Science.gov

Sample records for community waste management

  1. Community-Based Solid Waste Management: A Training Facilitator's Guide.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    Urban environmental management and environmental health issues are of increasing concern worldwide. The need for urban environmental management work at the local level where the Peace Corps works most effectively is significant, but training materials dedicated specifically to community-based solid waste management work in urban areas are lacking.…

  2. An Accounting System for Solid Waste Management in Small Communities.

    ERIC Educational Resources Information Center

    Zausner, Eric R.

    This pamphlet provides a guide to the type and quantity of information to be collected for effective solid waste management in small communities. It is directed at municipal or private personnel involved in the operation and ownership of management facilities. Sample activity reports are included for reference. (CS)

  3. Call It Trash, Garbage or Refuse: Four Case Studies Illustrate Community Waste Management Options.

    ERIC Educational Resources Information Center

    Kazzi, John W.

    1990-01-01

    Describes four successful community programs dealing with waste management issues, developed with assistance from Keep America Beautiful System: litter prevention (Beatrice, Nebraska); composting yard waste (Centralia, Illinois); recycling (Lake Jackson, Texas); and waste-to-energy incineration (Gastonia, North Carolina). Notes related education…

  4. Solid-waste management in Jalandhar city and its impact on community health

    PubMed Central

    Puri, Avinash; Kumar, Manoj; Johal, Eonkar

    2008-01-01

    In this study, solid-waste management practices were evaluated in order to find out its link with occurrence of vector-borne disease. Strategies for solid-waste management were employed as practical model to solve the problems regarding pollution which is originated by solid-waste. PMID:20040983

  5. Solid-Waste Management

    ERIC Educational Resources Information Center

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  6. Municipal solid waste management: Identification and analysis of engineering indexes representing demand and costs generated in virtuous Italian communities

    SciTech Connect

    Gamberini, R. Del Buono, D.; Lolli, F.; Rimini, B.

    2013-11-15

    Highlights: • Collection and analysis of real life data in the field of Municipal Solid Waste (MSW) generation and costs for management. • Study of 92 virtuous Italian communities. • Elaboration of trends of engineering indexes useful during design and evaluation of MSWM systems. - Abstract: The definition and utilisation of engineering indexes in the field of Municipal Solid Waste Management (MSWM) is an issue of interest for technicians and scientists, which is widely discussed in literature. Specifically, the availability of consolidated engineering indexes is useful when new waste collection services are designed, along with when their performance is evaluated after a warm-up period. However, most published works in the field of MSWM complete their study with an analysis of isolated case studies. Conversely, decision makers require tools for information collection and exchange in order to trace the trends of these engineering indexes in large experiments. In this paper, common engineering indexes are presented and their values analysed in virtuous Italian communities, with the aim of contributing to the creation of a useful database whose data could be used during experiments, by indicating examples of MSWM demand profiles and the costs required to manage them.

  7. Municipal solid waste management: identification and analysis of engineering indexes representing demand and costs generated in virtuous Italian communities.

    PubMed

    Gamberini, R; Del Buono, D; Lolli, F; Rimini, B

    2013-11-01

    The definition and utilisation of engineering indexes in the field of Municipal Solid Waste Management (MSWM) is an issue of interest for technicians and scientists, which is widely discussed in literature. Specifically, the availability of consolidated engineering indexes is useful when new waste collection services are designed, along with when their performance is evaluated after a warm-up period. However, most published works in the field of MSWM complete their study with an analysis of isolated case studies. Conversely, decision makers require tools for information collection and exchange in order to trace the trends of these engineering indexes in large experiments. In this paper, common engineering indexes are presented and their values analysed in virtuous Italian communities, with the aim of contributing to the creation of a useful database whose data could be used during experiments, by indicating examples of MSWM demand profiles and the costs required to manage them. PMID:23835203

  8. Enhancing engagement with community sector organisations working in sustainable waste management: A case study.

    PubMed

    Dururu, John; Anderson, Craig; Bates, Margaret; Montasser, Waleed; Tudor, Terry

    2015-03-01

    Voluntary and community sector organisations are increasingly being viewed as key agents of change in the shifts towards the concepts of resource efficiency and circular economy, at the community level. Using a meta-analysis and questionnaire surveys across three towns in the East Midlands of England, namely Northampton, Milton Keynes and Luton, this study aimed to understand public engagement with these organisations. The findings suggest that these organisations play a significant and wide-spread role, not only with regard to sustainable environmental management, but also a social role in community development and regeneration. The surveys indicated that there were generally high levels of awareness of the organisations and strong engagement with them. Clothes were the items most donated. Key reasons for engagement included the financial value offered and the perception that it helped the environment. However, potential limitations in future public engagement were also determined and recommendations for addressing these suggested. PMID:25737141

  9. Illinois solid waste management legislation

    SciTech Connect

    1999-07-01

    Contents include: Degradable Plastic Act; Energy Assistance Act of 1989; Hazardous and Solid Waste Recycling and Treatment Act; Household Hazardous Waste Collection Program Act; Illinois Emergency Planning and Community Right to Know Act; Illinois Environmental Facilities Financing Act; Illinois Procurement Code; Illinois Solid Waste Management Act; Intergovernmental Cooperation Act; Junkyard Act; Litter Control Act; Local Solid Waste Disposal Act; Metro East Solid Waste Disposal and Energy Producing Service Act; Recycled Newsprint Use Act; Responsible Property Transfer Act of 1988; Solid Waste Disposal District Act; Solid Waste Planning and Recycling Act; Solid Waste Site Operator Certification Law; Township Refuse Collection and Disposal Act; Toxic Pollution Prevention Act; Used Motor Oil Recycling Act; Waste Oil Recovery Act; and Water Supply, Drainage and Flood Control Act.

  10. Waste management system

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Jorgensen, G. K.

    1975-01-01

    The function of the waste management system was to control the disposition of solid and liquid wastes and waste stowage gases. The waste management system consisting of a urine subsystem and a fecal subsystem is described in detail and its overall performance is evaluated. Recommendations for improvement are given.

  11. Mine waste management

    SciTech Connect

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This book reports on mine waste management. Topics covered include: Performance review of modern mine waste management units; Mine waste management requirements; Prediction of acid generation potential; Attenuation of chemical constituents; Climatic considerations; Liner system design; Closure requirements; Heap leaching; Ground water monitoring; and Economic impact evaluation.

  12. International waste management conference

    SciTech Connect

    Not Available

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance.

  13. Radioactive Waste Management Basis

    SciTech Connect

    Perkins, B K

    2009-06-03

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  14. Radioactive waste management

    SciTech Connect

    Flax, S.J.

    1981-01-01

    This article examines the technical and legal considerations of nuclear waste management. The first three sections describe the technical aspects of spent-fuel-rod production, reprocessing, and temporary storage. The next two sections discuss permanent disposal of high-level wastes and spent-fuel rods. Finally, legislative and judicial responses to the nuclear-waste crisis.

  15. Voluntary approaches to solid waste management in small towns: a case study of community involvement in household hazardous waste recycling.

    PubMed

    Massawe, Ephraim; Legleu, Tye; Vasut, Laura; Brandon, Kelly; Shelden, Greg

    2014-06-01

    An enormous amount of household hazardous waste (HHW) is generated as part of municipal solid waste. This scenario presents problems during disposal, including endangering human health and the environment if improperly disposed. This article examines current HHW recycling efforts in Hammond, Louisiana, with the following objectives: (a) analyze factors and attitudes that motivate residents to participate in the program; (b) quantify various types of HHW; and (c) analyze the e-waste stream in the HHW. Residents and city officials who were surveyed and interviewed cited that commitment shown by local authorities and passion to protect the environment and human health were part of their active participation in the program. An awareness program has played a key role in the success of the program. A legislation specific to e-waste is encouraged. While knowledge and information on laws and permit application processes and the promotion of greener products are encouraged, provision of storage or collection facilities and communal transportation will further motivate more residents to participate in the recycling program. PMID:24988661

  16. Medical waste management plan.

    SciTech Connect

    Lane, Todd W.; VanderNoot, Victoria A.

    2004-12-01

    This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.

  17. Biohazardous waste management plan.

    SciTech Connect

    Lane, Todd W.

    2004-01-01

    This plan describes the process for managing non-medical biohazardous waste at Sandia National Laboratories California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of biohazardous waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to non-medical biohazardous waste.

  18. Mixed waste management options

    SciTech Connect

    Owens, C.B.; Kirner, N.P.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  19. [Recommendations for waste management].

    PubMed

    Vinner, E; Odou, M F; Fovet, B; Ghnassia, J C

    2013-06-01

    Laboratory waste management must ensure the safety of patients and staff, limiting the environmental impacts and control waste disposal budget. Sorting of waste must be carried out at the source. The packaging must be adapted, allowing easy identification of specific disposal routes. With regard to wastes for human or animal health care and/or related research (DASRI), packages must comply with the regulations, standards and ADR if necessary. Storage provisions differ according to the amount of DASRI produced. Waste collection is carried out directly on the place of activity by a certified service provider. Non pre-treated DASRI is incinerated in specific approved plants for a T ° > 1,200 °C. Special provisions also exist for chemical waste and radioactive waste, the latter being regulated by ANDRA. PMID:23765028

  20. Avoidable waste management costs

    SciTech Connect

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  1. Waste Management Program management plan. Revision 1

    SciTech Connect

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  2. AVLIS production plant waste management plan

    SciTech Connect

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  3. Household waste compositional analysis variation from insular communities in the framework of waste prevention strategy plans.

    PubMed

    Zorpas, Antonis A; Lasaridi, Katia; Voukkali, Irene; Loizia, Pantelitsa; Chroni, Christina

    2015-04-01

    Waste management planning requires reliable data regarding waste generation, affecting factors on waste generation and forecasts of waste quantities based on facts. In order to decrease the environmental impacts of waste management the choice of prevention plan as well as the treatment method must be based on the features of the waste that are produced in a specific area. Factors such as culture, economic development, climate, and energy sources have an impact on waste composition; composition influences the need of collecting waste more or less frequently of waste collection and disposition. The research question was to discover the main barriers concerning the compositional analysis in Insular Communities under warm climate conditions and the findings from this study enabled the main contents of a waste management plan to be established. These included advice to residents on waste minimisation, liaison with stakeholders and the expansion of kerbside recycling schemes. PMID:25690412

  4. Waste Management Process Improvement Project

    SciTech Connect

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-02-25

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle.

  5. Solid Waste Management Plan. Revision 4

    SciTech Connect

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  6. Laboratory Waste Management. A Guidebook.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  7. Radioactive Waste Management

    NASA Astrophysics Data System (ADS)

    Baisden, P. A.; Atkins-Duffin, C. E.

    Issues related to the management of radioactive wastes are presented with specific emphasis on high-level wastes generated as a result of energy and materials production using nuclear reactors. The final disposition of these high-level wastes depends on which nuclear fuel cycle is pursued, and range from once-through burning of fuel in a light water reactor followed by direct disposal in a geologic repository to more advanced fuel cycles (AFCs) where the spent fuel is reprocessed or partitioned to recover the fissile material (primarily 235U and 239Pu) as well as the minor actinides (MAs) (neptunium, americium, and curium) and some long-lived fission products (e.g., 99Tc and 129I). In the latter fuel cycle, the fissile materials are recycled through a reactor to produce more energy, the short-lived fission products are vitrified and disposed of in a geologic repository, and the minor actinides and long-lived fission products are converted to less radiotoxic or otherwise stable nuclides by a process called transmutation. The advantages and disadvantages of the various fuel cycle options and the challenges to the management of nuclear wastes they represent are discussed.

  8. Waste management and chemical inventories

    SciTech Connect

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  9. Household waste compositional analysis variation from insular communities in the framework of waste prevention strategy plans

    SciTech Connect

    Zorpas, Antonis A.; Lasaridi, Katia; Voukkali, Irene; Loizia, Pantelitsa; Chroni, Christina

    2015-04-15

    Highlights: • Waste framework directive has set clear waste prevention procedures. • Household Compositional analysis. • Waste management plans. • Zero waste approach. • Waste generation. - Abstract: Waste management planning requires reliable data regarding waste generation, affecting factors on waste generation and forecasts of waste quantities based on facts. In order to decrease the environmental impacts of waste management the choice of prevention plan as well as the treatment method must be based on the features of the waste that are produced in a specific area. Factors such as culture, economic development, climate, and energy sources have an impact on waste composition; composition influences the need of collecting waste more or less frequently of waste collection and disposition. The research question was to discover the main barriers concerning the compositional analysis in Insular Communities under warm climate conditions and the findings from this study enabled the main contents of a waste management plan to be established. These included advice to residents on waste minimisation, liaison with stakeholders and the expansion of kerbside recycling schemes.

  10. Perspectives on sustainable waste management.

    PubMed

    Castaldi, Marco J

    2014-01-01

    Sustainable waste management is a goal that all societies must strive to maintain. Currently nearly 80% of global wastes are sent to landfill, with a significant amount lacking proper design or containment. The increased attention to environmental impacts of human activities and the increasing demand for energy and materials have resulted in a new perspective on waste streams. Use of waste streams for energy and materials recovery is becoming more prevalent, especially in developed regions of the world, such as Europe, the United States, and Japan. Although currently these efforts have a small impact on waste disposal, use of waste streams to extract value very likely will increase as society becomes more aware of the options available. This review presents an overview of waste management with a focus on following an expanded waste hierarchy to extract value specifically from municipal solid waste streams. PMID:24910921

  11. Industrial waste management in Japan

    SciTech Connect

    Hirota, Y.

    1986-12-01

    Systematic management for industrial waste in Japan has been carried out based on the Waste Disposal and Public Cleansing Law which was enacted in 1970. The law and its ordinances designate 19 kinds of waste materials discharged from business activities as industrial waste and prescribe the generator's responsibility, requirements for treatment contractors, standards for consignment, specific personnel, etc. from the view of proper management. And they also prescribe disposal standards, structure, and maintenance standards for treatment facilities, including final disposal sites, from the view of proper treatment and disposal. The Standard for Verification provides criteria to categorize as hazardous or nonhazardous industrial waste which is subjected to treatment and disposal in conformity with each standard. The fundamental policies to cope with industrial waste focus on reduction of generation, promotion of recycling, establishment of a comprehensive information management system and participation of the public which can contribute well to prevent environmental pollution caused by inappropriate management of industrial waste.

  12. Waste management in Guangdong cities: the waste management literacy and waste reduction preferences of domestic waste generators.

    PubMed

    Chung, Shan-Shan; Lo, Carlos W H

    2004-05-01

    A questionnaire survey was conducted in 2002 on 1365 households in two prefectural-level cities in the Pearl River Delta, Jiangmen and Zhongshan. Three groups of issues are covered in this paper: 1) waste management literacy, concerns, and public participation; 2) waste recycling practices and the potential for waste avoidance; and 3) public environmental literacy. This study confirms findings from previous surveys and provides new information on important issues such as imposing monetary charges on waste and environmental activities, littering, source separation programs (SSPs), and public participation and expectations in local waste management. Saving up recyclable materials for redemption in waste depots is commonly practiced in mainland China regardless of the level of development of a city, although at the household level, high-income families tend to place less value on the revenues to be gained from redemption than lower income groups do. Data from the previous and the present studies indicate that such voluntary but largely economically driven waste recovery behavior diverts at least 10% of the household waste from the waste stream. Although uncompensated SSP is less appealing in the two cities than compensated SSP, it was found that when the median per capita income of a city reaches RMB2000 per month, a high participation rate for uncompensated waste recovery is more likely to occur. Education and income levels are the chief factors affecting littering behavior and the potential for waste avoidance. Contrary to general belief, the local Chinese community is active in microwaste management. The concern, however, is over the inability of the grassroots bureaucracy to deal with rising expectations for waste collection services and neighborhood cleanliness. PMID:15503387

  13. Waste management units - Savannah River Site

    SciTech Connect

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  14. Community Solutions to Solid Waste Pollution. Operation Waste Watch: The New Three Rs for Elementary School. Grade 6. [Second Edition.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    This publication, the last in a series of seven for elementary schools, is an environmental education curriculum guide with a focus on waste management issues. It contains a unit of exercises selected for sixth grade students focusing on community solutions to solid waste pollution. Waste management activities included in this unit seek to…

  15. TMI-2 waste management experience

    SciTech Connect

    Deltete, C.P.; Hahn, R.E. )

    1992-04-01

    The waste management experience following the TMI-2 March 1979 accident contributed invaluable information to the nuclear power industry. Unique to the TMI-2 cleanup were the columes, types, and special problems associated with the processing, handling, storage, packaging, transportation, and disposal of radioactive material. With its highlight of unusual situations encountered during cleanup, this report provides a comprehensive look at the TMI-2 waste management experience. Key sections identify the major technical and regulatory waste management challenges and their resolutions. Topics include solid waste generation, the abnormal waste shipment program, water processing systems, waste packaging, shipping containers/casks, equipment decontamination facilities, waste storage/staging and disposal, the nuclear fuel shipment program, and the makeup and purifaction resin removal program.

  16. Management of Biomedical Waste: An Exploratory Study

    PubMed Central

    Abhishek, K N; Suryavanshi, Harshal N; Sam, George; Chaithanya, K H; Punde, Prashant; Singh, S Swetha

    2015-01-01

    Background: Dental operatories pose a threat due to the high chances of infection transmission both to the clinician and the patients. Hence, management of dental waste becomes utmost importance not only for the health benefit of the dentist himself, but also people who can come into contact with these wastes directly or indirectly. The present study was conducted to find out the management of biomedical waste in private dental practice among 3 districts of Karnataka. Materials and Methods: The study population included 186 private practitioners in 3 districts of Karnataka (Coorg, Mysore, Hassan), South India. A pre-tested self-administered questionnaire was distributed to assess the knowledge and practices regarding dental waste management. Descriptive statistics was used to summarize the results. Results: Out of 186 study subjects, 71 (38%) were females and 115 (62%) were males. The maximum number of participants belonged to the age group of 28-33 years (29%). Undergraduate qualification was more (70%). 90 (48%) participants had an experience of 0-5 years. Chi-square analysis showed a highly significant association between participant who attended continuing dental education (CDE) program and their practice of dental waste management. Conclusion: Education with regards to waste management will help in enhancing practices regarding the same. In order to fill this vacuum CDE programs have to be conducted in pursuance to maintain health of the community. PMID:26435621

  17. UK report on waste management

    SciTech Connect

    Ferguson, J.

    1995-09-01

    Arising jointly from the National and European Union requirements for more intensive attention to be paid to the environment, the United Kingdom (UK) has taken many strides forward in protecting the environment from pollution and preventing harm to human health arising from the handling, transport and disposal of wastes. Major adjustments are taking place in Europe following the opening up of the Eastern European countries. The consequences of the illegal movement of wastes and its mistreatment and disposal are now recognised within the European Union. The UK as a member State is well aware of the consequences which arise from the lack of proper waste management. This paper discusses waste management and legislation pertaining to waste management in the United Kingdom.

  18. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department...

  19. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste management. 273.13 Section 273.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.13 Waste management. (a) Universal...

  20. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste management. 273.33 Section 273.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal...

  1. Chemical Waste Management and Disposal.

    ERIC Educational Resources Information Center

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  2. Waste management units - Savannah River Site. Volume 1, Waste management unit worksheets

    SciTech Connect

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  3. Solid Waste Management Program Plan

    SciTech Connect

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  4. Academia's Garbage: Campus/Community Solid Waste Projects.

    ERIC Educational Resources Information Center

    Boyles, Marcia

    The nation's overall efforts in solid waste management are noted, and suggestions and examples are presented concerning activities that can be undertaken by institutions of higher education to assist their communities to achieve safer and cleaner environments. The federal regulatory agency, The Environmental Protection Agency (EPA), is concerned…

  5. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect

    Not Available

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  6. Nuclear Waste Management Program summary document, FY 1981

    SciTech Connect

    Meyers, Sheldon

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel.

  7. Hazardous waste management

    SciTech Connect

    Dawson, G.W.; Mercer, B.W.

    1986-01-01

    This is a reference work designed to guide the chemist to solutions to problems of waste disposal. It has chapters on incineration, ocean dumping and underground injection, landfill disposal, transportation, abandoned sites, regulation, etc. A group of 12 appendices provide a lot of useful information for quick reference.

  8. Facilitating the improved management of waste in South Africa through a national waste information system

    SciTech Connect

    Godfrey, Linda

    2008-07-01

    Developing a waste information system (WIS) for a country is more than just about collecting routine data on waste; it is about facilitating the improved management of waste by providing timely, reliable information to the relevant role-players. It is a means of supporting the waste governance challenges facing South Africa - challenges ranging from strategic waste management issues at national government to basic operational challenges at local government. The paper addresses two hypotheses. The first is that the identified needs of government can provide a platform from which to design a national WIS framework for a developing country such as South Africa, and the second is that the needs for waste information reflect greater, currently unfulfilled challenges in the sustainable management of waste. Through a participatory needs analysis process, it is shown that waste information is needed by the three spheres of government, to support amongst others, informed planning and decision-making, compliance monitoring and enforcement, community participation through public access to information, human, infrastructure and financial resource management and policy development. These needs for waste information correspond closely with key waste management challenges currently facing the country. A shift in governments approach to waste, in line with national and international policy, is evident from identified current and future waste information needs. However, the need for information on landfilling remains entrenched within government, possibly due to the poor compliance of landfill sites in South Africa and the problems around the illegal disposal of both general and hazardous waste.

  9. Planning for hazardous waste management.

    PubMed

    Rhoades, R F

    1982-01-01

    Various responsibilities and issues must be considered when becoming involved in the management of hazardous wastes. A basic understanding of the problem and control methodologies including the regulatory provisions of the Resource Conservation and Recovery act (RCRA) is necessary in order to begin the initial phase of the planning process. The roles of industry, the public and the federal government are discussed as well as various management options which can be pursued by state and local authorities. Special attention is focused on the issues of site selection, existing and abandoned sites and the application of "Superfund," disposition of exempt waste quantities and emergency response. PMID:10257564

  10. Municipal solid waste management in Beijing City.

    PubMed

    Li, Zhen-shan; Yang, Lei; Qu, Xiao-Yan; Sui, Yu-mei

    2009-09-01

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km(2) with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed. PMID:19375298

  11. International waste management fact book

    SciTech Connect

    Amaya, J P; LaMarche, M N; Upton, J F

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  12. Healthcare waste management in Asia

    SciTech Connect

    Prem Ananth, A.; Prashanthini, V.; Visvanathan, C.

    2010-01-15

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  13. ICDF Complex Operations Waste Management Plan

    SciTech Connect

    W.M. Heileson

    2006-12-01

    This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

  14. Radioactive Waste Management BasisApril 2006

    SciTech Connect

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  15. Waste management facility accident analysis (WASTE ACC) system: software for analysis of waste management alternatives

    SciTech Connect

    Kohout, E.F.; Folga, S.; Mueller, C.; Nabelssi, B.

    1996-03-01

    This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure will allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.

  16. Regional solid waste management study

    SciTech Connect

    Not Available

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  17. Waste Management Information System (WMIS) User Guide

    SciTech Connect

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  18. Food waste treatment in a community center.

    PubMed

    Schwalb, Michael; Rosevear, Carrie; Chin, Rebecca; Barrington, Suzelle

    2011-07-01

    For urban community composting centers, the proper selection and use of bulking agent is a key element in not only the cost but also the quality of the finished compost. Besides wood chips (WC) widely used as BA, readily usable cereal residue pellets (CRP) can provide biodegradable carbon and sufficient free air space (FAS) to produce stabilizing temperatures. The objective of the present project was to test at a community center, the effectiveness of CRP in composting food waste (FW). Two recipes were used (CRP with and without WC) to measure: FAS; temperature regimes, and; losses in mass, water, carbon and nitrogen. Both recipes were composted during three consecutive years using a 2 m(3) commercial in-vessel composter operated in downtown Montreal (Canada). For all recipes, FAS exceeded 30% for moisture content below 60%, despite yearly variations in FW and BA physical properties. When properly managed by the center operator, both FW and CRP compost mixtures with and without WC developed within 3 days thermophilic temperatures exceeding 50 °C. The loss of total mass, water, carbon and nitrogen was quite variable for both recipes, ranging from 36% to 54%, 42% to 55%, 48% to 65%, and 4% to 55%, respectively. The highest loss in dry mass, water and C was obtained with FW and CRP without WC aerated to maintain mesophilic rather than thermophilic conditions. Although variable, lower nitrogen losses were obtained with CRP and WC as BA, compared to CRP alone, as also observed during previous laboratory trials. Therefore and as BA, CRP can be used alone but nitrogen losses will be minimized by adding WC. Compost stabilization depends on operator vigilance in terms of aeration. The measured fresh compost density of 530-600 kg/m(3) indicates that the 2 m(3) in-vessel composter can treat 6.5 tons of FW/year if operated during 7 months. PMID:21376554

  19. Implementation of SAP Waste Management System

    SciTech Connect

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  20. Waste management plan for the APT

    SciTech Connect

    England, J.L.

    1997-08-22

    This revision of the APT Waste Management Plan details the waste management requirements and issues specific to the APT plant for design considerations, construction, and operation. The APT Waste Management Plan is by its nature a living document and will be reviewed at least annually and revised as required.

  1. Oak Ridge Reservation Waste Management Plan

    SciTech Connect

    Turner, J.W.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  2. Solid waste management in Japan

    SciTech Connect

    Naito, S.

    1995-09-01

    On Friday 17 June 1994, as the invited speaker of the International Congress of IWM/ISWA at Torbay, UK the author presented a paper of {open_quotes}A framework for success: the role of legislation{close_quotes}. THis was to introduce the amendment of Waste Disposal Cleansing Law and the Basic Environment Law in 1991, but the combination of the two amended laws has enforced promoting and assisting the fulfillment of the responsibilities of corporations and citizens. In addition to such presentation, the author pointed out a new manner of solid waste management (SWM) in Japan.

  3. Coolside waste management research

    SciTech Connect

    Not Available

    1992-01-01

    TCLP analysis of the Coolside pellets and Ottawa base sand materials were completed. The metal concentrations for the 8 RCRA metals were well below the trigger values with all but Ag and Se being below the drinking water standard levels. The initial and final pH values showed the sand had essentially no neutralization capacity while the neutralization capacity of the pilot plant materials was above the 0.7 meq/g upper level for use of extraction solution [number sign]1 but well below the 2 meq/g upper level of the [number sign]2 solution neutralization capacity. Complete metals analysis in addition to the RCRA metals are also reported. Complete metals, proximate, and ultimate analyses for the pilot plant test samples were completed. Sizable concentrations of calcium well above the Coolside samples were observed. Interpretation of these results are in progress. Monitoring of swell on Coolside solid waste samples compacted in CBR molds continued with no increase in swell being observed since the last reporting period. The permeability of a specimen remolded near 95% of standard dry density and optimum moisture content and aged at room temperature for 178 days was 1.72 [times] 10[sup [minus]6] cm/sec.

  4. Sound waste management plan. Restoration project 95115. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    1996-02-01

    The project was designed to address marine pollution that is generated from landbased sources within the Prince William Sound communities of Cordova, Valdez, Whittier Tatitlek, and Chenega Bay. The project recommends ways to improve the management of three different waste streams generated within the communities and which are a chronic source of marine pollution: used oil, household hazardous waste, and solid waste. The recommendations, some of which have already been implemented, include: creation of a comprehensive used oil management system in each community, construction of Environmental Operation Stations to improve the overall management of solid and oily wastes, and the development of a regional household hazardous waste program.

  5. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  6. Waste Management Quality Assurance Plan

    SciTech Connect

    Waste Management Group

    2006-08-14

    The WMG QAP is an integral part of a management system designed to ensure that WMG activities are planned, performed, documented, and verified in a manner that assures a quality product. A quality product is one that meets all waste acceptance criteria, conforms to all permit and regulatory requirements, and is accepted at the offsite treatment, storage, and disposal facility. In addition to internal processes, this QA Plan identifies WMG processes providing oversight and assurance to line management that waste is managed according to all federal, state, and local requirements for waste generator areas. A variety of quality assurance activities are integral to managing waste. These QA functions have been identified in the relevant procedures and in subsequent sections of this plan. The WMG QAP defines the requirements of the WMG quality assurance program. These requirements are derived from Department of Energy (DOE) Order 414.1C, Quality Assurance, Contractor Requirements Document, the LBNL Operating and Assurance Program Plan (OAP), and other applicable environmental compliance documents. The QAP and all associated WMG policies and procedures are periodically reviewed and revised, as necessary, to implement corrective actions, and to reflect changes that have occurred in regulations, requirements, or practices as a result of feedback on work performed or lessons learned from other organizations. The provisions of this QAP and its implementing documents apply to quality-affecting activities performed by the WMG; WMG personnel, contractors, and vendors; and personnel from other associated LBNL organizations, except where such contractors, vendors, or organizations are governed by their own WMG-approved QA programs.

  7. Environmental remediation and waste management information systems

    SciTech Connect

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  8. Radioactive Waste Management BasisSept 2001

    SciTech Connect

    Goodwin, S S

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  9. Nuclear waste management. Semiannual progress report, October 1983-March 1984

    SciTech Connect

    McElroy, J.L.; Powell, J.A.

    1984-06-01

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

  10. Management of immunization solid wastes in Kano State, Nigeria

    SciTech Connect

    Oke, I.A.

    2008-12-15

    Inadequate management of waste generated from injection activities can have a negative impact on the community and environment. In this paper, a report on immunization wastes management in Kano State (Nigeria) is presented. Eight local governments were selected randomly and surveyed by the author. Solid wastes generated during the Expanded Programme on Immunization were characterised using two different methods: one by weighing the waste and the other by estimating the volume. Empirical data was obtained on immunization waste generation, segregation, storage, collection, transportation, and disposal; and waste management practices were assessed. The study revealed that immunization offices were accommodated in either in local government buildings, primary health centres or community health care centres. All of the stations demonstrated a high priority for segregation of the infectious wastes. It can be deduced from the data obtained that infectious waste ranged from 67.6% to 76.7% with an average of 70.1% by weight, and 36.0% to 46.1% with an average of 40.1% by volume. Non-infectious waste generated ranged from 23.3% to 32.5% with an average of 29.9% by weight and 53.9% to 64.0% with an average of 59.9% by volume. Out of non-infectious waste (NIFW) and infectious waste (IFW), 66.3% and 62.4% by weight were combustible and 33.7% and 37.6% were non-combustible respectively. An assessment of the treatment revealed that open pit burning and burial and small scale incineration were the common methods of disposal for immunization waste, and some immunization centres employed the services of the state or local government owned solid waste disposal board for final collection and disposal of their immunization waste at government approved sites.

  11. Aerospace vehicle water-waste management

    NASA Technical Reports Server (NTRS)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  12. Evaluation of municipal solid waste management in egyptian rural areas.

    PubMed

    El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K

    2009-01-01

    A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation

  13. Popular democracy and waste management

    SciTech Connect

    Wallis, L.R.

    1986-01-01

    The US has moved from representative democracy to popular democracy and public scrutiny is unrelenting. Any hope of success on their part in resolving the nuclear waste question hinges on their ability to condition themselves to operate in a popular democracy environment. Those opposed to the siting of high- and low-level waste repositories have already developed a set of recurring themes: (1) the siting criteria are fatally flawed; (2) the criteria are not adequate; (3) the process is driven by politics not science; (4) unrealistic deadlines lead to dangerous shortcuts; (5) transportation experience is lacking; (6) the scientific community does not really know how to dispose of the wastes. They must continue to tell the public that if science has brought us problems, then the answer can be only more knowledge - not less. Failure by their profession to recognize that popular democracy is a fact and that nuclear issues need to be addressed in humanistic terms raises the question of whether America is philosophically suited for the expanded use of nuclear power in the future - or for that matter for leadership in the world of tomorrow.

  14. Disaster waste management: A review article

    SciTech Connect

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-15

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.

  15. Solid waste management problems in secondary schools in Ibadan, Nigeria.

    PubMed

    Ana, G R E E; Oloruntoba, E O; Shendell, D; Elemile, O O; Benjamin, O R; Sridhar, M K C

    2011-09-01

    Inappropriate solid waste management practices in schools in less-developed countries, particularly in major urban communities, constitute one of the major factors leading to declining environmental health conditions. The objective of the authors' descriptive, cross-sectional study was to assess solid waste management problems in selected urban schools in Ibadan, Nigeria. Eight secondary schools with average pupil populations not less than 500 per school were selected randomly. Four hundred questionnaires (50 per school) were administered. In addition, an observational checklist was used to assess the physical environment. Paper and plastics were the most frequently generated wastes. Common methods of solid waste disposal reported were use of dustbins for collection and open burning. Major problems perceived with current refuse disposal methods by the study students were odors, pest infestation, and spillages. Littering and spillages of solid waste were also common features reported. Data suggested inadequate waste management facilities and practices in study schools. The lack of refuse bins may have contributed to waste spillages and the burning practices. Odors may have arisen from both the decay of overstored organic waste rich in moisture and emissions from refuse burning. This scenario poses a community environmental health nuisance and may compromise school environmental quality. PMID:21949981

  16. Making waste management public (or falling back to sleep)

    PubMed Central

    Lougheed, Scott; Rowe, R Kerry; Kuyvenhoven, Cassandra

    2014-01-01

    Human-produced waste is a major environmental concern, with communities considering various waste management practices, such as increased recycling, landfilling, incineration, and waste-to-energy technologies. This article is concerned with how and why publics assemble around waste management issues. In particular, we explore Noortje Marres and Bruno Latour’s theory that publics do not exist prior to issues but rather assemble around objects, and through these assemblages, objects become matters of concern that sometimes become political. The article addresses this theory of making things public through a study of a small city in Ontario, Canada, whose landfill is closed and waste diversion options are saturated, and that faces unsustainable costs in shipping its waste to the United States, China, and other regions. The city’s officials are undertaking a cost–benefit assessment to determine the efficacy of siting a new landfill or other waste management facility. We are interested in emphasizing the complexity of making (or not making) landfills public, by exploring an object in action, where members of the public may or may not assemble, waste may or may not be made into an issue, and waste is sufficiently routinized that it is not typically transformed from an object to an issue. We hope to demonstrate Latour’s third and fifth senses of politics best account for waste management’s trajectory as a persistent yet inconsistent matter of public concern. PMID:25051590

  17. Community Education: Managing for Success.

    ERIC Educational Resources Information Center

    American Association of School Administrators, Arlington, VA.

    An examination of several school systems across the country offering community education programs provided information for this report on successful management techniques and unique program ideas, featuring tips from experts and a number of "how-to" suggestions. Drawing particularly on the experiences of administrators with programs in Flint,…

  18. Regulation of waste and waste management in Turkey.

    PubMed

    Gören, Sami; Ozdemir, Feyza

    2011-04-01

    Industrial and technological developments have increased rapidly throughout the world including Turkey. Furthermore, the population of Turkey is also increasing and the ever-increasing consumption creates larger amounts of waste materials and adversely affects the environment and human health. The development of a waste management and disposal system has become necessary in all countries of the world. As part of the process of seeking entry to the European Union, Turkey continues to prepare the necessary legislation to satisfy European Union regulations for the disposal of solid waste, packaging waste, biodegradable waste and medical waste materials within the framework of the strategy. An integrated waste management system is necessary for each town in Turkey that is suitable for the different contents and increasing amounts of waste produced. In the present study, Turkey's geographical regions were examined in terms of population and the total amount of solid waste generated in each province to produce detailed data for the Turkish Ministry of Environment and Forestry. As a result of this study, it is understood that Turkey has drawn up a 'road map' which will be followed by the 2008-2012 Waste Management Action Plan. To achieve this, the Ministry of the Environment and Forestry, Turkey and the municipalities must fulfill the tasks that have been allocated to them. Turkey will attain the European Union standards for waste management if these tasks lead to the achievement of the targets within the action plan. PMID:20686052

  19. Health-care waste management in India.

    PubMed

    Patil, A D; Shekdar, A V

    2001-10-01

    Health-care waste management in India is receiving greater attention due to recent regulations (the Biomedical Wastes (Management & Handling) Rules, 1998). The prevailing situation is analysed covering various issues like quantities and proportion of different constituents of wastes, handling, treatment and disposal methods in various health-care units (HCUs). The waste generation rate ranges between 0.5 and 2.0 kg bed-1 day-1. It is estimated that annually about 0.33 million tonnes of waste are generated in India. The solid waste from the hospitals consists of bandages, linen and other infectious waste (30-35%), plastics (7-10%), disposable syringes (0.3-0.5%), glass (3-5%) and other general wastes including food (40-45%). In general, the wastes are collected in a mixed form, transported and disposed of along with municipal solid wastes. At many places, authorities are failing to install appropriate systems for a variety of reasons, such as non-availability of appropriate technologies, inadequate financial resources and absence of professional training on waste management. Hazards associated with health-care waste management and shortcomings in the existing system are identified. The rules for management and handling of biomedical wastes are summarised, giving the categories of different wastes, suggested storage containers including colour-coding and treatment options. Existing and proposed systems of health-care waste management are described. A waste-management plan for health-care establishments is also proposed, which includes institutional arrangements, appropriate technologies, operational plans, financial management and the drawing up of appropriate staff training programmes. PMID:11721600

  20. Alternative approaches for better municipal solid waste management in Mumbai, India.

    PubMed

    Rathi, Sarika

    2006-01-01

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads and in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (35 US dollars) with community participation; Rs. 1797 (41 US dollars) with public private partnership (PPP); and Rs. 1908 (44 US dollars) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management. PMID:16288861

  1. Alternative approaches for better municipal solid waste management in Mumbai, India

    SciTech Connect

    Rathi, Sarika . E-mail: sarika@iri.columbia.edu

    2006-07-01

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads and in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.

  2. E-Waste Management and Challenges

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Kumar, K. Ram

    2010-11-01

    E-Waste is one of the silent degraders of the environment in the fast-growing world. This paper explores briefly the ultra-modern problem of E-Waste. After enumerating the causes and effects of the E-Waste, it focuses on management of the E-waste using modern techniques. The paper also deals with the responsibilities of the governments, industries and citizens in reducing E-waste.

  3. Role of NGOs and CBOs in Waste Management

    PubMed Central

    Ahsan, A; Alamgir, M; Imteaz, M; Nik Daud, NN; Islam, R

    2012-01-01

    Background Developing cities like Khulna, the third largest metropolitan city in Bangladesh, have now begun to confess the environmental and public health risks associated with uncontrolled dumping of solid wastes mainly due to the active participation of non-governmental organizations (NGOs) and community-based organizations (CBOs) in municipal solid waste (MSW) management. Methods: A survey was conducted to observe the present scenarios of secondary disposal site (SDS), ultimate disposal site (UDS), composting plants, medical wastes management and NGOs and CBOs MSW management activities. Results: A total of 22 NGOs and CBOs are involved in MSW management in 31 wards of Khulna City Corporation. About 9 to 12% of total generated wastes are collected by door-to-door collection system provided by mainly NGOs and CBOs using 71 non-motorized rickshaw vans. A major portion of collected wastes is disposed to the nearest SDS by these organizations and then transferred to UDS or to private low-lying lands from there by the city authority. A small portion of organic wastes is going to the composting plants of NGOs. Conclusion: The participation of NGOs and CBOs has improved the overall MSW management system, especially waste collection process from sources and able to motivate the residents to store the waste properly and to keep clean the premises. PMID:23113191

  4. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    SciTech Connect

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  5. Waste Management Quality Assurance Plan

    SciTech Connect

    Not Available

    1993-11-30

    Lawrence Berkeley Laboratory`s Environment Department addresses its responsibilities through activities in a variety of areas. The need for a comprehensive management control system for these activities has been identified by the Department of Energy (DOE). The WM QA (Waste Management Quality Assurance) Plan is an integral part of a management system that provides controls necessary to ensure that the department`s activities are planned, performed, documented, and verified. This WM QA Plan defines the requirements of the WM QA program. These requirements are derived from DOE Order 5700.6C, Quality Assurance, the LBL Operating and Assurance Program Plan (OAP, LBL PUB-3111), and other environmental compliance documents applicable to WM activities. The requirements presented herein, as well as the procedures and methodologies that direct the implementation of these requirements, will undergo review and revisions as necessary. The provisions of this QA Plan and its implementing documents apply to quality-affecting activities performed by and for WM. It is also applicable to WM contractors, vendors, and other LBL organizations associated with WM activities, except where such contractors, vendors, or organizations are governed by their own WM-approved QA programs. References used in the preparation of this document are (1) ASME NQA-1-1989, (2) ANSI/ASQC E4 (Draft), (3) Waste Management Quality Assurance Implementing Management Plan (LBL PUB-5352, Rev. 1), (4) LBL Operating and Assurance Program Plan (OAP), LBL PUB-3111, 2/3/93. A list of terms and definitions used throughout this document is included as Appendix A.

  6. Management of PCB laboratory wastes

    SciTech Connect

    1995-11-01

    Regulations promulgated by the US Environmental Protection Agency (EPA) under the Toxic Substances Control Act (TSCA) govern the management of polychlorinated biphenyls (PCBs), including use, storage, and disposal. Under TSCA, PCBs can only be used if the use is authorized under the TSCA regulations in 40 CFR 761; otherwise, the use of PCBs is prohibited and the PCBs must be disposed as PCB waste. 40 CFR 761.30(j) authorizes the use of PCBs in ``small quantities for research and development.`` Research and development activities are defined to include activities associated with laboratory analysis.

  7. Infectious waste management and laboratory design criteria.

    PubMed

    Zaki, A N; Campbell, J R

    1997-11-01

    Infectious waste management and laboratory design criteria are provided to help in recognizing what information needs to be included in an individual program and to develop an infectious waste management plan. Relevant engineering aspects of a containment laboratory are described in detail, and suggested equipment and operating procedures for collection, sterilization, and disposal of solid and liquid waste are discussed. The need for public awareness regarding infectious waste is discussed, including liability considerations associated with improper disposal. This study shows how proper management of infectious waste results in lower disposal cost, lower operating costs, reduction in liabilities, increased worker safety, and a cleaner environment. PMID:9373926

  8. Waste Management Technician Partnership Program. Final Report.

    ERIC Educational Resources Information Center

    Campbell, Donna

    This final report for Columbia Basin College's waste management technician partnership program outlines 4 objectives: (1) develop at least 4 waste management competency-based curriculum modules; (2) have 50 participants complete at least 1 module; (3) have 100 participants complete a training and/or certification program and 200 managers complete…

  9. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra

    PubMed Central

    2014-01-01

    Background Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. Methods The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. Results The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Conclusion Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases. PMID:25005728

  10. Managing Nuclear Waste: Options Considered

    SciTech Connect

    DOE

    2002-05-02

    Starting in the 1950s, U.S. scientists began to research ways to manage highly radioactive materials accumulating at power plants and other sites nationwide. Long-term surface storage of these materials poses significant potential health, safety, and environmental risks. Scientists studied a broad range of options for managing spent nuclear fuel and high-level radioactive waste. The options included leaving it where it is, disposing of it in various ways, and making it safer through advanced technologies. International scientific consensus holds that these materials should eventually be disposed of deep underground in what is called a geologic repository. In a recent special report, the National Academy of Sciences summarized the various studies and emphasized that geologic disposal is ultimately necessary.

  11. Technology Roadmapping for Waste Management

    SciTech Connect

    Bray, O.

    2003-02-26

    Technology roadmapping can be an effective strategic technology planning tool. This paper describes a process for customizing a generic technology roadmapping process. Starting with a generic process reduces the learning curve and speeds up the roadmap development. Similarly, starting with a generic domain model provides leverage across multiple applications or situations within the domain. A process that combines these two approaches facilitates identifying technology gaps and determining common core technologies that can be reused for multiple applications or situations within the domain. This paper describes both of these processes and how they can be integrated. A core team and a number of technology working groups develop the technology roadmap, which includes critical system requirements and targets, technology areas and metrics for each area, and identifies and evaluates possible technology alternatives to recommend the most appropriate ones to pursue. A generalized waste management model, generated by considering multiple situations or applications in terms of a generic waste management model, provides the domain requirements for the technology roadmapping process. Finally, the paper discusses lessons learns from a number of roadmapping projects.

  12. The mixed waste management facility

    SciTech Connect

    Streit, R.D.

    1995-10-01

    During FY96, the Mixed Waste Management Facility (MWMF) Project has the following major objectives: (1) Complete Project Preliminary Design Review (PDR). (2) Complete final design (Title II) of MWMF major systems. (3) Coordinate all final interfaces with the Decontamination and Waste Treatment Facility (DWTF) for facility utilities and facility integration. (4) Begin long-lead procurements. (5) Issue Project Baseline Revision 2-Preliminary Design (PB2), modifying previous baselines per DOE-requested budget profiles and cost reduction. Delete Mediated Electrochemical Oxidation (MEO) as a treatment process for initial demonstration. (6) Complete submittal of, and ongoing support for, applications for air permit. (7) Begin detailed planning for start-up, activation, and operational interfaces with the Laboratory`s Hazardous Waste Management Division (HWM). In achieving these objectives during FY96, the Project will incorporate and implement recent DOE directives to maximize the cost savings associated with the DWTF/MWMF integration (initiated in PB1.2); to reduce FY96 new Budget Authority to {approximately}$10M (reduced from FY97 Validation of $15.3M); and to keep Project fiscal year funding requirements largely uniform at {approximately}$10M/yr. A revised Project Baseline (i.e., PB2), to be issued during the second quarter of FY96, will address the implementation and impact of this guidance from an overall Project viewpoint. For FY96, the impact of this guidance is that completion of final design has been delayed relative to previous baselines (resulting from the delay in the completion of preliminary design); ramp-up in staffing has been essentially eliminated; and procurements have been balanced through the Project to help balance budget needs to funding availability.

  13. Backyard waste management - problems and benefits of individuals managing their solid waste at home

    SciTech Connect

    Whalen, M.

    1995-05-01

    The problems and benefits of individuals managing their solid wastes at home are surveyed. The survey indicates that as the population rises people tend to burn only the combustible portions of their waste. Some communities have limited ordinances that ban the burning of raw garbage, but other municipalities allow residents to burn all of their wastestream, even though some materials are not combustible and cannot be burned. Potential environmental effects involve both the ash residue and the air emissions. While selected burning can reduce some of the environmental hazards these would probably only be marginally less than the impacts of burning it all. The study clearly indicates that the environmental problems of burn barrels are not insignificant. However, the attitudes and motivations of those who burn waste will have to be addressed by the communities that attempt or should attempt to control this problem. These include: avoidance of waste collection costs; availability of trash cartage services; and habit. Habit is probably as strong a motivation as cost avoidance and ease of collection combined. Residents have often burned trash for several generations and regard the practice as a {open_quotes}god-given right.{close_quotes}

  14. Integral urban solid waste management program in a Mexican university

    SciTech Connect

    Espinosa, R.M. Turpin, S.; Polanco, G.; Torre, A. de la; Delfin, I.; Raygoza, I.

    2008-07-01

    The Azcapotzalco campus of the Universidad Autonoma Metropolitana (UAM-A) has implemented an Integral Urban Solid Waste Management Program, 'Segregation for a Better UAM Environment' (Separaccion por un mejor UAMbiente). This program is directed to create awareness and involve the academic community of the UAM-A concerning the problem of solid wastes, at the same time fulfilling the local environmental legislation. The program consists in separating solid wastes into two classes: (1) recoverable wastes (glass and PET bottles, aluminum cans, Tetrapak packages) and (2) other wastes (non-recoverable). During the past three years, thanks to this program, the amount of solid wastes delivered monthly to municipal collecting services has been considerably reduced. In this period, UAM-A has sent to recycling: 2.2 tons of glass bottles; 2.3 tons of PET bottles; 1.2 tons of Tetrapak packages and 27.5 kg of aluminum cans.

  15. Integral urban solid waste management program in a Mexican university.

    PubMed

    Espinosa, R M; Turpin, S; Polanco, G; De Latorre, A; Delfín, I; Raygoza, I

    2008-01-01

    The Azcapotzalco campus of the Universidad Autónoma Metropolitana (UAM-A) has implemented an Integral Urban Solid Waste Management Program, "Segregation for a Better UAM Environment" (Separacción por un mejor UAMbiente). This program is directed to create awareness and involve the academic community of the UAM-A concerning the problem of solid wastes, at the same time fulfilling the local environmental legislation. The program consists in separating solid wastes into two classes: (1) recoverable wastes (glass and PET bottles, aluminum cans, Tetrapak packages) and (2) other wastes (non-recoverable). During the past three years, thanks to this program, the amount of solid wastes delivered monthly to municipal collecting services has been considerably reduced. In this period, UAM-A has sent to recycling: 2.2 tons of glass bottles; 2.3 tons of PET bottles; 1.2 tons of Tetrapak packages and 27.5 kg of aluminum cans. PMID:18586482

  16. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic of hazardous waste, it must be managed in compliance with all applicable requirements of 40 CFR parts 260... is subject to 40 CFR part 262. (ii) If the electrolyte or other solid waste is not hazardous,...

  17. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic of hazardous waste, it must be managed in compliance with all applicable requirements of 40 CFR parts 260... is subject to 40 CFR part 262. (ii) If the electrolyte or other solid waste is not hazardous,...

  18. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic of hazardous waste, it must be managed in compliance with all applicable requirements of 40 CFR parts 260... is subject to 40 CFR part 262. (ii) If the electrolyte or other solid waste is not hazardous,...

  19. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic of hazardous waste, it must be managed in compliance with all applicable requirements of 40 CFR parts 260... is subject to 40 CFR part 262. (ii) If the electrolyte or other solid waste is not hazardous,...

  20. Solid Waste Management Practices in EBRP Schools.

    ERIC Educational Resources Information Center

    Mann, Nadine L.

    1994-01-01

    A Louisiana school district has made tremendous progress toward developing and implementing an environmentally friendly solid waste management program. Packaging changes in school food service, newspaper and aluminum can recycling, and composting of leaf and yard waste have contributed to reduced waste sent to the local landfill. (MLF)

  1. Solid Waste Management in Recreational Forest Areas.

    ERIC Educational Resources Information Center

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  2. Management of small producers waste in Slovenia

    SciTech Connect

    Fabjan, Marija; Rojc, Joze

    2007-07-01

    Available in abstract form only. Full text of publication follows: Radioactive materials are extensively used in Slovenia in various fields and applications in medicine, industry and research. For the managing of radioactive waste raised from these establishments the Agency for radwaste management (ARAO) was authorised as the state public service of managing the radioactive waste in 1999. The public service of the radioactive waste of small producers in Slovenia is performed in line with the Governmental decree on the Mode, Subject and Terms of Performing the Public Service of Radioactive Waste Management (Official Gazette RS No. 32/99). According to the Decree the scope of the public service includes: 'collection of the waste from small producers at the producers' premises and its transportation to the storage facility for treatment, storing and disposal', 'acceptance of radioactive waste in case of emergency situation on the premises, in case of transport accidents or some other accidents', 'acceptance of radioactive waste in cases when the producer is unknown', 'management (collection, transport, pre-treatment, storing, together with QA and radiation protection measures) of radioactive waste', 'treatment and conditioning of radioactive waste for storing and disposal', and 'operating of the Central Interim Storage for LIL waste from small producers'. After taking over the performing of the public service, ARAO first started with the project for refurbishment and modernization of the Central Interim Storage Facility, including improvements of the storage utilization and rearrangement of the stored waste. (authors)

  3. Y-12 Waste Management Division Process Waste Assessment (PWA) report

    SciTech Connect

    Not Available

    1992-01-01

    The Process Waste Assessment (PWA) methodology used by the Martin Marietta Energy Systems, Inc. (Energy Systems) Y-12 Waste Management Division (WMD) was based on the US Department of Energy (DOE) Model Process Waste Assessment Plan, which in turn, was based on the US Environmental Protection Agency, (US EPA) Waste Minimization Opportunity Assessment Manual but incorporated modifications suggested by various DOE production facilities. The DOE PWA plan methodology was slightly modified to meet the differing needs of WMD because the model was directed toward production operations versus waste treatment, storage, and disposal operations. The objective of this PWA was to compile information about the WMD operations and processes that transport, treat, store, and dispose of waste streams generated by other Y-12 organizations and WMD. Data were also collected on WMD operating procedures and WMD waste streams as well as other Y-12 organizations' waste streams managed. The assessment consisted of five primary steps: organization of the WMD PWA Team and subteams, assessment of WMD operations and waste streams, development and evaluation of waste minimization options, compilation, review, and publication of the PWA report and supporting data, and implementation of waste minimization options.

  4. Y-12 Waste Management Division Process Waste Assessment (PWA) report

    SciTech Connect

    Not Available

    1992-01-01

    The Process Waste Assessment (PWA) methodology used by the Martin Marietta Energy Systems, Inc. (Energy Systems) Y-12 Waste Management Division (WMD) was based on the US Department of Energy (DOE) Model Process Waste Assessment Plan, which in turn, was based on the US Environmental Protection Agency, (US EPA) Waste Minimization Opportunity Assessment Manual but incorporated modifications suggested by various DOE production facilities. The DOE PWA plan methodology was slightly modified to meet the differing needs of WMD because the model was directed toward production operations versus waste treatment, storage, and disposal operations. The objective of this PWA was to compile information about the WMD operations and processes that transport, treat, store, and dispose of waste streams generated by other Y-12 organizations and WMD. Data were also collected on WMD operating procedures and WMD waste streams as well as other Y-12 organizations` waste streams managed. The assessment consisted of five primary steps: organization of the WMD PWA Team and subteams, assessment of WMD operations and waste streams, development and evaluation of waste minimization options, compilation, review, and publication of the PWA report and supporting data, and implementation of waste minimization options.

  5. RCRA COVER SYSTEMS FOR WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The closure of waste management facilities, whether Subtitle C, Subtitle D or CERCLA, requires consideration of site-specific information, the Federal regulations and applicability of state regulations and the liquids management strategy. This paper will present the current EPA ...

  6. TMI-2 waste management experience. Interim report

    SciTech Connect

    Deltete, C.P.; Hahn, R.E.

    1992-04-01

    The waste management experience following the TMI-2 March 1979 accident contributed invaluable information to the nuclear power industry. Unique to the TMI-2 cleanup were the columes, types, and special problems associated with the processing, handling, storage, packaging, transportation, and disposal of radioactive material. With its highlight of unusual situations encountered during cleanup, this report provides a comprehensive look at the TMI-2 waste management experience. Key sections identify the major technical and regulatory waste management challenges and their resolutions. Topics include solid waste generation, the abnormal waste shipment program, water processing systems, waste packaging, shipping containers/casks, equipment decontamination facilities, waste storage/staging and disposal, the nuclear fuel shipment program, and the makeup and purifaction resin removal program.

  7. The Orbital Workshop Waste Management Compartment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This image is a wide-angle view of the Orbital Workshop waste management compartment. The waste management facilities presented a unique challenge to spacecraft designers. In addition to collection of liquid and solid human wastes, there was a medical requirement to dry all solid human waste products and to return the residue to Earth for examination. Liquid human waste (urine) was frozen for return to Earth. Total quantities of each astronaut's liquid and solid wastes were precisely measured. Cabin air was drawn into the toilet, shown on the wall at right in this photograph, and over the waste products to generate a flow of the waste in the desired direction. The air was then filtered for odor control and antiseptic purposes prior to being discharged back into the cabin.

  8. 1995 Baseline solid waste management system description

    SciTech Connect

    Anderson, G.S.; Konynenbelt, H.S.

    1995-09-01

    This provides a detailed solid waste system description that documents the treatment, storage, and disposal (TSD) strategy for managing Hanford`s solid low-level waste, low-level mixed waste, transuranic and transuranic mixed waste, and greater-than-Class III waste. This system description is intended for use by managers of the solid waste program, facility and system planners, as well as system modelers. The system description identifies the TSD facilities that constitute the solid waste system and defines these facilities` interfaces, schedules, and capacities. It also provides the strategy for treating each of the waste streams generated or received by the Hanford Site from generation or receipt through final destination.

  9. Waste Management Facilities Cost Information Report

    SciTech Connect

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  10. Perspectives on Past and Present Waste Disposal Practices: A Community-Based Participatory Research Project in Three Saskatchewan First Nations Communities

    PubMed Central

    Zagozewski, Rebecca; Judd-Henrey, Ian; Nilson, Suzie; Bharadwaj, Lalita

    2011-01-01

    The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatchewan First Nations Communities. Utilizing a qualitative approach, we aimed to gain an understanding of past and present waste disposal practices and to identify any human and environmental health concerns related to these practices. One to one interviews and sharing circles were conducted with Elders. Elders were asked to share their perspectives on past and present waste disposal practices and to comment on the possible impacts these practices may have on the environment and community health. Historically waste disposal practices were similar among communities. The homeowner generated small volumes of waste, was exclusively responsible for disposal and utilized a backyard pit. Overtime waste disposal evolved to weekly pick-up of un-segregated garbage with waste disposal and open trash burning in a community dump site. Dump site locations and open trash burning were identified as significant health issues related to waste disposal practices in these communities. This research raises issues of inequity in the management of waste in First Nations Communities. It highlights the need for long-term sustainable funding to support community-based waste disposal and management strategies and the development of First Nations centered and delivered educational programs to encourage the adoption and implementation of waste reduction, reutilization and recycling activities in these communities. PMID:21573032

  11. Negotiating equity for management of DOE wastes

    SciTech Connect

    Carnes, S.A.

    1994-09-01

    One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE`s waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholder and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholder and move toward a more optimal use of DOE`s waste management capabilities.

  12. Electronic waste management approaches: An overview

    SciTech Connect

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H.

    2013-05-15

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.

  13. Waste management units: Savannah River Site

    SciTech Connect

    Molen, G.

    1991-09-01

    This report indexes every waste management unit of the Savannah River Site. They are indexed by building number and name. The waste units are also tabulated by solid waste units receiving hazardous materials with a known release or no known release to the environment. It also contains information on the sites which has received no hazardous waste, and units which have received source, nuclear, or byproduct material only. (MB)

  14. Environmental Education: Compendium for Integrated Waste Management.

    ERIC Educational Resources Information Center

    California Integrated Waste Management Board, Sacramento.

    This compendium is a tool for bringing waste management education into classrooms. Curriculum materials gathered from across the country were reviewed by California's top environmental educators, both for correlation with the state's educational frameworks and for accuracy and completeness of waste management information. Materials that cover…

  15. Waste to energy – key element for sustainable waste management

    SciTech Connect

    Brunner, Paul H. Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  16. Benefits of On-Site Management of Environmental Restoration Wastes

    SciTech Connect

    Irwin, Michael J. ,P.E.; Wood, Craig, R.E.M.; Kwiecinski, Daniel, P.E.; Alanis, Saul

    2003-02-27

    As Sandia National Laboratories/New Mexico (SNL/NM) began assessing options under which to conduct the remediation of environmental restoration sites, it became clear that the standard routes for permanent disposal of waste contaminated with hazardous materials would be difficult. Publicly, local citizens' groups resisted the idea of large volumes of hazardous waste being transported through their communities. Regulations for the off-site disposal are complicated due to the nature of the environmental restoration waste, which included elevated tritium levels. Waste generated from environmental restoration at SNL/NM included debris and soils contaminated with a variety of constituents. Operationally, disposal of environmental restoration waste was difficult because of the everchanging types of waste generated during site remediation. As an alternative to standard hazardous waste disposal, SNL/NM proposed and received regulatory approval to construct a Corrective Action Management Unit (CAMU). By containing the remediation wastes on-site, SNL/NM's Environmental Restoration (ER) Program managed to eliminate transportation concerns from the public, worked with regulatory agencies to develop a safe, permanent disposal, and modified the waste disposal procedures to accommodate operational changes. SNL/NM accomplished the task and saved approximately $200 million over the life of the CAMU project, as compared to off-site disposal options.

  17. Nuclear Waste Management. Semiannual progress report, April 1984-September 1984

    SciTech Connect

    McElroy, J.L.; Powell, J.A.

    1984-12-01

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; and supporting studies. 33 figures, 13 tables.

  18. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    SciTech Connect

    McElroy, J.L.; Powell, J.A.

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

  19. Management of medical waste in Tanzanian hospitals.

    PubMed

    Manyele, S V; Anicetus, H

    2006-09-01

    A survey was conducted to study the existing medical waste management (MWM) systems in Tanzanian hospitals during a nationwide health-care waste management-training programme conducted from 2003 to 2005. The aim of the programme was to enable health workers to establish MWM systems in their health facilities aimed at improving infection prevention and control and occupational health aspects. During the training sessions, a questionnaire was prepared and circulated to collect information on the MWM practices existing in hospitals in eight regions of the Tanzania. The analysis showed that increased population and poor MWM systems as well as expanded use of disposables were the main reasons for increased medical wastes in hospitals. The main disposal methods comprised of open pit burning (50%) and burying (30%) of the waste. A large proportion (71%) of the hospitals used dust bins for transporting waste from generation points to incinerator without plastic bags. Most hospitals had low incineration capacity, with few of them having fire brick incinerators. Most of the respondents preferred on-site versus off-site waste incineration. Some hospitals were using untrained casual labourers in medical waste management and general cleanliness. The knowledge level in MWM issues was low among the health workers. It is concluded that hospital waste management in Tanzania is poor. There is need for proper training and management regarding awareness and practices of medical waste management to cover all carders of health workers in the country. PMID:18254511

  20. Waste management facilities cost information for transuranic waste

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report`s information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  1. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  2. Waste Management Facilities cost information for low-level waste

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  3. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann.

    1992-01-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  4. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann

    1992-03-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  5. Federal facilities compliance act waste management

    SciTech Connect

    Bowers, J; Gates-Anderson, D; Hollister, R; Painter, S

    1999-07-06

    Site Treatment Plans (STPs) developed through the Federal Facilities Compliance Act pose many technical and administrative challenges. Legacy wastes managed under these plans require Land Disposal Restriction (LDR) compliance through treatment and ultimate disposal. Although capacity has been defined for most of the Department of Energy wastes, many waste streams require further characterization and many need additional treatment and handling beyond LDR criteria to be able to dispose of the waste. At Lawrence Livermore National Laboratory (LLNL), the Hazardous Waste Management Division has developed a comprehensive Legacy Waste Program. The program directs work to manage low level and mixed wastes to ensure compliance with nuclear facility rules and its STP. This paper provides a survey of work conducted on these wastes at LLNL. They include commercial waste treatment and disposal, diverse forms of characterization, inventory maintenance and reporting, on-site treatment, and treatability studies. These activities are conducted in an integrated fashion to meet schedules defined in the STP. The processes managing wastes are dynamic due to required integration of administrative, regulatory, and technical concerns spanning the gamut to insure safe proper disposal.

  6. Biomedical waste management operating plan. Revision C

    SciTech Connect

    Not Available

    1996-02-14

    Recent national incidents involving medical and/or infectious wastes indicated the need for tighter control of medical wastes. Within the last five years, improper management of medical waste resulted in the spread of disease, reuse of needles by drug addicts, and the closing of large sections of public beaches due to medical waste that washed ashore from ocean disposal. Several regulations, both at the federal and state level, govern management (i.e., handling, storage, transport, treatment, and disposal) of solid or liquid waste which may present a threat of infection to humans. This waste, called infectious, biomedical, biohazardous, or biological waste, generally includes non-liquid human tissue and body parts; laboratory waste which contains human disease-causing agents; discarded sharps; human blood, blood products, and other body fluids. The information that follows outlines and summarizes the general requirements of each standard or rule applicable to biohazardous waste management. In addition, it informs employees of risks associated with biohazardous waste management.

  7. Biomedical waste management operating plan. Revision D

    SciTech Connect

    Chivington, G.K.

    1997-03-01

    Recent national incidents involving medical and/or infectious wastes indicated the need for tighter control of medical wastes. Within the last five years, improper management of medical waste resulted in the spread of disease, reuse of needles by drug addicts, and the closing of large sections of public beaches due to medical waste that washed ashore from ocean disposal. This information outlines and summarizes the general requirements of each standard or rule applicable to biohazardous waste management. In addition, it informs employees of risks associated with biohazardous waste management. Several government agencies recognized the need for regulations which prescribe safeguards to protect workers and the public against hazards associated with exposure to blood and certain body fluids potentially containing bloodborne pathogens. This information will assist employers and employees in understanding and complying with the applicable regulations.

  8. Biomedical waste management operating plan. Revision E

    SciTech Connect

    Chivington, G.K.

    1997-04-01

    Recent national incidents involving medical and/or infectious wastes indicated the need for tighter control of medical wastes. Within the last five years, improper management of medical waste resulted in the spread of disease, reuse of needles by drug addicts, and the closing of large sections of public beaches due to medical waste that washed ashore from ocean disposal. This information outlines and summarizes the general requirements of each standard or rule applicable to biohazardous waste management. In addition, it informs employees of risks associated with biohazardous waste management. Several government agencies recognized the need for regulations which prescribe safeguards to protect workers and the public against hazards associated with exposure to blood and certain body fluids potentially containing bloodborne pathogens. This information will assist employers and employees in understanding and complying with the applicable regulations.

  9. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2012-10-01 2012-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide...

  10. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2011-10-01 2011-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide...

  11. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2013-10-01 2013-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide...

  12. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2010-10-01 2010-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide...

  13. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2014-10-01 2014-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide...

  14. Household hazardous waste management: a review.

    PubMed

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. PMID:25528172

  15. High-level waste qualification: Managing uncertainty

    SciTech Connect

    Pulsipher, B.A.

    1993-09-01

    A vitrification facility is being developed by the U.S. Department of Energy (DOE) at the West Valley Demonstration Plant (WVDP) near Buffalo, New York, where approximately 300 canisters of high-level nuclear waste glass will be produced. To assure that the produced waste form is acceptable, uncertainty must be managed. Statistical issues arise due to sampling, waste variations, processing uncertainties, and analytical variations. This paper presents elements of a strategy to characterize and manage the uncertainties associated with demonstrating that an acceptable waste form product is achieved. Specific examples are provided within the context of statistical work performed by Pacific Northwest Laboratory (PNL).

  16. Environmental management of quarries as waste disposal facilities.

    PubMed

    El-Fadel, M; Sadek, S; Chahine, W

    2001-04-01

    Problems associated with the disposal of municipal solid waste have become a source of public concern worldwide as awareness of potential adverse environmental impacts and health threats from solid waste has increased. Communities are concerned about the generation and management of solid waste to the extent of refusing to allow new disposal facilities near their homes, often after witnessing the legacy of existing facilities. Under these conditions, the development of national policies for the management of solid waste becomes highly political, all while requiring appropriate technical solutions that ensure environmental protection and proper management plans that support an acceptable solution for the disposal of municipal solid waste. In some locations, the conversion of old quarries into well-engineered and controlled landfills appears as a promising solution to a continuously increasing problem, at least for many decades to come. This paper describes the environmental impacts associated with solid waste disposal in a converted quarry site and the mitigation measures that can be adopted to alleviate potential adverse impacts. Environmental management and monitoring plans are also discussed in the context of ensuring adequate environmental protection during and after the conversion process. PMID:11289451

  17. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect

    Kirk, N.

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  18. Waste to energy--key element for sustainable waste management.

    PubMed

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. PMID:24630214

  19. National solid waste management plan for Iraq.

    PubMed

    Knowles, James A

    2009-06-01

    After decades of turmoil and international sanctions much of the key civil infrastructure within Iraq has fallen into disrepair, leading to a considerable decline in the provision of basic and essential municipal services. This is particularly true of waste and resource management services that have seen years of underdevelopment and deterioration. This has resulted in a lack of provision of basic public services in the waste sector which have been replaced by a burgeoning unregulated informal market in waste collection, disposal and recycling. In response, a National Solid Waste Management Plan (NSWMP) for Iraq was developed in 2007, to plan for the strategic development of all aspects of waste management in the country over the coming 20 years. In particular, the NSWMP focuses on policy development and integrated planning regarding regulatory framework, economic aspects, institutional capacity, citizen and technical education, and technical and operational development. This paper summarizes the key objectives, challenges and subsequent recommendations contained in the NSWMP for Iraq. PMID:19470543

  20. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    SciTech Connect

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  1. Overview assessment of nuclear-waste management

    NASA Astrophysics Data System (ADS)

    Burton, B. W.; Gutschick, V. P.; Perkins, B. A.; Reynolds, C. L.; Rodgers, J. C.; Steger, J. G.; Thompson, T. K.; Trocki, L. K.; Wewerka, E. M.; Wheeler, M. L.

    1982-08-01

    The environmental control technologies associated with Department of Energy nuclear waste management programs were reviewed and the most urgent problems requiring further action or follow up were identified. In order of decreasing importance they are: (1) shallow land disposal technology development; (2) active uranium mill tailings piles; (3) uranium mine dewatering; (4) site decommissioning; (5) exhumation/treatment of transuranic waste at Idaho National Engineering Laboratory; (6) uranium mine spoils; and (7) medical/institutional wastes.

  2. International perspectives on hazardous waste management

    SciTech Connect

    Forester, W.S.

    1987-01-01

    In 1984, the International Solid Wastes and Public Cleansing Association (I.S.W.A.) approved the formation of an international working group on hazardous wastes. This book contains the edited final reports of the twelve national organisations which formed this working group. Also included is a review and assessment of various national policies and programs for waste management, together with recommendations and suggested strategies for the future.

  3. Precision Management of Cattle Feedlot Waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle feedlot nutrient waste management is a topic of increasing environmental, sociological, and regulatory concern. This report investigates methods adapted from the management of saline soils for application to feedlot surface management as well operation of a vegetative treatment area (VTA) ut...

  4. Hazardous waste management in the Pacific basin

    SciTech Connect

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G.; Carpenter, R.A.; Indriyanto, S.H.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  5. Is Industry Managing Its Wastes Properly?

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Industry is faced with handling, disposing and recovering vast amounts of waste, much of it as a result of present pollution control technology. Industry has found the technology available, expensive and, without regulation, easy to ignore. Many industries are therefore improperly managing their wastes. (BT)

  6. Managing America`s solid waste

    SciTech Connect

    Not Available

    1998-03-02

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  7. Municipal Solid Waste - Sustainable Materials Management

    EPA Science Inventory

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  8. Land Use Management for Solid Waste Programs

    ERIC Educational Resources Information Center

    Brown, Sanford M., Jr.

    1974-01-01

    The author discusses the problems of solid waste disposal and examines various land use management techniques. These include the land use plan, zoning, regionalization, land utilities, and interim use. Information concerning solid waste processing site zoning and analysis is given. Bibliography included. (MA)

  9. Fossil energy waste management. Technology status report

    SciTech Connect

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  10. Toward integrated design of waste management technologies

    SciTech Connect

    Carnes, S.A.; Wolfe, A.K.

    1993-11-01

    What technical, economic and institutional factors make radioactive and/or hazardous waste management technologies publicly acceptable? The goal of this paper is to initiate an identification of factors likely to render radioactive and hazardous waste management technologies publicly acceptable and to provide guidance on how technological R&D might be revised to enhance the acceptability of alternative waste management technologies. Technology development must attend to the full range of technology characteristics (technical, engineering, physical, economic, health, environmental, and socio-institutional) relevant to diverse stakeholders. ORNL`s efforts in recent years illustrate some attempts to accomplish these objectives or, at least, to build bridges toward the integrated design of waste management technologies.

  11. A Program on Hazardous Waste Management.

    ERIC Educational Resources Information Center

    Kummler, Ralph H.; And Others

    1989-01-01

    Provides an overview of the "Hazardous Waste Management Graduate Certificate" program at Wayne State University. Describes four required courses and nine optional courses. Discusses the development of a Master program and the curriculum of the Master program. (YP)

  12. Radioactive waste management in the former USSR

    SciTech Connect

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  13. Tank waste remediation system configuration management plan

    SciTech Connect

    Vann, J.M.

    1998-01-08

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

  14. A Spanish model for quantification and management of construction waste.

    PubMed

    Solís-Guzmán, Jaime; Marrero, Madelyn; Montes-Delgado, Maria Victoria; Ramírez-de-Arellano, Antonio

    2009-09-01

    Currently, construction and demolition waste (C&D waste) is a worldwide issue that concerns not only governments but also the building actors involved in construction activity. In Spain, a new national decree has been regulating the production and management of C&D waste since February 2008. The present work describes the waste management model that has inspired this decree: the Alcores model implemented with good results in Los Alcores Community (Seville, Spain). A detailed model is also provided to estimate the volume of waste that is expected to be generated on the building site. The quantification of C&D waste volume, from the project stage, is essential for the building actors to properly plan and control its disposal. This quantification model has been developed by studying 100 dwelling projects, especially their bill of quantities, and defining three coefficients to estimate the demolished volume (CT), the wreckage volume (CR) and the packaging volume (CE). Finally, two case studies are included to illustrate the usefulness of the model to estimate C&D waste volume in both new construction and demolition projects. PMID:19523801

  15. A Spanish model for quantification and management of construction waste

    SciTech Connect

    Solis-Guzman, Jaime Marrero, Madelyn; Montes-Delgado, Maria Victoria; Ramirez-de-Arellano, Antonio

    2009-09-15

    Currently, construction and demolition waste (C and D waste) is a worldwide issue that concerns not only governments but also the building actors involved in construction activity. In Spain, a new national decree has been regulating the production and management of C and D waste since February 2008. The present work describes the waste management model that has inspired this decree: the Alcores model implemented with good results in Los Alcores Community (Seville, Spain). A detailed model is also provided to estimate the volume of waste that is expected to be generated on the building site. The quantification of C and D waste volume, from the project stage, is essential for the building actors to properly plan and control its disposal. This quantification model has been developed by studying 100 dwelling projects, especially their bill of quantities, and defining three coefficients to estimate the demolished volume (CT), the wreckage volume (CR) and the packaging volume (CE). Finally, two case studies are included to illustrate the usefulness of the model to estimate C and D waste volume in both new construction and demolition projects.

  16. SEMINAR PUBLICATION: ORGANIC AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The organic chemicals contained in wastes processed during waste management operations can volatilize into the atmosphere and cause toxic or carcinogenic effects or contribute to ozone formation. Because air emissions from waste management operations pose a threat to human health...

  17. Mixed Waste Focus Area program management plan

    SciTech Connect

    Beitel, G.A.

    1996-10-01

    This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

  18. LIFE-CYCLE EVALUATION OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL SOLID WASTE MANAGEMENT IN THE UNITED STATES

    EPA Science Inventory

    The paper discusses a life-cycle evaluation of greenhouse gas (GHG) emissions from municipal soild waste (MSW) management in the U.S. (NOTE: Using integrated waste management, recycling/composting, waste-to-energy, and better control of landfill gas, communities across the U.S. a...

  19. Towards sustainable solid waste management: Investigating household participation in solid waste management

    NASA Astrophysics Data System (ADS)

    Akil, A. M.; Ho, C. S.

    2014-02-01

    The aim of this paper is to assess the readiness of Iskandar Malaysia community to accept solid waste recycling. The research is based on quantitative research design and descriptive survey of the households at Iskandar Malaysia using the stratified sampling method for a sample of 670. The survey was conducted using a structured questionnaire that covered two basic principles; a) recycling knowledge; b) willingness to recycle. Data was analysed using the SPSS to carry out statistical analysis. The finding shows households' knowledge towards the solid waste recycling is good and positive. However, finding also shows that respondents have incomprehensive knowledge on the method of disposal as more than 50% of householders only recycle papers and textiles. Most of the households agreed to participate in the activities of the separation of waste if the facility will be made available at their kerbside. Therefore, it is recommended that government should provide more in-depth knowledge by intensifying the awareness of the households in the recycling programs. In term of urban planning and management, the location of recycling facility can be analysing by using GIS. This is important to understand the catchment area of each neighbourhood or precinct to ensure effective household participation.

  20. Innovative technologies for managing oil field waste.

    SciTech Connect

    Veil, J. A.; Environmental Assessment

    2003-09-01

    Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

  1. OCRWM International Cooperation in Nuclear Waste Management

    SciTech Connect

    Jackson, R.; Levich, R.; Strahl, J.

    2002-02-27

    With the implementation of nuclear power as a major energy source, the United States is increasingly faced with the challenges of safely managing its inventory of spent nuclear materials. In 2002, with 438 nuclear power facilities generating electrical energy in 31 nations around the world, the management of radioactive material including spent nuclear fuel and high-level radioactive waste, is an international concern. Most of the world's nuclear nations maintain radioactive waste management programs and have generally accepted deep geologic repositories as the long-term solution for disposal of spent nuclear fuel and high-level radioactive waste. Similarly, the United States is evaluating the feasibility of deep geologic disposal at Yucca Mountain, Nevada. This project is directed by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM), which has responsibility for managing the disposition of spent nuclear fuel produced by commercial nuclear power facilities along with U.S. government-owned spent nuclear fuel and high-level radioactive waste. Much of the world class science conducted through the OCRWM program was enhanced through collaboration with other nations and international organizations focused on resolving issues associated with the disposition of spent nuclear fuel and high-level radioactive waste.

  2. Management of chemical toxic wastes

    SciTech Connect

    Gold, L.

    1982-05-25

    Two regimes of vertical shaft furnace operation can be employed to slag encapsulate hazardous chemical wastes. One of these is similar to a method applicable to radioactive wastes, involving the pouring of hot molten slag from a coal reactor over the hazardous matter contained in a suitable designed crucible. The other method is especially appropriate for the treatment of chemical wastes that have become mixed with a great deal of soil or other diluent as must be handled as in the case of the love canal incident. It consists of feeding the contaminated solid mass into the coal reactor with a predetermined amount of coal and limestone that will still admit an adequate heat balance to generate a carefully tailored slag to incorporate the reacted waste feedstock.

  3. Sustainable waste management through end-of-waste criteria development.

    PubMed

    Zorpas, Antonis A

    2016-04-01

    The Waste Framework Directive 2000/98 (WFD) contains specific requirements to define end-of-waste criteria (EWC). The main goal of EWC is to remove and eliminate the administrative loads of waste legislation for safe and high-quality waste materials, thereby facilitating and assisting recycling. The target is to produce effective with high quality of recyclables materials, promoting product standardization and quality and safety assurance, and improving harmonization and legal certainty in the recyclable material markets. At the same time, those objectives aim to develop a plan in order to improve the development and wider use of environmental technologies, which reduce pressure on environment and at the same time address the three dimensions of the Lisbon strategy: growth, jobs and environment. This paper presents the importance of EWC, and the approach of setting EWC as EWC affect several management systems as well as sustainable and clean technologies. PMID:26690583

  4. Energy aspects of solid waste management: Proceedings

    SciTech Connect

    Not Available

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  5. Energy aspects of solid waste management: Proceedings

    SciTech Connect

    Not Available

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  6. 1993 baseline solid waste management system description

    SciTech Connect

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford`s solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents.

  7. Commentary: Radioactive Wastes and Damage to Marine Communities

    ERIC Educational Resources Information Center

    Wallace, Bruce

    1974-01-01

    Discusses the effects of radioactive wastes on marine communities, with particular reference to the fitness of populations and the need for field and laboratory studies to provide evidence of ecological change. (JR)

  8. LIFE CYCLE ANALYSIS: ITS PLACE IN WASTE MANAGEMENT

    EPA Science Inventory

    When the waste management hierarchy is fully understood by waste management decision makers, there seems to be agreement that reducing waste is one of the correct objectives. educing waste at the source required analyzing the waste stream and making appropriate adjustments such a...

  9. Design for waste-management system

    NASA Technical Reports Server (NTRS)

    Guarneri, C. A.; Reed, A.; Renman, R.

    1973-01-01

    Study was made and system defined for water-recovery and solid-waste processing for low-rise apartment complexes. System can be modified to conform with unique requirements of community, including hydrology, geology, and climate. Reclamation is accomplished by treatment process that features reverse-osmosis membranes.

  10. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as...

  11. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as...

  12. Waste Management Program. Technical progress report, October-December 1982

    SciTech Connect

    1983-07-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, in situ storage or disposal, waste from development and characterization, process and equipment development, and low-level waste management are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  13. ICPP Waste Management Technology Development Program

    SciTech Connect

    Hogg, G.W.; Olson, A.L.; Knecht, D.A.; Bonkoski, M.J.

    1993-01-01

    As a result of the decision to curtail reprocessing at the Idaho Chemical Processing Plant (ICPP), a Spent fuel and Waste Management Technology Development plan has been implemented to identify acceptable options for disposing of the (1) sodium-bearing liquid radioactive waste, (2) radioactive calcine, and (3) irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The plan was developed jointly by DOE and WINCO.

  14. Managing previously disposed waste to today's standards

    SciTech Connect

    Not Available

    1990-01-01

    A Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL) in 1952 for controlled disposal of radioactive waste generated at the INEL. Between 1954 and 1970 waste characterized by long lived, alpha emitting radionuclides from the Rocky Flats Plant was also buried at this site. Migration of radionuclides and other hazardous substances from the buried Migration of radionuclides and other hazardous substances from the buried waste has recently been detected. A Buried Waste Program (BWP) was established to manage cleanup of the buried waste. This program has four objectives: (1) determine contaminant sources, (2) determine extent of contamination, (3) mitigate migration, and (4) recommend an alternative for long term management of the waste. Activities designed to meet these objectives have been under way since the inception of the program. The regulatory environment governing these activities is evolving. Pursuant to permitting activities under the Resource Conservation and Recovery Act (RCRA), the Department of Energy (DOE) and the Environmental Protection Agency (EPA) entered into a Consent Order Compliance Agreement (COCA) for cleanup of past practice disposal units at the INEL. Subsequent to identification of the RWMC as a release site, cleanup activities proceeded under dual regulatory coverage of RCRA and the Atomic Energy Act. DOE, EPA, and the State of Idaho are negotiating a RCRA/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interagency Agreement (IAG) for management of waste disposal sites at the INEL as a result of the November 1989 listing of the INEL on the National Priority List (NPL). Decision making for selection of cleanup technology will be conducted under the CERCLA process supplemented as required to meet the requirements of the National Environmental Policy Act (NEPA). 7 figs.

  15. Integrated waste and water management system

    NASA Technical Reports Server (NTRS)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  16. Waste management for JAERI fusion reactors

    NASA Astrophysics Data System (ADS)

    Tobita, K.; Nishio, S.; Konishi, S.; Jitsukawa, S.

    2004-08-01

    In the fusion reactor design study at Japan Atomic Energy Institute (JAERI), several waste management strategies were assessed. The assessed strategies are: (1) reinforced neutron shield to clear the massive ex-shielding components from regulatory control; (2) low aspect ratio tokamak to reduce the total waste; (3) reuse of liquid metal breeding material and neutron shield. Combining these strategies, the weight of disposal waste from a low aspect ratio reactor VECTOR is expected to be comparable with the metal radwaste from a light water reactor (˜4000 t).

  17. Radioactive Waste Management in A Hospital

    PubMed Central

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  18. Nuclear waste management. Quarterly progress report, January-March 1980

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-06-01

    Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

  19. Municipal solid-waste management in Istanbul.

    PubMed

    Kanat, Gurdal

    2010-01-01

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul. PMID:20185290

  20. Municipal solid-waste management in Istanbul

    SciTech Connect

    Kanat, Gurdal

    2010-08-15

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.

  1. Community Readiness for Self-Managed School

    ERIC Educational Resources Information Center

    Rajbhandari, Mani Man Singh

    2007-01-01

    The concept of Self-managing schools involving local community members, teachers and parents with the formation of School Management Committee is gaining ground in Nepal after the world conference on education for all (WCEFA) held in Jomtien, Thailand in the year 1990. Transferring the management of public schools in the hand of willing community…

  2. Advanced waste management technology evaluation

    NASA Technical Reports Server (NTRS)

    Couch, H.; Birbara, P.

    1996-01-01

    The purpose of this program is to evaluate the feasibility of steam reforming spacecraft wastes into simple recyclable inorganic salts, carbon dioxide and water. Model waste compounds included cellulose, urea, methionine, Igapon TC-42, and high density polyethylenes. These are compounds found in urine, feces, hygiene water, etc. The gasification and steam reforming process used the addition of heat and low quantities of oxygen to oxidize and reduce the model compounds.The studied reactions were aimed at recovery of inorganic residues that can be recycled into a closed biologic system. Results indicate that even at very low concentrations of oxygen (less than 3%) the formation of a carbonaceous residue was suppressed. The use of a nickel/cobalt reforming catalyst at reaction temperature of 1600 degrees yielded an efficient destruction of the organic effluents, including methane and ammonia. Additionally, the reforming process with nickel/cobalt catalyst diminished the noxious odors associated with butyric acid, methionine and plastics.

  3. Stakeholder analysis for industrial waste management systems.

    PubMed

    Heidrich, Oliver; Harvey, Joan; Tollin, Nicola

    2009-02-01

    Stakeholder approaches have been applied to the management of companies with a view to the improvement of all areas of performance, including economic, health and safety, waste reduction, future policies, etc. However no agreement exists regarding stakeholders, their interests and levels of importance. This paper considers stakeholder analysis with particular reference to environmental and waste management systems. It proposes a template and matrix model for identification of stakeholder roles and influences by rating the stakeholders. A case study demonstrates the use of these and their ability to be transferred to other circumstances and organizations is illustrated by using a large educational institution. PMID:18790624

  4. Shuttle era waste management and biowaste monitoring

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Fogal, G. L.

    1976-01-01

    The acquisition of crew biomedical data has been an important task on manned space missions. The monitoring of biowastes from the crew to support water and mineral balance studies and endocrine studies has been a valuable part of this activity. This paper will present a review of waste management systems used in past programs. This past experience will be cited as to its influence on the Shuttle design. Finally, the Shuttle baseline waste management system and the proposed Shuttle biomedical measurement and sampling systems will be presented.

  5. Greenhouse gas accounting and waste management.

    PubMed

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities. PMID:19808731

  6. Waste Management Program. Technical progress report, Aporil-June 1983

    SciTech Connect

    1984-02-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  7. Issues that Drive Waste Management Technology Development for Space Missions

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai

    2005-01-01

    Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.

  8. Neutralized current acid waste consolidation management plan

    SciTech Connect

    Powell, W.J.; Brown, R.G.; Galbraith, J.; Jensen, C.; Place, D.E.; Reddick, G.W.; Zuroff, W.; Brothers, A.J.

    1996-01-01

    The scope of this evaluation is to recommend a management plan for the high-heat tank waste, including neutralized current acid waste (NCAW) in AY and AZ Tank Farms, and tank C-106 waste. The movement of solids, liquids and salt cake in the designated tank farms is included. Decision analysis techniques were used to determine a recommended alternative. The recommended course of action was replacement of a 75-hp mixer pump in tank AY-102 and in-tank concentration of tank AZ-102 supernate. The alternative includes transfer fo tank C-106 sludge to tank AY-102, then transfer to tank AY-102 and tank C-106 sludge to tank AZ-101 using the new 75-hp mixer pump installed in tank AY-102. Tank AZ-101 becomes a storage tank for high-level waste (HLW) sludge, with the capacity to mix and transfer sludge as desired.

  9. Scientific Basis for Nuclear Waste Management

    NASA Astrophysics Data System (ADS)

    Trask, Newell J.

    As a result of the Reagan administration's commitment to nuclear energy as a significant future energy source and of attempts by the 97th Congress to grapple with legislative aspects of the problem, increased attention has focused recently on the problem of safely disposing of nuclear waste. These proceedings of the Third Symposium on Nuclear Waste Management of the Materials Research Society provide insight into the status of investigations on the subject as of late 1980. As with volumes 1 and 2 of this series, the 77 contributions are all short progress reports of ongoing research with the emphasis fittingly on materials science. Readers who wish extensive background material on the problems of nuclear-waste management and disposal, details of specific sites, or overviews of the programs of research in this country and abroad will have to look elsewhere.

  10. Integrated solid waste management of Minneapolis, Minnesota

    SciTech Connect

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

  11. Progress and challenges to the global waste management system.

    PubMed

    Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn

    2014-09-01

    Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. PMID:24938296

  12. International High Level Nuclear Waste Management

    ERIC Educational Resources Information Center

    Dreschhoff, Gisela; And Others

    1974-01-01

    Discusses the radioactive waste management in Belgium, Canada, France, Germany, India, Italy, Japan, the United Kingdom, the United States, and the USSR. Indicates that scientists and statesmen should look beyond their own lifetimes into future centuries and millennia to conduct long-range plans essential to protection of future generations. (CC)

  13. Solid Waste Management Planning--A Methodology

    ERIC Educational Resources Information Center

    Theisen, Hilary M.; And Others

    1975-01-01

    This article presents a twofold solid waste management plan consisting of a basic design methodology and a decision-making methodology. The former provides a framework for the developing plan while the latter builds flexibility into the design so that there is a model for use during the planning process. (MA)

  14. Management of uncontrolled hazardous waste sites

    SciTech Connect

    Not Available

    1985-01-01

    This book is a compilation of papers presented at a conference on the management of uncontrolled hazardous waste sites. Papers were presented in the following topics: federal and state programs; sampling and monitoring; leaking tanks; in-situ treatment; site remediation; banner technology; storage/disposal; endangerment assessment; risk assessment techniques; and research and development.

  15. General survey of solid-waste management

    NASA Technical Reports Server (NTRS)

    Reese, T. G.; Wadle, R. C.

    1974-01-01

    Potential ways of providing solid-waste management for a building complex serviced by a modular integrated utility system (MIUS) were explored. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  16. Waste management project technical baseline description

    SciTech Connect

    Sederburg, J.P.

    1997-08-13

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

  17. Navigating the Hazardous Waste Management Maze.

    ERIC Educational Resources Information Center

    Voelkle, James P.

    1997-01-01

    Hazardous waste management is a continual process. Administrators should maintain good relations with state agencies and the Environmental Protection Agency and use them as resources. Contacts with businesses and professional groups as well as forming coalitions with neighboring districts are ways to share information and expenses. (MLF)

  18. Legislative and regulatory aspects of radioactive waste management in France

    SciTech Connect

    Niel, J.C.

    1996-08-01

    The French legislative and regulatory framework for safe management of radioactive waste is presented. Emphasis is put on legislative aspects for the management of high-level waste and on the operation of surface disposal for low-level waste. Other topics such as policy and issues for very low-level waste or dismantling are also briefly developed.

  19. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  20. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., glass, batteries, food waste, and metals (e.g., aluminum cans, metals-containing devices); segregation... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Waste management plan. 60.55c Section...: Hospital/Medical/Infectious Waste Incinerators § 60.55c Waste management plan. The owner or operator of...

  1. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., glass, batteries, food waste, and metals (e.g., aluminum cans, metals-containing devices); segregation... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Waste management plan. 60.55c Section...: Hospital/Medical/Infectious Waste Incinerators § 60.55c Waste management plan. The owner or operator of...

  2. Nuclear waste management. Quarterly progress report, October-December 1979

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-04-01

    Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

  3. Twelfth annual US DOE low-level waste management conference

    SciTech Connect

    Not Available

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  4. Waste Material Management: Energy and materials for industry

    SciTech Connect

    Not Available

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  5. Plasma reactor waste management systems

    NASA Technical Reports Server (NTRS)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  6. Public involvement in radioactive waste management decisions

    SciTech Connect

    1994-04-01

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

  7. Recent Developments in Nuclear Waste Management in Canada

    SciTech Connect

    King, F.

    2002-02-27

    This paper describes recent developments in the field of nuclear waste management in Canada with a focus on management of nuclear fuel waste. Of particular significance is the April 2001 tabling in the Canadian House of Commons of Bill C-27, An Act respecting the long-term management of nuclear fuel waste. At the time of finalizing this paper (January 15, 2002), Bill C-27 is in Third Reading in the House of Commons and is expected to move to the Senate in February. The Nuclear Fuel Waste Act is expected to come into force later in 2002. This Act requires the three nuclear utilities in Canada owning nuclear fuel waste to form a waste management organization and deposit funds into a segregated fund for nuclear fuel waste long-term management. The waste management organization is then required to perform a study of long-term management approaches for nuclear fuel waste and submit the study to the federal government within three years. The federal government will select an approach for implementation by the waste management organization. The paper discusses the activities that the nuclear fuel waste owners currently have underway to prepare for the formation of the waste management organization. As background, the paper reviews the status of interim storage of nuclear fuel waste in Canada, and describes previous initiatives related to the development of a national strategy for nuclear fuel waste long-term management.

  8. Waste Information Management System-2012 - 12114

    SciTech Connect

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.; Roelant, D.

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has

  9. Northeast Waste Management Alliance (NEWMA). Annual report FY 1993

    SciTech Connect

    Goland, A.N.; Kaplan, E.

    1993-11-01

    Funding was provided to Brookhaven National Laboratory in the fourth quarter of FY93 to establish a regional alliance as defined by Dr. Clyde Frank during his visit to BNL on March 7, 1993. In collaboration with the Long Island Research Institute (LIRI), BNL developed a business plan for the Northeast Waste Management Alliance (NEWMA). Concurrently, informal discussions were initiated with representatives of the waste management industry, and meetings were held with local and state regulatory and governmental personnel to obtain their enthusiasm and involvement. A subcontract to LIRI was written to enable it to formalize interactions with companies offering new waste management technologies selected for their dual value to the DOE and local governments in the Northeast. LIRI was founded to develop and coordinate economic growth via introduction of new technologies. As a not-for-profit institution it is in an ideal position to manage the development of NEWMA through ready access to venture capital and strong interactions with the business community, universities, and BNL. Another subcontract was written with a professor at SUNY/Stony Brook to perform an evaluation of new pyrolitic processes, some of which may be appropriate for development by NEWMA. Independent endorsement of the business plan recently by another organization, GETF, with broad knowledge of DOE/EM-50 objectives, provides a further incentive for moving rapidly to implement the NEWMA strategy. This report describes progress made during the last quarter of FY93.

  10. Tank waste remediation system risk management list

    SciTech Connect

    Collard, L.B.

    1995-10-31

    The Tank Waste Remedation System (TWRS) Risk Management List and it`s subset of critical risks, the Critical Risk Management List, provide a tool to senior RL and WHC management (Level-1 and -2) to manage programmatic risks that may significantly impact the TWRS program. The programmatic risks include cost, schedule, and performance risks. Performance risk includes technical risk, supportability risk (such as maintainability and availability), and external risk (i.e., beyond program control, for example, changes in regulations). The risk information includes a description, its impacts, as evaluation of the likelihood, consequences and risk value, possible mitigating actions, and responsible RL and WHC managers. The issues that typically form the basis for the risks are presented in a separate table and the affected functions are provided on the management lists.

  11. Managing lead-based paint abatement wastes

    SciTech Connect

    Steele, N.L.C.

    1994-12-31

    Renovation, remodeling, demolition, and surface preparation for painting, in addition to specified lead abatement, are all activities that have the potential to produce hazardous wastes if a property was painted with lead-based paint. Lead-based paint was used on residential structures until 1978, when most residential uses were banned by the Consumer Products Safety Council. Prior to the 1950s, paints for residential uses may have contained up to 50% lead by weight. Today, commercial and military paints may still contain lead and can be used on non-residential structures. The lead content of residential paints is limited to 0.06% lead (by weight) in the dried film. This paper provides an overview of some of the information needed to properly manage lead-based paint abatement wastes. The issues covered in this paper include waste classification, generator status, treatment, and land disposal restrictions. The author assumes that the reader is familiar with the provision of the Health and Safety Code and the California Code of Regulations that pertain to generation and management of hazardous wastes. Citations provided herein do not constitute an exhaustive list of all the regulations with which a generator of hazardous waste must comply.

  12. Unit costs of waste management operations

    SciTech Connect

    Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

    1994-04-01

    This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ``cradle to grave``) cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics.

  13. A generic hazardous waste management training program

    SciTech Connect

    Carter, R.J.; Karnofsky, B.

    1988-01-01

    The main purpose of this training program element is to familiarize personnel involved in hazardous waste management with the goals of RCRA and how they are to be achieved. These goals include: to protect health and the environment; to conserve valuable material and energy resources; to prohibit future open dumping on the land; to assure that hazardous waste management practices are conducted in a manner which protects human health and the environment; to insure that hazardous waste is properly managed thereby reducing the need for corrective actions in the future; to establish a national policy to reduce or eliminate the generation of hazardous waste, wherever feasible. Another objective of this progam element is to present a brief overview of the RCRA regulations and how they are implemented/enforced by the Environmental Protection Agency (EPA) and each of the fifty states. This element also discusses where the RCRA regulations are published and how they are updated. In addition it details who is responsible for compliance with the regulations. Finally, this part of the training program provides an overview of the activities and materials that are regulated. 1 ref.

  14. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste...) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA... petitioned waste on human health and the environment. DATES: Comments must be received on or before...

  15. Reviewing case management in community psychiatric care.

    PubMed

    Bush, Tony

    Case management is a process of psychiatric care provision that uses a structured and focused approach to effectively assess individual patient's needs. The aim of this article is to examine the current status of case management in NHS community mental health care in terms of therapeutic impact and relevance. PMID:16209396

  16. Community Perceptions of Self-Managing Schools.

    ERIC Educational Resources Information Center

    Townsend, Tony

    In Victoria, Australia, every government school in the state is a self-managing school. The Victorian system of school-based management is called "Schools of the Future." This paper presents findings of a study that sought opinions of the school community toward various aspects of the Schools of the Future program and its outcomes. A questionnaire…

  17. Solid waste management complex site development plan

    SciTech Connect

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated.

  18. Determinants of sustainability in solid waste management - The Gianyar Waste Recovery Project in Indonesia

    SciTech Connect

    Zurbruegg, Christian; Gfrerer, Margareth; Ashadi, Henki; Brenner, Werner; Kueper, David

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.

  19. Radioactive Waste Management in Central Asia - 12034

    SciTech Connect

    Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid

    2012-07-01

    After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through the so

  20. Quarterly Briefing Book on Environmental and Waste Management Activities

    SciTech Connect

    Brown, M.C.

    1991-06-01

    The purpose of the Quarterly Briefing Book on Environmental and Waste Management Activities is to provide managers and senior staff at the US Department of Energy-Richland Operations Office and its contractors with timely and concise information on Hanford Site environmental and waste management activities. Each edition updates the information on the topics in the previous edition, deletes those determined not to be of current interest, and adds new topics to keep up to date with changing environmental and waste management requirements and issues. Section A covers current waste management and environmental restoration issues. In Section B are writeups on national or site-wide environmental and waste management topics. Section C has writeups on program- and waste-specific environmental and waste management topics. Section D provides information on waste sites and inventories on the site. 15 figs., 4 tabs.

  1. Financial Management: Cash Management Practices in Florida Community Colleges.

    ERIC Educational Resources Information Center

    Spiwak, Rand S.

    A study was conducted to identify those variables appearing to affect cash management practices in Florida community colleges, and recommend prescriptive measures concerning these practices. The study methodology included informal discussions with the chief fiscal officers of each Florida community college and appropriate state board staff,…

  2. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China.

    PubMed

    Xiao, Lishan; Lin, Tao; Chen, Shaohua; Zhang, Guoqin; Ye, Zhilong; Yu, Zhaowu

    2015-01-01

    The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas. PMID:26690056

  3. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China

    PubMed Central

    Xiao, Lishan; Lin, Tao; Chen, Shaohua; Zhang, Guoqin; Ye, Zhilong; Yu, Zhaowu

    2015-01-01

    The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas. PMID:26690056

  4. Mine waste management legislation. Gold mining areas in Romania

    NASA Astrophysics Data System (ADS)

    Maftei, Raluca-Mihaela; Filipciuc, Constantina; Tudor, Elena

    2014-05-01

    Problems in the post-mining regions of Eastern Europe range from degraded land and landscapes, huge insecure dumps, surface cracks, soil pollution, lowering groundwater table, deforestation, and damaged cultural potentials to socio economic problems like unemployment or population decline. There is no common prescription for tackling the development of post-mining regions after mine closure nor is there a common definition of good practices or policy in this field. Key words : waste management, legislation, EU Directive, post mining Rosia Montana is a common oh 16 villages; one of them is also called Rosia Montana, a traditional mining Community, located in the Apuseni Mountains in the North-Western Romania. Beneath part of the village area lays one of the largest gold and silver deposits in Europe. In the Rosia Montana area mining had begun ever since the height of the Roman Empire. While the modern approach to mining demands careful remediation of environmental impacts, historically disused mines in this region have been abandoned, leaving widespread environmental damage. General legislative framework Strict regulations and procedures govern modern mining activity, including mitigation of all environmental impacts. Precious metals exploitation is put under GO no. 190/2000 re-published in 2004. The institutional framework was established and organized based on specific regulations, being represented by the following bodies: • The Ministry of Economy and Commerce (MEC), a public institution which develops the Government policy in the mining area, also provides the management of the public property in the mineral resources area; • The National Agency for the development and implementation of the mining Regions Reconstruction Programs (NAD), responsible with promotion of social mitigation measures and actions; • The Office for Industry Privatization, within the Education Ministry, responsible with privatization of companies under the CEM; • The National

  5. Life cycle cost estimating of waste management facilities

    SciTech Connect

    Shropshire, D.; Feizollahi, F.; Teheranian, B.; Waldman, M.

    1994-12-31

    Waste Management Facilities cost Information (WMFCI) provides a modular cost method for estimating planning-level life-cycle costs of waste management alternatives. This methodology includes over 120 cost modules that cover a variety of treatment, storage, disposal, and support facility options. The WMFCI method can be used to estimate virtually every technology option and related facilities needed by the Department of Energy for cradle-to-grave management of hazardous, radioactive, mixed waste, and spent nuclear fuel. Various waste streams covered by the WMFCI are low-level waste (LLW), mixed low-level waste (MLLW), alpha contaminated LLW, alpha contaminated MLLW, transuranic waste, spent nuclear fuel, Greater-Than-Class C and DOE equivalent special case wastes, and hazardous wastes. The methodology also contains cost versus capacity relationships for each cost module to aid in estimating various waste management configurations.

  6. USEPA's hierarchy for municipal solid waste management: Theory vs. practice

    SciTech Connect

    Matar, G. )

    1993-01-01

    This paper will address USEPA's hierarchy for municipal solid waste management (MSWM), which places source reduction and recycling above combustion and landfilling. Many have read this to mean that combustion and landfilling should only be considered after all recycling and reduction efforts have been explored. This mentality has not only left many communities in a MSWM capacity crisis, but also created planning problems for many others. Contrary to commonly held beliefs, it will be shown that the last two methods on the hierarchy should be considered from the beginning when planning for MSWM. It will also be shown that these methods are not antithetical to the first two methods, but are actually complimentary.

  7. Codes of practice and related issues in biomedical waste management

    SciTech Connect

    Moy, D.; Watt, C.

    1996-12-31

    This paper outlines the development of a National Code of Practice for biomedical waste management in Australia. The 10 key areas addressed by the code are industry mission statement; uniform terms and definitions; community relations - public perceptions and right to know; generation, source separation, and handling; storage requirements; transportation; treatment and disposal; disposal of solid and liquid residues and air emissions; occupational health and safety; staff awareness and education. A comparison with other industry codes in Australia is made. A list of outstanding issues is also provided; these include the development of standard containers, treatment effectiveness, and reusable sharps containers.

  8. A NEW RUSSIAN WASTE MANAGEMENT INSTALLATION

    SciTech Connect

    Griffith, Andrew; Engxy, Thor; Endregard, Monica; Schwab, Patrick; Nazarian, Ashot; Krumrine, Paul; Backe, Steinar; Gorin, Stephen; Evans, Brent

    2003-02-27

    The Polyarninsky Shipyard (sometimes called Navy Yard No. 10 or the Shkval Shipyard) has been designated as the recipient for Solid Radioactive Waste (SRW) management facilities under the Arctic Military Environmental Cooperation (AMEC) Program. The existing SRW storage site at this shipyard is filled to capacity, which is forcing the shipyard to reduce its submarine dismantlement activities. The Polyarninsky Shipyard Waste Management Installation is planned as a combination of several AMEC projects. It will have several elements, including a set of hydraulic metal cutting tools, containers for transport and storage, the Mobile Pretreatment Facility (MPF) for Solid Radioactive Waste, the PICASSO system for radiation monitoring, and a Waste Storage Facility. Hydraulically operated cutting tools can cut many metal items via shearing so that dusts or particulates are not generated. The AMEC Program procured a cutting tool system, consisting of a motor and hydraulic pumping unit, a 38-mm conduit-cutting tool, a 100- mm pipe-cutting tool, and a spreading tool all mounted on a wheeled cart. The vendor modified the tool system for extremely cold conditions and Russian electrical standards, then delivered the tool system to the Polyarninsky shipyard. A new container for transportation and storage of SRW and been designed and fabricated. The first 400 of these containers have been delivered to the Northern Fleet of the Russian Navy for use at the Polyarninsky Shipyard Waste Management Installation. These containers are cylindrical in shape and can hold seven standard 200-liter drums. They are the first containers ever certified in Russia for the offsite transport of military SRW. These containers can be transported by truck, rail, barge, or ship. The MPF will be the focal point of the Polyarninsky Shipyard Waste Management Installation and a key element in meeting the nuclear submarine dismantlement and waste processing needs of the Russian Federation. It will receive raw

  9. Factors Influencing Attitude, Safety Behavior, and Knowledge regarding Household Waste Management in Guinea: A Cross-Sectional Study.

    PubMed

    Mamady, Keita

    2016-01-01

    Waste indiscriminate disposal is recognized as an important cause of environmental pollution and is associated with health problems. Safe management and disposal of household waste are an important problem to the capital city of Guinea (Conakry). The objective of this study was to identify socioeconomic and demographic factors associated with practice, knowledge, and safety behavior of family members regarding household waste management and to produce a remedial action plan. I found that no education background, income, and female individuals were independently associated with indiscriminate waste disposal. Unplanned residential area was an additional factor associated with indiscriminate waste disposal. I also found that the community residents had poor knowledge and unsafe behavior in relation to waste management. The promotion of environmental information and public education and implementation of community action programs on disease prevention and health promotion will enhance environmental friendliness and safety of the community. PMID:27092183

  10. Factors Influencing Attitude, Safety Behavior, and Knowledge regarding Household Waste Management in Guinea: A Cross-Sectional Study

    PubMed Central

    Mamady, Keita

    2016-01-01

    Waste indiscriminate disposal is recognized as an important cause of environmental pollution and is associated with health problems. Safe management and disposal of household waste are an important problem to the capital city of Guinea (Conakry). The objective of this study was to identify socioeconomic and demographic factors associated with practice, knowledge, and safety behavior of family members regarding household waste management and to produce a remedial action plan. I found that no education background, income, and female individuals were independently associated with indiscriminate waste disposal. Unplanned residential area was an additional factor associated with indiscriminate waste disposal. I also found that the community residents had poor knowledge and unsafe behavior in relation to waste management. The promotion of environmental information and public education and implementation of community action programs on disease prevention and health promotion will enhance environmental friendliness and safety of the community. PMID:27092183

  11. Data summary of municipal solid waste management alternatives

    SciTech Connect

    Not Available

    1992-10-01

    Composting of municipal solid waste (MSW) is experiencing a dramatic resurgence in the US. Several factors are driving this interest in composting including landfill closures, resistance to siting of new landfills and combustion facilities, public support for recycling, and, in general, the overall costs of waste disposal. Starting with only one demonstration project operating in 1980, the total number of projects in the US has increased to sixteen by July 1991. There are approximately 100 projects in some form of planning or development. One reason some communities are sekniing composting as a waste management option is that sewage sludge and MSW can be co-composted thereby recycling a major portion of the overall municipal waste stream. In 1991, five of the operating facilities have incorporated sludge, with a number of new plants also developing systems with this capability. Generic composting technologies are described followed by a comprehensive discussion of operating facilities. Information is presented on the type of processing system, capital and operating costs, and the status of compost markets. A discussion is also included on the operational problems and challenges faced by composting facility developers and operators. Also presented are facility energy usage and a discussion of the energy implications from the use of compost as a soil and fertilizer replacement. A discussion of cost sensitivity shows how facility costs are impacted by waste handling procedures, regulations, reject disposal, and finance charges. The status of, and potential for, integrating composting into the overall waste management strategy is also discussed, including composting's contribution to municipal recycling goals, and the status of public acceptance of the technology. Finally information and research needs are summarized.

  12. Waste Isolation Pilot Plant, Land Management Plan

    SciTech Connect

    Not Available

    1993-12-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  13. Waste disposal in first-nations communities: the issues and steps toward the future.

    PubMed

    Bharadwaj, Lalita; Nilson, Suzie; Judd-Henrey, Ian; Ouellette, Gene; Parenteau, Laura; Tournier, Ceal; Watson, Daryl; Bear, Darcy; Ledoux, Gilbert; Bear, Austin

    2006-03-01

    The interests of First Nations communities in Canada have traditionally had little voice at the various points of authority that maintain the equilibrium or balance necessary to get environmental protection laws ratified, regulations distributed, and enforcement actions initiated on First Nations lands. (First Nations is the term commonly used in Canada to describe the various societies of indigenous peoples who are accorded status as "Indians" by the Indian Act of 1985 and who are not of Inuit or Métis descent.) Along with a lack of adequate funding to address human and environmental issues-as well as past industrial exploitation of First Nations lands-the safety and acceptability of many solid waste management practices in Canadian First Nations communities have become a serious concern for many members from both human and environmental health perspectives. A history of poor management, monitoring, and remediation of solid waste facilities across Canada's First Nations Communities and the lack of current resolve over this issue has left First Nations people feeling the consequences of pollution to their environment: rivers, land, and air. First Nations people are traditionally connected to the land, and consequently the degradation of the environment also leads to a decline in a way of life for the people and thus a decline in the cultural health of communities. This article examines the issues surrounding waste management on First Nations communities, looks at how First Nations are trying to handle their solid waste, and considers the larger issues of environmental degradation that First Nations communities face throughout Canada. PMID:16583553

  14. Resource Management, Coexistence, and Balance--The Fundamentals of Teaching Waste Management.

    ERIC Educational Resources Information Center

    Donovan, Connie

    1998-01-01

    Argues for the need for courses in waste management in departments other than civil engineering. Points out that although waste management is a business administration function, it is best performed from an environmental management perspective. (DDR)

  15. A multi-criteria decision analysis assessment of waste paper management options

    SciTech Connect

    Hanan, Deirdre; Burnley, Stephen; Cooke, David

    2013-03-15

    Highlights: ► Isolated communities have particular problems in terms of waste management. ► An MCDA tool allowed a group of non-experts to evaluate waste management options. ► The group preferred local waste management solutions to export to the mainland. ► Gasification of paper was the preferred option followed by recycling. ► The group concluded that they could be involved in the decision making process. - Abstract: The use of Multi-criteria Decision Analysis (MCDA) was investigated in an exercise using a panel of local residents and stakeholders to assess the options for managing waste paper on the Isle of Wight. Seven recycling, recovery and disposal options were considered by the panel who evaluated each option against seven environmental, financial and social criteria. The panel preferred options where the waste was managed on the island with gasification and recycling achieving the highest scores. Exporting the waste to the English mainland for incineration or landfill proved to be the least preferred options. This research has demonstrated that MCDA is an effective way of involving community groups in waste management decision making.

  16. Report to Congress: management of hazardous wastes from educational institutions

    SciTech Connect

    Not Available

    1989-04-01

    The EPA has studied and evaluated the problems associated with managing hazardous wastes generated by educational institutions. This report is factual in nature. EPA was not directed by the law to develop recommendations for regulatory or statutory changes. The report identifies the statutory and regulatory requirements for educational institutions to manage hazardous waste, examines current hazardous-waste-management practices at such institutions, identifies the hazardous-waste-management problems encountered by them, and concludes by identifying possible ways for educational institutions to improve hazardous-waste management. The report primarily focuses on hazardous waste generated by universities, colleges, high schools, and vocational schools. The findings of the report can also apply to waste generated at facilities providing adult education and programs of education of less than 2 years' duration, because factors affecting the management of such waste would be similar for all levels and categories of educational institutions.

  17. Waste management for Shippingport Station Decommissioning Project: Extended summary

    SciTech Connect

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station (SSDP) is demonstrating that the techniques and methodologies of waste management, which are currently employed by the nuclear industry, provide adequate management and control of waste activities for the decommissioning of a large scale nuclear plant. The SSDP has some unique aspects in that as part of the objective to promote technology transfer, multiple subcontractors are being utilized in the project. The interfaces resulting from multiple subcontractors require additional controls. Effective control has been accomplished by the use of a process control and inventory system, coupled with personnel training in waste management activities. This report summarizes the waste management plan and provides a status of waste management activities for SSDP.

  18. Legislative aspects of hazardous waste management.

    PubMed

    Friedman, M

    1983-02-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  19. Scientific basis for nuclear waste management XVI

    SciTech Connect

    Interrante, C.G.; Pabalan, R.T.

    1993-12-31

    One most significant aspect of this particular symposium is the focus on the scientific basis for management of nuclear waste. Engineering principles and practices are important, but this symposium focuses on the science. The extension and application of engineering ``know how`` to waste management problems sometimes requires a degree of understanding not normally needed to solve other engineering problems. In materials science, for example, scientific understandings important to long-term behavior may be obtained from (1) characterizations and analyses of the structure and properties of materials, (2) the recognition of advancements needed to ensure performance, and (3) improvements in methods of fabrication and processing. In addition to the materials science topics addressed here (on waste forms, engineered barrier systems, and the near-field environment), the symposium addressed various far-field topics. The proceedings are divided into the following sections: spent fuel; glass and crystalline waste forms; glass performance--mechanisms and models; cementitious materials; container alteration; microbiologically influenced corrosion; near-field interactions; natural analogues; long-term prediction for engineered barriers; performance assessment of engineered barrier systems; radionuclide chemistry and transport; and performance assessment of geological systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  20. Legislative aspects of hazardous waste management.

    PubMed Central

    Friedman, M

    1983-01-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  1. In-plant management of hazardous waste

    SciTech Connect

    Hall, M.W.; Howell, W.L. Jr. |

    1995-12-31

    One of the earliest sustainable technologies for the management of hazardous industrial wastes, and one of the most successful, is {open_quotes}In-Plant Control{close_quotes} Waste elimination, reuse and/or minimization can encourage improved utilization of resources, decreased environmental degradation and increased profits at individual industrial product ion sites, or within an industry. For new facilities and industries, putting such programs in place is relatively easy. Experience has shown, however, that this may be more difficult to initiate in existing facilities, especially in older and heavier industries. This task can be made easier by promoting a mutually respectful partnership between production and environmental interests within the facility or industry. This permits {open_quotes}common sense{close_quotes} thinking and a cooperative, proactive strategy for securing an appropriate balance between economic growth, environmental protection and social responsibility. Case studies are presented wherein a phased, incremental in-plant system for waste management was developed and employed to good effect, using a model that entailed {open_quotes}Consciousness, Commitment, Training, Recognition, Re-engineering and Continuous Improvement{close_quotes} to promote waste minimization or elimination.

  2. Safety management of nuclear waste in Spain

    SciTech Connect

    Echavarri, L.E. )

    1991-01-01

    For the past two decades, Spain has been consolidating a nuclear program that in the last 3 years has provided between 35 and 40% of the electricity consumed in that country. This program includes nine operating reactor units, eight of them based on US technology and one from Germany, a total of 7,356 MW(electric). There is also a 480-MW(electric) French gas-cooled reactor whose operation recently ceased and which will be decommissioned in the coming years. Spanish industry has participated significantly in this program, and material produced locally has reached 85% of the total. Once the construction program has been completed and operation is proceeding normally, the capacity factor will be {approximately} 80%. It will be very important to complete the nuclear program with the establishment of conditions for safe management and disposal of the nuclear waste generated during the years in which these reactors are in operation and for subsequent decommissioning. To establish the guidelines for the disposal of nuclear waste, the Spanish government approved in october 1987, with a revision in January 1989, the General Plan of Radioactive Wastes proposed by the Ministry of Industry and Energy and prepared by the national company for radioactive waste management, ENRESA.

  3. Anaerobic digestion as a sustainable solution for biosolids management by the Montreal metropolitan community.

    PubMed

    Frigon, J C; Guiot, S R

    2005-01-01

    The Quebec Waste Management Policy (1998-2008) is requesting that the municipalities prepare a waste management plan, including a global objective of 60% of these wastes to be diverted from landfill sites by reduction, re-usage, recycling and valorization. Around 5.8 million tons of wastes were generated on the territory of the Montreal Metropolitan Community in 2001 for a population of about 3.5 millions citizens. In this paper, we present different management scenarios in which anaerobic digestion was used as a valorization step, focusing on the energetic value of the methane produced and the reduction in greenhouse gas (GHG) emissions. The four scenarios prepared cover the valorization of the organic fraction of municipal solid wastes, green wastes and excess sludge and showed potential methane generation of 17-140 Mm3 with a GHG reduction of 62,000-500,000 tons of CO2-equivalents. PMID:16180478

  4. Integrated solid waste management of Seattle, Washington

    SciTech Connect

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  5. Waste Management System overview for future spacecraft.

    NASA Technical Reports Server (NTRS)

    Ingelfinger, A. L.; Murray, R. W.

    1973-01-01

    Waste Management Systems (WMS) for post Apollo spacecraft will be significantly more sophisticated and earthlike in user procedures. Some of the features of the advanced WMS will be accommodation of both males and females, automatic operation, either tissue wipe or anal wash, measurement and sampling of urine, feces and vomitus for medical analysis, water recovery, and solids disposal. This paper presents an overview of the major problems of and approaches to waste management for future spacecraft. Some of the processes discussed are liquid/gas separation, the Dry-John, the Hydro-John, automated sampling, vapor compression distillation, vacuum distillation-catalytic oxidation, incineration, and the integration of the above into complete systems.

  6. Integrated solid waste management of Sevierville, Tennessee

    SciTech Connect

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  7. A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN

    SciTech Connect

    Masuda, S.

    2002-02-25

    This paper is entitled ''A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN''. Since the first statement on the strategy for radioactive waste management in Japan was made by the Atomic Energy Commission (AEC) in 1976, a quarter century has passed, in which much experience has been accumulated both in technical and social domains. This paper looks back in this 25-year history of radioactive waste management in Japan by highlighting activities related to high-level radioactive waste (HLW) disposal.

  8. Waste management programs of the reunified Germany

    SciTech Connect

    Janberg, K.G.

    1994-12-31

    Germany has been divided into an Eastern and Western part de facto since the end of World War II. The development of the Federal Republic followed the lines of the major Western democracies with respect to its internal organizations, but of course also with respect to the technologies pursued. This report describes radioactive waste management issues in the Federal republic of Germany and discusses the issues with respect to the differences from Eastern and Western Germany.

  9. Mixed Waste Management Facility Groundwater Monitoring Report

    SciTech Connect

    Chase, J.

    1998-03-01

    During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  10. Integrated solid waste management in Japan

    SciTech Connect

    Not Available

    1993-10-01

    The Japanese, through a combination of public policy, private market conditions, a geographic necessity, practice integrated municipal solid waste (MSW) management. The approach of MSW management in Japan is as follows: The basic concept of refuse treatment consists of recycling discharged refuse into usable resources, reusing such resources as much as possible, and then treating or disposing of the usable portion into a sanitary condition. Considering the difficulty of procuring land or seaside areas for such purpose as a refuse disposal site, it will be necessary to minimize the volume of refuse collected for treatment or disposal.