dynamics respond to diurnal heat fluxes on the land surface. Using our new fully-coupled groundwater-atmosphere model, we have demonstrated correlations of soil moisture and land-surface heat fluxes with groundwater fluctuations on short, diurnal time scales. By explicitly calculating groundwater dynamics for our domain of interest, we are able to produce realistic time- and space-varying soil moisture distributions that naturally correspond to variations in topography and surface evaporation. Simulations in idealized and real watersheds are shown to illustrate these effects. The observed variations in surface moisture distribution have large impacts on the moisture and temperature structure in the atmosphere, leading to changes in boundary layer depth and convective motions as compared to standard soil moisture representations. Our coupled model framework will allow detailed investigation of the complex cycle of land-atmosphere processes affecting moisture distributions in the subsurface and the atmosphere.

  3. JORNEX: An airborne campaign to quantify rangeland vegetation change and plant community-atmospheric interactions

    SciTech Connect

    Ritchie, J.C.; Rango, A.; Kustas, W.P.

    1996-11-01

    The Jornada Experimental Range in New Mexico provides a unique opportunity to integrate hydrologic-atmospheric fluxes and surface states, vegetation types, cover, and distribution, and vegetation response to changes in hydrologic states and atmospheric driving forces. The Jornada Range is the site of a long-term ecological research program to investigate the processes leading to desertification. In concert with ongoing ground measurements, remotely sensed data are being collected from ground, airborne, and satellite platforms during JORNEX (the JORNada Experiment) to provide spatial and temporal distribution of vegetation state using laser altimeter and multispectral aircraft and satellite data and surface energy balance estimates from a combination of parameters and state variables derived from remotely sensed data. These measurements will be used as inputs to models to quantify the hydrologic budget and the plant response to changes in components in the water and energy balance. Intensive three day study periods for ground and airborne campaigns have been made in May 1995 (dry season) and September 1995 (wet season), February 1996 (Winter) and are planned for wet and dry seasons of 1996. An airborne platform is being used to collect thermal, multispectral, 3-band video, and laser altimetry profile data. Bowen ratio-energy balance stations were established in shrub and grass communities in May 1995 and are collecting data continuously. Additional energy flux measurements were made using eddy correlation techniques during the September 1995 campaign. Ground-based measurements during the intensive campaigns include thermal and multispectral measurements made using yoke-based platforms and hand-held instruments, LAI, and other vegetation data. Ground and aircraft measurements are acquired during Landsat overpasses so the effect of scale on measurements can be studied. This paper discusses preliminary results from the 1995 airborne campaign. 24 refs., 13 figs., 1 tab.

  4. Proposed reference models for atomic oxygen in the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Llewellyn, E. J.; Mcdade, I. C.; Lockerbie, M. D.

    1989-01-01

    A provisional Atomic Oxygen Reference model was derived from average monthly ozone profiles and the MSIS-86 reference model atmosphere. The concentrations are presented in tabular form for the altitude range 40 to 130 km.

  5. Global emissions inventories to aid atmospheric modelers

    NASA Astrophysics Data System (ADS)

    Graedel, T. E.

    Computer projections of changes in global atmospheric chemistry could become more accurate and more easily compared with the availability of standard global emissions inventories. Starting in 1994, the Global Emissions Inventory Activity (GEIA) began to finalize gridded global emissions inventories and distribute them to atmospheric scientists. GEIA operates under the auspices of the International Global Atmospheric Chemistry (IGAC) Project, a cooperative effort of several hundred atmospheric scientists from more than 30 countries. The purpose of the IGAC Project is to measure, understand, and predict changes in global atmospheric chemistry, particularly those contributing to global problems such as acid rain, depletion of stratospheric ozone, greenhouse warming, and increased oxidant levels that damage biota.A 1992 survey by participants in the GEIA project [Graedel et al., 1993] showed that suitable emissions inventories are rarely available. The chlorofluorocarbon inventory, regarded as well quantified, was unavailable in gridded form. Inventories for CO2, CH4, NOx, SO2, reduced sulfur, and radon were regarded as having excess uncertainty, inadequate spatial resolution, or both; inventories for other chemical species were sketchy or nonexistent. Temporal resolution was almost uniformly poor. The survey made it clear that internally consistent, rigorously developed, gridded inventories with adequate spatial and temporal resolution would be valuable.

  6. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the physics of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  7. Elevated atmospheric CO2 alters the arthropod community in a forest understory

    NASA Astrophysics Data System (ADS)

    Hamilton, Jason; Zangerl, Arthur R.; Berenbaum, May R.; Sparks, Jed P.; Elich, Lauren; Eisenstein, Alissa; DeLucia, Evan H.

    2012-08-01

    The objective of this study was to determine the extent to which overall population sizes and community composition of arthropods in a naturally occurring forest understory are altered by elevated CO2. The Free Air Concentration Enrichment (FACE) method was used to fumigate large, replicated plots in the Piedmont region of North Carolina, USA to achieve the CO2 concentration predicted for 2050 (˜580 μl l-1). In addition, the extent to which unrestricted herbivorous arthropods were spatially delimited in their resource acquisition was determined. Stable isotope data for spiders (δ13C and δ15N) were collected in ambient and elevated CO2 plots and analyzed to determine whether their prey species moved among plots. Elevated CO2 had no effect on total arthropod numbers but had a large effect on the composition of the arthropod community. Insects collected in our samples were identified to a level that allowed for an assignment of trophic classification (generally to family). For the groups of insects sensitive to atmospheric gas composition, there was an increase in the numbers of individuals collected in primarily predaceous orders (Araneae and Hymenoptera; from 60% to more than 150%) under elevated CO2 and a decrease in the numbers in primarily herbivorous orders (Lepidoptera and Coleoptera; from -30 to -45%). Isotopic data gave no indication that the treatment plots represented a "boundary" to the movement of insects or that there were distinct and independent insect populations inside and outside the treatment plots. A simple two-ended mixing model estimates 55% of the carbon and nitrogen in spider biomass originated external to the elevated CO2 plots. In addition to changes in insect performance, decreases in herbivorous arthropods and increases in predaceous arthropods may also be factors involved in reduced herbivory under elevated CO2 in this forest.

  8. The balance model of oxygen enrichment of atmospheric air

    NASA Astrophysics Data System (ADS)

    Popov, Alexander

    2013-04-01

    The study of turnover of carbon and oxygen is an important line of scientific investigation. This line takes on special significance in conditions of soil degradation, which leads to the excess content of carbon dioxide and, as result, decrease of oxygen in the atmosphere. The aim of this article is a statement the balance model of oxygen enrichment of atmospheric air (ratio O/C) depending on consumption and assimilation by plants of dissolved organic matter (DOM) and the value of the oxidation-reduction potential (Eh). Basis of model was the following: green vascular plants are facultative heterotrophic organisms with symbiotic digestion and nutrition. According to the trophology viewpoint, the plant consumption of organic compounds broadens greatly a notion about the plant nutrition and ways of its regulation. In particular, beside the main known cycle of carbon: plant - litter - humus - carbon dioxide - plant, there is the second carbon cycle (turnover of organic compounds): plant - litter - humus - DOM - plant. The biogeochemical meaning of consumption of organic compounds by plants is that plants build the structural and functional blocks of biological macromolecules in their bodies. It provides receiving of a certain "energy payoff" by plants, which leads to increase of plant biomass by both an inclusion of allochthonous organic molecules in plant tissues, and positive effect of organic compounds on plant metabolic processes. One more of powerful ecological consequence of a heterotrophic nutrition of green plants is oxygen enrichment of atmospheric air. As the organic molecules in the second biological cycle of carbon are built in plants without considerable chemical change, the atmospheric air is enriched on that amount of oxygen, which would be required on oxidation of the organic molecules absorbed by plants, in result. It was accepted that: plant-soil system was climax, the plant community was grassy, initial contents of carbon in phytomass was accepted

  9. Evaluation of the Community Multiscale Air Quality model version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Atmospheric Modeling and Analysis Division (AMAD) of the U.S. Environment...

  10. Queensborough Community College of the City University of New York (CUNY) Solar and Atmospheric Research and Education Program

    NASA Astrophysics Data System (ADS)

    Chantale Damas, M.

    2015-08-01

    The Queensborough Community College (QCC) of the City University of New York (CUNY), a Hispanic and minority-serving institution, is the recipient of a 2-year NSF EAGER (Early Concept Grants for Exploratory Research) grant to design and implement a high-impact practice integrated research and education program in solar, geospace and atmospheric physics. Proposed is a year-long research experience with two components: 1) during the academic year, students are enrolled in a course-based introductory research (CURE) where they conduct research on real-world problems; and 2) during the summer, students are placed in research internships at partner institutions. Specific objectives include: 1) provide QCC students with research opportunities in solar and atmospheric physics as early as their first year; 2) develop educational materials in solar and atmospheric physics; 3) increase the number of students, especially underrepresented minorities, that transfer to 4-year STEM programs. A modular, interdisciplinary concept approach is used to integrate educational materials into the research experience. The project also uses evidence-based best practices (i.e., Research experience, Mentoring, Outreach, Recruitment, Enrichment and Partnership with 4-year colleges and institutions) that have proven successful at increasing the retention, transfer and graduation rates of community college students. Through a strong collaboration with CUNY’s 4-year colleges (Medgar Evers College and the City College of New York’s NOAA CREST program); Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado, Boulder; and NASA Goddard Space Flight Center’s Community Coordinated Modeling Center (CCMC), the project trains and retains underrepresented community college students in geosciences-related STEM fields. Preliminary results will be presented at this meeting.*This project is supported by the National Science Foundation Geosciences Directorate under NSF Award

  11. Modeling the effects of atmospheric emissions on groundwater composition

    SciTech Connect

    Brown, T.J.

    1994-12-31

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport.

  12. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07) Applications for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, EarthGRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-OO) with the associated Harmonic Wind Model (HWM-93). In place of these datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may also provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which include wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99.

  13. Professional Learning Communities: A Middle School Model

    ERIC Educational Resources Information Center

    Gentile, David N.

    2010-01-01

    This research project explored the transition from a traditional model to a Professional Learning Community model in a NJ Middle School. The administration overcame obstacles during the transition such as scheduling conflicts, teacher apathy, and resistance. This action research study gathered data to determine how to best structure the…

  14. Models of Strategic Planning in Community Colleges.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    One of a series of publications coming out of a 3-year project designed to improve evaluation and planning in community colleges, this monograph presents case studies illustrating alternative models of strategic planning. Chapter 1 provides an overview of current challenges to academic management, strategic planning, models of planning, and…

  15. The Versatile Integrator of Surface and Atmosphere processes - Part 1. Model description

    NASA Astrophysics Data System (ADS)

    Yang, Zong-Liang; Niu, Guo-Yue

    2003-07-01

    This paper describes an integration of recent new developments in snow, runoff and vegetation growth into the National Center for Atmospheric Research Land Surface Model (NCAR LSM). The new model, referred to as the Versatile Integrator of Surface and Atmosphere processes (VISA), has been validated with observed data. The results have demonstrated that the NCAR LSM, after integrating with these new developments, produces improved simulations of snow and runoff over the baseline version, and has an added capability to simulate the dynamics of leaf area index (LAI). Moreover, VISA, through its integration of new schemes, is not only important for studying land-atmosphere interactions in its own right, but also useful for helping interpret results from a parallel modeling activity—the Community Land Model (CLM) project.

  16. Plant Response and Environmental Data from the Oldfield Community Climate and Atmospheric Manipulation (OCCAM) Project

    DOE Data Explorer

    The Oldfield Community Climate and Atmospheric Manipulation (OCCAM) project is a joint effort of ORNL and the University of Tennessee to investigate community and ecosystem response to global change, specifically looking at the interactive effects of atmospheric carbon dioxide, surface temperatures, and soil moisture. The plants studied for their response to warming temperatures, elevated carbon dioxide, and altered water availability include C3 and C4 grasses, forbs, and legumes. These plants are typical of an old-field ecosystem that establishes itself on unused agricultural land. The results of the research focus on species abundance, production, phenology, and what is going on chemically below ground. Data are currently available from 2003 through July, 2008.

  17. A quasi-static model of global atmospheric electricity. I - The lower atmosphere

    NASA Technical Reports Server (NTRS)

    Hays, P. B.; Roble, R. G.

    1979-01-01

    A quasi-steady model of global lower atmospheric electricity is presented. The model considers thunderstorms as dipole electric generators that can be randomly distributed in various regions and that are the only source of atmospheric electricity and includes the effects of orography and electrical coupling along geomagnetic field lines in the ionosphere and magnetosphere. The model is used to calculate the global distribution of electric potential and current for model conductivities and assumed spatial distributions of thunderstorms. Results indicate that large positive electric potentials are generated over thunderstorms and penetrate to ionospheric heights and into the conjugate hemisphere along magnetic field lines. The perturbation of the calculated electric potential and current distributions during solar flares and subsequent Forbush decreases is discussed, and future measurements of atmospheric electrical parameters and modifications of the model which would improve the agreement between calculations and measurements are suggested.

  18. Atmospheric Infrasound Propagation Modelling Using the Reflectivity Method

    NASA Astrophysics Data System (ADS)

    Näsholm, Sven Peter; Schweitzer, Johannes; Gibbons, Steven J.; Kvaerna, Tormod

    2015-04-01

    We demonstrate that the reflectivity method can be applied to the modelling of infrasound propagation. The reflectivity method is a slowness (or wavenumber) integration method widely applied in the seismological community to generate synthetic seismograms in layered media. The integrated function essentially describes the reflection coefficients between the layers. The method models P- and S-wave propagation and includes refractions and reflections, multiples, caustics, mode conversion, absorption and dispersion. Some limitations of conventional ray tracing are circumvented since head waves are represented and shadow zones are more correctly modelled. We apply a 2.5-D ray-tracing engine and a slightly modified version of Müller's reflectivity code to the atmospheric wind and temperature conditions at the time of the Drevja accidental explosion on December 17, 2013, in Northern Norway. The infrasound modelling results are compared with signals observed at the IS37 array station in Bardufoss, situated around 400 km north-east of the event. The effective sound speed approximation is applied, where the altitude-varying and range-independent sound speed is given by sum of the adiabatic sound speed and the wind projected in the horizontal propagation direction. An important observation is that an infrasound arrival, clearly observed in the IS37 data approximately 20 minutes after the explosion time, is predicted by the reflectivity method and not by ray-tracing, even for very densely sampled ray emission elevation angles. However at shorter ranges (~300 km), the corresponding phase is predicted by both modelling methods. There, the ray tracing shows this arrival as resulting from of a ray turning once in the stratosphere.

  19. Community Impact Models--A Research and Extension Challenge.

    ERIC Educational Resources Information Center

    Doeksen, Gerald A.; And Others

    Extension personnel can aid rural decision makers with impacts felt from rapid growth in their communities via a locally applicable community impact model. This paper illustrates how extension professionals can utilize community impact models. Impact models reviewed include: model to measure the impact of new industry on rural communities in…

  20. LTE Model Atmospheres: MARCS, ATLAS and CO5BOLD

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Caffau, E.; Ludwig, H.-G.; Steffen, M.

    2012-04-01

    In this talk, we review the basic assumptions and physics covered by classical 1D LTE model atmospheres. We will focus on ATLAS and MARCS models of F-G-K stars and describe what resources are available through the web, both in terms of codes and model-atmosphere grids. We describe the advances made in hydrodynamical simulations of convective stellar atmospheres with the CO5BOLD code and what grids and resources are available, with a prospect of what will be available in the near future.

  1. Function Model for Community Health Service Information

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Pan, Feng; Liu, Danhong; Xu, Yongyong

    In order to construct a function model of community health service (CHS) information for development of CHS information management system, Integration Definition for Function Modeling (IDEF0), an IEEE standard which is extended from Structured Analysis and Design(SADT) and now is a widely used function modeling method, was used to classifying its information from top to bottom. The contents of every level of the model were described and coded. Then function model for CHS information, which includes 4 super-classes, 15 classes and 28 sub-classed of business function, 43 business processes and 168 business activities, was established. This model can facilitate information management system development and workflow refinement.

  2. Highly physical penumbra solar radiation pressure modeling with atmospheric effects

    NASA Astrophysics Data System (ADS)

    Robertson, Robert; Flury, Jakob; Bandikova, Tamara; Schilling, Manuel

    2015-10-01

    We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth's penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the sub-nm/s2 precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.

  3. Phase transition model for community detection

    NASA Astrophysics Data System (ADS)

    Wu, Jianshe; Lu, Rui; Jiao, Licheng; Liu, Fang; Yu, Xin; Wang, Da; Sun, Bo

    2013-03-01

    Motivated by social and biological interactions, a novel type of phase transition model is provided in order to investigate the emergence of the clustering phenomenon in networks. The model has two types of interactions: one is attractive and the other is repulsive. In each iteration, the phase of a node (or an agent) moves toward the average phase of its neighbors and moves away from the average phase of its non-neighbors. The velocities of the two types of phase transition are controlled by two parameters, respectively. It is found that the phase transition phenomenon is closely related to the topological structure of the underlying network, and thus can be applied to identify its communities and overlapping groups. By giving each node of the network a randomly generated initial phase and updating these phases by the phase transition model until they reach stability, one or two communities will be detected according to the nodes’ stable phases, confusable nodes are moved into a set named Of. By removing the detected communities and the nodes in Of, another one or two communities will be detected by an iteration of the algorithm, …. In this way, all communities and the overlapping nodes are detected. Simulations on both real-world networks and the LFR benchmark graphs have verified the efficiency of the proposed scheme.

  4. Memory efficient atmospheric effects modeling for infrared scene generators

    NASA Astrophysics Data System (ADS)

    Kavak, Çaǧlar; Özsaraç, Seçkin

    2015-05-01

    The infrared (IR) energy radiated from any source passes through the atmosphere before reaching the sensor. As a result, the total signature captured by the IR sensor is significantly modified by the atmospheric effects. The dominant physical quantities that constitute the mentioned atmospheric effects are the atmospheric transmittance and the atmospheric path radiance. The incoming IR radiation is attenuated by the transmittance and path radiance is added on top of the attenuated radiation. In IR scene simulations OpenGL is widely used for rendering purposes. In the literature there are studies, which model the atmospheric effects in an IR band using OpenGLs exponential fog model as suggested by Beers law. In the standard pipeline of OpenGL, the related fog model needs single equivalent OpenGL variables for the transmittance and path radiance, which actually depend on both the distance between the source and the sensor and also on the wavelength of interest. However, in the conditions where the range dependency cannot be modeled as an exponential function, it is not accurate to replace the atmospheric quantities with a single parameter. The introduction of OpenGL Shading Language (GLSL) has enabled the developers to use the GPU more flexible. In this paper, a novel method is proposed for the atmospheric effects modeling using the least squares estimation with polynomial fitting by programmable OpenGL shader programs built with GLSL. In this context, a radiative transfer model code is used to obtain the transmittance and path radiance data. Then, polynomial fits are computed for the range dependency of these variables. Hence, the atmospheric effects model data that will be uploaded in the GPU memory is significantly reduced. Moreover, the error because of fitting is negligible as long as narrow IR bands are used.

  5. New Methods in Modeling of Hot Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Sapar, A.; Poolamäe, R.; Sapar, L.

    In the present study we had three main aims. First to study the possibility of reducing the initial model atmosphere data to short analytical polynomials. The second was to use as the depth variable the logarithm of the local gas pressure instead the Rosseland mean. The third aim was to check the applicability of the derived formulae and proposed computation methods to obtain high precision self-consistent results in modeling hot plane-parallel stellar atmospheres. Introducing the dimensionless (reduced) local quantities θ =T/Teff β =P/P(T eff) it has been shown that for hot convection-free stellar atmospheres the curves log θ versus log β reduce an initial grid of models to simple polynomials and bring forth some general features of the model stellar atmospheres. Even for stellar atmospheres having the convective zones in the deeper atmospheric layers, the outer part of the atmosphere (up to T=Teff and for Teff> 5000 K) can be described in the same manner by curves log θ versus log β as for the hotter stars. Iterative modeling of any hot stellar atmosphere can be started from these formulae (obtained for solar abundances), using rational polynomial ratios for P(Teff), obtaining from these data the needed T versus P dependence. To check suitability of the formulae, the iterative correction of the model stellar atmospheres has been carried out by the traditional Unsöld-Lucy method and by the novel least squares optimization based on Levenberg-Marquardt method, followed by Broyden correction loop. It has been shown that the flux constancy obtained by it is almost 2 dex higher than obtained by the Unsöld-Lucy method. The precision estimators as criteria of the modeling algorithms self-consistency and of the computational precision level have been proposed and used.

  6. Metabolic modeling of a mutualistic microbial community

    PubMed Central

    Stolyar, Sergey; Van Dien, Steve; Hillesland, Kristina Linnea; Pinel, Nicolas; Lie, Thomas J; Leigh, John A; Stahl, David A

    2007-01-01

    The rate of production of methane in many environments depends upon mutualistic interactions between sulfate-reducing bacteria and methanogens. To enhance our understanding of these relationships, we took advantage of the fully sequenced genomes of Desulfovibrio vulgaris and Methanococcus maripaludis to produce and analyze the first multispecies stoichiometric metabolic model. Model results were compared to data on growth of the co-culture on lactate in the absence of sulfate. The model accurately predicted several ecologically relevant characteristics, including the flux of metabolites and the ratio of D. vulgaris to M. maripaludis cells during growth. In addition, the model and our data suggested that it was possible to eliminate formate as an interspecies electron shuttle, but hydrogen transfer was essential for syntrophic growth. Our work demonstrated that reconstructed metabolic networks and stoichiometric models can serve not only to predict metabolic fluxes and growth phenotypes of single organisms, but also to capture growth parameters and community composition of simple bacterial communities. PMID:17353934

  7. Modeling opinion interactions in a BBS community

    NASA Astrophysics Data System (ADS)

    Ding, F.; Liu, Y.

    2010-11-01

    This paper is devoted to apply agent based models to real opinion interactions in a bulletin board system (BBS) community. By analyzing a real BBS community, we reveal some empirical features of opinion interactions on the Web. Then, we propose a simple opinion model that bears both general characteristics of traditional opinion models, and some real interacting rules on the Web. The model simulates a group of agents representing Web users participating to a discussion. Simulation results show some dynamical regimes consistent with empirical facts, and offer some possible explanations for the emergence of some real features. Our work implies the possibility of building simple agent based models to simulate computer-mediated interactions on the Web.

  8. THE ATMOSPHERIC MODEL EVALUATION TOOL: METEOROLOGY MODULE

    EPA Science Inventory

    Air quality modeling is continuously expanding in sophistication and function. Currently, air quality models are being used for research, forecasting, regulatory related emission control strategies, and other applications. Results from air-quality model applications are closely ...

  9. Modelling the formation of atmospheric dust in brown dwarfs and planetary atmospheres.

    PubMed

    Helling, Christiane; Fomins, Aleksejs

    2013-07-13

    Atmospheric dust from volcanoes, sand storms and biogenic products provides condensation seeds for water cloud formation on the Earth. Extrasolar planetary objects such as brown dwarfs and extrasolar giant planets have no comparable sources of condensation seeds. Hence, understanding cloud formation and further its implications for the climate requires a modelling effort that includes the treatment of seed formation (nucleation), growth and evaporation, in addition to rain-out, mixing and gas-phase depletion. This paper discusses nucleation in the ultra-cool atmospheres of brown dwarfs and extrasolar giant planets whose chemical gas-phase composition differs largely from the terrestrial atmosphere. A kinetic model for atmospheric dust formation is described, which, in recent work, has become part of a cloud-formation model. For the first time, diffusive replenishment of the upper atmosphere is introduced as a source term into our model equations. This paper further aims to show how experimental and computational chemistry work links into our dust-formation model, which is driven by applications in extraterrestrial environments. PMID:23734048

  10. Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.

    2014-03-01

    A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.

  11. Comparison of modelled and empirical atmospheric propagation data

    NASA Technical Reports Server (NTRS)

    Schott, J. R.; Biegel, J. D.

    1983-01-01

    The radiometric integrity of TM thermal infrared channel data was evaluated and monitored to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Modelled atmospheric transmittance and path radiance were compared with empirical values derived from aircraft underflight data. Aircraft thermal infrared imagery and calibration data were available on two dates as were corresponding atmospheric radiosonde data. The radiosonde data were used as input to the LOWTRAN 5A code which was modified to output atmospheric path radiance in addition to transmittance. The aircraft data were calibrated and used to generate analogous measurements. These data indicate that there is a tendancy for the LOWTRAN model to underestimate atmospheric path radiance and transmittance as compared to empirical data. A plot of transmittance versus altitude for both LOWTRAN and empirical data is presented.

  12. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer

    The National Center for Atmospheric Research (NCAR) created the first version of the Community Climate Model (CCM) in 1983 as a global atmosphere model. It was improved in 1994 when NCAR, with support from the National Science Foundation (NSF), developed and incorporated a Climate System Model (CSM) that included atmosphere, land surface, ocean, and sea ice. As the capabilities of the model grew, so did interest in its applications and changes in how it would be managed. A workshop in 1996 set the future management structure, marked the beginning of the second phase of the model, a phase that included full participation of the scientific community, and also saw additional financial support, including support from the Department of Energy. In recognition of these changes, the model was renamed to the Community Climate System Model (CCSM). It began to function as a model with the interactions of land, sea, and air fully coupled, providing computer simulations of Earth's past climate, its present climate, and its possible future climate. The CCSM website at http://www2.cesm.ucar.edu/ describes some of the research that has been done since then: A 300-year run has been performed using the CSM, and results from this experiment have appeared in a special issue of theJournal of Climate, 11, June, 1998. A 125-year experiment has been carried out in which carbon dioxide was described to increase at 1% per year from its present concentration to approximately three times its present concentration. More recently, the Climate of the 20th Century experiment was run, with carbon dioxide and other greenhouse gases and sulfate aerosols prescribed to evolve according to our best knowledge from 1870 to the present. Three scenarios for the 21st century were developed: a "business as usual" experiment, in which greenhouse gases are assumed to increase with no economic constraints; an experiment using the Intergovernmental Panel on Climate Change (IPCC) Scenario A1; and a "policy

  13. Advancing Solid Earth Science through Improved Atmosphere Modeling

    NASA Technical Reports Server (NTRS)

    Niell, A. E.

    2004-01-01

    We proposed to investigate and develop better models for the effect of the hydrostatic and water vapor components of the neutral atmosphere on delay for VLBI and GPS by using a Numerical Weather Model to better simulate realistic atmosphere conditions. By using a raytrace calculation through the model atmosphere at the times of actual VLBI observations, the potential improvement in geodetic results can be evaluated. Also, by calculating the actual variation of delays with elevation and azimuth, the errors in current mapping function models can be assessed. The VLBI data to be initially analyzed are the fifteen days of the CONT02 sessions of 2002 October which included eight stations. There are three segments to the research. 1) The PSU/NCAR fifth generation mesoscale numerical weather model (MM5) will be used to provide the state of the atmosphere with highest horizontal resolution of 3 km. 2) A three-dimensional raytrace program will be developed to determine the delays through the model atmosphere at the times and in the directions of the VLBI observations for each of the sites. 3) The VLBI data will be analyzed using both standard models for the atmosphere mapping functions and the mapping functions derived from the NWM raytracing.

  14. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations

    NASA Astrophysics Data System (ADS)

    Satoh, M.; Matsuno, T.; Tomita, H.; Miura, H.; Nasuno, T.; Iga, S.

    2008-03-01

    A new type of ultra-high resolution atmospheric global circulation model is developed. The new model is designed to perform "cloud resolving simulations" by directly calculating deep convection and meso-scale circulations, which play key roles not only in the tropical circulations but in the global circulations of the atmosphere. Since cores of deep convection have a few km in horizontal size, they have not directly been resolved by existing atmospheric general circulation models (AGCMs). In order to drastically enhance horizontal resolution, a new framework of a global atmospheric model is required; we adopted nonhydrostatic governing equations and icosahedral grids to the new model, and call it Nonhydrostatic ICosahedral Atmospheric Model (NICAM). In this article, we review governing equations and numerical techniques employed, and present the results from the unique 3.5-km mesh global experiments—with O(10 9) computational nodes—using realistic topography and land/ocean surface thermal forcing. The results show realistic behaviors of multi-scale convective systems in the tropics, which have not been captured by AGCMs. We also argue future perspective of the roles of the new model in the next generation atmospheric sciences.

  15. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    SciTech Connect

    Robinson, Tyler D.; Catling, David C.

    2012-09-20

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  16. Revisions to Photochemical Data for Use in Atmospheric Modeling

    NASA Technical Reports Server (NTRS)

    Shutter, Joshua D.; Willacy, Karen; Allen, Mark

    2012-01-01

    Solar and stellar flux incident on an atmosphere can cause molecules to dissociate into highly reactive species and allows for photochemical processes to play a fundamental role in atmospheric chemistry. While models have tried to simulate such processes, they are extremely sensitive to photoabsorption cross-sections and quantum yields: two parameters that are important in determining the photodissociation rate, and hence the lifetime, of atmospheric compounds. Obtaining high-resolution and current data for these parameters is therefore highly desirable. Due to this, database and literature searches for high-quality cross-sections and quantum yields were performed and compiled for KINETICS, a Caltech/JPL Chemical Transport Model that can be used in modeling planetary atmospheres. Furthermore, photodissociation rates determined by running a Titan 1-D model were used to verify the completeness of these latest revisions.

  17. A New Titan Atmospheric Model for Mission Engineering Applications

    NASA Astrophysics Data System (ADS)

    Waite, J. H.; Bell, J. M.; Lorenz, R.; Achterberg, R.; Flasar, F. M.

    2012-03-01

    Titan’s polar regions and hydrocarbon lakes are of interest for future exploration. This paper describes a new engineering model of Titan’s atmospheric structure with particular reference to the proposed Titan Mare Explorer mission.

  18. Current methods and research strategies for modeling atmospheric mercury

    SciTech Connect

    Bullock, O.R.

    1999-01-01

    The atmospheric pathway of the global mercury cycle is known to be the primary source of mercury contamination to most threatened aquatic ecosystems. While much effort has been made to quantify the total mass flux of mercury to the atmosphere from various natural and anthropogenic sources, discrimination of the chemical and physical forms of these emissions is just beginning in response to early modeling exercises showing this discrimination to be critical for accurate modeling estimates of the sources responsible for observed mercury deposition. In this paper, current atmospheric mercury modeling techniques and the information obtained from them are described. A strategy for future field research and numerical model development is proposed which is designed to confidently identify the sources of atmospheric mercury responsible for observed contamination of aquatic ecosystems.

  19. Basic Modeling of the Solar Atmosphere and Spectrum

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene H.; Wagner, William J. (Technical Monitor)

    2000-01-01

    During the last three years we have continued the development of extensive computer programs for constructing realistic models of the solar atmosphere and for calculating detailed spectra to use in the interpretation of solar observations. This research involves two major interrelated efforts: work by Avrett and Loeser on the Pandora computer program for optically thick non-LTE modeling of the solar atmosphere including a wide range of physical processes, and work by Kurucz on the detailed high-resolution synthesis of the solar spectrum using data for over 58 million atomic and molecular lines. Our objective is to construct atmospheric models from which the calculated spectra agree as well as possible with high-and low-resolution observations over a wide wavelength range. Such modeling leads to an improved understanding of the physical processes responsible for the structure and behavior of the atmosphere.

  20. Experimental basis for the models of cascade propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    The picture of the hadron nucleus collision process is presented as it emerges on the basis of newly obtained experimental data. The picture is applicable to models of cascade propagation in Earth atmosphere.

  1. District heating strategy model: community manual

    SciTech Connect

    Hrabak, R. A.; Kron, Jr., N. F.; Pferdehirt, W. P.

    1981-10-01

    The US Department of Housing and Urban Development (HUD) and the US Department of Energy (DOE) cosponsor a program aimed at increasing the number of district heating and cooling systems. Twenty-eight communities have received HUD cooperative agreements to aid in a national feasibility assessment of district heating and cooling systems. The HUD/DOE program includes technical assistance provided by Argonne National Laboratory and Oak Ridge National Laboratory. Part of this assistance is a computer program, called the district heating strategy model, that performs preliminary calculations to analyze potential district heating and cooling systems. The model uses information about a community's physical characteristics, current electricity-supply systems, and local economic conditions to calculate heat demands, heat supplies from existing power plants and a new boiler, system construction costs, basic financial forecasts, and changes in air-pollutant emissions resulting from installation of a district heating and cooling system. This report explains the operation of the district heating strategy model, provides simplified forms for organizing the input data required, and describes and illustrates the model's output data. The report is written for three groups of people: (1) those in the HUD/DOE-sponsored communities who will be collecting input data, and studying output data, to assess the potential for district heating and cooling applications in their communiites; (2) those in any other communities who may wish to use the model for the same purpose; and (3) technical-support people assigned by the national laboratories to explain to community personnel how the model is used.

  2. The Celebration School: A Model Learning Community.

    ERIC Educational Resources Information Center

    Ishler, Richard E.; Vogel, Bobbi

    1996-01-01

    A model professional development school (PDS) serves Celebration, Florida, a planned community built by the Disney Corporation. The K-12 Celebration School resulted from cooperation among the Osceola County School District, Stetson University, and Disney. In this PDS, featuring multiage groupings and individualized instruction, students, staff,…

  3. Microbial community modeling using reliability theory.

    PubMed

    Zilles, Julie L; Rodríguez, Luis F; Bartolerio, Nicholas A; Kent, Angela D

    2016-08-01

    Linking microbial community composition with the corresponding ecosystem functions remains challenging. Because microbial communities can differ in their functional responses, this knowledge gap limits ecosystem assessment, design and management. To develop models that explicitly incorporate microbial populations and guide efforts to characterize their functional differences, we propose a novel approach derived from reliability engineering. This reliability modeling approach is illustrated here using a microbial ecology dataset from denitrifying bioreactors. Reliability modeling is well-suited for analyzing the stability of complex networks composed of many microbial populations. It could also be applied to evaluate the redundancy within a particular biochemical pathway in a microbial community. Reliability modeling allows characterization of the system's resilience and identification of failure-prone functional groups or biochemical steps, which can then be targeted for monitoring or enhancement. The reliability engineering approach provides a new perspective for unraveling the interactions between microbial community diversity, functional redundancy and ecosystem services, as well as practical tools for the design and management of engineered ecosystems. PMID:26882268

  4. COMMUNITY SCALE AIR TOXICS MODELING WITH CMAQ

    EPA Science Inventory

    Consideration and movement for an urban air toxics control strategy is toward a community, exposure and risk-based modeling approach, with emphasis on assessments of areas that experience high air toxic concentration levels, the so-called "hot spots". This strategy will requir...

  5. FIRST RESULTS FROM OPERATIONAL TESTING OF THE U.S. EPA MODELS-3 COMMUNITY MULTISCALE MODEL FOR AIR QUALITY (CMAQ)

    EPA Science Inventory

    The Models 3 / Community Multiscale Model for Air Quality (CMAQ) has been designed for one-atmosphere assessments for multiple pollutants including ozone (O3), particulate matter (PM10, PM2.5), and acid / nutrient deposition. In this paper we report initial results of our evalu...

  6. Atmosphere models and the determination of stellar parameters

    NASA Astrophysics Data System (ADS)

    Martins, F.

    2014-11-01

    We present the basic concepts necessary to build atmosphere models for any type of star. We then illustrate how atmosphere models can be used to determine stellar parameters. We focus on the effects of line-blanketing for hot stars, and on non-LTE and three dimensional effects for cool stars. We illustrate the impact of these effects on the determination of the ages of stars from the HR diagram.

  7. Atmospheric convergence feedback in a simple model for El Nino

    NASA Technical Reports Server (NTRS)

    Zebiak, S. E.

    1986-01-01

    A parameterization is developed for the feedback between dynamics and heating associated with moisture convergence in the tropical atmospheric boundary layer. The feedback improves the ability of a simple model to simulate observed anomalies of the tropical atmosphere during El Nino events. In particular, two features of the observations are reproduced by including the feedback process: the smaller scale of atmospheric anomalies as compared to SST anomalies, and the focusing of the anomalies in the vicinity of the mean convergence zones. The principal remaining shortcomings of the model are discussed.

  8. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    NASA Technical Reports Server (NTRS)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  9. A radiative model for Titan's atmosphere in the IR

    NASA Astrophysics Data System (ADS)

    Cofano, A.; Sindoni, G.

    2015-10-01

    The aim of this work is the development of a model of Titan atmosphere between 1 and 5 micron, using data from Cassini-Huygens mission. The simulations will be useful to remove the atmospheric features from the measured spectrum, to study the surface. The radiative transfer model is performed with ARS (Atmosphere Radiation Spectrum), a a group of Fortran 77 routines, able to calculate absorption coefficients, radiance and other parameters about gas and aerosols at LTE (Local Thermal Equilibrium) [5] and considering multiple scattering in nadir geometry. Our study covers the IR spectral range but it would be extended also to the visible spectrum.

  10. Atmospheric Rivers in a Hierarchy of High-Resolution Global Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Schiemann, R.; Demory, M. E.; Lavers, D. A.; Mizielinski, M.; Vidale, P. L.; Roberts, M.

    2014-12-01

    Atmospheric rivers are long and narrow plumes that carry moisture over land along frontal zones associated with mid-latitude storms. They can account for 90% of the horizontal moisture transport in a given day and are responsible for major flooding, particularly along western coastal regions (western coasts of North America and Europe). It is therefore crucial to well simulate these events in climate models in order to improve predictions and attributions of heavy precipitation and flooding along western coastal regions. In this study, we investigate the ability of a state-of-the art climate model to represent the location, frequency and structure of atmospheric rivers affecting Western Europe and California. By making use of the UPSCALE (UK on PRACE: weather resolving Simulations of Climate for globAL Environmental risk) campaign, a traceable hierarchy of global atmospheric simulations (based on the Met Office Unified Model, GA3 formulation), with mesh sizes ranging from 130 km to 25 km, we study the impact of improved representation of small-scale processes on the mean climate, its variability and extremes in order to understand the processes underlying observed improvement with higher resolution. Five-member ensembles of 27-year, atmosphere-only integrations are available at these resolutions, using both present day forcing and a future climate scenario. Demory et al (2014) have already shown that a relatively coarse resolution limits the model's ability to simulate moisture transport from ocean to land. This is particularly true at mid-latitude, where the transport is dominated by eddies. Increasing horizontal resolution increases eddy transport of moisture at mid-latitudes. Here, we investigate the climatology of atmospheric rivers, in particular their frequency and associated precipitation, compared to reanalysis products. Some aspects of the relationship between the improved simulation of moisture transport in current climate conditions, and how this impacts

  11. Development of an engineering model atmosphere for Mars

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1988-01-01

    An engineering model atmosphere for Mars is being developed with many of the same features and capabilities for the highly successful Global Reference Atmospheric Model (GRAM) program for Earth's atmosphere. As an initial approach, the model is being built around the Martian atmosphere model computer subroutine (ATMOS) of Culp and Stewart (1984). In a longer-term program of research, additional refinements and modifications will be included. ATMOS includes parameterizations to stimulate the effects of solar activity, seasonal variation, diurnal variation magnitude, dust storm effects, and effects due to the orbital position of Mars. One of the current shortcomings of ATMOS is the neglect of surface variation effects. The longer-term period of research and model building is to address some of these problem areas and provide further improvements in the model (including improved representation of near-surface variations, improved latitude-longitude gradient representation, effects of the large annual variation in surface pressure because of differential condensation/sublimation of the CO2 atmosphere in the polar caps, and effects of Martian atmospheric wave perturbations on the magnitude of the expected density perturbation.

  12. A comparison of the WIND System atmospheric models and RASCAL

    SciTech Connect

    Fast, J.D.

    1991-12-31

    A detailed comparison of the characteristics of the WIND System atmospheric models and the NRC`s RASCAL code was made. The modeling systems differ substantially in the way input is entered and the way output is displayed. Nevertheless, using the same source term and meteorological input parameters, the WIND System atmospheric models and RASCAL produce similar results in most situations. The WIND System atmospheric model predictions and those made by RASCAL are within a factor of two at least 70% of the time and are within a factor of four 89% of the time. Significant differences in the dose between the models may occur during conditions of low wind speeds, strong atmospheric stability, and/or wet deposition as well as for many atmospheric cases involving cloud shine. Even though the numerical results are similar in most cases, there are many site-specific and operational characteristics that have been incorporated into the WIND System atmospheric models to provide SRS emergency response personnel with a more effective emergency response tool than is currently available from using RASCAL.

  13. A comparison of the WIND System atmospheric models and RASCAL

    SciTech Connect

    Fast, J.D.

    1991-01-01

    A detailed comparison of the characteristics of the WIND System atmospheric models and the NRC's RASCAL code was made. The modeling systems differ substantially in the way input is entered and the way output is displayed. Nevertheless, using the same source term and meteorological input parameters, the WIND System atmospheric models and RASCAL produce similar results in most situations. The WIND System atmospheric model predictions and those made by RASCAL are within a factor of two at least 70% of the time and are within a factor of four 89% of the time. Significant differences in the dose between the models may occur during conditions of low wind speeds, strong atmospheric stability, and/or wet deposition as well as for many atmospheric cases involving cloud shine. Even though the numerical results are similar in most cases, there are many site-specific and operational characteristics that have been incorporated into the WIND System atmospheric models to provide SRS emergency response personnel with a more effective emergency response tool than is currently available from using RASCAL.

  14. Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models

    NASA Astrophysics Data System (ADS)

    Song, J.; Wang, Z.

    2013-12-01

    Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.

  15. INTERCOMPARISON STUDY OF ATMOSPHERIC MERCURY MODELS: 2. MODELING RESULTS VS. LONG-TERM OBSERVATIONS AND COMPARISON OF COUNTRY ATMOSPHERIC BALANCES

    EPA Science Inventory

    Five regional scale models with a horizontal domain covering the European continent and its surrounding seas, two hemispheric and one global scale model participated in the atmospheric Hg modelling intercomparison study. The models were compared between each other and with availa...

  16. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    SciTech Connect

    Heng, Kevin; Workman, Jared E-mail: jworkman@coloradomesa.edu

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  17. Heliophysical Modeling at the Community Coordinated Modeling Center

    NASA Astrophysics Data System (ADS)

    MacNeice, P. J.; Taktakishvili, A.; Mays, M. L.; Mullinix, R.; Chulaki, A.; Mendoza, A. M. M.

    2015-12-01

    The Community Coordinated Modeling Center (CCMC) at NASA/GSFC provides the heliophysics research community with access to state of the art modeling resources, and facilitates modeling challenges for model validation or for mission support. In this presentation we report on new additions to the CCMC's inventory of heliophysical models, and on a community wide modeling effort in support of the New Horizons flyby of Pluto.During the last year we have added a number of significant new models to our model inventory. In this presentation we describe these new models. These include a Non-Linear Force Free Field model of the coronal field which can use a spherical grid and so can model large surface patches containing multiple active regions, and which is configured to use HMI data.We have also installed the SRPM irradiance model.We will also discuss work being done to install an 'eruption generator' capability that operates within the SWMF coronal MHD component, and an updated version of EMMREM which can couple with the ENLIL MHD model of the inner heliosphere to model particle fluences.Shortly before the New Horizons flyby, the Planetary Division at NASA HQ requested that the CCMC provide a forecast of the state of the Solar Wind at the spacecraft.The CCMC's primary mission is to provide the research and forecasrting community with heliophysical models of relevance to Space Weather. Prior to the New Horizons flyby the CCMC's focus had been on models of the inner heliosphere. To respond to the New Horizons opportunity, modelers of the outer heliosphere were invited to contribute. As a result, by the time of closest approach six different model forecasts were posted publically at the CCMC web site dedicated to this project.In this presentation we will describe the community wide effort which the CCMC facilitated in response to this request, detailing the different models which participated and illustrating the results.

  18. Non-LTE model atmospheres for hot evolved stars.

    NASA Astrophysics Data System (ADS)

    Werner, K.; Dreizler, S.; Heber, U.; Hunger, K.; Rauch, T.

    During the last years the authors have developed a computer code to construct non-LTE model atmospheres for hot stars including line blanketing effects. The particular methods gave way to the computation of non-LTE model atmospheres which account for many more opacity sources than could be treated within the classical complete linearisation approach by Auer and Mihalas. With this code it became possible for the first time to calculate grids of realistic non-LTE line blanketed model atmospheres for subdwarf O-stars in a critical temperature range as well as for the extremely hot (100,000K to 150,000K) so-called PG1159 stars. Both groups of stars consist of objects being in advanced evolutionary stages representing immediate White Dwarf progenitors. The atmospheres of these stars are enriched or even dominated by nuclear processed material, namely either by helium (sdO stars) or also by carbon and oxygen (PG1159 stars).

  19. Mars global reference atmosphere model (Mars-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie F.

    1992-01-01

    Mars-GRAM is an empirical model that parameterizes the temperature, pressure, density, and wind structure of the Martian atmosphere from the surface through thermospheric altitudes. In the lower atmosphere of Mars, the model is built around parameterizations of height, latitudinal, longitudinal, and seasonal variations of temperature determined from a survey of published measurements from the Mariner and Viking programs. Pressure and density are inferred from the temperature by making use of the hydrostatic and perfect gas laws relationships. For the upper atmosphere, the thermospheric model of Stewart is used. A hydrostatic interpolation routine is used to insure a smooth transition from the lower portion of the model to the Stewart thermospheric model. Other aspects of the model are discussed.

  20. Atmospheric Dispersion Model Validation in Low Wind Conditions

    SciTech Connect

    Sawyer, Patrick

    2007-11-01

    Atmospheric plume dispersion models are used for a variety of purposes including emergency planning and response to hazardous material releases, determining force protection actions in the event of a Weapons of Mass Destruction (WMD) attack and for locating sources of pollution. This study provides a review of previous studies that examine the accuracy of atmospheric plume dispersion models for chemical releases. It considers the principles used to derive air dispersion plume models and looks at three specific models currently in use: Aerial Location of Hazardous Atmospheres (ALOHA), Emergency Prediction Information Code (EPIcode) and Second Order Closure Integrated Puff (SCIPUFF). Results from this study indicate over-prediction bias by the EPIcode and SCIPUFF models and under-prediction bias by the ALOHA model. The experiment parameters were for near field dispersion (less than 100 meters) in low wind speed conditions (less than 2 meters per second).

  1. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    NASA Astrophysics Data System (ADS)

    Friedman, C. L.; Selin, N. E.

    2015-11-01

    We present a spatially and temporally resolved global atmospheric PCB model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere mid-latitudes, and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for the International Council for the Exploration of the Sea 7 PCBs, and demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently-described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that mid-latitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.

  2. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    NASA Astrophysics Data System (ADS)

    Friedman, Carey L.; Selin, Noelle E.

    2016-03-01

    We present a spatially and temporally resolved global atmospheric polychlorinated biphenyl (PCB) model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere midlatitudes and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for seven PCB congeners, and we demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that midlatitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.

  3. Information Flow in an Atmospheric Model and Data Assimilation

    ERIC Educational Resources Information Center

    Yoon, Young-noh

    2011-01-01

    Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background…

  4. Models of earth's atmosphere (90 to 2500 km)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This monograph replaces a monograph on the upper atmosphere which was a computerized version of Jacchia's model. The current model has a range from 90 to 2500 km. In addition to the computerized model, a quick-look prediction method is given that may be used to estimate the density for any time and spatial location without using a computer.

  5. Session on coupled atmospheric/chemistry coupled models

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    1993-01-01

    The session on coupled atmospheric/chemistry coupled models is reviewed. Current model limitations, current issues and critical unknowns, and modeling activity are addressed. Specific recommendations and experimental strategies on the following are given: multiscale surface layer - planetary boundary layer - chemical flux measurements; Eulerian budget study; and Langrangian experiment. Nonprecipitating cloud studies, organized convective systems, and aerosols - heterogenous chemistry are also discussed.

  6. Atmospheric corrosion model and monitor for low cost solar arrays

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Jeanjaquet, S. L.; Kendig, M.

    1981-01-01

    An atmospheric corrosion model and corrosion monitoring system has been developed for low cost solar arrays (LSA). The corrosion model predicts that corrosion rate is the product of the surface condensation probability of water vapor and the diffusion controlled corrosion current. This corrosion model is verified by simultaneous monitoring of weather conditions and corrosion rates at the solar array test site at Mead, Nebraska.

  7. Measuring the basic parameters of neutron stars using model atmospheres

    NASA Astrophysics Data System (ADS)

    Suleimanov, V. F.; Poutanen, J.; Klochkov, D.; Werner, K.

    2016-02-01

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed.

  8. Numerical Modeling of Transport and Photochemistry of Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Strobel, D. F.

    Recent measurements by the Doppler Wind Experiment instrument on the Huygens probe have convincingly shown that Titan's atmospheric circulation is dominated by strong superrotational wind in the upper troposphere and stratosphere. The Johns Hopkins University (JHU) two-dimensional (2D) radiative-dynamical model for Titan's stratosphere now includes a viable solution to the long-standing dynamical problem of equatorial superrotation in a slowly rotating planetary atmosphere. The unique feature of the JHU 2D model is its modeling core for transporting both the dynamical variables (angular momentum and potential temperature) and photochemical species. By adapting the JHU general photochemical module to couple the photochemistry of Titan's atmosphere we will be able to study transport and photochemical processes in Titan's atmosphere, developing a consistent description of major features observed by the Cassini/Huygens mission.Recent measurements by the Doppler Wind Experiment instrument on the Huygens probe have convincingly shown that Titan's atmospheric circulation is dominated by strong superrotational wind in the upper troposphere and stratosphere. The Johns Hopkins University (JHU) two-dimensional (2D) radiative-dynamical model for Titan's stratosphere now includes a viable solution to the long-standing dynamical problem of equatorial superrotation in a slowly rotating planetary atmosphere. The unique feature of the JHU 2D model is its modeling core for transporting both the dynamical variables (angular momentum and potential temperature) and photochemical species. By adapting the JHU general photochemical module to couple the photochemistry of Titan's atmosphere we will be able to study transport and photochemical processes in Titan's atmosphere, developing a consistent description of major features observed by the Cassini/Huygens mission.

  9. A New Tool for Inundation Modeling: Community Modeling Interface for Tsunamis (ComMIT)

    NASA Astrophysics Data System (ADS)

    Titov, V. V.; Moore, C. W.; Greenslade, D. J. M.; Pattiaratchi, C.; Badal, R.; Synolakis, C. E.; Kânoğlu, U.

    2011-11-01

    Almost 5 years after the 26 December 2004 Indian Ocean tragedy, the 10 August 2009 Andaman tsunami demonstrated that accurate forecasting is possible using the tsunami community modeling tool Community Model Interface for Tsunamis (ComMIT). ComMIT is designed for ease of use, and allows dissemination of results to the community while addressing concerns associated with proprietary issues of bathymetry and topography. It uses initial conditions from a precomputed propagation database, has an easy-to-interpret graphical interface, and requires only portable hardware. ComMIT was initially developed for Indian Ocean countries with support from the United Nations Educational, Scientific, and Cultural Organization (UNESCO), the United States Agency for International Development (USAID), and the National Oceanic and Atmospheric Administration (NOAA). To date, more than 60 scientists from 17 countries in the Indian Ocean have been trained and are using it in operational inundation mapping.

  10. Constructing an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Sims, Michael; Podolak, Ester; Mckay, Christopher

    1990-01-01

    Scientific model building can be an intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot be easily distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We believe that advanced software techniques can facilitate both the model building and model sharing process. In this paper, we describe a prototype for a scientific modeling software tool that serves as an aid to the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities. Our prototype has been developed in the domain of planetary atmospheric modeling, and is being used to construct models of Titan's atmosphere.

  11. Regional forecasting with global atmospheric models; Fourth year report

    SciTech Connect

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    The scope of the report is to present the results of the fourth year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  12. Cloud Feedback in Atmospheric General Circulation Models: An Update

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Ingram, W. J.; Potter, G. L.; Alekseev, V.; Barker, H. W.; Cohen-Solal, E.; Colman, R. A.; Dazlich, D. A.; DelGenio, A. D.; Dix, M. R.; Dymnikov, V.; Esch, M.; Fowler, L. D.; Fraser, J. R.; Galin, V.; Gates, W. L.; Hack, J. J.; Kiehl, J. T.; LeTreut, H.

    1996-01-01

    Six years ago, we compared the climate sensitivity of 19 atmospheric general circulation models and found a roughly threefold variation among the models; most of this variation was attributed to differences in the models' depictions of cloud feedback. In an update of this comparison, current models showed considerably smaller differences in net cloud feedback, with most producing modest values. There are, however, substantial differences in the feedback components, indicating that the models still have physical disagreements.

  13. Validation of Space Weather Models at Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Pulkkinen, A.; Rastaetter, L.; Hesse, M.; Chulaki, A.; Maddox, M.

    2011-01-01

    The Community Coordinated Modeling Center (CCMC) is a multiagency partnership, which aims at the creation of next generation space weather modes. CCMC goal is to support the research and developmental work necessary to substantially increase space weather modeling capabilities and to facilitate advanced models deployment in forecasting operations. The CCMC conducts unbiased model testing and validation and evaluates model readiness for operational environment. The presentation will demonstrate the recent progress in CCMC metrics and validation activities.

  14. The physical theory and propagation model of THz atmospheric propagation

    NASA Astrophysics Data System (ADS)

    Wang, R.; Yao, J. Q.; Xu, D. G.; Wang, J. L.; Wang, P.

    2011-02-01

    Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.

  15. The Surface-Pressure Signature of Atmospheric Tides in Modern Climate Models

    NASA Astrophysics Data System (ADS)

    Covey, C.; Dai, A.; Marsh, D. R.; Lindzen, R. S.

    2009-12-01

    Although atmospheric tides driven by solar heating are readily detectable at Earth’s surface as variations in air pressure (Hagan et al. 2003) the output of climate-oriented atmospheric general circulation models (GCMs) has rarely been examined for atmospheric tides. In this work we search for the tides in output from GCM / climate models contributing to the latest assessment report of the Intergovernmental Panel on Climate Change (IPCC; Randall et al. 2007). We also examine output from the Whole-Atmosphere Community Climate Model (WACCM), which extends from Earth’s surface to the thermosphere. We examine pressure near the surface because it is the best-observed signature of the tides, and because it is the most readily available output at high time-frequency from the IPCC models. We find surprising consistency among observations and all model simulations, despite variation of the altitudes of model upper boundaries from 30 to 75 km in the IPCC models and > 130 km for WACCM. Our results are compatable with previous suggestions that placing a GCM’s upper boundary at low altitude leads to compensating errors—reducing the forcing of the tides in the ozone layer but also introducing a spurious reflected wave at the upper boundary, which propagates to the surface (Lindzen et al. 1968; Zwiers and Hamilton 1986; Hamilton et al. 2008).

  16. A zonally symmetric model for volcanic influence upon atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Mayr, H. G.; Harris, I.; Taylor, H. A., Jr.

    1984-01-01

    The effects of volcanic activity upon zonal wind flow in a model atmosphere are considered. A low latitude volcanic eruption could lower the tropospheric pole to equator temperature difference and thereby affect the atmospheric motions. When the temperature contrast decreases, the zonal wind velocities at high altitudes are reduced. To conserve angular momentum, the velocities in the lower atmosphere near the surface must increase, thus providing a momentum source for ocean currents. It is suggested that this momentum source may have played a role as a trigger for inducing the 1982-83 anomalous El Nino and possibly other climate changes.

  17. Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2015-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  18. Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  19. GRAM Series of Atmospheric Models for Aeroentry and Aeroassist

    NASA Technical Reports Server (NTRS)

    Duvall, Aleta; Justus, C. G.; Keller, Vernon W.

    2005-01-01

    The eight destinations in the Solar System with sufficient atmosphere for either aeroentry or aeroassist, including aerocapture, are: Venus, Earth, Mars, Jupiter, Saturn; Uranus. and Neptune, and Saturn's moon Titan. Engineering-level atmospheric models for four of these (Earth, Mars, Titan, and Neptune) have been developed for use in NASA's systems analysis studies of aerocapture applications in potential future missions. Work has recently commenced on development of a similar atmospheric model for Venus. This series of MSFC-sponsored models is identified as the Global Reference Atmosphere Model (GRAM) series. An important capability of all of the models in the GRAM series is their ability to simulate quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Example applications for Earth aeroentry and Mars aerocapture systems analysis studies are presented and illustrated. Current and planned updates to the Earth and Mars atmospheric models, in support of NASA's new exploration vision, are also presented.

  20. Atmospheric Turbulence Modeling for Aerospace Vehicles: Fractional Order Fit

    NASA Technical Reports Server (NTRS)

    Kopasakis, George (Inventor)

    2015-01-01

    An improved model for simulating atmospheric disturbances is disclosed. A scale Kolmogorov spectral may be scaled to convert the Kolmogorov spectral into a finite energy von Karman spectral and a fractional order pole-zero transfer function (TF) may be derived from the von Karman spectral. Fractional order atmospheric turbulence may be approximated with an integer order pole-zero TF fit, and the approximation may be stored in memory.

  1. CLINICAL EXPERIENCE AND IMPACT OF A COMMUNITY-LED VOLUNTEER ATMOSPHERIC HAZE CLINIC IN SINGAPORE.

    PubMed

    Yeo, Benson; Liew, Choon Fong; Oon, Hazel H

    2014-11-01

    The Pollutant Standards Index reached a life-threatening level of 401 in Singapore on 21 June 2013. Grassroot leaders in Ulu Pandan Constituency conducted the first community-led free atmospheric Haze Clinic from 25 June 2013 to 11 July 2013 to provide accessible medical assessment for affected community members. This provided insight into the common conditions afflicting that community during the haze period while allaying public anxiety. Seventy-two consultations were conducted over the 3 week period, of which 26 (36.1%) were haze related, 18 (25%) were possibly haze related and 28 (38.9%) were non-haze related. The majority of haze-related complaints were respiratory, eye and skin-related. During a haze crisis, such adhoc community-led clinics may help alleviate the surge in patients seen at emergency departments and public primary health clinics. Many of the patients seen were from low income families and a significant number (38.9%) sought help for non-haze related medical conditions. PMID:26466431

  2. Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria

    PubMed Central

    Okubo, Takashi; Liu, Dongyan; Tsurumaru, Hirohito; Ikeda, Seishi; Asakawa, Susumu; Tokida, Takeshi; Tago, Kanako; Hayatsu, Masahito; Aoki, Naohiro; Ishimaru, Ken; Ujiie, Kazuhiro; Usui, Yasuhiro; Nakamura, Hirofumi; Sakai, Hidemitsu; Hayashi, Kentaro; Hasegawa, Toshihiro; Minamisawa, Kiwamu

    2015-01-01

    A number of studies have shown that elevated atmospheric CO2 ([CO2]) affects rice yields and grain quality. However, the responses of root-associated bacteria to [CO2] elevation have not been characterized in a large-scale field study. We conducted a free-air CO2 enrichment (FACE) experiment (ambient + 200 μmol.mol−1) using three rice cultivars (Akita 63, Takanari, and Koshihikari) and two experimental lines of Koshihikari [chromosome segment substitution and near-isogenic lines (NILs)] to determine the effects of [CO2] elevation on the community structure of rice root-associated bacteria. Microbial DNA was extracted from rice roots at the panicle formation stage and analyzed by pyrosequencing the bacterial 16S rRNA gene to characterize the members of the bacterial community. Principal coordinate analysis of a weighted UniFrac distance matrix revealed that the community structure was clearly affected by elevated [CO2]. The predominant community members at class level were Alpha-, Beta-, and Gamma-proteobacteria in the control (ambient) and FACE plots. The relative abundance of Methylocystaceae, the major methane-oxidizing bacteria in rice roots, tended to decrease with increasing [CO2] levels. Quantitative PCR revealed a decreased copy number of the methane monooxygenase (pmoA) gene and increased methyl coenzyme M reductase (mcrA) in elevated [CO2]. These results suggest elevated [CO2] suppresses methane oxidation and promotes methanogenesis in rice roots; this process affects the carbon cycle in rice paddy fields. PMID:25750640

  3. Lattice models of glasses and Potts models for community detection

    NASA Astrophysics Data System (ADS)

    Darst, Richard K.

    In Part I, we construct a configurationally constrained lattice glass model following the example of Biroli and Mézard (Phys. Rev. Lett., 82, 025501 (2001)), which we denote t154. By examining the relaxation, atomic motion, Stokes-Einstein relationship violation, time-dependent displacement (van Hove function), wavevector-dependent relaxation, and multi-point correlations S4 and χ4 , we can show that this new model satisfies all minimal requirements set by the observed phenomena of dynamical heterogeneity of supercooled liquids, though with a drastically different theoretical basis from existing lattice models of glasses based on kinetic facilitation. We then proceed to perform a more detailed comparison between lattice glass models, including t154 and a model by Ciamarra et. al. (Phys. Rev. E 68 066111 (2003)), with traditional facilitated models. We study two forms of dynamical sensitivity: sensitivity to boundary conditions, and a sensitivity to initial conditions. By comparison to atomistic computer simulation, we find evidence that the lattice glass models better describe glassy behavior. We conclude by discussing the implications of our findings for contrasting theories of the glass transition. In Part II, we change our focus and examine community detection in graphs from a theoretical standpoint. Many disparate community definitions have been proposed, however except for one, few have been analyzed in any great detail. In this work, we, for the first time, formally study a definition based on internal edge density. Using the concept that internal edge density is the fraction of intra-community edges relative to the maximal number of intra-community edges, we produce a rich framework to use as the basis of community detection. We discuss its use in local and global community detection algorithms, and how our methods can extend to overlapping and hierarchical communities, and weighted, directed, and multi-graphs. In order to validate our definition, we use

  4. The Role of Atmospheric Measurements in Wind Power Statistical Models

    NASA Astrophysics Data System (ADS)

    Wharton, S.; Bulaevskaya, V.; Irons, Z.; Newman, J. F.; Clifton, A.

    2015-12-01

    The simplest wind power generation curves model power only as a function of the wind speed at turbine hub-height. While the latter is an essential predictor of power output, it is widely accepted that wind speed information in other parts of the vertical profile, as well as additional atmospheric variables including atmospheric stability, wind veer, and hub-height turbulence are also important factors. The goal of this work is to determine the gain in predictive ability afforded by adding additional atmospheric measurements to the power prediction model. In particular, we are interested in quantifying any gain in predictive ability afforded by measurements taken from a laser detection and ranging (lidar) instrument, as lidar provides high spatial and temporal resolution measurements of wind speed and direction at 10 or more levels throughout the rotor-disk and at heights well above. Co-located lidar and meteorological tower data as well as SCADA power data from a wind farm in Northern Oklahoma will be used to train a set of statistical models. In practice, most wind farms continue to rely on atmospheric measurements taken from less expensive, in situ instruments mounted on meteorological towers to assess turbine power response to a changing atmospheric environment. Here, we compare a large suite of atmospheric variables derived from tower measurements to those taken from lidar to determine if remote sensing devices add any competitive advantage over tower measurements alone to predict turbine power response.

  5. Examining Tatooine: Atmospheric Models of Neptune-like Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    May, E. M.; Rauscher, E.

    2016-08-01

    Circumbinary planets experience a time-varying irradiation pattern as they orbit their two host stars. In this work, we present the first detailed study of the atmospheric effects of this irradiation pattern on known and hypothetical gaseous circumbinary planets. Using both a one-dimensional energy balance model (EBM) and a three-dimensional general circulation model (GCM), we look at the temperature differences between circumbinary planets and their equivalent single-star cases in order to determine the nature of the atmospheres of these planets. We find that for circumbinary planets on stable orbits around their host stars, temperature differences are on average no more than 1.0% in the most extreme cases. Based on detailed modeling with the GCM, we find that these temperature differences are not large enough to excite circulation differences between the two cases. We conclude that gaseous circumbinary planets can be treated as their equivalent single-star case in future atmospheric modeling efforts.

  6. Extensive middle atmosphere (20-120 KM) modification in the Global Reference Atmospheric Model (GRAM-90)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, Dale

    1990-01-01

    The Global Reference Atmospheric Model (GRAM) is currently available in the 'GRAM-88' version (Justus, et al., 1986; 1988), which includes relatively minor upgrades and changes from the 'MOD-3' version (Justus, et al., 1980). Currently a project is underway to use large amounts of data, mostly collected under the Middle Atmosphere Program (MAP) to produce a major upgrade of the program planned for release as the GRAM-90 version. The new data and program revisions will particularly affect the 25-90 km height range. Sources of data and preliminary results are described here in the form of cross-sectional plots.

  7. Forward Models of Exoplanets for Atmosphere Retrievals with JWST

    NASA Astrophysics Data System (ADS)

    Howe, Alex; Burrows, Adam Seth

    2016-01-01

    We present models of extrasolar planets incorporating self-consistent treatment of internal structures, radiative cooling and XUV-driven mass loss over time, and over a range of masses. We also present new atmosphere models with 1-D radiative transfer and a range of compositions and cloud structures, with both theoretical transit and secondary eclipse spectra. These complimentary model sets are designed for performing retrievals of atmosphere parameters with data from the upcoming JWST mission. Finally, we present preliminary results with new theoretical spectra fit to well-observed transiting exoplanets.

  8. Engineering-Level Model Atmospheres for Titan & Neptune

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D. L.

    2003-01-01

    Engineering-level atmospheric models for Titan and Neptune have been developed for use in NASA s systems analysis studies of aerocapture applications in missions to the outer planets. Analogous to highly successful Global Reference Atmospheric Models for Earth (GRAM, Justus et al., 2000) and Mars (Mars-GRAM, Justus and Johnson, 2001, Justus et al., 2002) the new models are called Titan-GRAM and Neptune-GRAM. Like GRAM and Mars-GRAM, an important feature of Titan-GRAM and Neptune-GRAM is their ability to simulate quasi-random perturbations for Monte- Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design.

  9. Scientific Benefits of Space Science Models Archiving at Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Kuznetsova, Maria M.; Berrios, David; Chulaki, Anna; Hesse, Michael; MacNeice, Peter J.; Maddox, Marlo M.; Pulkkinen, Antti; Rastaetter, Lutz; Taktakishvili, Aleksandre

    2009-01-01

    The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the-art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. CCMC provides a web-based Run-on-Request system, by which the interested scientist can request simulations for a broad range of space science problems. To allow the models to be driven by data relevant to particular events CCMC developed a tool that automatically downloads data from data archives and transform them to required formats. CCMC also provides a tailored web-based visualization interface for the model output, as well as the capability to download the simulation output in portable format. CCMC offers a variety of visualization and output analysis tools to aid scientists in interpretation of simulation results. During eight years since the Run-on-request system became available the CCMC archived the results of almost 3000 runs that are covering significant space weather events and time intervals of interest identified by the community. The simulation results archived at CCMC also include a library of general purpose runs with modeled conditions that are used for education and research. Archiving results of simulations performed in support of several Modeling Challenges helps to evaluate the progress in space weather modeling over time. We will highlight the scientific benefits of CCMC space science model archive and discuss plans for further development of advanced methods to interact with simulation results.

  10. Tactical application of an atmospheric mixed-layer model

    NASA Astrophysics Data System (ADS)

    Graves, R. M.

    1982-12-01

    Modern Naval weapon and sensor systems are strongly influenced by the marine environment. Foremost among the atmospheric effects is ducting of electromagnetic energy by refractive layers in the atmosphere. To assess the effect of ducting on electromagnetic emissions, the Navy developed the Integrated Refractive Effects Prediction System (IREPS). Research at Naval Postgraduate School (NPS) has led to development of a state-of-the-art model which can be used to predict changes to the refractive profile of the lower atmosphere. The model uses radiosonde data and surface meteorological observations to predict changes in refractive conditions and low level cloud/fog formation over 18 to 30 hour periods. The model shows some skill in forecasting duct regions when subsidence rates can be specified to within +/-.0015 m/s. This thesis shows the applicability of the NPS marine atmospheric mixed layer model to fleet tactics. Atmospheric refractive effects on specific emitters can be predicted when model predictions are used in conjunction with IREPS.

  11. NEAR ROADWAY RESEARCH IN THE ATMOSPHERIC MODELING DIVISION

    EPA Science Inventory

    This is a presentation to the CRC Mobile Source Air Toxics Workshop in Phoenix, AZ, on 23 October 2006. The presentation provides an overview of air quality modeling research in the USEPA/ORD/NERL's Atmospheric Modeling Division, with an emphasis on near-road pollutant character...

  12. THE ATMOSPHERIC MODEL EVALUATION TOOL (AMET); AIR QUALITY MODULE

    EPA Science Inventory

    This presentation reviews the development of the Atmospheric Model Evaluation Tool (AMET) air quality module. The AMET tool is being developed to aid in the model evaluation. This presentation focuses on the air quality evaluation portion of AMET. Presented are examples of the...

  13. IMPACT: Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking

    NASA Astrophysics Data System (ADS)

    Koller, J.; Brennan, S.; Godinez, H. C.; Higdon, D. M.; Klimenko, A.; Larsen, B.; Lawrence, E.; Linares, R.; McLaughlin, C. A.; Mehta, P. M.; Palmer, D.; Ridley, A. J.; Shoemaker, M.; Sutton, E.; Thompson, D.; Walker, A.; Wohlberg, B.

    2013-12-01

    Low-Earth orbiting satellites suffer from atmospheric drag due to thermospheric density which changes on the order of several magnitudes especially during space weather events. Solar flares, precipitating particles and ionospheric currents cause the upper atmosphere to heat up, redistribute, and cool again. These processes are intrinsically included in empirical models, e.g. MSIS and Jacchia-Bowman type models. However, sensitivity analysis has shown that atmospheric drag has the highest influence on satellite conjunction analysis and empirical model still do not adequately represent a desired accuracy. Space debris and collision avoidance have become an increasingly operational reality. It is paramount to accurately predict satellite orbits and include drag effect driven by space weather. The IMPACT project (Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking), funded with over $5 Million by the Los Alamos Laboratory Directed Research and Development office, has the goal to develop an integrated system of atmospheric drag modeling, orbit propagation, and conjunction analysis with detailed uncertainty quantification to address the space debris and collision avoidance problem. Now with over two years into the project, we have developed an integrated solution combining physics-based density modeling of the upper atmosphere between 120-700 km altitude, satellite drag forecasting for quiet and disturbed geomagnetic conditions, and conjunction analysis with non-Gaussian uncertainty quantification. We are employing several novel approaches including a unique observational sensor developed at Los Alamos; machine learning with a support-vector machine approach of the coupling between solar drivers of the upper atmosphere and satellite drag; rigorous data assimilative modeling using a physics-based approach instead of empirical modeling of the thermosphere; and a computed-tomography method for extracting temporal maps of thermospheric densities

  14. Modeled atmospheric radon concentrations from uranium mines

    SciTech Connect

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  15. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which

  16. Modeling Atmospheric Energy Deposition (by energetic ions): New Results

    NASA Astrophysics Data System (ADS)

    Parkinson, C.; Brain, D. A.; Lillis, R. J.; Liemohn, M. W.; Bougher, S. W.

    2012-12-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. Such modeling has been previously done for Earth, Mars and Jupiter using a guiding center precipitation model with extensive collisional physics. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation that can perform calculations for cases where there is only a weak or nonexistent magnetic field that includes detailed physical interaction with the atmosphere (i.e. collisional physics). We show initial efforts to apply a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Venus, Mars, and Titan. A systematic study of the ionization, excitation, and energy

  17. INTERCOMPARISON STUDY OF ATMOSPHERIC MERCURY MODELS: 1. COMPARISON OF MODELS WITH SHORT-TERM MEASUREMENTS

    EPA Science Inventory

    Five regional scale models with a horizontal domain covering the European continent and its surrounding seas, one hemispheric and one global scale model participated in an atmospheric mercury modelling intercomparison study. Model-predicted concentrations in ambient air were comp...

  18. Challenges in Modeling of the Global Atmosphere

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    The massively parallel computer architectures require that some widely adopted modeling paradigms be reconsidered in order to utilize more productively the power of parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. However, the described scenario implies that the discretization used in the model is horizontally local. The spherical geometry further complicates the problem. Various grid topologies will be discussed and examples will be shown. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of decent size. However, the polar filtering requires transpositions involving extra communications. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for a wide application of the spectral representation. With some variations, these techniques are used in most major centers. However, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with a fast Fourier transform represents a significant step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting

  19. GRAM 88 - 4D GLOBAL REFERENCE ATMOSPHERE MODEL-1988

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1994-01-01

    The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications are global circulation and diffusion studies; also the generation of profiles for comparison with other atmospheric measurement techniques such as satellite measured temperature profiles and infrasonic measurement of wind profiles. GRAM-88 is the latest version of the software GRAM. The software GRAM-88 contains a number of changes that have improved the model statistics, in particular, the small scale density perturbation statistics. It also corrected a low latitude grid problem as well as the SCIDAT data base. Furthermore, GRAM-88 now uses the U.S. Standard Atmosphere 1976 as a comparison standard rather than the US62 used in other versions. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The Jacchia (1970) model simulates the high atmospheric region above 115km. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The improved code eliminated the calculation of geostrophic winds above 125 km altitude from the model. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). A fairing technique between 90km and 115km accomplished a smooth transition between the modified Groves values and

  20. Onboard Atmospheric Modeling and Prediction for Autonomous Aerobraking Missions

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.; Prince, Jill L. H.

    2011-01-01

    Aerobraking has proven to be an effective means of increasing the science payload for planetary orbiting missions and/or for enabling the use of less expensive launch vehicles. Though aerobraking has numerous benefits, large operations cost have been required to maintain the aerobraking time line without violating aerodynamic heating or other constraints. Two operations functions have been performed on an orbit by orbit basis to estimate atmospheric properties relevant to aerobraking. The Navigation team typically solves for an atmospheric density scale factor using DSN tracking data and the atmospheric modeling team uses telemetric accelerometer data to recover atmospheric density profiles. After some effort, decisions are made about the need for orbit trim maneuvers to adjust periapsis altitude to stay within the aerobraking corridor. Autonomous aerobraking would reduce the need for many ground based tasks. To be successful, atmospheric modeling must be performed on the vehicle in near real time. This paper discusses the issues associated with estimating the planetary atmosphere onboard and evaluates a number of the options for Mars, Venus and Titan aerobraking missions.

  1. A general circulation model of a Venus-like atmosphere

    NASA Astrophysics Data System (ADS)

    Rossow, W. B.

    1983-02-01

    Heat and momentum budgets are investigated for a three-dimensional general circulation model of a Venus-like, massive and slowly rotating atmosphere which is forced with an axisymmetric radiative heating/cooling distribution. Model results confirm the suggestions of Gierasch (1975) and Rossow and Williams (1979), with a mean meridional circulation which, despite its multicellular form, interacts with quasi-barotropic eddies produced by zonal flow shear instability to yield a weak superrotation of the entire model atmosphere. This process is sufficiently general to encourage the conclusion that it will occur in all slowly rotating atmospheres. Whether it can accelerate wind speeds as large as those observed on Venus cannot presently be determined.

  2. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  3. Light self-focusing in the atmosphere: thin window model.

    PubMed

    Vaseva, Irina A; Fedoruk, Mikhail P; Rubenchik, Alexander M; Turitsyn, Sergei K

    2016-01-01

    Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed "thin window" model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing. PMID:27480220

  4. Light self-focusing in the atmosphere: thin window model

    NASA Astrophysics Data System (ADS)

    Vaseva, Irina A.; Fedoruk, Mikhail P.; Rubenchik, Alexander M.; Turitsyn, Sergei K.

    2016-08-01

    Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed “thin window” model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.

  5. Light self-focusing in the atmosphere: thin window model

    PubMed Central

    Vaseva, Irina A.; Fedoruk, Mikhail P.; Rubenchik, Alexander M.; Turitsyn, Sergei K.

    2016-01-01

    Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed “thin window” model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing. PMID:27480220

  6. Light self-focusing in the atmosphere: Thin window model

    DOE PAGESBeta

    Vaseva, Irina A.; Fedoruk, Mikhail P.; Rubenchik, Alexander M.; Turitsyn, Sergei K.

    2016-08-02

    Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminatemore » the impact of self-focusing in the atmosphere on the laser beam. Furthermore, the area of applicability of the proposed “thin window” model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.« less

  7. Genetic education to diverse communities employing a community empowerment model.

    PubMed

    Mittman, I S

    1998-01-01

    Lack of equity in access to health care, in general, and genetic services in particular, places communities of color at a distinct disadvantage when considering the rapidly evolving genetic technology. Much of this disparity is owed to lack of trust and credibility in the genetic care system as well as multiple ethnocultural barriers to services. This paper presents a 3-year community outreach demonstration project in genetic education. The project employed the premise that the empowerment of the target communities to take active part in their genetic education, with attention to a wide array of the community's health care needs, is the most efficacious manner in which to provide genetic education to underserved communities. PMID:15178975

  8. Model atmospheres and spectroscopy of red supergiants

    NASA Astrophysics Data System (ADS)

    Bergemann, Maria

    2015-08-01

    Cool red supergiants are among the most complex and fascinating stars in the Universe. They can be observed to enormous distances allowing us to study the key property of their host galaxies - chemical abundances. I will review different aspects of spectroscopic diagnosis of giants and show how these impact science done with Galactic and extra-galactic observations. I will also assess the of potential of the planned instruments to provide different stellar information with new generations of models, such as the quality and families of chemical abundances in stars.

  9. IHY Modeling Support at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Chulaki, A.; Hesse, Michael; Kuznetsova, Masha; MacNeice, P.; Rastaetter, L.

    2005-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. In particular, the CCMC provides to the research community the execution of "runs-onrequest" for specific events of interest to space science researchers. Through this activity and the concurrent development of advanced visualization tools, CCMC provides, to the general science community, unprecedented access to a large number of state-of-the-art research models. CCMC houses models that cover the entire domain from the Sun to the Earth. In this presentation, we will provide an overview of CCMC modeling services that are available to support activities during the International Heliospheric Year. In order to tailor CCMC activities to IHY needs, we will also invite community input into our IHY planning activities.

  10. Stochastic Sznajd Model in Open Community

    NASA Astrophysics Data System (ADS)

    Emmert-Streib, Frank

    We extend the Sznajd Model for opinion formation by introducing persuasion probabilities for opinions. Moreover, we couple the system to an environment which mimics the application of the opinion. This results in a feedback, representing single-state opinion transitions in opposite to the two-state opinion transitions for persuading other people. We call this model opinion formation in an open community (OFOC). It can be seen as a stochastic extension of the Sznajd model for an open community, because it allows for a special choice of parameters to recover the original Sznajd model. We demonstrate the effect of feedback in the OFOC model by applying it to a scenario in which, e.g., opinion B is worse then opinion A but easier explained to other people. Casually formulated we analyzed the question, how much better one has to be, in order to persuade other people, provided the opinion is worse. Our results reveal a linear relation between the transition probability for opinion B and the influence of the environment on B.

  11. Impact of atmospheric wet deposition on phytoplankton community structure in the South China Sea

    NASA Astrophysics Data System (ADS)

    Cui, Dong-Yang; Wang, Jiang-Tao; Tan, Li-Ju; Dong, Ze-Yi

    2016-05-01

    The South China Sea (SCS), which is the largest marginal sea in East Asia, plays a significant role in regional climate change. However, research on the phytoplankton community structure (PCS) response to atmospheric wet deposition remains inadequate. In this study, field incubation experiments were performed to survey the impact of atmospheric wet deposition on the PCS in the SCS in December 2013. Results indicate that the mean dissolved inorganic nitrogen/dissolved inorganic phosphorous (DIN/DIP) ratio in rainwater was 136, which was higher than that in seawater. Under low initial nutrient concentrations, rainwater inputs not only significantly increased total chlorophyll a (Chl a) concentrations but also potentially altered the PCS. The total Chl a concentration increased 1.7-, 1.9-, and 1.6-fold; microphytoplankton increased 2.6-, 3.2-, and 1.7-fold with respect to their initial values in the 5%, 10% addition, and 10% addition (filtered) treatment samples, respectively. Finally, microphytoplankton contributed 61% to the total Chl a concentration in 10% addition treatment samples. Differences in the nutrients induced by atmospheric wet deposition resulted in a shift in the advantage from picophytoplankton to microphytoplankton. Diatoms became the predominant species, accounting for 55% of the total abundance after rainwater addition.

  12. Community Surface Dynamics Modeling System and its CSDMS Modeling Tool to couple models and data (Invited)

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Csdms Scientific; Software Team

    2010-12-01

    CSDMS is the virtual home for a diverse community who foster and promote the modeling of earth surface processes, with emphasis on the movement of fluids, sediment and solutes through landscapes, seascapes and through their sedimentary basins. CSDMS develops, integrates, disseminates & archives software (> 150 models and 3million+ lines of code) that reflects and predicts earth surface processes over a broad range of time and space scales. CSDMS deals with the Earth's surface—the ever-changing, dynamic interface between lithosphere, hydrosphere, cryosphere, and atmosphere. CSDMS employs state-of-the-art architectures, interface standards and frameworks that make it possible to convert stand-alone models into flexible, "plug-and-play" components that can be assembled into larger applications. The CSDMS model-coupling environment offers language interoperability, structured and unstructured grids, and serves as a migration pathway for surface dynamics modelers towards High-Performance Computing (HPC). The CSDMS Modeling Tool is a key product of the overall project, as it allows earth scientists with relatively modest computer coding experience to use the CSDMS modules for earth surface dynamics research and education. The CMT Tool is platform independent. CMT can easily couple models that have followed the CSDMS protocols for model contribution: 1) Open-source license; 2) Available; 3) Vetted; 4) Open-source language; 5) Refactored for componentization; 6) Metadata & test files; 7) Clean and documented using keywords.

  13. Fractional Order Modeling of Atmospheric Turbulence - A More Accurate Modeling Methodology for Aero Vehicles

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2014-01-01

    The presentation covers a recently developed methodology to model atmospheric turbulence as disturbances for aero vehicle gust loads and for controls development like flutter and inlet shock position. The approach models atmospheric turbulence in their natural fractional order form, which provides for more accuracy compared to traditional methods like the Dryden model, especially for high speed vehicle. The presentation provides a historical background on atmospheric turbulence modeling and the approaches utilized for air vehicles. This is followed by the motivation and the methodology utilized to develop the atmospheric turbulence fractional order modeling approach. Some examples covering the application of this method are also provided, followed by concluding remarks.

  14. Tables of model atmospheres of bursting neutron stars

    NASA Technical Reports Server (NTRS)

    Madej, Jerzy

    1991-01-01

    This paper presents tables of plane-parallel neutron star model atmospheres in radiative and hydrostatic equilibrium, with effective temperatures of 8 x 10 exp 6, 1.257 x 10 exp 7, 2 x 10 exp 7, and 3 x 10 exp 7 K, and surface gravities of 15.0 and less (cgs units). The equations of model atmospheres on which the tables are based fully account for nonisotropies of the radiation field and effects of noncoherent Compton scattering of thermal X-rays by free electrons. Both the effective temperatures and gravities listed above are measured on the neutron star surface.

  15. TMAP: Tübingen NLTE Model-Atmosphere Package

    NASA Astrophysics Data System (ADS)

    Werner, Klaus; Dreizler, Stefan; Rauch, Thomas

    2012-12-01

    The Tübingen NLTE Model-Atmosphere Package (TMAP) is a tool to calculate stellar atmospheres in spherical or plane-parallel geometry in hydrostatic and radiative equilibrium allowing departures from local thermodynamic equilibrium (LTE) for the population of atomic levels. It is based on the Accelerated Lambda Iteration (ALI) method and is able to account for line blanketing by metals. All elements from hydrogen to nickel may be included in the calculation with model atoms which are tailored for the aims of the user.

  16. The determination of the surface stress in an atmospheric model

    SciTech Connect

    Janseen, P.A.E.M. ); Beljaars, A.C.M.; Simmons, A.; Viterbo, P. )

    1992-12-01

    By forcing a third-generation wave-prediction model with surface stresses from the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric model, it was discovered that lower wave heights were generated than by forcing with the ECMWF surface winds. The apparent inconsistency between surface stresses and surface winds in the atmospheric model turns out to be time-step dependent. A similar conclusion may be inferred from results of the WAMDI group. Apparently, a number of atmospheric models have inaccuracies in the boundary-layer scheme near the surface. In this paper it is argued that the reason for the inaccuracies is related to the numerical integration scheme that is used in these models. It is shown that a numerical scheme that treats physics and dynamics separately has an equilibrium that is time-step dependent. An alternative scheme-namely, simultaneous, implicit treatment of both physics and dynamics-removes this deficiency. Possible consequences for atmospheric-, wave-, and ocean-circulation models are briefly discussed.

  17. Modeling atmospheric turbulence effects on ground-based telescope systems

    SciTech Connect

    Flatte, S.M.; Bradford, L.W.; Max, C.E.

    1994-12-31

    Bester et al. report measurements of atmospheric fluctuations made with the Infrared Spatial Interferometer, which indicated behavior not in accord with the standard Kolmogorov model with only a single constant wind velocity. The numerical simulations use relatively complex models of the atmosphere to investigate both Kolmogorov and non-Kolmogorov models. The authors find that the measurements of Bester et al. for light passing through the upper atmosphere are within the limits of behavior for Kolmogorov models, but often only if the outer scale of turbulent fluctuations is between 15 to 100 meters. The possibility that the measured behavior might be non-Kolmogorov is not excluded. They also examine measurements made along short paths in the surface boundary layer, where some measurements of Bester et al. showed variations in the atmospheric fluctuations with seeing conditions which appeared to be non-Kolmogorov. These variations can perhaps be explained by standard models, but require that seeing improve with increasing wind speed in the surface layer. They discuss some other measurements which lend some support to that idea. However, they cannot exclude non-Kolmogorov behavior. They find that meteorological data is needed concurrent with astronomical observations, to help constrain the models. The size of the outer scale, the wind velocity profile and the turbulence spectrum are important to the ultimate capabilities of interferometers and other systems with adaptive optics.

  18. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    PubMed Central

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P < 0.04, R2 > 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  19. Validation of coupled atmosphere-fire behavior models

    SciTech Connect

    Bossert, J.E.; Reisner, J.M.; Linn, R.R.; Winterkamp, J.L.; Schaub, R.; Riggan, P.J.

    1998-12-31

    Recent advances in numerical modeling and computer power have made it feasible to simulate the dynamical interaction and feedback between the heat and turbulence induced by wildfires and the local atmospheric wind and temperature fields. At Los Alamos National Laboratory, the authors have developed a modeling system that includes this interaction by coupling a high resolution atmospheric dynamics model, HIGRAD, with a fire behavior model, BEHAVE, to predict the spread of wildfires. The HIGRAD/BEHAVE model is run at very high resolution to properly resolve the fire/atmosphere interaction. At present, these coupled wildfire model simulations are computationally intensive. The additional complexity of these models require sophisticated methods for assuring their reliability in real world applications. With this in mind, a substantial part of the research effort is directed at model validation. Several instrumented prescribed fires have been conducted with multi-agency support and participation from chaparral, marsh, and scrub environments in coastal areas of Florida and inland California. In this paper, the authors first describe the data required to initialize the components of the wildfire modeling system. Then they present results from one of the Florida fires, and discuss a strategy for further testing and improvement of coupled weather/wildfire models.

  20. Atmospheric analysis and prediction model development, volume 1

    NASA Technical Reports Server (NTRS)

    Kesel, P. G.; Wellck, R. E.; Langland, R. A.; Lewit, H. L.

    1976-01-01

    A set of hemispheric atmospheric analysis and prediction models was designed and tested. All programs were executed on either a 63 x 63 or 187 x 187 polar stereographic grid of the Northern Hemisphere. Parameters for objective analysis included sea surface temperature, sea level pressure, and twelve levels (from 1,000 to 100 millibars) of temperatures, heights, and winds. Stratospheric extensions (up to 10 millibars) were also provided. Four versions of a complex atmospheric prediction model, based on primitive equations, were programmed and tested. These models were executed on either the 63 x 63 or 187 x 187 grid, using either five or ten computational layers. The coarse-mesh (63 x 63) models were tested using real data for the period 21-23 April 1976. The fine-mesh (187 x 187) models were debugged, but insufficient computer resources precluded production tests. Preliminary test results for the 63 x 63 models are provided. Problem areas and proposed solutions are discussed.

  1. Metabolic modeling of a mutualistic microbial community

    SciTech Connect

    Stolyar, Sergey; Van Dien, Steve; Hillesland, Kristina Linnea; Pinel, Nicolas; Lie, Thomas J.; Leigh, John A.; Stahl, David A.

    2007-03-13

    The rate of production of methane in many environmentsdepends upon mutualistic interactions between sulfate-reducing bacteriaand methanogens. To enhance our understanding of these relationships, wetook advantage of the fully sequenced genomes of Desulfovibrio vulgarisand Methanococcus maripaludis to produce and analyze the firstmultispecies stoichiometric metabolic model. Model results were comparedto data on growth of the co-culture on lactate in the absence of sulfate.The model accurately predicted several ecologically relevantcharacteristics, including the flux of metabolites and the ratio of D.vulgaris to M. maripaludis cells during growth. In addition, the modeland our data suggested that it was possible to eliminate formate as aninterspecies electron shuttle, but hydrogen transfer was essential forsyntrophic growth. Our work demonstrated that reconstructed metabolicnetworks and stoichiometric models can serve not only to predictmetabolic fluxes and growth phenotypes of single organisms, but also tocapture growth parameters and community composition of simple bacterialcommunities.

  2. The Community Climate System Model Project from an Interagency Perspective

    SciTech Connect

    Bader, D C; Bamzai, A; Fein, J; Patrinos, A; Leinen, M

    2005-06-16

    In 2007, the Intergovernmental Panel on Climate Change (IPCC) will publish its Fourth Assessment Report of the Scientific Basis of Climate Change (AR4). A significant portion of the AR4 will be the analysis of coupled general circulation model (GCM) simulations of the climate of the past century as well as scenarios of future climates under prescribed emission scenarios. Modeling groups worldwide have contributed to AR4, including three from the U.S., the Community Climate System Model (CCSM) project, the National Aeronautics and Space Administration (NASA) Goddard Institute for Space Sciences, and the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL). This collection of model results is providing a wealth of new information that will be used to examine the state of climate science, the potential impacts from climate changes, and the policy consequences that they imply. Our focus here is on the CCSM project. Although it is centered at the National Center for Atmospheric Research (NCAR), the CCSM version 3 (CCSM3) was designed, developed, and applied in a uniquely distributed fashion with participation by many institutions. This model has produced some of the most scientifically complete and highest resolution simulations of climate change to date, thanks to the teamwork of many scientists and software engineers. Their contributions will become obvious as a steady stream of peer-reviewed publications appears in the scientific literature. Less obvious, however, is the largely hidden, unprecedented level of interagency cooperation and multi-institutional coordination that provided the direction and resources necessary to make the CCSM project successful. Contrary to the widely-held opinion that the US climate research effort in general, and the climate modeling effort in particular, is fragmented and disorganized (NRC 1998, 2001), the success of the CCSM project demonstrates that a uniquely US approach to model

  3. Coupled land-atmosphere modeling of methane emissions with WRF

    NASA Astrophysics Data System (ADS)

    Taylor, D.

    2013-12-01

    This project aims to couple a soil model for methane transport to an atmospheric model to predict methane emissions and dispersion. Methane is a potent greenhouse gas, 20 times as efficient at trapping heat in the atmosphere as the most prevalent greenhouse gas, carbon dioxide. It has been estimated that 60% of methane emissions in the earth's atmosphere come from anthropogenic sources, 17% of which comes from landfills, making landfills the third largest contributor of human-generated methane. Due to high costs and non-ideal weather conditions, field measurements of methane concentration at landfills are difficult and infrequent, so estimates of annual emissions from landfills are not very accurate. We plan to create a coupled land-atmosphere model that takes production and oxidation of methane into account when calculating methane emissions. This model will give a better understanding of how much methane is emitted annually from a given landfill and assist with monitoring efforts. It will also demonstrate the magnitude of diurnal and seasonal variations in methane emissions, which may identify errors in yearly methane emissions estimates made by extrapolating from a small number of field measurements. As a first step, an existing land-surface model, Noah, is modified to compute the transport of oxygen and methane along a 1-D soil column. Surface emissions are calculated using a gradient flux method with a boundary layer conductance that depends on the wind speed. These modifications to the land-surface model will be added to the Weather Research and Forecasting model to predict atmospheric dispersion of methane emitted by landfills. Comparisons to observations are made at two different landfill sites to validate the coupled model.

  4. Anchoring Atmospheric Density Models Using Observed Shuttle Plume Emissions

    NASA Astrophysics Data System (ADS)

    Dimpfl, W. L.; Bernstien, L. S.

    2010-12-01

    Atmospheric number densities at a given low-earth orbit (LEO) altitude can vary by more than an order of magnitude, depending on such parameters as diurnal variations and solar activity. The MSIS atmospheric model, which includes these dependent variables as input, is reported as being accurate to ±15%. Improvement to such models requires accurate direct atmospheric measurement. Here, a means of anchoring atmospheric models is offered through measuring the size and shape of atomic line or molecular band radiance resulting from the atmospheric interaction from rocket engine plumes or gas releases in LEO. Many discrete line or band emissions, ranging from the infrared to the ultraviolet may be suitable. For this purpose we are focusing on NH(A→X), centered at 316 nm. This emission is seen in the plumes of the Shuttle Orbiter PRCS engines, is expected in the plume of any amine fueled engine, and can be observed from remote sensors in space or on the ground. The atmospheric interaction of gas releases or plumes from spacecraft in LEO are understood by comparison of observed radiance with that predicted by Direct Simulation Monte Carlo (DSMC) models. The recent Extended Variable Hard Sphere (EVHS) improvements in treating hyperthermal collisions has produced exceptional agreement between measured and modeled steady-state Space Shuttle OMS and PRCS 190-250 nm Cameron band plume radiance from CO(a→X), which is understood to result from a combination of two- and three-step mechanisms. Radiance from NH(A→X) in far field plumes is understood to result from a simpler single-step process of the reaction of a minor plume species with atomic oxygen, making it more suitable for use in determining atmospheric density. It is recommended that direct retrofire burns of amine fueled engines be imaged in a narrow band from remote sensors to reveal atmospheric number density. In principal the simple measurement of the distance between the engine exit and the peak in the steady

  5. Puff-Plume Atmospheric Deposition Model.

    Energy Science and Technology Software Center (ESTSC)

    1992-06-24

    Version: 00 PFPL is an interactive transport and diffusion program developed for real-time calculation of the location and concentration of toxic or radioactive materials during an accidental release. Deposition calculations are included. The potential exists at the Savannah River Plant for releases of either toxic gases or radionuclides. The automated system developed to provide real-time information on the trajectory and concentration of an accidental release consists of meteorological towers, a minicomputer, and a network ofmore » terminals called the Weather Information and Display (WIND) System. PFPL which simulates either instantaneous (puff) or continuous (plume) releases is the primary code used at Savannah River for emergency response. Data files are provided for demonstration. The software for archiving the required on-line meteorological data is not included. Subroutines used for graphic display of results and operational control of the DEC VT100 and Tektronix terminals in the terminal network are included. Anyone wishing t use these routines must make appropriate modifications to the file TERMINALS.DAT. The DAT files provided were copied during the afternoon of December 28, 1983. Test runs attempting to use these files should specify release times on or before that date. Any user wishing to obtain numerical output only form the model based on conditions in his locality must supply appropriate wind data for the program.« less

  6. Haze Particles and Condensation in Pluto's Atmosphere Explored through Microphysical Modeling

    NASA Astrophysics Data System (ADS)

    Barth, E. L.

    2014-12-01

    To explore scenarios involving condensation in Pluto's atmosphere, a 1-D microphysics model based on the Community Aerosol and Radiation Model for Atmospheres (CARMA) has been developed. CARMA has been used successfully many times to explore the vertical distribution, size, shape, and composition of particles in Titan's atmosphere, and in particular, to predict the appearance of methane condensate layers which were observed at the Huygens' landing site. Physical processes in CARMA include nucleation, condensation, evaporation, sedimentation, and coagulation. In Pluto's atmosphere, most of the condensation would require the presence of a troposphere with at least a few kilometers vertical extent. However, if photochemical production proceeds similarly to the case of Titan's atmosphere, there are possibilities for condensation at higher altitudes as well. A number of sensitivity tests will be presented, including variations in the abundance, size, and shape of haze particles; evaluating the onset of homogeneous methane nucleation; exploring the size distribution of the resulting methane ice particles; and the effects of condensation of other photochemically produced trace species as well.

  7. A Coupled Atmosphere-Ocean-Wave Modeling System

    NASA Astrophysics Data System (ADS)

    Allard, R. A.; Smith, T.; Rogers, W. E.; Jensen, T. G.; Chu, P.; Campbell, T. J.

    2012-12-01

    A growing interest in the impacts that large and small scale ocean and atmospheric events (El Niño, hurricanes, etc.) have on weather forecasting has led to the coupling of atmospheric, ocean circulation and ocean wave models. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS™ ) consists of the Navy's atmospheric model coupled to the Navy Coastal Ocean Model (NCOM) and the wave models SWAN (Simulating WAves Nearshore) and WAVEWATCH III (WW3™). In a fully coupled mode, COAMPS, NCOM, and SWAN (or WW3) may be integrated concurrently so that currents and water levels, wave-induced stress, bottom drag, Stokes drift current, precipitation, and surface fluxes of heat, moisture, and momentum are exchanged across the air-wave-sea interface. This coupling is facilitated through the Earth System Modeling Framework (ESMF). The ESMF version of COAMPS is being transitioned to operational production centers at the Naval Oceanographic Office and the Fleet Numerical Meteorology and Oceanography Center. Highlights from validation studies for the Florida Straits, Hurricane Ivan and the Adriatic Sea will be presented. COAMPS® is a registered trademark of the Naval Research Laboratory.

  8. Photochemical model for NH3 in an early Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Brown, L. L.; Kasting, J. F.

    1992-01-01

    A warm and wet climate scenario for early Mars has been explained by invoking a 5-bar CO2 atmosphere; however, Kasting has shown that CO2 will condense in the Martian atmosphere at these pressures. The formation of CO2 clouds will reduce the convection lapse rate and reduce the magnitude of the greenhouse effect. It is possible that additional greenhouse gases such as methane and ammonia were present in the early Mars atmosphere. We are using a one dimensional photochemical model to estimate the magnitude of the ammonia source required to maintain a given ammonia concentration in a dense CO2 atmosphere. Because CO2 is 2.5 times more efficient at Rayleigh scattering than Earth's N2 atmosphere, we anticipate increased scattering opacities and decreased photolytic destruction rates of ammonia on early Mars. The reduced gravity on Mars means that a 1 bar atmosphere will be approximately 3 times as thick as on Earth. It is possible that ammonia could have been shielded from photolysis by hydrocarbon aerosols which form as a product of methane photolysis.

  9. Developing a new Predictive Ocean Atmosphere Model for Australia (POAMA-3.0)

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaobing; Alves, Oscar; Okely, Patricia; Tseitkin, Faina; Marshall, Andrew; Luo, Jing-Jia; Hudson, Debra; Zhao, Maggie; Yin, Yonghong; Hendon, Harry

    2013-04-01

    The Predictive Ocean Atmosphere Model for Australia (POAMA) is a state-of-the-art intra-seasonal to seasonal forecast system based on a coupled climate model and ocean/atmosphere/land observations assimilation system. Several versions of the POAMA system have been developed over the past decade, including 1.0, 1.5, 2.0 and 2.4. The development of a new POAMA system, POAMA-3.0, is currently underway. The model components in POAMA-3.0 are totally different from its previous versions. The POAMA-3.0 model is based on ACCESS-1.3 coupled model (Australian Community Climate and Earth-System Simulator) developed at the Centre for Australian Weather and Climate Research (CAWCR). The ACCESS-1.3 model is comprised of the UK Met Office atmospheric model UM7.3, GFDL ocean model MOM4p1, Los Alamos sea ice model CICE4.1, the Australian land model CABLE1.8 and the CERFACS coupler OASIS3.25. The model configuration used for seasonal forecasting has some different configurations compared to the model used for the IPCC AR5 contributions in several aspects, such as an improved shortwave penetration scheme in the ocean model, enhanced entrainment and detrainment rates in deep convection, an improved cloud overlap scheme and better representation of the boundary layer in the atmospheric model. A 100-yr run is conducted and the model's biases and interannual variability are validated. At the current stage of POAMA-3.0 development, a simple data assimilation approach is applied to produce initial conditions for intra-seasonal/seasonal forecasts during the period of 1980-2010. The atmospheric model is nudged to ECMWF ERA-interim data and the ocean model is driven by the surface fluxes while the atmosphere is being nudged. Seasonal hindcasts are performed during the period 1982-2010 and each hindcast goes out to lead time of 5 months. The prediction skill for El Nino indices, Indian Ocean dipole, Madden-Julian Oscillation and Australian rainfall are evaluated. The retrospective results of

  10. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    SciTech Connect

    Sugiyama, Gayle; Nasstrom, John; Pobanz, Brenda; Foster, Kevin; Simpson, Matthew; Vogt, Phil; Aluzzi, Fernando; Homann, Steve

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  11. GRAM-86 - FOUR DIMENSIONAL GLOBAL REFERENCE ATMOSPHERE MODEL

    NASA Technical Reports Server (NTRS)

    Johnson, D.

    1994-01-01

    The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can be used to generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications would be global circulation and diffusion studies, and generating profiles for comparison with other atmospheric measurement techniques, such as satellite measured temperature profiles and infrasonic measurement of wind profiles. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The high atmospheric region above 115km is simulated entirely by the Jacchia (1970) model. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). Between 90km and 115km a smooth transition between the modified Groves values and the Jacchia values is accomplished by a fairing technique. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. Between 25km and 30km an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate

  12. A Vertical Grid Module for Baroclinic Models of the Atmosphere

    SciTech Connect

    Drake, John B

    2008-04-01

    The vertical grid of an atmospheric model assigns dynamic and thermo- dynamic variables to grid locations. The vertical coordinate is typically not height but one of a class of meteorological variables that vary with atmo- spheric conditions. The grid system is chosen to further numerical approx- imations of the boundary conditions so that the system is terrain following at the surface. Lagrangian vertical coordinates are useful in reducing the numerical errors from advection processes. That the choices will effect the numercial properties and accuracy is explored in this report. A MATLAB class for Lorentz vertical grids is described and applied to the vertical struc- ture equation and baroclinic atmospheric circulation. A generalized meteo- rolgoical coordinate system is developed which can support σ, isentropic θ vertical coordinate, or Lagrangian vertical coordinates. The vertical atmo- spheric column is a MATLAB class that includes the kinematic and ther- modynamic variables along with methods for computing geopoentials and terms relevant to a 3D baroclinc atmospheric model.

  13. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    SciTech Connect

    M. WILLIAMS

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  14. Atmospheric turbulence optical model (ATOM) based on fractal theory

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Scoggins, Jim; Carroll, Marvin P.

    1994-06-01

    An Atmospheric Turbulence Optical Model (ATOM) is presented that used cellular automata (CA) rules as the basis for modeling synthetic phase sheets. This method allows image fracture, scintillation and blur to be correctly models using the principle of convolution with a complex kernel derived from CA rules interaction. The model takes into account the changing distribution of turbules from micro-turbule domination at low altitudes to macro-domination at high altitudes. The wavelength of propagating images (such as a coherent laser beam) and the range are taken into account. The ATOM model is written in standard FORTRAN 77 and enables high-speed in-line calculation of atmospheric effects to be performed without resorting to computationally intensive solutions of Navier Stokes equations or Cn2 profiles.

  15. Simplified ultraviolet and visible wavelength atmospheric propagation model.

    PubMed

    Patterson, E M; Gillespie, J B

    1989-02-01

    We have developed a program to model atmospheric propagation and lidar return at visible and UV wavelengths. This model combines a transmission code suitable for use in the visible and UV regions with a backscatter code for Mie and fluorescence lidar return calculations and a sky background radiance code into a modular menu-driven user friendly FORTRAN program for an IBM PC or PC compatible system. This propagation model includes attenuation due to molecular scattering, molecular absorption, and particulate attenuation. The wavelength dependence of our aerosol attenuation is parametrized in terms of the visual range to provide an approximate match for UV and visible horizontal attenuation data. This aerosol model is compared with the AFGL standard aerosol models and experimental data on atmospheric attenuation as a function of the visual range. PMID:20548498

  16. Models of the Solar Atmospheric Response to Flare Heating

    NASA Technical Reports Server (NTRS)

    Allred, Joel

    2011-01-01

    I will present models of the solar atmospheric response to flare heating. The models solve the equations of non-LTE radiation hydrodynamics with an electron beam added as a flare energy source term. Radiative transfer is solved in detail for many important optically thick hydrogen and helium transitions and numerous optically thin EUV lines making the models ideally suited to study the emission that is produced during flares. I will pay special attention to understanding key EUV lines as well the mechanism for white light production. I will also present preliminary results of how the model solar atmosphere responds to Fletcher & Hudson type flare heating. I will compare this with the results from flare simulations using the standard thick target model.

  17. Evaluation of atmospheric density models and preliminary functional specifications for the Langley Atmospheric Information Retrieval System (LAIRS)

    NASA Technical Reports Server (NTRS)

    Lee, T.; Boland, D. F., Jr.

    1980-01-01

    This document presents the results of an extensive survey and comparative evaluation of current atmosphere and wind models for inclusion in the Langley Atmospheric Information Retrieval System (LAIRS). It includes recommended models for use in LAIRS, estimated accuracies for the recommended models, and functional specifications for the development of LAIRS.

  18. Model Atmospheres and Spectra of Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, M. S.; Guillot, T.; Saumon, D.; Freedman, R. S.

    1996-09-01

    Of the known extrasolar giant planets, five have estimated effective temperatures below ~ 800K. We report on the application of a radiative-convective equilibrium model, originally developed to study the atmospheres of the solar jovian planets, to these objects (70 Vir b, 47 UMa b, Gl 411 b, 55 Cnc c, and HD 114762 b). The deposition of incident radiation from the various primaries and the estimated internal heat fluxes are included in the models. Condensible species are removed and clouds inserted where appropriate. To span the likely range of planet masses, a variety of surface gravities are considered for each object. Preliminary results suggest that water clouds are present in all these atmospheres except for 70 Vir b and HD 114762 b. Water marginally condenses in the atmosphere of the former while that of the latter should be essentially cloud free. Condensation of trace species (e.g. NH_4Cl and NH_4H_2PO_4) may produce thin hazes in these two cases. Thermochemical equilibrium favors NH_3 and CH_4 in all these atmospheres while N_2 and CO are favored in the atmospheres of the close-orbit, hot companions like 51 Peg b and upsilon And b. The reflected visible and thermal infrared spectra of these objects are dominated by water, methane, and ammonia absorption. We find that the 4 to 5 microns window in CH_4 and H_2O opacity is open for all of these objects. Consequently, as in the case of Jupiter and the brown dwarf Gliese 229 B, the emitted flux in this region is significantly greater than the blackbody flux for the planetary effective temperature. Thus this spectral region is favorable for the detection of extrasolar giant planets and brown dwarfs. Comparison of model spectra with observations would constrain the vertical temperature and cloud structure of these new atmospheres. Burrows et al. (this meeting) use these and other models to examine the evolution of extrasolar giant planets.

  19. Atmospheric Longwave Irradiance Uncertainty: Pyrgeometers Compared to an Absolute Sky-Scanning Radiometer, Atmospheric Emitted Radiance Interferometer, and Radiative Transfer Model Calculations

    SciTech Connect

    Philipona, J. R.; Dutton, Ellsworth G.; Stoffel, T.; Michalsky, Joseph J.; Reda, I.; Stifter, Armin; Wendling, Peter; Wood, Norm; Clough, Shepard A.; Mlawer, Eli J.; Anderson, Gail; Revercomb, Henry E.; Shippert, Timothy R.

    2001-06-04

    Because atmospheric longwave radiation is one of the most fundamental elements of an expected climate change, there has been a strong interest in improving measurements and model calculations in recent years. Important questions are how reliable and consistent are atmospheric longwave radiation measurements and calculations and what are the uncertainties? The First International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison, which was held at the Atmospheric Radiation Measurement program's Souther Great Plains site in Oklahoma, answers these questions at least for midlatitude summer conditions and reflects the state of the art for atmospheric longwave radiation measurements and calculations. The 15 participating pyrgeometers were all calibration-traced standard instruments chosen from a broad international community. Two new chopped pyrgeometers also took part in the comparison. And absolute sky-scanning radiometer (ASR), which includes a pyroelectric detector and a reference blackbody source, was used for the first time as a reference standard instrument to field calibrate pyrgeometers during clear-sky nighttime measurements. Owner-provided and uniformly determined blackbody calibration factors were compared. Remarkable improvements and higher pyrgeometer precision were achieved with field calibration factors. Results of nighttime and daytime pyrgeometer precision and absolute uncertainty are presented for eight consecutive days of measurements, during which period downward longwave irradiance varied between 260 and 420 W m-2. Comparisons between pyrgeometers and the absolute ASR, the atmospheric emitted radiance interferometer, and radiative transfer models LBLRTM and MODTRAN show a surprisingly good agreement of <2 W m-2 for nighttime atmospheric longwave irradiance measurements and calculations.

  20. Atmospheric Tides Simulated by WACCM-1 and CMIP3 / IPCC Climate Models

    NASA Astrophysics Data System (ADS)

    Covey, C. C.; Dai, A.; Lindzen, R. S.

    2008-12-01

    Atmospheric tides driven by solar heating are readily detectable at Earth's surface as variations in air pressure. Above the lower stratosphere the tides attain large amplitudes and can be a significant part of atmospheric motion. Output from the general circulation model WACCM, the Whole-Atmosphere Community Climate Model, contains tidal oscillations in its middle and upper atmosphere, but it has not previously been examined for the surface signature of the tides. We have done so both for WACCM Version 1 and for the climate models contributing to the latest assessment report of the Intergovernmental Panel on Climate Change (taken from the Coupled Model Intercomparison Project phase 3 [CMIP3] archive; see URL below). Surface pressure tides in WACCM-1's output occur mainly in the tropics and are dominated by the semidiurnal component, as observed. Quantitatively, however, WACCM-1 overestimates the diurnal tide amplitude by up to a factor of two over tropical land while underestimating it by about one-third globally. Similar though less egregious errors occur in WACCM-1's semidiurnal tide. Although the observed pressure field is contaminated by sampling errors, it is clear that WACCM-1 misses robust real-world features such as the large diurnal tides over mid-latitude high terrain and the non-migrating component of both diurnal and semidiurnal tides. We have not yet examined output from the most recent version of the model (WACCM-3), however. Climate modelers generally do not have atmospheric tides or the middle atmosphere in mind during the model development process, and conventional wisdom holds that the dominant semidiurnal surface-pressure tide is mainly forced by ozone heating in the middle atmosphere. One might therefore expect that climate models with tops below the ozone heating peak (at roughly 50 km altitude) or with poor resolution in the middle atmosphere would produce surface pressure tides that are weaker than observed and perhaps dominated by the

  1. Aeolian dunes as ground truth for atmospheric modeling on Mars

    USGS Publications Warehouse

    Hayward, R.K.; Titus, T.N.; Michaels, T.I.; Fenton, L.K.; Colaprete, A.; Christensen, P.R.

    2009-01-01

    Martian aeolian dunes preserve a record of atmosphere/surface interaction on a variety of scales, serving as ground truth for both Global Climate Models (GCMs) and mesoscale climate models, such as the Mars Regional Atmospheric Modeling System (MRAMS). We hypothesize that the location of dune fields, expressed globally by geographic distribution and locally by dune centroid azimuth (DCA), may record the long-term integration of atmospheric activity across a broad area, preserving GCM-scale atmospheric trends. In contrast, individual dune morphology, as expressed in slipface orientation (SF), may be more sensitive to localized variations in circulation, preserving topographically controlled mesoscale trends. We test this hypothesis by comparing the geographic distribution, DCA, and SF of dunes with output from the Ames Mars GCM and, at a local study site, with output from MRAMS. When compared to the GCM: 1) dunes generally lie adjacent to areas with strongest winds, 2) DCA agrees fairly well with GCM modeled wind directions in smooth-floored craters, and 3) SF does not agree well with GCM modeled wind directions. When compared to MRAMS modeled winds at our study site: 1) DCA generally coincides with the part of the crater where modeled mean winds are weak, and 2) SFs are consistent with some weak, topographically influenced modeled winds. We conclude that: 1) geographic distribution may be valuable as ground truth for GCMs, 2) DCA may be useful as ground truth for both GCM and mesoscale models, and 3) SF may be useful as ground truth for mesoscale models. Copyright 2009 by the American Geophysical Union.

  2. Equilibrium Chemistry Calculations for Model Hot-Jupiter Atmospheres

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, Joseph; Bowman, M. Oliver; Blecic, Jasmina

    2014-11-01

    Every planet in our solar system has different elemental abundances from our sun's. It is thus necessary to explore a variety of elemental abundances when investigating exoplanet atmospheres. Composition is key to unraveling a planet's formation history and determines the radiative behavior of an atmosphere, including its spectrum (Moses et al. 2013). We consider here two commonly discussed situations: [C]/[O] > 1 and 10x and 100x heavy-element enrichment. For planets above 1200 K, equilibrium chemistry is a valid starting point in atmospheric analysis. For HD 209458b, this assumption was verified by comparing the results of a robust kinetics code (non-ideal behavior) to the results of an equilibrium chemistry code (ideal behavior). Both codes output similar results for the dayside of the planet (Agundez et al. 2012). Using NASA's open-source Chemical Equilibrium Abundances code (McBride and Gordon 1996), we calculate the molecular abundances of species of interest across the dayside of model planets with a range of: elemental abundance profiles, degree of redistribution, relevant substellar temperatures, and pressures. We then explore the compositional gradient of each model planet atmosphere layer using synthetic abundance images of target spectroscopic species (water, methane, carbon monoxide). This work was supported by the NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program NNX13AF38G.

  3. Bridging the Gap Between the iLEAPS and GEWEX Land-Surface Modeling Communities

    NASA Technical Reports Server (NTRS)

    Bonan, Gordon; Santanello, Joseph A., Jr.

    2013-01-01

    Models of Earth's weather and climate require fluxes of momentum, energy, and moisture across the land-atmosphere interface to solve the equations of atmospheric physics and dynamics. Just as atmospheric models can, and do, differ between weather and climate applications, mostly related to issues of scale, resolved or parameterised physics,and computational requirements, so too can the land models that provide the required surface fluxes differ between weather and climate models. Here, however, the issue is less one of scale-dependent parameterisations.Computational demands can influence other minor land model differences, especially with respect to initialisation, data assimilation, and forecast skill. However, the distinction among land models (and their development and application) is largely driven by the different science and research needs of the weather and climate communities.

  4. Empirical corrections for atmospheric neutral density derived from thermospheric models

    NASA Astrophysics Data System (ADS)

    Forootan, Ehsan; Kusche, Jürgen; Börger, Klaus; Henze, Christina; Löcher, Anno; Eickmans, Marius; Agena, Jens

    2016-04-01

    Accurately predicting satellite positions is a prerequisite for various applications from space situational awareness to precise orbit determination (POD). Given the fact that atmospheric drag represents a dominant influence on the position of low-Earth orbit objects, an accurate evaluation of thermospheric mass density is of great importance to low Earth orbital prediction. Over decades, various empirical atmospheric models have been developed to support computation of density changes within the atmosphere. The quality of these models is, however, restricted mainly due to the complexity of atmospheric density changes and the limited resolution of indices used to account for atmospheric temperature and neutral density changes caused by solar and geomagnetic activity. Satellite missions, such as Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE), provide a direct measurement of non-conservative accelerations, acting on the surface of satellites. These measurements provide valuable data for improving our knowledge of thermosphere density and winds. In this paper we present two empirical frameworks to correct model-derived neutral density simulations by the along-track thermospheric density measurements of CHAMP and GRACE. First, empirical scale factors are estimated by analyzing daily CHAMP and GRACE acceleration measurements and are used to correct the density simulation of Jacchia and MSIS (Mass-Spectrometer-Incoherent-Scatter) thermospheric models. The evolution of daily scale factors is then related to solar and magnetic activity enabling their prediction in time. In the second approach, principal component analysis (PCA) is applied to extract the dominant modes of differences between CHAMP/GRACE observations and thermospheric model simulations. Afterwards an adaptive correction procedure is used to account for long-term and high-frequency differences. We conclude the study by providing recommendations on possible

  5. The NASA MSFC Earth Global Reference Atmospheric Model-2007 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F.W.; Justus, C.G.

    2008-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA/Marshall Space Flight Center (MSFC) Global Reference Atmospheric Model (GRAM) was developed in response to the need for a design reference atmosphere that provides complete global geographical variability, and complete altitude coverage (surface to orbital altitudes) as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. A unique feature of GRAM is that, addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in these atmospheric parameters (e.g. fluctuations due to turbulence and other atmospheric perturbation phenomena). A summary comparing GRAM features to characteristics and features of other reference or standard atmospheric models, can be found Guide to Reference and Standard Atmosphere Models. The original GRAM has undergone a series of improvements over the years with recent additions and changes. The software program is called Earth-GRAM2007 to distinguish it from similar programs for other bodies (e.g. Mars, Venus, Neptune, and Titan). However, in order to make this Technical Memorandum (TM) more readable, the software will be referred to simply as GRAM07 or GRAM unless additional clarity is needed. Section 1 provides an overview of the basic features of GRAM07 including the newly added features. Section 2 provides a more detailed description of GRAM07 and how the model output generated. Section 3 presents sample results. Appendices A and B describe the Global Upper Air Climatic Atlas (GUACA) data and the Global Gridded Air Statistics (GGUAS) database. Appendix C provides instructions for compiling and running GRAM07. Appendix D gives a description of the required NAMELIST format input. Appendix E gives sample output. Appendix F provides a list of available

  6. An Exercise in Modelling Using the US Standard Atmosphere

    ERIC Educational Resources Information Center

    LoPresto, Michael C.; Jacobs, Diane A.

    2007-01-01

    In this exercise the US Standard Atmosphere is used as "data" that a student is asked to model by deriving equations to reproduce it with the help of spreadsheet and graphing software. The exercise can be used as a laboratory or an independent study for a student of introductory physics to provide an introduction to scientific research methods…

  7. Consistency problem with tracer advection in the Atmospheric Model GAMIL

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Wan, Hui; Wang, Bin; Zhang, Meigen

    2008-03-01

    The radon transport test, which is a widely used test case for atmospheric transport models, is carried out to evaluate the tracer advection schemes in the Grid-Point Atmospheric Model of IAP-LASG (GAMIL). Two of the three available schemes in the model are found to be associated with significant biases in the polar regions and in the upper part of the atmosphere, which implies potentially large errors in the simulation of ozone-like tracers. Theoretical analyses show that inconsistency exists between the advection schemes and the discrete continuity equation in the dynamical core of GAMIL and consequently leads to spurious sources and sinks in the tracer transport equation. The impact of this type of inconsistency is demonstrated by idealized tests and identified as the cause of the aforementioned biases. Other potential effects of this inconsistency are also discussed. Results of this study provide some hints for choosing suitable advection schemes in the GAMIL model. At least for the polar-region-concentrated atmospheric components and the closely correlated chemical species, the Flux-Form Semi-Lagrangian advection scheme produces more reasonable simulations of the large-scale transport processes without significantly increasing the computational expense.

  8. THREE-DIMENSIONAL MODELING OF HOT JUPITER ATMOSPHERIC FLOWS

    SciTech Connect

    Rauscher, Emily; Menou, Kristen

    2010-05-10

    We present a three-dimensional hot Jupiter model, extending from 200 bar to 1 mbar, using the Intermediate General Circulation Model from the University of Reading. Our horizontal spectral resolution is T31 (equivalent to a grid of 48 x 96), with 33 logarithmically spaced vertical levels. A simplified (Newtonian) scheme is employed for the radiative forcing. We adopt a physical setup nearly identical to the model of HD 209458b by Cooper and Showman to facilitate a direct model inter-comparison. Our results are broadly consistent with theirs but significant differences also emerge. The atmospheric flow is characterized by a super-rotating equatorial jet, transonic wind speeds, and eastward advection of heat away from the dayside. We identify a dynamically induced temperature inversion ('stratosphere') on the planetary dayside and find that temperatures at the planetary limb differ systematically from local radiative equilibrium values, a potential source of bias for transit spectroscopic interpretations. While our model atmosphere is quasi-identical to that of Cooper and Showman and we solve the same meteorological equations, we use different algorithmic methods, spectral-implicit versus grid-explicit, which are known to yield fully consistent results in the Earth modeling context. The model discrepancies identified here indicate that one or both numerical methods do not faithfully capture all of the atmospheric dynamics at work in the hot Jupiter context. We highlight the emergence of a shock-like feature in our model, much like that reported recently by Showman et al., and suggest that improved representations of energy conservation may be needed in hot Jupiter atmospheric models, as emphasized by Goodman.

  9. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  10. Global Deep Convection Models of Saturn's Atmospheric Features

    NASA Astrophysics Data System (ADS)

    Heimpel, Moritz; Cuff, Keith; Gastine, Thomas; Wicht, Johannes

    2016-04-01

    The Cassini mission, along with previous missions and ground-based observations, has revealed a rich variety of atmospheric phenomena and time variability on Saturn. Some examples of dynamical features are: zonal flows with multiple jet streams, turbulent tilted shear flows that seem to power the jets, the north polar hexagon, the south polar cyclone, large anticyclones in "storm alley", numerous convective storms (white spots) of various sizes, and the 2010/2011 great storm, which destroyed an array of vortices dubbed the "string of pearls". Here we use the anelastic dynamo code MagIC, in non-magnetic mode, to study rotating convection in a spherical shell. The thickness of the shell is set to approximate the depth of the low electrical conductivity deep atmosphere of Saturn, and the convective forcing is set to yield zonal flows of similar velocity (Rossby number) to those of Saturn. Internal heating and the outer entropy boundary conditions allow simple modelling of atmospheric layers with neutral stability or stable stratification. In these simulations we can identify several saturnian and jovian atmospheric features, with some variations. We find that large anticyclonic vortices tend to form in the first anticyclonic shear zones away from the equatorial jet. Cyclones form at the poles, and polar polygonal jet streams, comparable to Saturn's hexagon, may or may not form, depending on the model conditions. Strings of small scale vortical structures arise as convective plumes near boundaries of shear zones. They typically precede larger scale convective storms that spawn propagating shear flow disturbances and anticyclonic vortices, which tend to drift across anticyclonic shear zones, toward the equator (opposite the drift direction of Saturn's 2010/2011 storm). Our model results indicate that many identifiable dynamical atmospheric features seen on Jupiter and Saturn arise from deep convection, shaped by planetary rotation, underlying and interacting with stably

  11. Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles

    NASA Astrophysics Data System (ADS)

    Fassò, A.; Ignaccolo, R.; Madonna, F.; Demoz, B. B.

    2013-08-01

    The uncertainty of important atmospheric parameters is a key factor for assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical points of the uncertainty budget is related to the collocation mismatch in space and time among different observations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or LIDAR. In this paper we consider a statistical modelling approach to understand at which extent collocation uncertainty is related to environmental factors, height and distance between the trajectories. To do this we introduce a new statistical approach, based on the heteroskedastic functional regression (HFR) model which extends the standard functional regression approach and allows us a natural definition of uncertainty profiles. Moreover, using this modelling approach, a five-folded uncertainty decomposition is proposed. Eventually, the HFR approach is illustrated by the collocation uncertainty analysis of relative humidity from two stations involved in GCOS reference upper-air network (GRUAN).

  12. A review of toxicity models for realistic atmospheric applications

    NASA Astrophysics Data System (ADS)

    Gunatilaka, Ajith; Skvortsov, Alex; Gailis, Ralph

    2014-02-01

    There are many applications that need to study human health effects caused by exposure to toxic chemicals. Risk analysis for industrial sites, study of population health impacts of atmospheric pollutants, and operations research for assessing the potential impacts of chemical releases in military contexts are some examples. Because of safety risks and the high cost of field trials involving hazardous chemical releases, computer simulations are widely used for such studies. Modelling of atmospheric transport and dispersion of chemicals released into the atmosphere to determine the toxic chemical concentrations to which individuals will be exposed is one main component of these simulations, and there are well established atmospheric dispersion models for this purpose. Estimating the human health effects caused by the exposure to these predicted toxic chemical concentrations is the other main component. A number of different toxicity models for assessing the health effects of toxic chemical exposure are found in the literature. Because these different models have been developed based on different assumptions about the plume characteristics, chemical properties, and physiological response, there is a need to review and compare these models to understand their applicability. This paper reviews several toxicity models described in the literature. The paper also presents results of applying different toxicity models to simulated concentration time series data. These results show that the use of ensemble mean concentrations, which are what atmospheric dispersion models typically provide, to estimate human health effects of exposure to hazardous chemical releases may underestimate their impact when toxic exponent, n, of the chemical is greater than one; the opposite phenomenon appears to hold when n < 1. The results also show that some toxicity models that disregard biological recovery processes may predict greater toxicity than the explicitly parameterised models. Despite

  13. Model of Atmospheric Links on Optical Communications from High Altitude

    NASA Technical Reports Server (NTRS)

    Subich, Christopher

    2004-01-01

    Optical communication links have the potential to solve many of the problems of current radio and microwave links to satellites and high-altitude aircraft. The higher frequency involved in optical systems allows for significantly greater signal bandwidth, and thus information transfer rate, in excess of 10 Gbps, and the highly directional nature of laser-based signals eliminates the need for frequency-division multiplexing seen in radio and microwave links today. The atmosphere, however, distorts an optical signal differently than a microwave signal. While the ionosphere is one of the most significant sources of noise and distortion in a microwave or radio signal, the lower atmosphere affects an optical signal more significantly. Refractive index fluctuations, primarily caused by changes in atmospheric temperature and density, distort the incoming signal in both deterministic and nondeterministic ways. Additionally, suspended particles, such as those in haze or rain, further corrupt the transmitted signal. To model many of the atmospheric effects on the propagating beam, we use simulations based on the beam-propagation method. This method, developed both for simulation of signals in waveguides and propagation in atmospheric turbulence, separates the propagation into a diffraction and refraction problem. The diffraction step is an exact solution, within the limits of numerical precision, to the problem of propagation in free space, and the refraction step models the refractive index variances over a segment of the propagation path. By applying refraction for a segment of the propagation path, then diffracting over that same segment, this method forms a good approximation to true propagation through the atmospheric medium. Iterating over small segments of the total propagation path gives a good approximation to the problem of propagation over the entire path. Parameters in this model, such as initial beam profile and atmospheric constants, are easily modified in a

  14. Coupled atmosphere-ocean models of Titan's past

    NASA Astrophysics Data System (ADS)

    McKay, C. P.; Pollack, J. B.; Lunine, J. I.; Courtin, R.

    1993-03-01

    The behavior and possible past evolution of fully coupled atmosphere and ocean model of Titan are investigated. It is found that Titan's surface temperature was about 20 K cooler at 4 Gyr ago and will be about 5 K warmer 0.5 Gyr in the future. The change in solar luminosity and the conversion of oceanic CH4 to C2H6 drive the evolution of the ocean and atmosphere over time. Titan appears to have experienced a frozen epoch about 3 Gyr ago independent of whether an ocean is present or not. This finding may have important implications for understanding the inventory of Titan's volatile compounds.

  15. A radar sea clutter model for atmospheric ducting conditions

    NASA Astrophysics Data System (ADS)

    Snyder, F. P.

    1984-07-01

    The Integrated Refractive Effects Prediction System (IREPS) should consider sea clutter effects under atmospheric ducting conditions. The IREPS, undergoing research and development at Naval Ocean Systems Center (NOSC), is intended to provide a shipboard environmental data processing and display capability to assess refractive effects of the lower atmosphere for naval EM systems. Although intended to be incorporated eventually as a part of the Tactical Environment Support System (TESS), the IREPS is currently configured as an interim version based on a Hewlett-Packard 9845 desktop calculator. A comprehensive discussion of the IREPS capabilities is presented by Hitney et al. (1981), while a discussion of the IREPS propagation models is presented by Hattan (1982).

  16. Sensitivity of atmospheric flow regimes to anthropogenic forcing: Insights from an intermediate atmospheric model

    NASA Astrophysics Data System (ADS)

    Khatiwala, S.

    2003-04-01

    perturbations in external parameters or forcing. Here, we apply an intermediate model of the atmosphere to show that the exponential life span of weather regimes may indeed be sensitive to the strength of the external forcing. In particular, small change in the forcing strength (as characterized by the equator--pole temperature difference) lead to order-of-magnitude changes in the probability of occurrence of extremely persistent events. Given the potentially enormous social and environmental impact of extreme events such as persistent drought or storminess, our results are clearly relevant to the current debate on anthropogenic climate change.

  17. A Comprehensive Planning Model for the Community Based College.

    ERIC Educational Resources Information Center

    Vernon, Christie D.

    A model for developing long-range master educational plans in community-based colleges is presented. The model depends on a reciprocal college-community relationship and details various methodologies for gathering data about both entities. Information to be considered in determining community college educational objectives and needs include…

  18. Response of Archaeal Communities in the Rhizosphere of Maize and Soybean to Elevated Atmospheric CO2 Concentrations

    PubMed Central

    Nelson, David M.; Cann, Isaac K. O.; Mackie, Roderick I.

    2010-01-01

    Background Archaea are important to the carbon and nitrogen cycles, but it remains uncertain how rising atmospheric carbon dioxide concentrations ([CO2]) will influence the structure and function of soil archaeal communities. Methodology/Principal Findings We measured abundances of archaeal and bacterial 16S rRNA and amoA genes, phylogenies of archaeal 16S rRNA and amoA genes, concentrations of KCl-extractable soil ammonium and nitrite, and potential ammonia oxidation rates in rhizosphere soil samples from maize and soybean exposed to ambient (∼385 ppm) and elevated (550 ppm) [CO2] in a replicated and field-based study. There was no influence of elevated [CO2] on copy numbers of archaeal or bacterial 16S rRNA or amoA genes, archaeal community composition, KCl-extractable soil ammonium or nitrite, or potential ammonia oxidation rates for samples from maize, a model C4 plant. Phylogenetic evidence indicated decreased relative abundance of crenarchaeal sequences in the rhizosphere of soybean, a model leguminous-C3 plant, at elevated [CO2], whereas quantitative PCR data indicated no changes in the absolute abundance of archaea. There were no changes in potential ammonia oxidation rates at elevated [CO2] for soybean. Ammonia oxidation rates were lower in the rhizosphere of maize than soybean, likely because of lower soil pH and/or abundance of archaea. KCl-extractable ammonium and nitrite concentrations were lower at elevated than ambient [CO2] for soybean. Conclusion Plant-driven shifts in soil biogeochemical processes in response to elevated [CO2] affected archaeal community composition, but not copy numbers of archaeal genes, in the rhizosphere of soybean. The lack of a treatment effect for maize is consistent with the fact that the photosynthesis and productivity of maize are not stimulated by elevated [CO2] in the absence of drought. PMID:21209969

  19. Model of a stationary microwave argon discharge at atmospheric pressure

    SciTech Connect

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-19

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power {theta} necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer v{sub en}, and gas temperature T{sub g}. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency {omega}/2{pi} = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature T{sub g} are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L {approx_equal} 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  20. Model of a stationary microwave argon discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-01

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron—ion pair, electron—neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≈ 14 cm, sustained by wave power of 110 W—the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  1. Description of the Russian Upper Atmosphere Density Model GOST-2004

    NASA Astrophysics Data System (ADS)

    Cefola, Paul; Volkov, I. I.; Suevalov, V. V.

    Not long afterward, this model of the upper atmosphere became an integral part of the motion model for ballistic support of the international Apollo-Soyuz experiment. In 1977, the government standard USSR GOST 22721-77 "Upper Atmosphere Model for Ballistic Calculations" was drafted and approved. The standard established a method of calculating atmospheric density for altitudes ranging from 120 to 600 km and for varying levels of solar activity. The standard also included a subroutine for calculating the density and temperature of Earth's atmosphere in the FORTRAN language. By 1984, through the growing volume of data on drag of AES of the Kosmos family the structure and parameters of the 1977 model were refined, and on the basis of this a new standard was established: GOST 25645.115-84, "Upper Earth Atmosphere Density Model for Ballistic Support of AES Flight." The new standard encompassed an additional range of altitudes (600- 1500 km); variations correlated to the flow of solar radiation divided into two components: variations due to the disc component of the flow and those due to the active regions component; for a number of variations, approximating dependencies were refined and minimum nighttime atmospheric density was normalized to an index of Ap=12, which is close to its yearly average. The accuracy of GOST 25645.115-84 atmospheric density model and its variations in space-time was evaluated and compared against the accuracies of the MET and NRLMSIS-00 models. By 2004, through the growing volume of data on drag of Kosmos-family AES, the structure and parameters of the GOST 25645.115-84 model were refined, and on the basis of this a new standard was developed: GOST R 25645.166-2004 (GOST-2004) "Upper Earth Atmosphere Density Model for Ballistic Support of AES Flight." The standard defines the upper atmosphere density model, describing an altitude density profile and its variations in space-time as dependent upon the conditions of an AES in near-earth space

  2. Chemical models of the deep atmospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.; Lodders, Katharina

    1994-01-01

    New and updated chemical kinetic data, elemental abundances, and thermodynamic data are used for thermochemical equilibrium and, where relevant, thermochemical kinetic calculations of gas abundances and condensate stability in the hot, deep atmospheres of Jupiter and Saturn. Over 2000 compounds of all naturally occurring elements in the periodic table are considered. The calculations range from 298 to 2000 K and are done for adiabatic models of the two planetary atmospheres. The results predict the abundances of many gases which are potentially observable by the Galileo probe to Jupiter, by the Cassini mission to Saturn, and by Earth-based and Earth-orbital telescopes. In addition, the results also predict many new species which are potentially observable by a new generation of entry probes capable of penetrating deeper into the atmospheres of Jupiter and Saturn.

  3. Internal versus SST-forced atmospheric variability as simulated by an atmospheric general circulation model

    SciTech Connect

    Harzallah, A.; Sadourny, R.

    1995-03-01

    The variability of atmospheric flow is analyzed by separating it into an internal part due to atmospheric dynamics only and an external (or forced) part due to the variability of sea surface temperature forcing. The two modes of variability are identified by performing an ensemble of seven independent long-term simulations of the atmospheric response to observed SST (1970-1988) with the LMD atmospheric general circulation model. The forced variability is defined from the analysis of the ensemble mean and the internal variability from the analysis of deviations from the ensemble mean. Emphasis is put on interannual variability of sea level pressure and 500-hPa geopotential height for the Northern Hemisphere winter. In view of the large systematic errors related to the relatively small number of realizations, unbiased variance estimators have been developed. Although statistical significance is not reached in some extratropical regions, large significant extratropical responses are found at the North Pacific-Alaska sector for SLP and over western Canada and the Aleutians for 500-hPa geopotential height. The influence of SST variations on internal variability is also examined by using a 7-year simulation using the climatological SST seasonal cycle. It is found that interannual SST changes strongly influence the geographical distribution of internal variability; in particular, it tends to increase it over oceans. EOF decompositions, showing that the model realistically simulates the leading observed variability modes. The geographical structure of internal variability patterns is found to be similar to that of total variability, although similar modes tend to evolve rather differently in time. The zonally symmetric seesaw dominates the internal variability for both observed and climatologically prescribed SST. 46 refs., 15 figs., 3 tabs.

  4. A GRID OF THREE-DIMENSIONAL STELLAR ATMOSPHERE MODELS OF SOLAR METALLICITY. I. GENERAL PROPERTIES, GRANULATION, AND ATMOSPHERIC EXPANSION

    SciTech Connect

    Trampedach, Regner; Asplund, Martin; Collet, Remo; Nordlund, Ake

    2013-05-20

    Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late-type stars. We present a grid of improved and more reliable stellar atmosphere models of late-type stars, based on deep, three-dimensional (3D), convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations and improving stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters, covering most of stellar evolution with convection at the surface. We emphasize the use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, and asymptotic adiabat as functions of atmospheric parameters.

  5. Viscosity and thermal conductivity of model Jupiter atmospheres

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.

    1979-01-01

    The viscosity and thermal conductivity coefficient are estimated for three models of the atmosphere of Jupiter: a heavy model consisting of 22% helium and 78% hydrogen, a nominal model consisting of 11% helium and 89% hydrogen, and a light model consisting of pure hydrogen. The effect of trace elements is neglected. Linearized approximations are used for the transport coefficients of the mixtures; these are found to be in almost constant ratio to the values for pure hydrogen, independent of temperature. Short Basic language programs for computing the coefficients are listed.

  6. Modelling the atmosphere of a template "hot Jupiter" exoplanet

    NASA Astrophysics Data System (ADS)

    Bending, V. L.; Lewis, S. R.; Kolb, U.

    2012-09-01

    Many models are used to study the possible atmospheric conditions of extrasolar gas giants, in particular "hot Jupiters" (e.g. [1]), gas giant planets closer than 0.1 AU to their parent stars, with orbital periods of the order of a few Earth days. It is important that the respective responses of these models to this relatively new regime be known, allowing the effects of using different models to be understood. Here, the use of an adapted form of the PUMA model is explored by carrying out an intercomparison test.

  7. Mars Entry Atmospheric Data System Modelling and Algorithm Development

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Beck, Roger E.; OKeefe, Stephen A.; Siemers, Paul; White, Brady; Engelund, Walter C.; Munk, Michelle M.

    2009-01-01

    The Mars Entry Atmospheric Data System (MEADS) is being developed as part of the Mars Science Laboratory (MSL), Entry, Descent, and Landing Instrumentation (MEDLI) project. The MEADS project involves installing an array of seven pressure transducers linked to ports on the MSL forebody to record the surface pressure distribution during atmospheric entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the total pressure, dynamic pressure, Mach number, angle of attack, and angle of sideslip. Secondary objectives are to estimate atmospheric winds by coupling the pressure measurements with the on-board Inertial Measurement Unit (IMU) data. This paper provides details of the algorithm development, MEADS system performance based on calibration, and uncertainty analysis for the aerodynamic and atmospheric quantities of interest. The work presented here is part of the MEDLI performance pre-flight validation and will culminate with processing flight data after Mars entry in 2012.

  8. A stochastic atmospheric model for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Turner, R. E.

    1983-01-01

    There are many factors which reduce the accuracy of classification of objects in the satellite remote sensing of Earth's surface. One important factor is the variability in the scattering and absorptive properties of the atmospheric components such as particulates and the variable gases. For multispectral remote sensing of the Earth's surface in the visible and infrared parts of the spectrum the atmospheric particulates are a major source of variability in the received signal. It is difficult to design a sensor which will determine the unknown atmospheric components by remote sensing methods, at least to the accuracy needed for multispectral classification. The problem of spatial and temporal variations in the atmospheric quantities which can affect the measured radiances are examined. A method based upon the stochastic nature of the atmospheric components was developed, and, using actual data the statistical parameters needed for inclusion into a radiometric model was generated. Methods are then described for an improved correction of radiances. These algorithms will then result in a more accurate and consistent classification procedure.

  9. A Community Mentoring Model for STEM Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Kobulnicky, Henry A.; Dale, Daniel A.

    2016-01-01

    This article describes a community mentoring model for UREs that avoids some of the common pitfalls of the traditional paradigm while harnessing the power of learning communities to provide young scholars a stimulating collaborative STEM research experience.

  10. Turkish community pharmacists’ self-report of their pharmacies’ physical atmosphere

    PubMed Central

    Cagirci, Simge; Yegenoglu, Selen; Uner, Mehmet Mithat

    2012-01-01

    Objective: There is a great recognition that store interiors and exteriors can be designed to create feelings in potential customers which can have an important reinforcing effect on purchase. In this study it is mainly aimed to explore the behaviors of the community pharmacists related to their store's physical environment. Also we aimed to determine whether any difference exist between behaviors of pharmacists serving in high and low socio-economic regions. Methods: A total of 200 pharmacists that work socio-economically different regions were randomly selected from 1424 pharmacists registered in Ankara Chamber of Pharmacists. A uniform questionnaire was applied to the pharmacists by using a face-to-face interview technique. Findings: There are differences in terms of behavior between the pharmacists serving in high and low socio-economic regions within the context of putting importance to their stores’ atmosphere. More pharmacists attach importance to the physical sight of their pharmacy serving in high socio-economic regions (90%) vs. pharmacists in low socio-economic regions (70%). Also pharmacists in high socio-economic regions indicated higher importance level of selection of the decoration equipments (84%) than pharmacists serving in high socio-economic regions (60%). Conclusion: Our study suggests that some pharmacists pay more attention to interior atmospheric elements and others do not. There is a difference in terms of attaching importance to some store atmospheric elements (i.e. physical site, decoration equipment, it's color, wall color, etc.) serving in high versus low socio-economic regions in this context. PMID:24991582

  11. The Rationale for Learning Communities and Learning Community Models.

    ERIC Educational Resources Information Center

    Hill, Patrick

    The learning community movement is a response to several widespread educational problems, including the mismatched expectations of career-oriented students and research- and discipline-oriented faculty; the inadequate amount of intellectual interaction between students and between faculty and students; the lack of coherence among most of the…

  12. Uncertainties in United States agricultural N2O emissions: comparing forward model simulations to atmospheric N2O data.

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.; Saikawa, E.; Dlugokencky, E. J.; Andrews, A. E.; Sweeney, C.

    2014-12-01

    Atmospheric N2O concentrations have increased from 275 ppb in the preindustrial to about 325 ppb in recent years, a ~20% increase with important implications for both anthropogenic greenhouse forcing and stratospheric ozone recovery. This increase has been driven largely by synthetic fertilizer production and other perturbations to the global nitrogen cycle associated with human agriculture. Several recent regional atmospheric inversion studies have quantified North American agricultural N2O emissions using top-down constraints based on atmospheric N2O data from the National Oceanic and Atmospheric Administration (NOAA) Global Greenhouse Gas Reference Network, including surface, aircraft and tall tower platforms. These studies have concluded that global N2O inventories such as EDGAR may be underestimating the true U.S. anthropogenic N2O source by a factor of 3 or more. However, simple back-of-the-envelope calculations show that emissions of this magnitude are difficult to reconcile with the basic constraints of the global N2O budget. Here, we explore some possible reasons why regional atmospheric inversions might overestimate the U.S. agricultural N2O source. First, the seasonality of N2O agricultural sources is not well known, but can have an important influence on inversion results, particularly when the inversions are based on data that are concentrated in the spring/summer growing season. Second, boundary conditions can strongly influence regional inversions but the boundary conditions used may not adequately account for remote influences on surface data such as the seasonal stratospheric influx of N2O-depleted air. We will present a set of forward model simulations, using the Community Land Model (CLM) and two atmospheric chemistry tracer transport models, MOZART and the Whole Atmosphere Community Climate Model (WACCM), that examine the influence of terrestrial emissions and atmospheric chemistry and dynamics on atmospheric variability in N2O at U.S. and

  13. Working model of the atmosphere and near planetary space of Jupiter

    NASA Technical Reports Server (NTRS)

    Moroz, V. I. (Editor)

    1978-01-01

    Basic physical characteristics of Jupiter, its gravitational field, atmosphere, electromagnetic radiation, magnetosphere, meteorite situation and satellites are presented in tables, graphs and figures. Means of observation of the atmosphere and three models of the atmosphere are presented and analyzed.

  14. Effects of Elevated Atmospheric CO2 on Rhizosphere Soil Microbial Communities in a Mojave Desert Ecosystem

    PubMed Central

    Nguyen, L.M.; Buttner, M.P.; Cruz, P.; Smith, S.D.; Robleto, E.A.

    2011-01-01

    The effects of elevated atmospheric carbon dioxide [CO2] on microbial communities in arid rhizosphere soils beneath Larrea tridentata were examined. Roots of Larrea were harvested from plots fumigated with elevated or ambient levels of [CO2] using Free-Air CO2 Enrichment (FACE) technology. Twelve bacterial and fungal rRNA gene libraries were constructed, sequenced and categorized into operational taxonomical units (OTUs). There was a significant decrease in OTUs within the Firmicutes (bacteria) in elevated [CO2], and increase in Basiomycota (fungi) in rhizosphere soils of plots exposed to ambient [CO2]. Phylogenetic analyses indicated that OTUs belonged to a wide range of bacterial and fungal taxa. To further study changes in bacterial communities, Quantitative Polymerase Chain Reaction (QPCR) was used to quantify populations of bacteria in rhizosphere soil. The concentration of total bacteria 16S rDNA was similar in conditions of enriched and ambient [CO2]. However, QPCR of Gram-positive microorganisms showed a 43% decrease in the population in elevated [CO2]. The decrease in representation of Gram positives and the similar values for total bacterial DNA suggest that the representation of other bacterial taxa was promoted by elevated [CO2]. These results indicate that elevated [CO2] changes structure and representation of microorganisms associated with roots of desert plants. PMID:21779135

  15. Effects of Elevated Atmospheric CO(2) on Rhizosphere Soil Microbial Communities in a Mojave Desert Ecosystem.

    PubMed

    Nguyen, L M; Buttner, M P; Cruz, P; Smith, S D; Robleto, E A

    2011-10-01

    The effects of elevated atmospheric carbon dioxide [CO(2)] on microbial communities in arid rhizosphere soils beneath Larrea tridentata were examined. Roots of Larrea were harvested from plots fumigated with elevated or ambient levels of [CO(2)] using Free-Air CO(2) Enrichment (FACE) technology. Twelve bacterial and fungal rRNA gene libraries were constructed, sequenced and categorized into operational taxonomical units (OTUs). There was a significant decrease in OTUs within the Firmicutes (bacteria) in elevated [CO(2)], and increase in Basiomycota (fungi) in rhizosphere soils of plots exposed to ambient [CO(2)]. Phylogenetic analyses indicated that OTUs belonged to a wide range of bacterial and fungal taxa. To further study changes in bacterial communities, Quantitative Polymerase Chain Reaction (QPCR) was used to quantify populations of bacteria in rhizosphere soil. The concentration of total bacteria 16S rDNA was similar in conditions of enriched and ambient [CO(2)]. However, QPCR of Gram-positive microorganisms showed a 43% decrease in the population in elevated [CO(2)]. The decrease in representation of Gram positives and the similar values for total bacterial DNA suggest that the representation of other bacterial taxa was promoted by elevated [CO(2)]. These results indicate that elevated [CO(2)] changes structure and representation of microorganisms associated with roots of desert plants. PMID:21779135

  16. Normal seasonal variations for atmospheric radon concentration: a sinusoidal model.

    PubMed

    Hayashi, Koseki; Yasuoka, Yumi; Nagahama, Hiroyuki; Muto, Jun; Ishikawa, Tetsuo; Omori, Yasutaka; Suzuki, Toshiyuki; Homma, Yoshimi; Mukai, Takahiro

    2015-01-01

    Anomalous radon readings in air have been reported before an earthquake activity. However, careful measurements of atmospheric radon concentrations during a normal period are required to identify anomalous variations in a precursor period. In this study, we obtained radon concentration data for 5 years (2003-2007) that can be considered a normal period and compared it with data from the precursory period of 2008 until March 2011, when the 2011 Tohoku-Oki Earthquake occurred. Then, we established a model for seasonal variation by fitting a sinusoidal model to the radon concentration data during the normal period, considering that the seasonal variation was affected by atmospheric turbulence. By determining the amplitude in the sinusoidal model, the normal variation of the radon concentration can be estimated. Thus, the results of this method can be applied to identify anomalous radon variations before an earthquake. PMID:25464051

  17. Elevated temperature alters carbon cycling in a model microbial community

    NASA Astrophysics Data System (ADS)

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other

  18. Alternations of Structure and Functional Activity of Below Ground Microbial Communities at Elevated Atmospheric Carbon Dioxide

    SciTech Connect

    He, Zhili; Xu, Meiying; Deng, Ye; Kang, Sanghoon; Wu, Liyou; Van Nostrand, Joy D.; Hobbie, Sarah E.; Reich, Peter B.; Zhou, Jizhong

    2010-05-17

    The global atmospheric concentration of CO2 has increased by more than 30percent since the industrial revolution. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been well studied, its influences on belowground microbial communities are poorly understood and controversial. In this study, we showed a significant change in the structure and functional potential of soil microbial communities at eCO2 in a grassland ecosystem, the BioCON (Biodiversity, CO2 and Nitrogen) experimental site (http://www.biocon.umn.edu/) using a comprehensive functional gene array, GeoChip 3.0, which contains about 28,0000 probes and covers approximately 57,000 gene variants from 292 functional gene families involved in carbon, nitrogen, phosphorus and sulfur cycles as well as other functional processes. GeoChip data indicated that the functional structure of microbial communities was markedly different between ambient CO2 (aCO2) and eCO2 by detrended correspondence analysis (DCA) of all 5001 detected functional gene probes although no significant differences were detected in the overall microbial diversity. A further analysis of 1503 detected functional genes involved in C, N, P, and S cycles showed that a considerable portion (39percent) of them were only detected under either aCO2 (14percent) or eCO2 (25percent), indicating that the functional characteristics of the microbial community were significantly altered by eCO2. Also, for those shared genes (61percent) detected, some significantly (p<0.05) changed their abundance at eCO2. Especially, genes involved in labile C degradation, such as amyA, egl, and ara for starch, cellulose, and hemicelluloses, respectively, C fixation (e.g., rbcL, pcc/acc), N fixation (nifH), and phosphorus utilization (ppx) were significantly increased under eCO2, while those involved in decomposing recalcitrant C, such as glx, lip, and mnp for lignin degradation remained unchanged. This study provides insights

  19. Using atmospheric observations to evaluate the spatiotemporal variability of CO2 fluxes simulated by terrestrial biospheric models

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Michalak, A. M.; Shiga, Y. P.; Yadav, V.

    2014-12-01

    Terrestrial biospheric models (TBMs) are used to extrapolate local observations and process-level understanding of land-atmosphere carbon exchange to larger regions, and serve as predictive tools for examining carbon-climate interactions. Understanding the performance of TBMs is thus crucial to the carbon cycle and climate science communities. In this study, we present and assess an approach to evaluating the spatiotemporal patterns, rather than aggregated magnitudes, of net ecosystem exchange (NEE) simulated by TBMs using atmospheric CO2 measurements. The approach is based on statistical model selection implemented within a high-resolution atmospheric inverse model. Using synthetic data experiments, we find that current atmospheric observations are sensitive to the underlying spatiotemporal flux variability at sub-biome scales for a large portion of North America, and that atmospheric observations can therefore be used to evaluate simulated spatiotemporal flux patterns as well as to differentiate between multiple competing TBMs. Experiments using real atmospheric observations and four prototypical TBMs further confirm the applicability of the method, and demonstrate that the performance of TBMs in simulating the spatiotemporal patterns of NEE varies substantially across seasons, with best performance during the growing season and more limited skill during transition seasons. This result is consistent with previous work showing that the ability of TBMs to model flux magnitudes is also seasonally-dependent. Overall, the proposed approach provides a new avenue for evaluating TBM performance based on sub-biome-scale flux patterns, presenting an opportunity for assessing and informing model development using atmospheric observations.

  20. Northern Hemisphere winter midlatitude atmospheric variability in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Di Biagio, Valeria; Calmanti, Sandro; Dell'Aquila, Alessandro; Ruti, Paolo M.

    2014-02-01

    The Northern Hemisphere midlatitude winter atmospheric variability simulated by Coupled Model Intercomparison Project phase 5 (CMIP5) models is analyzed at spatial and temporal scales corresponding to the growth of baroclinic eddies and planetary waves. We use a global scalar metric of the wave energy frequency-wave number spectrum to identify potential improvements of the CMIP5 ensemble compared to previous coordinated model simulations (CMIP3). We also evaluate whether CMIP5 models predict future shifts in the global baroclinic eddies and planetary-scale wave activities. With respect to CMIP3, no significant improvements are found, thereby suggesting that no significant breakthrough in the modeling of the climate system has been hit over the last few years. No significant changes are found in RCP4.5 scenarios for the selected metric of the baroclinic and planetary-scale atmospheric flows, thus indicating that localized changes with potential societal impact might not be related to changes in key fundamental properties of the atmospheric circulation.

  1. Potsdam Wolf-Rayet model atmosphere grids for WN stars

    NASA Astrophysics Data System (ADS)

    Todt, H.; Sander, A.; Hainich, R.; Hamann, W.-R.; Quade, M.; Shenar, T.

    2015-07-01

    We present new grids of Potsdam Wolf-Rayet (PoWR) model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN stars). The models have been calculated with the latest version of the PoWR stellar atmosphere code for spherical stellar winds. The WN model atmospheres include the non-LTE solutions of the statistical equations for complex model atoms, as well as the radiative transfer equation in the co-moving frame. Iron-line blanketing is treated with the help of the superlevel approach, while wind inhomogeneities are taken into account via optically thin clumps. Three of our model grids are appropriate for Galactic metallicity. The hydrogen mass fraction of these grids is 50%, 20%, and 0%, thus also covering the hydrogen-rich late-type WR stars that have been discovered in recent years. Three grids are adequate for LMC WN stars and have hydrogen fractions of 40%, 20%, and 0%. Recently, additional grids with SMC metallicity and with 60%, 40%, 20%, and 0% hydrogen have been added. We provide contour plots of the equivalent widths of spectral lines that are usually used for classification and diagnostics. The full set of synthetic spectra and the spectral energy distributions are available online at http://www.astro.physik.uni-potsdam.de/PoWR.html

  2. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  3. An overview on the JCSDA Community Radiative Transfer Model (CRTM)

    NASA Astrophysics Data System (ADS)

    Weng, F.

    2009-12-01

    The Community radiative transfer (RT) Model (CRTM) is developed by the US Joint Center for Satellite Data Assimilation (JCSDA) for rapid satellite radiance simulations and radiance derivative calculations under various atmospheric and surface conditions. It has been used in the Gridpoint Statistical Interpolation (GSI) data assimilation system at the NOAA National Center for the Environmental Prediction (NCEP) Environmental Modeling Center (EMC) and systems at other Numerical Weather Prediction (NWP) centers, as well as in many other satellite remote sensing applications. The model was first released to the public in 2004, and has been substantially improved and expanded since then. It supports a large number of sensors, including the historical and near future sensors from GOES-R and NPOESS, covering the microwave, infrared and visible frequency regions. The model comprises four major modules for calculations of the atmospheric transmittance, surface emissivity/reflectivity, cloud/aerosol optical property and RT solution, respectively. In the atmospheric transmittance module, on top is the multiple transmittance algorithm framework, which allows different transmittance algorithms to coexist. Within the framework, a new transmittance algorithm has been recently implemented, which combines the strengths of the OPTRAN algorithm (Optical Path TRANsmittance) and the ODPS algorithm (Optical Depth in Pressure Space), currently used in the RTTOV model. In addition, special algorithms are implemented to take into account the Non Local Thermodynamic Equilibrium (NLTE) effects for the IR hyper-spectral sensors, Zeeman-splitting effect for the SSMIS sensors and CO2 cell pressure leaking effect for the SSU sensors. The surface emissivity/reflectivity module consists of four sub-modules corresponds respectively to ocean, land, snow and sea ice surfaces, which are further divided into small modules according to the frequency regions and surface sub-types. An array of physical

  4. Validation of Atmospheric Refraction Modeling Improvements in Satellite Laser Ranging.

    NASA Astrophysics Data System (ADS)

    Hulley, G.; Pavlis, E. C.; Mendes, V. B.; Pavlis, D. E.

    2004-12-01

    Atmospheric refraction is an important accuracy-limiting factor in the use of satellite laser ranging (SLR) for high-accuracy science applications. In most of these applications, and particularly for the establishment and monitoring of the TRF, of great interest is the stability of its scale and its implied height system. The modeling of atmospheric refraction in the analysis of SLR data comprises the determination of the delay in the zenith direction and subsequent projection to a given elevation angle, using a mapping function. Standard data analyses practices use the 1973 Marini-Murray model for both zenith delay determination and mapping. This model was tailored for a particular wavelength and is not suitable for all the wavelengths used in modern SLR systems. Mendes et al., [2002] pointed out some limitations in that model, namely as regards the modeling of the elevation depen