Science.gov

Sample records for compact ignition tokamak

  1. Physics of compact ignition tokamak designs

    SciTech Connect

    Singer, C.E.; Ku, L.P.; Bateman, G.; Seidl, F.; Sugihara, M.

    1986-03-01

    Models for predicting plasma performance in compact ignition experiments are constructed on the basis of theoretical and empirical constraints and data from tokamak experiments. Emphasis is placed on finding transport and confinement models which reproduce results of both ohmically and auxiliary heated tokamak data. Illustrations of the application of the models to compact ignition designs are given.

  2. Activation analysis of the compact ignition tokamak

    SciTech Connect

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak.

  3. Plasma transport in a compact ignition tokamak

    SciTech Connect

    Singer, C.E.; Ku, L.P; Bateman, G.

    1987-02-01

    Nominal predicted plasma conditions in a compact ignition tokamak are illustrated by transport simulations using experimentally calibrated plasma transport models. The range of uncertainty in these predictions is explored by using various models which have given almost equally good fits to experimental data. Using a transport model which best fits the data, thermonuclear ignition occurs in a Compact Ignition Tokamak design with major radius 1.32 m, plasma half-width 0.43 m, elongation 2.0, and toroidal field and plasma current ramped in six seconds from 1.7 to 10.4 T and 0.7 to 10 MA, respectively. Ignition is facilitated by 20 MW of heating deposited off the magnetic axis near the /sup 3/He minority cyclotron resonance layer. Under these conditions, sawtooth oscillations are small and have little impact on ignition. Tritium inventory is minimized by preconditioning most discharges with deuterium. Tritium is injected, in large frozen pellets, only after minority resonance preheating. Variations of the transport model, impurity influx, heating profile, and pellet ablation rates, have a large effect on ignition and on the maximum beta that can be achieved.

  4. Physics evaluation of compact tokamak ignition experiments

    SciTech Connect

    Uckan, N.A.; Houlberg, W.A.; Sheffield, J.

    1985-01-01

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/S/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Considering both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs.

  5. System studies of Compact Ignition Tokamaks

    SciTech Connect

    Galambos, J.D.; Peng, Y.K.M.; Blackfield, D.T.

    1986-11-01

    The Fusion Engineering Design Center (FEDC) Tokamak Systems Code is used to perform trade studies in accordance with the Compact Ignition Tokamak (CIT) physics and engineering guidelines. The authors examine various toroidal field coil (TFC) configurations, preload levels, and coil materials. Use of Inconel-copper composite material results in the smallest sized devices for both bucked and wedged TFCs and wedged-only TFCs. Preload levels of 23 Mkg are needed for the minimum sized devices, and for the lower strength materials, the minimum size is sensitive to the preload level. Results from these trade studies help lead to the choice of the baseline CIT point at R = 1.25 m and B = 10.4 T.

  6. Physics aspects of the Compact Ignition Tokamak

    SciTech Connect

    Post, D.; Bateman, G.; Houlberg, W.; Bromberg, L.; Cohn, D.; Colestock, P.; Hughes, M.; Ignat, D.; Izzo, R.; Jardin, S.

    1986-11-01

    The Compact Ignition Tokamak (CIT) is a proposed modest-size ignition experiment designed to study the physics of alpha-particle heating. The basic concept is to achieve ignition in a modest-size minimum cost experiment by using a high plasma density to achieve the condition of ntau/sub E/ approx. 2 x 10/sup 20/ sec m/sup -3/ required for ignition. The high density requires a high toroidal field (10 T). The high toroidal field allows a large plasma current (10 MA) which improves the energy confinement, and provides a high level of ohmic heating. The present CIT design also has a gigh degree of elongation (k approx. 1.8) to aid in producing the large plasma current. A double null poloidal divertor and a pellet injector are part of the design to provide impurity and particle control, improve the confinement, and provide flexibility for impurity and particle control, improve the confinement, and provide flexibility for improving the plasma profiles. Since auxiliary heating is expected to be necessary to achieve ignition, 10 to 20 MW of Ion Cyclotron Radio Frequency (ICRF) is to be provided.

  7. System studies of compact ignition tokamaks

    SciTech Connect

    Galambos, J.D.; Peng, Y.K.M.; Blackfield, D.T.

    1986-01-01

    A new version of the FEDC Tokamak System Code (TSC) has been developed to analyze the Compact Ignition Tokamak (CIT). These proposed experiments have small (major radius F 1.5m) and high magnetic fields (B J 10T), and are characterized by reduced cost. Key design constraints of CIT include limits to the high stress levels in the magnetic coils, limits to the large temperature rises in the coils and on the first wall or divertor plate, minimizing power supply requirements, and assuring adequate plasma performance in fusion ignition and burn time consistent with the latest physics understanding. We present systems code level studies of CIT parameter space here for a range of design options with various design constraints. The present version of the TSC incorporates new models for key components of CIT. For example, new algorithms have been incorporated for calculating stress levels in the TFC and ohmic solenoid, temperature rise in the magnetic coils, peak power requirements, plasma MHD equilibrium and volt-second capability. The code also incorporates a numerical optimizer to find combinations of engineering quantities (device size, coil sizes, coil current densities etc.) and physics quantities (plasma density temperature, and beta, etc.) which satisfy all the constraints and can minimize or maximize a figure of merit (e.g., the major radius). This method was recently used in a mirror reactor system code (3) for the Minimara concept development.

  8. Overview of the compact ignition tokamak

    SciTech Connect

    Flanagan, C.A.

    1986-01-01

    A national team has developed a baseline concept for a Compact Ignition Tokamak (CIT). The CIT mission is to achieve ignition and provide experimental capability to study the behavior of burning plasma. The design uses large magnetic fields on axis (about 10 T) and large plasma currents (about 9-10 MA). The magnet structure derives high strength from the use of a copper-Inconel composite plate design in the nose of region of the toroidal field (TF) coil and in the ohmic heating solenoid. Inertial cooling is used;liquid nitrogen temperatures are established at the beginning of each pulse. Capability is provided to operate either with a divertor or limiter based plasma. The design is very compact (1.32-m major radius, 0.43-m plasma radius), has 16 TF coils, and has 16 major horizontal access ports, about 30 cm by 80 cm, located between TF coils. The schedule is for a construction project to be authorized for the period FY 1988-93.

  9. Cooldown of the Compact Ignition Tokamak

    SciTech Connect

    Keeton, D.C.

    1987-08-01

    Cooldown of the Compact Ignition Tokamak (CIT) with the baseline liquid nitrogen cooling system was analyzed. On the basis of this analysis and present knowledge of the two-phase heat transfer, the current baseline CIT can be cooled down in about 1.5 h. An extensive heat transfer test program is recommended to reduce uncertainty in the heat transfer performance and to explore methods for minimizing the cooldown time. An alternate CIT cooldown system is described which uses a pressurized gaseous helium coolant in a closed-loop system. It is shown analytically that this system will cool down the CIT well within 1 h. Confidence in this analysis is sufficiently high that a heat transfer test program would not be necessary. The added cost of this alternate system is estimated to be about $5.3 million. This helium cooling system represents a reasonable backup approach to liquid nitrogen cooling of the CIT. 3 refs., 12 figs., 3 tabs.

  10. Recent progress on the Compact Ignition Tokamak (CIT)

    SciTech Connect

    Ignat, D.W.

    1987-01-01

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule.

  11. Plasma diagnostics for the compact ignition tokamak

    SciTech Connect

    Medley, S.S.; Young, K.M.

    1988-06-01

    The primary mission of the Compact Ignition Tokamak (CIT) is to study the physics of alpha-particle heating in an ignited D-T plasma. A burn time of about 10 /tau//sub E/ is projected in a divertor configuration with baseline machine design parameters of R=2.10 m, 1=0.65 m, b=1.30 m, I/sub p/=11 MA, B/sub T/=10 T and 10-20 MW of auxiliary rf heating. Plasma temperatures and density are expected to reach T/sub e/(O) /approximately/20 keV, T/sub i/(O) /approximately/30 keV, and n/sub e/(O) /approximately/ 1 /times/ 10/sup 21/m/sup /minus/3/. The combined effects of restricted port access to the plasma, the presence of severe neutron and gamma radiation backgrounds, and the necessity for remote of in-cell components create challenging design problems for all of the conventional diagnostic associated with tokamak operations. In addition, new techniques must be developed to diagnose the evolution in space, time, and energy of the confined alpha distribution as well as potential plasma instabilities driven by collective alpha-particle effects. The design effort for CIT diagnostics is presently in the conceptual phase with activity being focused on the selection of a viable diagnostic set and the identification of essential research and development projects to support this process. A review of these design issues and other aspects impacting the selection of diagnostic techniques for the CIT experiment will be presented. 28 refs., 10 figs., 2 tabs.

  12. The ignition physics study group supports the compact ignition tokamak and engineering test reactor programs

    SciTech Connect

    Sheffield, J.

    1987-01-01

    This report presents a collection of Vugraphs dealing with the Compact Ignition Tokamak (CIT) and the Engineering Test Reactor (ETR). The role of the Ignition Physics Study Group is defined. Several design goals are presented. (JDH)

  13. Time-dependent simulations of a Compact Ignition Tokamak

    SciTech Connect

    Stotler, D.P.; Bateman, G.

    1988-05-01

    Detailed simulations of the Compact Ignition Tokamak are carried out using a 1-1/2-D transport code. The calculations include time-varying densities, fields, and plasma shape. It is shown that ignition can be achieved in this device if somewhat better than L-mode energy confinement time scaling is possible. We also conclude that the performance of such a compact, short-pulse device can depend greatly on how the plasma is evolved to its flat-top parameters. Furthermore, in cases such as the ones discussed here, where there is not a great deal of ignition margin and the electron density is held constant, ignition ends if the helium ash is not removed. In general, control of the deuterium--tritium density is equivalent to burn control. 48 refs., 15 figs.

  14. Maintenance concept development for the Compact Ignition Tokamak

    SciTech Connect

    Macdonald, D.

    1988-01-01

    The Compact Ignition Tokamak (CIT), located at the Princeton Plasma Physics Laboratory, will be the next major experimental machine in the US Fusion Program. Its use of deuterium-tritium (D-T) fuel requires the use of remote handling technology to carry out maintenance operations on the machine. These operations consist of removing and repairing such components as diagnostic equipment modules by using remotely operated maintenance equipment. The major equipment being developed for maintenance external to the vacuum vessel includes both bridge-mounted and floor-mounted manipulator systems. Additionally, decontamination (decon) equipment, hot cell repair facilities, and equipment for handling and packaging solid radioactive waste (rad-waste) are being developed. Recent design activities have focused on establishing maintenance system interfaces with the facility design, developing manipulator system requirements, and using mock-ups to support the tokamak configuration design. 3 refs., 8 figs.

  15. In-vessel remote maintenance of the Compact Ignition Tokamak

    SciTech Connect

    Tabor, M.A.; Hager, E.R.; Creedon, R.L.; Fisher, M.V.; Atkin, S.D.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is the first deuterium-tritium (D-T) fusion device that will study the physics of an ignited plasma. The ability of the tokamak vacuum vessel to be maintained remotely while under vacuum has not been fully demonstrated on previous machines, and this ability will be critical to the efficient and safe operation of ignition devices. Although manned entry into the CIT vacuum vessel will be possible during the nonactivated stages of operation, remotely automated equipment will be used to assist in initial assembly of the vessel as well as to maintain all in-vessel components once the D-T burn is achieved. Remote maintenance and operation will be routinely required for replacement of thermal protection tiles, inspection of components, leak detection, and repair welding activities. Conceptual design to support these remote maintenance activities has been integrated with the conceptual design of the in-vessel components to provide a complete and practical remote maintenance system for CIT. The primary remote assembly and maintenance operations on CIT will be accomplished through two dedicated 37- x 100-cm ports on the main toroidal vessel. Each port contains a single articulated boom manipulator (ABM), which is capable of accessing half of the torus. The proposed ABM consists of a movable carriage assembly, telescoping two-part mast, and articulated link sections. 1 ref.

  16. Compact Ignition Tokamak Program: R and D needs

    SciTech Connect

    Flanagan, C.A.

    1985-01-01

    This report on the Compact Ignition Tokamak Program supplies information concerning: segmented vacuum vessel joint development; first wall tile attachments; first wall/tile development - composite materials; vacuum leak detection; high frequency rf sources; Faraday shield development; design and testing of rf launchers for high power, ling pulse operation; radiation hardened, low loss, dielectric windows for rf, IR, visible, UV and X-rays, mirrors for changing direction and focusing IR, visible and UV radiation; radiation resistant optical dielectric wave guides; radiation resistant HV insulation for diagnostic magnetic pickup coils; compact radiation and/or magnetic shielding for in-vault diagnostics that need some attenuation to reduce S/N ratio; radiation hardened line-of-sight sensors such as bolometers, UV and soft X-ray detectors, neutral particle analyzers, torus pressure gauges; special maintenance fixtures and tools; material properties - design data base - all materials; and insulation - electrical/thermal and mechanical properties.

  17. Preliminary design of the CIT (Compact Ignition Tokamak) cryostat

    SciTech Connect

    Goins, M.L.

    1989-01-01

    For the Compact Ignition Tokamak (CIT) to achieve the performance goals set forth, the toroidal field (TF) and poloidal field (PF) coil systems must operate in a cryogenic temperature regime. The cryostat has been designed to provide and maintain this environment. The preliminary design activity is addressing the design issues and interfaces necessary to provide a cryogenic vessel that will maintain a maximum temperature differential of 8{degree}C between the outer vessel wall and the ambient test cell conditions; operate in a pressure range of +5 psig to {minus}2 psig; accommodate numerous penetrations, including cooling, diagnostic, and gravity support items; and maintain a maximum leak rate of gaseous nitrogen at 1 l/s at 1 atm. Conceptually, the cryostat consists of thermal insulation sandwiched between an inner primary stainless steel pressure vessel and a thin outer stainless steel wall. Design activities have concentrated on determining the size and shape of the primary vessel wall and selecting the best candidate thermal insulation materials for future irradiation testing. The following shapes of the upper and lower cryostat structure were analyzed: a standard ASME torispherical domed top and bottom; a nonstandard domed top and bottom; and a 2{degree} sloped conical top and bottom contour. Screening of candidate insulation materials was based on lowest thermal conductivity over the range of temperatures anticipated in the CIT environment; low material cost and apparent ease of assembly; and survivability of material in the CIT irradiation environment. This paper presents the configuration development of the cryostat used to maintain the cryogenic temperature environment for CIT. 3 refs., 3 figs., 3 tabs.

  18. Damping of electron cyclotron waves in dense plasmas of a compact ignition tokamak

    SciTech Connect

    Mazzucato, E.; Fidone, I.; Granata, G.

    1987-06-01

    Absorption of electromagnetic waves by hot and dense plasmas is investigated in the electron cyclotron range of frequency. It is shown that the strong reduction of the damping of the extraordinary mode, caused by finite Larmor radius effects on waves propagating perpendicularly to the magnetic field, becomes insignificant at large values of the parallel component of the refractive index. With an appropriate form of the relativistic dispersion relation which includes high order Larmor radius terms, heating of dense plasmas in a Compact Ignition Tokamak is investigated. It is shown that by using the extraordinary mode with oblique propagation and frequency of 190 GHz it is possible to bring to thermonuclear ignition a dense ohmic plasma with a toroidal magnetic field of 105 kG and a central density of 1 x 10/sup 15/ cm/sup -3/. 11 refs., 11 figs.

  19. Plans for the CIT (Compact Ignition Tokamak) instrumentation and control system

    SciTech Connect

    Preckshot, G.G.

    1987-10-07

    Extensive experience with previous fusion experiments (TFTR, MFTF-B and others) is driving the design of the Instrumentation and Control System (I and C) for the Compact Ignition Tokamak (CIT) to be built at Princeton. The new design will reuse much equipment from TFTR and will be subdivided into six major parts: machine control, machine data acquisition, plasma diagnostic instrument control and instrument data acquisition, the database, shot sequencing and safety interlocks. In a major departure from previous fusion experiment control systems, the CIT machine control system will be a commercial process control system. Since the machine control system will be purchased as a completely functional product, we will be able to concentrate development manpower in plasma diagnostic instrument control, data acquisition, data processing and analysis, and database systems. We will discuss the issues driving the design, give a design overview and state the requirements upon any prospective commercial process control system.

  20. Design of a tritium-compatible vacuum pumping system for the Compact Ignition Tokamak

    SciTech Connect

    Haines, J.R.

    1987-01-01

    The conceptual design for the Compact Ignition Tokamak (CIT) vacuum pumping system features high-speed, magnetic-bearing turbomolecular pumps (TMPs), metal-sealed scroll pumps for roughing and backing, and all-metal valves and flange seals. Because the plasma chamber exhaust is handled in a throughput instead of hold-up fashion with no organic seal or lubricating materials exposed to the vacuum stream, inventories of tritium, which are vulnerable to release during an accident and which inhibit maintenance of the vacuum pumping equipment, are minimized. To achieve an initial base pressure of 1.3 /times/ 10/sup /minus/6/ Pa in the plasma chamber, the design includes a large vacuum pumping duct and multiple high-speed TMPs arranged in two stages. The design studies discussed in this paper examine the feasibility and cost impact of providing a low-tritium-inventory, easily maintained vacuum pumping system for a deuterium-tritium (D-T) burning tokamak. 7 refs., 3 figs., 2 tabs.

  1. Radiation analysis of the CIT (Compact Ignition Tokamak) pellet injector system and its impact on personnel access

    SciTech Connect

    Selcow, E.C.; Stevens, P.N.; Gomes, I.C.; Gomes, L.M.

    1987-01-01

    Conceptual design of the Compact Ignition Tokamak (CIT) is near completion. This short-pulse ignition experiment is planned to follow the operations of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The high neutron wall loadings, /approximately/4-5 MW/m/sup 2/, associated with the operation of this device require that neutronics-related issues be considered in the overall system design. Radiation shielding is required for the protection of device components and personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure, and the entire experiment is housed in a circular test cell facility with a radius of /approximately/12 m. The most critical radiation concern in the CIT design process relates to the numerous penetrations in the device. This paper discusses the impact of a major penetration on the design and operations of the CIT pellet injection system. The pellet injector is a major component, which has a line-of-sight penetration through the igloo and test cell wall. All current options for maintenance of the injector require personnel access. A nuclear analysis has been performed to determine the feasibility of hands-on access. Results indicate that personnel access to the pellet injector glovebox is possible. 10 refs., 3 figs., 3 tabs.

  2. Radiation analysis of the CIT (Compact Ignition Tokamak) pellet injector system and its impact on personnel access

    SciTech Connect

    Selcow, E.C.; Stevens, P.N.; Gomes, I.C.; Gomes, L.M.

    1988-08-01

    The conceptual design of the Compact Ignition Tokamak (CIT) is nearing completion. The CIT is a short-pulse ignition experiment, which is planned to follow the operations of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory (PPPL). The high neutron wall loadings, 4--5 MW/m/sup 2/, associated with the operation of this device require that neutronics-related issues be considered in the overall system design. Radiation shielding is required for the protection of device components as well as personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure, and the entire experiment is housed in a circular test cell facility that has a radius of 12 m. The most critical radiation concerns in the CIT design process relate to the numerous penetrations in the device. This report discusses the impact of a major penetration on the design and operation of the pellet injection system in the CIT. The pellet injector is a major component, and it has a line-of-sight penetration through the igloo and test cell wall. All current options for maintenance of the injector require hands-on-access. A nuclear analysis has been performed to establish the feasibility of hands-on-access. A coupled Monte Carlo/discrete-ordinates methodology was used to perform the analysis. This problem is characterized by deep penetration and streaming with very large length-to-diameter ratios. Results from this study indicate that personnel access to the pellet injector glovebox is possible. 14 refs., 3 figs., 3 tabs.

  3. Tokamak and RFP ignition requirements

    SciTech Connect

    Werley, K.A.

    1991-01-01

    A plasma model is applied to calculate numerically transport- confinement (n{tau}{sub E}) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f{sub RAD} {approximately} 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the n{tau}{sub E} transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab.

  4. Evaluation of weldments in type 21-6-9 stainless steel for compact ignition tokamak structural applications, phase 1

    NASA Astrophysics Data System (ADS)

    Alexander, D. J.; Goodwin, G. M.; Bloom, E. E.

    1991-06-01

    Primary design considerations for the Compact Ignition Tokamak toroidal field-coil cases are yield strength and toughness in the temperature range from 77 to 300 K. Type 21-6-9 stainless steel, also still known by its original Armco Steel Company trade name Nitronic 40, is the proposed alloy for this application. It has high yield strength and usually adequate base metal toughness, but weldments in thick sections have not been adequately characterized in terms of mechanical properties or hot-cracking propensity. In this study, weldability of the alloy in heavy sections and the mechanical properties of the resultant welds were investigated including tensile yield strength and Charpy V-notch toughness at 77 K and room temperature. Weldments were made in four different base metals using seven different filler metals. None of the weldments showed any indication of hot-cracking problems. All base metals, including weldment heat-affected zones, were found to have adequate strength and impact toughness at both test temperatures. Weld metals, on the other hand, except ERNiCr-3 and ENiCrFe-3, had impact toughnesses of less than 67 J at 77 K. Inconel 82 had an average weld metal impact toughness of over 135 J at 77 K, and although its strength at 77 K is less than that of type 21-6-9 base metal, at this point it is considered to be the first-choice filler metal. Phase 2 of this program will concentrate on composition refinement and process/procedure optimization for the generic ERNiCr-3 composition and will generate a design data base for base and weld metal, including tensile, fracture toughness, and crack growth rate data.

  5. Reaching ignition in the tokamak

    SciTech Connect

    Furth, H.P.

    1985-06-01

    This review covers the following areas: (1) the physics of burning plasmas, (2) plasma physics requirements for reaching ignition, (3) design studies for ignition devices, and (4) prospects for an ignition project. (MOW)

  6. An interim report on the materials and selection criteria analysis for the Compact Ignition Tokamak Toroidal Field Coil Turn-to-Turn Insulation System

    SciTech Connect

    Campbell, V.W.; Dooley, J.B.; Hubrig, J.G.; Janke, C.J.; McManamy, T.J.; Welch, D.E.

    1990-01-01

    Design criteria for the Compact Ignition Tokamak, Toroidal-Field (TF) Coil, Turn-to-Turn Insulation System require an insulation sheet and bonding system that will survive cryogenic cycling in a radiation environment and maintain structural integrity during exposure to the significant compressive and shear loads associated with each operating cycle. For thermosetting resin systems, a complex interactive dependency exists between optimum peak value, in-service property performance capabilities of candidate generic materials; key handling and processing parameters required to achieve their optimum in-service property performance as an insulation system; and suitability of their handling and processing parameters as a function of design configuration and assembly methodology. This dependency is assessed in a weighted study matrix in which two principal programmatic approaches for the development of the TF Coil Subassembly Insulation System have been identified. From this matrix study, two viable approaches to the fabrication of the insulation sheet were identified: use of a press-formed sheet bonded in place with epoxy for mechanical bonding and tolerance take-up and formation of the insulation sheet by placement of dry cloth and subsequent vacuum pressure impregnation. Laboratory testing was conducted to screen a number of combinations of resins and hardeners on a generic basis. These combinations were chosen for their performance in similar applications. Specimens were tested to screen viscosity, thermal-shock tolerance, and cryogenic tolerance. Cryogenic shock and cryogenic temperature proved to be extremely lethal to many combinations of resin, hardener, and cure. Two combinations survived: a heavily flexibilized bisphenol A resin with a flexibilized amine hardener and a bisphenol A resin with cycloaliphatic amine hardener. 7 refs., 12 figs., 6 tabs.

  7. Confinement scaling and ignition in tokamaks

    SciTech Connect

    Perkins, F.W.; Sun, Y.C.

    1985-10-01

    A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10/sup 15/ cm/sup -3/, high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition.

  8. Toroidal Alfven wave stability in ignited tokamaks

    SciTech Connect

    Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.

    1989-01-01

    The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.

  9. Instrumentation and controls of an ignited tokamak

    SciTech Connect

    Becraft, W.R.; Golzy, J.; Houlberg, W.A.; Kukielka, C.A.; Onega R.J.; Raju, G.V.S.; Stone, R.S.

    1980-10-01

    The instrumentation and controls (I and C) of an ignited plasma magnetically confined in a tokamak configuration needs increased emphasis in the following areas: (1) physics implications for control; (2) plasma shaping/position control; and (3) control to prevent disruptive instabilities. This document reports on the FY 1979 efforts in these and other areas. Also presented are discusssions in the areas of: (1) diagnostics suitable for the Engineering Test Facility (ETF); and (2) future research and development (R and D) needs. The appendices focus attention on some preliminary ideas about the measurement of the deuteron-triton (D-T) ratio in the plasma, synchrotron radiation, and divertor control. Finally, an appendix documenting the thermal consequences to the first wall of a MPD is presented.

  10. Ignition in a tokamak reactor with INTOR-like parameters

    SciTech Connect

    Singer, C.E.; Seidl, F.G.P.; Post, D.E.; Rutherford, P.H.

    1980-08-01

    The requirements for ignition in a tokamak reactor with INTOR-like parameters were studied using a one-dimensional transport code. With empirical electron energy diffusivity Chi/sub e/, ignition was obtained with 60 to 75 MW of neutral beam injection at a volume average pressure ratio <..beta..> = 4 to 5% under a variety of conditions. Charging Chi/sub e/ gave ignition at the same <..beta..> if the plasma minor radius varied as a proportional to Chi/sub e/sup 1/2/. The maximum impurity concentration which allows ignition was found to be comparable to that for the much simpler case of a homogeneous plasma with radiative losses only. In long pulse simulations with efficient helium pumping, the maximum toroidal field ripple which allowed ignition was 2.0% (peak to peak) at the plasma edge. Ignition was maintained with over 99% recycling of helium ash using 5% less than maximum ripple.

  11. Compact tokamak reactors. Part 1 (analytic results)

    SciTech Connect

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1996-09-13

    We discuss the possible use of tokamaks for thermonuclear power plants, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First we review and summarize the existing literature. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamak power plant, by including the power required to drive the toroidal field, and considering two extremes of plasma current drive efficiency. The analytic results will be augmented by a numerical calculation which permits arbitrary plasma current drive efficiency; the results of which will be presented in Part II. Third, a scaling from any given reference reactor design to a copper toroidal field coil device is discussed. Throughout the paper the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculating electric power. We conclude that the latest published reactor studies, which show little advantage in using low aspect ratio unless remarkably high efficiency plasma current drive and low safety factor are combined, can be reproduced with the analytic model.

  12. TIBER: Tokamak Ignition/Burn Experimental Research. Final design report

    SciTech Connect

    Henning, C.D.; Logan, B.G.; Barr, W.L.; Bulmer, R.H.; Doggett, J.N.; Johnson, B.M.; Lee, J.D.; Hoard, R.W.; Miller, J.R.; Slack, D.S.

    1985-11-01

    The Tokamak Ignition/Burn Experimental Research (TIBER) device is the smallest superconductivity tokamak designed to date. In the design plasma shaping is used to achieve a high plasma beta. Neutron shielding is minimized to achieve the desired small device size, but the superconducting magnets must be shielded sufficiently to reduce the neutron heat load and the gamma-ray dose to various components of the device. Specifications of the plasma-shaping coil, the shielding, coaling, requirements, and heating modes are given. 61 refs., 92 figs., 30 tabs. (WRF)

  13. Advanced Tokamak Plasmas in the Fusion Ignition Research Experiment

    SciTech Connect

    C.E. Kessel; D. Meade; D.W. Swain; P. Titus; M.A. Ulrickson

    2003-10-13

    The Advanced Tokamak (AT) capability of the Fusion Ignition Research Experiment (FIRE) burning plasma experiment is examined with 0-D systems analysis, equilibrium and ideal-MHD stability, radio-frequency current-drive analysis, and full discharge dynamic simulations. These analyses have identified the required parameters for attractive burning AT plasmas, and indicate that these are feasible within the engineering constraints of the device.

  14. Tokamak power reactor ignition and time dependent fractional power operation

    SciTech Connect

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-06-01

    A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve.

  15. Interim report on the assessment of engineering issues for compact high-field ignition devices

    SciTech Connect

    Flanagan, C.A.

    1986-04-01

    The engineering issues addressed at the workshop included the overall configuration, layout, and assembly; limiter and first-wall energy removal; magnet system structure design; fabricability; repairability; and costs. In performing the assessment, the primary features and characteristics of each concept under study were reviewed as representative of this class of ignition device. The emphasis was to understand the key engineering areas of concern for this class of device and deliberately not attempt to define an optimum design or to choose a best approach. The assessment concluded that compact ignition tokamaks, as represented by the three concepts under study, are feasible. A number of critical engineering issues were identified, and all appear to have tractable solutions. The engineering issues appear quite challenging, and to obtain increased confidence in the apparent design solutions requires completion of the next level of design detail, complemented by appropriate development programs and testing.

  16. Physics design options for compact ignition experiments

    SciTech Connect

    Uckan, N.A.

    1985-01-01

    This paper considers the following topics: (1) physics assessments-design and engineering impact, (2) zero-dimensional confinement studies relating to physics requirements and options for ignited plasmas, classes of devices with equivalent performance, and sensitivity to variations in confinement models, and (3) one and one-half dimensional confinement studies relating to dynamic simulations, critical physics issues, startup analyses, and volt-second consumption. (MOW)

  17. Existence and accessibility of igniting states in a tokamak inferred from its performance in tritiumless discharges

    SciTech Connect

    Carretta, U.R.; Minardi, E.

    1988-09-01

    The conditions for the existence and accessibility of ignited or subignited deuterium-tritium states are discussed in terms of the performance of the thermonuclear device in tritiumless discharges. The discussion includes the effects of the thermal instability of both the marginally igniting states and the nonstationary states in the start-up phase. These effects are an integral part of the problem of the accessibility to ignition under reliable conditions. Typical examples taken from the next generation of igniting tokamaks are discussed. The necessity of allowing sufficient excursion of the plasma column for a stable drive to ignition by feedback on the vertical field is underlined.

  18. Mechanical configuration for a superconducting ignition tokamak (TIBER)

    SciTech Connect

    Neef, W.S. Jr.; Johnston, B.M.

    1985-10-01

    The Lawrence Livermore National Laboratory is evaluating the engineering feasibility and economics of a superconducting ignition tokamak. Two major operational requirements had to be satisfied: (1) the conductive heat leak to the refrigerated structure had to be minimized, and (2) assembly and maintenance of the entire experiment had to be possible with remotely operated tools. The middle poloidal ''push coil'' must have many annular disks to transfer the TF-coil inward force to the post without crushing superconductor. The toppling moment on the TF-coil vertical legs is huge. A method of keying together the TF-coil cases has been developed. This forms an integrated structure that resists torque. The joining technique permits linear motion for simple assembly/disassembly. the topping moment on the outer vertical legs of the TF coils is very large. To react that moment and avoid great coil-case bulk, we have developed a method that allows the PF coil support structure to assist the TF case structure. Finite element techniques were used to determine the ability of the coal case and conductor to react the magnetic loads. The entire cold-coil structure is mounted on a circular plate that is suspended by several large tension rods, similar to the MFTF-B yin-yang support rods. The vacuum vessel is all at room temperature and is configured like a bell jar with sixteen side doors, one for each shield module.

  19. Plasma Physics Regimes in Tokamaks with Li Walls

    SciTech Connect

    L.E. Zakharo; N.N. Gorelenkov; R.B. White; S.I. Krasheninnikov; G.V. Pereverzev

    2003-08-21

    Low recycling regimes with a plasma limited by a lithium wall surface suggest enhanced stability and energy confinement, both necessary for tokamak reactors. These regimes could make ignition feasible in compact tokamaks. Ignited Spherical Tokamaks (IST), self-sufficient in the bootstrap current, are introduced as a necessary step for development of the physics and technology of power reactors.

  20. Simple contour analysis of ignition conditions and plasma operating regimes in tokamaks

    SciTech Connect

    Uckan, N.A.; Sheffield, J.; Selcow, E.C.

    1985-01-01

    Contour plots of ignition, auxiliary power requirements, heating and operating windows, optimal path to ignition, ignition margin, etc., are generated analytically in terms of a small number of parameters (aB/sub 0//sup 2//q/sub */, R/sub 0//B/sub 0/, , etc.) for classes of devices with equivalent performance. Numerical studies are carried out to map the physics design space. Considering both the Murakami density limit (approx.B/sub 0//R/sub 0/) and the Troyon beta limit (approx.I/aB/sub 0/), results from analytic calculations indicate that in a standard tokamak geometry (A approx. 2.5 to 3.5, kappa = b/a approx. 1.6 to 1.7, q/sub psi/ approx. 2.6) devices with aB/sub 0//sup 2//q/sub */ approx. 20 should be ignitable provided confinement does not degrade with heating (ohmic + alpha + auxiliary, etc.) power; however, aB/sub 0//sup 2//q/sub */ approx. 30 (25) may be required for minimal ignition for a typical L- (H-) mode confinement scaling. Increased plasma elongation (kappa approx. 2) may help to reduce these requirements.

  1. Ignition in near term D-/sup 3/He tokamak reactors: Appendix B

    SciTech Connect

    Emmert, G.A.; Deng, B.Q.

    1987-01-01

    The prospects for achieving breakeven and ignition in near term ETR type tokamaks under D/He-3 relevant conditions are considered. Using present scaling laws for beta in the first stability regime, it is found that CIT may be close to breakeven with the presently planned toroidal magnetic field system, if the ASDEX H-mode scaling law is used. With Kaye-Goldston scaling, Q = .22 can be attained, but this requires an excessive amount of rf heating power. Larger devices, such as NET/INTOR, can ignite with ASDEX H-mode scaling with an increase of the toroidal field by 20% and removal of the blanket and reduction of the inboard shield to that required for D/He-3. 5 refs., 4 figs., 2 tabs.

  2. Radial effects in heating and thermal stability of a sub-ignited tokamak

    SciTech Connect

    Fuchs, V.; Shoucri, M.M.; Thibaudeau, G.; Harten, L.; Bers, A.

    1982-02-01

    The existence of thermally stable sub-ignited equilibria of a tokamak reactor, sustained in operation by a feedback-controlled supplementary heating source, is demonstrated. The establishment of stability depends on a number of radially non-uniform, nonlinear processes whose effect is analyzed. One-dimensional (radial) stability analyses of model transport equations, together with numerical results from a 1-D transport code, are used in studying the heating of DT-plasmas in the thermonuclear regime. Plasma core supplementary heating is found to be a thermally more stable process than bulk heating. In the presence of impurity line radiation, however, core-heated temperature profiles may collapse, contracting inward from the limiter, the result of an instability caused by the increasing nature of the radiative cooling rate, with decreasing temperature. Conditions are established for the realization of a sub-ignited high-Q, toroidal reactor plasma with appreciable output power (approx. = 2000 MW thermal).

  3. First wall and blanket design for a high wall loading compact tokamak power reactor

    SciTech Connect

    Sviatoslavsky, I.N.; Abdel-Khalik, S.I.; Corradini, M.L.; El-Afify, M.; Huh, K.Y.; Kuleinski, G.L.; Wittenberg, L.J.

    1985-07-01

    Among the specific limitations which tend to complicate a compact high wall loading (HWL) tokamak reactor design are high surface and nuclear heating, compactness leading to crowded components, unlikely breeding on the inboard side and frequent first wall/blanket replacement. This paper describes the mechanical, thermal hydraulic and tritium aspects of an improved blanket design for a high ..beta.. (20%), high wall loading (R 10 MW/m/sup 2/) compact fusion power reactor of 1000 MW /sub th/ power output.

  4. Direct Electron Heating at Moderate Harmonic Number for Compact Ignition Devices

    SciTech Connect

    R. Majeski

    1999-07-01

    Direct electron heating of compact ignition devices by radio-frequency power in the 300-400 MHz,range is discussed. The possible advantage of this approach to heating an ignition device, as opposed to resonant heating of an ion population, is the insensitivity to the exact value of the magnitude field. Heating with central power deposition during a toroidal field ramp is therefore possible.

  5. Effects of self-propagating synthesis reactant compact character on ignition, propagation, and microstructure

    SciTech Connect

    Rice, R.W.; Richardson, G.Y.; Kunetz, J.M.; Schroeter, T.; McDonough, W.J. )

    1987-07-01

    Studies of reactions involving Ti to produce TiC, TiB{sub 2}, TiC + TiB{sub 2}, or 3TiB{sub 2} + 5Al{sub 2}O{sub 3} ignited at one end of test plates showed that reactant powder compact densities were a major factor in the reaction propagation rate along the plate, i.e., a maximum in propagation rate was observed at {approx}60 {plus minus} 10% of theoretical density. At higher densities, propagation rates not only decreased but terminated due to self extinction in some cases or failed to ignite and propagate, typically at {ge}90% of theoretical density. Both reactant particle size and shape can also affect results, i.e., compacts of large (200 {mu}m in diameter) Ti particles, Ti flakes or foil, or wires failed to ignite or had slower propagation rates. Also, the ignition and propagation rates of carbon fiber tows infiltrated with titanium metal powders depended significantly on the local thermal conductivity. However, overall propagation rates for a given range of reactant compact microstructures increased with the heat of the reaction involved.

  6. Tangential and Vertical Compact Torus Injection Experiments on the STOR-M Tokamak

    NASA Astrophysics Data System (ADS)

    Xiao, Chijin; D, Liu; S, Livingstone; A, K. Singh; E, Zhang; A, Hirose

    2005-04-01

    This paper describes the setup and results of compact torus (CT) injection experiments on the STOR-M tokamak. Tangential CT injection into STOR-M induced H-mode-like phenomena including doubling the electron density, reduction in the Hα radiation level, suppression of the floating potential fluctuations, suppression of the m = 2 Mirnov oscillations, and increase in the global energy confinement time. Experimental setup, bench-test results, and some preliminary injection data for vertical CT injection experiments on STOR-M will be shown. In addition, numerical simulations of the CT trajectories in tokamak discharges for both tangential and vertical injection geometries will be discussed.

  7. Magnetized plasma flow injection into tokamak and high-beta compact torus plasmas

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hiroyuki; Komoriya, Yuuki; Tazawa, Hiroyasu; Asai, Tomohiko; Takahashi, Tsutomu; Steinhauer, Loren; Itagaki, Hirotomo; Onchi, Takumi; Hirose, Akira

    2010-11-01

    As an application of a magnetized coaxial plasma gun (MCPG), magnetic helicity injection via injection of a highly elongated compact torus (magnetized plasma flow: MPF) has been conducted on both tokamak and field-reversed configuration (FRC) plasmas. The injected plasmoid has significant amounts of helicity and particle contents and has been proposed as a fueling and a current drive method for various torus systems. In the FRC, MPF is expected to generate partially spherical tokamak like FRC equilibrium by injecting a significant amount of magnetic helicity. As a circumstantial evidence of the modified equilibrium, suppressed rotational instability with toroidal mode number n = 2. MPF injection experiments have also been applied to the STOR-M tokamak as a start-up and current drive method. Differences in the responses of targets especially relation with beta value and the self-organization feature will be studied.

  8. Mechanical configuration for a superconducting ignition tokamak (TIBER) A02/MF A01

    NASA Astrophysics Data System (ADS)

    Neef, W. S., Jr.; Johnston, B. M.

    1985-01-01

    The Lawrence Livermore National Laboratory is evaluating the engineering feasibility and economics of a superconducting ignition tokamak. Two major operational requirements had to be satisfied: (1) the conductive heat leak to the refrigerated structure had to be minimized, and 2) assembly and maintenance of the entire experiment had to be possible with remotely operated tools. The middle poloidal push coil must have many annular disks to transfer the TF-coil inward force to the post without crushing the superconductor. The topping moment on the TF-coil vertical legs is huge. A method of keying together the TF-coil cases has been developed. This forms an integrated structure that resists torque. The joining technique permits linear motion for simple assembly/disassembly. The topping moment on the outer vertical legs of the TF coils is very large. To react that moment and avoid great coil-case bulk, a method has been developed that allows the PF coil support structure to assist the TF case structure. Finite element techniques were used to determine the ability of the coal case and conductor to react the magnetic loads. The entire cold-coil structure is mounted on a circular plate that is suspended by several large tension rods, similar to the MFTF-B yin-yang support rods. The vacuum vessel is all at room temperature and is configured like a bell jar with sixteen side doors, one for each shield module.

  9. Comparing Linear Microinstability of the National Compact Stellarator Expriment and a Shaped Tokamak

    SciTech Connect

    J.A. Baumgaertel, G.W. Hammett and D.R. Mikkelsen

    2012-11-20

    One metric for comparing con nement properties of di erent magnetic fusion energy con gurations is the linear critical gradient of drift wave modes. The critical gradient scale length determines the ratio of the core to pedestal temperature when a plasma is limited to marginal stability in the plasma core. The gyrokinetic turbulence code GS2 was used to calculate critical temperature gradients for the linear, collisionless ion tem- perature gradient (ITG) mode in the National Compact Stellarator Experiment (NCSX) and a prototypical shaped tokamak, based on the pro les of a JET H-mode shot and the stronger shaping of ARIES-AT. While a concern was that the narrow cross section of NCSX at some toroidal locations would result in steep gradients that drive instabilities more easily, it is found that other stabilizing e ects of the stellarator con guration o set this so that the normalized critical gradients for NCSX are competitive with or even better than for the tokamak. For the adiabatic ITG mode, NCSX and the tokamak had similar critical gradients, though beyond marginal stability, NCSX had larger growth rates. However, for the kinetic ITG mode, NCSX had a higher critical gradient and lower growth rates until a/LT ≈ 1:5 a/LT;crit, when it surpassed the tokamak's. A discussion of the results presented with respect to a/LT vs R/LT is included.

  10. Compact formulas for bounce/transit averaging in axisymmetric tokamak geometry

    SciTech Connect

    Duthoit, F.-X.; Brizard, A. J.; Hahm, T. S.

    2014-12-15

    Compact formulas for bounce and transit orbit averaging of the fluctuation-amplitude eikonal factor in axisymmetric tokamak geometry, which is frequently encountered in bounce-gyrokinetic description of microturbulence, are given in terms of the Jacobi elliptic functions and elliptic integrals. These formulas are readily applicable to the calculation of the neoclassical susceptibility in the framework of modern bounce-gyrokinetic theory. In the long-wavelength limit for axisymmetric electrostatic perturbations, we recover the expression for the Rosenbluth-Hinton residual zonal flow [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)] accurately.

  11. The conceptual design of a robust, compact, modular tokamak reactor based on high-field superconductors

    NASA Astrophysics Data System (ADS)

    Whyte, D. G.; Bonoli, P.; Barnard, H.; Haakonsen, C.; Hartwig, Z.; Kasten, C.; Palmer, T.; Sung, C.; Sutherland, D.; Bromberg, L.; Mangiarotti, F.; Goh, J.; Sorbom, B.; Sierchio, J.; Ball, J.; Greenwald, M.; Olynyk, G.; Minervini, J.

    2012-10-01

    Two of the greatest challenges to tokamak reactors are 1) large single-unit cost of each reactor's construction and 2) their susceptibility to disruptions from operation at or above operational limits. We present an attractive tokamak reactor design that substantially lessens these issues by exploiting recent advancements in superconductor (SC) tapes allowing peak field on SC coil > 20 Tesla. A R˜3.3 m, B˜9.2 T, ˜ 500 MW fusion power tokamak provides high fusion gain while avoiding all disruptive operating boundaries (no-wall beta, kink, and density limits). Robust steady-state core scenarios are obtained by exploiting the synergy of high field, compact size and ideal efficiency current drive using high-field side launch of Lower Hybrid waves. The design features a completely modular replacement of internal solid components enabled by the demountability of the coils/tapes and the use of an immersion liquid blanket. This modularity opens up the possibility of using the device as a nuclear component test facility.

  12. Compact retarding field energy analyzer for the tokamak ISTTOK boundary plasma

    SciTech Connect

    Nedzelskiy, I. S.; Silva, C.; Figueiredo, H.; Fernandes, H.; Varandas, C. A. F.

    2006-10-15

    The retarding field energy analyzer (RFEA) remains the more reliable diagnostic to measure the ion temperature in the boundary plasmas of magnetic fusion devices. A compact, simple design and inexpensive RFEA has been developed for investigations on the tokamak ISTTOK. It consists of a stainless steel pinhole (with a diameter of 0.6 mm), three fine nickel grids with a separation of 1 mm, and a collector, all insulated by mica. All the components are placed inside a boron nitride housing with dimensions of 14x14x23 mm{sup 3}. The RFEA has been tested in both ion and electron modes. The conditions of the RFEA operation are discussed, and preliminary measurements of the ion and electron temperature profiles presented.

  13. Nondimensional transport experiments on DIII-D and projections to an ignition tokamak

    SciTech Connect

    Petty, C.C.; Luce, T.C.; Balet, B.; Christiansen, J.P.; Cordey, J.G.

    1996-07-01

    The concept of nondimensional scaling of transport makes it possible to determine the required size for an ignition device based upon data from a single machine and illuminates the underlying physics of anomalous transport. The scaling of cross-field heat transport with the relative gyroradius {rho}*, the gyroradius normalized to the plasma minor radius, is of particular interest since {rho}* is the only nondimensional parameter which will vary significantly between present day machines and an ignition device. These nondimensional scaling experiments are based upon theoretical considerations which indicate that the thermal heat diffusivity can be written in the form {chi} = {chi}{sub B}{rho}*{sup x{sub {rho}}} F({beta}, v*, q, R/a, {kappa}, T{sub e}/T{sub i},...), where {chi}{sub B} = cT/eB. As explained elsewhere, x{sub {rho}} = 1 is called gyro-Bohm scaling, x{sub {rho}} is Bohm scaling, x{sub {rho}} = {minus}1/2 is Goldston scaling, and x{sub {rho}} = {minus}1 is stochastic scaling. The DIII-D results reported in this paper cover three important aspects of nondimensional scaling experiments: the testing of the underlying assumption of the nondimensional scaling approach, the determination of the {rho}* scaling of heat transport for various plasma regimes, and the extrapolation of the energy confinement time to future ignition devices.

  14. TIBER II: Tokamak Ignition/Burn Experimental Reactor: 1986 status report

    SciTech Connect

    Henning, C.D.; Logan, B.G.

    1986-10-23

    Several chapters are presented that cover the following areas: (1) physics basis; (2) current drive; (3) compact divertors; (4) neutron shielding; (5) high-current density, radiation-tolerant magnets; and (6) costs. (MOW)

  15. On the survivability of diagnostic windows in the CIT (Compact Ignition Tokamak) reactor

    SciTech Connect

    Taylor, A.

    1988-11-01

    The problem of radiation induced stresses in CIT diagnostic windows is discussed. Existing data indicate windows of existing design will probably survive if placed on the periphery of the reactor. There is a lack of adequate engineering data upon which the design and survivability of windows can be based. 22 refs., 5 figs., 2 tabs.

  16. Compact, battery powered, wireless digitizers for in situ data acquisitions in the sino-united spherical tokamak

    NASA Astrophysics Data System (ADS)

    Liu, Yangqing; Tan, Yi; Ke, Rui; Yang, Hao; Wang, Wenhao; Gao, Zhe

    2015-07-01

    Potential isolation and long cable drive are very important in acquiring certain signals from tokamak diagnostics. Compact, battery powered, wireless digitizers for in situ data acquisition have been developed and routinely used in the sino-united spherical tokamak to solve the problems of isolation and long cables. The wireless digitizers utilize the integrated analog to digital converters and the static random access memory of microcontrollers but transfer data wirelessly. They consist of simple and concise circuits but have considerable performances of 12-16 bit in resolution and 500-1000 kS/s in sample rate. Wireless triggering and energy saving are two major challenges of the wireless digitizers. Wireless transceivers in the data link layer are used as trigger and can reduce the trigger jitters to be smaller than 1 μs. In order to reduce the energy consumption, the wireless digitizers are waken only when the tokamak is about to discharge. After discharges, they turn to a periodic checking mode with current consumption smaller than 200 μA. Because of low duty cycle, the wireless digitizers have a battery life of up to four weeks. In general, the wireless digitizers have better performance than normal isolation amplifiers and can greatly simplify the cable connections. They are very suitable for the data acquisition of dangerous and/or susceptible analog signals in tokamaks.

  17. Compact, battery powered, wireless digitizers for in situ data acquisitions in the sino-united spherical tokamak.

    PubMed

    Liu, Yangqing; Tan, Yi; Ke, Rui; Yang, Hao; Wang, Wenhao; Gao, Zhe

    2015-07-01

    Potential isolation and long cable drive are very important in acquiring certain signals from tokamak diagnostics. Compact, battery powered, wireless digitizers for in situ data acquisition have been developed and routinely used in the sino-united spherical tokamak to solve the problems of isolation and long cables. The wireless digitizers utilize the integrated analog to digital converters and the static random access memory of microcontrollers but transfer data wirelessly. They consist of simple and concise circuits but have considerable performances of 12-16 bit in resolution and 500-1000 kS/s in sample rate. Wireless triggering and energy saving are two major challenges of the wireless digitizers. Wireless transceivers in the data link layer are used as trigger and can reduce the trigger jitters to be smaller than 1 μs. In order to reduce the energy consumption, the wireless digitizers are waken only when the tokamak is about to discharge. After discharges, they turn to a periodic checking mode with current consumption smaller than 200 μA. Because of low duty cycle, the wireless digitizers have a battery life of up to four weeks. In general, the wireless digitizers have better performance than normal isolation amplifiers and can greatly simplify the cable connections. They are very suitable for the data acquisition of dangerous and/or susceptible analog signals in tokamaks. PMID:26233380

  18. Modeling of compact loop antennas

    SciTech Connect

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak (CIT).

  19. Modeling of compact loop antennas

    NASA Astrophysics Data System (ADS)

    Baity, F. W.

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak (CIT).

  20. Modeling of compact loop antennas

    NASA Astrophysics Data System (ADS)

    Baity, F. W.

    1987-09-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively tuned resonant double loop (RDL) antennas, the model treats sub-tuned RDL antennas. Calculations using the model have been compared with measurements on full-scale mock-ups of RDL antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and the Compact Ignition Tokamak (CIT).

  1. Analysis on damage to TF coils of a compact reversed shear tokamak CREST

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Zheng, S.; Lu, L.; Zeng, Q.; Hiwatari, R.; Asaoka, Y.; Okano, K.; Ogawa, Y.

    2007-08-01

    CREST is a conceptual tokamak reactor design with high β plasma, high thermal efficiency, competitive cost and water-cooled ferritic steel components. Some of its parameters are similar to those of the ITER advanced mode plasma. In this manuscript, the specific issues and analysis on damage to TF coils of CREST were carried out based on the three-dimensional model of the CREST with the widely used code MCNP/4C and the IAEA latest released FENDL/2.1 data library. Damage to some specific regions of the TF coils near large openings and at the inboard mid-plane are calculated and analyzed. Parameters such as the distributions of nuclear heat density, fast neutron flux, dose rate to the epoxy insulator, and peak displacement dose to Cu conductor for the TF coil near these regions were calculated and analyzed. The shield thicknesses at these regions are optimized.

  2. A compact lithium pellet injector for tokamak pedestal studies in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Arredondo Parra, R.; Moreno Quicios, R.; Ploeckl, B.; Birkenmeier, G.; Herrmann, A.; Kocsis, G.; Laggner, F. M.; Lang, P. T.; Lunt, T.; Macian-Juan, R.; Rohde, V.; Sellmair, G.; Szepesi, T.; Wolfrum, E.; Zeidner, W.; Neu, R.

    2016-02-01

    Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 1019 atoms (0.21 mg) to 1.64 × 1020 atoms (1.89 mg). The maximum repetition rate is about 2 Hz. Free flight launch from the torus outboard side without a guiding tube was realized. In such a configuration, angular dispersion and speed scatter are low, and a transfer efficiency exceeding 90% was achieved in the test bed. Pellets are accelerated in a gas gun; hence special care was taken to avoid deleterious effects by the propellant gas pulse. Therefore, the main plasma gas species was applied as propellant gas, leading to speeds ranging from 420 m/s to 700 m/s. In order to minimize the residual amount of gas to be introduced into the plasma vessel, a large expansion volume equipped with a cryopump was added into the flight path. In view of the experiments, an optimal propellant gas pressure of 50 bars was chosen for operation, since at this pressure maximum efficiency and low propellant gas flux coincide. This led to pellet speeds of 585 m/s ± 32 m/s. Lithium injection has been achieved at ASDEX Upgrade, showing deep pellet penetration into the plasma, though pedestal broadening has not been observed yet.

  3. A compact lithium pellet injector for tokamak pedestal studies in ASDEX Upgrade.

    PubMed

    Arredondo Parra, R; Moreno Quicios, R; Ploeckl, B; Birkenmeier, G; Herrmann, A; Kocsis, G; Laggner, F M; Lang, P T; Lunt, T; Macian-Juan, R; Rohde, V; Sellmair, G; Szepesi, T; Wolfrum, E; Zeidner, W; Neu, R

    2016-02-01

    Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 10(19) atoms (0.21 mg) to 1.64 × 10(20) atoms (1.89 mg). The maximum repetition rate is about 2 Hz. Free flight launch from the torus outboard side without a guiding tube was realized. In such a configuration, angular dispersion and speed scatter are low, and a transfer efficiency exceeding 90% was achieved in the test bed. Pellets are accelerated in a gas gun; hence special care was taken to avoid deleterious effects by the propellant gas pulse. Therefore, the main plasma gas species was applied as propellant gas, leading to speeds ranging from 420 m/s to 700 m/s. In order to minimize the residual amount of gas to be introduced into the plasma vessel, a large expansion volume equipped with a cryopump was added into the flight path. In view of the experiments, an optimal propellant gas pressure of 50 bars was chosen for operation, since at this pressure maximum efficiency and low propellant gas flux coincide. This led to pellet speeds of 585 m/s ± 32 m/s. Lithium injection has been achieved at ASDEX Upgrade, showing deep pellet penetration into the plasma, though pedestal broadening has not been observed yet. PMID:26931850

  4. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  5. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.

  6. Transport simulations of ohmic ignition experiment: IGNITEX

    SciTech Connect

    Uckan, N.A.; Howe, H.C.

    1987-12-01

    The IGNITEX device, proposed by Rosenbluth et al., is a compact, super-high-field, high-current, copper-coil tokamak envisioned to reach ignition with ohmic (OH) heating alone. Several simulations of IGNITEX were made with a 0-D global model and with the 1-D PROCTR transport code. It is shown that OH ignition is a sensitive function of the assumptions about density profile, wall reflectivity of synchrotron radiation, impurity radiation, plasma edge conditions, and additional anomalous losses. In IGNITEX, OH ignition is accessible with nearly all scalings based on favorable OH confinement (such as neo-Alcator). Also, OH ignition appears to be accessible for most (not all) L-mode scalings (such as Kaye-Goldston), provided that the density profile is not too broad (parabolic or more peaked profiles are needed), Z/sub eff/ is not too large, and anomalous radiation and alpha losses and/or other enhanced transport losses (eta/sub i/ modes, edge convective energy losses, etc.) are not present. In IGNITEX, because the figure-of-merit parameters are large, ignition can be accessed (either with OH heating alone or with the aid of a small amount of auxiliary power) at relatively low beta, far from stability limits. Once the plasma is ignited, thermal runaway is prevented naturally by a combination of increased synchrotron radiation, burnout of the fuel in the plasma core and replacement by thermal alphas, and the reduction in the thermal plasma confinement assumed in L-mode-like scalings. 12 refs., 5 figs., 1 tab.

  7. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.

  8. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  9. Compact Stellarator Path to DEMO

    NASA Astrophysics Data System (ADS)

    Lyon, J. F.

    2007-11-01

    Issues for a DEMO reactor are sustaining an ignited/high-Q plasma in steady state, avoiding disruptions and large variations in power flux to the wall, adequate confinement of thermal plasma and alpha-particles, control of a burning plasma, particle and power handling, etc. Compact stellarators have key advantages -- steady-state high-plasma-density operation without external current drive or disruptions, stability without a close conducting wall or active feedback systems, and low recirculating power -- in addition to moderate plasma aspect ratio, good confinement, and high-beta potential. The ARIES-CS study established that compact stellarators can be competitive with tokamaks as reactors. Many of the issues for a compact stellarator DEMO can be answered using results from large tokamaks, ITER D-T experiments and fusion materials, technology and component development programs, in addition to stellarators in operation, under construction or in development. However, a large next-generation stellarator will be needed to address some physics issues: size scaling and confinement at higher parameters, burning plasma issues, and operation with a strongly radiative divertor. Technology issues include simpler coils, structure, and divertor fabrication, and better cost information.

  10. Progress in Compact Toroid Experiments

    SciTech Connect

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  11. Reactor applications of the Compact Fusion Advanced Rankine (CFAR) cycle for a D-T tokamak fusion reactor

    NASA Astrophysics Data System (ADS)

    Hoffman, H. A.; Logan, B. G.; Campbell, R. B.

    1988-03-01

    A preliminary design of a D-T fusion reactor blanket and MHD power conversion system is made based on the CFAR concept, and it was found that performance and costs for the reference cycle are very attractive. While much remains to be done, the potential advantage of liquid metal Rankine cycles for fusion applications are much clearer now. These include low pressures and mass flow rates, a nearly isothermal module shell which minimizes problems of thermal distortion and stresses, and an insensitivity to pressure losses in the blanket so that the two-phase MHD pressure drops in the boiling part of the blanket and the ordinary vapor pressure drops in the pebble-bed superheating zones are acceptable (the direct result of pumping a liquid rather than having to compress a gas). There are no moving parts in the high-temperature MHD power generators, no steam bottoming plant is required, only small vapor precoolers and condensers are needed because of the high heat rejection temperatures, and only a relatively small natural-draft heat exchanger is required to reject the heat to the atmosphere. The net result is a very compact fusion reactor and power conversion system which fit entirely inside an 18 meter radius reactor vault. Although a cost analysis has not yet been performed, preliminary cost estimates indicate low capital costs and a very attractive cost of electricity.

  12. Design considerations for the TF center conductor post for the Ignition Spherical Torus (IST)

    SciTech Connect

    Dalton, G.R.; Haines, J.R.

    1986-01-01

    A trade-off study has been carried out to compare the differential costs of using high-strength alloy copper versus oxygen-free, high-conductivity (OFHC) copper for the center legs of the toroidal field (TF) coils of an Ignition Spherical Torus (IST). The electrical heating, temperatures, stresses, cooling requirements, material costs, pump costs, and power to drive the TF coils and pumps are all assessed for both materials for a range of compact tokamak reactors. The alloy copper material is found to result in a more compact reactor and to allow use of current densities of up to 170 MA/mS versus 40 MA/mS for the OFHC copper. The OFHC conductor system with high current density is $24 million less expensive than more conventional copper systems with 30 MA/mS. The alloy copper system costs $32 million less than conventional systems. Therefore, the alloy system offers a net savings of $8 million compared to the 50% cold-worked OFHC copper system. Although the savings are a significant fraction of the center conductor post cost, they are relatively insignificant in terms of the total device cost. It is concluded that the use of alloy copper contributes very little to the economic or technical viability of the compact IST. It is recommended that a similar systematic approach be applied to evaluating coil material and current density trade-offs for other compact copper-TF-coil tokamak designs. 9 refs., 13 figs., 13 tabs.

  13. Designing a tokamak fusion reactor—How does plasma physics fit in?

    NASA Astrophysics Data System (ADS)

    Freidberg, J. P.; Mangiarotti, F. J.; Minervini, J.

    2015-07-01

    This paper attempts to bridge the gap between tokamak reactor design and plasma physics. The analysis demonstrates that the overall design of a tokamak fusion reactor is determined almost entirely by the constraints imposed by nuclear physics and fusion engineering. Virtually, no plasma physics is required to determine the main design parameters of a reactor: a , R 0 , B 0 , T i , T e , p , n , τ E , I . The one exception is the value of the toroidal current I , which depends upon a combination of engineering and plasma physics. This exception, however, ultimately has a major impact on the feasibility of an attractive tokamak reactor. The analysis shows that the engineering/nuclear physics design makes demands on the plasma physics that must be satisfied in order to generate power. These demands are substituted into the well-known operational constraints arising in tokamak physics: the Troyon limit, Greenwald limit, kink stability limit, and bootstrap fraction limit. Unfortunately, a tokamak reactor designed on the basis of standard engineering and nuclear physics constraints does not scale to a reactor. Too much current is required to achieve the necessary confinement time for ignition. The combination of achievable bootstrap current plus current drive is not sufficient to generate the current demanded by the engineering design. Several possible solutions are discussed in detail involving advances in plasma physics or engineering. The main contribution of the present work is to demonstrate that the basic reactor design and its plasma physics consequences can be determined simply and analytically. The analysis thus provides a crisp, compact, logical framework that will hopefully lead to improved physical intuition for connecting plasma physic to tokamak reactor design.

  14. A technique for extending by ∼10(3) the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGA.

    PubMed

    Sio, H; Séguin, F H; Frenje, J A; Gatu Johnson, M; Zylstra, A B; Rinderknecht, H G; Rosenberg, M J; Li, C K; Petrasso, R D

    2014-11-01

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D(3)He-, D2-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 10(2) for obtaining the spectral shape, and by 10(3) for mean energy (ρR) measurement, corresponding to proton fluences of 10(8) and 10(9) cm(-2), respectively. Using this new technique, ρR asymmetries can be measured during both shock and compression burn (proton yield ∼10(8) and ∼10(12), respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±∼10 mg/cm(2). PMID:25430298

  15. Thermal Ignition

    NASA Astrophysics Data System (ADS)

    Boettcher, Philipp Andreas

    Accidental ignition of flammable gases is a critical safety concern in many industrial applications. Particularly in the aviation industry, the main areas of concern on an aircraft are the fuel tank and adjoining regions, where spilled fuel has a high likelihood of creating a flammable mixture. To this end, a fundamental understanding of the ignition phenomenon is necessary in order to develop more accurate test methods and standards as a means of designing safer air vehicles. The focus of this work is thermal ignition, particularly auto-ignition with emphasis on the effect of heating rate, hot surface ignition and flame propagation, and puffing flames. Combustion of hydrocarbon fuels is traditionally separated into slow reaction, cool flame, and ignition regimes based on pressure and temperature. Standard tests, such as the ASTM E659, are used to determine the lowest temperature required to ignite a specific fuel mixed with air at atmospheric pressure. It is expected that the initial pressure and the rate at which the mixture is heated also influences the limiting temperature and the type of combustion. This study investigates the effect of heating rate, between 4 and 15 K/min, and initial pressure, in the range of 25 to 100 kPa, on ignition of n-hexane air mixtures. Mixtures with equivalence ratio ranging from 0.6 to 1.2 were investigated. The problem is also modeled computationally using an extension of Semenov's classical auto-ignition theory with a detailed chemical mechanism. Experiments and simulations both show that in the same reactor either a slow reaction or an ignition event can take place depending on the heating rate. Analysis of the detailed chemistry demonstrates that a mixture which approaches the ignition region slowly undergoes a significant modification of its composition. This change in composition induces a progressive shift of the explosion limit until the mixture is no longer flammable. A mixture that approaches the ignition region

  16. A technique for extending by ∼10{sup 3} the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGA

    SciTech Connect

    Sio, H. Séguin, F. H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Petrasso, R. D.

    2014-11-15

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D{sup 3}He-, D{sub 2}-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 10{sup 2} for obtaining the spectral shape, and by 10{sup 3} for mean energy (ρR) measurement, corresponding to proton fluences of 10{sup 8} and 10{sup 9} cm{sup −2}, respectively. Using this new technique, ρR asymmetries can be measured during both shock and compression burn (proton yield ∼10{sup 8} and ∼10{sup 12}, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±∼10 mg/cm{sup 2}.

  17. Ignitor with stable low-energy thermite igniting system

    DOEpatents

    Kelly, Michael D.; Munger, Alan C.

    1991-02-05

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  18. Prospects for Tokamak Fusion Reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  19. Status of tokamak experiments

    SciTech Connect

    Wolf, G.H.

    1996-03-01

    Plasma-wall interaction, heat removal and ash exhaust have emerged as the dominant problems still to be solved in order to achieve ignition and - even more difficult - to maintain a state of self-sustained thermo-nuclear burn. This is of particular delicacy, since those operational regimes which yield the best energy confinement correspond to an even better particle confinement and confinement of impurities, which then tend to accumulate in the plasma core and to result in disruption or degradation of the tokamak discharge. Therefore, plasma-wall interaction, heat removal and particle exhaust will determine not only the structure and configuration of the plasma edge region, of the wall system and of the materials facing the plasma, but also the final choice of useful confinement regimes. Moreover, the potential effect of powerful {alpha}-particle heating on plasma stability and confinement has to be kept below critical values. For the latter requirement, a final answer can only be obtained in an ITER-type device where ignition and burn will become accessible. 72 refs., 12 figs.

  20. ECH tokamak

    SciTech Connect

    Firestone, M.A.; Mau, T.K.; Conn, R.W.

    1985-04-01

    A small steady-state tokamak capable of producing power in the 100 to 300 MWe range and relying on electron cyclotron RF heating (ECH) for both heating and current drive is described. Working in the first MHD stability regime for tokamaks, the approach adheres to the recently discovered maximum beta limit. An appropriate figure of merit is the ratio of the fusion power to absorbed RF power. Efficient devices are feasible at both small and large values of fusion power, thereby pointing to a development path for an attractive commercial fusion reactor.

  1. A semiconductor bridge ignited gas generator

    SciTech Connect

    Grubelich, M.C.; Bickes, R.W. Jr.

    1992-06-01

    Compact, lightweight, self-contained gas generator systems are required for a variety of inflation or deployment applications. We designed a generic gas generator employing a semiconductor bridge, SCB, igniter to evaluate the characteristics of the black powder propellant selected. Because of the low ignition energy requirements and rugged design of SCBs, they are ideally suited to the volume, mass and severe environments for the gas generator applications. In our design, an SCB ignited a pyrotechnic (TiH{sub 1.68}KClO{sub 4}) which was used to ignite an end-burning consolidated black powder grain. We evaluated the performance of the gas generator using a computer program developed to simulate the combustion of the end-burning propellant grain. This model is in good agreement with the data from our test firings. In addition, we examined direct SCB ignition of black powder as a function of loading pressure and firing-set current. 3 refs.

  2. A semiconductor bridge ignited gas generator

    SciTech Connect

    Grubelich, M.C.; Bickes, R.W. Jr.

    1992-01-01

    Compact, lightweight, self-contained gas generator systems are required for a variety of inflation or deployment applications. We designed a generic gas generator employing a semiconductor bridge, SCB, igniter to evaluate the characteristics of the black powder propellant selected. Because of the low ignition energy requirements and rugged design of SCBs, they are ideally suited to the volume, mass and severe environments for the gas generator applications. In our design, an SCB ignited a pyrotechnic (TiH{sub 1.68}KClO{sub 4}) which was used to ignite an end-burning consolidated black powder grain. We evaluated the performance of the gas generator using a computer program developed to simulate the combustion of the end-burning propellant grain. This model is in good agreement with the data from our test firings. In addition, we examined direct SCB ignition of black powder as a function of loading pressure and firing-set current. 3 refs.

  3. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  4. Ignitability test method

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Schimmel, Morry L.

    1989-01-01

    To overcome serious weaknesses in determining the performance of initiating devices, a novel 'ignitability test method', representing actual design interfaces and ignition materials, has been developed. Ignition device output consists of heat, light, gas an burning particles. Past research methods have evaluated these parameters individually. This paper describes the development and demonstration of an ignitability test method combining all these parameters, and the quantitative assessment of the ignition performance of two widely used percussion primers, the M42C1-PA101 and the M42C2-793. The ignition materials used for this evaluation were several powder, granule and pellet sizes of black powder and boron-potassium nitrate. This test method should be useful for performance evaluation of all initiator types, quality assurance, evaluation of ignition interfaces, and service life studies of initiators and ignition materials.

  5. Electrostatic-discharge ignition

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Miller, C. G.

    1977-01-01

    Electrode in cylinder permits charge to transfer during top dead center compression stroke in modified Otto-cycle engine. Charge transfer produces spark which causes ignition of droplets without resorting to other ignition devices which are incapable of igniting ultralean mixtures.

  6. Laser induced ignition

    NASA Astrophysics Data System (ADS)

    Liedl, G.; Schuöcker, D.; Geringer, B.; Graf, J.; Klawatsch, D.; Lenz, H. P.; Piock, W. F.; Jetzinger, M.; Kapus, P.

    2007-05-01

    Nowadays, combustion engines and other combustion processes play an overwhelming and important role in everyday life. As a result, ignition of combustion processes is of great importance, too. Usually, ignition of a combustible material is defined in such a way that an ignition initiates a self-sustained reaction which propagates through the inflammable material even in the case that the ignition source has been removed. In most cases, a well defined ignition location and ignition time is of crucial importance. Spark plugs are well suited for such tasks but suffer from some disadvantages, like erosion of electrodes or restricted positioning possibilities. In some cases, ignition of combustible materials by means of high power laser pulses could be beneficial. High power lasers offer several different possibilities to ignite combustible materials, like thermal ignition, resonant ignition or optical breakdown ignition. Since thermal and resonant ignitions are not well suited on the requirements mentioned previously, only optical breakdown ignition will be discussed further. Optical breakdown of a gas within the focal spot of a high power laser allows a very distinct localization of the ignition spot in a combustible material. Since pulse duration is usually in the range of several nanoseconds, requirements on the ignition time are fulfilled easily, too. Laser peak intensities required for such an optical breakdown are in the range of 10 11 W/cm2. The hot plasma which forms during this breakdown initiates the following self-propagating combustion process. It has been shown previously that laser ignition of direct injection engines improves the fuel consumption as well as the exhaust emissions of such engines significantly. The work presented here gives a brief overview on the basics of laser induced ignition. Flame propagation which follows a successful ignition event can be distinguished into two diffrent regimes. Combustion processes within an engine are usually

  7. Thermal ignition combustion system

    DOEpatents

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  8. Thermal ignition combustion system

    DOEpatents

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  9. Tokamak Systems Code

    SciTech Connect

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  10. Mathematical modeling plasma transport in tokamaks

    SciTech Connect

    Quiang, Ji

    1995-12-31

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10{sup 20}/m{sup 3} with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.

  11. Laser ignition in internal-combustion engines: Sparkless initiation

    NASA Astrophysics Data System (ADS)

    Andronov, A. A.; Gurin, V. A.; Marugin, A. V.; Savikin, A. P.; Svyatoshenko, D. E.; Tukhomirov, A. N.; Utkin, Yu. S.; Khimich, V. L.

    2014-08-01

    Laser ignition has been implemented in a single-cylinder internal combustion engine fueled by gasoline. Indicator diagrams (cylinder pressure versus crank angle) were obtained for laser ignition with nano- and microsecond pulses of an Nd:YAG laser. The maximum power of microsecond pulses was below critical for spark initiation, while the radiation wavelength was outside the spectral range of optical absorption by hydrocarbon fuels. Apparently, the ignition starts due to radiation absorption by the oil residues or carbon deposit in the combustion chamber, so that the ability of engine to operate is retained. This initiation of spark-free ignition shows the possibility of using compact semiconductor quantum-cascade lasers operating at wavelengths of about 3.4 μm (for which the optical absorption by fuel mixtures is high) in ignition systems of internal combustion engines.

  12. Flare ignition system

    SciTech Connect

    Sorelle, R.R.

    1984-05-22

    A flare ignition system is claimed for oil well flaring of combustible gases. It includes a central control unit, low voltage interconnect line and plural remote igniter units which include alternate first and second spark gaps coordinated in fail-safe operation. Coordination is carried out by pulse counting and validating circuitry which assures that one of the spark gaps will always be ignitable or alarm condition will exist.

  13. Dropwise ignition versus external ignition for multicomponent fuel sprays

    NASA Astrophysics Data System (ADS)

    Mawid, M.; Aggarwal, S. K.

    1988-07-01

    An attempt has been made to identify conditions for dropwise ignition and spray ignition. Both pure as well as multicomponent fuels are considered. For dropwise ignition, an existing ignition criterion has been modified to account for the nonlinear dependence of reaction rate on fuel and oxygen concentrations and to account for the multicomponent nature of the fuel. The external or spray ignition is considered through the zero heat flux condition at the ignition source. The effect of chemical kinetics is examined by employing reaction schemes with unity as well as non-unity exponents of fuel and oxygen concentrations. Results indicate that for most of the conditions considered, the individual droplet ignition is favored over the external ignition. Only when the drop diameter is smaller than 30 microns, the spray ignites earlier than droplets. The addition of a small amount of a volatile component significantly enhances the ignitability of both modes. However, the effect is stronger for the dropwise ignition mode.

  14. Low profile thermite igniter

    DOEpatents

    Halcomb, Danny L.; Mohler, Jonathan H.

    1991-03-05

    A thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.

  15. FUNDAMENTAL STUDIES OF IGNITION PROCESSES IN LARGE NATURAL GAS ENGINES USING LASER SPARK IGNITION

    SciTech Connect

    Azer Yalin; Morgan Defoort; Bryan Willson

    2005-01-01

    The current report details project progress made during the first quarterly reporting period of the DOE sponsored project ''Fundamental studies of ignition processes in large natural gas engines using laser spark ignition''. The goal of the overall research effort is to develop a laser ignition system for natural gas engines, with a particular focus on using fiber optic delivery methods. In this report we present our successful demonstration of spark formation using fiber delivery made possible though the use of novel coated hollow fibers. We present results of (high power) experimental characterizations of light propagation using hollow fibers using both a high power research grade laser as well as a more compact laser. Finally, we present initial designs of the system we are developing for future on-engine testing using the hollow fibers.

  16. Thermal ignition of pyrotechnics with lasers

    SciTech Connect

    Chow, C.T.S.; Mohler, J.H.

    1987-01-01

    We are studying the transient phenomena of thermal ignition using laser energy. Present-day infrared scanning and recording techniques enable us to determine the heat content based on the thermal profiles, during ignition, with spatial and temporal resolution. Thus, we can actually observe the laser heating and onset of self-sustained combustion in the sample pellet, and we can use the data obtained with existing theory to characterize pyrotechnic materials and to develop more-precise kinetic models of the ignition process. The results demonstrate the viability of our methods for studying the pyrotechnic ignition process. The whole ignition process consists of two stages. In the first stage, a laser acts as an external heat source that heats the surface of a pellet, an inert body. When the temperature reaches a certain level, a second-stage chemical reaction occurs. The two stages are separated by the inflection point of the temperature-vs-time trace. We present a formula derived from the thermal-explosion theory that allows one to determine the kinetic constants, with the surface-heat flux and the inflection temperature as the only parameters. In addition, we also report the ignition delay time as a function of the heat flux and describe the experimental apparatus used. We investigated three reactions: Fe/sub 3/O/sub 4//Al, Fe/sub 2/O/sub 3//Al, and Ti/2B. For our test samples, we used several kinds of powders, including spherical and flaked aluminum powders and medium and fine iron-oxide powders, with various compact densities. 7 refs., 7 figs., 2 tabs.

  17. Ignition Rate Measurement of Laser-Ignited Coals

    SciTech Connect

    John C. Chen; Vinayak Kabadi

    1997-10-31

    We established a novel experiment to study the ignition of pulverized coals under conditions relevant to utility boilers. Specifically, we determined the ignition mechanism of pulverized-coal particles under various conditions of particle size, coal type, and freestream oxygen concentration. We also measured the ignition rate constant of a Pittsburgh #8 high-volatile bituminous coal by direct measurement of the particle temperature at ignition, and incorporating this measurement into a mathematical model for the ignition process. The model, called Distributed Activation Energy Model of Ignition, was developed previously by our group to interpret conventional drop-tube ignition experiments, and was modified to accommodate the present study.

  18. Burning plasma simulation and environmental assessment of tokamak, spherical tokamak and helical reactors

    NASA Astrophysics Data System (ADS)

    Yamazaki, K.; Uemura, S.; Oishi, T.; Garcia, J.; Arimoto, H.; Shoji, T.

    2009-05-01

    Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.

  19. Hydrodynamics of Conically-Guided Fast-Ignition Targets

    SciTech Connect

    Hatchett, S P; Clark, D; Tabak, M; Turner, R E; Stoeckel, C; Stephens, R B; Shiraga, H; Tanaka, K

    2005-09-29

    The fast ignition (FI) concept requires the generation of a compact, dense, pure fuel mass accessible to an external ignition source. The current baseline FI target is a shell fitted with a re-entrant cone extending to near its center. Conventional direct or indirect drive collapses the shell near the tip of the cone and then an ultra-intense laser pulse focused to the inside cone tip generates high-energy electrons to ignite the dense fuel. Theoretical investigations of this concept with a modest 2-D calculational scheme have sparsely explored the large design space and the tradeoffs available to optimize compaction of the fuel and maintain the integrity of the cone. Experiments have generally validated the modeling while revealing additional complexities. Away from the cone, the shell collapses much as does a conventional implosion, generating a hot, low-density inner core plasma which exhausts out toward the tip of the cone. The hot, low-density inner core can impede the compaction of the cold fuel, lowering the implosion/burn efficiency and the gain, and jetting toward the cone tip can affect the cone integrity. Thicker initial fuel layers, lower velocity implosions, and drive asymmetries can lead to decreased efficiency in converting implosion kinetic energy into compression. Ignition and burn hydrodynamic studies have revealed strategies for generating additional convergence and compression in the FI context. We describe 2-D and 1-D approaches to optimizing designs for cone-guided fast-ignition.

  20. Adult Compacts.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This bulletin focuses on adult compacts, three-way agreements among employers, potential employees, and trainers to provide the right kind of quality training to meet the employers' requirements. Part 1 is an executive summary of a report of the Adult Compacts Project, which studied three adult compacts in Birmingham and Loughborough, England, and…

  1. Dual-Laser-Pulse Ignition

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.

    2006-01-01

    A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.

  2. Microgravity ignition experiment

    NASA Technical Reports Server (NTRS)

    Motevalli, Vahid; Elliott, William; Garrant, Keith

    1992-01-01

    The purpose of this project is to develop a flight ready apparatus of the microgravity ignition experiment for the GASCan 2 program. This involved redesigning, testing, and making final modifications to the existing apparatus. The microgravity ignition experiment is intended to test the effect of microgravity on the time to ignition of a sample of alpha-cellulose paper. An infrared heat lamp is used to heat the paper sample within a sealed canister. The interior of the canister was redesigned to increase stability and minimize conductive heat transfer to the sample. This design was fabricated and tested and a heat transfer model of the paper sample was developed.

  3. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  4. Spherical tokamaks with plasma centre-post

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2013-10-01

    The metal centre-post (MCP) in tokamaks is a structure which carries the total toroidal field current and also houses the Ohmic heating solenoid in conventional or low aspect ratio (Spherical)(ST) tokamaks. The MCP and solenoid are critical components for producing the toroidal field and for the limited Ohmic flux in STs. Constraints for a ST reactor related to these limitations lead to a minimum plasma aspect ratio of 1.4 which reduces the benefit of operation at higher betas in a more compact ST reactor. Replacing the MCP is of great interest for reactor-based ST studies since the device is simplified, compactness increased, and maintenance reduced. An experiment to show the feasibility of using a plasma centre-post (PCP) is being currently under construction and involves a high level of complexity. A preliminary study of a very simple PCP, which is ECR(Electron Cyclotron Resonance)-assisted and which includes an innovative fuelling system based on pellet injection, has recently been reported. This is highly suitable for an ultra-low aspect ratio tokamak (ULART) device. Advances on this PCP ECR-assisted concept within a ULART and the associated fuelling system are presented here, and will include the field topology for the PCP ECR-assisted scheme, pellet ablation modeling, and a possible global equilibrium simulation. VIE-ITCR, IAEA-CRP contr.17592, National Instruments-Costa Rica.

  5. A technique for extending by ~103 the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGAa)

    SciTech Connect

    Sio, H.; Séguin, F. H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Petrasso, R. D.

    2014-11-01

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D3He-, D2-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 102 for obtaining the spectral shape, and by 103 for mean energy (ρR) measurement, corresponding to proton fluences of 108 and 109 cm-2, respectively. Finally, using this new technique, ρR asymmetries can be measured during both shock and compression burn (proton yield ~108 and ~1012, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±~10 mg/cm2.

  6. Molded composite pyrogen igniter for rocket motors. [solid propellant ignition

    NASA Technical Reports Server (NTRS)

    Heier, W. C.; Lucy, M. H. (Inventor)

    1978-01-01

    A lightweight pyrogen igniter assembly including an elongated molded plastic tube adapted to contain a pyrogen charge was designed for insertion into a rocket motor casing for ignition of the rocket motor charge. A molded plastic closure cap provided for the elongated tube includes an ignition charge for igniting the pyrogen charge and an electrically actuated ignition squib for igniting the ignition charge. The ignition charge is contained within a portion of the closure cap, and it is retained therein by a noncorrosive ignition pellet retainer or screen which is adapted to rest on a shoulder of the elongated tube when the closure cap and tube are assembled together. A circumferentially disposed metal ring is provided along the external circumference of the closure cap and is molded or captured within the plastic cap in the molding process to provide, along with O-ring seals, a leakproof rotary joint.

  7. Direct spark ignition system

    SciTech Connect

    Gann, R.A.

    1986-12-02

    This patent describes a direct spark ignition system having a gas burner, an electrically operable valve connected to the burner to admit fuel thereto, a gated oscillator having a timing circuit for timing a trial ignition, a spark generator responsive to the oscillator for igniting fuel emanating from the burner, and a flame sensor for sustaining oscillations of the oscillator while a flame exists at the burner. The spark generator has an inverter connected to a low voltage dc source and responsive to the oscillator for converting the dc voltage to a high ac voltage, a means for rectifying the high ac voltage, a capacitor connected to the rectifying means for storing the rectified high voltage, an ignition coil in series between the storage capacitor and a switch, and a means for periodically turning on the switch to produce ignition pulses through the coil. The ignition system is powered from the dc source but controlled by the oscillator. An improvement described here is wherein the inverter is comprised of a step-up transformer having its primary winding connected in series with the dc source and a common emitter transistor having its collector connected to the primary winding. The transistor has its base connected to be controlled by the oscillator to chop the dc into ac in the primary winding, and a diode connected between the storage capacitor and the collector of the transistor, the diode being poled to couple into the capacitor back EMF energy when the transistor is turned off.

  8. National Ignition Facility design, performance, and cost

    SciTech Connect

    Hogan, W.J.; Paisner, J.A.; Lowdermilk, W.H.

    1994-09-16

    A conceptual design for the National Ignition Facility (NIF) has been completed and its cost has been estimated by a multilaboratory team. To maximize the performance/cost ratio a compact, segmented amplifier is used in a multipass architecture. Many recent optical and laser technology developments have been incorporated into the final design. The Beamlet project has successfully demonstrated the new concept. The mission of ICF Program using the NEF is to achieve ignition and gain in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects experiments, and for civilian applications such as inertial fusion energy development and fundamental studies of matter at high energy density.

  9. An investigation of interior ballistics ignition phase

    NASA Astrophysics Data System (ADS)

    Porterie, B.; Loraud, J. C.

    1994-09-01

    An axisymmetric viscous two-phase model is presented which describes the transient combustion of granular propellants during the ignition phase of a ballistic charge. Details of the model are presented along with computational results for a low-pressure ballistic simulator. Predicted pressure time evolutions are compared with experimental data of a real test-firing in which an unexpected pressure excursion occurred. Gun propellant breakup effects, due to bed compaction, are taken into consideration to explain the discrepancies between the numerical and experimental results. Finally, a discussion is presented of the mechanisms by which the behavior of pressure waves can be strongly influenced and thus controlled by the manner in which the propelling charge is ignited.

  10. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  11. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  12. Ignition system monitoring assembly

    DOEpatents

    Brushwood, John Samuel

    2003-11-04

    An ignition system monitoring assembly for use in a combustion engine is disclosed. The assembly includes an igniter having at least one positioning guide with at least one transmittal member being maintained in a preferred orientation by one of the positioning guides. The transmittal member is in optical communication with a corresponding target region, and optical information about the target region is conveyed to the reception member via the transmittal member. The device allows real-time observation of optical characteristics of the target region. The target region may be the spark gap between the igniter electrodes, or other predetermined locations in optical communication with the transmittal member. The reception member may send an output signal to a processing member which, in turn, may produce a response to the output signal.

  13. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each

  14. Preconceptual design and assessment of a Tokamak Hybrid Reactor

    SciTech Connect

    Teofilo, V.L.; Leonard, B.R. Jr.; Aase, D.T.

    1980-09-01

    The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant has been performed. The tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb/sub 3/Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs have been made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis has been made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered.

  15. Preconceptual design and assessment of a Tokamak hybrid reactor

    NASA Astrophysics Data System (ADS)

    Teofilo, V. L.; Leonard, B. R., Jr.; Aase, D. T.; Bickford, W. E.; McCormick, N. J.; McGrath, R. T.; Morrison, J. E.; Perry, R. T.; Schulte, S. C.; Willingham, C. E.

    1980-09-01

    The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant was performed. The Tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb3Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited Tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs were made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis was made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered.

  16. Ignitability test method and apparatus

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Bailey, James W. (Inventor); Schimmel, Morry L. (Inventor)

    1991-01-01

    An apparatus for testing ignitability of an initiator includes a body having a central cavity, an initiator holder for holding the initiator over the central cavity of the body, an ignition material holder disposed in the central cavity of the body and having a cavity facing the initiator holder which receives a measured quantity of ignition material to be ignited by the initiator. It contains a chamber in communication with the cavity of the ignition material and the central cavity of the body, and a measuring system for analyzing pressure characteristics generated by ignition of the ignition material by the initiator. The measuring system includes at least one transducer coupled with an oscillograph for recording pressure traces generated by ignition.

  17. The Automotive Ignition Coil

    NASA Technical Reports Server (NTRS)

    Darnell, T H

    1932-01-01

    This report gives the results of a series of measurements on the secondary voltage induced in an ignition coil of typical construction under a variety of operating conditions. These results show that the theoretical predictions hitherto made as to the behavior of this type of apparatus are in satisfactory agreement with the observed facts. The large mass of data obtained is here published both for the use of other investigators who may wish to compare them with other theoretical predictions and for the use of automotive engineers who will here find definite experimental results showing the effect of secondary capacity and resistance on the crest voltage produced by ignition apparatus.

  18. ADX - Advanced Divertor and RF Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  19. On thermonuclear ignition criterion at the National Ignition Facility

    SciTech Connect

    Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming; Batha, Steven H.

    2014-10-15

    Sustained thermonuclear fusion at the National Ignition Facility remains elusive. Although recent experiments approached or exceeded the anticipated ignition thresholds, the nuclear performance of the laser-driven capsules was well below predictions in terms of energy and neutron production. Such discrepancies between expectations and reality motivate a reassessment of the physics of ignition. We have developed a predictive analytical model from fundamental physics principles. Based on the model, we obtained a general thermonuclear ignition criterion in terms of the areal density and temperature of the hot fuel. This newly derived ignition threshold and its alternative forms explicitly show the minimum requirements of the hot fuel pressure, mass, areal density, and burn fraction for achieving ignition. Comparison of our criterion with existing theories, simulations, and the experimental data shows that our ignition threshold is more stringent than those in the existing literature and that our results are consistent with the experiments.

  20. Ignition timing control

    SciTech Connect

    Lambert, J.E.; Bedross, G.M.

    1993-05-25

    An engine ignition control system for controlling the timing of the spark for initiating burning in the combustion chamber of a four stroke cycle, single cylinder, internal combustion engine is described; said engine having a cylinder, a piston in said cylinder, a crankshaft connected to said piston, said piston being adapted to reciprocate between a top dead center position and a bottom dead center position; a speed sensor means for developing periodic sensor voltage timing pulses, the cycle time between timing pulses being an indication of engine crankshaft speed; means for developing ignition timing pulses, each timing pulse having a leading edge corresponding to a voltage change in a timing voltage pulse and a trailing edge corresponding to an opposite voltage change in a timing voltage pulse; means for developing a spark voltage including an ignition coil and a source of ignition coil current, said spark voltage occurring at a coil primary current interrupt point; means for measuring in real-time, cycle time and a timing pulse time for one engine cycle; and means for computing an optimum delay time from the leading edge of a timing pulse for said one cycle to said interrupt point whereby combustion is initiated at a time in advance of the top dead center position.

  1. Compact proton spectrometers for measurements of shock

    SciTech Connect

    Mackinnon, A; Zylstra, A; Frenje, J A; Seguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M G; Casey, D T; Sinenian, N; Manuel, M; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G; Dewald, E; Doeppner, T; Edwards, M J; Glenzer, S H; Hicks, D; Landen, O L; London, R; Meezan, N B

    2012-05-02

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign (NIC) diagnostic. The WRF measures the spectrum of protons from D-{sup 3}He reactions in tuning-campaign implosions containing D and {sup 3}He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total {rho}R through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  2. Equilibrium ignition for ICF capsules

    SciTech Connect

    Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.

    1993-12-31

    There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative.

  3. Texas Experimental Tokamak

    SciTech Connect

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.

  4. Completely bootstrapped tokamak

    SciTech Connect

    Weening, R.H. ); Boozer, A.H. )

    1992-01-01

    Numerical simulations of the evolution of large-scale magnetic fields have been developed using a mean-field Ohm's law. The Ohm's law is coupled to a {Delta}{prime} stabilty analysis and a magnetic island growth equation in order to simulate the behavior of tokamak plasmas that are subject to tearing modes. In one set of calculations, the magnetohydrodynamic (MHD)-stable regime of the tokamak is examined via the construction of an {ital l}{sub {ital i}} -{ital q}{sub {ital a}} diagram. The results confirm previous calculations that show that tearing modes introduce a stability boundary into the {ital l}{sub {ital i}} -{ital q}{sub {ital a}} space. In another series of simulations, the interaction between tearing modes and the bootstrap current is investigated. The results indicate that a completely bootstrapped tokamak may be possible, even in the absence of any externally applied loop voltage or current drive.

  5. First Results of the ETE Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Ludwig, G. O.; del Bosco, E.; Ferreira, J. G.; Barroso, J. J.; Berni, L. A.; Oliveira, R. M.

    2001-10-01

    First tokamak plasma discharges were obtained in the ETE Spherical Tokamak Experiment (Experimento Tokamak Esferico) by November 2000. ETE is a medium size machine (major radius R=0.30m) with a compact design and good access for diagnostics. During the first phase of operation a plasma current of 200kA (t=15ms) will be produced in a 1.5 aspect ratio configuration with a toroidal magnetic field up to 0.4T. The ultimate values are limited by mechanical stresses in the joints of the toroidal field coil (B<0.8T), and by stresses and heating in the solenoid (0.24Wb, 30kA, 0.2s) for a maximum plasma current of about 400kA. Presently the experiments are focused on plasma formation, vacuum conditioning and diagnostics implementation. The machine was constructed in accordance with stringent design specifications. The assembly has an overall precision better than 2mm. Vacuum conditioning is being improved with baking, glow discharge cleaning and usual tokamak operation. Breakdown is easily obtained even without the pre-ionization provided by a hot filament electron emitter and by an ultraviolet lamp. Preliminary measurements of stray magnetic fields were carried out and eddy current effects are being modeled. Energy of the capacitor banks is being continuously increased to achieve the design parameters. A fast neutral lithium beam probe for plasma edge studies and a 6.7GHz high-power monotron for pre-ionization and electron cyclotron resonance plasma heating experiments are under development.

  6. Self-consistent, three-dimensional equilibrium effects on tokamak magnetic field ripple

    SciTech Connect

    Johnson, J.L.; Reiman, A.H.

    1987-10-01

    Self-consistent equilibrium effects on tokamak magnetic field ripple have been calculated using a three-dimensional equilibrium code. The effects are found to be large enough that they should be included in tokamak ignition experiment designs. Even the modification of the well depth associated with the flow of force-free plasma current along rippled field lines is substantial. An analysis of the results separates the contribution of the Shafranov shift to the ripple modification from the contributions of other finite-pressure effects. 5 refs., 10 figs., 1 tab.

  7. Proposals for an influential role of small tokamaks in mainstream fusion physics and technology research

    NASA Astrophysics Data System (ADS)

    Van Oost, G.; Del Bosco, E.; Gryaznevich, M. P.; Malaquias, A.; Mank, G.

    2006-12-01

    Small tokamaks may significantly contribute to the better understanding of phenomena in a wide range of fields such as plasma confinement and energy transport; plasma stability in different magnetic configurations; plasma turbulence and its impact on local and global plasma parameters; processes at the plasma edge and plasma-wall interaction; scenarios of additional heating and non-inductive current drive; new methods of plasma profile and parameter control; development of novel plasma diagnostics; benchmarking of new numerical codes and so on. Furthermore, due to the compactness, flexibility, low operation costs and high skill of their personnel small tokamaks are very convenient to develop and test new materials and technologies, which because of the risky nature cannot be done in large machines without preliminary studies. Small tokamaks are suitable and important for broad international cooperation, providing the necessary environment and manpower to conduct dedicated joint research programmes. In addition, the experimental work on small tokamaks is very appropriate for the education of students, scientific activities of post-graduate students and for the training of personnel for large tokamaks. All these tasks are well recognised and reflected in documents and understood by the large tokamak teams. Recent experimental results will be presented of contributions to mainstream fusion physics and technology research on small tokamaks involved in the IAEA Coordinated Research Project "Joint Research using small tokamaks", started in 2004.

  8. Burner ignition system

    DOEpatents

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  9. Monolithic catalytic igniters

    NASA Technical Reports Server (NTRS)

    La Ferla, R.; Tuffias, R. H.; Jang, Q.

    1993-01-01

    Catalytic igniters offer the potential for excellent reliability and simplicity for use with the diergolic bipropellant oxygen/hydrogen as well as with the monopropellant hydrazine. State-of-the-art catalyst beds - noble metal/granular pellet carriers - currently used in hydrazine engines are limited by carrier stability, which limits the hot-fire temperature, and by poor thermal response due to the large thermal mass. Moreover, questions remain with regard to longevity and reliability of these catalysts. In this work, Ultramet investigated the feasibility of fabricating monolithic catalyst beds that overcome the limitations of current catalytic igniters via a combination of chemical vapor deposition (CVD) iridium coatings and chemical vapor infiltration (CVI) refractory ceramic foams. It was found that under all flow conditions and O2:H2 mass ratios tested, a high surface area monolithic bed outperformed a Shell 405 bed. Additionally, it was found that monolithic catalytic igniters, specifically porous ceramic foams fabricated by CVD/CVI processing, can be fabricated whose catalytic performance is better than Shell 405 and with significantly lower flow restriction, from materials that can operate at 2000 C or higher.

  10. Tearing Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    White, R. B.

    2008-05-01

    This lecture gives a basic introduction to magnetic £elds, magnetic surface destruction, toroidal equilibrium and tearing modes in a tokamak, including the linear and nonlinear development of these modes and their modi£cation by current drive and bootstrap current, and sawtooth oscillations and disruptions.

  11. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  12. Ignition target design for the National Ignition Facility

    SciTech Connect

    Haan, S.W.; Pollaine, S.M.; Lindl, J.D.

    1996-06-01

    The goal of inertial confinement fusion (ICF) is to produce significant thermonuclear burn from a target driven with a laser or ion beam. To achieve that goal, the national ICF Program has proposed a laser capable of producing ignition and intermediate gain. The facility is called the National Ignition Facility (NIF). This article describes ignition targets designed for the NIF and their modeling. Although the baseline NIF target design, described herein, is indirect drive, the facility will also be capable of doing direct-drive ignition targets - currently being developed at the University of Rochester.

  13. Transport in gyrokinetic tokamaks

    SciTech Connect

    Mynick, H.E.; Parker, S.E.

    1995-01-01

    A comprehensive study of transport in full-volume gyrokinetic (gk) simulations of ion temperature gradient driven turbulence in core tokamak plasmas is presented. Though this ``gyrokinetic tokamak`` is much simpler than experimental tokamaks, such simplicity is an asset, because a dependable nonlinear transport theory for such systems should be more attainable. Toward this end, we pursue two related lines of inquiry. (1) We study the scalings of gk tokamaks with respect to important system parameters. In contrast to real machines, the scalings of larger gk systems (a/{rho}{sub s} {approx_gt} 64) with minor radius, with current, and with a/{rho}{sub s} are roughly consistent with the approximate theoretical expectations for electrostatic turbulent transport which exist as yet. Smaller systems manifest quite different scalings, which aids in interpreting differing mass-scaling results in other work. (2) With the goal of developing a first-principles theory of gk transport, we use the gk data to infer the underlying transport physics. The data indicate that, of the many modes k present in the simulation, only a modest number (N{sub k} {approximately} 10) of k dominate the transport, and for each, only a handful (N{sub p} {approximately} 5) of couplings to other modes p appear to be significant, implying that the essential transport physics may be described by a far simpler system than would have been expected on the basis of earlier nonlinear theory alone. Part of this analysis is the inference of the coupling coefficients M{sub kpq} governing the nonlinear mode interactions, whose measurement from tokamak simulation data is presented here for the first time.

  14. High Beta Tokamaks

    SciTech Connect

    Cowley, S.

    1998-11-14

    Perhaps the ideal tokamak would have high {beta} ({beta} {approx}> 1) and classical confinement. Such a tokamak has not been found, and we do not know if one does exist. We have searched for such a possibility, so far without success. In 1990, we obtained analytic equilibrium solutions for large aspect ratio tokamaks at {beta} {approx} {Omicron}(1) [1]. These solutions and the extension at high {beta} poloidal to finite aspect ratio [2] provided a basis for the study of high {beta} tokamaks. We have shown that these configurations can be stable to short scale MHD modes [3], and that they have reduced neoclassical transport [4]. Microinstabilities (such as the {del}T{sub i} mode) seem to be stabilized at high {beta} [5] - this is due to the large local shear [3] and the magnetic well. We have some concerns about modes associated with the compressional branch which may appear at high {beta}. Bill Dorland and Mike Kotschenreuther have studied this issue and our concerns may be unfounded. It is certainly tantalizing, especially given the lowered neoclassical transport values, that these configurations could have no microinstabilities and, one could assume, no anomalous transport. Unfortunately, while this work is encouraging, the key question for high {beta} tokamaks is the stability to large scale kink modes. The MHD {beta} limit (Troyon limit) for kink modes at large aspect ratio is problematically low. There is ample evidence from computations that the limit exists. However, it is not known if stable equilibria exist at much higher {beta}--none have been found. We have explored this question in the asymptotic high {beta} poloidal limit. Unfortunately, we are unable to find stable equilibrium and also unable to show that they don't exist. The results of these calculations will be published when a more definitive answer is found.

  15. Ignition dynamics of high explosives

    SciTech Connect

    Ali, A.N.; Son, S.F.; Sander, R.K.; Asay, B.W.; Brewster, M.Q.

    1999-04-01

    The laser ignition of the explosives HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, C{sub 4}H{sub 8}N{sub 8}O{sub 8}), {delta}-phase HMX, PBX 9501 (95% HMX, 2.5% Estane, 2.5% BDNPA/BDNPF), TATB (1,3,5-triamino-2,4,6-trinitrobenzene, C{sub 6}H{sub 6}N{sub 6}O{sub 6}), and PBX 9502 (95% TATB, 5% Kel-F) and aged PBX 9502 has been conducted with the intent to compare the relative sensitivities of those explosives and to investigate the effect of beam profile, binder addition, and porosity. It has been found that there was little difference between a gaussian beam and a top hat profile on the laser ignition of HMX. The authors observe that the addition of binder in the amounts present in PBX 9501 resulted in longer ignition delays than that of HMX. In contrast to HMX, the addition of binder to TATB in PBX 9502 shows no measurable effect. Porosity effects were considered by comparing the ignition of granular HMX and pressed HMX pellets. Porosity appears to increase ignition delay due to an increased effective absorption scale and increased convective heat loss. This porosity effect also resulted in longer ignition delays for {delta}-phase HMX than for {beta}-phase HMX. In order to simulate ignition in voids or cracks, the standard ignition experiment was modified to include a NaCl window placed at variable distances above the sample surface. When ignition experiments were performed at 29 W/cm{sup 2} and 38 W/cm{sup 2} a critical gap distance was observed of 6 {+-} 0.4 mm below which ignition was severely inhibited. This result underscores the importance of gas phase processes in ignition and illustrates that conditions can exist where simple ignition criteria such as surface temperature is inadequate.

  16. Central ignition scenarios for TFTR

    SciTech Connect

    Zweben, S.J.; Redi, M.H.; Bateman, G.

    1986-03-01

    The possibility of obtaining ignition in TFTR by means of very centrally peaked density profiles is examined. It is shown that local central alpha heating can be made to exceed local central energy losses (''central ignition'') under global conditions for which Q greater than or equal to 1. Time dependent 1-D transport simulations show that the normal global ignition requirements are substantially relaxed for plasmas with peaked density profiles. 18 refs., 18 figs.

  17. Plastic ablator ignition capsule design for the National Ignition Facility

    SciTech Connect

    Clark, D S; Haan, S W; Hammel, B A; Salmonson, J D; Callahan, D A; Town, R P

    2009-12-01

    The National Ignition Campaign, tasked with designing and fielding targets for fusion ignition experiments on the National Ignition Facility (NIF), has carried forward three complementary target designs for the past several years: a beryllium ablator design, a plastic ablator design, and a high-density carbon or synthetic diamond design. This paper describes current simulations and design optimization to develop the plastic ablator capsule design as a candidate for the first ignition attempt on NIF. The trade-offs in capsule scale and laser energy that must be made to achieve a comparable ignition probability to that with beryllium are emphasized. Large numbers of 1-D simulations, meant to assess the statistical behavior of the target design, as well as 2-D simulations to assess the target's susceptibility to Rayleigh-Taylor growth are presented.

  18. Plastic ablator ignition capsule design for the National Ignition Facility

    SciTech Connect

    Clark, Daniel S.; Haan, Steven W.; Hammel, Bruce A.; Salmonson, Jay D.; Callahan, Debra A.; Town, Richard P. J.

    2010-05-15

    The National Ignition Campaign, tasked with designing and fielding targets for fusion ignition experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, S228 (2004)], has carried forward three complementary target designs for the past several years: a beryllium ablator design, a plastic ablator design, and a high-density carbon or synthetic diamond design. This paper describes current simulations and design optimization to develop the plastic ablator capsule design as a candidate for the first ignition attempt on NIF. The trade-offs in capsule scale and laser energy that must be made to achieve a comparable ignition probability to that with beryllium are emphasized. Large numbers of one-dimensional simulations, meant to assess the statistical behavior of the target design, as well as two-dimensional simulations to assess the target's susceptibility to Rayleigh-Taylor growth are presented.

  19. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  20. Tritium catalyzed deuterium tokamaks

    SciTech Connect

    Greenspan, E.; Miley, G.H.; Jung, J.; Gilligan, J.

    1984-04-01

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the /sup 3/He from the D(D,n)/sup 3/He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general).

  1. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    SciTech Connect

    Moses, E

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  2. Energy confinement in tokamaks

    SciTech Connect

    Sugihara, M.; Singer, C.

    1986-08-01

    A straightforward generalization is made of the ohmic heating energy confinement scalings of Pfeiffer and Waltz and Blackwell et. al. The resulting model is systematically calibrated to published data from limiter tokamaks with ohmic, electron cyclotron, and neutral beam heating. With considerably fewer explicitly adjustable free parameters, this model appears to give a better fit to the available data for limiter discharges than the combined ohmic/auxiliary heating model of Goldston.

  3. Rocket Ignition Demonstrations Using Silane

    NASA Technical Reports Server (NTRS)

    Pal, Sibtosh; Santoro, Robert; Watkins, William B.; Kincaid, Kevin

    1998-01-01

    Rocket ignition demonstration tests using silane were performed at the Penn State Combustion Research Laboratory. A heat sink combustor with one injection element was used with gaseous propellants. Mixtures of silane and hydrogen were used as fuel, and oxygen was used as oxidizer. Reliable ignition was demonstrated using fuel lead and and a swirl injection element.

  4. Hydrogen/Air-Ignition Torch

    NASA Technical Reports Server (NTRS)

    Repas, George A.

    1988-01-01

    Torch is simple, reliable, and economical. Airflow cools inner tube prior to flowing through openings in inner tube and mixing with gaseous hydrogen. Spark plug connected to constant-duty simple ignition transformer threaded into side of torch and into inner tube. Transformer used to excite spark plug for period long enough to ignite gas. Transformer is turned off.

  5. Plasma jet ignition device

    DOEpatents

    McIlwain, Michael E.; Grant, Jonathan F.; Golenko, Zsolt; Wittstein, Alan D.

    1985-01-15

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  6. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator.

    SciTech Connect

    Menard, J. E.; Bromberg, L.; Brown, T.; Burgess, Thomas W; Dix, D.; El-GuebalyUniv. Wisco, L.; Gerrity, T.; Goldston, R. J.; Hawryluk, R.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G. H.; Neumeyer, C. L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D. G.; Zarnstorff, M. C.

    2011-01-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  7. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    NASA Astrophysics Data System (ADS)

    Menard, J. E.; Bromberg, L.; Brown, T.; Burgess, T.; Dix, D.; El-Guebaly, L.; Gerrity, T.; Goldston, R. J.; Hawryluk, R. J.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G. H.; Neumeyer, C. L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.; Zarnstorff, M.

    2011-10-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  8. Ignition process in Diesel engines

    NASA Technical Reports Server (NTRS)

    Wentzel, W

    1936-01-01

    This report analyzes the heating and vaporization process of fuel droplets in a compression-ignition engine on the basis of the theory of similitude - according to which, the period for heating and complete vaporization of the average size fuel drop is only a fraction of the actually observed ignition lag. The result is that ignition takes place in the fuel vapor air mixture rather than on the surface of the drop. The theoretical result is in accord with the experimental observations by Rothrock and Waldron. The combustion shock occurring at lower terminal compression temperature, especially in the combustion of coal-tar oil, is attributable to a simultaneous igniting of a larger fuel-vapor volume formed prior to ignition.

  9. Plasma Igniter for Reliable Ignition of Combustion in Rocket Engines

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard

    2011-01-01

    A plasma igniter has been developed for initiating combustion in liquid-propellant rocket engines. The device propels a hot, dense plasma jet, consisting of elemental fluorine and fluorine compounds, into the combustion chamber to ignite the cold propellant mixture. The igniter consists of two coaxial, cylindrical electrodes with a cylindrical bar of solid Teflon plastic in the region between them. The outer electrode is a metal (stainless steel) tube; the inner electrode is a metal pin (mild steel, stainless steel, tungsten, or thoriated-tungsten). The Teflon bar fits snugly between the two electrodes and provides electrical insulation between them. The Teflon bar may have either a flat surface, or a concave, conical surface at the open, down-stream end of the igniter (the igniter face). The igniter would be mounted on the combustion chamber of the rocket engine, either on the injector-plate at the upstream side of the engine, or on the sidewalls of the chamber. It also might sit behind a valve that would be opened just prior to ignition, and closed just after, in order to prevent the Teflon from melting due to heating from the combustion chamber.

  10. The Ignition Target for the National Ignition Facility

    SciTech Connect

    Atherton, L J; Moses, E I; Carlisle, K; Kilkenny, J

    2007-03-12

    The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. When completed in 2009, NIF will be able to produce 1.8 MJ, 500 TW of ultraviolet light for target experiments that will create conditions of extreme temperatures (>10{sup 8} K), pressures (10-GBar) and matter densities (> 100 g/cm{sup 3}). A detailed program called the National Ignition Campaign (NIC) has been developed to enable ignition experiments in 2010, with the goal of producing fusion ignition and burn of a deuterium-tritium (DT) fuel mixture in millimeter-scale target capsules. The first of the target experiments leading up to these ignition shots will begin in 2008. Targets for the National Ignition Campaign are both complex and precise, and are extraordinarily demanding in materials fabrication, machining, assembly, cryogenics and characterization. An overview of the campaign for ignition will be presented, along with technologies for target fabrication, assembly and metrology and advances in growth and x-ray imaging of DT ice layers. The sum of these efforts represents a quantum leap in target precision, characterization, manufacturing rate and flexibility over current state-of-the-art.

  11. Operation of a tokamak reactor in the radiative improved mode

    NASA Astrophysics Data System (ADS)

    Morozov, D. Kh.; Mavrin, A. A.

    2016-03-01

    The operation of a nuclear fusion reactor has been simulated within a model based on experimental results obtained at the TEXTOR-94 tokamak and other facilities in which quasistationary regimes were achieved with long confinement times, high densities, and absence of the edge-localized mode. The radiative improved mode of confinement studied in detail at the TEXTOR-94 tokamak is the most interesting such regime. One of the most important problems of modern tokamaks is the problem of a very high thermal load on a divertor (or a limiter). This problem is quite easily solved in the radiative improved mode. Since a significant fraction of the thermal energy is reemitted by an impurity, the thermal loading is significantly reduced. As the energy confinement time τ E at high densities in the indicated mode is significantly larger than the time predicted by the scaling of ITERH-98P(y, 2), ignition can be achieved in a facility much smaller than the ITER facility at plasma temperatures below 20 keV. The revealed decrease in the degradation of the confinement time τ E with an increase in the introduced power has been analyzed.

  12. Piezoelectrically Initiated Pyrotechnic Igniter

    NASA Technical Reports Server (NTRS)

    Quince, Asia; Dutton, Maureen; Hicks, Robert; Burnham, Karen

    2013-01-01

    This innovation consists of a pyrotechnic initiator and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments. Current devices of this nature are initiated by the mechanical action of a firing pin against a primer. Primers historically are prone to failure. These failures are commonly known as misfires or hang-fires. In many cases, the primer shows the dent where the firing pin struck the primer, but the primer failed to fire. In devices such as "T" handles, which are commonly used to initiate the blowout of canopies, loss of function of the device may result in loss of crew. In devices such as flares or smoke generators, failure can result in failure to spot a downed pilot. The piezoelectrically initiated ignition system consists of a pyrotechnic device that plugs into a mechanical system (activator), which on activation, generates a high-voltage spark. The activator, when released, will strike a stack of electrically linked piezo crystals, generating a high-voltage, low-amperage current that is then conducted to the pyro-initiator. Within the initiator, an electrode releases a spark that passes through a pyrotechnic first-fire mixture, causing it to combust. The combustion of the first-fire initiates a primary pyrotechnic or explosive powder. If used in a "T" handle, the primary would ramp the speed of burn up to the speed of sound, generating a shock wave that would cause a high explosive to go "high order." In a flare or smoke generator, the secondary would produce the heat necessary to ignite the pyrotechnic mixture. The piezo activator subsystem is redundant in that a second stack of crystals would be struck at the same time with the same activation force, doubling the probability of a first strike spark generation. If the first

  13. Polarization spectroscopy of tokamak plasmas

    SciTech Connect

    Wroblewski, D.

    1991-09-01

    Measurements of polarization of spectral lines emitted by tokamak plasmas provide information about the plasma internal magnetic field and the current density profile. The methods of polarization spectroscopy, as applied to the tokamak diagnostic, are reviewed with emphasis on the polarimetry of motional Stark effect in hydrogenic neutral beam emissions. 25 refs., 7 figs.

  14. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  15. Experimental studies of compact toroids

    SciTech Connect

    Not Available

    1991-01-01

    The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 {mu}s pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity.

  16. First neutron spectrometry measurement at the HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Yuan, Xi; Zhang, Xing; Xie, Xu-Fei; Chen, Zhong-Jing; Peng, Xing-Yu; Fan, Tie-Shuan; Chen, Jin-Xiang; Li, Xiang-Qing; Yuan, Guo-Liang; Yang, Qing-Wei; Yang, Jin-Wei

    2013-12-01

    A compact neutron spectrometer based on the liquid scintillator is presented for neutron energy spectrum measurements at the HL-2A Tokamak. The spectrometer was well characterized and a fast digital pulse shape discrimination software was developed using the charge comparison method. A digitizer data acquisition system with a maximum frequency of 1 MHz can work under an environment with a high count rate at HL-2A Tokamak. Specific radiation and magnetic shielding for the spectrometer were designed for the neutron spectrum measurement at the HL-2A Tokamak. For pulse height spectrum analysis, dedicated numerical simulation utilizing NUBEAM combined with GENESIS was performed to obtain the neutron energy spectrum. Subsequently, the transportation process from the plasma to the detector was evaluated with Monte Carlo calculations. The distorted neutron energy spectrum was folded with the response matrix of the liquid scintillation spectrometer, and good consistency was found between the simulated and measured pulse height spectra. This neutron spectrometer based on a digital acquisition system could be well adopted for the investigation of the auxiliary heating behavior and the fast-ion related phenomenon on different tokamak devices.

  17. Emergency ignition shutoff system

    SciTech Connect

    Gomes, L.R. Jr.

    1987-01-13

    An emergency shut-off mechanism is described for a racing car having a roll bar framework forming a driver's cage. The mechanism comprises, in combination, a toggle switch wired in series with an ignition switch of the car, the toggle switch being mounted on a dashboard of the car, one end of a flexible cord being connected to the toggle switch, and an ''L''-shaped conduit affixed to the driver's cage through which the cord slidably extends. A snap hook is affixed to an opposite end of the cord and a ring is affixed to a rear portion of a driver's helmet for detachable attachment to the snap hook. The conduit extends from the dashboard to a position rearward of a driver's seat and of the helmet. Sufficient movement of the helmet pulls the cord, thereby actuating the switch and shutting off the car.

  18. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance

    SciTech Connect

    Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.; Attenberger, S.E.

    1987-11-01

    The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor (ETR) plasma (Tokamak Ignition/Burn Experimental Reactor (TIBER-II)) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-D transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alpha concentration significantly influence the ignition and steady-state burn capability. 23 refs., 9 figs., 4 tabs.

  19. The tokamak as a neutron source

    SciTech Connect

    Hendel, H.W.; Jassby, D.L.

    1989-11-01

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs.

  20. Ignition of Hydrogen Balloons by Model-Rocket-Engine Igniters.

    ERIC Educational Resources Information Center

    Hartman, Nicholas T.

    2003-01-01

    Describes an alternative method for exploding hydrogen balloons as a classroom demonstration. Uses the method of igniting the balloons via an electronic match. Includes necessary materials to conduct the demonstration and discusses potential hazards. (SOE)

  1. Ignition of Aluminum Particles and Clouds

    SciTech Connect

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  2. Engine ignition timing control apparatus

    SciTech Connect

    Takahashi, N.

    1988-03-01

    An apparatus for controlling the timing of ignition of an internal combustion engine including at least one cylinder is described comprising: sensor means sensitive to combustion pressure in the cylinder for providing a sensor signal indicative of a sensed cylinder combustion pressure; and a control circuit including means coupled to the sensor means for measuring a crankshaft angle at which the cylinder combustion pressure is at maximum, means for retarding the ignition timing in response to the measured crankshaft angle being less than a first value, means for retaining the ignition timing in response to the measured crankshaft angle being between the first and a second value greater than the first value, and means for advancing the ignition timing in response to the measured crankshaft angle being greater than the second value.

  3. Three-dimensional analysis of tokamaks and stellarators

    PubMed Central

    Garabedian, Paul R.

    2008-01-01

    The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project. PMID:18768807

  4. Three-dimensional analysis of tokamaks and stellarators.

    PubMed

    Garabedian, Paul R

    2008-09-16

    The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project. PMID:18768807

  5. Dust Measurements in Tokamaks

    SciTech Connect

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  6. ITER tokamak device

    NASA Astrophysics Data System (ADS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-07-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER, a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fueling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (1) magnet systems (toroidal and poloidal field coils and cryogenic systems), (2) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (3) first wall, (4) divertor plate (design and materials, performance and lifetime, a.o.), (5) blanket/shield system, (6) maintenance equipment, (7) current drive and heating, (8) fuel cycle system, and (9) diagnostics.

  7. Sawtooth oscillation in tokamaks

    SciTech Connect

    Park, W.; Monticello, D.A.

    1989-03-01

    A three-dimensional nonlinear toroidal full MHD code, MH3D, has been used to study sawtooth oscillations in tokamaks. The profile evolution during the sawtooth crash phase compares well with experiment, but only if neoclassical resistivity is used in the rise phase. (Classical resistivity has been used in most of the previous theoretical sawtooth studies.) With neoclassical resistivity, the q value at the axis drops from 1 to about 0.8 before the crash phase, and then resets to 1 through a Kadomtsev-type complete reconnection process. This ..delta..q/sub 0/ approx. = 0.2 is much larger than ..delta..q/sub o/ approx. = 0.01, which is obtained if classical resistivity is used. The current profile is strongly peaked at the axis with a flat region around the singular surface, and is similar to the Textor profile. To understand this behavior, approximate formulas for the time behavior of current and q values are derived. A functional dependence of sawtooth period scaling is also derived. A semi-empirical scaling is found which fits the experimental data from various tokamaks. Some evidence is presented which indicates that the fast crash time is due to enhanced effective resistivity inside the singular current sheet, generated by, e.g., microinstability and electron parallel viscosity with stochastic fields at the x-point. 16 refs., 5 figs.

  8. The National Ignition Facility Project

    SciTech Connect

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-06-16

    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project.

  9. Alcohol ignition interlock programs.

    PubMed

    Beirness, D J; Marques, P R

    2004-09-01

    The alcohol ignition interlock is an in-vehicle DWI control device that prevents a car from starting until the operator provides a breath alcohol concentration (BAC) test below a set level, usually .02% (20 mg/dl) to .04% (40 mg/dl). The first interlock program was begun as a pilot test in California 18 years ago; today all but a few US states, and Canadian provinces have interlock enabling legislation. Sweden has recently implemented a nationwide interlock program. Other nations of the European Union and as well as several Australian states are testing it on a small scale or through pilot research. This article describes the interlock device and reviews the development and current status of interlock programs including their public safety benefit and the public practice impediments to more widespread adoption of these DWI control devices. Included in this review are (1) a discussion of the technological breakthroughs and certification standards that gave rise to the design features of equipment that is in widespread use today; (2) a commentary on the growing level of adoption of interlocks by governments despite the judicial and legislative practices that prevent more widespread use of them; (3) a brief overview of the extant literature documenting a high degree of interlock efficacy while installed, and the rapid loss of their preventative effect on repeat DWI once they are removed from the vehicles; (4) a discussion of the representativeness of subjects in the current research studies; (5) a discussion of research innovations, including motivational intervention efforts that may extend the controlling effect of the interlock, and data mining research that has uncovered ways to use the stored interlock data record of BAC tests in order to predict high risk drivers; and (6) a discussion of communication barriers and conceptual rigidities that may be preventing the alcohol ignition interlock from taking a more prominent role in the arsenal of tools used to control

  10. Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites

    SciTech Connect

    Hunt, Emily M.; Pantoya, Michelle L.

    2005-08-01

    Ignition behaviors associated with nano- and micron-scale particulate composite thermites were studied experimentally and modeled theoretically. The experimental analysis utilized a CO{sub 2} laser ignition apparatus to ignite the front surface of compacted nickel (Ni) and aluminum (Al) pellets at varying heating rates. Ignition delay time and ignition temperature as a function of both Ni and Al particle size were measured using high-speed imaging and microthermocouples. The apparent activation energy was determined from this data using a Kissinger isoconversion method. This study shows that the activation energy is significantly lower for nano- compared with micron-scale particulate media (i.e., as low as 17.4 compared with 162.5 kJ/mol, respectively). Two separate Arrhenius-type mathematical models were developed that describe ignition in the nano- and the micron-composite thermites. The micron-composite model is based on a heat balance while the nanocomposite model incorporates the energy of phase transformation in the alumina shell theorized to be an initiating step in the solid-solid diffusion reaction and uniquely appreciable in nanoparticle media. These models were found to describe the ignition of the Ni/Al alloy for a wide range of heating rates.

  11. Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites

    NASA Astrophysics Data System (ADS)

    Hunt, Emily M.; Pantoya, Michelle L.

    2005-08-01

    Ignition behaviors associated with nano- and micron-scale particulate composite thermites were studied experimentally and modeled theoretically. The experimental analysis utilized a CO2 laser ignition apparatus to ignite the front surface of compacted nickel (Ni) and aluminum (Al) pellets at varying heating rates. Ignition delay time and ignition temperature as a function of both Ni and Al particle size were measured using high-speed imaging and microthermocouples. The apparent activation energy was determined from this data using a Kissinger isoconversion method. This study shows that the activation energy is significantly lower for nano- compared with micron-scale particulate media (i.e., as low as 17.4 compared with 162.5kJ /mol, respectively). Two separate Arrhenius-type mathematical models were developed that describe ignition in the nano- and the micron-composite thermites. The micron-composite model is based on a heat balance while the nanocomposite model incorporates the energy of phase transformation in the alumina shell theorized to be an initiating step in the solid-solid diffusion reaction and uniquely appreciable in nanoparticle media. These models were found to describe the ignition of the Ni /Al alloy for a wide range of heating rates.

  12. National Ignition Facility: Experimental plan

    SciTech Connect

    Not Available

    1994-05-01

    As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester`s Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.

  13. Plasma breakdown and combustion ignition

    NASA Astrophysics Data System (ADS)

    McNeill, Donald H.; Tran, Phuoc

    2001-10-01

    Ignition in chemically reactive media and electrical breakdown are among the most widely used transient processes. The two phenomena operate together during electrical (and laser) spark ignition of combustible gases. Analogs between them show up in Semenov's early (1920's) work on chemical chain reactions and on thermal breakdown of dielectrics. Both breakdown and ignition are under active study today. The energy source for breakdown is an applied electric field, and that for ignition, an applied flux of heat or radicals. Electrons and intermediate reactants are the corresponding driver particles, with a velocity difference that implies a vast difference in the growth rates for the two processes. Combustion takes place in a fuel-oxidant mixture, and an ignited reaction can proceed until the fuel or oxidant is depleted, while a (non-afterglow, non-fusion) plasma is sustained by an external power supply. The energy balance, propagation behavior, and time evolution of some specific forms of plasma breakdown and chemical ignition are further compared in order to illustrate their physical nature.

  14. National Ignition Campaign Hohlraum Energetics

    SciTech Connect

    Meezan, N B; Atherton, L J; Callahan, D A; Dewald, E L; Dixit, S N; Dzenitis, E G; Edwards, M J; Haynam, C A; Hinkel, D E; Jones, O S; Landen, O; London, R A; Michel, P A; Moody, J D; Milovich, J L; Schneider, M B; Thomas, C A; Town, R J; Warrick, A L; Weber, S V; Widmann, K; Glenzer, S H; Suter, L J; MacGowan, B J; Kline, J L; Kyrala, G A; Nikroo, A

    2009-11-16

    The first series of experiments on the National Ignition Facility (NIF) [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, 'The National Ignition Facility: ushering in a new age for high energy density science,' Phys. Plasmas 16, 041006 (2009)] tested ignition hohlraum 'energetics,' a term described by four broad goals: (1) Measurement of laser absorption by the hohlraum; (2) Measurement of the x-ray radiation flux (T{sub RAD}{sup 4}) on the surrogate ignition capsule; (3) Quantitative understanding of the laser absorption and resultant x-ray flux; and (4) Determining whether initial hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF hohlraum energetics experiments. The hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (< 10%) for hohlraums filled with helium gas. A discussion of our current understanding of NIF hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes, that have been used to design the hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition hohlraum experiments.

  15. Continuous tokamak operation with an internal transformer

    SciTech Connect

    Singer, C.E.; Mikkelsen, D.R.

    1982-10-01

    A large improvement in efficiency of current drive in a tokamak can be obtained using neutral beam injection to drive the current in a plasma which has low density and high resistivity. The current established under such conditions acts as the primary of a transformer to drive current in an ignited high-density plasma. In the context of a model of plasma confinement and fusion reactor costs, it is shown that such transformer action has substantial advantages over strict steady-state current drive. It is also shown that cycling plasma density and fusion power is essential for effective operation of an internal transformer cycle. Fusion power loading must be periodically reduced for intervals whose duration is comparable to the maximum of the particle confinement and thermal inertia timescales for plasma fueling and heating. The design of neutron absorption blankets which can tolerate reduced power loading for such short intervals is identified as a critical problem in the design of fusion power reactors.

  16. Power burner for compact furnace

    SciTech Connect

    Dilmore, J.A.

    1980-09-23

    A compact gas power burner is provided which includes a cylindrical mixing tube into which combustion air is discharged tangentially from a centrifugal blower located adjacent the closed end of the mixing tube, and gaseous fuel is admitted into the discharge airstream of the blower upstream from the admission location of the airstream into the mixing tube so that the swirling component of the air in the mixing tube during its passage to the open end of the tube will promote the mixing of the air and gaseous fuel, the mixing tube being provided with a honeycomb ceramic disc at its end to which it is attached to a cylindrical heat exchanger, and ignition means and flame sensors are provided on the downstream side of the ceramic disc.

  17. The National Ignition Facility

    SciTech Connect

    Miller, G H

    2003-12-19

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber and room for 100 diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10'' bar; conditions that exist naturally only in the interior of stars and planets. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules in 23-ns pulses of infrared light and over 16 kJ in 3.5 ns pulses at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper discusses NIF's current and future experimental capability, plans for diagnostics, cryogenic target systems, specialized optics for experiments, and potential enhancements to NIF such as multi-color laser operation and high-energy short pulse operation.

  18. Dual schedule ignition system

    SciTech Connect

    Remmers, G.M.

    1991-08-13

    This patent describes a time base generator for an ignition system of an internal combustion engine having a crankshaft. It comprises an encoder disk which rotates synchronously with the crankshaft of the engine and includes a plurality of timing features of a predetermined width which are at fixed locations relative to the crankshaft and includes at least one synchronizing feature which is at a fixed location relative to the crankshaft and to at least one of the timing features; detector means for detecting the presence or absence of the timing features and the at least one synchronizing feature and for generating digital signals representative thereof; and pulse generating means for generating a first pulse train from the trailing edge of each timing feature represented in the digital signal and for generating a second pulse train from the leading edge of each timing feature represented in the digital signal whereby the pulses of the second pulse train are advanced from the pulses of the first pulse train by a predetermined angular rotation of the crankshaft determined by the width of each timing feature.

  19. Exhaust gas ignition

    SciTech Connect

    1996-04-01

    This article describes a system developed for rapid light-off of underbody catalysts that has shown potential to meet Euro Stage III emissions targets and to be more cost-effective than some alternatives. Future emissions legislation will require SI engine aftertreatment systems to approach full operating efficiency within the first few seconds after starting to reduce the high total-emissions fraction currently contributed by the cold phase of driving. A reduction of cold-start emissions during Phase 1 (Euro) or Bag 1 (FTP), which in many cases can be as much as 80% of the total for the cycle, has been achieved by electrical heating of the catalytic converter. But electrically heated catalyst (EHC) systems require high currents (100--200 A) to heat the metallic substrate to light-off temperatures over the first 15--20 seconds. Other viable approaches to reducing cold-start emissions include use of a fuel-powered burner upstream of the catalyst. However, as with EHC, the complexity of parts and the introduction of raw fuel into the exhaust system make this device unsatisfactory. Still another approach, an exhaust gas ignition (EGI) system, was first demonstrated in 1991. The operation of a system developed by engineers at Ford Motor Co., Ltd., Cambustion Ltd., and Tickford Ltd. is described here.

  20. IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY

    SciTech Connect

    Moses, E

    2009-06-22

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of

  1. Causes of major tokamak disruptions

    SciTech Connect

    White, R.B.; Monticello, D.A.

    1980-07-01

    The nonlinear saturation theory of the tearing mode is used to examine the necessary conditions for the occurrence of a major tokamak disruption. The results are compared with full three-dimensional numerical simulations, and with experimental data.

  2. Compaction behavior of roller compacted ibuprofen.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-06-01

    The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior. PMID:18280716

  3. Multimodal Friction Ignition Tester

    NASA Technical Reports Server (NTRS)

    Davis, Eddie; Howard, Bill; Herald, Stephen

    2009-01-01

    The multimodal friction ignition tester (MFIT) is a testbed for experiments on the thermal and mechanical effects of friction on material specimens in pressurized, oxygen-rich atmospheres. In simplest terms, a test involves recording sensory data while rubbing two specimens against each other at a controlled normal force, with either a random stroke or a sinusoidal stroke having controlled amplitude and frequency. The term multimodal in the full name of the apparatus refers to a capability for imposing any combination of widely ranging values of the atmospheric pressure, atmospheric oxygen content, stroke length, stroke frequency, and normal force. The MFIT was designed especially for studying the tendency toward heating and combustion of nonmetallic composite materials and the fretting of metals subjected to dynamic (vibrational) friction forces in the presence of liquid oxygen or pressurized gaseous oxygen test conditions approximating conditions expected to be encountered in proposed composite material oxygen tanks aboard aircraft and spacecraft in flight. The MFIT includes a stainless-steel pressure vessel capable of retaining the required test atmosphere. Mounted atop the vessel is a pneumatic cylinder containing a piston for exerting the specified normal force between the two specimens. Through a shaft seal, the piston shaft extends downward into the vessel. One of the specimens is mounted on a block, denoted the pressure block, at the lower end of the piston shaft. This specimen is pressed down against the other specimen, which is mounted in a recess in another block, denoted the slip block, that can be moved horizontally but not vertically. The slip block is driven in reciprocating horizontal motion by an electrodynamic vibration exciter outside the pressure vessel. The armature of the electrodynamic exciter is connected to the slip block via a horizontal shaft that extends into the pressure vessel via a second shaft seal. The reciprocating horizontal

  4. Progress Toward Ignition on the National Ignition Facility

    SciTech Connect

    Kauffman, R L

    2011-10-17

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger

  5. The ARIES tokamak reactor study

    SciTech Connect

    Not Available

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  6. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  7. Ceramic powder compaction

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Mahoney, F.M.

    1995-12-31

    With the objective of developing a predictive model for ceramic powder compaction we have investigated methods for characterizing density gradients in ceramic powder compacts, reviewed and compared existing compaction models, conducted compaction experiments on a spray dried alumina powder, and conducted mechanical tests and compaction experiments on model granular materials. Die filling and particle packing, and the behavior of individual granules play an important role in determining compaction behavior and should be incorporated into realistic compaction models. These results support the use of discrete element modeling techniques and statistical mechanics principals to develop a comprehensive model for compaction, something that should be achievable with computers with parallel processing capabilities.

  8. Igniter adapter-to-igniter chamber deflection test

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Testing was performed to determine the maximum RSRM igniter adapter-to-igniter chamber joint deflection at the crown of the inner joint primary seal. The deflection data was gathered to support igniter inner joint gasket resiliency predictions which led to launch commit criteria temperature determinations. The proximity (deflection) gage holes for the first test (Test No. 1) were incorrectly located; therefore, the test was declared a non-test. Prior to Test No. 2, test article configuration was modified with the correct proximity gage locations. Deflection data were successfully acquired during Test No. 2. However, the proximity gage deflection measurements were adversely affected by temperature increases. Deflections measured after the temperature rise at the proximity gages were considered unreliable. An analysis was performed to predict the maximum deflections based on the reliable data measured before the detectable temperature rise. Deflections to the primary seal crown location were adjusted to correspond to the time of maximum expected operating pressure (2,159 psi) to account for proximity gage bias, and to account for maximum attach and special bolt relaxation. The maximum joint deflection for the igniter inner joint at the crown of the primary seal, accounting for all significant correction factors, was 0.0031 in. (3.1 mil). Since the predicted (0.003 in.) and tested maximum deflection values were sufficiently close, the launch commit criteria was not changed as a result of this test. Data from this test should be used to determine if the igniter inner joint gasket seals are capable of maintaining sealing capability at a joint displacement of (1.4) x (0.0031 in.) = 0.00434 inches. Additional testing should be performed to increase the database on igniter deflections and address launch commit criteria temperatures.

  9. Enhanced Model for Fast Ignition

    SciTech Connect

    Mason, Rodney J.

    2010-10-12

    Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation's energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, "implicitness and fluid modeling," can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

  10. Ignition problems in scramjet testing

    SciTech Connect

    Mitani, Tohru

    1995-05-01

    Ignition of H{sub 2} in heated air containing H{sub 2}O, radicals, and dust was investigated for scramjet testing. Using a reduced kinetic model for H{sub 2}{minus}O{sub 2} systems, the effects of H{sub 2}O and radicals in nozzles are discussed in relation to engine testing with vitiation heaters. Analysis using linearized rate-equations suggested that the addition of O atoms was 1.5 times more effective than the addition of H atoms for ignition. This result can be applied to the problem of premature ignition caused by residual radicals and to plasma-jet igniters. Thermal and chemical effects of dust, inevitable in storage air heaters, were studied next. The effects of heat capacity and size of dust were expressed in terms of an exponential integral function. It was found that the radical termination on the surface of dust produces an effect equivalent to heat loss. The inhibition of ignition by dust may result, if the mass fraction of dust becomes 10{sup {minus}3}.

  11. National Ignition Campaign Hohlraum energetics

    SciTech Connect

    Meezan, N. B.; Atherton, L. J.; Callahan, D. A.; Dewald, E. L.; Dixit, S.; Dzenitis, E. G.; Edwards, M. J.; Haynam, C. A.; Hinkel, D. E.; Jones, O. S.; Landen, O.; London, R. A.; Michel, P. A.; Moody, J. D.; Milovich, J. L.; Schneider, M. B.; Thomas, C. A.; Town, R. P. J.; Warrick, A. L.; Weber, S. V.

    2010-05-15

    The first series of experiments of the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] tested ignition Hohlraum 'energetics', a term described by four broad goals: (1) measurement of laser absorption by the Hohlraum; (2) measurement of the x-ray radiation flux (T{sub RAD}{sup 4}) on the surrogate ignition capsule; (3) quantitative understanding of the laser absorption and resultant x-ray flux; and (4) determining whether initial Hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF Hohlraum energetics experiments. The Hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (<10%) for Hohlraums filled with helium gas. A discussion of our current understanding of NIF Hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes that have been used to design the Hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition Hohlraum experiments.

  12. Ignition characterization of LOX/hydrocarbon propellants

    NASA Technical Reports Server (NTRS)

    Lawver, B. R.; Rousar, D. C.; Wong, K. Y.

    1985-01-01

    The results of an evaluation of the ignition characteristics of the gaseous oxygen (Gox)/Ethanol propellant combination are presented. Ignition characterization was accomplished through the analysis, design, fabrication and testing of a spark initiated torch igniter and prototype 620 lbF thruster/igniter assembly. The igniter was tested over a chamber pressure range of 74 to 197 psia and mixture ratio range of 0.778 to 3.29. Cold (-92 to -165 F) and ambient (44 to 80 F) propellant temperatures were used. Spark igniter ignition limits and thruster steady state and pulse mode, performance, cooling and stability data are presented. Spark igniter ignition limits are presented in terms of cold flow pressure, ignition chamber diameter and mixture ratio. Thruster performance is presented in terms of vacuum specific impulse versus engine mixture ratio. Gox/Ethanol propellants were shown to be ignitable over a wide range of mixture ratios. Cold propellants were shown to have a minor effect on igniter ignition limits. Thruster pulse mode capability was demonstrated with multiple pulses of 0.08 sec duration and less.

  13. ZTI: An ignition class reversed-field pinch

    SciTech Connect

    Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Werley, K.A.

    1990-01-01

    A cost-optimized conceptual design of an intermediate-step, ignition-class RFP device (ZTI)for the study of alpha-particle physics and burn control in a DT plasma is reported. With major and minor plasma radii R{sub T} = 2.4m and {tau}{sub p} = 0.4m, respectively, and for conservative extrapolations of experimental energy-confinement times, ion-density profiles, and impurity levels, the ZTI operating conditions during a 5-s period of constant fusion power are: toroidal plasma current I{sub {phi}} {approx equal} 9 MA, plasma temperature T {approx equal} 11 keV, plasma density n{sub i} {approx equal} 3 {times} 10{sup 20} m{sup {minus}3}, fusion power P{sub F} {approx equal} 100 MW, and physics Q-value Q{sub p} {approx equal} 5 for a total machine size that corresponds to P{sub F}/M{sub FPC} {approx equal} 590 kW/tonne. This physics design point was adopted as a strawman'' with which to examine the requirements of ohmic heating to DT ignition and to perform a cost-optimized magnetics design. The ZTl design reflects potentially significant cost savings relative to similar ignition-class tokamaks for device parameters that reside on the path to a viable commercial RFP reactor. The methodology and results of coupling realistic physics, engineering, and cost models through a multi-dimensional optimizer are reported for this device that would follow the 2-4 MA ZTH presently under construction.

  14. Catalytic ignition of hydrogen/oxygen

    NASA Technical Reports Server (NTRS)

    Green, James M.; Zurawski, Robert L.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.

  15. Spark ignition of flowing gases

    NASA Technical Reports Server (NTRS)

    Swett, Clyde C , Jr

    1956-01-01

    Research conducted at the NACA Lewis Laboratory on ignition of flowing gases by means of long-duration discharges is summarized and analyzed. Data showing the effect of a flowing combustible mixture on the physical and electrical characteristics of spark discharges and data showing the effects of variables on the spark energy required for ignition that has been developed to predict the effect of many of the gas-stream and spark variables is described and applied to a limited amount of experimental data.

  16. Integral magnetic ignition pickup trigger

    SciTech Connect

    King, R.

    1992-10-27

    This patent describes a trigger system for the ignition system of an internal combustion engine having a crankcase with a rotatable crankshaft therein, and a flywheel on one end of the crankcase connected to an end of the crankshaft. It comprises: a nonferromagnetic disk-shaped hub for connection to the crankshaft and rotatable therewith on the end opposite the flywheel; and a stationary sensor mounted adjacent the hub for detecting impulses from the magnetically responsive elements as the hub rotates and utilizing the impulses to trigger the ignition system.

  17. Fast ignition without hole boring.

    PubMed

    Hain, S; Mulser, P

    2001-02-01

    A fast-ignitor scheme for inertial confinement fusion is proposed which works without hole boring. It is shown that a thermonuclear burn wave starts from the pellet corona when an adequate amount of energy (typically 10 kJ) is deposited in the critical layer by a petawatt laser ("coronal ignition"). Burn efficiencies as high as predicted for standard central spark ignition are achieved. In addition, the scheme is surprisingly insensitive to large deviations from spherical precompression symmetry. It may open a new prospect for direct drive. PMID:11177998

  18. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  19. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  20. Isochoric implosions for fast ignition

    SciTech Connect

    Clark, D S; Tabak, M

    2006-06-05

    Fast Ignition (FI) exploits the ignition of a dense, uniform fuel assembly by an external energy source to achieve high gain. In conventional ICF implosions, however, the fuel assembles as a dense shell surrounding a low density, high-pressure hotspot. Such configurations are far from optimal for FI. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942).] may be employed to implode a dense, quasi-uniform fuel assembly with minimal energy wastage in forming a hotspot. A scheme for realizing these specialized implosions in a practical ICF target is also described.

  1. Flow Friction or Spontaneous Ignition?

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  2. 75 FR 47520 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... rulemaking published in the Federal Register on June 8, 2010 (75 FR 32612). That notice proposed revisions to... Compression Ignition and Spark Ignition Internal Combustion Engines AGENCY: Environmental Protection Agency... the standards of performance for stationary compression ignition and spark ignition...

  3. Surface breakdown igniter for mercury arc devices

    DOEpatents

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  4. Confinement of ignition and yield on the National Ignition Facility

    SciTech Connect

    Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

    1996-06-14

    The National Ignition Facility Target Areas and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented.

  5. The national ignition facility: path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2007-08-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the US nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  6. Physics Basis and Simulation of Burning Plasma Physics for the Fusion Ignition Research Experiment (FIRE)

    SciTech Connect

    C.E. Kessel; D. Meade; S.C. Jardin

    2002-01-18

    The FIRE [Fusion Ignition Research Experiment] design for a burning plasma experiment is described in terms of its physics basis and engineering features. Systems analysis indicates that the device has a wide operating space to accomplish its mission, both for the ELMing H-mode reference and the high bootstrap current/high beta advanced tokamak regimes. Simulations with 1.5D transport codes reported here both confirm and constrain the systems projections. Experimental and theoretical results are used to establish the basis for successful burning plasma experiments in FIRE.

  7. The design of the Tokamak Physics Experiment (TPX)

    NASA Astrophysics Data System (ADS)

    Schmidt, J. A.; Thomassen, K. I.; Goldston, R. J.; Neilson, G. H.; Nevins, W. M.; Sinnis, J. C.; Andersen, P.; Bair, W.; Barr, W. L.; Batchelor, D. B.; Baxi, C.; Berg, G.; Bernabei, S.; Bialek, J. M.; Bonoli, P. T.; Boozer, A.; Bowers, D.; Bronner, G.; Brooks, J. N.; Brown, T. G.; Bulmer, R.; Butner, D.; Campbell, R.; Casper, T.; Chaniotakis, E.; Chaplin, M.; Chen, S. J.; Chin, E.; Chrzanowski, J.; Citrolo, J.; Cole, M. J.; Dahlgren, F.; Davis, F. C.; Davis, J.; Davis, S.; Diatchenko, N.; Dinkevich, S.; Feldshteyn, Y.; Felker, B.; Feng, T.; Fenstermacher, M. E.; Fleming, R.; Fogarty, P. J.; Fragetta, W.; Fredd, E.; Gabler, M.; Galambos, J.; Gohar, Y.; Goranson, P. L.; Greenough, N.; Grisham, L. R.; Haines, J.; Haney, S.; Hassenzahl, W.; Heim, J.; Heitzenroeder, P. J.; Hill, D. N.; Hodapp, T.; Houlberg, W. A.; Hubbard, A.; Hyatt, A.; Jackson, M.; Jaeger, E. F.; Jardin, S. C.; Johnson, J.; Jones, G. H.; Juliano, D. R.; Junge, R.; Kalish, M.; Kessel, C. E.; Knutson, D.; LaHaye, R. J.; Lang, D. D.; Langley, R. A.; Liew, S.-L.; Lu, E.; Mantz, H.; Manickam, J.; Mau, T. K.; Medley, S.; Mikkelsen, D. R.; Miller, R.; Monticello, D.; Morgan, D.; Moroz, P.; Motloch, C.; Mueller, J.; Myatt, L.; Nelson, B. E.; Neumeyer, C. L.; Nilson, D.; O'Conner, T.; Pearlstein, L. D.; Peebles, W. A.; Pelovitz, M.; Perkins, F. W.; Perkins, L. J.; Petersen, D.; Pillsbury, R.; Politzer, P. A.; Pomphrey, N.; Porkolab, M.; Posey, A.; Radovinsky, A.; Raftopoulis, S.; Ramakrishnan, S.; Ramos, J.; Rauch, W.; Ravenscroft, D.; Redler, K.; Reiersen, W. T.; Reiman, A.; Reis, E.; Rewoldt, G.; Richards, D. J.; Rocco, R.; Rognlien, T. D.; Ruzic, D.; Sabbagh, S.; Sapp, J.; Sayer, R. O.; Scharer, J. E.; Schmitz, L.; Schnitz, J.; Sevier, L.; Shipley, S. E.; Simmons, R. T.; Slack, D.; Smith, G. R.; Stambaugh, R.; Steill, G.; Stevenson, T.; Stoenescu, S.; Onge, K. T. St.; Stotler, D. P.; Strait, T.; Strickler, D. J.; Swain, D. W.; Tang, W.; Tuszewski, M.; Ulrickson, M. A.; VonHalle, A.; Walker, M. S.; Wang, C.; Wang, P.; Warren, J.; Werley, K. A.; West, W. P.; Williams, F.; Wong, R.; Wright, K.; Wurden, G. A.; Yugo, J. J.; Zakharov, L.; Zbasnik, J.

    1993-09-01

    The Tokamak Physics Experiment is designed to develop the scientific basis for a compact and continuously operating tokamak fusion reactor. It is based on an emerging class of tokamak operating modes, characterized by beta limits well in excess of the Troyon limit, confinement scaling well in excess of H-mode, and bootstrap current fractions approaching unity. Such modes are attainable through the use of advanced, steady state plasma controls including strong shaping, current profile control, and active particle recycling control. Key design features of the TPX are superconducting toroidal and poloidal field coils; actively-cooled plasma-facing components; a flexible heating and current drive system; and a spacious divertor for flexibility. Substantial deuterium plasma operation is made possible with an in-vessel remote maintenance system, a lowactivation titanium vacuum vessel, and shielding of ex-vessel components. The facility will be constructed as a national project with substantial participation by U.S. industry. Operation will begin with first plasma in the year 2000.

  8. Ignition and combustion phenomena in Diesel engines

    NASA Technical Reports Server (NTRS)

    Sass, F

    1928-01-01

    Evidences were found that neither gasification nor vaporization of the injected fuel occurs before ignition; also that the hydrogen coefficient has no significance. However the knowledge of the ignition point and of the "time lag" is important. After ignition, the combustion proceeds in a series of reactions, the last of which at least are now known.

  9. Integral low-energy thermite igniter

    DOEpatents

    Gibson, Albert; Haws, Lowell D.; Mohler, Jonathan H.

    1984-08-14

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  10. Integral low-energy thermite igniter

    DOEpatents

    Gibson, A.; Haws, L.D.; Mohler, J.H.

    1983-05-13

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  11. Moving Divertor Plates in a Tokamak

    SciTech Connect

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  12. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOEpatents

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  13. Resistive instabilities in tokamaks

    SciTech Connect

    Rutherford, P.H.

    1985-10-01

    Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much more efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed.

  14. Effect of the Thruster Configurations on a Laser Ignition Microthruster

    NASA Astrophysics Data System (ADS)

    Koizumi, Hiroyuki; Hamasaki, Kyoichi; Kondo, Ryo; Okada, Keisuke; Nakano, Masakatsu; Arakawa, Yoshihiro

    Research and development of small spacecraft have advanced extensively throughout the world and propulsion devices suitable for the small spacecraft, microthruster, is eagerly anticipated. The authors proposed a microthruster using 1—10-mm-size solid propellant. Small pellets of solid propellant are installed in small combustion chambers and ignited by the irradiation of diode laser beam. This thruster is referred as to a laser ignition microthruster. Solid propellant enables large thrust capability and compact propulsion system. To date theories of a solid-propellant rocket have been well established. However, those theories are for a large-size solid propellant and there are a few theories and experiments for a micro-solid rocket of 1—10mm class. This causes the difficulty of the optimum design of a micro-solid rocket. In this study, we have experimentally investigated the effect of thruster configurations on a laser ignition microthruster. The examined parameters are aperture ratio of the nozzle, length of the combustion chamber, area of the nozzle throat, and divergence angle of the nozzle. Specific impulse dependences on those parameters were evaluated. It was found that large fraction of the uncombusted propellant was the main cause of the degrading performance. Decreasing the orifice diameter in the nozzle with a constant open aperture ratio was an effective method to improve this degradation.

  15. Tank farm potential ignition sources

    SciTech Connect

    Scaief, C.C. III

    1996-01-01

    This document identifies equipment, instrumentation, and sensors that are located in-tank as well as ex-tank in areas that may have communication paths with the tank vapor space. For each item, and attempt is made to identify the potential for ignition of flammable vapors using a graded approach. The scope includes all 177 underground storage tanks.

  16. EVALUATION OF IGNITABILITY METHODS (LIQUIDS)

    EPA Science Inventory

    The purpose of the research was to evaluate the ignitability Methods 1010 (Pensky-Martens) and 1020 (Setaflash) as described by OSW Manual SW846 (1). The effort was designed to provide information on accuracy and precision of the two methods. During Phase I of the task, six stand...

  17. Hydrogen-air ignition torch

    NASA Technical Reports Server (NTRS)

    Repas, G. A.

    1986-01-01

    The design and operation of a hydrogen-air ignition torch presently being used to burn off excess hydrogen that accumulates in the scrubber exhaust ducts of two rocket engine test facilities at the NASA Lewis Research Center in Cleveland, Ohio, is described.

  18. Tgermonuclear Ignition in Inertial Confinement Fusion and Comparison with Magnetic Confinement

    SciTech Connect

    Betti, R.; Chang, P.Y.; Spears, B.K.; Anderson, K.S.; Edwards, J.; Fatenejad, M.; Lindl, J.D.; McCrory, R.L.; Nora, R.; Shvarts, D.

    2010-04-23

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptau ~ 1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptau ~ 1 atm s. Since OMEGA implosions are relatively cold (T ~ 2 keV), their overall ignition parameter chi ~ 0.02–0.03 is ~5X lower than in JET (chi ~ 0.13), where the average temperature is about 10 keV.

  19. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement

    SciTech Connect

    Betti, R.; Chang, P. Y.; Anderson, K. S.; Nora, R.; Spears, B. K.; Edwards, J.; Lindl, J. D.; Fatenejad, M.; McCrory, R. L.; Shvarts, D.

    2010-05-15

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA[T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptauapprox1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptauapprox1 atm s. Since OMEGA implosions are relatively cold (Tapprox2 keV), their overall ignition parameter chiapprox0.02-0.03 is approx5x lower than in JET (chiapprox0.13), where the average temperature is about 10 keV.

  20. Ignition dynamics of high explosives

    SciTech Connect

    Ali, A.N.; Son, S.F.; Sander, R.K.; Asay, B.W.

    1998-12-31

    Mechanical insults of granular high explosives (HE) can result in localized areas of elevated temperature, or hot spots. The evolution of these hot spots is a central issue of HE science. Because of the complexity involved, it is worthwhile to study mechanical and reaction processes in isolation. Mechanical processes are isolated and studied using inert materials or weak insults where reaction may be minimal. Likewise, purely thermal processes can be considered to isolate HE reaction response. In this work the authors study the radiant ignition of various HEs of interest, including HMX (C{sub 4}H{sub 8}N{sub 8}O{sub 8}), PBX 9501 (95% HMX, 2.5% Estane, 2.5% BDNPA/BDNPF), RDX (C{sub 3}H{sub 6}N{sub 6}O{sub 6}), TATB (C{sub 6}H{sub 6}N{sub 6}O{sub 6}), and PBX 9502 (95% TATB, 5% Kel-F) and aged PBX 9502. Initial work has included unconfined samples at ambient pressure in air. Diagnostics have included photodiodes to record first light emission, high speed photography, microthermocouple and IR emission measurement to obtain surface temperature, IR emission of gases above the pellet, and a novel nonlinear optical technique to characterize the dynamic {beta}-{delta} solid phase transformation and the formation of a liquid layer. The authors find that ignition delays at various power levels is very similar for HMX and RDX; except that the minimum radiant flux needed for RDX ignition is higher. The addition of only 5% binder (PBX 9501) causes significantly longer ignition delays at lower heat fluxes compared with HMX alone. TATB and TATB-based explosives exhibit much longer ignition delays than HMX. In contrast to HMX, however, no measurable difference is observed in TATB by the addition of a binder (PBX 9502, aged or pristine).

  1. Desensitizing nano powders to electrostatic discharge ignition

    SciTech Connect

    Steelman, Ryan; Clark, Billy; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  2. Laser ignition application in a space experiment

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.; Culley, Dennis E.

    1993-01-01

    A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.

  3. Research of laser ignition detection system

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Zhao, Dong; Xu, Qie; Ai, Xin

    2010-10-01

    Laser ignition is an important means of detonation but the accuracy and security is requested strictly. Based on the above, two points were considered in the design: achieve ignition-Fiber-optical health monitoring in the condition of low-intensity light (ensure the safety of gunpowder); observant the explosive imaging. In the paper, the laser ignition equipment was designed with optical detection and inner optical imaging system for the real-time monitoring to the optical fiber and the process of ignition. This design greatly improved the reliability and the safety of laser ignition system and provided the guarantee for usage and industrialization.

  4. Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks

    SciTech Connect

    Spong, D.A.; Carreras, B.A.; Hedrick, C.L.; Leboeuf, J.N.; Weller, A.

    1994-12-31

    An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE`s in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles.

  5. Combustion-wave ignition for rocket engines

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    1992-01-01

    The combustion wave ignition concept was experimentally studied in order to verify its suitability for application in baffled sections of a large booster engine combustion chamber. Gaseous oxygen/gaseous methane (GOX/GH4) and gaseous oxygen/gaseous hydrogen (GOX/GH2) propellant combinations were evaluated in a subscale combustion wave ignition system. The system included four element tubes capable of carrying ignition energy simultaneously to four locations, simulating four baffled sections. Also, direct ignition of a simulated Main Combustion Chamber (MCC) was performed. Tests were conducted over a range of mixture ratios and tube geometries. Ignition was consistently attained over a wide range of mixture ratios. And at every ignition, the flame propagated through all four element tubes. For GOX/GH4, the ignition system ignited the MCC flow at mixture ratios from 2 to 10 and for GOX/GH2 the ratios is from 2 to 13. The ignition timing was found to be rapid and uniform. The total ignition delay when using the MCC was under 11 ms, with the tube-to-tube, as well as the run-to-run, variation under 1 ms. Tube geometries were found to have negligible effect on the ignition outcome and timing.

  6. Novel ignition systems for heavy calibre guns

    NASA Astrophysics Data System (ADS)

    Bowden, C. N.; Cook, G. G.; Henning, P. S.

    1986-01-01

    In recent years there was a trend towards steadily rising gun pressures, especially in direct fire weapons and this has caused many functional problems to arise with conventional vent tube ignition systems. To overcome these problems and to allow the process of gun development to continue, the United Kingdom is performing a program of research into a number of ignition systems for heavy caliber guns. These include: spark ignition, laser ignition, and electrical impulse ignition. A number of different spark plug configurations were evaluated. Extensive trials were performed on the ignition characteristics of black powders and black powder substitutes using an experimental 4 J neodymium laser. Work was also performed on the development of high pressure sapphire windows. A study into methods of charge ignition by electrical impulse techniques was also performed.

  7. Tokamak coordinate conventions: COCOS

    NASA Astrophysics Data System (ADS)

    Sauter, O.; Medvedev, S. Yu.

    2013-02-01

    Dealing with electromagnetic fields, in particular current and related magnetic fields, yields "natural" physical vector relations in 3-D. However, when it comes to choosing local coordinate systems, the "usual" right-handed systems are not necessarily the best choices, which means that there are several options being chosen. In the magnetic fusion community such a difficulty exists for the choices of the cylindrical and of the toroidal coordinate systems. In addition many codes depend on knowledge of an equilibrium. In particular, the Grad-Shafranov axisymmetric equilibrium solution for tokamak plasmas, ψ, does not depend on the sign of the plasma current Ip nor that of the magnetic field B0. This often results in ill-defined conventions. Moreover the sign, amplitude and offset of ψ are of less importance, since the free sources in the equation depend on the normalized radial coordinate. The signs of the free sources, dp/dψ and dF2/dψ (p being the pressure, ψ the poloidal magnetic flux and F=RBφ), must be consistent to generate the current density profile. For example, RF and CD calculations (Radio Frequency heating and Current Drive) require an exact sign convention in order to calculate a co- or counter-CD component. It is shown that there are over 16 different coordinate conventions. This paper proposes a unique identifier, the COCOS convention, to distinguish between the 16 most-commonly used options. Given the present worldwide efforts towards code integration, the proposed new index COCOS defining uniquely the COordinate COnventionS required as input by a given code or module is particularly useful. As codes use different conventions, it is useful to allow different sign conventions for equilibrium code input and output, equilibrium being at the core of any calculations in magnetic fusion. Additionally, given two different COCOS conventions, it becomes simple to transform between them. The relevant transformations are described in detail.

  8. A polar-drive shock-ignition design for the National Ignition Facility

    SciTech Connect

    Anderson, K. S.; McKenty, P. W.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Marozas, J. A.; Skupsky, S.; Shvydky, A.; Betti, R.; Hohenberger, M.; Theobald, W.; Lafon, M.; Nora, R.

    2013-05-15

    Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

  9. Theory of resistive magnetohydrodynamic instabilities excited by energetic-trapped particles in large-size tokamaks

    SciTech Connect

    Biglari, H.; Chen, L.; White, R.B.

    1987-02-01

    It is shown that, in present-day large-size tokamaks, finite resistivity modifies qualitatively the stability properties of magnetohydrodynamic instabilities resonantly excited by the unfavorable processional drift of energetic-trapped particles, i.e., the so-called ''fishbone''-type instabilities. Specifically, it is found that (1) the n = 1 energetic-trapped particle-induced internal kink (''fishbone'') instability is strongly stabilized by resistive dissipation and (2) finite resistivity lowers considerably the threshold conditions for resonant excitations of high-n ballooning/interchange modes. The possibility of exciting fishbones by alpha particles in ignition experiments is also considered.

  10. Tokamak Fusion Core Experiment: design studies based on superconducting and hybrid toroidal field coils. Design overview

    SciTech Connect

    Flanagan, C.A.

    1984-10-01

    This document is a design overview that describes the scoping studies and preconceptual design effort performed in FY 1983 on the Tokamak Fusion Core Experiment (TFCX) class of device. These studies focussed on devices with all-superconducting toroidal field (TF) coils and on devices with superconducting TF coils supplemented with copper TF coil inserts located in the bore of the TF coils in the shield region. Each class of device is designed to satisfy the mission of ignition and long pulse equilibrium burn. Typical design parameters are: major radius = 3.75 m, minor radius = 1.0 m, field on axis = 4.5 T, plasma current = 7.0 MA. These designs relay on lower hybrid (LHRH) current rampup and heating to ignition using ion cyclotron range of frequency (ICRF). A pumped limiter has been assumed for impurity control. The present document is a design overview; a more detailed design description is contained in a companion document.

  11. Tritium and ignition target management at the National Ignition Facility.

    PubMed

    Draggoo, Vaughn

    2013-06-01

    Isotopic mixtures of hydrogen constitute the basic fuel for fusion targets of the National Ignition Facility (NIF). A typical NIF fusion target shot requires approximately 0.5 mmoles of hydrogen gas and as much as 750 GBq (20 Ci) of 3H. Isotopic mix ratios are specified according to the experimental shot/test plan and the associated test objectives. The hydrogen isotopic concentrations, absolute amounts, gas purity, configuration of the target, and the physical configuration of the NIF facility are all parameters and conditions that must be managed to ensure the quality and safety of operations. An essential and key step in the preparation of an ignition target is the formation of a ~60 μm thick hydrogen "ice" layer on the inner surface of the target capsule. The Cryogenic Target Positioning System (Cryo-Tarpos) provides gas handling, cyro-cooling, x-ray imaging systems, and related instrumentation to control the volumes and temperatures of the multiphase (solid, liquid, and gas) hydrogen as the gas is condensed to liquid, admitted to the capsule, and frozen as a single spherical crystal of hydrogen in the capsule. The hydrogen fuel gas is prepared in discrete 1.7 cc aliquots in the LLNL Tritium Facility for each ignition shot. Post-shot hydrogen gas is recovered in the NIF Tritium Processing System (TPS). Gas handling systems, instrumentation and analytic equipment, material accounting information systems, and the shot planning systems must work together to ensure that operational and safety requirements are met. PMID:23629062

  12. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  13. Self-ignition of diesel spray combustion

    NASA Astrophysics Data System (ADS)

    Dhuchakallaya, Isares; Watkins, A. P.

    2009-10-01

    This work presents the development and implementation of auto-ignition modelling for DI diesel engines by using the probability density function-eddy break-up (PDF-EBU) model. The key concept of this approach is to combine the chemical reaction rate dealing with low-temperature mode, and the turbulence reaction rate governing the high-temperature part by a reaction progress variable coupling function which represents the level of reaction. The average reaction rate here is evaluated by a PDF averaging approach. In order to assess the potential of this developed model, the well-known Shell ignition model is chosen to compare in auto-ignition analysis. In comparison, the PDF-EBU ignition model yields the ignition delay time in good agreement with the Shell ignition model prediction. However, the ignition kernel location predicted by the Shell model is slightly nearer injector than that by the PDF-EBU model leading to shorter lift-off length. As a result, the PDF-EBU ignition model developed here are fairly satisfactory in predicting the auto-ignition of diesel engines with the Shell ignition model.

  14. Piezoelectric Ignition of Nanocomposite Energetic Materials

    SciTech Connect

    Eric Collins; Michelle Pantoya; Andreas A. Neuber; Michael Daniels; Daniel Prentice

    2014-01-01

    Piezoelectric initiators are a unique form of ignition for energetic material because the current and voltage are tied together by impact loading on the crystal. This study examines the ignition response of an energetic composite composed of aluminum and molybdenum trioxide nanopowders to the arc generated from a lead zirconate and lead titanate piezocrystal. The mechanical stimuli used to activate the piezocrystal varied to assess ignition voltage, power, and delay time of aluminum–molybdenum trioxide for a range of bulk powder densities. Results show a high dielectric strength leads to faster ignition times because of the higher voltage delivered to the energetic. Ignition delay is under 0.4 ms, which is faster than observed with thermal or shock ignition. Electric ignition of composite energetic materials is a strong function of interparticle connectivity, and thus the role of bulk density on electrostatic discharge ignition sensitivity is a focus of this study. Results show that the ignition delay times are dependent on the powder bulk density with an optimum bulk density of 50%. Packing fractions and electrical conductivity were analyzed and aid in explaining the resulting ignition behavior as a function of bulk density.

  15. The Early Phase of Spark Ignition

    NASA Astrophysics Data System (ADS)

    Pitt, Philip Lawrence

    In this dissertation, some practical ignition techniques are presented that show how some problems of lean-burn combustion can be overcome. Then, to shed light on the effects of the ignition techniques described, the focus shifts to the more specific problem of the early phase of spark ignition. Thermal models of ignition are reviewed. These models treat the energy provided by the electrical discharge as a point source, delivered infinitely fast and creating a spherically symmetric ignition kernel. The thesis challenges the basis of these thermal models by reviewing the work of many investigators who have clearly shown that the temporal characteristics of the discharge have a profound effect upon ignition. Photographic evidence of the early phase of ignition, as well as other evidence from the literature, is also presented. The evidence clearly demonstrates that the morphology of spark kernels in the early phase of development is toroidal, not spherical as suggested by thermal models. A new perspective for ignition, a fluid dynamic point of view, is described. The common ignition devices are then classified according to fluid dynamics. A model describing the behaviour of spark kernels is presented, which extends a previously established mixing model for plasma jets, to the realm of conventional axial discharges. Comparison of the model behaviour to some limited data is made. The model is modified by including the effect of heat addition from combustion, and ignition criteria are discussed.

  16. Diagnostics for Fast Ignition Science

    SciTech Connect

    MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

    2008-05-06

    The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

  17. A sustained-arc ignition system for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  18. Mission and Design of the Fusion Ignition Research Experiment (FIRE)

    SciTech Connect

    Meade, D. M.; Jardin, S. C.; Schmidt, J. A.; Thome, R. J.; Sauthoff, N. R.; Heitzenroeder, P.; Nelson, Brad E; Ulrickson, M. A.; Kessel, C. E.; Mandrekas, J.; Neumeyer, C. L.; Schultz, J. H.; Rutherford, P. H.; Wesley, J. C.; Young, K. M.; Nevins, W. M.; Houlberg, Wayne A; Uckan, Nermin A; Woolley, R. W.; Baker, C. C.

    2001-01-01

    Experiments are needed to test and extend present understanding of confinement, macroscopic stability, alpha-driven instabilities, and particle/power exhaust in plasmas dominated by alpha heating. A key issue is to what extent pressure profile evolution driven by strong alpha heating will act to self-organize advanced configurations with large bootstrap current fractions and internal transport barriers. A design study of a Fusion Ignition Research Experiment (FIRE) is underway to assess near term opportunities for advancing the scientific understanding of self-heated fusion plasmas. The emphasis is on understanding the behavior of fusion plasmas dominated by alpha heating (Q ≥ 5) that are sustained for durations comparable to the characteristic plasma time scales (≥ 20 τE and ~ τskin, where τskin is the time for the plasma current profile to redistribute at fixed current). The programmatic mission of FIRE is to attain, explore, understand and optimize alphadominated plasmas to provide knowledge for the design of attractive magnetic fusion energy systems. The programmatic strategy is to access the alpha-heating-dominated regime with confidence using the present advanced tokamak data base (e.g., Elmy-H-mode, ≤ 0.75 Greenwald density) while maintaining the flexibility for accessing and exploring other advanced tokamak modes (e. g., reversed shear, pellet enhanced performance) at lower magnetic fields and fusion power for longer durations in later stages of the experimental program. A major goal is to develop a design concept that could meet these physics objectives with a construction cost in the range of $1B.

  19. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalysts are presented.

  20. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalyst are presented.

  1. Engineering Status of the Fusion Ignition Research Experiment (FIRE)

    SciTech Connect

    Philip J. Heitzenroeder; Dale Meade; Richard J. Thome

    2000-10-24

    FIRE is a compact, high field tokamak being studied as an option for the next step in the US magnetic fusion energy program. FIRE's programmatic mission is to attain, explore, understand, and optimize alpha-dominated plasmas to provide the knowledge necessary for the design of attractive magnetic fusion energy systems. This study began in 1999 with broad participation of the US fusion community, including several industrial participants. The design under development has a major radius of 2 m, a minor radius of 0.525 m, a field on axis of 10T and capability to operate at 12T with upgrades to power supplies. Toroidal and poloidal field magnets are inertially cooled with liquid nitrogen. An important goal for FIRE is a total project cost in the $1B range. This paper presents an overview of the engineering details which were developed during the FIRE preconceptual design study in FY99 and 00.

  2. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. PMID:27475854

  3. Analysis of the National Ignition Facility Ignition Hohlraum Energetics Experiments

    SciTech Connect

    Town, R J; Rosen, M D; Michel, P A; Divol, L; Moody, J D; Kyrala, G A; Schneider, M B; Kline, J L; Thomas, C A; Milovich, J L; Callahan, D A; Meezan, N B; Hinkel, D E; Williams, E A; Berger, R L; Edwards, M J; Suter, L J; Haan, S W; Lindl, J D; Dixit, S; Glenzer, S H; Landen, O L; Moses, E I; Scott, H A; Harte, J A; Zimmerman, G B

    2010-11-22

    A series of forty experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced- and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel, et al, Phys of Plasmas, 17, 056305, (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)] simulations using the predicted energy transfer when possible saturation of the plasma wave mediating the transfer is included. The effect of the predicted energy transfer on implosion symmetry is also found to be in good agreement with gated x-ray framing camera images. Hohlraum energy balance, as measured by x-ray power escaping the LEH, is quantitatively consistent with revised estimates of backscatter and incident laser energy combined with a more rigorous non-local-thermodynamic-equilibrium atomic physics model with greater emissivity than the simpler average-atom model used in the original design of NIF targets.

  4. Bootstrapped tokamak with oscillating field current drive

    SciTech Connect

    Weening, R.H. )

    1993-07-01

    A magnetic helicity conserving mean-field Ohm's law is used to study bootstrapped tokamaks with oscillating field current drive. The Ohm's law leads to the conclusion that the tokamak bootstrap effect can convert the largely alternating current of oscillating field current drive into a direct toroidal plasma current. This plasma current rectification is due to the intrinsically nonlinear nature of the tokamak bootstrap effect, and suggests that it may be possible to maintain the toroidal current of a tokamak reactor by supplementing the bootstrap current with oscillating field current drive. Steady-state tokamak fusion reactors operating with oscillating field current drive could provide an alternative to tokamak reactors operating with external current drive.

  5. Results from D-T Experiments on TFTR and Implications for Achieving an Ignited Plasma

    SciTech Connect

    Hawryluk, R.J. and the TFTR Group

    1998-07-14

    Progress in the performance of tokamak devices has enabled not only the production of significant bursts of fusion energy from deuterium-tritium plasmas in the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) but, more importantly, the initial study of the physics of burning magnetically confined plasmas. As a result of the worldwide research on tokamaks, the scientific and technical issues for achieving an ignited plasma are better understood and the remaining questions more clearly defined. The principal research topics which have been studied on TFTR are transport, magnetohydrodynamic stability, and energetic particle confinement. The integration of separate solutions to problems in each of these research areas has also been of major interest. Although significant advances, such as the reduction of turbulent transport by means of internal transport barriers, identification of the theoretically predicted bootstrap current, and the study of the confinement of energetic fusion alpha-particles have been made, interesting and important scientific and technical issues remain for achieving a magnetic fusion energy reactor. In this paper, the implications of the TFTR experiments for overcoming these remaining issues will be discussed.

  6. Results from D-T experiments on TFTR and implications for achieving an ignited plasma

    SciTech Connect

    Hawryluk, R.J.; Blanchard, W.; Batha, S.

    1998-07-01

    Progress in the performance of tokamak devices has enable not only the production of significant bursts of fusion energy from deuterium-tritium plasmas in the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) but, more importantly, the initial study of the physics of burning magnetically confined plasmas. As a result of the worldwide research on tokamaks, the scientific and technical issues for achieving an ignited plasma are better understood and the remaining questions more clearly defined. The principal research topics which have been studied on TFTR are transport, magnetohydrodynamic stability, and energetic particle confinement. The integration of separate solutions to problems in each of these research areas has also been of major interest. Although significant advances, such as the reduction of turbulent transport by means of internal transport barriers, identification of the theoretically predicted bootstrap current, and the study of the confinement of energetic fusion alpha-particles have been made, interesting and important scientific and technical issues remain. In this paper, the implications for the TFTR experiments for overcoming these remaining issues will be discussed.

  7. Modelling piloted ignition of wood and plastics

    SciTech Connect

    Blijderveen, Maarten van; Bramer, Eddy A.; Brem, Gerrit

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

  8. A premixed hydrogen/oxygen catalytic igniter

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1989-01-01

    The catalytic ignition of hydrogen and oxygen propellants was studied using a premixing hydrogen/oxygen injector. The premixed injector was designed to eliminate problems associated with catalytic ignition caused by poor propellant mixing in the catalyst bed. Mixture ratio, mass flow rate, and propellant inlet temperature were varied parametrically in testing, and a pulse mode life test of the igniter was conducted. The results of the tests showed that the premixed injector eliminated flame flashback in the reactor and increased the life of the igniter significantly. The results of the experimental program and a comparison with data collected in a previous program are given.

  9. Ignition threshold for impact-generated fires

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Kring, David A.

    2004-08-01

    Widespread fires can be generated after large impact events by atmospheric heating caused by the reaccretion of high-energy, vapor-rich plume material. We examine the threshold irradiance levels necessary for spontaneous and pilot ignition of various types of vegetation and define three specific cases for investigation: (1) 51 kW/m2 for a period of at least 2 min to spontaneously ignite wood; (2) 20 kW/m2 for a period of at least 20 min to ignite wood in the presence of an ignition source; and (3) 28 kW/m2 for a period of at least 1 min to ignite foliage, rotten wood, and forest litter. The threshold ejected plume mass for continent-wide spontaneous ignition of wood is ~2 to 6 × 1015 kg, independent of impact location but dependent on the details of the ejecta speed distribution. The threshold ejected plume mass for global spontaneous ignition of wood is in the range ~1 to 2 × 1016 kg. The threshold plume masses for continent-wide and global fires are very nearly the same for piloted ignition of wood, while the threshold plume masses for continent-wide and global ignition of leaves and forest litter are significantly lower, by a factor of ~2 to 3. Impact craters of at least 85 km diameter are needed to produce continental-scale fires, and craters of ~135 km diameter are needed for global-scale fires.

  10. Microwave Tokamak Experiment: Overview and status

    SciTech Connect

    Not Available

    1990-05-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. 3 figs., 3 tabs.