Science.gov

Sample records for compact nuclear simulator

  1. Apros-based Kola 1 nuclear power plant compact training simulator

    SciTech Connect

    Porkholm, K.; Kontio, H.; Nurmilaukas, P.

    1996-11-01

    Imatran Voima Oy`s subsidiary IVO International Ltd (IVO IN) and the Technical Research Centre of Finland (VTT) in co-operation with Kola staff supplies the Kola Nuclear Power Plant in the Murmansk region of Russia with a Compact Training Simulator. The simulator will be used for the training of the plant personnel in managing the plant disturbance and accident situations. By means of the simulator is is also possible to test how the planned plant modifications will affect the plant operation. The simulator delivery is financed by the Finnish Ministry of Trade and Industry and the Ministry of Foreign Affairs. The delivery is part of the aid program directed to Russia for the improvement of the nuclear power plant safety.

  2. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-28

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  3. Mesoscale Simulations of Powder Compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya.; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-01

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  4. Mesoscale simulations of powder compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya; Antoun, Tarabay; Liu, Benjamin

    2009-06-01

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to experimental match compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show evidence of hard-to-explain reshock states above the single-shock Hugoniot line, which have also been observed in the experiments. We found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations, since 2D results tend to underpredict stress levels for high-porosity powders regardless of material properties. We developed a process to extract macroscale information for the simulation which can be directly used in calibration of continuum model for heterogeneous media.

  5. Mesoscale Simulations of Power Compaction

    SciTech Connect

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  6. Nuclear Physics for Compact Stars

    SciTech Connect

    Baldo, M.

    2009-05-04

    A brief overview is given of the different lines of research developed under the INFN project 'Compact Stellar Objects and Dense Hadronic Matter' (acronym CT51). The emphasis of the project is on the structure of Neutron Stars (NS) and related objects. Starting from crust, the different Nuclear Physics problems are described which are encountered going inside a NS down to its inner core. The theoretical challenges and the observational inputs are discussed in some detail.

  7. A compact spectroradiometer for solar simulator measurements

    NASA Technical Reports Server (NTRS)

    Seward, H. H.; Mcwilliams, I. G.; Davidson, G. A.

    1972-01-01

    Compact spectral irradiance probe has been designed and built which uses wedge filter in conjunction with silicon cell and operational amplifier. Probe is used to monitor spectral energy distribution of solar simulators and other high intensity sources.

  8. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  9. Simulation of Crack Propagation in Metal Powder Compaction

    NASA Astrophysics Data System (ADS)

    Tahir, S. M.; Ariffin, A. K.

    2006-08-01

    This paper presents the fracture criterion of metal powder compact and simulation of the crack initiation and propagation during cold compaction process. Based on the fracture criterion of rock in compression, a displacement-based finite element model has been developed to analyze fracture initiation and crack growth in iron powder compact. Estimation of fracture toughness variation with relative density is established in order to provide the fracture parameter as compaction proceeds. A finite element model with adaptive remeshing technique is used to accommodate changes in geometry during the compaction and fracture process. Friction between crack faces is modelled using the six-node isoparametric interface elements. The shear stress and relative density distributions of the iron compact with predicted crack growth are presented, where the effects of different loading conditions are presented for comparison purposes.

  10. Nuclear fuel particles and method of making nuclear fuel compacts therefrom

    DOEpatents

    DeVelasco, Rubin I.; Adams, Charles C.

    1991-01-01

    Methods for making nuclear fuel compacts exhibiting low heavy metal contamination and fewer defective coatings following compact fabrication from a mixture of hardenable binder, such as petroleum pitch, and nuclear fuel particles having multiple layer fission-product-retentive coatings, with the dense outermost layer of the fission-product-retentive coating being surrounded by a protective overcoating, e.g., pyrocarbon having a density between about 1 and 1.3 g/cm.sup.3. Such particles can be pre-compacted in molds under relatively high pressures and then combined with a fluid binder which is ultimately carbonized to produce carbonaceous nuclear fuel compacts having relatively high fuel loadings.

  11. Behavior of compacted lunar simulants using new vacuum triaxial device

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Saadatmanesh, Hamid; Allen, Thomas

    1992-01-01

    The objectives of this study are to create a lunar simulant locally from a basaltic rock and to design and develop a vacuum triaxial test device that can permit testing of compacted lunar simulant under cyclic loading with different levels of initial vacuum. Triaxial testing is performed in the device itself without removing the compacted specimen. Preliminary constrained compression and triaxial shear tests are performed to identify effects of initial confinements and vacuums. The results are used to define deformation and strength parameters. At this time, vacuum levels up to 0.0001 are possible. The research can aid in the development of compacted materials for various construction applications.

  12. Numerical simulation of the shock compaction of copper powder

    SciTech Connect

    Benson, D.J. ); Nellis, W.J. )

    1994-07-10

    The shock compaction of an aggregate of randomly distributed copper particles with a nonuniform size distribution is simulated using an Eulerian hydrocode. A shock Hugoniot for a copper powder is calculated from a series of shock compaction simulations and compared to experimental results. The powder particles are modeled as rods in two dimensions. The particle size distribution is generated from a representative powder size distribution via a simple Monte-Carlo method and is initially numerically packed to a dense powder compact using the pseudo-gravity method. [copyright] 1994 American Institute of Physics

  13. NET23/STING Promotes Chromatin Compaction from the Nuclear Envelope

    PubMed Central

    de las Heras, Jose I.; Saiz-Ros, Natalia; Makarov, Alexandr A.; Lazou, Vassiliki; Meinke, Peter; Waterfall, Martin; Kelly, David A.; Schirmer, Eric C.

    2014-01-01

    Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture. PMID:25386906

  14. NET23/STING promotes chromatin compaction from the nuclear envelope.

    PubMed

    Malik, Poonam; Zuleger, Nikolaj; de las Heras, Jose I; Saiz-Ros, Natalia; Makarov, Alexandr A; Lazou, Vassiliki; Meinke, Peter; Waterfall, Martin; Kelly, David A; Schirmer, Eric C

    2014-01-01

    Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture. PMID:25386906

  15. Mechanical compaction of Waste Isolation Pilot Plant simulated waste

    SciTech Connect

    Butcher, B.M. ); Thompson, T.W.; VanBuskirk, R.G.; Patti, N.C. )

    1991-06-01

    The investigation described in this report acquired experimental information about how materials simulating transuranic (TRU) waste compact under axial compressive stress, and used these data to define a model for use in the Waste Isolation Pilot Plant (WIPP) disposal room analyses. The first step was to determine compaction curves for various simultant materials characteristic of TRU waste. Stress-volume compaction curves for various combinations of these materials were than derived to represent the combustible, metallic, and sludge waste categories. Prediction of compaction response in this manner is considered essential for the WIPP program because of the difficulties inherent in working with real (radioactive) waste. Next, full-sized 55-gallon drums of simulated combustible, metallic, and sludge waste were axially compacted. These results provided data that can be directly applied to room consolidation and data for comparison with the predictions obtained in Part 1 of the investigation. Compaction curves, which represent the combustible, metallic, and sludge waste categories, were determined, and a curve for the averaged waste inventory of the entire repository was derived. 9 refs., 31 figs., 12 tabs.

  16. Supernovae, compact stars and nuclear physics

    SciTech Connect

    Glendenning, N.K.

    1989-08-25

    We briefly review the current understanding of supernova. We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 12 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to plausibly consist of individual hadrons. We conclude that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, cannot be a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation under appropriate conditions. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 39 refs., 8 figs., 2 tabs.

  17. Vibratory compaction method for preparing lunar regolith drilling simulant

    NASA Astrophysics Data System (ADS)

    Chen, Chongbin; Quan, Qiquan; Deng, Zongquan; Jiang, Shengyuan

    2016-07-01

    Drilling and coring is an effective way to acquire lunar regolith samples along the depth direction. To facilitate the modeling and simulation of lunar drilling, ground verification experiments for drilling and coring should be performed using lunar regolith simulant. The simulant should mimic actual lunar regolith, and the distribution of its mechanical properties should vary along the longitudinal direction. Furthermore, an appropriate preparation method is required to ensure that the simulant has consistent mechanical properties so that the experimental results can be repeatable. Vibratory compaction actively changes the relative density of a raw material, making it suitable for building a multilayered drilling simulant. It is necessary to determine the relation between the preparation parameters and the expected mechanical properties of the drilling simulant. A vibratory compaction model based on the ideal elastoplastic theory is built to represent the dynamical properties of the simulant during compaction. Preparation experiments indicated that the preparation method can be used to obtain drilling simulant with the desired mechanical property distribution along the depth direction.

  18. 2nd Iberian Nuclear Astrophysics Meeting on Compact Stars

    NASA Astrophysics Data System (ADS)

    Perez-Garcia, M. Angeles; Pons, Jose; Albertus, C.

    2012-02-01

    ORGANIZING COMMITTEE Dr M Ángeles Pérez-García (Área Física Teórica-Universidad de Salamanca & IUFFYM) Dr J A Miralles (Universidad de Alicante) Dr J Pons (Universidad de Alicante) Dr C Albertus (Área Física Nuclear-Universidad de Salamanca & IUFFYM) Dr F Atrio (Área Física Teórica-Universidad de Salamanca & IUFFYM) PREFACE The second Iberian Nuclear Astrophysics meeting was held at the University of Salamanca, Spain on 22-23 September 2011. This volume contains most of the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Ibérico de Compstar, held at the University of Coimbra, Portugal in 2010. The main purpose of this meeting was to strengthen the scientific collaboration between the participants of the Iberian and the rest of the southern European branches of the European Nuclear Astrophysics network, formerly, COMPSTAR. This ESF (European Science Foundation) supported network has been crucial in helping to make a broader audience for the the most interesting and relevant research lines being developed currently in Nuclear Astrophysics, especially related to the physics of neutron stars. It is indeed important to emphasize the need for a collaborative approach to the rest of the scientific communities so that we can reach possible new members in this interdisciplinary area and as outreach for the general public. The program of the meeting was tailored to theoretical descriptions of the physics of neutron stars although some input from experimental observers and other condensed matter and optics areas of interest was also included. The main scientific topics included: Magnetic fields in compact stars Nuclear structure and in-medium effects in nuclear interaction Equation of state: from nuclear matter to quarks Importance of crust in the evolution of neutron stars Computational simulations of collapsing dense objects Observational phenomenology In particular, leading

  19. Compact Gamma-Beam Source for Nuclear Security Technologies

    NASA Astrophysics Data System (ADS)

    Gladkikh, P.; Urakawa, J.

    2015-10-01

    A compact gamma-beam source dedicated to the development of the nuclear security technologies by use of the nuclear resonance fluorescence is described. Besides, such source is a very promising tool for novel technologies of the express cargoes inspection to prevent nuclear terrorism. Gamma-beam with the quanta energies from 0.3MeV to 7.2MeV is generated in the Compton scattering of the "green" laser photons on the electron beam with energies from 90MeV to 430MeV. The characteristic property of the proposed gammabeam source is a narrow spectrum (less than 1%) at high average gamma-yield (of 1013γ/s) due to special operation mode.

  20. 2nd Iberian Nuclear Astrophysics Meeting on Compact Stars

    NASA Astrophysics Data System (ADS)

    Perez-Garcia, M. Angeles; Pons, Jose; Albertus, C.

    2012-02-01

    ORGANIZING COMMITTEE Dr M Ángeles Pérez-García (Área Física Teórica-Universidad de Salamanca & IUFFYM) Dr J A Miralles (Universidad de Alicante) Dr J Pons (Universidad de Alicante) Dr C Albertus (Área Física Nuclear-Universidad de Salamanca & IUFFYM) Dr F Atrio (Área Física Teórica-Universidad de Salamanca & IUFFYM) PREFACE The second Iberian Nuclear Astrophysics meeting was held at the University of Salamanca, Spain on 22-23 September 2011. This volume contains most of the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Ibérico de Compstar, held at the University of Coimbra, Portugal in 2010. The main purpose of this meeting was to strengthen the scientific collaboration between the participants of the Iberian and the rest of the southern European branches of the European Nuclear Astrophysics network, formerly, COMPSTAR. This ESF (European Science Foundation) supported network has been crucial in helping to make a broader audience for the the most interesting and relevant research lines being developed currently in Nuclear Astrophysics, especially related to the physics of neutron stars. It is indeed important to emphasize the need for a collaborative approach to the rest of the scientific communities so that we can reach possible new members in this interdisciplinary area and as outreach for the general public. The program of the meeting was tailored to theoretical descriptions of the physics of neutron stars although some input from experimental observers and other condensed matter and optics areas of interest was also included. The main scientific topics included: Magnetic fields in compact stars Nuclear structure and in-medium effects in nuclear interaction Equation of state: from nuclear matter to quarks Importance of crust in the evolution of neutron stars Computational simulations of collapsing dense objects Observational phenomenology In particular, leading

  1. COSMOLOGICAL SIMULATIONS OF MASSIVE COMPACT HIGH-z GALAXIES

    SciTech Connect

    Sommer-Larsen, J.; Toft, S. E-mail: sune@dark-cosmology.d

    2010-10-01

    In order to investigate the structure and dynamics of the recently discovered massive (M{sub *} {approx}> 10{sup 11} M{sub sun}) compact z {approx} 2 galaxies, cosmological hydrodynamical/N-body simulations of a {approx}50,000 Mpc{sup 3} comoving (Lagrangian), proto-cluster region have been undertaken. At z = 2, the highest resolution simulation contains {approx}5800 resolved galaxies, of which 509, 27, and 5 have M{sub *}>10{sup 10} M{sub sun}, M{sub *}>10{sup 11} M{sub sun}, and M{sub *}>4 x 10{sup 11} M{sub sun}, respectively. Total stellar masses, effective radii, and characteristic stellar densities have been determined for all galaxies. At z = 2, for the definitely well-resolved mass range of M{sub *} {approx}> 10{sup 11} M{sub sun}, we fit the relation R{sub eff} = R{sub eff,12} M {sup 1/3}{sub *,12} to the data, where M{sub *,12} is the total stellar mass in units of 10{sup 12} M{sub sun}. This yields R{sub eff,12} = (1.20 {+-} 0.04) kpc, in line with observational findings for compact z {approx} 2 galaxies, though somewhat more compact than the observed average. The only line-of-sight velocity dispersion measured for a z {approx} 2 compact galaxy is very large, {sigma}{sub *,p} = 510{sup +165}{sub -95} km s{sup -1}. This value can be matched at about the 1{sigma} level, although a somewhat larger mass than the estimated M{sub *} {approx_equal} 2 x 10{sup 11} M{sub sun} is indicated. For the above mass range, the galaxies have an average axial ratio (b/a) = 0.64 {+-} 0.02 with a dispersion of 0.1, and an average rotation to one-dimensional velocity-dispersion ratio (v/{sigma}) = 0.46 {+-} 0.06 with a dispersion of 0.3, and a maximum value of v/{sigma} {approx_equal} 1.1. Both rotation and velocity anisotropy contribute significantly in flattening the compact galaxies. Some of the observed compact galaxies appear flatter than any of the simulated galaxies. Finally, it is found that the massive compact galaxies are strongly baryon dominated in their inner

  2. From nuclear reactions to compact stars: A unified approach

    NASA Astrophysics Data System (ADS)

    Basu, D. N.; Roy Chowdhury, Partha; Mishra, Abhishek

    2014-04-01

    An equation of state (EoS) for symmetric nuclear matter is constructed using the density-dependent M3Y effective interaction and extended for isospin asymmetric nuclear matter. Theoretically obtained values of symmetric nuclear matter incompressibility, isobaric incompressibility, symmetry energy and its slope agree well with experimentally extracted values. Folded microscopic potentials using this effective interaction, whose density dependence is determined from nuclear matter calculations, provide excellent descriptions for proton, alpha and cluster radioactivities, elastic and inelastic scattering. The nuclear deformation parameters extracted from the inelastic scattering of protons agree well with other available results. The high-density behavior of symmetric and asymmetric nuclear matter satisfies the constraints from the observed flow data of heavy-ion collisions. The neutron star properties studied using -equilibrated neutron star matter obtained from this effective interaction for a pure hadronic model agree with the recent observations of the massive compact stars such as PSR J1614-2230, but if a phase transition to quark matter is considered such agreement is no longer possible.

  3. Compact Phase-Conjugating Correlator: Simulation and Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Sharp, James H.; Budgett, David M.; Slack, Tim G.; Scott, Brian F.

    1998-07-01

    A simulation and experimental investigation of a recently proposed, compact, phase-conjugating correlator is undertaken. The effects of noise and other distortions in the input image and in the correlator filter plane are considered. As with other phase-only designs, the phase-conjugating correlator is sensitive to distortion of the input image while being robust in the presence of filter-plane distortions; this robustness is enhanced by the phase-conjugating property of the design.

  4. Diffusion Welding of Compact Heat Exchangers for Nuclear Applications

    SciTech Connect

    Denis Clark; Ron Mizia; Dr. Michael V. Glazoff; Mr. Michael W. Patterson

    2012-06-01

    The next-­-generation nuclear plant (NGNP) is designed to be a flexible source of energy, producing various mixes of electrical energy and process heat (for example, for hydrogen generation) on demand. Compact heat exchangers provide an attractive way to move energy from the helium primary reactor coolant to process heat uses. For process heat efficiency, reactor outlet temperatures of 750-­-900°C are desirable. There are minor but deleterious components in the primary coolant; the number of alloys that can handle this environment is small. The present work concentrates on Alloys 800H and 617.

  5. Numerical fracture simulation of compact and bend specimens

    NASA Astrophysics Data System (ADS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    An elastic-plastic finite-element analysis with a critical crack-tip-opening displacement criterion was used to simulate fracture of various size compact and bend specimens made of HY-130 steel. From the calculated load-crack-extension and load-displacement curves, J-resistance (J-R) curves were determined by several methods. The simulated 3-R curves were insensitive to specimen size up to maximum load but were sensitive to specimen configuration for crack extensions greater than 10 percent of the initial uncracked ligament length.

  6. Numerical fracture simulation of compact and bend specimens

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1988-01-01

    An elastic-plastic finite-element analysis with a critical crack-tip-opening displacement criterion was used to simulate fracture of various size compact and bend specimens made of HY-130 steel. From the calculated load-crack-extension and load-displacement curves, J-resistance (J-R) curves were determined by several methods. The simulated 3-R curves were insensitive to specimen size up to maximum load but were sensitive to specimen configuration for crack extensions greater than 10 percent of the initial uncracked ligament length.

  7. Postanalysis of the CNPS (Compact Nuclear Power Source) critical experiment

    NASA Astrophysics Data System (ADS)

    Palmer, R. G.

    The Compact Nuclear Power Source (CNPS) was designed to produce electric power for remote sites where fuel logistics and costs would justify a remotely sited nuclear power plant. Since the reactor was of novel design with no appropriate benchmarks, a series of critical experiments was carried out at LANL. This paper describes the methodology and reports the results of the postanalysis that was performed on the critical experiments, which included several distinct critical configurations, the measurement of the isothermal temperature coefficient of reactivity and various material worths. Comparisons with measurements indicate that current methods and cross sections are adequate for calculating at least the beginning of life conditions in low enriched U-235-graphite cores.

  8. Postanalysis of the CNPS (Compact Nuclear Power Source) critical experiment

    SciTech Connect

    Palmer, R.G.

    1988-01-01

    The Compact Nuclear Power Source (CNPS) was designed to produce electric power for remote sites where fuel logistics and costs would justify a remotely sited nuclear power plant. Since the reactor was of novel design with no appropriate benchmarks, a series of critical experiments was carried out at LANL. This paper describes the methodology and reports the results of the postanalysis that was performed on the critical experiments, which included several distinct critical configurations, the measurement of the isothermal temperature coefficient of reactivity and various material worths. Comparisons with measurements indicate that current methods and cross sections are adequate for calculating at least the beginning of life conditions in low enriched /sup 235/U-graphite cores. 7 refs., 4 figs., 4 tabs.

  9. Time-dependent simulations of a Compact Ignition Tokamak

    SciTech Connect

    Stotler, D.P.; Bateman, G.

    1988-05-01

    Detailed simulations of the Compact Ignition Tokamak are carried out using a 1-1/2-D transport code. The calculations include time-varying densities, fields, and plasma shape. It is shown that ignition can be achieved in this device if somewhat better than L-mode energy confinement time scaling is possible. We also conclude that the performance of such a compact, short-pulse device can depend greatly on how the plasma is evolved to its flat-top parameters. Furthermore, in cases such as the ones discussed here, where there is not a great deal of ignition margin and the electron density is held constant, ignition ends if the helium ash is not removed. In general, control of the deuterium--tritium density is equivalent to burn control. 48 refs., 15 figs.

  10. Numerical simulation of compact intracloud discharge and generated electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2015-06-01

    Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.

  11. Nuclear Power Plant Simulation Game.

    ERIC Educational Resources Information Center

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  12. Acoustic Characterization of Compact Jet Engine Simulator Units

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Haskin, Henry H.

    2013-01-01

    Two dual-stream, heated jet, Compact Jet Engine Simulator (CJES) units are designed for wind tunnel acoustic experiments involving a Hybrid Wing Body (HWB) vehicle. The newly fabricated CJES units are characterized with a series of acoustic and flowfield investigations to ensure successful operation with minimal rig noise. To limit simulator size, consistent with a 5.8% HWB model, the CJES units adapt Ultra Compact Combustor (UCC) technology developed at the Air Force Research Laboratory. Stable and controllable operation of the combustor is demonstrated using passive swirl air injection and backpressuring of the combustion chamber. Combustion instability tones are eliminated using nonuniform flow conditioners in conjunction with upstream screens. Through proper flow conditioning, rig noise is reduced by more than 20 dB over a broad spectral range, but it is not completely eliminated at high frequencies. The low-noise chevron nozzle concept designed for the HWB test shows expected acoustic benefits when installed on the CJES unit, and consistency between CJES units is shown to be within 0.5 dB OASPL.

  13. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center (ESTSC)

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  14. Mechanical properties of compacted lunar simulant using new vacuum triaxial equipment

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Saadatmanesh, Hamid; Allen, Tom

    1992-01-01

    Mechanical stress-strain strength properties of Arizona Lunar Simulant (ALS) are investigated by using a newly developed vacuum triaxial device that allows compaction under different initial vacuums and confinements. Influence of vacuum and confinement on compaction, strength and deformation characteristics of compacted material are delineated and discussed.

  15. APPLICATION OF FLOW SIMULATION FOR EVALUATION OF FILLING-ABILITY OF SELF-COMPACTING CONCRETE

    NASA Astrophysics Data System (ADS)

    Urano, Shinji; Nemoto, Hiroshi; Sakihara, Kohei

    In this paper, MPS method was applied to fluid an alysis of self-compacting concrete. MPS method is one of the particle method, and it is suitable for the simulation of moving boundary or free surface problems and large deformation problems. The constitutive equation of self-compacting concrete is assumed as bingham model. In order to investigate flow Stoppage and flow speed of self-compacting concrete, numerical analysis examples of slump flow and L-flow test were performed. In addition, to evaluate verification of compactability of self-compacting concrete, numerical analys is examples of compaction at the part of CFT diaphragm were performed. As a result, it was found that the MPS method was suitable for the simulation of compaction of self-compacting concrete, and a just appraisal was obtained by setting shear strain rate of flow-limit πc and limitation point of segregation.

  16. Rice growth monitoring using simulated compact polarimetric C band SAR

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Li, Kun; Liu, Long; Shao, Yun; Brisco, Brian; Li, Weiguo

    2014-12-01

    In this study, a set of nine compact polarimetric (CP) images were simulated from polarimetric RADARSAT-2 data acquired over a test site containing two types of rice field in Jiangsu province, China. The types of rice field in the test site were (1) transplanted hybrid rice fields, and (2) direct-sown japonica rice fields. Both types have different yields and phenological stages. As a first step, the two types of rice field were distinguished with 94% and 86% accuracy respectively through analyzing CP synthetic aperture radar (SAR) observations and their behavior in terms of scattering mechanisms during the rice growth season. The focus was then on phenology retrieval for each type of rice field. A decision tree (DT) algorithm was built to fulfill the precise retrieval of rice phenological stages, in which seven phenological stages were discriminated. The key criterion for each phenological stage was composed of 1-4 CP parameters, some of which were first used for rice phenology retrieval and found to be very sensitive to rice phenological changes. The retrieval results were verified at parcel level for a set of 12 stands of rice and up to nine observation dates per stand. This gave an accuracy of 88-95%. Throughout the phenology retrieval process, only simulated CP data were used, without any auxiliary data. These results demonstrate the potential of CP SAR for rice growth monitoring applications.

  17. Nuclear gamma rays from compact objects. [nuclear interactions around neutron stars and black holes

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Higdon, J. C.; Ramaty, R.

    1978-01-01

    Accreting compact objects may be important gamma ray line sources and may explain recent observations of celestial gamma-ray line emission from a transient source in the direction of the galactic anti-center, from the galactic center, and possibly from the radio galaxy Centaurus A. The identification of the lines from the transient source requires a strong redshift. Such a redshift permits the identification of these lines with the most intense nuclear emission lines expected in nature, positron annihilation, and neutron capture on hydrogen and iron. Their production as a result of nuclear interactions in accreting gas around a neutron star is proposed. The gamma-ray line emission from the galactic center and possibly Centaurus A appears to have a surprisingly high luminosity, amounting to perhaps as much as 10% of the total luminosity of these sources. Such high gamma-ray line emission efficiencies could result from nuclear interactions in accreting gas around a massive black hole.

  18. Non-Nuclear Testing of Compact Reactor Technologies at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    Safe, reliable, compact, autonomous, long-life fission systems have numerous potential applications, both terrestrially and in space. Technologies and facilities developed in support of these systems could be useful to a variety of concepts. At moderate power levels, fission systems can be designed to operate for decades without the need for refueling. In addition, fast neutron damage to cladding and structural materials can be maintained at an acceptable level. Nuclear design codes have advanced to the stage where high confidence in the behavior and performance of a system can be achieved prior to initial testing. To help ensure reactor affordability, an optimal strategy must be devised for development and qualification. That strategy typically involves a combination of non-nuclear and nuclear testing. Non-nuclear testing is particularly useful for concepts in which nuclear operating characteristics are well understood and nuclear effects such as burnup and radiation damage are not likely to be significant. To be mass efficient, a SFPS must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial reactors. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference SFPS uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance. In addition, technologies from the SFPS system could be applicable to compact terrestrial systems. Recent non-nuclear testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference SFPS and evaluate methods for system integration. In July, 2011 an Annular Linear Induction Pump (ALIP) provided by Idaho National Laboratory was tested at the EFF-TF to assess performance and verify suitability for use in a10 kWe technology

  19. Numerical analysis corresponding with experiment in compact beam simulator for heavy ion inertial fusion driver

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Sakai, Y.; Komori, T.; Sato, T.; Hasegawa, J.; Horioka, K.; Takahashi, K.; Sasaki, T.; Harada, Nob

    2016-05-01

    Tune depression in a compact beam equipment is estimated, and numerical simulation results are compared with an experimental one for the compact beam simulator in a driver of heavy ion inertial fusion. The numerical simulation with multi-particle tracking is carried out, corresponding to the experimental condition, and the result is discussed with the experimental one. It is expected that the numerical simulation developed in this paper is useful tool to investigate the beam dynamics in the experiment with the compact beam simulator.

  20. Special nuclear material simulation device

    SciTech Connect

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  1. Non Nuclear NTR Environmental Simulator

    SciTech Connect

    Emrich, William J. Jr.

    2006-01-20

    Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today's best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. The goal of these simulations would be directed toward expanding the performance envelope of NTR engines over that which was demonstrated during the Rover and NERVA nuclear rocket programs of the 1970's. Current planning calls for such a simulator to be constructed at the Marshall Space Flight Center over the coming year, and it is anticipated that it will be used in the future to evaluate a wide variety of fuel element designs and the materials of which they are constructed. This present work addresses the initial experimental objectives of the NTR simulator with regard to reproducing the fuel degradation patterns previously observed during the NERVA testing.

  2. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  3. Simulated nuclear reactor fuel assembly

    DOEpatents

    Berta, V.T.

    1993-04-06

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  4. Simulated nuclear reactor fuel assembly

    DOEpatents

    Berta, Victor T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  5. Three-dimensional simulations of nanopowder compaction processes by granular dynamics method

    NASA Astrophysics Data System (ADS)

    Boltachev, G. Sh.; Lukyashin, K. E.; Shitov, V. A.; Volkov, N. B.

    2013-07-01

    In order to describe and to study the processes of cold compaction within the discrete element method a three-dimensional model of nanosized powder is developed. The elastic forces of repulsion, the tangential forces of “friction” (Cattaneo-Mindlin), and the dispersion forces of attraction (van der Waals-Hamaker), as well as the formation and destruction of hard bonds between the individual particles are taken into account. The monosized powders with the size of particles in the range 10-40 nm are simulated. The simulation results are compared to the experimental data of the alumina nanopowders compaction. It is shown that the model allows us to reproduce experimental data reliably and, in particular, describes the size effect in the compaction processes. A number of different external loading conditions is used in order to perform the theoretical and experimental researches. The uniaxial compaction (the closed-die compaction), the biaxial (radial) compaction, and the isotropic compaction (the cold isostatic pressing) are studied. The real and computed results are in a good agreement with each other. They reveal a weak sensitivity of the oxide nanopowders to the loading condition (compaction geometry). The application of the continuum theory of the plastically hardening porous body, which is usually used for the description of powders, is discussed.

  6. Thermodynamic instabilities in dense asymmetric nuclear matter and in compact stars

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Drago, A.; Pagliara, G.; Pigato, D.

    2014-07-01

    We investigate the presence of thermodynamic instabilities in compressed asymmetric baryonic matter, reachable in high energy heavy ion collisions, and in the cold β-stable compact stars. To this end we study the relativistic nuclear equation of state with the inclusion of Δ-isobars and require the global conservation of baryon and electric charge numbers. Similarly to the low density nuclear liquid-gas phase transition, we show that a phase transition can occur in dense asymmetric nuclear matter and it is characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the electric charge concentration). Such thermodynamic instabilities can imply a very different electric charge fraction Z/A in the coexisting phases during the phase transition and favoring an early formation of Δ- particles with relevant phenomenological consequences in the physics of the protoneutron stars and compact stars. Finally, we discuss the possible co-existence of very compact and very massive compact stars in terms of two separate families: compact hadronic stars and very massive quark stars.

  7. Towards realistic simulations of non-vacuum compact binaries

    NASA Astrophysics Data System (ADS)

    Neilsen, David; Anderson, Matthew; Draper, Christian; Hirschmann, Eric; Lehner, Luis; Liebling, Steven; Miguel, Megevand; Motl, Patrick; Palenzuela, Carlos

    2011-04-01

    Binary mergers in non-vacuum spacetimes often display complex dynamics that are sensitive to the physical phenomena included in the model, and which may affect the gravitational wave signature from the system. For example, magnetic fields, cooling mechanisms, and equations of state influence the merger and post-merger evolution of compact binaries. Thus, these effects should be included in computational models that connect with astrophysical observations. In this talk we present results of neutron star evolutions with a finite-temperature equation of state in the context of binary mergers, and we also consider effects of other relevant physical phenomena.

  8. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  9. Test report for simulation HDR waste compaction at the hot-cell verification facility

    SciTech Connect

    Allan, W.C.

    1982-12-01

    Compaction and shredding of the waste material by the Nuclear Packaging Compactor can achieve compaction ratios of from 3.5 to 1 up to 5.5 to 1. This volume reduction would result in considerable savings in FMEF operational expense. As expected, the springback of the waste material was significant. Elimination of most of the springback could raise the compaction ratio by at least 1. The compactor compacted all types of waste material that was tried. However, this compactor will have to be extensively modified for safe hot cell use in FMEF. Because of the vibration of the compactor itself, the movement of the barrel caused by the downward stroke of the ram and the 9 ton force limit, consideration should be given to the use of another compactor.

  10. Teaching About Nuclear Power: A Simulation.

    ERIC Educational Resources Information Center

    Maxey, Phyllis F.

    1980-01-01

    Recommends that simulation games be used to teach high school students in social studies courses about contemporary and controversial issues such as nuclear power. A simulation is described which involves students in deciding whether to build a nuclear power plant in the California desert. Teaching and debriefing tips are also provided. (DB)

  11. Designing ARIES-CS compact radial build and nuclear system: Neutronics, shielding, and activation

    SciTech Connect

    El-GuebalyUniv. Wisco, L.; Wilson, P.; Sawan, M.; Sviatoslavsky, G.; Slaybaugh, R; Kiedrowski, B; Ibrahim, A.; MartinUniv Wiscons, C.; Tautges, Tim; Raffray, R.; Lyon, J.; Wang, X.; Bromberg, L.; Merrill, Brad; Wagner, L.; Najmabadi, F.

    2008-01-01

    Within the ARIES-CS project, design activities have focused on developing the first compact device that enhances the attractiveness of the stellarator as a power plant. The objectives of this paper are to review the nuclear elements that received considerable attention during the design process and provide a perspective on their successful integration into the final design. Among these elements are the radial build definition, the well-optimized in-vessel components that satisfy the ARIES top-level requirements, the carefully selected nuclear and engineering parameters to produce an economic optimum, the modeling for the first time ever-of the highly complex stellarator geometry for the three-dimensional nuclear assessment, and the overarching safety and environmental constraints to deliver an attractive, reliable, and truly compact stellarator power plant.

  12. Chromatin De-Compaction By The Nucleosomal Binding Protein HMGN5 Impairs Nuclear Sturdiness

    PubMed Central

    Furusawa, Takashi; Rochman, Mark; Taher, Leila; Dimitriadis, Emilios K.; Nagashima, Kunio; Anderson, Stasia; Bustin, Michael

    2014-01-01

    In most metazoan nuclei, heterochromatin is located at the nuclear periphery in contact with the nuclear lamina, which provides mechanical stability to the nucleus. We show that in cultured cells, chromatin de-compaction by the nucleosome binding protein HMGN5 decreases the sturdiness, elasticity, and rigidity of the nucleus. Mice overexpressing HMGN5, either globally or only in the heart, are normal at birth but develop hypertrophic heart with large cardiomyoctyes, deformed nuclei and disrupted lamina, and die of cardiac malfunction. Chromatin de-compaction is seen in cardiomyocytes of newborn mice but misshaped nuclei with disrupted lamina are seen only in adult cardiomyocytes, suggesting that loss of heterochromatin diminishes the ability of the nucleus to withstand the mechanical forces of the contracting heart. Thus, heterochromatin enhances the ability of the nuclear lamina to maintain the sturdiness and shape of the eukaryotic nucleus; a structural role for chromatin that is distinct from its genetic functions. PMID:25609380

  13. A novel approach to fabricating fuel compacts for the next generation nuclear plant (NGNP)

    NASA Astrophysics Data System (ADS)

    Pappano, P. J.; Burchell, T. D.; Hunn, J. D.; Trammell, M. P.

    2008-10-01

    The next generation nuclear plant (NGNP) is a combined complex of a very high temperature reactor (VHTR) and hydrogen production facility. The VHTR can have a prismatic or pebble bed design and is powered by TRISO fuel in the form of a fuel compact (prismatic) or pebble (pebble bed). The US is scheduled to build a demonstration VHTR at the Idaho National Laboratory site by 2020. The first step toward building of this facility is development and qualification of the fuel for the reactor. This paper summarizes the research and development efforts performed at Oak Ridge National Laboratory (ORNL) toward development of a qualified fuel compact for a VHTR.

  14. A Compact Nuclear Fusion Reactor for Space Flights

    NASA Astrophysics Data System (ADS)

    Nastoyashchiy, Anatoly F.

    2006-05-01

    A small-scale nuclear fusion reactor is suggested based on the concepts of plasma confinement (with a high pressure gas) which have been patented by the author. The reactor considered can be used as a power setup in space flights. Among the advantages of this reactor is the use of a D3He fuel mixture which at burning gives main reactor products — charged particles. The energy balance considerably improves, as synchrotron radiation turn out "captured" in the plasma volume, and dangerous, in the case of classical magnetic confinement, instabilities in the direct current magnetic field configuration proposed do not exist. As a result, the reactor sizes are quite suitable (of the order of several meters). A possibility of making reactive thrust due to employment of ejection of multiply charged ions formed at injection of pellets from some adequate substance into the hot plasma center is considered.

  15. Simulation of vertical compaction in models of regional ground-water flow

    USGS Publications Warehouse

    Leake, S.A.

    1991-01-01

    A new computer program was developed to simulate vertical compaction in models of regional ground-water flow. The program accounts for ground-water storage changes and compaction in discontinuous interbeds or in extensive confining beds. The new program is a package for the U.S. Geological Survey modular finite-difference ground-water flow model. Several features of the program make it useful for application in shallow unconfined flow systems. Geostatic load can be treated as a function of water-table elevation, and compaction is a function of computed changes in effective stress at the center of a model layer. Thickness of compressible sediments in an unconfined model layer can vary in proportion to saturated thickness. The new package was tested by comparison with an existing model of one-dimensional compaction.

  16. Nuclear design methodology for analyzing ultra high temperature highly compact ternary carbide reactor

    NASA Astrophysics Data System (ADS)

    Gouw, Reza Raymond

    Recent studies at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) have demonstrated the feasibility of fabricating solid solutions of ternary carbide fuels such as (U,Zr,Nb)C, (U,Zr,Ta)C, (U,Zr,Hf)C and (U,Zr,W)C. The necessity for accurate nuclear design analysis of these ternary carbides in highly compact nuclear space systems prompted the development of nuclear design methodology for analyzing these systems. This study will present the improvement made in the high temperature nuclear cross-sections. It will show the relation between Monte Carlo and Deterministic calculations. It will prove the significant role of the energy spectrum in the multigroup nuclear cross-sections generation in the highly-thermalized-nuclear system. The nuclear design methodology will address several issues in the homogenization of a nuclear system, such as energy spectrum comparison between a heterogeneous system and homogeneous system. It will also address several key points in the continuous and multigroup nuclear cross-sections generation. The study will present the methodology of selecting broad energy group structures. Finally, a comparison between the Monte Carlo and Deterministic methods will be performed for the Square-Lattice Honeycomb Nuclear Space Reactor. In the comparison calculations, it will include the system characterization calculations, such as energy spectrum comparison, 2-D power distributions, temperature coefficient analysis, and water submersion accident analysis.

  17. Micro-scale simulation of dynamic compaction of oxide and metal powder mixture

    NASA Astrophysics Data System (ADS)

    Kamegai, M.; Walton, Otis R.; Taylor, A. G.

    1989-10-01

    Many features of the dynamic compaction of powders are potentially favorable for use in processing high T(sub c) oxide superconductors. Conventional sintering methods tend to produce unwanted impurities, voids, and oxygen-deficient grain boundaries and have, thus, failed to form bulk oxide superconductors with high critical current. One proposed approach for a dynamic process is to compress a mixture of high purity single crystallite particles and fine silver particles. Computer modeling of dynamic compaction has thus far been limited to bulk simulation of the process by continuum mechanics codes. Results of compaction experiments are not reliably predicted with such techniques because the micro-scale dynamics of powder compaction are only modeled by phenomenological approximation. A micro-scale simulation technique was developed and applied to computer models similar to those of molecular dynamics, which were originally designed to simulate the flow behavior of inelastic, frictional particles. In this method, the oxide grain is represented by a nearly elastic sphere while an individual silver grain is modeled by an aggregate of effective inelastic-frictional particles bound by a prescribed interparticle force. The first 2-D simulation results for a simple configuration (a single aggregate silver grain crushed between two nearly elastic ceramic spheres) are compared with the continuum calculations for the same configuration. This micro-scale simulation technique can be extended to study an assembly of dissimilar grains in 3-D space.

  18. Formation of compact clusters from high resolution hybrid cosmological simulations

    SciTech Connect

    Richardson, Mark L. A.; Scannapieco, Evan; Gray, William J.

    2013-11-20

    The early universe hosted a large population of small dark matter 'minihalos' that were too small to cool and form stars on their own. These existed as static objects around larger galaxies until acted upon by some outside influence. Outflows, which have been observed around a variety of galaxies, can provide this influence in such a way as to collapse, rather than disperse, the minihalo gas. Gray and Scannapieco performed an investigation in which idealized spherically symmetric minihalos were struck by enriched outflows. Here we perform high-resolution cosmological simulations that form realistic minihalos, which we then extract to perform a large suite of simulations of outflow-minihalo interactions including non-equilibrium chemical reactions. In all models, the shocked minihalo forms molecules through non-equilibrium reaction, and then cools to form dense, chemically homogenous clumps of star-forming gas. The formation of these high-redshift clusters may be observable with the next generation of telescopes and the largest of them should survive to the present-day, having properties similar to halo globular clusters.

  19. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Michael

    2009-01-01

    A detailed description of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) is presented. The contents include: 1) Design Requirements; 2) NTREES Layout; 3) Data Acquisition and Control System Schematics; 4) NTREES System Schematic; and 5) NTREES Setup.

  20. Computational Challenges in Nuclear Weapons Simulation

    SciTech Connect

    McMillain, C F; Adams, T F; McCoy, M G; Christensen, R B; Pudliner, B S; Zika, M R; Brantley, P S; Vetter, J S; May, J M

    2003-08-29

    After a decade of experience, the Stockpile Stewardship Program continues to ensure the safety, security and reliability of the nation's nuclear weapons. The Advanced Simulation and Computing (ASCI) program was established to provide leading edge, high-end simulation capabilities needed to meet the program's assessment and certification requirements. The great challenge of this program lies in developing the tools and resources necessary for the complex, highly coupled, multi-physics calculations required to simulate nuclear weapons. This paper describes the hardware and software environment we have applied to fulfill our nuclear weapons responsibilities. It also presents the characteristics of our algorithms and codes, especially as they relate to supercomputing resource capabilities and requirements. It then addresses impediments to the development and application of nuclear weapon simulation software and hardware and concludes with a summary of observations and recommendations on an approach for working with industry and government agencies to address these impediments.

  1. Simulation of irreversible rock compaction effects on geopressured reservoir response: Topical report

    SciTech Connect

    Riney, T.D.

    1986-12-01

    A series of calculations are presented which quantitatively demonstrate the effects of nonlinear stress-deformation properties on the behavior of geopressured reservoirs. The range of stress-deformation parameters considered is based on information available from laboratory rock mechanics tests performed at the University of Texas at Austin and at Terra Tek, Inc. on cores recovered from geopressured wells. The effects of irreversible formation rock compaction, associated permeability reduction, and repetitive load/unload cycling are considered. The formation rock and geopressured brine properties are incorporated into an existing reservoir simulator using a bilinear model for the irreversible compaction process. Pressure drawdown and buildup testing of a well producing from the geopressured formation is simulated for a suite of calculations covering the range of formation parameters. The results are presented and discussed in terms of the inference (e.g., permeability and reservoir volume) that would be drawn from the simulated test data by an analyst using conventional methods.

  2. Filling of simulated lateral canals with gutta-percha or thermoplastic polymer by warm vertical compaction.

    PubMed

    Sant'Anna-Junior, Arnaldo; Guerreiro-Tanomaru, Juliane Maria; Martelo, Roberta Bosso; Silva, Guilherme Ferreira da; Tanomaru Filho, Mário

    2015-01-01

    The aim of this study was to evaluate the ability of gutta-percha and a thermoplastic synthetic polymer (Resilon) to fill simulated lateral canals, using warm vertical compaction. Forty-five single-rooted human teeth were prepared using the rotary crown-down technique. Artificial lateral canals were made at 2, 5, and 8 mm from the working length (WL) in each root. The specimens were divided into three groups (n = 15), according to the filling material: Dentsply gutta-percha (GD), Odous gutta-percha (GO), and Resilon cones (RE). The root canals were obturated using warm vertical compaction, without endodontic sealer. The specimens were subjected to a tooth decalcification and clearing procedure. Filling of the lateral canals was analyzed by digital radiography and digital photographs, using the Image Tool software. The data were subjected to the Kruskal-Wallis and Dunn tests at 5% significance. RE had the best filling ability in all root thirds (p < 0.05), with similar results for GO in the coronal third. In the middle and apical thirds, GD and GO had similar results (p > 0.05). Resilon may be used as an alternative to gutta-percha as a solid core filling material for use with the warm vertical compaction technique. The study findings point to the potential benefit of the warm vertical compaction technique for filling lateral canals, and the study provides further information about using Resilon and gutta-percha as materials for the warm vertical compaction technique. PMID:25885024

  3. New compact equation for numerical simulation of freak waves on deep water

    NASA Astrophysics Data System (ADS)

    Dyachenko, A. I.; Kachulin, D. I.; Zakharov, V. E.

    2016-02-01

    Considering surface gravity waves which propagate in same direction we applied canonical transformation to a water wave equation and drastically simplify the Hamiltonian. After this transformation, corresponding equation of motion is written in x-space in a compact form. This new equation is suitable for analytical studies and numerical simulations. Localized in space breather-type solution was found numerically by using iterative Petviashvili method. Numerical simulation of breathers collision shows the stability of such solutions. We observed the freak wave formation in numerical simulations of sea surface waving in the framework of new equation.

  4. CO Line Emission from Compact Nuclear Starburst Disks around Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Armour, J. N.; Ballantyne, D. R.

    2012-06-01

    There is substantial evidence for a connection between star formation in the nuclear region of a galaxy and growth of the central supermassive black hole. Furthermore, starburst activity in the region around an active galactic nucleus (AGN) may provide the obscuration required by the unified model of AGNs. Molecular line emission is one of the best observational avenues to detect and characterize dense, star-forming gas in galactic nuclei over a range of redshift. This paper presents predictions for the carbon monoxide (CO) line features from models of nuclear starburst disks around AGNs. These small-scale (lsim 100 pc), dense and hot starbursts have CO luminosities similar to scaled-down ultra-luminous infrared galaxies and quasar host galaxies. Nuclear starburst disks that exhibit a pc-scale starburst and could potentially act as the obscuring torus show more efficient CO excitation and higher brightness temperature ratios than those without such a compact starburst. In addition, the compact starburst models predict strong absorption when J Upper >~ 10, a unique observational signature of these objects. These findings allow for the possibility that CO spectral line energy distributions (SLEDs) could be used to determine if starburst disks are responsible for the obscuration in z <~ 1 AGNs. Directly isolating the nuclear CO line emission of such compact regions around AGNs from galactic-scale emission will require high-resolution imaging or selecting AGN host galaxies with weak galactic-scale star formation. Stacking individual CO SLEDs will also be useful in detecting the predicted high-J features.

  5. Fast surrogate-assisted simulation-driven optimization of compact microwave hybrid couplers

    NASA Astrophysics Data System (ADS)

    Kurgan, Piotr; Koziel, Slawomir

    2016-07-01

    This work presents a robust methodology for expedited simulation-driven design optimization of compact microwave hybrid couplers. The technique relies on problem decomposition, and a bottom-up design strategy, starting from the level of basic building blocks of the coupler, and finishing with a tuning procedure that exploits a fast surrogate model of the entire structure. The latter is constructed by cascading local response surface approximations of coupler elementary elements. The cross-coupling effects within the structure are neglected in the first stage of the design process; however, they are accounted for in the tuning phase by means of space-mapping correction of the surrogate. The proposed approach is demonstrated through the design of a compact rat-race and two branch-line couplers. In all cases, the computational cost of the optimization process is very low and corresponds to just a few high-fidelity electromagnetic simulations of respective structures. Experimental validation is also provided.

  6. The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0

    NASA Astrophysics Data System (ADS)

    Wellons, Sarah; Torrey, Paul; Ma, Chung-Pei; Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars

    2016-02-01

    Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M* = 1-3 × 1011 M⊙, M*/R1.5 > 1010.5 M⊙/kpc1.5) at z = 2 in the cosmological hydrodynamical simulation Illustris and trace them forwards to z = 0 to uncover their evolution and identify their descendants. By z = 0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15 per cent are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only ˜10 per cent remain compact by z = 0. The majority of the size growth is driven by the acquisition of ex situ mass. The most massive galaxies at z = 0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z = 2. The compact galaxies' merger rates are influenced by their z = 2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.

  7. Designing a compact high performance brain PET scanner—simulation study

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Majewski, Stan; Kinahan, Paul E.; Harrison, Robert L.; Elston, Brian F.; Manjeshwar, Ravindra; Dolinsky, Sergei; Stolin, Alexander V.; Brefczynski-Lewis, Julie A.; Qi, Jinyi

    2016-05-01

    The desire to understand normal and disordered human brain function of upright, moving persons in natural environments motivates the development of the ambulatory micro-dose brain PET imager (AMPET). An ideal system would be light weight but with high sensitivity and spatial resolution, although these requirements are often in conflict with each other. One potential approach to meet the design goals is a compact brain-only imaging device with a head-sized aperture. However, a compact geometry increases parallax error in peripheral lines of response, which increases bias and variance in region of interest (ROI) quantification. Therefore, we performed simulation studies to search for the optimal system configuration and to evaluate the potential improvement in quantification performance over existing scanners. We used the Cramér–Rao variance bound to compare the performance for ROI quantification using different scanner geometries. The results show that while a smaller ring diameter can increase photon detection sensitivity and hence reduce the variance at the center of the field of view, it can also result in higher variance in peripheral regions when the length of detector crystal is 15 mm or more. This variance can be substantially reduced by adding depth-of-interaction (DOI) measurement capability to the detector modules. Our simulation study also shows that the relative performance depends on the size of the ROI, and a large ROI favors a compact geometry even without DOI information. Based on these results, we propose a compact ‘helmet’ design using detectors with DOI capability. Monte Carlo simulations show the helmet design can achieve four-fold higher sensitivity and resolve smaller features than existing cylindrical brain PET scanners. The simulations also suggest that improving TOF timing resolution from 400 ps to 200 ps also results in noticeable improvement in image quality, indicating better timing resolution is desirable for brain imaging.

  8. Designing a compact high performance brain PET scanner-simulation study.

    PubMed

    Gong, Kuang; Majewski, Stan; Kinahan, Paul E; Harrison, Robert L; Elston, Brian F; Manjeshwar, Ravindra; Dolinsky, Sergei; Stolin, Alexander V; Brefczynski-Lewis, Julie A; Qi, Jinyi

    2016-05-21

    The desire to understand normal and disordered human brain function of upright, moving persons in natural environments motivates the development of the ambulatory micro-dose brain PET imager (AMPET). An ideal system would be light weight but with high sensitivity and spatial resolution, although these requirements are often in conflict with each other. One potential approach to meet the design goals is a compact brain-only imaging device with a head-sized aperture. However, a compact geometry increases parallax error in peripheral lines of response, which increases bias and variance in region of interest (ROI) quantification. Therefore, we performed simulation studies to search for the optimal system configuration and to evaluate the potential improvement in quantification performance over existing scanners. We used the Cramér-Rao variance bound to compare the performance for ROI quantification using different scanner geometries. The results show that while a smaller ring diameter can increase photon detection sensitivity and hence reduce the variance at the center of the field of view, it can also result in higher variance in peripheral regions when the length of detector crystal is 15 mm or more. This variance can be substantially reduced by adding depth-of-interaction (DOI) measurement capability to the detector modules. Our simulation study also shows that the relative performance depends on the size of the ROI, and a large ROI favors a compact geometry even without DOI information. Based on these results, we propose a compact 'helmet' design using detectors with DOI capability. Monte Carlo simulations show the helmet design can achieve four-fold higher sensitivity and resolve smaller features than existing cylindrical brain PET scanners. The simulations also suggest that improving TOF timing resolution from 400 ps to 200 ps also results in noticeable improvement in image quality, indicating better timing resolution is desirable for brain imaging. PMID

  9. Large Scale Quantum Simulations of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Fattoyev, Farrukh J.; Horowitz, Charles J.; Schuetrumpf, Bastian

    2016-03-01

    Complex and exotic nuclear geometries collectively referred to as ``nuclear pasta'' are expected to naturally exist in the crust of neutron stars and in supernovae matter. Using a set of self-consistent microscopic nuclear energy density functionals we present the first results of large scale quantum simulations of pasta phases at baryon densities 0 . 03 < ρ < 0 . 10 fm-3, proton fractions 0 . 05 simulations, in particular, allow us to also study the role and impact of the nuclear symmetry energy on these pasta configurations. This work is supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  10. Spectral calculation through outflows around compact objects and its hydrodynamic simulation

    NASA Astrophysics Data System (ADS)

    Yoshida, Tessei; Ebisawa, Ken; Tsujimoto, Masahiro; Ohsuga, Ken; Nakagawa, Yujin; Nomura, Mariko

    Compact objects such as black holes and neutron starts are shining by converting the gravitational energy via mass accretion. Recent theoretical studies predict that outflows tend to accompany the mass accretion process and affect X-ray spectra. In fact, ``blue-shifted'' metal absorption lines have been observed from active galactic nuclei and X-ray binaries, indicating that the absorbers are moving toward us, namely the outflows do exist. In order to constrain physical conditions and geometries around the compact objects, we need to compare the observed X-ray spectra and theoretically expected signatures caused by the outflows. For the observational side, we will use the micro calorimeter with the unprecedented spectral resolution of E/DeltaE˜1000 on-board Astro-H (in 2015 launch), which is the ONLY detector that can observe the detailed line profiles containing information of the outflows. The radiation-hydrodynamic simulation is needed to interpret the Astro-H spectra. We construct the spectral model by the following two theoretical steps: We first determine the density and velocity profiles of the outflows around the compact object by a hydrodynamic simulation. We then calculate X-ray spectra through such outflows, by using the spectral synthesis code ``Cloudy''. We present the results of the simulated profiles and the calculated spectra.

  11. The spiral-compact galaxy pair AM 2208-251: Computer simulations versus observations

    NASA Technical Reports Server (NTRS)

    Klaric, Mario; Byrd, Gene G.

    1990-01-01

    The system AM2208-251 is a roughly edge-on spiral extending east-west with a smaller round compact E system about 60 arcsec east of the spiral nucleus along the major axis of the spiral. Bertola, Huchtmeier, and Zeilinger (1990) have presented optical spectroscopic as well as single dish 21 cm observations of this system. Their spectroscopic data show, via emission lines lambda lambda 3727-29A, a rising rotation curve near the nucleus. These spectroscopic observations may indicate a tidal interaction in the system. In order to learn more about such pairs, the authors simulated the interaction using the computer model developed by Miller (1976 a,b, 1978) and modified by the authors (Byrd 1986, 1987, 1988). To do the simulation they need an idea of the mutual orbits of the two galaxies. Their computer model is a two-dimensional polar N-body program. It consists of a self-gravitating disk of particles, within an inert axially symmetric stabilizing halo potential. The particles are distributed in a 24(radial) by 36(azimuthal) polar grid. Self consistent calculations can be done only within the grid area. The disk is modeled with a finite Mestel disk, where all the particles initially move in circular orbits with constant tangential velocities (Mestel 1963), resulting in a flat rotation curve. The gas particles in the spiral's disk, which make up 30 percent of its mass, collide in the following manner. The number of particles in each bin of the polar grid is counted every time step. If it is greater than a given critical density, all the particles in the bin collide, obtaining in the result the same velocities, equal to the average for the bin. This process produces clumps of gas particles-the star formation sites. The authors suppress the collision in the inner part of the disk (within the circle r = 6) to represent the hole seen in the gas in the nuclear bulge of spirals. They thus avoid spurious effects due to collisions in that region. They also varied the size of

  12. The spiral-compact galaxy pair AM 2208-251: Computer simulations versus observations

    NASA Astrophysics Data System (ADS)

    Klaric, Mario; Byrd, Gene G.

    1990-11-01

    The system AM2208-251 is a roughly edge-on spiral extending east-west with a smaller round compact E system about 60 arcsec east of the spiral nucleus along the major axis of the spiral. Bertola, Huchtmeier, and Zeilinger (1990) have presented optical spectroscopic as well as single dish 21 cm observations of this system. Their spectroscopic data show, via emission lines lambda lambda 3727-29A, a rising rotation curve near the nucleus. These spectroscopic observations may indicate a tidal interaction in the system. In order to learn more about such pairs, the authors simulated the interaction using the computer model developed by Miller (1976 a,b, 1978) and modified by the authors (Byrd 1986, 1987, 1988). To do the simulation they need an idea of the mutual orbits of the two galaxies. Their computer model is a two-dimensional polar N-body program. It consists of a self-gravitating disk of particles, within an inert axially symmetric stabilizing halo potential. The particles are distributed in a 24(radial) by 36(azimuthal) polar grid. Self consistent calculations can be done only within the grid area. The disk is modeled with a finite Mestel disk, where all the particles initially move in circular orbits with constant tangential velocities (Mestel 1963), resulting in a flat rotation curve. The gas particles in the spiral's disk, which make up 30 percent of its mass, collide in the following manner. The number of particles in each bin of the polar grid is counted every time step. If it is greater than a given critical density, all the particles in the bin collide, obtaining in the result the same velocities, equal to the average for the bin. This process produces clumps of gas particles-the star formation sites. The authors suppress the collision in the inner part of the disk (within the circle r = 6) to represent the hole seen in the gas in the nuclear bulge of spirals. They thus avoid spurious effects due to collisions in that region. They also varied the size of

  13. Modeling and Simulation of Nuclear Fuel Materials

    SciTech Connect

    Devanathan, Ram; Van Brutzel, Laurent; Tikare, Veena; Bartel, Timothy; Besmann, Theodore M; Stan, Marius; Van Uffelen, Paul

    2010-01-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios and small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  14. Modeling and Simulation of Nuclear Fuel Materials

    SciTech Connect

    Devanathan, Ramaswami; Van Brutzel, Laurent; Chartier, Alan; Gueneau, Christine; Mattsson, Ann E.; Tikare, Veena; Bartel, Timothy; Besmann, T. M.; Stan, Marius; Van Uffelen, Paul

    2010-10-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios, and the small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  15. Mechanism of Wiggly Compaction Band Formation in High-porosity Sandstone: Field Observation, Microscopic Analysis and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Liu, C.; Pollard, D. D.

    2014-12-01

    Field data and microscopic analysis are combined with numerical simulation to investigate the mechanism of wiggly compaction band formation in the high-porosity aeolian Aztec sandstone, Valley of Fire, Nevada. Field data show that the segments of wiggly compaction bands have similar orientations to preexisting shear-enhanced compaction bands, H1 and H2. The wiggly bands are inferred to propagate and periodically switch orientations between H1 and H2. The direction of greatest compression (σ3) is interpreted as perpendicular to the overall strike of wiggly compaction bands, and the band segments that are perpendicular to σ3 are pure compaction bands. Analysis of micropores shows that pure compaction bands have the greatest porosity, and may have a different failure mechanism. In discrete element modelling, a particle is used to represent a pore structure surrounded by several grains. Similar to actual pore structure, the breakable particle is compacted when the resultant force acting on the particle exceeds the yielding cap determined by the failure force (Ff) and aspect ratio of the cap ellipse (k). The discrete element model, built up of many breakable particles, is compressed to simulate the formation of compaction bands. The direction of propagation of compacted zones is determined by the cap aspect ratio (k). When k=0.5, compacted zones tend to propagate perpendicular to σ3, which corresponds to pure compaction bands. When k=2, two 45-degree directions are the predominant directions of compacted zones. The local stress state around a band tip is changed when it propagates, and the segment switches to the other direction when it reaches a critical length. As a result the wiggly compaction band takes on a wiggly pattern.

  16. ELECTROMAGNETIC AND THERMAL SIMULATIONS FOR THE SWITCH REGION OF A COMPACT PROTON ACCELERATOR

    SciTech Connect

    Wang, L; Caporaso, G J; Sullivan, J S

    2007-06-15

    A compact proton accelerator for medical applications is being developed at Lawrence Livermore National Laboratory. The accelerator architecture is based on the dielectric wall accelerator (DWA) concept. One critical area to consider is the switch region. Electric field simulations and thermal calculations of the switch area were performed to help determine the operating limits of rmed SiC switches. Different geometries were considered for the field simulation including the shape of the thin Indium solder meniscus between the electrodes and SiC. Electric field simulations were also utilized to demonstrate how the field stress could be reduced. Both transient and steady steady-state thermal simulations were analyzed to find the average power capability of the switches.

  17. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    SciTech Connect

    Emrich, William J. Jr.

    2008-01-21

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  18. Numerical simulation of solid-state sintering of metal powder compact dominated by grain boundary diffusion

    NASA Astrophysics Data System (ADS)

    Zhang, Rui

    The research effort is oriented towards the modeling of metal powder sintering to accurately predict the densification and distortion of a sintered part, which is mainly due to the differential shrinkage of a green compact. This research focuses on the study of the simulation of the sintering process that is dominated by grain boundary diffusion, which is recognized as one of the dominating sintering mechanisms. Specifically, a viscoelasticity model that accounts for the microstructural grain growth has been developed to simulate the thermal induced creep deformation in sintering. Sintering stress is treated as an equivalent hydrostatic pressure that links the microscale evolution to the macroscale deformation. To support that linkage, a grain boundary counting procedure has been modified to quantify the grain size distribution. The material resistance of viscous flow is included in the model as a thermally activated process using an Arrhenius-type temperature relation to represent the apparent viscosity. The finite element method is used to implement the simulation. Results of the compaction simulation such as shape change, residual stress and density distribution data are transferred into the sintering simulation as initial conditions. Since no extra heat source is generated during sintering, the thermal analysis is independent of the creep analysis so that an uncoupled heat transfer analysis yields time-dependent temperature fields that are used to drive the sintering simulation. The simulation is performed in ABAQUS, and an in-house FEM code (SinSolver) is used as a supporting tool and verification. Stainless steel 316L is chosen in this research due to its wide range of industrial applications and representative sintering mechanisms. Comparison and analysis on the simulation versus the dilatometry experiments of shrinkage are consistently close and improve the understanding of when and how the sintering mechanisms act in a sintering cycle.

  19. Fully dynamical simulation of central nuclear collisions.

    PubMed

    van der Schee, Wilke; Romatschke, Paul; Pratt, Scott

    2013-11-27

    We present a fully dynamical simulation of central nuclear collisions around midrapidity at LHC energies. Unlike previous treatments, we simulate all phases of the collision, including the equilibration of the system. For the simulation, we use numerical relativity solutions to anti-de Sitter space/conformal field theory for the preequilibrium stage, viscous hydrodynamics for the plasma equilibrium stage, and kinetic theory for the low-density hadronic stage. Our preequilibrium stage provides initial conditions for hydrodynamics, resulting in sizable radial flow. The resulting light particle spectra reproduce the measurements from the ALICE experiment at all transverse momenta. PMID:24329444

  20. Diagenetic compaction of simulated anhydrite fault gouge under static conditions and implications for fault healing behaviour

    NASA Astrophysics Data System (ADS)

    Pluymakers, A.; Peach, C. J.; Spiers, C. J.

    2013-12-01

    For geological storage of CO2 in depleted oil and gas reservoirs to be effective, the stored gas must remain isolated from the atmosphere for thousands of years. Faults that cut the reservoir/seal system are considered one of the most likely leakage pathways, especially if fault reactivation leads to fault dilation. However, when fault movement ceases, newly formed fault gouge will heal as a function of time. To estimate the time scale on which such healing occurs, an understanding of the deformation mechanisms that control fault (gouge) compaction is needed. Anhydrite is a common caprock in many oil and gas fields around the world and in the Netherlands in particular, where anhydrite-capped reservoirs present several options for CO2 storage. For this reason, we performed uniaxial compaction experiments on simulated anhydrite fault gouge to investigate the deformation and healing processes that operate under simulated post-slip conditions, i.e. static conditions. The gouge was prepared by crushing and sieving nearly pure anhydrite (>95wt%) derived from exploration boreholes in the north of the Netherlands. Constant stress (5-12 MPa) and stress stepping experiments (5/7.5/10 MPa) were conducted at 80°C on fault gouge samples of different initial grain size (20-500μm), under both wet and dry conditions. We also performed preliminary experiments to determine the effect of CO2 on the healing behaviour of anhydrite gouge. Dry samples showed little or no compaction creep, whereas wet samples (i.e. samples flooded with saturated CaSO4 solution) showed compaction at easily measureable rates. In the case of wet samples, our mechanical data and microstructural observations showed that, for fine grain sizes and low stresses, the rate of gouge compaction is controlled by pressure solution under diffusion-control. With increasing grain size and stress, however, fluid-assisted subcritical microcracking becomes the dominant deformation mechanism. Pressurizing the pore fluid

  1. Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder

    SciTech Connect

    Jonsen, P.; Haeggblad, H.-A.

    2007-05-17

    In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments.

  2. Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder

    NASA Astrophysics Data System (ADS)

    Jonsén, P.; Häggblad, H.-A.˚.

    2007-05-01

    In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments.

  3. Monte Carlo simulations in Nuclear Medicine

    SciTech Connect

    Loudos, George K.

    2007-11-26

    Molecular imaging technologies provide unique abilities to localise signs of disease before symptoms appear, assist in drug testing, optimize and personalize therapy, and assess the efficacy of treatment regimes for different types of cancer. Monte Carlo simulation packages are used as an important tool for the optimal design of detector systems. In addition they have demonstrated potential to improve image quality and acquisition protocols. Many general purpose (MCNP, Geant4, etc) or dedicated codes (SimSET etc) have been developed aiming to provide accurate and fast results. Special emphasis will be given to GATE toolkit. The GATE code currently under development by the OpenGATE collaboration is the most accurate and promising code for performing realistic simulations. The purpose of this article is to introduce the non expert reader to the current status of MC simulations in nuclear medicine and briefly provide examples of current simulated systems, and present future challenges that include simulation of clinical studies and dosimetry applications.

  4. Monte Carlo simulations in Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    Molecular imaging technologies provide unique abilities to localise signs of disease before symptoms appear, assist in drug testing, optimize and personalize therapy, and assess the efficacy of treatment regimes for different types of cancer. Monte Carlo simulation packages are used as an important tool for the optimal design of detector systems. In addition they have demonstrated potential to improve image quality and acquisition protocols. Many general purpose (MCNP, Geant4, etc) or dedicated codes (SimSET etc) have been developed aiming to provide accurate and fast results. Special emphasis will be given to GATE toolkit. The GATE code currently under development by the OpenGATE collaboration is the most accurate and promising code for performing realistic simulations. The purpose of this article is to introduce the non expert reader to the current status of MC simulations in nuclear medicine and briefly provide examples of current simulated systems, and present future challenges that include simulation of clinical studies and dosimetry applications.

  5. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2008-01-01

    To support the eventual development of a nuclear thermal rocket engine, a state-of-the-art experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  6. A compact breed and burn fast reactor using spent nuclear fuel blanket

    SciTech Connect

    Hartanto, D.; Kim, Y.

    2012-07-01

    A long-life breed-and-burn (B and B) type fast reactor has been investigated from the neutronics points of view. The B and B reactor has the capability to breed the fissile fuels and use the bred fuel in situ in the same reactor. In this work, feasibility of a compact sodium-cooled B and B fast reactor using spent nuclear fuel as blanket material has been studied. In order to derive a compact B and B fast reactor, a tight fuel lattice and relatively large fuel pin are used to achieve high fuel volume fraction. The core is initially loaded with an LEU (Low Enriched Uranium) fuel and a metallic fuel is used in the core. The Monte Carlo depletion has been performed for the core to see the long-term behavior of the B and B reactor. Several important parameters such as reactivity coefficients, delayed neutron fraction, prompt neutron generation lifetime, fission power, and fast neutron fluence, are analyzed through Monte Carlo reactor analysis. Evolution of the core fuel composition is also analyzed as a function of burnup. Although the long-life small B and B fast reactor is found to be feasible from the neutronics point of view, it is characterized to have several challenging technical issues including a very high fast neutron fluence of the structural materials. (authors)

  7. The characterization of human compact bone structure changes by low-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Ni, Qingwen; Derwin King, J.; Wang, Xiaodu

    2004-01-01

    A technique of low-field pulsed proton nuclear magnetic resonance (NMR) spin relaxation is described for characterizing the porosity and (effective) pore size distribution in vitro in human compact bone. The technique involves spin spin relaxation measurement and inversion spin spin relaxation spectral analysis methods. The spin spin relaxation decay curve is converted into a T2 distribution spectrum by a sum of single exponential decays. The advantages of using low-field NMR for the spin spin relaxation technique are illustrated. The results obtained from NMR methodology are compared with the results obtained from currently available but destructive histomorphometry and mercury porosimetry methods. The NMR porosities correlate well with the results obtained from the histomorphometry measurements of eight samples from donors of ages 21 89 years. The pore size distributions from T2 relaxation measurements are similar to the distributions obtained from the mercury porosimetry and histomorphometry measurements. This indicates that the age-related porosity and pore size changes in human compact bone can be detected using the low-field NMR technique.

  8. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    NASA Astrophysics Data System (ADS)

    Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  9. Thermodynamic instabilities in warm and dense asymmetric nuclear matter and in compact stars

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Gervino, G.; Pigato, D.

    2016-01-01

    We investigate the possible thermodynamic instability in a warm and dense nuclear medium where a phase transition from nucleonic matter to resonance-dominated Δ-matter can take place. Such a phase transition is characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the isospin concentration) in asymmetric nuclear matter. Similarly to the liquid-gas phase transition, the nucleonic and the Δ-matter phase have a different isospin density in the mixed phase. In the liquid-gas phase transition, the process of producing a larger neutron excess in the gas phase is referred to as isospin fractionation. A similar effects can occur in the nucleon- Δmatter phase transition due essentially to a Δ- excess in the Δ-matter phase in asymmetric nuclear matter. In this context we also discuss the relevance of Δ-isobar degrees of freedom in the bulk properties and in the maximum mass of compact stars.

  10. Simulation of a marine nuclear reactor

    SciTech Connect

    Kusunoki, Tsuyoshi; Kyouya, Masahiko; Kobayashi, Hideo; Ochiai, Masaaki

    1995-02-01

    A Nuclear-powered ship Engineering Simulation SYstem (NESSY) has been developed by the Japan Atomic Energy Research Institute as an advanced design tool for research and development of future marine reactors. A marine reactor must respond to changing loads and to the ship`s motions because of the ship`s maneuvering and its presence in a marine environment. The NESSY has combined programs for the reactor plant behavior calculations and the ship`s motion calculations. Thus, it can simulate reactor power fluctuations caused by changing loads and the ship`s motions. It can also simulate the behavior of water in the pressurizer and steam generators. This water sloshes in response to the ship`s motions. The performance of NESSY has been verified by comparing the simulation calculations with the measured data obtained by experiments performed using the nuclear ship Mutsu. The effects of changing loads and the ship`s motions on the reactor behavior can be accurately simulated by NESSY.

  11. Simulation and evaluation of nuclear reaction spectra

    NASA Astrophysics Data System (ADS)

    Vizkelethy, G.

    1990-01-01

    A RUMP-like-[1] computer code was written for PCs in order to simulate and evaluate nuclear reaction spectra. The code was written in Turbo Pascal. Any particle-target combination can be used; the stopping power calculation based on the ZBL algorithm [2] and the cross sections are taken from experimental data. The effects of straggling and geometrical spread are included in the simulation. Examples are given for the 16O(d,P) 17O, 18O(P,α) 15N, 16O( 3He,α) 15O and 16O(α,α) 16O reactions and for ERDA measurements.

  12. AGN POPULATION IN HICKSON COMPACT GROUPS. I. DATA AND NUCLEAR ACTIVITY CLASSIFICATION

    SciTech Connect

    MartInez, M. A.; Del Olmo, A.; Perea, J.; Coziol, R. E-mail: chony@iaa.es E-mail: rcoziol@astro.ugto.mx

    2010-03-15

    We have conducted a new spectroscopic survey to characterize the nature of nuclear activity in Hickson compact group (HCG) galaxies and establish its frequency. We have obtained new intermediate-resolution optical spectroscopy for 200 member galaxies and corrected for underlying stellar population contamination using galaxy templates. Spectra for 11 additional galaxies have been acquired from the ESO and 6dF public archives, and emission-line ratios have been taken from the literature for 59 more galaxies. Here we present the results of our classification of the nuclear activity for 270 member galaxies, which belong to a well-defined sample of 64 HCGs. We found a large fraction of galaxies, 63%, with emission lines. Using standard diagnostic diagrams, 45% of the emission-line galaxies were classified as pure active galactic nuclei (AGNs), 23% as Transition Objects (TOs), and 32% as star-forming nuclei (SFNs). In the HCGs, the AGN activity appears as the most frequent activity type. Adopting the interpretation that in TOs a low-luminosity AGN coexists with circumnuclear star formation, the fraction of galaxies with an AGN could rise to 42% of the whole sample. The low frequency (20%) of SFNs confirms that there is no star formation enhancement in HCGs. After extinction correction, we found a median AGN H{alpha} luminosity of 7.1 x 10{sup 39} erg s{sup -1}, which implies that AGNs in HCG have a characteristically low luminosity. This result added to the fact that there is an almost complete absence of broad-line AGNs in compact groups (CGs) as found by MartInez et al. and corroborated in this study for HCGs, is consistent with very few gas left in these galaxies. In general, therefore, what may characterize the level of activity in CGs is a severe deficiency of gas.

  13. AGN Population in Hickson Compact Groups. I. Data and Nuclear Activity Classification

    NASA Astrophysics Data System (ADS)

    Martínez, M. A.; Del Olmo, A.; Coziol, R.; Perea, J.

    2010-03-01

    We have conducted a new spectroscopic survey to characterize the nature of nuclear activity in Hickson compact group (HCG) galaxies and establish its frequency. We have obtained new intermediate-resolution optical spectroscopy for 200 member galaxies and corrected for underlying stellar population contamination using galaxy templates. Spectra for 11 additional galaxies have been acquired from the ESO and 6dF public archives, and emission-line ratios have been taken from the literature for 59 more galaxies. Here we present the results of our classification of the nuclear activity for 270 member galaxies, which belong to a well-defined sample of 64 HCGs. We found a large fraction of galaxies, 63%, with emission lines. Using standard diagnostic diagrams, 45% of the emission-line galaxies were classified as pure active galactic nuclei (AGNs), 23% as Transition Objects (TOs), and 32% as star-forming nuclei (SFNs). In the HCGs, the AGN activity appears as the most frequent activity type. Adopting the interpretation that in TOs a low-luminosity AGN coexists with circumnuclear star formation, the fraction of galaxies with an AGN could rise to 42% of the whole sample. The low frequency (20%) of SFNs confirms that there is no star formation enhancement in HCGs. After extinction correction, we found a median AGN Hα luminosity of 7.1 × 1039 erg s-1, which implies that AGNs in HCG have a characteristically low luminosity. This result added to the fact that there is an almost complete absence of broad-line AGNs in compact groups (CGs) as found by Martínez et al. and corroborated in this study for HCGs, is consistent with very few gas left in these galaxies. In general, therefore, what may characterize the level of activity in CGs is a severe deficiency of gas.

  14. Effects of compaction and simulated root channels in the subsoil on root development, water uptake and growth of radiata pine.

    PubMed

    Nambiar, E K; Sands, R

    1992-04-01

    Effects of subsoil compaction and simulated root channels (perforations) through the compacted layer on root growth, water uptake, foliar nutrient concentration and growth of radiata pine (Pinus radiata D. Don) were studied in a field experiment where a range of treatments were applied in reconstituted soil profiles. Subsoil compaction adversely affected root penetration in deeper parts of the soil and consequently caused greater water stress in trees. However, the effect of compaction was largely overcome when the subsoil was perforated to render 0.2% of the soil volume into vertical channels. Roots showed a remarkable ability to reach the points of low penetration strength and to travel through them to deeper parts of the profile. Perforations through compacted soil layers at a relatively low frequency may be a practical solution to allow root development into deeper parts of the soil and allow greater soil water exploration by roots. PMID:14969986

  15. Reservoir simulation in a North Sea reservoir experiencing significant compaction drive

    SciTech Connect

    Cook, C.C.; Jewell, S.

    1995-12-31

    The Valhall field in the Norwegian North Sea is a high porosity chalk reservoir undergoing primary pressure depletion. Over the last ten years there have been a number of computer modeling studies of the field which have all assumed an original oil-in-place of approximately 2,000 MMSTB (318.0{times}10{sup 6}m{sup 3}) to the present due to the addition of wells and the optimization of completion techniques. However, the single most important and unique feature influencing Valhall long term production performance is reservoir rock compaction. This paper describes the mathematical model used to simulate reservoir performance in a compacting reservoir with specific discussion regarding the proportion of oil produced by each physical recovery process. An understanding of the recovery mechanisms and their relative importance is critical for the successful management of the field. This paper also presents an alternative method for evaluating the various recovery processes using a simple solution to the material balance equation. This is used to substantiate the magnitude of the various recovery mechanisms identified in the simulation model.

  16. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    SciTech Connect

    Bartel, N.; Chen, M.; Utgikar, V. P.; Sun, X.; Kim, I. -H.; Christensen, R.; Sabharwall, P.

    2015-04-04

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimum combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.

  17. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE PAGESBeta

    Bartel, N.; Chen, M.; Utgikar, V. P.; Sun, X.; Kim, I. -H.; Christensen, R.; Sabharwall, P.

    2015-04-04

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less

  18. Variations of the ISM Compactness Across the Main Sequence of Star Forming Galaxies: Observations and Simulations

    NASA Astrophysics Data System (ADS)

    Martínez-Galarza, J. R.; Smith, H. A.; Lanz, L.; Hayward, Christopher C.; Zezas, A.; Rosenthal, L.; Weiner, A.; Hung, C.; Ashby, M. L. N.; Groves, B.

    2016-01-01

    The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the form {{SFR}}\\propto {M}*α , usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of debate, and no consensus has been reached regarding the fundamental difference between members of the sequence and its outliers. Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present Chiburst, a Markov Chain Monte Carlo spectral energy distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, SFRs, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate, and the compactness parameter { C }, that parametrizes this geometry and hence the evolution of dust temperature ({T}{{dust}}) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of luminous infrared galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.

  19. Sea level static calibration of a compact multimission aircraft propulsion simulator with inlet flow distortion

    NASA Technical Reports Server (NTRS)

    Won, Mark J.

    1990-01-01

    Wind tunnel tests of propulsion-integrated aircraft models have identified inlet flow distortion as a major source of compressor airflow measurement error in turbine-powered propulsion simulators. Consequently, two Compact Multimission Aircraft Propulsion Simulator (CMAPS) units were statically tested at sea level ambient conditions to establish simulator operating performance characteristics and to calibrate the compressor airflow against an accurate bellmouth flowmeter in the presence of inlet flow distortions. The distortions were generated using various-shaped wire mesh screens placed upstream of the compressor. CMAPS operating maps and performance envelopes were obtained for inlet total pressure distortions (ratio of the difference between the maximum and minimum total pressures to the average total pressure) up to 35 percent, and were compared to baseline simulator operating characteristics for a uniform inlet. Deviations from CMAPS baseline performance were attributed to the coupled variation of both compressor inlet-flow distortion and Reynolds number index throughout the simulator operating envelope for each screen configuration. Four independent methods were used to determine CMAPS compressor airflow; direct compressor inlet and discharge measurements, an entering/exiting flow-balance relationships, and a correlation between the mixer pressure and the corrected compressor airflow. Of the four methods, the last yielded the least scatter in the compressor flow coefficient, approximately + or - 3 percent over the range of flow distortions.

  20. SUSEE: A Compact, Lightweight Space Nuclear Power System Using Present Water Reactor Technology

    NASA Astrophysics Data System (ADS)

    Maise, George; Powell, James; Paniagua, John

    2006-01-01

    The SUSEE space reactor system uses existing nuclear fuels and the standard steam cycle to generate electrical and thermal power for a wide range of in-space and surface applications, including manned bases, sub-surface mobile probes to explore thick ice deposits on Mars and the Jovian moons, and mobile rovers. SUSEE cycle efficiency, thermal to electric, ranges from ~20 to 24%, depending on operating parameters. Rejection of waste heat is by a lightweight condensing radiator that can be launched as a compact rolled-up package and deployed into flat panels when appropriate. The 50 centimeter diameter SUSEE reactor can provide power over the range of 10 kW(e) to 1 MW(e) for a period of 10 years. Higher power outputs are possible using slightly larger reactors. System specific weight (reactor, turbine, generator, piping, and radiator is ~3 kg/kW(e). Two SUSEE reactor options are described, based on the existing Zr/O2 cermet and the UH3/ZrH2 TRIGA nuclear fuels.

  1. SUSEE: A Compact, Lightweight Space Nuclear Power System Using Present Water Reactor Technology

    SciTech Connect

    Maise, George; Powell, James; Paniagua, John

    2006-01-20

    The SUSEE space reactor system uses existing nuclear fuels and the standard steam cycle to generate electrical and thermal power for a wide range of in-space and surface applications, including manned bases, sub-surface mobile probes to explore thick ice deposits on Mars and the Jovian moons, and mobile rovers. SUSEE cycle efficiency, thermal to electric, ranges from {approx}20 to 24%, depending on operating parameters. Rejection of waste heat is by a lightweight condensing radiator that can be launched as a compact rolled-up package and deployed into flat panels when appropriate. The 50 centimeter diameter SUSEE reactor can provide power over the range of 10 kW(e) to 1 MW(e) for a period of 10 years. Higher power outputs are possible using slightly larger reactors. System specific weight (reactor, turbine, generator, piping, and radiator) is {approx}3 kg/kW(e). Two SUSEE reactor options are described, based on the existing Zr/O2 cermet and the UH3/ZrH2 TRIGA nuclear fuels.

  2. Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.

    2015-10-01

    An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform

  3. Computer simulation of underwater nuclear events

    SciTech Connect

    Kamegai, M.

    1986-09-01

    This report describes the computer simulation of two underwater nuclear explosions, Operation Wigwam and a modern hypothetical explosion of greater yield. The computer simulations were done in spherical geometry with the LASNEX computer code. Comparison of the LASNEX calculation with Snay's analytical results and the Wigwam measurements shows that agreement in the shock pressure versus range in water is better than 5%. The results of the calculations are also consistent with the cube root scaling law for an underwater blast wave. The time constant of the wave front was determined from the wave profiles taken at several points. The LASNEX time-constant calculation and Snay's theoretical results agree to within 20%. A time-constant-versus-range relation empirically fitted by Snay is valid only within a limited range at low pressures, whereas a time-constant formula based on Sedov's similarity solution holds at very high pressures. This leaves the intermediate pressure range with neither an empirical nor a theoretical formula for the time constant. These one-dimensional simulations demonstrate applicability of the computer code to investigations of this nature, and justify the use of this technique for more complex two-dimensional problems, namely, surface effects on underwater nuclear explosions. 16 refs., 8 figs., 2 tabs.

  4. Simulation of polymer removal from a powder injection molding compact by thermal debinding

    NASA Astrophysics Data System (ADS)

    Lam, Y. C.; Yu, S. C. M.; Tam, K. C.; Shengjie, Ying

    2000-10-01

    Powder injection molding (PIM) is an important net-shape manufacturing process. Thermal debinding is a common methodology for the final removal of residual polymer from a PIM compact prior to sintering. This process is an intricate combination of evaporation, liquid and gas migration, pyrolysis of polymer, and heat transfer in porous media. A better understanding of thermal debinding could lead to optimization of the process to prevent the formation of defects. Simulation of the process based on an integrated mathematical model for mass and heat transfer in porous media is proposed. The mechanisms of mass transport, i.e., liquid flow, gas flow, vapor diffusion, and convection, as well as the phase transitions of polymer, and their interactions, are included in the model. The macroscopic partial differential equations are formulated by volume averaging of the microscopic conservation laws. The basic equations consist of mass conservation and energy conservation and are solved numerically. Polymer residue, pressure, and temperature distributions are predicted. The importance of the various mass transfer mechanisms is evaluated. The effects of key mass transfer parameters on thermal debinding are discussed. It is revealed from the results that the assumed binder front, which is supposed to recede into the powder compact as removal progresses, does not exist. The mass flux of polymer liquid is of the same order of the mass flux of polymer vapor in the gas phase, and the polymer vapor diffusion in the liquid phase is negligible.

  5. Numerical simulations of axisymmetric hydrodynamical Bondi-Hoyle accretion on to a compact object

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Casse, F.

    2015-12-01

    Bondi-Hoyle accretion configurations occur as soon as a gravitating body is immersed in an ambient medium with a supersonic relative velocity. From wind-accreting X-ray binaries to runaway neutron stars, such a regime has been witnessed many times and is believed to account for shock formation, the properties of which can be only marginally derived analytically. In this paper, we present the first results of the numerical characterization of the stationary flow structure of Bondi-Hoyle accretion on to a compact object, from the large-scale accretion radius down to the vicinity of the compact body. For different Mach numbers, we study the associated bow shock. It turns out that those simulations confirm the analytical prediction by Foglizzo & Ruffert concerning the topology of the inner sonic surface with an adiabatic index of 5/3. They also enable us to derive the related mass accretion rates, the position and the temperature of the bow shock, as function of the flow parameters, along with the transverse density and temperature profiles in the wake.

  6. MITEE: A Compact Ultralight Nuclear Thermal Propulsion Engine for Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, J.; Maise, G.; Paniagua, J.

    2001-01-01

    A new approach for a near-term compact, ultralight nuclear thermal propulsion engine, termed MITEE (Miniature Reactor Engine) is described. MITEE enables a wide range of new and unique planetary science missions that are not possible with chemical rockets. With U-235 nuclear fuel and hydrogen propellant the baseline MITEE engine achieves a specific impulse of approximately 1000 seconds, a thrust of 28,000 newtons, and a total mass of only 140 kilograms, including reactor, controls, and turbo-pump. Using higher performance nuclear fuels like U-233, engine mass can be reduced to as little as 80 kg. Using MITEE, V additions of 20 km/s for missions to outer planets are possible compared to only 10 km/s for H2/O2 engines. The much greater V with MITEE enables much faster trips to the outer planets, e.g., two years to Jupiter, three years to Saturn, and five years to Pluto, without needing multiple planetary gravity assists. Moreover, MITEE can utilize in-situ resources to further extend mission V. One example of a very attractive, unique mission enabled by MITEE is the exploration of a possible subsurface ocean on Europa and the return of samples to Earth. Using MITEE, a spacecraft would land on Europa after a two-year trip from Earth orbit and deploy a small nuclear heated probe that would melt down through its ice sheet. The probe would then convert to a submersible and travel through the ocean collecting samples. After a few months, the probe would melt its way back up to the MITEE lander, which would have replenished its hydrogen propellant by melting and electrolyzing Europa surface ice. The spacecraft would then return to Earth. Total mission time is only five years, starting from departure from Earth orbit. Other unique missions include Neptune and Pluto orbiter, and even a Pluto sample return. MITEE uses the cermet Tungsten-UO2 fuel developed in the 1960's for the 710 reactor program. The W-UO2 fuel has demonstrated capability to operate in 3000 K hydrogen for

  7. Computer simulation of underwater nuclear effects

    SciTech Connect

    Kamegai, M.

    1987-01-30

    We investigated underwater nuclear effects by computer simulations. First, we computed a long distance wave propagation in water by the 1-D LASNEX code by modeling the energy source and the underwater environment. The pressure-distance data were calculated for two quite different yields; pressures range from 300 GPa to 15 MPa. They were found to be in good agreement with Snay's theoretical points and the Wigwam measurements. The computed data also agree with the similarity solution at high pressures and the empirical equation at low pressures. After completion of the 1-D study, we investigated a free surface effect commonly referred to as irregular surface rarefaction by applying two hydrocodes (LASNEX and ALE), linked at the appropriate time. Using these codes, we simulated near-surface explosions for three depths of burst (3 m, 21 m and 66.5 m), which represent the strong, intermediate, and weak surface shocks, respectively.

  8. Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma

    SciTech Connect

    Liu, Wei; Hsu, Scott; Li, Hui

    2009-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.

  9. Monte Carlo simulations of compact gamma cameras based on avalanche photodiodes.

    PubMed

    Després, Philippe; Funk, Tobias; Shah, Kanai S; Hasegawa, Bruce H

    2007-06-01

    Avalanche photodiodes (APDs), and in particular position-sensitive avalanche photodiodes (PSAPDs), are an attractive alternative to photomultiplier tubes (PMTs) for reading out scintillators for PET and SPECT. These solid-state devices offer high gain and quantum efficiency, and can potentially lead to more compact and robust imaging systems with improved spatial and energy resolution. In order to evaluate this performance improvement, we have conducted Monte Carlo simulations of gamma cameras based on avalanche photodiodes. Specifically, we investigated the relative merit of discrete and PSAPDs in a simple continuous crystal gamma camera. The simulated camera was composed of either a 4 x 4 array of four channels 8 x 8 mm2 PSAPDs or an 8 x 8 array of 4 x 4 mm2 discrete APDs. These configurations, requiring 64 channels readout each, were used to read the scintillation light from a 6 mm thick continuous CsI:Tl crystal covering the entire 3.6 x 3.6 cm2 photodiode array. The simulations, conducted with GEANT4, accounted for the optical properties of the materials, the noise characteristics of the photodiodes and the nonlinear charge division in PSAPDs. The performance of the simulated camera was evaluated in terms of spatial resolution, energy resolution and spatial uniformity at 99mTc (140 keV) and 125I ( approximately 30 keV) energies. Intrinsic spatial resolutions of 1.0 and 0.9 mm were obtained for the APD- and PSAPD-based cameras respectively for 99mTc, and corresponding values of 1.2 and 1.3 mm FWHM for 125I. The simulations yielded maximal energy resolutions of 7% and 23% for 99mTc and 125I, respectively. PSAPDs also provided better spatial uniformity than APDs in the simple system studied. These results suggest that APDs constitute an attractive technology especially suitable to build compact, small field of view gamma cameras dedicated, for example, to small animal or organ imaging. PMID:17505089

  10. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    NASA Astrophysics Data System (ADS)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  11. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology

    PubMed Central

    Schreiber, Eric C.; Chang, Sha X.

    2012-01-01

    Purpose: Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Methods: Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 μm at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Results: Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy/min/A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 μm. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 μm. Conclusions: Monte Carlo simulations demonstrate

  12. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology

    SciTech Connect

    Schreiber, Eric C.; Chang, Sha X.

    2012-08-15

    Purpose: Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Methods: Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 {mu}m at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Results: Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy/min/A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 {mu}m. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 {mu}m. Conclusions: Monte Carlo simulations

  13. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    NASA Astrophysics Data System (ADS)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  14. An investigation of the physico-mechanical properties of pharmaceutical compounds by compaction simulator and nano-indentation

    NASA Astrophysics Data System (ADS)

    Bordawekar, Mangesh

    In early development, pharmaceutical formulation scientists are often faced with challenges of developing robust and scalable formulations in extremely stringent timelines based on limited API quantities. Hence, tablet formulation development would benefit significantly from tools that enable predictive analysis based on limited quantities of API to enable selection of excipients with appropriate physico-mechanical properties that would result in robust and scalable formulations. With the recent technological advances, especially in sensor technologies, tools such as the compaction simulator, and instrumented nanoindentation offer hitherto unavailable means of assessing material properties with limited quantities. The goal of this work was to evaluate the physico-mechanical properties of selected pharmaceutical excipients and active pharmaceutical ingredients using a macro-scale analysis technique (compaction simulator), and a micro-scale analysis technique (nanoindentation tester) and compare the results obtained from these techniques in order to determine whether a rank order correlation exists between the two. Excipients representing diverse physic-mechanical properties, and a group of APIs were selected for the study. For the compaction simulator studies, tablets were uniaxially compressed using a flat faced 11.28mm round tooling on the STYLCAM® 200R compaction simulator, to a target final porosity at two different cam speeds (5 rpm and 25 rpm). The force displacement profiles, plastic, elastic, and total compression energies, plasticity index, energy density and the Heckel plots were determined for each compact. These compacts were further analyzed with a Berkovich geometry indenter. The plasticity index, hardness, elastic modulus, as well as creep and relaxation were determined from the force-displacement profiles. The nature of force-displacement curves was studied to differentiate compounds based on predominant mechanisms of deformation. Compaction

  15. Electric heater for nuclear fuel rod simulators

    DOEpatents

    McCulloch, Reginald W.; Morgan, Jr., Chester S.; Dial, Ralph E.

    1982-01-01

    The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.

  16. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas L.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic- metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  17. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  18. Aerosol simulation including chemical and nuclear reactions

    SciTech Connect

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs.

  19. Mechanism of formation of wiggly compaction bands in porous sandstone: 2. Numerical simulation using discrete element method

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Pollard, David D.; Gu, Kai; Shi, Bin

    2015-12-01

    Wiggly compaction bands in porous aeolian sandstone vary from chevron shape to wavy shape to nearly straight. In some outcrops these variations occur along a single band. A bonded close-packed discrete element model is used to investigate what mechanical properties control the formation of wiggly compaction bands (CBs). To simulate the volumetric yielding failure of porous sandstone, a discrete element shrinks when the force state of one of its bonds reaches the yielding cap defined by the failure force and the aspect ratio (k) of the yielding ellipse. A Matlab code "MatDEM3D" has been developed on the basis of this enhanced discrete element method. Mechanical parameters of elements are chosen according to the elastic properties and the strengths of porous sandstone. In numerical simulations, the failure angle between the band segment and maximum principle stress decreases from 90° to approximately 45° as k increases from 0.5 to 2, and compaction bands vary from straight to chevron shape. With increasing strain, subsequent compaction occurs inside or beside compacted elements, which leads to further compaction and thickening of bands. The simulations indicate that a greater yielding stress promotes chevron CBs, and a greater cement strength promotes straight CBs. Combined with the microscopic analysis introduced in the companion paper, we conclude that the shape of wiggly CBs is controlled by the mechanical properties of sandstone, including the aspect ratio of the yielding ellipse, the critical yielding stress, and the cement strength, which are determined primarily by petrophysical attributes, e.g., grain sorting, porosity, and cementation.

  20. Multi-physics nuclear reactor simulator for advanced nuclear engineering education

    SciTech Connect

    Yamamoto, A.

    2012-07-01

    Multi-physics nuclear reactor simulator, which aims to utilize for advanced nuclear engineering education, is being introduced to Nagoya Univ.. The simulator consists of the 'macroscopic' physics simulator and the 'microscopic' physics simulator. The former performs real time simulation of a whole nuclear power plant. The latter is responsible to more detail numerical simulations based on the sophisticated and precise numerical models, while taking into account the plant conditions obtained in the macroscopic physics simulator. Steady-state and kinetics core analyses, fuel mechanical analysis, fluid dynamics analysis, and sub-channel analysis can be carried out in the microscopic physics simulator. Simulation calculations are carried out through dedicated graphical user interface and the simulation results, i.e., spatial and temporal behaviors of major plant parameters are graphically shown. The simulator will provide a bridge between the 'theories' studied with textbooks and the 'physical behaviors' of actual nuclear power plants. (authors)

  1. Molecular dynamics simulation of the acidic compact state of apomyoglobin from yellowfin tuna.

    PubMed

    Bismuto, Ettore; Di Maggio, Emiddio; Pleus, Stefan; Sikor, Martin; Röcker, Carlheinz; Nienhaus, G Ulrich; Lamb, Don C

    2009-02-01

    A molecular model of the acidic compact state of apomyoglobin (A-state) from yellowfin tuna was obtained using molecular dynamics simulations (MD) by calculating multiple trajectories. To cause partial unfolding within a reasonable amount of CPU time, both an acidic environment (pH 3 and 0.15M NaCl) and a temperature jump to 500 K were needed. Twenty-five acidic structures of apomyoglobin were generated by MD, 10 of them can be clustered by RMSD in an average structure having a common hydrophobic core as was reported for acidic sperm whale apomyoglobin, with shortened helices A,G,E, and H (the helix A appears to be translated along the sequence). Prolonging the MD runs at 500 K did not cause further substantial unfolding, suggesting that the ensemble of generated structures is indicative of a region of the conformational space accessible to the apoprotein at acidic pH corresponding to a local energy minimum. The comparison of experimentally determined values of specific spectroscopic properties of the apomyoglobin in acidic salt conditions with the expected ones on the basis of the MD generated structures shows a reasonable agreement considering the characteristic uncertainties of both experimental and simulation techniques. We used frequency domain fluorometry, acrylamide fluorescence quenching, and fluorescence correlation spectroscopy together with far UV circular dichroism to estimate the helical content, the Stern-Volmer quenching constant and the radius of gyration of the protein. Tuna apomyoglobin is a single tryptophan protein and thus, interpretation of its intrinsic fluorescence is simpler than for other proteins. The high sensitivity of the applied fluorescence techniques enabled experiments to be performed under very dilute conditions, that is, at concentrations of subnanomolar for the FCS measurements and 6 muM for the other fluorescence measurements. As high concentrations of proteins can strongly affect the association equilibrium among partially

  2. Simulating Compact Elliptical Galaxy Formation by Tidal Stripping for Comparison to the RESOLVE Survey

    NASA Astrophysics Data System (ADS)

    Ray, Christine; Snyder, Elaine M.; Kannappan, Sheila; Sinha, Manodeep; RESOLVE Team

    2016-01-01

    Observations of compact elliptical galaxies (cEs) have uncovered abnormally high velocity dispersions and surface brightnesses for objects of their mass. These properties indicate that they may be the tidally stripped remnants of larger disk galaxies. We test this tidal stripping scenario using N-body simulations of cE formation with the Gadget-2 code. We track the velocity dispersions of stellar particles within the half-light radius throughout our simulations, which allows us to compare our simulated galaxies with velocity dispersion data for cEs in the RESOLVE survey. We first consider initial conditions similar to published work, which report stripping of a large spiral galaxy (stellar mass ~ 10^11 solar masses) to cE size in a cluster potential. We find that the density of the disk galaxy is too high to allow it to lose particles to the less dense cluster. We argue that the initial position of the galaxy with respect to the cluster as well as the large size of the cluster particles in comparison to the size of the galaxy particles artificially heightened the stripping percentages reported in previous work. We hypothesize that only a dwarf galaxy with a shallower density profile can be stripped to cE size, and we present initial efforts to test this idea. We simulate a dwarf galaxy based on a real system in the RESOLVE survey, with stellar mass 10^9 solar masses and half-light radius 1.15 kpc. Within ~700 pc our dwarf is denser than our cluster, suggesting the stripped remnant should be close to the size of RESOLVE cEs. This radius contains approximately 13% of the total stellar mass of the galaxy, or ~2 x 10^8 solar masses. We therefore expect our stripped remnant to be at least this massive, although the impact parameter of the orbit will determine how much mass is actually removed. We discuss the position of our simulated galaxies compared to RESOLVE cEs in the velocity dispersion vs. mass plane. This research has been supported by National Science

  3. Hydraulic performance of compacted clay liners under simulated daily thermal cycles.

    PubMed

    Aldaeef, A A; Rayhani, M T

    2015-10-01

    Compacted clay liners (CCLs) are commonly used as hydraulic barriers in several landfill applications to isolate contaminants from the surrounding environment and minimize the escape of leachate from the landfill. Prior to waste placement in landfills, CCLs are often exposed to temperature fluctuations which can affect the hydraulic performance of the liner. Experimental research was carried out to evaluate the effects of daily thermal cycles on the hydraulic performance of CCLs under simulated landfill conditions. Hydraulic conductivity tests were conducted on different soil specimens after being exposed to various thermal and dehydration cycles. An increase in the CCL hydraulic conductivity of up to one order of magnitude was recorded after 30 thermal cycles for soils with low plasticity index (PI = 9.5%). However, medium (PI = 25%) and high (PI = 37.2%) plasticity soils did not show significant hydraulic deviation due to their self-healing potential. Overlaying the CCL with a cover layer minimized the effects of daily thermal cycles, and maintained stable hydraulic performance in the CCLs even after exposure to 60 thermal cycles. Wet-dry cycles had a significant impact on the hydraulic aspect of low plasticity CCLs. However, medium and high plasticity CCLs maintained constant hydraulic performance throughout the test intervals. The study underscores the importance of protecting the CCL from exposure to atmosphere through covering it by a layer of geomembrane or an interim soil layer. PMID:26241932

  4. Investigation of Flow Conditioners for Compact Jet Engine Simulator Rig Noise Reduction

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Haskin, Henry H.

    2011-01-01

    The design requirements for two new Compact Jet Engine Simulator (CJES) units for upcoming wind tunnel testing lead to the distinct possibility of rig noise contamination. The acoustic and aerodynamic properties of several flow conditioner devices are investigated over a range of operating conditions relevant to the CJES units to mitigate the risk of rig noise. An impinging jet broadband noise source is placed in the upstream plenum of the test facility permitting measurements of not only flow conditioner self-noise, but also noise attenuation characteristics. Several perforated plate and honeycomb samples of high porosity show minimal self-noise but also minimal attenuation capability. Conversely, low porosity perforated plate and sintered wire mesh conditioners exhibit noticeable attenuation but also unacceptable self-noise. One fine wire mesh sample (DP450661) shows minimal selfnoise and reasonable attenuation, particularly when combined in series with a 15.6 percent open area (POA) perforated plate upstream. This configuration is the preferred flow conditioner system for the CJES, providing up to 20 dB of broadband attenuation capability with minimal self-noise.

  5. Complete event simulations of nuclear fission

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona

    2015-10-01

    For many years, the state of the art for treating fission in radiation transport codes has involved sampling from average distributions. In these average fission models energy is not explicitly conserved and everything is uncorrelated because all particles are emitted independently. However, in a true fission event, the energies, momenta and multiplicities of the emitted particles are correlated. Such correlations are interesting for many modern applications. Event-by-event generation of complete fission events makes it possible to retain the kinematic information for all particles emitted: the fission products as well as prompt neutrons and photons. It is therefore possible to extract any desired correlation observables. Complete event simulations can be included in general Monte Carlo transport codes. We describe the general functionality of currently available fission event generators and compare results for several important observables. This work was performed under the auspices of the US DOE by LLNL, Contract DE-AC52-07NA27344. We acknowledge support of the Office of Defense Nuclear Nonproliferation Research and Development in DOE/NNSA.

  6. Towards automated mapping of lake ice using RADARSAT-2 and simulated RCM compact polarimetric data

    NASA Astrophysics Data System (ADS)

    Duguay, Claude

    2016-04-01

    The Canadian Ice Service (CIS) produces a weekly ice fraction product (a text file with a single lake-wide ice fraction value, in tenth, estimated for about 140 large lakes across Canada and northern United States) created from the visual interpretation of RADARSAT-2 ScanSAR dual-polarization (HH and HV) imagery, complemented by optical satellite imagery (AVHRR, MODIS and VIIRS). The weekly ice product is generated in support of the Canadian Meteorological Centre (CMC) needs for lake ice coverage in their operational numerical weather prediction model. CIS is interested in moving from its current (manual) way of generating the ice fraction product to a largely automated process. With support from the Canadian Space Agency, a project was recently initiated to assess the potential of polarimetric SAR data for lake ice cover mapping in light of the upcoming RADARSAT Constellation Mission (to be launched in 2018). The main objectives of the project are to evaluate: 1) state-of-the-art image segmentation algorithms and 2) RADARSAT-2 polarimetric and simulated RADARSAT Constellation Mission (RCM) compact polarimetric SAR data for ice/open water discrimination. The goal is to identify the best segmentation algorithm and non-polarimetric/polarimetric parameters for automated lake ice monitoring at CIS. In this talk, we will present the background and context of the study as well as initial results from the analysis of RADARSAT-2 Standard Quad-Pol data acquired during the break-up and freeze-up periods of 2015 on Great Bear Lake, Northwest Territories.

  7. The impact of compaction and leachate recirculation on waste degradation in simulated landfills.

    PubMed

    Ko, Jae Hac; Yang, Fan; Xu, Qiyong

    2016-07-01

    This study investigated the impact of compaction and leachate recirculation on anaerobic degradation of municipal solid waste (MSW) at different methane formation phases. Two stainless steel lysimeters, C1 and C2, were constructed by equipping a hydraulic cylinder to apply pressure load (42kPs) on the MSW. When MSW started to produce methane, C1 was compacted, but C2 was compacted when the methane production rate declined from the peak generation rate. Methane production of C1was inhibited by the compaction and resulted in producing a total of 106L methane (44L/kgVS). However, the compaction in C2 promoted MSW degradation resulting in producing a total of 298L methane (125L/kgVS). The concentrations of volatile fatty acids and chemical oxygen demand showed temporary increases, when pressure load was applied. It was considered that the increased substrate accessibility within MSW by compaction could cause either the inhibition or the enhancement of methane production, depending the tolerability of methanogens on the acidic inhibition. Leachate recirculation also gave positive effects on methane generation from wet waste in the decelerated methanogenic phase by increasing mass transfer and the concentrations of volatile fatty acids. PMID:27003792

  8. NTP system simulation and detailed nuclear engine modeling

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear thermal propulsion (NTP) & detailed nuclear engine modeling; modeling and engineering simulation of nuclear thermal rocket systems; nuclear thermal rocket simulation system; INSPI-NTVR core axial flow profiles; INSPI-NTRV core axial flow profiles; specific impulse vs. chamber pressure; turbine pressure ratio vs. chamber pressure; NERVA core axial flow profiles; P&W XNR2000 core axial flow profiles; pump pressure rise vs. chamber pressure; streamline of jet-induced flow in cylindrical chamber; flow pattern of a jet-induced flow in a chamber; and radiative heat transfer models.

  9. An efficient compact fourth order FD method for simulating 3-D mantle convection at high Rayleigh number

    NASA Astrophysics Data System (ADS)

    Wright, G. B.; Barnett, G. A.; Yuen, D. A.

    2009-12-01

    We present an efficient method based on fourth order compact finite-differences for simulating three dimensional mantle convection (i.e. Rayleigh-Bénard convection in the infinite Prandtl number limit) with constant viscosity in a rectangular box. In the high Rayleigh number regime, this thermal convection model has recently been shown to exhibit many of the features of turbulent flow that are typically identified with high Reynolds number flow [1]. High order compact finite schemes are known to be particularly good for simulating turbulent flows because of their spectral like resolution [2], which ameliorates dispersion and anisotropy errors. They have also been shown to be much less susceptible than second order schemes to spurious oscillations for transient convection diffusion equations at large Péclet number (as occurs for the temperature equation in the mantle convection model at high Rayleigh number). Finally, high order schemes have been shown to be more efficient than low order methods in terms of degrees of freedom required to attain a specified error level, which is important for reducing memory requirements so simulations can be performed on emerging low-cost high performance computational platforms like graphics processing units (GPUs). We demonstrate the capabilities of our compact fourth order scheme at accurately capturing such phenomena as transient periods of double layered convection[3] (see Figure 1) and flow reversals using far fewer degrees of freedom than required for traditional second order methods. Finally, we discuss the computational cost of the scheme and its efficient implementation on GPUs. References: [1] M. Breuer and U. Hansen, Turbulent convection in the zero Reynolds number limit, EPL, 86, 24004, 2009. [2] S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16, 1992. [3] A. P. Boss and I. S. Sacks, Time-dependent models of single- and double-layer mantle convection, Nature, 308

  10. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise

    2012-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities

  11. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    PubMed

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). PMID:21129990

  12. Physical processes of compaction companion report 1 to simulation of geothermal subsidence

    SciTech Connect

    Miller, I.; Dershowitz, W.; Jones, K.; Myer, L.; Roman, K.; Schauer, M.

    1980-03-01

    There are a variety of theories, techniques, and parameters in the subsidence literature. Biot's theory, Terzaghi's theory, and the theory of interacting continua (TINC) are used to explain solid-fluid interaction; stress-strain theories range from linear elastic to e-log p to plasticity and pore-collapse theories. Parameters are numerous: void ratio,, permeability, compaction coefficient, pore compressibility, Young's modulus, bulk modulus, shear modulus, Poisson's ratio, Lame coefficients, coefficient of consolidation, and storage coefficient. The physical processes which govern compaction and deformation in geothermal systems are reviewed. The review is an attempt to provide a reasonably coherent general structure for the theories and parameters which were referred to above. The materials presented is a compendium of existing published work.

  13. Numerical simulations of axisymmetric Bondi-Hoyle accretion onto a compact object

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Casse, F.

    2015-12-01

    Compact bodies which are not at rest compare to an homogeneous ambient environment are believed to undergo Bondi-Hoyle axisymmetric accretion as soon as their relative velocity reaches supersonic levels. Contrary to its spherical counterpart, B-H accretion presents flow structures difficult to analytically derive, hence the need for numerical investigations. The broad dynamics at stake when a tiny compact object engulfs surrounding material at a much larger scale has made numerical consistency a polemical issue as it has prevented both scales to be grasped for reasonable wind velocities. We designed a numerical setup which reconciliates the requirement for finite size accretor with steady states properties of the Bondi-Hoyle flow independent of the size of the inner boundary. The robustness of this setup is evaluated accordingly to predictions concerning the mass accretion rate evolution with the Mach number at infinity and the topology of the sonic surface as determined by te{Foglizzo1996}. It provides an estimation of the mass accretion rates and thus, of the expected X-ray luminosity for an idealized B-H configuration which might not be too far off for isolated compact objects like runaway neutron stars or hyper-luminous X-ray sources.

  14. Mathematical simulation and calculation of the soil compaction under dynamic loads

    NASA Astrophysics Data System (ADS)

    Zolotarevskaya, D. I.

    2011-04-01

    The deformation and compaction of loamy sandy soddy-podzolic soils under linear dynamic changes in the compressive stresses and in the course of the soil creeping were studied in field experiments. The rheological properties of these soils occurring in the viscoelastic state were described by a first-order differential equation relating the compressive stresses, the rates of their changes, and the velocities of the relative vertical compressive deformation. Regression equations were derived for the viscoelastic properties of the studied soil as functions of its density, moisture, and linear compaction velocity. Methods were proposed for the calculation of indices of the stress-strain state and the compaction of soils under specified conditions of changes in their compressive stresses with time and in the course of the soil creeping after the initial linear increase in load. Corresponding computer programs were developed. The effect of the main factors due to the linear increase in the compressive loads and in the course of the soil creeping on the rheological properties, the stress-strain state, and the density of soils was quantitatively estimated. The calculation showed that the values of the soil deformation and the density under compressive stresses lower than the ultimate strength were stabilized with time, and the properties of the viscoelastic soil approached elastic ones.

  15. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  16. Simulations of nuclear resonance fluorescence in GEANT4

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Manu N.; Harrawood, Brian P.; Rusev, Gencho; Agasthya, Greeshma A.; Kapadia, Anuj J.

    2014-11-01

    The nuclear resonance fluorescence (NRF) technique has been used effectively to identify isotopes based on their nuclear energy levels. Specific examples of its modern-day applications include detecting spent nuclear waste and cargo scanning for homeland security. The experimental designs for these NRF applications can be more efficiently optimized using Monte Carlo simulations before the experiment is implemented. One of the most widely used Monte Carlo physics simulations is the open-source toolkit GEANT4. However, NRF physics has not been incorporated into the GEANT4 simulation toolkit in publicly available software. Here we describe the development and testing of an NRF simulation in GEANT4. We describe in depth the development and architecture of this software for the simulation of NRF in any isotope in GEANT4; as well as verification and validation testing of the simulation for NRF in boron. In the verification testing, the simulation showed agreement with the analytical model to be within 0.6% difference for boron and iron. In the validation testing, the simulation showed agreement to be within 20.5% difference with the experimental measurements for boron, with the percent difference likely due to small uncertainties in beam polarization, energy distribution, and detector composition.

  17. NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) PROGRAM GRANT NUMBER DE-FG03-00SF22168 TECHNICAL PROGRESS REPORT (Aug 15, 2002 to Nov. 15, 2002) - DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE GENERATION IV REACTOR SYSTEMS

    SciTech Connect

    Fred R. Mynatt; Andy Kadak; Marc Berte; Larry Miller; Lawrence Townsend; Martin Williamson; Rupy Sawhney; Jacob Fife

    2002-12-15

    The objectives of this project are to develop and evaluate nuclear power plant designs and layout concepts to maximize the benefits of compact modular Generation IV reactor concepts including factory fabrication and packaging for optimal transportation and siting. This report covers the ninth quarter of the project. The three reactor concept teams have completed initial plant concept development, evaluation and layout. A significant design effort has proceeded with substantial change and evolution from original ideas. The concepts have been reviewed by the industry participants and improvements have been implemented. The third phase, industrial engineering simulation of reactor fabrication has begun.

  18. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science.

    PubMed

    Seguin, F H; Sinenian, N; Rosenberg, M; Zylstra, A; Manuel, M J-E; Sio, H; Waugh, C; Rinderknecht, H G; Johnson, M Gatu; Frenje, J; Li, C K; Petrasso, R; Sangster, T C; Roberts, S

    2012-10-01

    Compact wedge-range-filter proton spectrometers cover proton energies ∼3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D(3)He protons in D(3)He implosions, secondary D(3)He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments. PMID:23126911

  19. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science

    SciTech Connect

    Seguin, F. H.; Sinenian, N.; Rosenberg, M.; Zylstra, A.; Manuel, M. J.-E.; Sio, H.; Waugh, C.; Rinderknecht, H. G.; Johnson, M. Gatu; Frenje, J.; Li, C. K.; Petrasso, R.; Sangster, T. C.; Roberts, S.

    2012-10-15

    Compact wedge-range-filter proton spectrometers cover proton energies {approx}3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D{sup 3}He protons in D{sup 3}He implosions, secondary D{sup 3}He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.

  20. Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Dierking, Wolfgang; Zhang, Jie; Meng, Junmin; Lang, Haitao

    2016-07-01

    In this paper we introduce a parameter for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric (CP) synthetic aperture radar (SAR) images. The parameter is denoted as the "CP ratio". In model simulations we investigated the sensitivity of the CP ratio to the dielectric constant, ice thickness, ice surface roughness, and radar incidence angle. From the results of the simulations we deduced optimal sea ice conditions and radar incidence angles for the ice thickness retrieval. C-band SAR data acquired over the Labrador Sea in circular transmit and linear receive (CTLR) mode were generated from RADARSAT-2 quad-polarization images. In comparison with results from helicopter-borne measurements, we tested different empirical equations for the retrieval of ice thickness. An exponential fit between the CP ratio and ice thickness provides the most reliable results. Based on a validation using other compact polarimetric SAR images from the same region, we found a root mean square (rms) error of 8 cm and a maximum correlation coefficient of 0.94 for the retrieval procedure when applying it to level ice between 0.1 and 0.8 m thick.

  1. Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Shen, Juntai; Kim, Woong-Tae

    2015-08-01

    Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of x2 orbits. All roundish nuclear rings in our simulations settle in the range of x2 orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the x2 orbital family, i.e. round nuclear rings are allowed only in the radial range of x2 orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter f_ring measured from the rotation curve. We find an empirical relation between the bar parameters and f_ring, and apply it to measure bar pattern speed in a sample of barred galaxies with nuclear rings.

  2. Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Shen, Juntai; Kim, Woong-Tae

    2015-06-01

    Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of {x}2 orbits. All roundish nuclear rings in our simulations settle in the range of {x}2 orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the {x}2 orbital family, i.e., round nuclear rings are allowed only in the radial range of {x}2 orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter {f}{ring} measured from the rotation curve. The gravitational torque on gas in high pattern speed models is larger, leading to a smaller ring size than in the low pattern speed models. Our result may have important implications for using nuclear rings to measure the parameters of real barred galaxies with 2D gas kinematics.

  3. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  4. Survey of Dynamic Simulation Programs for Nuclear Fuel Reprocessing

    SciTech Connect

    Troy J. Tranter; Daryl R. Haefner

    2008-06-01

    The absence of any industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other industries. Modeling programs to simulate the dynamic behavior of nuclear fuel separations and processing were originally developed to support the US government’s mission of weapons production and defense fuel recovery. Consequently there has been little effort is the US devoted towards improving this specific process simulation capability during the last two or three decades. More recent work has been focused on elucidating chemical thermodynamics and developing better models of predicting equilibrium in actinide solvent extraction systems. These equilibrium models have been used to augment flowsheet development and testing primarily at laboratory scales. The development of more robust and complete process models has not kept pace with the vast improvements in computational power and user interface and is significantly behind simulation capability in other chemical processing and separation fields.

  5. Parallelization and automatic data distribution for nuclear reactor simulations

    SciTech Connect

    Liebrock, L.M.

    1997-07-01

    Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directly affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.

  6. DEVELOPMENT OF NUCLEAR POWER PLANT SIMULATORS FOR SOVIET-DESIGNED NUCLEAR REACTORS.

    SciTech Connect

    Kohut, P.; Tutu, N.K.; Cleary, E.J.; Erickson, K.G.; Yoder, J.; Kroshilin, A.

    2001-01-07

    The US Department of Energy (US DOE), under the US government's International Nuclear Safety Program (INSP), is implementing a program of developing and providing simulators for many of the Russian and Ukrainian Nuclear Power Plants (NPPs). Pacific Northwest National Laboratory (PNNL) and Brookhaven National Laboratory (BNL) manage and provide technical oversight of the various INSP simulator projects for DOE. The program also includes a simulator technology transfer process to simulator design organizations in Russia and Ukraine. Training programs, installation of new simulators, and enhancements in existing simulators, are viewed as providing a relatively fast and cost-effective technology transfer that will result in measurable improvement in the safety culture and operation of NPPs. A review of this program, its present status, and its accomplishments are provided in this paper.

  7. Conceptual Design of a High Field Ultra-Compact Cyclotron for Nuclear Physics Research

    NASA Astrophysics Data System (ADS)

    Schubert, J.; Blosser, H.

    1997-05-01

    We have studied the feasibility of using of an existing wide-bore, 8 T magnet as a component of an ultra high field cyclotron. Such a machine would use the highest magnetic field of any cyclotron, to date. The K80 `Eight Tesla Cyclotron' would have roughly the same magnetic rigidity (Bρ) as the Oak Ridge Isochronous Cyclotron in a package of only one fourth the radius, with a corresponding reduction in cost. This cyclotron could accelerate particles with a charge state Q/A = 1/4 to a final energy of between 5 and 6 MeV/nucleon, the energy range currently being used to study superdeformed, high angular momentum nuclei that result from glancing collisions. We present models of the magnetic field, the central region electrodes and dees, and the extraction system. Studies have stressed achieving sufficient vertical focusing (ν_z) despite the high magnetic field level, and finding a central region geometry that fits comfortably in the limited space available while providing centering and early-turn focusing properties that are similar to those of less compact machines.

  8. Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.; Carpenter, Mark

    1998-01-01

    A higher order accurate numerical procedure has been developed for solving incompressible Navier-Stokes equations for 2D or 3D fluid flow problems. It is based on low-storage Runge-Kutta schemes for temporal discretization and fourth and sixth order compact finite-difference schemes for spatial discretization. The particular difficulty of satisfying the divergence-free velocity field required in incompressible fluid flow is resolved by solving a Poisson equation for pressure. It is demonstrated that for consistent global accuracy, it is necessary to employ the same order of accuracy in the discretization of the Poisson equation. Special care is also required to achieve the formal temporal accuracy of the Runge-Kutta schemes. The accuracy of the present procedure is demonstrated by application to several pertinent benchmark problems.

  9. INJECTOR PARTICLE SIMULATION AND BEAM TRANSPORT IN A COMPACT LINEAR PROTON ACCELERATOR

    SciTech Connect

    Blackfield, D T; Chen, Y J; Harris, J; Nelson, S; Paul, A; Poole, B

    2007-06-18

    A compact Dielectric Wall Accelerator (DWA), with field gradient up to 100 MW/m is being developed to accelerate proton bunches for use in cancer therapy treatment. The injector must create a proton pulse up to several hundred picoseconds, which is then shaped and accelerated with energies up to 250 MeV. The Particle-In-Cell (PIC) code LSP is used to model several aspects of this design. First, we use LSP to obtain the voltage waveform in the A-K gap that will produce a proton bunch with the requisite charge. We then model pulse compression and shaping in the section between the A-K gap and the DWA. We finally use LSP to model the beam transport through the DWA.

  10. Simulating Nuclear and Electronic Quantum Effects in Enzymes.

    PubMed

    Wang, L; Isborn, C M; Markland, T E

    2016-01-01

    An accurate treatment of the structures and dynamics that lead to enhanced chemical reactivity in enzymes requires explicit treatment of both electronic and nuclear quantum effects. The former can be captured in ab initio molecular dynamics (AIMD) simulations, while the latter can be included by performing ab initio path integral molecular dynamics (AI-PIMD) simulations. Both AIMD and AI-PIMD simulations have traditionally been computationally prohibitive for large enzymatic systems. Recent developments in streaming computer architectures and new algorithms to accelerate path integral simulations now make these simulations practical for biological systems, allowing elucidation of enzymatic reactions in unprecedented detail. In this chapter, we summarize these recent developments and discuss practical considerations for applying AIMD and AI-PIMD simulations to enzymes. PMID:27498646

  11. Design, simulation and test of silicon immersed gratings: key to compact spectrometers in the short-wave infrared

    NASA Astrophysics Data System (ADS)

    van Amerongen, Aaldert H.; Tol, Paul J. J.; Coppens, Tonny H. M.; Schuurhof, Ruud; Laubert, Phillip P.; Ruijter, Jos; Hoogeveen, Ruud W. M.

    2014-10-01

    We present results of our integrated approach to the development of novel diffraction gratings. At SRON we manufacture prism-shaped silicon immersed gratings. Diffraction takes place inside the high-refractive index medium, boosting the resolving power and the angular dispersion. This enables highly compact spectrometer designs. We are continuously improving the cycle of design, simulation and test to create custom gratings for space and ground-based spectroscopic applications in the short-wave infrared wavelength range. Applications are space-based monitoring of greenhouse and pollution gases in the Earth atmosphere and ground-based SWIR spectroscopy for, a.o., characterization of exo-planet atmospheres [1]. We make gratings by etching V-shaped grooves in mono-crystalline silicon. The groove facets are aligned with the crystal lattice yielding a smooth and highly deterministic groove shape. This enables us to predict the polarized efficiency performance accurately by simulation. Feeding back manufacturing tolerances from our production process, we can also determine reliable error bars for the predicted performance. Combining the simulated values for polarized efficiency with ray-tracing, we can optimize the shape of the grating prism to eliminate unwanted internal reflections. In this contribution we present the architecture of our design and simulation platform as well as a description of test setups and typical results.

  12. Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge diatomite

    SciTech Connect

    Fredrich, J.T.; Argueello, J.G.; Thorne, B.J.; Wawersik, W.R.

    1996-12-31

    This paper describes an integrated geomechanics analysis of well casing damage induced by compaction of the diatomite reservoir at the Belridge Field, California. Historical data from the five field operators were compiled and analyzed to determine correlations between production, injection, subsidence, and well failures. The results of this analysis were used to develop a three-dimensional geomechanical model of South Belridge, Section 33 to examine the diatomite reservoir and overburden response to production and injection at the interwell scale and to evaluate potential well failure mechanisms. The time-dependent reservoir pressure field was derived from a three-dimensional finite difference reservoir simulation and used as input to three-dimensional non-linear finite element geomechanical simulations. The reservoir simulation included approximately 200 wells and covered 18 years of production and injection. The geomechanical simulation contained 437,100 nodes and 374,130 elements with the overburden and reservoir discretized into 13 layers with independent material properties. The results reveal the evolution of the subsurface stress and displacement fields with production and injection and suggest strategies for reducing the occurrence of well casing damage.

  13. Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge diatomite

    SciTech Connect

    Fredrich, J.T.; Argueello, J.G.; Thorne, B.J.; Wawersik, W.R. |

    1996-11-01

    This paper describes an integrated geomechanics analysis of well casing damage induced by compaction of the diatomite reservoir at the Belridge Field, California. Historical data from the five field operators were compiled and analyzed to determine correlations between production, injection, subsidence, and well failures. The results of this analysis were used to develop a three-dimensional geomechanical model of South Belridge, Section 33 to examine the diatomite reservoir and overburden response to production and injection at the interwell scale and to evaluate potential well failure mechanisms. The time-dependent reservoir pressure field was derived from a three-dimensional finite difference reservoir simulation and used as input to three-dimensional non-linear finite element geomechanical simulations. The reservoir simulation included -200 wells and covered 18 years of production and injection. The geomechanical simulation contained 437,100 nodes and 374,130 elements with the overburden and reservoir discretized into 13 layers with independent material properties. The results reveal the evolution of the subsurface stress and displacement fields with production and injection and suggest strategies for reducing the occurrence of well casing damage.

  14. MITEE-B: A Compact Ultra Lightweight Bi-Modal Nuclear Propulsion Engine for Robotic Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.

  15. Compact Solar Simulator with a Small Subtense Angle and Controlled Magnification Optics

    NASA Technical Reports Server (NTRS)

    Jefferies, Kent S. (Inventor)

    1996-01-01

    The present invention is directed to a method of simulating a pseudosun using a solar simulator. In the present invention the collector and lens of a lamp are designed to properly focus a plurality of light beams onto a segmented turning mirror. The path of light rays are traced from the lamp to the collector and then finally to the lens to control the solid and tangential magnification of the solar simulator. The segmented turning mirror is located at the focal point of the light beam and redirects the light into a vacuum chamber.

  16. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model

    USGS Publications Warehouse

    Leake, S.A.; Prudic, David E.

    1991-01-01

    Removal of ground water by pumping from aquifers may result in compaction of compressible fine-grained beds that are within or adjacent to the aquifers. Compaction of the sediments and resulting land subsidence may be permanent if the head declines result in vertical stresses beyond the previous maximum stress. The process of permanent compaction is not routinely included in simulations of ground-water flow. To simulate storage changes from both elastic and inelastic compaction, a computer program was written for use with the U.S. Geological Survey modular finite-difference ground- water flow model. The new program, the Interbed-Storage Package, is designed to be incorporated into this model. In the Interbed-Storage Package, elastic compaction or expansion is assumed to be proportional to change in head. The constant of proportionality is the product of the skeletal component of elastic specific storage and the thickness of the sediments. Similarly, inelastic compaction is assumed to be proportional to decline in head. The constant of proportionality is the product of the skeletal component of inelastic specific storage and the thickness of the sediments. Storage changes are incorporated into the ground-water flow model by adding an additional term to the right-hand side of the flow equation. Within a model time step, the package appropriately apportions storage changes between elastic and inelastic components on the basis of the relation of simulated head to the previous minimum (preconsolidation) head. Two tests were performed to verify that the package works correctly. The first test compared model-calculated storage and compaction changes to hand-calculated values for a three-dimensional simulation. Model and hand-calculated values were essentially equal. The second test was performed to compare the results of the Interbed-Storage Package with results of the one-dimensional Helm compaction model. This test problem simulated compaction in doubly draining

  17. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    SciTech Connect

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  18. Compact Detection System for High Sensitivity Hydrogen Profiling of Materials by Nuclear Reaction Analysis

    SciTech Connect

    Marble, Daniel Keith; Urban, Ben; Pacheco, Jose

    2009-03-10

    Hydrogen is a ubiquitous contaminant that is known to have dramatic effects on the electrical, chemical, and mechanical properties of many types of materials in even minute quantities. Thus, the detection of hydrogen in materials is of major importance. Nuclear Reaction Analysis (NRA) is a powerful technique for nondestructive profiling hydrogen in materials. However, NRA has found only limited use in many applications because of poor sensitivity due to cosmic ray background (CSRB). Most attempts to eliminate CSRB to achieve ppm detection levels using higher energy nuclear reactions or tons of passive shielding are not compatible with commercial ion beam analysis space and equipment requirements Zimmerman, et al. have previously reported upon a coincidence detector that meets IBA space requirements and reduces the cosmic ray background, but the detector suffers from lower detection efficiency and small sample size. We have replaced the BGO well detector in the Zimmerman coincidence detection scheme with a larger Nal well detector and used faster timing electronics to produce a detector that can handle larger samples with higher detection efficiency, and still eliminate cosmic ray background.

  19. Principles of Product Quality Control of German Radioactive Waste Forms from the Reprocessing of Spent Fuel: Vitrification, Compaction and Numerical Simulation - 12529

    SciTech Connect

    Tietze-Jaensch, Holger; Schneider, Stephan; Aksyutina, Yuliya; Bosbach, Dirk; Gauthier, Rene; Eissler, Alexander

    2012-07-01

    The German product quality control is inter alia responsible for control of two radioactive waste forms of heat generating waste: a) homogeneous vitrified HLW and b) heterogeneous compacted hulls, end-pieces and technological metallic waste. In either case, significantly different metrology is employed at the site of the conditioning plant for the obligatory nuclide inventory declaration. To facilitate an independent evaluation and checking of the accompanying documentation numerical simulations are carried out. The physical and chemical properties of radioactive waste residues are used to assess the data consistency and uncertainty margins, as well as to predict the long-term behavior of the radioactive waste. This is relevant for repository acceptance and safety considerations. Our new numerical approach follows a bottom-up simulation starting from the burn-up behavior of the fuel elements in the reactor core. The output of these burn-up calculations is then coupled with a program that simulates the material separation in the subsequent dissolution and extraction processes normalized to the mass balance. Follow-up simulations of the separated reprocessing lines of a) the vitrification of highly-active liquid and b) the compaction of residual intermediate-active metallic hulls remaining after fuel pellets dissolution, end-pieces and technological waste, allows calculating expectation values for the various repository relevant properties of either waste stream. The principles of the German product quality control of radioactive waste residues from the spent fuel reprocessing have been introduced and explained. Namely, heat generating homogeneous vitrified HLW and heterogeneous compacted metallic MLW have been discussed. The advantages of a complementary numerical property simulation have been made clear and examples of benefits are presented. We have compiled a new program suite to calculate the physical and radio-chemical properties of common nuclear waste

  20. Computer simulation of two-phase flow in nuclear reactors

    SciTech Connect

    Wulff, W.

    1992-09-01

    Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter`s closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.

  1. Fourth-order compact schemes for the numerical simulation of coupled Burgers' equation

    NASA Astrophysics Data System (ADS)

    Bhatt, H. P.; Khaliq, A. Q. M.

    2016-03-01

    This paper introduces two new modified fourth-order exponential time differencing Runge-Kutta (ETDRK) schemes in combination with a global fourth-order compact finite difference scheme (in space) for direct integration of nonlinear coupled viscous Burgers' equations in their original form without using any transformations or linearization techniques. One scheme is a modification of the Cox and Matthews ETDRK4 scheme based on (1 , 3) -Padé approximation and other is a modification of Krogstad's ETDRK4-B scheme based on (2 , 2) -Padé approximation. Efficient versions of the proposed schemes are obtained by using a partial fraction splitting technique of rational functions. The stability properties of the proposed schemes are studied by plotting the stability regions, which provide an explanation of their behavior for dispersive and dissipative problems. The order of convergence of the schemes is examined empirically and found that the modification of ETDRK4 converges with the expected rate even if the initial data are nonsmooth. On the other hand, modification of ETDRK4-B suffers with order reduction if the initial data are nonsmooth. Several numerical experiments are carried out in order to demonstrate the performance and adaptability of the proposed schemes. The numerical results indicate that the proposed schemes provide better accuracy than other schemes available in the literature. Moreover, the results show that the modification of ETDRK4 is reliable and yields more accurate results than modification of ETDRK4-B, while solving problems with nonsmooth data or with high Reynolds number.

  2. Simulating narrow nonlinear resonance features for magnetometry in compact cold atom systems

    NASA Astrophysics Data System (ADS)

    Meyer, David; Robinson, Jenn; Kunz, Paul; Quraishi, Qudsia

    2015-05-01

    We are investigating cold atom magnetometry applications and have developed a numeric model of Electromagnetically Induced Absorption (EIA) and Nonlinear Magneto-Optical Rotation (NMOR) for degenerate two-level systems. While most EIA and NMOR research is done in warm vapors, cold atoms avoid Doppler broadening and better isolate the various optical pumping mechanisms involved. Our model focuses on the effect of transverse magnetic fields on both EIA and NMOR features and shows that critical points of both yield quantitative measures of the magnitude and direction of the transverse field. This dependence reveals the underlying optical pumping mechanisms and makes possible a single, in-situ measurement of the background magnetic field zero to the sub-milligauss level, reducing background fields to enhance sub-Doppler cooling and collectively-enhanced neutral-atom quantum memory lifetimes. Separately, we are pursuing experimental measurements on the relationship between EIA and NMOR in a compact cold atom apparatus. To improve the system's capabilities we are designing our next-generation atom chip to reduce system size and employ versatile geometries enabling multi-site trapping.

  3. Aquifer-System Compaction and Land Subsidence: Measurements, Analyses, and Simulations-the Holly Site, Edwards Air Force Base, Antelope Valley, California

    USGS Publications Warehouse

    Sneed, Michelle; Galloway, Devin L.

    2000-01-01

    Land subsidence resulting from ground-water-level declines has long been recognized as a problem in Antelope Valley, California. At Edwards Air Force Base (EAFB), ground-water extractions have caused more than 150 feet of water-level decline, resulting in nearly 4 feet of subsidence. Differential land subsidence has caused sinklike depressions and earth fissures and has accelerated erosion of the playa lakebed surface of Rogers Lake at EAFB, adversely affecting the runways on the lakebed which are used for landing aircraft such as the space shuttles. Since 1990, about 0.4 foot of aquifer-system compaction has been measured at a deep (840 feet) borehole extensometer (Holly site) at EAFB. More than 7 years of paired ground-water-level and aquifer-system compaction measurements made at the Holly site were analyzed for this study. Annually, seasonal water-level fluctuations correspond to steplike variations in aquifer-system compaction; summer water-level drawdowns are associated with larger rates of compaction, and winter water-level recoveries are associated with smaller rates of compaction. The absence of aquifer-system expansion during recovery is consistent with the delayed drainage and resultant delayed, or residual, compaction of thick aquitards. A numerical one-dimensional MODFLOW model of aquitard drainage was used to refine estimates of aquifer-system hydraulic parameters that control compaction and to predict potential future compaction at the Holly site. The analyses and simulations of aquifer-system compaction are based on established theories of aquitard drainage. Historical ground-water-level and land-subsidence data collected near the Holly site were used to constrain simulations of aquifer-system compaction and land subsidence at the site for the period 1908?90, and ground-water-level and aquifer- system compaction measurements collected at the Holly site were used to constrain the model for the period 1990?97. Model results indicate that two thick

  4. First evidence of detecting surface nuclear magnetic resonance signals using a compact B-field sensor

    NASA Astrophysics Data System (ADS)

    Davis, Aaron C.; Dlugosch, Raphael; Queitsch, Matthias; Macnae, James C.; Stolz, Ronny; Müller-Petke, Mike

    2014-06-01

    The noninvasive detection and characterization of subsurface aquifer structures demands geophysical techniques. Surface nuclear magnetic resonance (SNMR) is the only technique that is directly sensitive to hydrogen protons and, therefore, allows for unambiguous detection of subsurface water. Traditionally, SNMR utilizes large surface coils for both transmitting excitation pulses and recording the groundwater response. Recorded data are thus a voltage induced by the time derivative of the secondary magnetic field. For the first time, we demonstrate that the secondary magnetic field in a SNMR experiment can be directly detected using a superconducting quantum interference device magnetometer. Conducting measurements at a test site in Germany, we demonstrate not only the ability to detect SNMR signals on the order of femtoTesla but also we are able to satisfy the observed data by inverse modeling. This is expected to open up completely new applications for this exciting technology.

  5. A Large-Particle Monte Carlo Code for Simulating Non-Linear High-Energy Processes Near Compact Objects

    NASA Technical Reports Server (NTRS)

    Stern, Boris E.; Svensson, Roland; Begelman, Mitchell C.; Sikora, Marek

    1995-01-01

    High-energy radiation processes in compact cosmic objects are often expected to have a strongly non-linear behavior. Such behavior is shown, for example, by electron-positron pair cascades and the time evolution of relativistic proton distributions in dense radiation fields. Three independent techniques have been developed to simulate these non-linear problems: the kinetic equation approach; the phase-space density (PSD) Monte Carlo method; and the large-particle (LP) Monte Carlo method. In this paper, we present the latest version of the LP method and compare it with the other methods. The efficiency of the method in treating geometrically complex problems is illustrated by showing results of simulations of 1D, 2D and 3D systems. The method is shown to be powerful enough to treat non-spherical geometries, including such effects as bulk motion of the background plasma, reflection of radiation from cold matter, and anisotropic distributions of radiating particles. It can therefore be applied to simulate high-energy processes in such astrophysical systems as accretion discs with coronae, relativistic jets, pulsar magnetospheres and gamma-ray bursts.

  6. A Compact Code for Simulations of Quantum Error Correction in Classical Computers

    SciTech Connect

    Nyman, Peter

    2009-03-10

    This study considers implementations of error correction in a simulation language on a classical computer. Error correction will be necessarily in quantum computing and quantum information. We will give some examples of the implementations of some error correction codes. These implementations will be made in a more general quantum simulation language on a classical computer in the language Mathematica. The intention of this research is to develop a programming language that is able to make simulations of all quantum algorithms and error corrections in the same framework. The program code implemented on a classical computer will provide a connection between the mathematical formulation of quantum mechanics and computational methods. This gives us a clear uncomplicated language for the implementations of algorithms.

  7. Beam dynamics simulations of the injector for a compact THz source

    NASA Astrophysics Data System (ADS)

    Li, Ji; Pei, Yuan-Ji; Shang, Lei; Feng, Guang-Yao; Hu, Tong-Ning; Chen, Qu-Shan; Li, Cheng-Long

    2014-08-01

    Terahertz radiation has broad application prospects due to its ability to penetrate deep into many organic materials without the damage caused by ionizing radiations. A free electron laser (FEL)-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Beam dynamics simulations have been done with ASTRA code to verify the design and to optimize parameters. Simulations of the operating mode at 6 MeV have also been executed.

  8. Verilog-A implementation of a double-gate junctionless compact model for DC circuit simulations

    NASA Astrophysics Data System (ADS)

    Alvarado, J.; Flores, P.; Romero, S.; Ávila-Herrera, F.; González, V.; Soto-Cruz, B. S.; Cerdeira, A.

    2016-07-01

    A physically based model of the double-gate juntionless transistor which is capable of describing accumulation and depletion regions is implemented in Verilog-A in order to perform DC circuit simulations. Analytical description of the difference of potentials between the center and the surface of the silicon layer allows the determination of the mobile charges. Furthermore, mobility degradation, series resistance, as well as threshold voltage roll-off, drain saturation voltage, channel shortening and velocity saturation are also considered. In order to provide this model to all of the community, the implementation of this model is performed in Ngspice, which is a free circuit simulation with an ADMS interface to integrate Verilog-A models. Validation of the model implementation is done through 2D numerical simulations of transistors with 1 μ {{m}} and 40 {{nm}} silicon channel length and 1 × 1019 or 5× {10}18 {{{cm}}}-3 doping concentration of the silicon layer with 10 and 15 {{nm}} silicon thickness. Good agreement between the numerical simulated behavior and model implementation is obtained, where only eight model parameters are used.

  9. Soundtracks to Accompany Visualizations of Nuclear Pasta Simulations

    NASA Astrophysics Data System (ADS)

    Clark, Emily

    2014-09-01

    Nuclear pasta is a substance found in neutron stars and core-collapse supernovae, arising at the extreme densities near nuclear saturation, when the attractive nuclear and repulsive coulomb forces mold the dense sea of protons and neutrons into shapes such as spheres, tubes, and slabs, which somewhat resemble different types of pasta. The structures are analyzed using molecular dynamical simulations for different proton fractions, temperatures, densities, and number of nucleons. The system is stressed by stretching it, squeezing it, or subjecting it to some outside force. In order to obtain a more complete representation of how the nuclear pasta responds, sound tracks were produced to accompany videos of stretching simulations. The audio tracks were made by assuming sound waves are produced from changes in the nucleon density. This density was calculated within a small region at frequent time intervals during the run. The resulting sound track was then synced with a video of the run in order to emphasize the development of the system as the pasta moves and breaks. Nuclear pasta is a substance found in neutron stars and core-collapse supernovae, arising at the extreme densities near nuclear saturation, when the attractive nuclear and repulsive coulomb forces mold the dense sea of protons and neutrons into shapes such as spheres, tubes, and slabs, which somewhat resemble different types of pasta. The structures are analyzed using molecular dynamical simulations for different proton fractions, temperatures, densities, and number of nucleons. The system is stressed by stretching it, squeezing it, or subjecting it to some outside force. In order to obtain a more complete representation of how the nuclear pasta responds, sound tracks were produced to accompany videos of stretching simulations. The audio tracks were made by assuming sound waves are produced from changes in the nucleon density. This density was calculated within a small region at frequent time intervals

  10. Concept for Dismantling the Reactor Vessel and the Biological Shield of the Compact Sodium-Cooled Nuclear Reactor Facility (KNK)

    SciTech Connect

    Hillebrand, I.; Benkert, J.

    2002-02-27

    The Compact Sodium-cooled Nuclear Reactor Facility (KNK) was an experimental nuclear power plant of 20 MW electric power erected on the premises of the Karlsruhe Research Center. The plant was initially run as KNK I with a thermal core between 1971 and 1974 and then, between 1977 and 1991, with a fast core as the KNK II fast breeder plant. Under the decommissioning concept, the plant is to be decommissioned completely to green field conditions at the end of 2005 in ten steps, i.e. under the corresponding ten decommissioning permits. To this day, nine decommissioning permits have been issued, the first one in 1993 and the most recent one, number nine, in 2001. The decommissioning and demolition activities covered by decommissioning permits 1 to 7 have been completed. Under the 8th Decommissioning Permit, the components of the primary system and the rotating reactor top shield are to be removed by late 2001. Under the 9th Decommissioning Permit, the reactor vessel with its internals, the primary shield, and the biological shield are to be dismantled. The residual sodium volume in the reactor vessel was estimated to amount to approx. 30 l. The maximum Co-60 activation is on the order of 107-108 Bq/g; the maximum dose rate in the middle of the vessel was measured in April 1997 to be 55 Sv/h. The difficulty involved especially in dismantling KNK, on the one hand, is posed by the residual sodium in the plant, which determines the choice of neither wet nor thermical techniques to be used in disassembly. Another difficulty is caused by the depth of activation by fast neutrons, as a result of which not only the reactor vessel proper, but also the entire primary shield (60 cm of grey cast iron) and large parts of the biological shield must be disassembled and disposed of under remote control.

  11. Compact Stellar Binary Assembly in the First Nuclear Star Clusters and r-process Synthesis in the Early Universe

    NASA Astrophysics Data System (ADS)

    Ramirez-Ruiz, Enrico; Trenti, Michele; MacLeod, Morgan; Roberts, Luke F.; Lee, William H.; Saladino-Rosas, Martha I.

    2015-04-01

    Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars.

  12. Adaptive Sampling Algorithms for Probabilistic Risk Assessment of Nuclear Simulations

    SciTech Connect

    Diego Mandelli; Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer

    2013-09-01

    Nuclear simulations are often computationally expensive, time-consuming, and high-dimensional with respect to the number of input parameters. Thus exploring the space of all possible simulation outcomes is infeasible using finite computing resources. During simulation-based probabilistic risk analysis, it is important to discover the relationship between a potentially large number of input parameters and the output of a simulation using as few simulation trials as possible. This is a typical context for performing adaptive sampling where a few observations are obtained from the simulation, a surrogate model is built to represent the simulation space, and new samples are selected based on the model constructed. The surrogate model is then updated based on the simulation results of the sampled points. In this way, we attempt to gain the most information possible with a small number of carefully selected sampled points, limiting the number of expensive trials needed to understand features of the simulation space. We analyze the specific use case of identifying the limit surface, i.e., the boundaries in the simulation space between system failure and system success. In this study, we explore several techniques for adaptively sampling the parameter space in order to reconstruct the limit surface. We focus on several adaptive sampling schemes. First, we seek to learn a global model of the entire simulation space using prediction models or neighborhood graphs and extract the limit surface as an iso-surface of the global model. Second, we estimate the limit surface by sampling in the neighborhood of the current estimate based on topological segmentations obtained locally. Our techniques draw inspirations from topological structure known as the Morse-Smale complex. We highlight the advantages and disadvantages of using a global prediction model versus local topological view of the simulation space, comparing several different strategies for adaptive sampling in both

  13. WADM and radiation MHD simulations of compact multi-planar and cylindrical wire arrays at 1 MA currents

    NASA Astrophysics Data System (ADS)

    Esaulov, A. A.; Kantsyrev, V. L.; Safronova, A. S.; Williamson, K. M.; Shrestha, I.; Osborne, G. C.; Yilmaz, M. F.; Ouart, N. D.; Weller, M. E.

    2009-09-01

    The radiative performance of Z-pinches created by the imploding wire array loads is defined by the ablation and implosion dynamics of these loads. Both these processes can be effectively modeled by the Wire Ablation Dynamics Model (WADM), which extends the formalism exploited earlier for the cylindrical wire arrays to the loads of arbitrary geometries. The WADM calculates the ablation rates for each array wire and provides the important dynamic parameters, such as the specific mass and velocity of the imploding plasma, which can be used to estimate the shapes of the x-ray pre-pulse and, partially, the main x-ray burst. The applications of the WADM also extend to combined material wire array loads. The ablation and implosion dynamics of novel Prism Planar Wire Array (PPWA) and combined material (Mo/Al/Mo) Triple Planar Wire Array (TPWA) loads are discussed in detail. The combined WADM and radiation MHD simulation is applied to model the radiative performance of the precursor plasma column, created by the imploding stainless steel compact cylindrical wire array. As the radiation effects intensify with the mass accumulation at the array center, the simulation reveals the transformation of quasi-uniform precursor column into a heterogeneous plasma structure with strong density and temperature gradients. We find that radiative performance of the precursor plasma is greatly affected by the load geometry as well as by the wire material.

  14. Effect of Coulomb screening length on nuclear "pasta" simulations

    NASA Astrophysics Data System (ADS)

    Alcain, P. N.; Giménez Molinelli, P. A.; Nichols, J. I.; Dorso, C. O.

    2014-05-01

    We study the role of the effective Coulomb interaction strength and length on the dynamics of nucleons in conditions according to those in a neutron star's crust. Calculations were made with a semiclassical molecular dynamics model, studying isospin symmetric matter at subsaturation densities and low temperatures. The electrostatic interaction between protons is included as a screened Coulomb potential in the spirit of the Thomas-Fermi approximation, but the screening length is artificially varied to explore its effect on the formation of the nonhomogeneous nuclear structures known as "nuclear pasta." As the screening length increases, we can see a transition from a one-per-cell pasta regime (due exclusively to finite-size effects) to a more appealing multiple pasta per simulation box. This qualitative difference in the structure of neutron star matter at low temperatures shows that special caution should be taken when the screening length is estimated for numerical simulations.

  15. Modeling and Simulation of a Nuclear Fuel Element Test Section

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  16. Material flow simulation in a nuclear chemical process

    SciTech Connect

    Mahgerefteh, M.

    1984-01-01

    At a nuclear fuel reprocessing plant the special nuclear materials (SNM) are received as constituents of spent fuel assemblies, are converted to liquid form, and undergo a series of chemical processes. Uncertainties in measurements of SNM at each stage of reprocessing limit the accuracy of simple material balance accounting as a safeguards method. To be effective, a formal safeguards program must take into account all sources of measurement error yet detect any diversion of SNM. An analytical method for assessing the accountability of selected constituent SNM is demonstrated. A combined discrete-continuous, time-dependent model using the GASP IV simulation language is developed to simulate mass flow, material accountability and measurement error at each stage of the reprocessing plant.

  17. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    SciTech Connect

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  18. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  19. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  20. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model

    USGS Publications Warehouse

    Leake, S.A.; Prudic, David E.

    1988-01-01

    The process of permanent compaction is not routinely included in simulations of groundwater flow. To simulate storage changes from both elastic and inelastic compaction, a computer program was written for use with the U. S. Geological Survey modular finite-difference groundwater flow model. The new program is called the Interbed-Storage Package. In the Interbed-Storage Package, elastic compaction or expansion is assumed to be proportional to change in head. The constant of proportionality is the product of skeletal component of elastic specific storage and thickness of the sediments. Similarly, inelastic compaction is assumed to be proportional to decline in head. The constant of proportionality is the product of the skeletal component of inelastic specific storage and the thickness of the sediments. Storage changes are incorporated into the groundwater flow model by adding an additional term to the flow equation. Within a model time step, the package appropriately apportions storage changes between elastic and inelastic components on the basis of the relation of simulated head to the previous minimum head. Another package that allows for a time-varying specified-head boundary is also documented. This package was written to reduce the data requirements for test simulations of the Interbed-Storage Package. (USGS)

  1. Simulation of the control board of an experimental nuclear reactor

    SciTech Connect

    Mackieh, A.; Cilingir, C.; Alten, S.

    1995-12-31

    This study is performed as a part of a bigger project to analyze human factors in operations of an experimental nuclear reactor. In this context, the control board of the 10-kW university training reactor (UTR-10) located at Iowa State University, Ames, Iowa, was simulated. The software was developed in the ergonomics laboratory of the Middle East Technical University (METU) by using an object-oriented programming language (Visual Basic for IBM-compatible personal computers).

  2. Quantum simulations of nuclei and nuclear pasta with the multiresolution adaptive numerical environment for scientific simulations

    NASA Astrophysics Data System (ADS)

    Sagert, I.; Fann, G. I.; Fattoyev, F. J.; Postnikov, S.; Horowitz, C. J.

    2016-05-01

    Background: Neutron star and supernova matter at densities just below the nuclear matter saturation density is expected to form a lattice of exotic shapes. These so-called nuclear pasta phases are caused by Coulomb frustration. Their elastic and transport properties are believed to play an important role for thermal and magnetic field evolution, rotation, and oscillation of neutron stars. Furthermore, they can impact neutrino opacities in core-collapse supernovae. Purpose: In this work, we present proof-of-principle three-dimensional (3D) Skyrme Hartree-Fock (SHF) simulations of nuclear pasta with the Multi-resolution ADaptive Numerical Environment for Scientific Simulations (MADNESS). Methods: We perform benchmark studies of 16O, 208Pb, and 238U nuclear ground states and calculate binding energies via 3D SHF simulations. Results are compared with experimentally measured binding energies as well as with theoretically predicted values from an established SHF code. The nuclear pasta simulation is initialized in the so-called waffle geometry as obtained by the Indiana University Molecular Dynamics (IUMD) code. The size of the unit cell is 24 fm with an average density of about ρ =0.05 fm-3 , proton fraction of Yp=0.3 , and temperature of T =0 MeV. Results: Our calculations reproduce the binding energies and shapes of light and heavy nuclei with different geometries. For the pasta simulation, we find that the final geometry is very similar to the initial waffle state. We compare calculations with and without spin-orbit forces. We find that while subtle differences are present, the pasta phase remains in the waffle geometry. Conclusions: Within the MADNESS framework, we can successfully perform calculations of inhomogeneous nuclear matter. By using pasta configurations from IUMD it is possible to explore different geometries and test the impact of self-consistent calculations on the latter.

  3. Precession-tracking coordinates for simulations of compact-object binaries

    NASA Astrophysics Data System (ADS)

    Ossokine, Serguei; Kidder, Lawrence E.; Pfeiffer, Harald P.

    2013-10-01

    Binary black hole simulations with black hole excision using spectral methods require a coordinate transformation into a corotating coordinate system where the black holes are essentially at rest. This paper presents and discusses two coordinate transformations that are applicable to precessing binary systems, one based on Euler angles, the other on quaternions. Both approaches are found to work well for binaries with moderate precession, i.e., for cases where the orientation of the orbital plane changes by ≪90°. For strong precession, performance of the Euler-angle parametrization deteriorates, eventually failing for a 90° change in orientation because of singularities in the parametrization (“gimbal lock”). In contrast, the quaternion representation is invariant under an overall rotation and handles any orientation of the orbital plane as well as the Euler-angle technique handles nonprecessing binaries.

  4. NUCLEAR STAR-FORMING RING OF THE MILKY WAY: SIMULATIONS

    SciTech Connect

    Kim, Sungsoo S.; Jeon, Myoungwon; Saitoh, Takayuki R.; Figer, Donald F.; Merritt, David; Wada, Keiichi

    2011-07-01

    We present hydrodynamic simulations of gas clouds in the central kpc region of the Milky Way that is modeled with a three-dimensional bar potential. Our simulations consider realistic gas cooling and heating, star formation, and supernova feedback. A ring of dense gas clouds forms as a result of X{sub 1}-X{sub 2} orbit transfer, and our potential model results in a ring radius of {approx}200 pc, which coincides with the extraordinary reservoir of dense molecular clouds in the inner bulge, the Central Molecular Zone (CMZ). The gas clouds accumulated in the CMZ can reach high enough densities to form stars, and with an appropriate choice of simulation parameters, we successfully reproduce the observed gas mass and the star formation rate (SFR) in the CMZ, {approx}2 x 10{sup 7} M{sub sun} and {approx}0.1 M{sub sun} yr{sup -1}. Star formation in our simulations takes place mostly in the outermost X{sub 2} orbits, and the SFR per unit surface area outside the CMZ is much lower. These facts suggest that the inner Galactic bulge may harbor a mild version of the nuclear star-forming rings seen in some external disk galaxies. Furthermore, from the relatively small size of the Milky Way's nuclear bulge, which is thought to be a result of sustained star formation in the CMZ, we infer that the Galactic inner bulge probably had a shallower density profile or stronger bar elongation in the past.

  5. Experimental study of quantum simulation for quantum chemistry with a nuclear magnetic resonance simulator.

    PubMed

    Lu, Dawei; Xu, Nanyang; Xu, Boruo; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-10-13

    Quantum computers have been proved to be able to mimic quantum systems efficiently in polynomial time. Quantum chemistry problems, such as static molecular energy calculations and dynamical chemical reaction simulations, become very intractable on classical computers with scaling up of the system. Therefore, quantum simulation is a feasible and effective approach to tackle quantum chemistry problems. Proof-of-principle experiments have been implemented on the calculation of the hydrogen molecular energies and one-dimensional chemical isomerization reaction dynamics using nuclear magnetic resonance systems. We conclude that quantum simulation will surpass classical computers for quantum chemistry in the near future. PMID:22946038

  6. HYDRODYNAMICAL SIMULATIONS OF A COMPACT SOURCE SCENARIO FOR THE GALACTIC CENTER CLOUD G2

    SciTech Connect

    Ballone, A.; Schartmann, M.; Burkert, A.; Gillessen, S.; Genzel, R.; Fritz, T. K.; Eisenhauer, F.; Pfuhl, O.; Ott, T.

    2013-10-10

    The origin of the dense gas cloud G2 discovered in the Galactic Center is still a debated puzzle. G2 might be a diffuse cloud or the result of an outflow from an invisible star embedded in it. We present hydrodynamical simulations of the evolution of different spherically symmetric winds of a stellar object embedded in G2. We find that the interaction with the ambient medium and the extreme gravitational field of the supermassive black hole in the Galactic Center must be taken into account in such a source scenario. The thermal pressure of the hot and dense atmosphere confines the wind, while its ram pressure shapes it via stripping along the orbit, with the details depending on the wind parameters. Tidal forces squeeze the wind near pericenter, reducing it to a thin and elongated filament. We also find that in this scenario most of the Brγ luminosity is expected to come from the densest part of the wind, which has a highly filamentary structure with a low filling factor. For our assumed atmosphere, the observations can be best matched by a mass outflow rate of M-dot{sub w}=8.8×10{sup -8} M{sub sun} yr{sup -1} and a wind velocity of v{sub w} = 50 km s{sup –1}. These values are comparable with those of a young T Tauri star wind, as already suggested by Scoville and Burkert.

  7. Performance simulation of a compact PET insert for simultaneous PET/MR breast imaging

    NASA Astrophysics Data System (ADS)

    Liang, Yicheng; Peng, Hao

    2014-07-01

    We studied performance metrics of a small PET ring designed to be integrated with a breast MRI coil. Its performance was characterized using a Monte Carlo simulation of a system with the best possible design features we believe are technically available, with respect to system geometry, spatial resolution, shielding, and lesion detectability. The results indicate that the proposed system is able to achieve about 6.2% photon detection sensitivity at the center of field-of-view (FOV) (crystal design: 2.2×2.2×20 mm3, height: 3.4 cm). The peak noise equivalent count rate (NECR) is found to be 7886 cps with a time resolution of 250 ps (time window: 500 ps). With the presence of lead shielding, the NECR increases by a factor of 1.7 for high activity concentrations within the breast (>0.9 μCi/mL), while no noticeable benefit is observed in the range of activities currently being used in the clinical setting. In addition, the system is able to achieve spatial resolution of ~1.6 mm (2.2×2.2×20 mm3 crystal) and ~0.77 mm (1×1×20 mm3 crystal) at the center of FOV, respectively. The incorporation of 10 mm DOI resolution can help mitigate parallax error towards the edge of FOV. For both 2.2 mm and 1 mm crystal designs, the spatial resolution is around 3.2-3.5 mm at 5 cm away from the center. Finally, time-of-flight (TOF) helps in improving image quality, reduces the required number of iteration numbers and the scan time. The TOF effect was studied with 3 different time resolution settings (1 ns, 500 ps and 250 ps). With a TOF of 500 ps time resolution, we expect 3 mm diameter spheres where 5:1 activity concentration ratio will be detectable within 5 min achieving contrast to noise ratio (CNR) above 4.

  8. Used nuclear fuel separations process simulation and testing

    SciTech Connect

    Pereira, C.; Krebs, J.F.; Copple, J.M.; Frey, K.E.; Maggos, L.E.; Figueroa, J.; Willit, J.L.; Papadias, D.D.

    2013-07-01

    Recent efforts in separations process simulation at Argonne have expanded from the traditional focus on solvent extraction flowsheet design in order to capture process dynamics and to simulate other components, processing and systems of a used nuclear fuel reprocessing plant. For example, the Argonne Model for Universal Solvent Extraction (AMUSE) code has been enhanced to make it both more portable and more readily extensible. Moving away from a spreadsheet environment makes the addition of new species and processes simpler for the expert user, which should enable more rapid implementation of chemical models that simulate evolving processes. The dyAMUSE (dynamic AMUSE) version allows the simulation of transient behavior across an extractor. Electrochemical separations have now been modeled using spreadsheet codes that simulate the electrochemical recycle of fast reactor fuel. The user can follow the evolution of the salt, products, and waste compositions in the electro-refiner, cathode processors, and drawdown as a function of fuel batches treated. To further expand capabilities in integrating multiple unit operations, a platform for linking mathematical models representing the different operations that comprise a reprocessing facility was adapted to enable systems-level analysis and optimization of facility functions. (authors)

  9. Upgrades to the NESS (Nuclear Engine System Simulation) Code

    NASA Technical Reports Server (NTRS)

    Fittje, James E.

    2007-01-01

    In support of the President's Vision for Space Exploration, the Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for human expeditions to the moon and Mars. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the 1960's and 1970's. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design.

  10. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2013-01-01

    A key technology element in Nuclear Thermal Propulsion is the development of fuel materials and components which can withstand extremely high temperatures while being exposed to flowing hydrogen. NTREES provides a cost effective method for rapidly screening of candidate fuel components with regard to their viability for use in NTR systems. The NTREES is designed to mimic the conditions (minus the radiation) to which nuclear rocket fuel elements and other components would be subjected to during reactor operation. The NTREES consists of a water cooled ASME code stamped pressure vessel and its associated control hardware and instrumentation coupled with inductive heaters to simulate the heat provided by the fission process. The NTREES has been designed to safely allow hydrogen gas to be injected into internal flow passages of an inductively heated test article mounted in the chamber.

  11. Ester-linked hen egg white lysozyme shows a compact fold in a molecular dynamics simulation - possible causes and sensitivity of experimentally observable quantities to structural changes maintaining this compact fold.

    PubMed

    Eichenberger, Andreas P; Smith, Lorna J; van Gunsteren, Wilfred F

    2012-01-01

    Prediction and understanding of the folding and stability of the 3D structure of proteins is still a challenge. The different atomic interactions, such as non polar contacts and hydrogen bonding, are known but their exact relative weights and roles when contributing to protein folding and stability are not identified. Initiated by a previous molecular dynamics simulation of fully ester-linked hen egg white lysozyme (HEWL), which showed a more compact fold of the ester-linked molecule compared to the native one, three variants of this protein are analyzed in the present study. These are 129-residue native HEWL, partly ester-linked HEWL, in which only 34 peptide linkages that are not involved in the helical or β-strand parts of native HEWL were replaced by ester linkages, and fully (126 residues) ester-linked HEWL. Native and partly ester-linked HEWL showed comparable behaviour, whereas fully ester-linked HEWL could not maintain the native secondary structure of HEWL in the simulation and adopted a more compact fold. The conformational changes were analyzed by comparing simulation averaged values of quantities that can be measured by NMR, such as (1)H-(15)N backbone order parameters, residual dipolar couplings, proton-proton NOE distances and (3)J-couplings with the corresponding values derived from experimental NMR data for native HEWL. The information content of the latter appeared to be insufficient to detect the local conformational rearrangements upon esterification of the loop regions of the protein. For fully ester-linked HEWL, a significantly reduced agreement was observed. Upon esterification, the backbone-side chain and side chain-side chain hydrogen-bonding pattern of HEWL changes to maintain its compactness and thus the structural stability of the ester-linked lysozymes. PMID:22093234

  12. Nuclear burning in a compact scheme of inertial electrostatic confinement as imitation of stellar nucleosynthesis. Experiment and PIC modeling

    NASA Astrophysics Data System (ADS)

    Kurilenkov, Yu K.; Tarakanov, V. P.; Karpukhin, V. T.; Gus'kov, S. Yu; Oginov, A. V.

    2015-11-01

    DD neutrons from microfusion in the interelectrode space of a table-top low energy nanosecond vacuum discharge with a deuterium-loaded Pd anode have been demonstrated earlier. The detailed particle-in-cell (PIC) simulation of the discharge experimental conditions have been developed using a fully electrodynamic code. The principal role of a virtual cathode and the corresponding deep potential well (PW) formed in the interelectrode space are recognized. The PIC modeling has allowed identifying the scheme of small-scale experiment with a rather old branch of plasma physics as inertial electrostatic confinement fusion. Deuterons being trapped by this well are accelerating up to the energies of a few tens of keV that provides the DD nuclear synthesis under head-on collisions. Meanwhile, any ions of other elements like He, C, O, Si (as main elements of different shells of stars) being placed in the PW (even with low Z charges) have to be accelerated easily up to the head-on collisions energies, which are corresponding to the temperatures of ignition Tign for different shells. We conclude that hypothesis on some imitation of different stages of stellar nucleosynthesis by nuclear burning in the potential well of virtual cathode in vacuum discharge seems to be reasonable and stimulating in the future study of complex element burning including advanced fuel like p-B11.

  13. Nuclear power plant simulators: their use in operator training and requalification

    SciTech Connect

    Jones, D.W.; Baer, D.K.; Francis, C.C.

    1980-07-01

    This report presents the results of a study performed for the Nuclear Regulatory Commission to evaluate the capabilities and use of nuclear power plant simulators either built or being built by the US nuclear power industry; to determine the adequacy of existing standards for simulator design and for the training of power plant operators on simulators; and to assess the issues about simulator training programs raised by the March 28, 1979, accident at Three Mile Island Unit 2.

  14. Simulated antineutrino signatures of nuclear reactors for nonproliferation applications

    NASA Astrophysics Data System (ADS)

    Misner, Alex C.

    2008-10-01

    Antineutrino detectors could provide a valuable addition to current safeguards regimes. Antineutrinos are an attractive emission to monitor due to their low interaction cross-section that prevents them from being shielded and the dependence of their spectrum on the power level and isotopic content of a reactor core. While there are antineutrino detectors currently deployed at an operational reactor, such observations cannot predict the effect of the diversion of nuclear material on the antineutrino emissions. Utilizing simulation tools, one can predict the antineutrino signatures of such abnormal operations and other reactor types that have not been experimentally measured. This study simulates reactor cores with assembly-level resolution for both baseline and diversion cases in order to predict the properties of a detector for measuring the differences in the antineutrino signatures.

  15. NUCLEAR DATA RESOURCES FOR ADVANCED ANALYSIS AND SIMULATION.

    SciTech Connect

    PRITYCHENKO, B.

    2006-06-05

    The mission of the National Nuclear Data Center (NNDC) includes collection, evaluation, and dissemination of nuclear physics data for basic nuclear research and applied nuclear technologies. In 2004, to answer the needs of nuclear data users, NNDC completed a project to modernize storage and management of its databases and began offering new nuclear data Web services. Examples of nuclear reaction, nuclear structure and decay database applications along with a number of nuclear science codes are also presented.

  16. THIEF: An interactive simulation of nuclear materials safeguards

    SciTech Connect

    Stanbro, W. D.

    1990-01-01

    The safeguards community is facing an era in which it will be called upon to tighten protection of nuclear material. At the same time, it is probable that safeguards will face more competition for available resources from other activities such as environmental cleanup. To exist in this era, it will be necessary to understand and coordinate all aspects of the safeguards system. Because of the complexity of the interactions involved, this process puts a severe burden on designers and operators of safeguards systems. This paper presents a simulation tool developed at the Los Alamos National Laboratory to allow users to examine the interactions among safeguards elements as they apply to combating the insider threat. The tool consists of a microcomputer-based simulation in which the user takes the role of the insider trying to remove nuclear material from a facility. The safeguards system is run by the computer and consists of both physical protection and MC A computer elements. All data elements describing a scenario can be altered by the user. The program can aid in training, as well as in developing threat scenarios. 4 refs.

  17. Interactive Simulation of Nuclear Materials Safeguards and Security

    Energy Science and Technology Software Center (ESTSC)

    1994-03-14

    THIEF is an interactive computer simulation or computer game of the safeguards and security (S&S) systems of a nuclear facility. The user is placed in the role of a non-violent insider attempting to remove special nuclear material from the facility. All portions of the S&S system that are relevant to the non-violent insider threat are included. The computer operates the S&S systems and attempts to detect the loss of the nuclear material. Both the physicalmore » protection system and the materials control and accounting system are modeled. The description of the facility and its S&S systems are defined by the user with the aid of an input module. All aspects of the facility description are provided by the user. The program has a custom graphical user interface to facilitate its use by people with limited computer experience. The custom interface also allows it to run on relatively small computer systems.« less

  18. Adult Compacts.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This bulletin focuses on adult compacts, three-way agreements among employers, potential employees, and trainers to provide the right kind of quality training to meet the employers' requirements. Part 1 is an executive summary of a report of the Adult Compacts Project, which studied three adult compacts in Birmingham and Loughborough, England, and…

  19. MCNP Simulations of Measurement of Insulation Compaction in the Cryogenic Rocket Fuel Tanks at Kennedy Space Center by Fast/Thermal Neutron Techniques

    NASA Technical Reports Server (NTRS)

    Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.

    2010-01-01

    MCNP simulations have been run to evaluate the feasibility of using a combination of fast and thermal neutrons as a nondestructive method to measure of the compaction of the perlite insulation in the liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC). Perlite is a feldspathic volcanic rock made up of the major elements Si, AI, Na, K and 0 along with some water. When heated it expands from four to twenty times its original volume which makes it very useful for thermal insulation. The cryogenic tanks at Kennedy Space Center are spherical with outer diameters of 69-70 feet and lined with a layer of expanded perlite with thicknesses on the order of 120 cm. There is evidence that some of the perlite has compacted over time since the tanks were built 1965, affecting the thermal properties and possibly also the structural integrity of the tanks. With commercially available portable neutron generators it is possible to produce simultaneously fluxes of neutrons in two energy ranges: fast (14 Me V) and thermal (25 me V). The two energy ranges produce complementary information. Fast neutrons produce gamma rays by inelastic scattering, which is sensitive to Fe and O. Thermal neutrons produce gamma rays by prompt gamma neutron activation (PGNA) and this is sensitive to Si, Al, Na, K and H. The compaction of the perlite can be measured by the change in gamma ray signal strength which is proportional to the atomic number densities of the constituent elements. The MCNP simulations were made to determine the magnitude of this change. The tank wall was approximated by a I-dimensional slab geometry with an 11/16" outer carbon steel wall, an inner stainless wall and 120 cm thick perlite zone. Runs were made for cases with expanded perlite, compacted perlite or with various void fractions. Runs were also made to simulate the effect of adding a moderator. Tallies were made for decay-time analysis from t=0 to 10 ms; total detected gamma

  20. VISION - Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics

    SciTech Connect

    Steven J. Piet; A. M. Yacout; J. J. Jacobson; C. Laws; G. E. Matthern; D. E. Shropshire

    2006-02-01

    The U.S. DOE Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that - if implemented - would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deployment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential "exit" or "off ramp" approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. It is based on the current AFCI system analysis tool "DYMOND-US" functionalities in addition to economics, isotopic decay, and other new functionalities. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI and Generation IV reactor development studies.

  1. Compaction properties of isomalt.

    PubMed

    Bolhuis, Gerad K; Engelhart, Jeffrey J P; Eissens, Anko C

    2009-08-01

    Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of ispomalt were studied. The types used were the standard product sieved isomalt, milled isomalt and two types of agglomerated isomalt with a different ratio between 6-O-alpha-d-glucopyranosyl-d-sorbitol (GPS) and 1-O-alpha-d-glucopyranosyl-d-mannitol dihydrate (GPM). Powder flow properties, specific surface area and densities of the different types were investigated. Compactibility was investigated by compression of the tablets on a compaction simulator, simulating the compression on high-speed tabletting machines. Lubricant sensitivity was measured by compressing unlubricated tablets and tablets lubricated with 1% magnesium stearate on an instrumented hydraulic press. Sieved isomalt had excellent flow properties but the compactibility was found to be poor whereas the lubricant sensitivity was high. Milling resulted in both a strong increase in compactibility as an effect of the higher surface area for bonding and a decrease in lubricant sensitivity as an effect of the higher surface area to be coated with magnesium stearate. However, the flow properties of milled isomalt were too bad for use as filler-binder in direct compaction. Just as could be expected, agglomeration of milled isomalt by fluid bed agglomeration improved flowability. The good compaction properties and the low lubricant sensitivity were maintained. This effect is caused by an early fragmentation of the agglomerated material during the compaction process, producing clean, lubricant-free particles and a high surface for bonding. The different GPS/GPM ratios of the agglomerated isomalt types studied had no significant effect on the compaction properties. PMID:19327398

  2. NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) PROGRAM GRANT NUMBER DE-FG03-00SF22168 TECHNICAL PROGRESS REPORT (Nov. 15, 2001 - Feb. 15,2002) ''Design and Layout Concepts for Compact, Factory-Produced, Transportable, Generation IV Reactor Systems''

    SciTech Connect

    Fred R. Mynatt; Andy Kadak; Marc Berte; Larry Miller; Mohammed Khan; Joe McConn; Lawrence Townsend; Wesley Williams; Martin Williamson

    2002-03-15

    The objectives of this project are to develop and evaluate nuclear power plant designs and layout concepts to maximize the benefits of compact modular Generation IV reactor concepts including factory fabrication and packaging for optimal transportation and siting. Three nuclear power plant concepts are being studied representing water, helium and lead-bismuth coolants. This is the sixth quarterly progress report.

  3. Neutron Correlations in Special Nuclear Materials, Experiments and Simulations

    SciTech Connect

    Verbeke, J; Dougan, A; Nakae, L; Sale, K; Snyderman, N

    2007-06-05

    Fissile materials emit neutrons with an unmistakable signature that can reveal characteristics of the material. We describe here measurements, simulations, and predicted signals expected and prospects for application of neutron correlation measurement methods to detection of special nuclear materials (SNM). The occurrence of fission chains in SNM can give rise to this distinctive, measurable time correlation signal. The neutron signals can be analyzed to detect the presence and to infer attributes of the SNM and surrounding materials. For instance, it is possible to infer attributes of an assembly containing a few kilograms of uranium, purely passively, using detectors of modest size in a reasonable time. Neutron signals of three radioactive sources are shown to illustrate the neutron correlation and analysis method. Measurements are compared with Monte Carlo calculations of the authenticated sources.

  4. High temperature dilatometry of simulated oxide nuclear fuel

    NASA Astrophysics Data System (ADS)

    Tenishev, A. V.; Baranov, V. G.; Kuzmin, R. S.; Pokrovskiy, S. A.

    2016-04-01

    High temperature dilatometry of model systems based on uranium dioxide with additives of burnable neutron absorbers both as Gd2O3 and as AlGdO3, and fission products simulators (FPS) was performed. It shown that in some cases instead of high temperature samples shrinkage there is a sharp transition to the expansion, which is associated with an increase of the samples volume due to the formation of liquid phases. The beginning of a complex composition eutectic melting starts at temperatures from 1950 to 2250 °C in the uranium dioxide samples containing significant amounts of Al, Gd, and FPS. Thus, in the analysis of oxide nuclear fuel behavior at high temperatures should be considered that the formation of liquid phases is possible at a temperature of 1000 °C lower than a melting point of pure stoichiometric uranium dioxide if its initial composition became more complex.

  5. Chavir: Virtual reality simulation for interventions in nuclear installations

    SciTech Connect

    Thevenon, J. B.; Tirel, O.; Lopez, L.; Chodorge, L.; Desbats, P.

    2006-07-01

    Companies involved in the nuclear industry have to prepare for interventions by precisely analyzing the radiological risks and rapidly evaluating the consequences of their operational choices. They also need to consolidate the experiences gained in the field with greater responsiveness and lower costs. This paper brings out the advantages of using virtual reality technology to meet the demands in the industry. The CHAVIR software allows the operators to prepare (and repeat) all the operations they would have to do in a safe virtual world, before performing the actual work inside the facilities. Since the decommissioning or maintenance work is carried out in an environment where there is radiation, the amount of radiation that the operator would be exposed to is calculated and integrated into the simulator. (authors)

  6. Chemical durability of simulated nuclear glasses containing water

    SciTech Connect

    Li, H.; Tomozawa, M.

    1995-04-01

    The chemical durability of simulated nuclear waste glasses having different water contents was studied. Results from the product consistency test (PCT) showed that glass dissolution increased with water content in the glass. This trend was not observed during MCC-1 testing. This difference was attributed to the differences in reactions between glass and water. In the PCT, the glass network dissolution controlled the elemental releases, and water in the glass accelerated the reaction rate. On the other hand, alkali ion exchange with hydronium played an important role in the MCC-1. For the latter, the amount of water introduced into a leached layer from ion-exchange was found to be much greater than that of initially incorporated water in the glass. Hence, the initial water content has no effect on glass dissolution as measured by the MCC-1 test.

  7. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at

  8. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  9. Simulating the venting of radioactivity from a soviet nuclear test

    NASA Astrophysics Data System (ADS)

    Rodriguez, Daniel J.; Peterson, Kendall R.

    Fresh fission products were found in several routine air samples in Europe during the second and third weeks of March 1987. Initially, it was suspected that the radionuclides, principally 133Xe and 131I, had been accidentally released from a European facility handling nuclear materials. However, the announcement of an underground nuclear test at Semipalatinsk, U.S.S.R. on 26 February 1987 suggested that the elevated amounts of radioactivity may, instead, have been caused by a venting episode. Upon learning of these events, we simulated the transport and diffusion of 133Xe with our Hemispheric MEDIC and ADPIC models, assuming Semipalatinsk to be the source of the radioactive emissions. The correspondence between the calculated concentrations and the daily average 133Xe measurements made by the Federal Office for Civil Protection in F.R.G. was excellent. While this agreement does not, in itself, prove that an atmospheric venting of radioactive material occurred at Semipalatinsk, a body of circumstantial evidence exists which, when added together, strongly supports this conclusion. Our calculations suggested a total fission yield of about 40 kt, which is within the 20-150 kt range of tests acknowledged by the U.S.S.R. Finally, dose calculations indicated that no health or environmental impact occurred outside of the U.S.S.R. due to the suspected venting of 133Xe. However, the inhalation dose resulting from 133I, an unmodeled component of the radioactive cloud, represented a greater potential risk to public health.

  10. Recent Improvement of Measurement Instrumentation to Supervise Nuclear Operations and to Contribute Input Data to 3D Simulation Code - 13289

    SciTech Connect

    Mahe, Charly; Chabal, Caroline

    2013-07-01

    The CEA has developed many compact characterization tools to follow sensitive operations in a nuclear environment. Usually, these devices are made to carry out radiological inventories, to prepare nuclear interventions or to supervise some special operations. These in situ measurement techniques mainly take place at different stages of clean-up operations and decommissioning projects, but they are also in use to supervise sensitive operations when the nuclear plant is still operating. In addition to this, such tools are often associated with robots to access very highly radioactive areas, and thus can be used in accident situations. Last but not least, the radiological data collected can be entered in 3D calculation codes used to simulate the doses absorbed by workers in real time during operations in a nuclear environment. Faced with these ever-greater needs, nuclear measurement instrumentation always has to involve on-going improvement processes. Firstly, this paper will describe the latest developments and results obtained in both gamma and alpha imaging techniques. The gamma camera has been used by the CEA since the 1990's and several changes have made this device more sensitive, more compact and more competitive for nuclear plant operations. It is used to quickly identify hot spots, locating irradiating sources from 50 keV to 1500 keV. Several examples from a wide field of applications will be presented, together with the very latest developments. The alpha camera is a new camera used to see invisible alpha contamination on several kinds of surfaces. The latest results obtained allow real time supervision of a glove box cleaning operation (for {sup 241}Am contamination). The detection principle as well as the main trials and results obtained will be presented. Secondly, this paper will focus on in situ gamma spectrometry methods developed by the CEA with compact gamma spectrometry probes (CdZnTe, LaBr{sub 3}, NaI, etc.). The radiological data collected is used

  11. Analysis by simulation of the disposition of nuclear fuel waste

    SciTech Connect

    Turek, J.L.

    1980-09-01

    A descriptive simulation model is developed which includes all aspects of nuclear waste disposition. The model is comprised of two systems, the second system orchestrated by GASP IV. A spent fuel generation prediction module is interfaced with the AFR Program Management Information System and a repository scheduling information module. The user is permitted a wide range of options with which to tailor the simulation to any desired storage scenario. The model projects storage requirements through the year 2020. The outputs are evaluations of the impact that alternative decision policies and milestone date changes have on the demand for, the availability of, and the utilization of spent fuel storage capacities. Both graphs and detailed listings are available. These outputs give a comprehensive view of the particular scenario under observation, including the tracking, by year, of each discharge from every reactor. Included within the work is a review of the status of spent fuel disposition based on input data accurate as of August 1980. The results indicate that some temporary storage techniques (e.g., transshipment of fuel and/or additional at-reactor storage pools) must be utilized to prevent reactor shutdowns. These techniques will be required until the 1990's when several AFR facilities, and possibly one repository, can become operational.

  12. Searching for gravitational-waves from compact binary coalescences while dealing with challenges of real data and simulated waveforms

    NASA Astrophysics Data System (ADS)

    Dayanga, Waduthanthree Thilina

    Albert Einstein's general theory of relativity predicts the existence of gravitational waves (GWs). Direct detection of GWs will provide enormous amount of new information about physics, astronomy and cosmology. Scientists around the world are currently working towards the first direct detection of GWs. The global network of ground-based GW detectors are currently preparing for their first advanced detector Science runs. In this thesis we focus on detection of GWs from compact binary coalescence (CBC) systems. Ability to accurately model CBC GW waveforms makes them the most promising source for the first direct detection of GWs. In this thesis we try to address several challenges associated with detecting CBC signals buried in ground-based GW detector data for past and future searches. Data analysis techniques we employ to detect GW signals assume detector noise is Gaussian and stationary. However, in reality, detector data is neither Gaussian nor stationary. To estimate the performance loss due to these features, we compare the efficiencies of detecting CBC signals in simulated Gaussian and real data. Additionally, we also demonstrate the effectiveness of multi-detector signal based consistency tests such ad null-stream. Despite, non-Gaussian and non-stationary features of real detector data, with effective data quality studies and signal-based vetoes we can approach the performance of Gaussian and stationary data. As we are moving towards advanced detector era, it is important to be prepared for future CBC searches. In this thesis we investigate the performances of non-spinning binary black hole (BBH) searches in simulated Gaussian using advanced detector noise curves predicted for 2015--2016. In the same study, we analyze the GW detection probabilities of latest pN-NR hybrid waveforms submitted to second version of Numerical Injection Analysis (NINJA-2) project. The main motivation for this study is to understand the ability to detect realistic BBH signals of

  13. Sub-saturation matter in compact stars: Nuclear modelling in the framework of the extended Thomas-Fermi theory

    SciTech Connect

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2015-02-24

    A recently introduced analytical model for the nuclear density profile [1] is implemented in the Extended Thomas-Fermi (ETF) energy density functional. This allows to (i) shed a new light on the issue of the sign of surface symmetry energy in nuclear mass formulas, as well as to (ii) show the importance of the in-medium corrections to the nuclear cluster energies in thermodynamic conditions relevant for the description of core-collapse supernovae and (proto)-neutron star crust.

  14. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  15. High-Fidelity Space-Time Adaptive Multiphysics Simulations in Nuclear Engineering

    SciTech Connect

    Solin, Pavel; Ragusa, Jean

    2014-03-09

    We delivered a series of fundamentally new computational technologies that have the potential to significantly advance the state-of-the-art of computer simulations of transient multiphysics nuclear reactor processes. These methods were implemented in the form of a C++ library, and applied to a number of multiphysics coupled problems relevant to nuclear reactor simulations.

  16. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-03-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an

  17. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an

  18. Separation of technetium from nuclear waste stream simulants. Final report

    SciTech Connect

    Strauss, S.H.

    1995-09-11

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering {sup 99}TcO{sub 4}{sup {minus}} from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO{sub 4}{sup {minus}}), a stable (non-radioactive) chemical surrogate for {sup 99}TcO{sub 4}{sup {minus}}. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO{sub 4}{sup {minus}} and TcO{sub 4}{sup {minus}}.

  19. Simulating feedback from nuclear clusters: the impact of multiple sources

    NASA Astrophysics Data System (ADS)

    Bourne, Martin A.; Power, Chris

    2016-02-01

    Nuclear star clusters (NCs) are found to exist in the centres of many galaxies and appear to follow scaling relations similar to those of supermassive black holes. Previous analytical work has suggested that such relations are a consequence of feedback-regulated growth. We explore this idea using high-resolution hydrodynamical simulations, focusing on the validity of the simplifying assumptions made in analytical models. In particular, we investigate feedback emanating from multiple stellar sources rather than from a single source, as is usually assumed, and show that collisions between shells of gas swept up by feedback leads to momentum cancellation and the formation of high-density clumps and filaments. This high-density material is resistant both to expulsion from the galaxy potential and to disruption by feedback; if it falls back on to the NC, we expect the gas to be available for further star formation or for feeding a central black hole. We also note that our results may have implications for the evolution of globular clusters and stellar clusters in high-redshift dark matter haloes.

  20. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit

  1. Monte Carlo Simulation for LINAC Standoff Interrogation of Nuclear Material

    SciTech Connect

    Clarke, Shaun D; Flaska, Marek; Miller, Thomas Martin; Protopopescu, Vladimir A; Pozzi, Sara A

    2007-06-01

    The development of new techniques for the interrogation of shielded nuclear materials relies on the use of Monte Carlo codes to accurately simulate the entire system, including the interrogation source, the fissile target and the detection environment. The objective of this modeling effort is to develop analysis tools and methods-based on a relevant scenario-which may be applied to the design of future systems for active interrogation at a standoff. For the specific scenario considered here, the analysis will focus on providing the information needed to determine the type and optimum position of the detectors. This report describes the results of simulations for a detection system employing gamma rays to interrogate fissile and nonfissile targets. The simulations were performed using specialized versions of the codes MCNPX and MCNP-PoliMi. Both prompt neutron and gamma ray and delayed neutron fluxes have been mapped in three dimensions. The time dependence of the prompt neutrons in the system has also been characterized For this particular scenario, the flux maps generated with the Monte Carlo model indicate that the detectors should be placed approximately 50 cm behind the exit of the accelerator, 40 cm away from the vehicle, and 150 cm above the ground. This position minimizes the number of neutrons coming from the accelerator structure and also receives the maximum flux of prompt neutrons coming from the source. The lead shielding around the accelerator minimizes the gamma-ray background from the accelerator in this area. The number of delayed neutrons emitted from the target is approximately seven orders of magnitude less than the prompt neutrons emitted from the system. Therefore, in order to possibly detect the delayed neutrons, the detectors should be active only after all prompt neutrons have scattered out of the system. Preliminary results have shown this time to be greater than 5 ?s after the accelerator pulse. This type of system is illustrative of a

  2. Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles.

    PubMed

    Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi

    2015-07-17

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used. PMID:26230780

  3. Laser experiments to simulate coronal mass ejection driven magnetospheres and astrophysical plasma winds on compact magnetized stars

    NASA Astrophysics Data System (ADS)

    Horton, W.; Ditmire, T.; Zakharov, Yu. P.

    2010-06-01

    Laboratory experiments using a plasma wind generated by laser-target interaction are proposed to investigate the creation of a shock in front of the magnetosphere and the dynamo mechanism for creating plasma currents and voltages. Preliminary experiments are shown where measurements of the electron density gradients surrounding the obstacles are recorded to infer the plasma winds. The proposed experiments are relevant to understanding the electron acceleration mechanisms taking place in shock-driven magnetic dipole confined plasmas surrounding compact magnetized stars and planets. Exploratory experiments have been published [P. Brady, T. Ditmire, W. Horton, et al., Phys. Plasmas 16, 043112 (2009)] with the one Joule Yoga laser and centimeter sized permanent magnets.

  4. Thermal Simulator Development: Non-Nuclear Testing of Space Fission Systems

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky E.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system. At the NASA MSFC Early Flight Fission Test Facility (EFF-TF), highly designed electric heaters are used to simulate the heat from nuclear fuel to test space fission power and propulsion systems. To allow early utilization, nuclear system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. In this test strategy, highly designed electric heaters are used to simulate the heat from nuclear fuel, allowing one to develop a significant understanding of individual components and integrated system operation without the cost, time and safety concerns associated with nuclear testing.

  5. Compost improves compacted urban soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urban construction sites usually result in compacted soils that limit infiltration and root growth. The purpose of this study was to determine if compost, aeration, and/or prairie grasses can remediate a site setup as a simulated post-construction site (compacted). Five years after establishing the ...

  6. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon; Dickens, Ricky; Dixon, David

    2007-01-01

    This viewgraph presentation reviews the development of a simulator for non-nuclear tests for the development of a space nuclear power system. The development of the Instrumented Thermal Simulator is to assist in developing an understanding of individual components and integrated system operation without the cost, time, safety concerns associated with nuclear testing. The presentation shows the design, the electrical integration, the hardware, and the assembly of the simulators. There are slides that show the test plan, the analysis, and the initial results.

  7. High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential

  8. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Farmer, J.; Dixon, D.; Kapernick, R.; Dickens, R.; Adams, M.

    2007-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but to also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the fuel clad surface, which corresponds to the sheath surface in the thermal simulator. Static and dynamic fuel pin performance was determined using SINDA-FLUINT analysis, and the performance of conceptual thermal simulator designs was compared to the expected nuclear performance. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts.

  9. A performance-based method for calculating the design thickness of compacted clay liners exposed to high strength leachate under simulated landfill conditions.

    PubMed

    Safari, Edwin; Jalili Ghazizade, Mahdi; Abdoli, Mohammad Ali

    2012-09-01

    Compacted clay liners (CCLs) when feasible, are preferred to composite geosynthetic liners. The thickness of CCLs is typically prescribed by each country's environmental protection regulations. However, considering the fact that construction of CCLs represents a significant portion of overall landfill construction costs; a performance based design of liner thickness would be preferable to 'one size fits all' prescriptive standards. In this study researchers analyzed the hydraulic behaviour of a compacted clayey soil in three laboratory pilot scale columns exposed to high strength leachate under simulated landfill conditions. The temperature of the simulated CCL at the surface was maintained at 40 ± 2 °C and a vertical pressure of 250 kPa was applied to the soil through a gravel layer on top of the 50 cm thick CCL where high strength fresh leachate was circulated at heads of 15 and 30 cm simulating the flow over the CCL. Inverse modelling using HYDRUS-1D indicated that the hydraulic conductivity after 180 days was decreased about three orders of magnitude in comparison with the values measured prior to the experiment. A number of scenarios of different leachate heads and persistence time were considered and saturation depth of the CCL was predicted through modelling. Under a typical leachate head of 30 cm, the saturation depth was predicted to be less than 60 cm for a persistence time of 3 years. This approach can be generalized to estimate an effective thickness of a CCL instead of using prescribed values, which may be conservatively overdesigned and thus unduly costly. PMID:22617473

  10. Probing of compact baryonic configurations in nuclei in A(p,p¯)X reactions and antiproton formation length in nuclear matter

    NASA Astrophysics Data System (ADS)

    Kiselev, Yu. T.; Sheinkman, V. A.; Akindinov, A. V.; Chumakov, M. M.; Martemyanov, A. N.; Smirnitsky, V. A.; Terekhov, Yu. V.; Paryev, E. Ya.

    2012-05-01

    Inclusive cross sections σA=Ed3σ(X,Pt2)/d3p of antiproton and negative pion production on Be, Al, Cu, and Ta targets hit by 10-GeV protons were measured at the laboratory angles of 10.5∘ and 59∘. Antiproton cross sections were obtained in both kinematically allowed and kinematically forbidden regions for antiproton production on a free nucleon. The antiproton cross-section ratio as a function of the longitudinal variable X exhibits three separate plateaus, which gives evidence for the existence of compact baryon configurations in nuclei—small-distance scaled objects of nuclear structure. The comparability of the measured cross-section ratios with those obtained in the inclusive electron scattering off nuclei suggests weak antiproton absorption in nuclei. Observed behavior of the cross-section ratios is interpreted in the framework of a model considering the hadron production as a fragmentation of quarks (antiquarks) into hadrons. It has been established that the antiproton formation length in nuclear matter can reach the magnitude of 4.5 fm.

  11. Initial Operation and Shakedown of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Prototypical fuel elements mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission in addition to being exposed to flowing hydrogen. Recent upgrades to NTREES now allow power levels 24 times greater than those achievable in the previous facility configuration. This higher power operation will allow near prototypical power densities and flows to finally be achieved in most prototypical fuel elements.

  12. Simulation of the underwater nuclear explosion and its effects. Master's thesis

    SciTech Connect

    Miller, W.E.

    1992-06-01

    This research was conducted to enhance understanding of the use of high explosives to simulate the effects of a nuclear underwater explosion. A review of the known characteristics of the nuclear, spherical conventional, and tapered conventional underwater pressure-time histories illustrates the selection of the tapered charge to simulate the underwater nuclear explosion. Three areas of study were then pursued. The first compared the structural response resulting from attack by conventional and nuclear type pressure profiles, verifying the need to match duration as well as peak pressure when simulating the underwater nuclear explosion. The second employed finite element analysis to study the three dimensional shock generated by a tapered charge. Third, a computer program was written to couple an optimizer with an existing tapered charge pressure-profile generating code to improve the tapered charge design process.

  13. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  14. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  15. NASTRAN Analysis Comparison to Shock Tube Tests Used to Simulate Nuclear Overpressures

    NASA Technical Reports Server (NTRS)

    Wheless, T. K.

    1985-01-01

    This report presents a study of the effectiveness of the NASTRAN computer code for predicting structural response to nuclear blast overpressures. NASTRAN's effectiveness is determined by comparing results against shock tube tests used to simulate nuclear overpressures. Seven panels of various configurations are compared in this study. Panel deflections are the criteria used to measure NASTRAN's effectiveness. This study is a result of needed improvements in the survivability/vulnerability analyses subjected to nuclear blast.

  16. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method.

    PubMed

    Hejranfar, Kazem; Ezzatneshan, Eslam

    2015-11-01

    A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of the proposed solution procedure based on the compact finite-difference LBM are examined by solving different two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and also

  17. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Hejranfar, Kazem; Ezzatneshan, Eslam

    2015-11-01

    A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of the proposed solution procedure based on the compact finite-difference LBM are examined by solving different two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and also

  18. Numerical investigations on a compact magnetic fusion device for studying the effect of external applied magnetic field oscillations on the nuclear burning efficiency of D-T and p-11B fuels

    NASA Astrophysics Data System (ADS)

    Moustaizis, S. D.; Lalousis, P.; Hora, H.; Larour, J.; Auvray, P.; Balcou, P.; Ducret, J.-E.; Martin, P.

    2015-05-01

    The burning process of high density (about 1018cm-3), high temperature (tens to hundreds of keV) plasma trapped by a high mirror-like magnetic field in a Compact Magnetic Fusion (CMF) device is numerically investigated.. The initial high density and high temperature plasma in the CMF device is produced by ultrashort high intensity laser beam interaction with clusters or thin foils, and two fuels, D-T and p-11B are studied. The spatio-temporal evolution of D-T and p-11B plasmas, the production of alphas, the generated electric fields and the high external applied magnetic field are described by a 1-D multifluid code. The initial values for the plasma densities, temperatures and external applied magnetic field (about 100 T) correspond to high β plasmas. The main objectives of the numerical simulations are: to study the plasma trapping, the neutron and alpha production for both fuels, and compare the effect of the external applied magnetic field on the nuclear burning efficiency for the two fuels.. The comparisons and the advantages for each fuel will be presented. The proposed CMF device and the potential operation of the device within the ELI-NP pillar will be discussed.

  19. Numerical simulations of compact intracloud discharges as the Relativistic Runaway Electron Avalanche-Extensive Air Shower process

    NASA Astrophysics Data System (ADS)

    Arabshahi, S.; Dwyer, J. R.; Nag, A.; Rakov, V. A.; Rassoul, H. K.

    2014-01-01

    Compact intracloud discharges (CIDs) are sources of the powerful, often isolated radio pulses emitted by thunderstorms. The VLF-LF radio pulses are called narrow bipolar pulses (NBPs). It is still not clear how CIDs are produced, but two categories of theoretical models that have previously been considered are the Transmission Line (TL) model and the Relativistic Runaway Electron Avalanche-Extensive Air Showers (RREA-EAS) model. In this paper, we perform numerical calculations of RREA-EASs for various electric field configurations inside thunderstorms. The results of these calculations are compared to results from the other models and to the experimental data. Our analysis shows that different theoretical models predict different fundamental characteristics for CIDs. Therefore, many previously published properties of CIDs are highly model dependent. This is because of the fact that measurements of the radiation field usually provide information about the current moment of the source, and different physical models with different discharge currents could have the same current moment. We have also found that although the RREA-EAS model could explain the current moments of CIDs, the required electric fields in the thundercloud are rather large and may not be realistic. Furthermore, the production of NBPs from RREA-EAS requires very energetic primary cosmic ray particles, not observed in nature. If such ultrahigh-energy particles were responsible for NBPs, then they should be far less frequent than is actually observed.

  20. Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability

    SciTech Connect

    Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald; Jacques Hugo; Bruce Hallbert

    2013-03-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator is also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.

  1. Modeling Choices in Nuclear Warfighting: Two Classroom Simulations on Escalation and Retaliation

    ERIC Educational Resources Information Center

    Schofield, Julian

    2013-01-01

    Two classroom simulations--"Superpower Confrontation" and "Multipolar Asian Simulation"--are used to teach and test various aspects of the Borden versus Brodie debate on the Schelling versus Lanchester approach to nuclear conflict modeling and resolution. The author applies a Schelling test to segregate high from low empathic students, and assigns…

  2. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    SciTech Connect

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Adams, Mike; Davis, Joe; Kapernick, Richard

    2007-01-30

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being developed are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. Static and dynamic fuel pin performances for a proposed reactor design have been determined using SINDA/FLUINT thermal analysis software, and initial comparison has been made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts. This paper presents the current status of high fidelity thermal simulator design relative to a SNAP derivative reactor design that could be applied for Lunar surface power.

  3. Modeling and numerical techniques for high-speed digital simulation of nuclear power plants

    SciTech Connect

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1987-01-01

    Conventional computing methods are contrasted with newly developed high-speed and low-cost computing techniques for simulating normal and accidental transients in nuclear power plants. Six principles are formulated for cost-effective high-fidelity simulation with emphasis on modeling of transient two-phase flow coolant dynamics in nuclear reactors. Available computing architectures are characterized. It is shown that the combination of the newly developed modeling and computing principles with the use of existing special-purpose peripheral processors is capable of achieving low-cost and high-speed simulation with high-fidelity and outstanding user convenience, suitable for detailed reactor plant response analyses.

  4. High-speed simulation of transients in nuclear power plants

    SciTech Connect

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.

    1984-01-01

    A combination of advanced modeling techniques and modern, special-purpose peripheral minicomputer technology is presented which affords realistic predictions of plant transient and severe off-normal events in LWR power plants through on-line simulations at a speed ten times greater than actual process speeds. Results are shown for a BWR plant simulation. Results are shown to demonstrate computing capacity, accuracy, and speed. Simulation speeds have been achieved which are 110 times larger than those of a CDC-7600 mainframe computer or ten times greater than real-time speed.

  5. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  6. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Phase II Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J.; Moran, Robert P.; Pearson, J. Bose

    2013-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities. Keywords: Nuclear Thermal Propulsion, Simulator

  7. A radiative transfer model to simulate light scattering in a compact granular medium using a Monte‒Carlo approach: Validation and first applications

    NASA Astrophysics Data System (ADS)

    Pilorget, C.; Vincendon, M.; Poulet, F.

    2013-12-01

    A new radiative transfer model to simulate light scattering in a compact granular medium using a Monte‒Carlo approach is presented. The physical and compositional properties of the sample can be specified at the grain scale, thus allowing to simulate different kinds of heterogeneties/mixtures within the sample. The radiative transfer is then calculated using a ray tracing approach between the grains, and probabilistic physical parameters such as a single scattering albedo and a phase function at the grain level. The reflectance and the albedo can be computed at different scales and for different geometries: from the grain scale to the sample one. The photometric behavior of the model is validated by comparing the bidirectional reflectance obtained for various media and geometries with the one of semi‒infinite multilayer models, and a few first applications are presented. This model will be used to refine our understanding of visible/NIR remote sensing data of planetary surfaces, as well as future measurements of hyperspectral microscopes which may be able to resolve spatial compositional heterogeneities within a given sample.

  8. Monte-Carlo simulation of a compact gamma-ray detector using wavelength-shifting fibers coupled to a YAP scintillation crystal

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Ma, Hong-Guang; Ma, Wen-Yan; Zeng, Hui; Wang, Zhao-Min; Xu, Zi-Zong

    2008-05-01

    The production and transportation of fluorescent light produced in wavelength-shifting fibers (WSFs) coupled to YAP scintillation crystal is simulated using the GEANT4 codes. An advantage of the wavelength-shifting fiber readout technique over a direct readout with a position-sensitive photo-sensor is the reduced requirement for position sensitive photomultiplier tube photocathode area. With this gamma-ray detector, the gamma camera is small and flexible and has larger effective field of view and low cost. Simulation results show that a) a mean 12 of photons per 59.5 keV gamma ray interaction is produced in the WSF located nearest to the incident gamma ray, and a spatial resolution of 3.6 mm FWHM is obtained, b) a mean 27 of photons per 140 keV gamma ray interaction is produced and a spatial resolution of 3.1 mm FWHM is obtained. Results demonstrate the feasibility of this concept of a compact gamma-ray detector based on wavelength-shifting fibers readout. However, since the very low photoelectron levels, it is very important to use a photon counting device with good single photo-electron response to readout the WSFs. Supported by National Nature Science Foundation of China (10275063)

  9. Deflection Measurements of a Thermally Simulated Nuclear Core Using a High-Resolution CCD-Camera

    NASA Technical Reports Server (NTRS)

    Stanojev, B. J.; Houts, M.

    2004-01-01

    Space fission systems under consideration for near-term missions all use compact. fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage. is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system nuclear equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three- dimensional deformation profile of the core during test.

  10. KEYNOTE: Simulation, computation, and the Global Nuclear Energy Partnership

    NASA Astrophysics Data System (ADS)

    Reis, Victor, Dr.

    2006-01-01

    Dr. Victor Reis delivered the keynote talk at the closing session of the conference. The talk was forward looking and focused on the importance of advanced computing for large-scale nuclear energy goals such as Global Nuclear Energy Partnership (GNEP). Dr. Reis discussed the important connections of GNEP to the Scientific Discovery through Advanced Computing (SciDAC) program and the SciDAC research portfolio. In the context of GNEP, Dr. Reis talked about possible fuel leasing configurations, strategies for their implementation, and typical fuel cycle flow sheets. A major portion of the talk addressed lessons learnt from ‘Science Based Stockpile Stewardship’ and the Accelerated Strategic Computing Initiative (ASCI) initiative and how they can provide guidance for advancing GNEP and SciDAC goals. Dr. Reis’s colorful and informative presentation included international proverbs, quotes and comments, in tune with the international flavor that is part of the GNEP philosophy and plan. He concluded with a positive and motivating outlook for peaceful nuclear energy and its potential to solve global problems. An interview with Dr. Reis, addressing some of the above issues, is the cover story of Issue 2 of the SciDAC Review and available at http://www.scidacreview.org This summary of Dr. Reis’s PowerPoint presentation was prepared by Institute of Physics Publishing, the complete PowerPoint version of Dr. Reis’s talk at SciDAC 2006 is given as a multimedia attachment to this summary.

  11. Research approach and first results on agglomerate compaction in protoplanetary dust simulation in the Cloud Manipulation System

    NASA Astrophysics Data System (ADS)

    Vedernikov, Andrei; Blum, Jurgen; Ingo Von Borstel, Olaf; Schraepler, Rainer; Balapanov, Daniyar; Cecere, Anselmo

    2016-07-01

    Nanometre and micrometre-sized solid particles are ubiquitous in space and on Earth - from galaxies, interstellar space, protoplanetary and debris disks to planetary rings and atmospheres, planetary surfaces, comets, interplanetary space, Earth's atmosphere. Apparently, the most intriguing problem in the picture of the formation of planets is the transition from individual microscopic dust grains to kilometre-sized planetesimals. Revealing the mechanisms of this transition is one of the main tasks of the European Space Agency's project Interaction in Cosmic and Atmospheric Particle Systems (ICAPS). It was found that Brownian motion driven agglomeration could not provide the transition within reasonable time scale. As a result, at this stage top scientific goals shifted towards forced agglomeration and concentration of particles, targeting revealing the onset of compaction, experimental study of the evolution of fractal dimensions, size and mass distribution, occurrence of bouncing. The main tasks comprise 1) development of the rapid agglomeration model 2) development of the experimental facilities creating big fractal-type agglomerates from 10 to 1000 μm from a cloud of micrometre-size grains; 3) experimental realization of the rapid agglomeration in microgravity and ground conditions; and 4) in situ investigation of the morphology, mobility, mechanical and optical properties of the free-floating agglomerates, including investigation of thermophoresis, photophoresis of the agglomerates and of the two-phase flow phenomena. To solve the experimental part of the tasks we developed a Cloud Manipulation System, realized as a breadboard (CMS BB) for long duration microgravity platforms and a simplified laboratory version (CMS LV) mostly oriented on short duration microgravity and ground tests. The new system is based on the use of thermophoresis, most favourable for cloud manipulation without creating additional particle-particle forces in the cloud with a possibility

  12. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  13. A Nested Modeling Scheme for High-resolution Simulation of the Aquitard Compaction in a Regional Groundwater Extraction Field

    NASA Astrophysics Data System (ADS)

    Aichi, M.; Tokunaga, T.

    2006-12-01

    In the fields that experienced both significant drawdown/land subsidence and the recovery of groundwater potential, temporal change of the effective stress in the clayey layers is not simple. Conducting consolidation tests of core samples is a straightforward approach to know the pre-consolidation stress. However, especially in the urban area, the cost of boring and the limitation of sites for boring make it difficult to carry out enough number of tests. Numerical simulation to reproduce stress history can contribute to selecting boring sites and to complement the results of the laboratory tests. To trace the effective stress profile in the clayey layers by numerical simulation, discretization in the clayey layers should be fine. At the same time, the size of the modeled domain should be large enough to calculate the effect of regional groundwater extraction. Here, we developed a new scheme to reduce memory consumption based on domain decomposition technique. A finite element model of coupled groundwater flow and land subsidence is used for the local model, and a finite difference groundwater flow model is used for the regional model. The local model is discretized to fine mesh in the clayey layers to reproduce the temporal change of pore pressure in the layers while the regional model is discretized to relatively coarse mesh to reproduce the effect of the regional groundwater extraction on the groundwater flow. We have tested this scheme by comparing the results obtained from this scheme with those from the finely gridded model for the entire calculation domain. The difference between the results of these models was small enough and our new scheme can be used for the practical problem.

  14. TH-C-12A-08: New Compact 10 MV S-Band Linear Accelerator: 3D Finite-Element Design and Monte Carlo Dose Simulations

    SciTech Connect

    Baillie, D; St Aubin, J; Fallone, B; Steciw, S

    2014-06-15

    Purpose: To design a new compact S-band linac waveguide capable of producing a 10 MV x-ray beam, while maintaining the length (27.5 cm) of current 6 MV waveguides. This will allow higher x-ray energies to be used in our linac-MRI systems with the same footprint. Methods: Finite element software COMSOL Multiphysics was used to design an accelerator cavity matching one published in an experiment breakdown study, to ensure that our modeled cavities do not exceed the threshold electric fields published. This cavity was used as the basis for designing an accelerator waveguide, where each cavity of the full waveguide was tuned to resonate at 2.997 GHz by adjusting the cavity diameter. The RF field solution within the waveguide was calculated, and together with an electron-gun phase space generated using Opera3D/SCALA, were input into electron tracking software PARMELA to compute the electron phase space striking the x-ray target. This target phase space was then used in BEAM Monte Carlo simulations to generate percent depth doses curves for this new linac, which were then used to re-optimize the waveguide geometry. Results: The shunt impedance, Q-factor, and peak-to-mean electric field ratio were matched to those published for the breakdown study to within 0.1% error. After tuning the full waveguide, the peak surface fields are calculated to be 207 MV/m, 13% below the breakdown threshold, and a d-max depth of 2.42 cm, a D10/20 value of 1.59, compared to 2.45 cm and 1.59, respectively, for the simulated Varian 10 MV linac and brehmsstrahlung production efficiency 20% lower than a simulated Varian 10 MV linac. Conclusion: This work demonstrates the design of a functional 27.5 cm waveguide producing 10 MV photons with characteristics similar to a Varian 10 MV linac.

  15. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    SciTech Connect

    Ronald L. Boring

    2012-10-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  16. CAD-based Monte Carlo Program for Integrated Simulation of Nuclear System SuperMC

    NASA Astrophysics Data System (ADS)

    Wu, Yican; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Long, Pengcheng; Hu, Liqin

    2014-06-01

    Monte Carlo (MC) method has distinct advantages to simulate complicated nuclear systems and is envisioned as routine method for nuclear design and analysis in the future. High fidelity simulation with MC method coupled with multi-physical phenomenon simulation has significant impact on safety, economy and sustainability of nuclear systems. However, great challenges to current MC methods and codes prevent its application in real engineering project. SuperMC is a CAD-based Monte Carlo program for integrated simulation of nuclear system developed by FDS Team, China, making use of hybrid MC-deterministic method and advanced computer technologies. The design aim, architecture and main methodology of SuperMC were presented in this paper. SuperMC2.1, the latest version for neutron, photon and coupled neutron and photon transport calculation, has been developed and validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model. SuperMC is still in its evolution process toward a general and routine tool for nuclear system. Warning, no authors found for 2014snam.conf06023.

  17. Geant4-Simulations for cellular dosimetry in nuclear medicine.

    PubMed

    Freudenberg, Robert; Wendisch, Maria; Kotzerke, Jörg

    2011-12-01

    The application of unsealed radionuclides in radiobiological experiments can lead to intracellular radionuclide uptake and an increased absorbed dose. Accurate dose quantification is essential to assess observed radiobiological effects. Due to small cellular dimensions direct dose measurement is impossible. We will demonstrate the application of Monte Carlo simulations for dose calculation. Dose calculations were performed using the Geant4 Monte Carlo toolkit, wherefore typical experimental situations were designed. Dose distributions inside wells were simulated for different radionuclides. S values were simulated for spherical cells and cell monolayers of different diameter. Concomitantly experiments were performed using the PC Cl3 cell line with mediated radionuclide uptake. For various activity distributions cellular survival was measured. We yielded S values for dose distribution inside the wells. Calculated S values for a single cell are in good agreement to S values provided in the literature (ratio 0.87 to 1.07). Cross-dose is up to ten times higher for Y-90. Concomitantly performed cellular experiments confirm the dose calculation. Furthermore the necessity of correct dose calculation was shown for assessment of radiobiological effects after application of unsealed radionuclides. Thereby the feasibility of using Geant4 was demonstrated. PMID:21983023

  18. Finite-difference time-domain simulation of compact acousto-optic filters based on multireflection beam expanding

    SciTech Connect

    Tsarev, Andrei V

    2007-04-30

    The results of numerical simulation of acousto-optic (AO) tunable filters of a new type based on multireflection beam expanding in waveguide structures are discussed. Planar waveguide filters based on thin chalcogenide (As{sub 2}S{sub 3}) films of lithium niobate (LiNbO{sub 3}) are considered. The operation of filters is analysed by the finite-difference time-domain (FDTD) method by using the license FullWAVE software package (RSoft Design Group, Inc.). It is shown that AO filters have very good dispersion properties and AO filters of extremely small size provide a narrow filtration line within the tuning range of more than 100 nm (at a wavelength of 1.54 {mu}m). It is important that the normalised linewidth (measured in units of the reciprocal filter length) is an order of magnitude smaller than the theoretical limit for AO filters produced from the same material in the conventional way, without the use of multireflection beam expanding. (acoustooptics)

  19. Two-Phase flow instrumentation for nuclear accidents simulation

    NASA Astrophysics Data System (ADS)

    Monni, G.; De Salve, M.; Panella, B.

    2014-11-01

    The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.

  20. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  1. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well

  2. A MULTIDIMENSIONAL AND MULTIPHYSICS APPROACH TO NUCLEAR FUEL BEHAVIOR SIMULATION

    SciTech Connect

    R. L. Williamson; J. D. Hales; S. R. Novascone; M. R. Tonks; D. R. Gaston; C. J. Permann; D. Andrs; R. C. Martineau

    2012-04-01

    Important aspects of fuel rod behavior, for example pellet-clad mechanical interaction (PCMI), fuel fracture, oxide formation, non-axisymmetric cooling, and response to fuel manufacturing defects, are inherently multidimensional in addition to being complicated multiphysics problems. Many current modeling tools are strictly 2D axisymmetric or even 1.5D. This paper outlines the capabilities of a new fuel modeling tool able to analyze either 2D axisymmetric or fully 3D models. These capabilities include temperature-dependent thermal conductivity of fuel; swelling and densification; fuel creep; pellet fracture; fission gas release; cladding creep; irradiation growth; and gap mechanics (contact and gap heat transfer). The need for multiphysics, multidimensional modeling is then demonstrated through a discussion of results for a set of example problems. The first, a 10-pellet rodlet, demonstrates the viability of the solution method employed. This example highlights the effect of our smeared cracking model and also shows the multidimensional nature of discrete fuel pellet modeling. The second example relies on our the multidimensional, multiphysics approach to analyze a missing pellet surface problem. As a final example, we show a lower-length-scale simulation coupled to a continuum-scale simulation.

  3. Compact waveguide splitter networks.

    PubMed

    Qian, Yusheng; Song, Jiguo; Kim, Seunghyun; Hu, Weisheng; Nordin, Gregory P

    2008-03-31

    We demonstrate compact waveguide splitter networks in siliconon- insulator (SOI) rib waveguides using trench-based splitters (TBSs) and bends (TBBs). Rather than a 90 degrees geometry, we use 105 degrees TBSs to facilitate reliable fabrication of high aspect ratio trenches suitable for 50/50 splitting when filled with SU8. Three dimensional (3D) finite difference time domain (FDTD) simulation is used for splitter and bend design. Measured TBB and TBS optical efficiencies are 84% and 68%, respectively. Compact 105 degrees 1 x 4, 1 x 8, and 1 x 32 trench-based splitter networks (TBSNs) are demonstrated. The measured total optical loss of the 1 x 32 TBSN is 9.15 dB. Its size is only 700 microm x 1600 microm for an output waveguide spacing of 50 microm. PMID:18542598

  4. Photoassisted Biodegradation of Irradiated Organics in Simulated Nuclear Wastewater.

    PubMed

    Makgato, Stanford S; Nkhalambayausi-Chirwa, Evans M

    2015-05-01

    The extent of dehalogenation and degradation of toxic aromatic compounds in a nuclear wastewater was evaluated using a two-stage system consisting of a photolytic reactor followed by a biological reactor. Experiments were performed by varying the initial 4-chlorophenol (4-CP) concentration from 50 to 1000 mg/L. The UV pretreatment stage improved the overall efficiency of biodegradation of the recalcitrant compound by facilitating degradability in the biological stage. Removal efficiencies greater than 98% were achieved at 4-CP feed concentrations < 50 mg/L. Adding an H2O2 dose of 0.1 mg/L as an oxidant further improved biodegradation under optimum operating conditions for the entire system. Some known aromatic compound degraders such as Pseudomonas aeruginosa and Pseudomonas mendocina were detected in the consortium using the 16S rRNA genetic fingerprint technique. To the authors' knowledge, this is the first study on biodegradation of halogenated aromatic compounds that are copollutants of metallic radionuclides in radioactive wastewater. PMID:26460459

  5. Fundamental Science-Based Simulation of Nuclear Waste Forms

    SciTech Connect

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2010-10-04

    This report presents a hierarchical multiscale modeling scheme based on two-way information exchange. To account for all essential phenomena in waste forms over geological time scales, the models have to span length scales from nanometer to kilometer and time scales from picoseconds to millenia. A single model cannot cover this wide range and a multi-scale approach that integrates a number of different at-scale models is called for. The approach outlined here involves integration of quantum mechanical calculations, classical molecular dynamics simulations, kinetic Monte Carlo and phase field methods at the mesoscale, and continuum models. The ultimate aim is to provide science-based input in the form of constitutive equations to integrated codes. The atomistic component of this scheme is demonstrated in the promising waste form xenotime. Density functional theory calculations have yielded valuable information about defect formation energies. This data can be used to develop interatomic potentials for molecular dynamics simulations of radiation damage. Potentials developed in the present work show a good match for the equilibrium lattice constants, elastic constants and thermal expansion of xenotime. In novel waste forms, such as xenotime, a considerable amount of data needed to validate the models is not available. Integration of multiscale modeling with experimental work is essential to generate missing data needed to validate the modeling scheme and the individual models. Density functional theory can also be used to fill knowledge gaps. Key challenges lie in the areas of uncertainty quantification, verification and validation, which must be performed at each level of the multiscale model and across scales. The approach used to exchange information between different levels must also be rigorously validated. The outlook for multiscale modeling of wasteforms is quite promising.

  6. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  7. Toward Improved Nuclear Explosion Monitoring With Complete Waveform Simulations Using Three-Dimensional Models and Parallel Computing

    NASA Astrophysics Data System (ADS)

    Vorobiev, O.; Antoun, T.; Rodgers, A.; Matzel, E.; Myers, S.; Walter, W.; Petersson, A.; Bono, C.; Sjogreen, B.

    2008-12-01

    Next generation methods for lowering seismic monitoring thresholds and reducing uncertainties will likely rely on complete waveform simulations using three-dimensional (3D) earth models. Recent advances in numerical methods for both non-linear (shock wave) and linear (anelastic, seismic wave) propagation, improved 3D models and the steady growth of parallel computing promise to improve the accuracy and efficiency of explosion simulations. These methods implemented in new computer codes can advance physics-based understanding of nuclear explosions as well as the propagation effects caused by path-dependent earth structure. This presentation will summarize new 3D modeling capabilities developed to improve understanding of the seismic waves emerging from an explosion. Specifically we are working in three thrust areas: 1) computation of regional distance intermediate-period (50-10 seconds) synthetic seismograms in 3D earth models to assess the ability of these models to predict observed seismograms from well-characterized events; 2) coupling of non-linear hydrodynamic simulations of explosion shock waves with an anelastic finite difference code for modeling the dependence of seismic wave observables on explosion emplacement conditions and near-source heterogeneity; and 3) implementation of surface topography in our anelastic finite difference code to include scattering and mode-conversion due to a non-planar free surface. Current 3D continental-to-global scale seismic models represent long-wavelength (greater than 100 km) heterogeneity. We are investigating the efficacy of current 3D models to predict complete intermediate (50- 10 seconds) waveforms for well-characterized events (mostly earthquakes) using the spectral element code, SPECFEM3D. Intermediate period seismograms for crustal events at regional distance are strongly impacted by path propagation effects due to laterally variable crustal and upper mantle structure. We are also modeling shock wave propagation

  8. TOWARD END-TO-END MODELING FOR NUCLEAR EXPLOSION MONITORING: SIMULATION OF UNDERGROUND NUCLEAR EXPLOSIONS AND EARTHQUAKES USING HYDRODYNAMIC AND ANELASTIC SIMULATIONS, HIGH-PERFORMANCE COMPUTING AND THREE-DIMENSIONAL EARTH MODELS

    SciTech Connect

    Rodgers, A; Vorobiev, O; Petersson, A; Sjogreen, B

    2009-07-06

    This paper describes new research being performed to improve understanding of seismic waves generated by underground nuclear explosions (UNE) by using full waveform simulation, high-performance computing and three-dimensional (3D) earth models. The goal of this effort is to develop an end-to-end modeling capability to cover the range of wave propagation required for nuclear explosion monitoring (NEM) from the buried nuclear device to the seismic sensor. The goal of this work is to improve understanding of the physical basis and prediction capabilities of seismic observables for NEM including source and path-propagation effects. We are pursuing research along three main thrusts. Firstly, we are modeling the non-linear hydrodynamic response of geologic materials to underground explosions in order to better understand how source emplacement conditions impact the seismic waves that emerge from the source region and are ultimately observed hundreds or thousands of kilometers away. Empirical evidence shows that the amplitudes and frequency content of seismic waves at all distances are strongly impacted by the physical properties of the source region (e.g. density, strength, porosity). To model the near-source shock-wave motions of an UNE, we use GEODYN, an Eulerian Godunov (finite volume) code incorporating thermodynamically consistent non-linear constitutive relations, including cavity formation, yielding, porous compaction, tensile failure, bulking and damage. In order to propagate motions to seismic distances we are developing a one-way coupling method to pass motions to WPP (a Cartesian anelastic finite difference code). Preliminary investigations of UNE's in canonical materials (granite, tuff and alluvium) confirm that emplacement conditions have a strong effect on seismic amplitudes and the generation of shear waves. Specifically, we find that motions from an explosion in high-strength, low-porosity granite have high compressional wave amplitudes and weak shear

  9. Three new renal simulators for use in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Dullius, Marcos; Fonseca, Mateus; Botelho, Marcelo; Cunha, Clêdison; Souza, Divanízia

    2014-03-01

    Renal scintigraphy is useful to provide both functional and anatomic information of renal flow of cortical functions and evaluation of pathological collecting system. The objective of this study was develop and evaluate the performance of three renal phantoms: Two anthropomorphic static and another dynamic. The static images of the anthropomorphic phantoms were used for comparison with static renal scintigraphy with 99mTc-DMSA in different concentrations. These static phantoms were manufactured in two ways: one was made of acrylic using as mold a human kidney preserved in formaldehyde and the second was built with ABS (acrylonitrile butadiene styrene) in a 3D printer. The dynamic renal phantom was constructed of acrylic to simulate renal dynamics in scintigraphy with 99mTc-DTPA. These phantoms were scanned with static and dynamic protocols and compared with clinical data. Using these phantoms it is possible to acquire similar renal images as in the clinical scintigraphy. Therefore, these new renal phantoms can be very effective for use in the quality control of renal scintigraphy, and image processing systems.

  10. Raman study of aluminum speciation in simulated alkaline nuclear waste.

    PubMed

    Johnston, Cliff T; Agnew, Stephen F; Schoonover, Jon R; Kenney, John W; Page, Bobbi; Osborn, Jill; Corbin, Rob

    2002-06-01

    The chemistry of concentrated sodium aluminate solutions stored in many of the large, underground storage tanks containing high-level waste (HLW) at the Hanford and Savannah River Nuclear Reservations is an area of recent research interest. Not only is the presence of aluminate in solution important for continued safe storage of these wastes, the nature of both solid and solution aluminum oxyhydroxides is important for waste pretreatment. Moreover, for many tanks that have leaked high aluminum waste in the past, little is known about the speciation of Al in the soil. In this study, Raman spectroscopy has been used to investigate the speciation of the aqueous species in the Al2O3-Na2O-H2O system over a wide range of solution compositions and hydration. A ternary phase diagram has been used to correlate the observed changes in the spectra with the composition of the solution and with dimerization of aluminate that occurs at elevated aluminate concentrations (>1.5 M). Dimerization is evidenced by growth of new Al-O stretching bands at 535 and 695 cm(-1) at the expense of the aluminate monomer band at 620 cm(-1). The spectrum of water was strongly influenced by the high concentrations of Na+ and OH- (>17 M). Upon increasing the concentration of NaOH in solution, the delta-(H-O-H) bending band of water (v2 mode) increased in frequency to 1663 cm(-1), indicating that the water contained in the concentrated caustic solution was more strongly hydrogen bonded at the higher base content. In addition, the sharp, well-resolved band at 3610 cm(-1), assigned to the v(O-H) of free OH-, increased in intensity with increasing NaOH. Analysis of the v(O-H) bands in the 3800-2600 cm(-1) region supported the overall increase in hydrogen bonding as evidenced by the increase in relative intensity of a strongly hydrated water band at 3118 cm(-1). Taking into consideration the activity of water, the molar concentrations of the monomeric and dimeric aluminate species were estimated using

  11. Total simulation of operator team behavior in emergencies at nuclear power plants.

    PubMed

    Takano, K; Sunaoshi, W; Suzuki, K

    2000-09-01

    In a large and complex system (i.e., a space aeronautics and nuclear power plant) it would be valuable to conduct operator training and support to demonstrate standard operators' behavior in coping with an anomaly caused by multiple malfunctions in which procedures would not have been stipulated previously. A system simulating operator team behavior including individual operator's cognitive behavior, his operations and physical behavior, and even verbal communication among team members, has been developed for a typical commercial nuclear power plant. This simulation model is not a scenario-based system but a complete knowledge-based system, based on the mental model that was envisaged by detailed analyses of experimental results obtained in the full-scope plant simulator. This mental model is composed of a set of knowledge bases and rules able to generate both diagnosis and prognosis depending on the observed situation even for multiple malfunctions. Simulation results of operator team behavior and plant dynamics were compared with corresponding experiments in several anomalies of multiple malfunctions. The comparison showed a reasonable agreement, so the simulation conditions were varied on cognitive task processing speed of individual operators, on team role sharing scheme, and on human machine interface (1st generation to 2nd generation control panel) to assess the sensitivity of this simulation model. Finally, it was shown that this simulation model has applications for the use of training standards and computer aided operator support systems. PMID:10993327

  12. Analysis of Special Nuclear Material (SNM) detection and interdiction using a collaborative constructive simulation environment

    NASA Astrophysics Data System (ADS)

    Hendrix, Lee A.; Calman, Jack; Fisher, Brian M.; Kay, Stephen W.; Lavelle, Christopher M.; Mayo, Robert M.; Miller, Bruce E.; Ruben, Katherine M.; West, Roger L.

    2012-05-01

    The acquisition of systems to locate and interdict Special Nuclear Material (SNM) is significantly enhanced when trade space analysis of and CONOPS development for various proposed sensor systems is performed using realistic operational scenarios in a synthetic simulation environment. To this end, the U. S. Defense Threat Reduction Agency (DTRA) has developed a collaborative constructive simulation environment hosted at the DTRA Center at Ft. Belvoir, VA. The simulation environment includes a suite of modeling and simulation (M&S) tools, scenario vignette representations, geographic information databases, and authoritative sensor system representations. Currently focused on modeling the detection and interdiction of in-transit SNM, the M&S tools include the Monte Carlo N-Particle (MCNP) simulation for detailed nuclear transport calculations and the JHU/APL enhanced Joint Semi-Automated Forces (JSAF) synthetic simulation environment and several associated High-Level Architecture (HLA) federate simulations for engagement-level vignette executions. This presentation will focus on the JHU/APL enhancements to JSAF which have enabled the execution of SNM detection vignettes. These enhancements include the addition of a user-configurable Radioactive Material (RM) module for representation of SNM objects, a user-configurable RM Detection Module to represent operational and notional gamma and neutron detectors, a Radiation Attenuation Module to calculate net emissions at the detector face in the dynamic JSAF environment, and an RM Stimulation Module to represent notional proton and photon beam systems in active interrogation scenarios.

  13. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    SciTech Connect

    Hamid, AHA.; Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A.

    2015-04-29

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder’s intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties’ absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.

  14. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    NASA Astrophysics Data System (ADS)

    Hamid, AHA.; Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A.

    2015-04-01

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder's intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties' absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.

  15. An assessment of coupling algorithms for nuclear reactor core physics simulations

    NASA Astrophysics Data System (ADS)

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; Pawlowski, Roger; Toth, Alex; Kelley, C. T.; Evans, Thomas; Philip, Bobby

    2016-04-01

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss-Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton-Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.

  16. NPTool: a simulation and analysis framework for low-energy nuclear physics experiments

    NASA Astrophysics Data System (ADS)

    Matta, A.; Morfouace, P.; de Séréville, N.; Flavigny, F.; Labiche, M.; Shearman, R.

    2016-08-01

    The Nuclear Physics Tool (NPTool) is an open source data analysis and Monte Carlo simulation framework that has been developed for low-energy nuclear physics experiments with an emphasis on radioactive beam experiments. The NPTool offers a unified framework for designing, preparing and analyzing complex experiments employing multiple detectors, each of which may comprise some hundreds of channels. The framework has been successfully used for the analysis and simulation of experiments at facilities including GANIL, RIKEN, ALTO and TRIUMF, using both stable and radioactive beams. This paper details the NPTool philosophy together with an overview of the workflow. The framework has been benchmarked through the comparison of simulated and experimental data for a variety of detectors used in charged particle and gamma-ray spectroscopy.

  17. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE PAGESBeta

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; Pawlowski, Roger; Toth, Alex; Kelley, C. T.; Evans, Thomas; Philip, Bobby

    2016-04-01

    Here we evaluate the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product was developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK andmore » Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Finally, both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  18. Simulation of reactor pulses in fast burst and externally driven nuclear assemblies

    NASA Astrophysics Data System (ADS)

    Green, Taylor Caldwell, IV

    The following research contributes original concepts to the fields of deterministic neutron transport modeling and reactor power excursion simulation. A deterministic neutron transport code was created to assess the value of new methods of determining neutron current, fluence, and flux values through the use of view factor and average path length calculations. The neutron transport code is also capable of modeling the highly anisotropic neutron transport of deuterium-tritium fusion external source neutrons using diffusion theory with the aid of a modified first collision source term. The neutron transport code was benchmarked with MCNP, an industry standard stochastic neutron transport code. Deterministic neutron transport methods allow users to model large quantities of neutrons without simulating their interactions individually. Subsequently, deterministic methods allow users to more easily couple neutron transport simulations with other physics simulations. Heat transfer and thermoelastic mechanics physics simulation modules were each developed and benchmarked using COMSOL, a commercial heat transfer and mechanics simulation software. The physics simulation modules were then coupled and used to simulate reactor pulses in fast burst and externally driven nuclear assemblies. The coupled system of equations represents a new method of simulating reactor pulses that allows users to more fully characterize pulsed assemblies. Unlike older methods of reactor pulse simulation, the method presented in this research does not require data from the operational reactor in order to simulate its behavior. The ability to simulate the coupled neutron transport and thermo-mechanical feedback present in pulsed reactors prior their construction would significantly enhance the quality of pulsed reactor pre-construction safety analysis. Additionally, a graphical user interface is created to allow users to run simulations and visualize the results using the coupled physics simulation

  19. Compact LINAC for deuterons

    SciTech Connect

    Kurennoy, S S; O' Hara, J F; Rybarcyk, L J

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  20. Simulation and Experimental Validation of Electromagnetic Signatures for Monitoring of Nuclear Material Storage Containers

    SciTech Connect

    Aker, Pamela M.; Bunch, Kyle J.; Jones, Anthony M.

    2013-01-01

    Previous research at the Pacific Northwest National Laboratory (PNNL) has demonstrated that the low frequency electromagnetic (EM) response of a sealed metallic container interrogated with an encircling coil is a strong function of its contents and can be used to form a distinct signature which can confirm the presence of specific components without revealing hidden geometry or classified design information. Finite element simulations have recently been performed to further investigate this response for a variety of configurations composed of an encircling coil and a typical nuclear material storage container. Excellent agreement was obtained between simulated and measured impedance signatures of electrically conducting spheres placed inside an AT-400R nuclear container. Simulations were used to determine the effects of excitation frequency and the geometry of the encircling coil, nuclear container, and internal contents. The results show that it is possible to use electromagnetic models to evaluate the application of the EM signature technique to proposed versions of nuclear weapons containers which can accommodate restrictions imposed by international arms control and treaty verification legislation.

  1. Compaction behavior of roller compacted ibuprofen.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-06-01

    The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior. PMID:18280716

  2. Modeling and Testing of Non-Nuclear, Highpower Simulated Nuclear Thermal Rocket Reactor Elements

    NASA Technical Reports Server (NTRS)

    Kirk, Daniel R.

    2005-01-01

    When the President offered his new vision for space exploration in January of 2004, he said, "Our third goal is to return to the moon by 2020, as the launching point for missions beyond," and, "With the experience and knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to Mars and to worlds beyond." A human mission to Mars implies the need to move large payloads as rapidly as possible, in an efficient and cost-effective manner. Furthermore, with the scientific advancements possible with Project Prometheus and its Jupiter Icy Moons Orbiter (JIMO), (these use electric propulsion), there is a renewed interest in deep space exploration propulsion systems. According to many mission analyses, nuclear thermal propulsion (NTP), with its relatively high thrust and high specific impulse, is a serious candidate for such missions. Nuclear rockets utilize fission energy to heat a reactor core to very high temperatures. Hydrogen gas flowing through the core then becomes superheated and exits the engine at very high exhaust velocities. The combination of temperature and low molecular weight results in an engine with specific impulses above 900 seconds. This is almost twice the performance of the LOX/LH2 space shuttle engines, and the impact of this performance would be to reduce the trip time of a manned Mars mission from the 2.5 years, possible with chemical engines, to about 12-14 months.

  3. Using Direct Sub-Level Entity Access to Improve Nuclear Stockpile Simulation Modeling

    SciTech Connect

    Robert Y. Parker

    1999-08-01

    Direct sub-level entity access is a seldom-used technique in discrete-event simulation modeling that addresses the accessibility of sub-level entity information. The technique has significant advantages over more common, alternative modeling methods--especially where hierarchical entity structures are modeled. As such, direct sub-level entity access is often preferable in modeling nuclear stockpile, life-extension issues, an area to which it has not been previously applied. Current nuclear stockpile, life-extension models were demonstrated to benefit greatly from the advantages of direct sub-level entity access. In specific cases, the application of the technique resulted in models that were up to 10 times faster than functionally equivalent models where alternative techniques were applied. Furthermore, specific implementations of direct sub-level entity access were observed to be more flexible, efficient, functional, and scalable than corresponding implementations using common modeling techniques. Common modeling techniques (''unbatch/batch'' and ''attribute-copying'') proved inefficient and cumbersome in handling many nuclear stockpile modeling complexities, including multiple weapon sites, true defect analysis, and large numbers of weapon and subsystem types. While significant effort was required to enable direct sub-level entity access in the nuclear stockpile simulation models, the enhancements were worth the effort--resulting in more efficient, more capable, and more informative models that effectively addressed the complexities of the nuclear stockpile.

  4. Monte Carlo Simulation Study of a Differential Calorimeter Measuring the Nuclear Heating in Material Testing Reactors

    NASA Astrophysics Data System (ADS)

    Amharrak, H.; Reynard-Carette, C.; Lyoussi, A.; Carette, M.; Brun, J.; De Vita, C.; Fourmentel, D.; Villard, J.-F.; Guimbal, P.

    2016-02-01

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. Then these measurements are used for other materials, other geometries, or other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present new simulations with MCNP Monte-Carlo transport code to determine the gamma heating profile inside the calorimeter. The whole complex geometry of the sensor has been considered. We use as an input source in the model, the photon spectra calculated in various positions of CARMEN-1 irradiation program in OSIRIS reactor. After a description of the differential calorimeter device, the MCNP modeling used for the calculations of radial profile of nuclear heating inside the calorimeter elements will be introduced. The obtained results of different simulations will be detailed and discussed in this paper. The charged particle equilibrium inside the calorimeter elements will be studied. Then we will focus on parametric studies of the various components of the calorimeter. The influence of source type will be also took into account. Moreover the influence of the material used for the sample will be described.

  5. Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Langanke, K.; Martínez-Pinedo, G.

    2013-12-01

    We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.

  6. Ceramic powder compaction

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Mahoney, F.M.

    1995-12-31

    With the objective of developing a predictive model for ceramic powder compaction we have investigated methods for characterizing density gradients in ceramic powder compacts, reviewed and compared existing compaction models, conducted compaction experiments on a spray dried alumina powder, and conducted mechanical tests and compaction experiments on model granular materials. Die filling and particle packing, and the behavior of individual granules play an important role in determining compaction behavior and should be incorporated into realistic compaction models. These results support the use of discrete element modeling techniques and statistical mechanics principals to develop a comprehensive model for compaction, something that should be achievable with computers with parallel processing capabilities.

  7. Compact Process Development at Babcock & Wilcox

    SciTech Connect

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  8. Baryon currents in QCD with compact dimensions

    SciTech Connect

    Lucini, B.; Patella, A.; Pica, C.

    2007-06-15

    On a compact space with nontrivial cycles, for sufficiently small values of the radii of the compact dimensions, SU(N) gauge theories coupled with fermions in the fundamental representation spontaneously break charge conjugation, time reversal, and parity. We show at one loop in perturbation theory that a physical signature for this phenomenon is a nonzero baryonic current wrapping around the compact directions. The persistence of this current beyond the perturbative regime is checked by lattice simulations.

  9. Limits on the experimental simulation of nuclear fuel rod response. [PWR

    SciTech Connect

    Hagar, R.C.

    1980-01-01

    The steady-state and transient effects of intrinxic geometric and material property differences between typical nuclear fuel pins and electric fuel pin simulators (FPSs) are identified. The effectiveness of varying the transient power supplied to the FPS in reducing the differences between the transient responses of nuclear fuel pins and FPSs is investigated. This effectiveness is shown to be limited by the heat capacity of the FPS, the allowed range of the power program, and different FPS power requirements at different positions on a full-length FPS.

  10. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect

    Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

    2011-09-01

    NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear

  11. Design Considerations for the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, Bill; Kirk, Daniel

    2006-01-01

    Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today s best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. The goal of these simulations would be directed toward expanding the performance envelope of NTR engines over that which was demonstrated during the Rover and NERVA nuclear rocket programs of the 1970's. Currently, such a simulator is nearing completion at the Marshall Space Flight Center, and will shortly be used in the future to evaluate a wide variety of he1 element designs and the materials of which they are constructed. This present work addresses the initial experimental objectives of the Nuclear Thermal Rocket Element Environmental Simulator or NTREES and some of the design considerations which were considered prior to and during its construction.

  12. Compaction Behavior of Granular Materials

    NASA Astrophysics Data System (ADS)

    Endicott, Mark R.; Kenkre, V. M.; Glass, S. Jill; Hurd, Alan J.

    1996-03-01

    We report the results of our recent study of compaction of granular materials. A theoretical model is developed for the description of the compaction of granular materials exemplified by granulated ceramic powders. Its predictions are compared to observations of uniaxial compaction tests of ceramic granules of PMN-PT, spray dried alumina and rutile. The theoretical model employs a volume-based statistical mechanics treatment and an activation analogy. Results of a computer simulation of random packing of discs in two dimensions are also reported. The effect of type of particle size distribution and other parameters of that distribution on the calculated quantities are discussed. We examine the implications of the results of the simulation for the theoretical model.

  13. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    SciTech Connect

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-07-05

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy’s Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  14. SNM-DAT: Simulation of a heterogeneous network for nuclear border security

    NASA Astrophysics Data System (ADS)

    Nemzek, R.; Kenyon, G.; Koehler, A.; Lee, D. M.; Priedhorsky, W.; Raby, E. Y.

    2007-08-01

    We approach the problem of detecting Special Nuclear Material (SNM) smuggling across open borders by modeling a heterogeneous sensor network using an agent-based simulation. Our simulation SNM Data Analysis Tool (SNM-DAT) combines fixed seismic, metal, and radiation detectors with a mobile gamma spectrometer. Decision making within the simulation determines threat levels by combined signatures. The spectrometer is a limited-availability asset, and is only deployed for substantial threats. "Crossers" can be benign or carrying shielded SNM. Signatures and sensors are physics based, allowing us to model realistic sensor networks. The heterogeneous network provides great gains in detection efficiency compared to a radiation-only system. We can improve the simulation through better sensor and terrain models, additional signatures, and crossers that mimic actual trans-border traffic. We expect further gains in our ability to design sensor networks as we learn the emergent properties of heterogeneous detection, and potential adversary responses.

  15. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    SciTech Connect

    Katya L Le Blanc; Ronald L Boring; David I Gertman

    2001-11-01

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  16. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    SciTech Connect

    Clarno, Kevin T; Hamilton, Steven P; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Pugmire, Dave; Dilts, Gary; Banfield, James E

    2012-02-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms and boundary conditions of traditional (single-pin) nuclear fuel performance simulation, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. In addition, a new nuclear fuel-specific preconditioner was developed to account for the high aspect ratio of each fuel pin (12 feet axially, but 1 4 inches in diameter) with many individual fuel regions (pellets). With this novel capability, AMPFuel was used to model an entire 17 17 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins; the 25 guide tubes; the top and bottom structural regions; and the upper and lower (neutron) reflector regions. The final, full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 162

  17. Flight test techniques for validating simulated nuclear electromagnetic pulse aircraft responses

    NASA Technical Reports Server (NTRS)

    Winebarger, R. M.; Neely, W. R., Jr.

    1984-01-01

    An attempt has been made to determine the effects of nuclear EM pulses (NEMPs) on aircraft systems, using a highly instrumented NASA F-106B to document the simulated NEMP environment at the Kirtland Air Force Base's Vertically Polarized Dipole test facility. Several test positions were selected so that aircraft orientation relative to the test facility would be the same in flight as when on the stationary dielectric stand, in order to validate the dielectric stand's use in flight configuration simulations. Attention is given to the flight test portions of the documentation program.

  18. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation.

    PubMed

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine; Sobolevsky, Nikolai; Bassler, Niels

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte Carlo simulations with SHIELD-HIT10Areasonably matched the most abundant PET isotopes (11)C and (15)O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10Aand measurement. Improved modeling requires more accurate measurements of cross-section values. PMID:23352823

  19. Simulation modeling of nuclear steam generator water level process--a case study

    PubMed

    Zhao; Ou; Du

    2000-01-01

    Simulation modeling of the nuclear steam generator (SG) water level process in Qinshan Nuclear Power Plant (QNPP) is described in this paper. A practical methodology was adopted so that the model is both simple and accurate for control engineering implementation. The structure of the model is in the form of a transfer function, which was determined based on first-principles analysis and expert experience. The parameters of the model were obtained by taking advantage of the recorded historical response curves under the existing closed-loop control system. The results of process dimensional data verification and experimental tests demonstrate that the simulation model depicts the main dynamic characteristics of the SG water level process and is in accordance with the field recorded response curves. The model has been successfully applied to the design and test of an advanced digital feedwater control system in QNPP. PMID:10871210

  20. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    SciTech Connect

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; Svard, Staffan Jacobsson; Jansson, Peter; Swinhoe, Martyn T.; Tobin, Stephen J.

    2015-03-04

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetrically burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.

  1. Simulation of the dispersion of nuclear contamination using an adaptive Eulerian grid model.

    PubMed

    Lagzi, I; Kármán, D; Turányi, T; Tomlin, A S; Haszpra, L

    2004-01-01

    Application of an Eulerian model using layered adaptive unstructured grids coupled to a meso-scale meteorological model is presented for modelling the dispersion of nuclear contamination following the accidental release from a single but strong source to the atmosphere. The model automatically places a finer resolution grid, adaptively in time, in regions were high spatial numerical error is expected. The high-resolution grid region follows the movement of the contaminated air over time. Using this method, grid resolutions of the order of 6 km can be achieved in a computationally effective way. The concept is illustrated by the simulation of hypothetical nuclear accidents at the Paks NPP, in Central Hungary. The paper demonstrates that the adaptive model can achieve accuracy comparable to that of a high-resolution Eulerian model using significantly less grid points and computer simulation time. PMID:15149762

  2. Some results of a simulated test for administration of activity in nuclear medicine.

    PubMed

    Oropesa, P; Hernández, A T; Serra, R A; Varela, C; Woods, M J

    2006-04-01

    This paper describes the results obtained using a simulated test for administration of activity in nuclear medicine between 2002 and 2004. Measurements in the radionuclide calibrator are made during the different stages of the procedure. The test attempts to obtain supplementary information on the quality of the measurement, with the aim of evaluating in a more complete way the accuracy of the administered activity value compared with the prescribed one. The participants' performance has been assessed by means of a statistical analysis of the reported data. Dependences between several attributes of the simulated administration tests results are discussed. Specifically, the proportion of satisfactory results in the 2003-2004 period was found to be higher than in 2002. It reveals an improvement of the activity administration in the Cuban nuclear medicine departments since 2003. PMID:16303312

  3. Nuclear winter - Three-dimensional simulations including interactive transport, scavenging, and solar heating of smoke

    NASA Technical Reports Server (NTRS)

    Malone, R. C.; Auer, L. H.; Glatzmaier, G. A.; Wood, M. C.; Toon, O. B.

    1986-01-01

    A reexamination is conducted of the 'nuclear winter' hypothesis with a three-dimensional global model modified to allow for localized injection of smoke, its transport by the simulated winds, its absorption of sunlight, and its removal by model-simulated precipitation. Smoke injected into the troposphere is driven upward by solar heating. The tropopause, initially above the smoke, reforms below the heat smoke layer and separates it from precipitation below. Although much smoke is scavenged while the thermal structure is being altered, the residence time of the remaining smoke is greatly increased. Particularly for July conditions, a longer-lasting 'nuclear winter' effect is observed than was found in earlier modeling studies in which normal tropospheric residence times were assumed. In January the smaller solar flux in the northern hemisphere allows faster removal of smoke than in July. Significant cooling of the northern hemisphere continents is predicted; its dependence on season and injected smoke mass is described.

  4. Evaluation of Recent Upgrades to the NESS (Nuclear Engine System Simulation) Code

    NASA Technical Reports Server (NTRS)

    Fittje, James E.; Schnitzler, Bruce G.

    2008-01-01

    The Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for exploratory expeditions to the moon, Mars, and beyond. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the Rover/NERVA program from 1955 to 1973. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design, and a comparison of its results to the Small Nuclear Rocket Engine (SNRE) design.

  5. Nuclear subsurface explosion modeling and hydrodynamic fragmentation simulation of hazardous asteroids

    NASA Astrophysics Data System (ADS)

    Premaratne, Pavithra Dhanuka

    Disruption and fragmentation of an asteroid using nuclear explosive devices (NEDs) is a highly complex yet a practical solution to mitigating the impact threat of asteroids with short warning time. A Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, developed at the Asteroid Deflection Research Center (ADRC), consists of a primary vehicle that acts as kinetic impactor and a secondary vehicle that houses NEDs. The kinetic impactor (lead vehicle) strikes the asteroid creating a crater. The secondary vehicle will immediately enter the crater and detonate its nuclear payload creating a blast wave powerful enough to fragment the asteroid. The nuclear subsurface explosion modeling and hydrodynamic simulation has been a challenging research goal that paves the way an array of mission critical information. A mesh-free hydrodynamic simulation method, Smoothed Particle Hydrodynamics (SPH) was utilized to obtain both qualitative and quantitative solutions for explosion efficiency. Commercial fluid dynamics packages such as AUTODYN along with the in-house GPU accelerated SPH algorithms were used to validate and optimize high-energy explosion dynamics for a variety of test cases. Energy coupling from the NED to the target body was also examined to determine the effectiveness of nuclear subsurface explosions. Success of a disruption mission also depends on the survivability of the nuclear payload when the secondary vehicle approaches the newly formed crater at a velocity of 10 km/s or higher. The vehicle may come into contact with debris ejecting the crater which required the conceptual development of a Whipple shield. As the vehicle closes on the crater, its skin may also experience extreme temperatures due to heat radiated from the crater bottom. In order to address this thermal problem, a simple metallic thermal shield design was implemented utilizing a radiative heat transfer algorithm and nodal solutions obtained from hydrodynamic simulations.

  6. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  7. Compaction within the South Belridge diatomite

    SciTech Connect

    Chase C.A. Jr.; Dietrich, J.K. )

    1989-11-01

    Compaction is incorporated into a field-scale finite-difference thermal simulator to allow practical engineering analysis of reservoir compaction caused by fluid withdrawal. Capabilities new to petroleum applications include hysteresis in the form of limited rebound during fluid injection and the concept of relaxation time (i.e., creep).

  8. Ab initio simulation of radiation damage in nuclear reactor pressure vessel materials

    NASA Astrophysics Data System (ADS)

    Watts, Daniel; Finkenstadt, Daniel

    2012-02-01

    Using Kinetic Monte Carlo we developed a code to study point defect hopping in BCC metallic alloys using energetics and attempt frequencies calculated using VASP, an electronic structure software package. Our code provides a way of simulating the effects of neutron radiation on potential reactor materials. Specifically we will compare the Molybdenum-Chromium alloy system to steel alloys for use in nuclear reactor pressure vessels.

  9. An End-To-End Test of A Simulated Nuclear Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Hrbud, Ivana; Goddfellow, Keith; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The Safe Affordable Fission Engine (SAFE) test series addresses Phase I Space Fission Systems issues in it particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  10. A Poisson resampling method for simulating reduced counts in nuclear medicine images

    NASA Astrophysics Data System (ADS)

    White, Duncan; Lawson, Richard S.

    2015-05-01

    Nuclear medicine computers now commonly offer resolution recovery and other software techniques which have been developed to improve image quality for images with low counts. These techniques potentially mean that these images can give equivalent clinical information to a full-count image. Reducing the number of counts in nuclear medicine images has the benefits of either allowing reduced activity to be administered or reducing acquisition times. However, because acquisition and processing parameters vary, each user should ideally evaluate the use of images with reduced counts within their own department, and this is best done by simulating reduced-count images from the original data. Reducing the counts in an image by division and rounding off to the nearest integer value, even if additional Poisson noise is added, is inadequate because it gives incorrect counting statistics. This technical note describes how, by applying Poisson resampling to the original raw data, simulated reduced-count images can be obtained while maintaining appropriate counting statistics. The authors have developed manufacturer independent software that can retrospectively generate simulated data with reduced counts from any acquired nuclear medicine image.

  11. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    SciTech Connect

    Hamilton, Steven P; Clarno, Kevin T; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth

    2012-01-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms, such as neutron flux distribution, coolant conditions and assembly mechanical stresses, of traditional (single-pin) nuclear fuel performance simulation. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. With this novel capability, AMPFuel was used to model an entire 1717 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics). A full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 160 billion degrees of freedom for 10 loading steps. The single radiation transport calculation required about 50% of the time required to solve the thermo-mechanics with a single loading step, which demonstrates that it is feasible to incorporate, in a single code, a high-fidelity radiation transport capability with a high-fidelity nuclear fuel thermo-mechanics capability and anticipate acceptable computational requirements. The

  12. Seismic Source Characteristics of Nuclear and Chemical Explosions in Granite from Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Xu, Heming; Rodgers, Arthur J.; Lomov, Ilya N.; Vorobiev, Oleg Y.

    2014-03-01

    Seismic source characteristics of low-yield (0.5-5 kt) underground explosions are inferred from hydrodynamic simulations using a granite material model on high-performance (parallel) computers. We use a non-linear rheological model for granite calibrated to historical near-field nuclear test data. Equivalent elastic P-wave source spectra are derived from the simulated hydrodynamic response using reduced velocity potentials. Source spectra and parameters are compared with the models of M ueller and M urphy (Bull Seism Soc Am 61:1675-1692, 1971, hereafter MM71) and D enny and J ohnson (Explosion source phenomenology, pp 1-24, 1991, hereafter DJ91). The source spectra inferred from the simulations of different yields at normal scaled depth-of-burial (SDOB) match the MM71 spectra reasonably well. For normally buried nuclear explosions, seismic moments are larger for the hydrodynamic simulations than MM71 (by 25 %) and for DJ91 (by over a factor of 2), however, the scaling of moment with yield across this low-yield range is consistent for our calculations and the two models. Spectra from our simulations show higher corner frequencies at the lower end of the 0.5-5.0 kt yield range and stronger variation with yield than the MM71 and DJ91 models predict. The spectra from our simulations have additional energy above the corner frequency, probably related to non-linear near-source effects, but at high frequencies the spectral slopes agree with the f -2 predictions of MM71. Simulations of nuclear explosions for a range of SDOB from 0.5 to 3.9 show stronger variations in the seismic moment than predicted by the MM71 and DJ91 models. Chemical explosions are found to generate higher moments by a factor of about two compared to nuclear explosions of the same yield in granite and at normal depth-of-burial, broadly consistent with comparisons of nuclear and chemical shots at the US Nevada Test Site (D enny, Proceeding of symposium on the non-proliferation experiment, Rockville

  13. Operational safety enhancement of Soviet-designed nuclear reactors via development of nuclear power plant simulators and transfer of related technology

    SciTech Connect

    Kohut, P.; Epel, L.G.; Tutu, N.K.

    1998-08-01

    The US Department of Energy (DOE), under the US government`s International Nuclear Safety Program (INSP), is implementing a program of developing and providing simulators for many of the Russian and Ukrainian Nuclear Power Plants (NPPs). Pacific Northwest National Laboratory (PNNL) and Brookhaven National Laboratory (BNL) manage and provide technical oversight of the various INSP simulator projects for DOE. The program also includes a simulator technology transfer process to simulator design organizations in Russia and Ukraine. Training programs, installation of new simulators, and enhancements in existing simulators are viewed as providing a relatively fast and cost-effective technology transfer that will result in measurable improvement in the safety culture and operation of NPPs. A review of this program, its present status, and its accomplishments are provided in this paper.

  14. Accretion Disk Outflows from Compact Object Mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian

    Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed

  15. Results from tight and loose coupled multiphysics in nuclear fuels performance simulations using BISON

    SciTech Connect

    Novascone, S. R.; Spencer, B. W.; Andrs, D.; Williamson, R. L.; Hales, J. D.; Perez, D. M.

    2013-07-01

    The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won't converge and vice versa. (authors)

  16. Results from Tight and Loose Coupled Multiphysics in Nuclear Fuels Performance Simulations using BISON

    SciTech Connect

    S. R. Novascone; B. W. Spencer; D. Andrs; R. L. Williamson; J. D. Hales; D. M. Perez

    2013-05-01

    The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won’t converge and vice versa.

  17. Nuclear sensor signal processing circuit

    DOEpatents

    Kallenbach, Gene A.; Noda, Frank T.; Mitchell, Dean J.; Etzkin, Joshua L.

    2007-02-20

    An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

  18. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    PubMed

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors. PMID:24727389

  19. Numerical simulation of the thermal conditions in a sea bay water area used for water supply to nuclear power plants

    SciTech Connect

    Sokolov, A. S.

    2013-07-15

    Consideration is given to the numerical simulation of the thermal conditions in sea water areas used for both water supply to and dissipation of low-grade heat from a nuclear power plant on the shore of a sea bay.

  20. Macroscopic nuclear spin diffusion constants of rotating polycrystalline solids from first-principles simulation

    NASA Astrophysics Data System (ADS)

    Halse, Meghan E.; Zagdoun, Alexandre; Dumez, Jean-Nicolas; Emsley, Lyndon

    2015-05-01

    A method for quantitatively calculating nuclear spin diffusion constants directly from crystal structures is introduced. This approach uses the first-principles low-order correlations in Liouville space (LCL) method to simulate spin diffusion in a box, starting from atomic geometry and including both magic-angle spinning (MAS) and powder averaging. The LCL simulations are fit to the 3D diffusion equation to extract quantitative nuclear spin diffusion constants. We demonstrate this method for the case of 1H spin diffusion in ice and L-histidine, obtaining diffusion constants that are consistent with literature values for 1H spin diffusion in polymers and that follow the expected trends with respect to magic-angle spinning rate and the density of nuclear spins. In addition, we show that this method can be used to model 13C spin diffusion in diamond and therefore has the potential to provide insight into applications such as the transport of polarization in non-protonated systems.

  1. A Perspective on Coupled Multiscale Simulation and Validation in Nuclear Materials

    SciTech Connect

    M. P. Short; D. Gaston; C. R. Stanek; S. Yip

    2014-01-01

    The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the development of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and mesoscales to technology challenges at the macroscale.

  2. Uncertainty analysis of atmospheric deposition simulation of radiocesium and radioiodine from Fukushima Daiichi Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Morino, Yu; Ohara, Toshimasa; Yumimoto, Keiya

    2014-05-01

    Chemical transport models (CTM) played key roles in understanding the atmospheric behaviors and deposition patterns of radioactive materials emitted from the Fukushima Daiichi nuclear power plant (FDNPP) after the nuclear accident that accompanied the great Tohoku earthquake and tsunami on 11 March 2011. In this study, we assessed uncertainties of atmospheric simulation by comparing observed and simulated deposition of radiocesium (137Cs) and radioiodine (131I). Airborne monitoring survey data were used to assess the model performance of 137Cs deposition patterns. We found that simulation using emissions estimated with a regional-scale (~500 km) CTM better reproduced the observed 137Cs deposition pattern in eastern Japan than simulation using emissions estimated with local-scale (~50 km) or global-scale CTM. In addition, we estimated the emission amount of 137Cs from FDNPP by combining a CTM, a priori source term, and observed deposition data. This is the first use of airborne survey data of 137Cs deposition (more than 16,000 data points) as the observational constraints in inverse modeling. The model simulation driven by a posteriori source term achieved better agreements with 137Cs depositions measured by aircraft survey and at in-situ stations over eastern Japan. Wet deposition module was also evaluated. Simulation using a process-based wet deposition module reproduced the observations well, whereas simulation using scavenging coefficients showed large uncertainties associated with empirical parameters. The best-available simulation reproduced the observed 137Cs deposition rates in high-deposition areas (≥10 kBq m-2) within one order of magnitude. Recently, 131I deposition map was released and helped to evaluate model performance of 131I deposition patterns. Observed 131I/137Cs deposition ratio is higher in areas southwest of FDNPP than northwest of FDNPP, and this behavior was roughly reproduced by a CTM if we assume that released 131I is more in gas phase

  3. Thermal nuclear pulse simulation at the National Solar Thermal Test Facility

    SciTech Connect

    Cameron, C.P.; Ralph, M.E. ); Ghanbari, C.M. ); Oeding, R.; Shaw, K. )

    1991-01-01

    The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico is being used to simulate the thermal pulse from a nuclear weapon on relatively large surfaces. Pulses varying in length from 2 seconds to 7 seconds have been produced. The desired pulse length varies as a function of the yield of the weapon being simulated. The present experiment capability can accommodate samples as large as 1.2 {times} 1.5 meters. Samples can be flat or three-dimensional. Samples exposed have ranged from fabrics (protective clothing) to an aircraft canopy and cockpit system, complete with a mannequin in a flight suit and helmet. In addition, a windowed wind tunnel has been constructed which permits exposure of flight surface materials to thermal transients with air speed of Mach 0.8. The wind tunnel can accommodate samples up to .48 {times} .76 meters or an array of smaller samples. The maximum flux capability of the NSTTF is about 70 calories/cm{sup 2}-sec. A black-body temperature of about 6000 K is produced by the solar beam and is therefore ideal for simulating the nuclear source. 3 refs., 7 figs.

  4. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    DOE PAGESBeta

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; Pritchett-Sheats, L. A.; Nourgaliev, R. R.

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less

  5. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    SciTech Connect

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; Pritchett-Sheats, L. A.; Nourgaliev, R. R.

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carried out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.

  6. Final technical report: Effects of water on properties of the simulated nuclear waste glasses

    SciTech Connect

    Li, H.; Tomozawa, M.

    1996-02-01

    For isolation of nuclear wastes through the vitrification process, waste slurry is mixed with borosilicate based glass and remelted at high temperature. During these processes, water can enter into the final waste glass. It is known that water in silica and silicate glasses changes various glass properties, such as chemical durability, viscosity and electrical conductivity. These properties are very important for processing and assuring the quality and safety controls of the waste glasses. The objective of this project was to investigate the effect of water in the simulated nuclear waste glasses on various glass properties, including chemical durability, glass transition temperature, liquidus temperature, viscosity and electrical conductivity. This report summarizes the results of this investigation conducted at Rensselaer during the past one year.

  7. Potential Biogenic Corrosion of Alloy 22, A Candidate Nuclear Waste Packaging Materials, Under Simulated Repository Conditions

    SciTech Connect

    Horn, J.M.; Martin, S.I.; Rivera, A.J.; Bedrossian, P.J.; Lian, T.

    2000-01-12

    The U.S. Department of Energy has been charged with assessing the suitability of a geologic nuclear waste repository at Yucca Mountain (YM), NV. Microorganisms, both those endogenous to the repository site and those introduced as a result of construction and operational activities, may contribute to the corrosion of metal nuclear waste packaging and thereby decrease their useful lifetime as barrier materials. Evaluation of potential Microbiological Influenced Corrosion (MIC) on candidate waste package materials was undertaken reactor systems incorporating the primary elements of the repository: YM rock (either non-sterile or presterilized), material coupons, and a continual feed of simulated YM groundwater. Periodically, both aqueous reactor efflux and material coupons were analyzed for chemical and surfacial characterization. Alloy 22 coupons exposed for a year at room temperature in reactors containing non-sterile YM rock demonstrated accretion of chromium oxide and silaceous scales, with what appear to be underlying areas of corrosion.

  8. The imaging performance of compact Lu{sub 2}O{sub 3}:Eu powdered phosphor screens: Monte Carlo simulation for applications in mammography

    SciTech Connect

    Liaparinos, P. F.; Kandarakis, I. S.

    2009-06-15

    In medical mammographic imaging systems, one type of detector configuration, often referred to as indirect detectors, is based on a scintillator layer (phosphor screen) that converts the x-ray radiation into optical signal. The indirect detector performance may be optimized either by improving the structural parameters of the screen or by employing new phosphor materials with improved physical characteristics (e.g., x-ray absorption efficiency, intrinsic conversion efficiency, emitted light spectrum). Lu{sub 2}O{sub 3}:Eu is a relatively new phosphor material that exhibits improved scintillating properties indicating a promising material for mammographic applications. In this article, a custom validated Monte Carlo program was used in order to examine the performance of compact Lu{sub 2}O{sub 3}:Eu powdered phosphor screens under diagnostic mammography conditions (x-ray spectra: 28 kV Mo, 0.030 mm Mo and 32 kV W, 0.050 mm Rh). Lu{sub 2}O{sub 3}:Eu screens of coating weight in the range between 20 and 40 mg/cm{sup 2} were examined. The Monte Carlo code was based on a model using Mie-scattering theory for the description of light propagation within the phosphor. The overall performance of Lu{sub 2}O{sub 3}:Eu powdered phosphor screens was investigated in terms of the (i) quantum detection efficiency, (ii) luminescence efficiency, (iii) compatibility with optical sensors, (iv) modulation transfer function, (v) the Swank factor, and (vi) zero-frequency detective quantum efficiency. Results were compared to the traditional rare-earth Gd{sub 2}O{sub 2}S:Tb phosphor material. The increased packing density and therefore the light extinction properties of Lu{sub 2}O{sub 3}:Eu phosphor were found to improve the x-ray absorption (approximately up to 21% and 16% at 40 mg/cm{sup 2} for Mo and W x-ray spectra, respectively), the spatial resolution (approximately 2.6 and 2.4 cycles/mm at 40 mg/cm{sup 2} for Mo and W x-ray spectra, respectively), as well as the zero

  9. Analysis by simulation of the disposition of nuclear-fuel waste

    SciTech Connect

    Turek, J.L.

    1980-09-01

    To achieve the non-proliferation objectives of the United States, the reprocessing of spent nuclear fuel was discontinued in 1977. Since current at-reactor storage capacity is based upon a nuclear fuel cycle which includes reprocessing, this halt in reprocessing is causing large quantities of non-storable spent fuel. Permanent nuclear waste storage repositories will not be available until the end of the century. Present Department of Energy policy calls for sufficient interim Away-From-Reactor (AFR) Storage capacity to insure that no commercial reactor has to shutdown due to inadequate storage space for discharged spent fuel. A descriptive simulation model is developed which includes all aspects of nuclear waste disposition. The model is comprised of two systems, the second system orchestrated by GASP IV. A spent fuel generation prediction module is interfaced with the AFR Program Management Information System and a repository scheduling information module. The user is permitted a wide range of options with which to tailor the simulation to any desired storage scenario. The model projects storage requirements through the year 2020. The outputs are evaluations of the impact that alternative decision policies and milestone date changes have on the demand for, the availability of, and the utilization of spent fuel storage capacities. Both graphs and detailed listings are available. These outputs give a comprehensive view of the particular scenario under observation, including the tracking, by year, of each discharge from every reactor. Included within the work is a review of the status of spent fuel disposition based on input data accurate as of August 1980.

  10. Durabiliy of two simulated nuclear waste glasses, a frit glass, and tektite in aqueous solutions: Final report, Volume I

    SciTech Connect

    Hagen, D.A.; Altstetter, C.J.; Brown, S.D.

    1988-05-01

    High level nuclear waste is commonly incorporated into glass for disposal. Therefore the long term aqueous durability of the waste glass is important. The leaching behavior of three simulated nuclear waste glasses (AH10, AH165, and Frit 165) and a natural glass (tektite) were examined using nuclear reaction analysis, leachate solution analysis, and microscopy. The three simulated waste glasses developed hydrated layers which increased in thickness by t/sup /1/2//. The hydrated layer in Frit 165 reached a constant thickness of about one micron. Alkali were preferentially removed from the Frit 165 and AH10. The tektite corroded by slow uniform dissolution. 94 refs., 68 figs., 13 tabs.

  11. System Simulation of Nuclear Power Plant by Coupling RELAP5 and Matlab/Simulink

    SciTech Connect

    Meng Lin; Dong Hou; Zhihong Xu; Yanhua Yang; Ronghua Zhang

    2006-07-01

    Since RELAP5 code has general and advanced features in thermal-hydraulic computation, it has been widely used in transient and accident safety analysis, experiment planning analysis, and system simulation, etc. So we wish to design, analyze, verify a new Instrumentation And Control (I and C) system of Nuclear Power Plant (NPP) based on the best-estimated code, and even develop our engineering simulator. But because of limited function of simulating control and protection system in RELAP5, it is necessary to expand the function for high efficient, accurate, flexible design and simulation of I and C system. Matlab/Simulink, a scientific computation software, just can compensate the limitation, which is a powerful tool in research and simulation of plant process control. The software is selected as I and C part to be coupled with RELAP5 code to realize system simulation of NPPs. There are two key techniques to be solved. One is the dynamic data exchange, by which Matlab/Simulink receives plant parameters and returns control results. Database is used to communicate the two codes. Accordingly, Dynamic Link Library (DLL) is applied to link database in RELAP5, while DLL and S-Function is applied in Matlab/Simulink. The other problem is synchronization between the two codes for ensuring consistency in global simulation time. Because Matlab/Simulink always computes faster than RELAP5, the simulation time is sent by RELAP5 and received by Matlab/Simulink. A time control subroutine is added into the simulation procedure of Matlab/Simulink to control its simulation advancement. Through these ways, Matlab/Simulink is dynamically coupled with RELAP5. Thus, in Matlab/Simulink, we can freely design control and protection logic of NPPs and test it with best-estimated plant model feedback. A test will be shown to illuminate that results of coupling calculation are nearly the same with one of single RELAP5 with control logic. In practice, a real Pressurized Water Reactor (PWR) is

  12. Monte Carlo simulation of a clearance box monitor used for nuclear power plant decommissioning.

    PubMed

    Bochud, François O; Laedermann, Jean-Pascal; Bailat, Claude J; Schuler, Christoph

    2009-05-01

    When decommissioning a nuclear facility it is important to be able to estimate activity levels of potentially radioactive samples and compare with clearance values defined by regulatory authorities. This paper presents a method of calibrating a clearance box monitor based on practical experimental measurements and Monte Carlo simulations. Adjusting the simulation for experimental data obtained using a simple point source permits the computation of absolute calibration factors for more complex geometries with an accuracy of a bit more than 20%. The uncertainty of the calibration factor can be improved to about 10% when the simulation is used relatively, in direct comparison with a measurement performed in the same geometry but with another nuclide. The simulation can also be used to validate the experimental calibration procedure when the sample is supposed to be homogeneous but the calibration factor is derived from a plate phantom. For more realistic geometries, like a small gravel dumpster, Monte Carlo simulation shows that the calibration factor obtained with a larger homogeneous phantom is correct within about 20%, if sample density is taken as the influencing parameter. Finally, simulation can be used to estimate the effect of a contamination hotspot. The research supporting this paper shows that activity could be largely underestimated in the event of a centrally-located hotspot and overestimated for a peripherally-located hotspot if the sample is assumed to be homogeneously contaminated. This demonstrates the usefulness of being able to complement experimental methods with Monte Carlo simulations in order to estimate calibration factors that cannot be directly measured because of a lack of available material or specific geometries. PMID:19359851

  13. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    SciTech Connect

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  14. Nuclear and Particle Physics Simulations: The Consortium of Upper-Level Physics Software

    NASA Astrophysics Data System (ADS)

    Bigelow, Roberta; Moloney, Michael J.; Philpott, John; Rothberg, Joseph

    1995-06-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  15. Measurement of leaching from simulated nuclear-waste glass using radiotracers

    SciTech Connect

    Bates, J.K.; Jardine, L.J.; Steindler, M.J.

    1982-09-01

    The use of radiotracer spiking as a method of measuring the leaching from simulated nuclear-waste glass is shown to give results comparable with other analytical detection methods. The leaching behavior of /sup 85/Sr, /sup 106/Ru, /sup 133/Ba, /sup 137/Cs, /sup 141/Ce, /sup 152/Eu, and other isotopes is measured for several defense waste glasses. These tests show that radiotracer spiking is a sensitive, multielement technique that can provide leaching data, for actual waste elements, that are difficult to obtain by other methods. Additionally, a detailed procedure is described that allows spiked glass to be prepared with a suitable distribution of radionuclides.

  16. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    SciTech Connect

    Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross; Spielman, Zachary Alexander; Hill, Rachael Ann; LeBlanc, Katya Lee

    2015-11-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  17. Magnetic field simulation of magnetic phase detection sensor for steam generator tube in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Ryu, Kwon-sang; Son, Derac; Park, Duck-gun; Kim, Yong-il

    2010-05-01

    Magnetic phases and defects are partly produced in steam generator tubes by stress and heat, because steam generator tubes in nuclear power plants are used under high temperature, high pressure, and radioactivity. The magnetic phases induce an error in the detection of the defects in steam generator tubes by the conventional eddy current method. So a new method is needed for detecting the magnetic phases in the steam generator tubes. We designed a new U-type yoke which has two kinds of coils and simulated the signal by the magnetic phases and defects in the Inconnel 600 tube.

  18. Chromosome Compaction by Active Loop Extrusion.

    PubMed

    Goloborodko, Anton; Marko, John F; Mirny, Leonid A

    2016-05-24

    During cell division, chromosomes are compacted in length by more than a 100-fold. A wide range of experiments demonstrated that in their compacted state, mammalian chromosomes form arrays of closely stacked consecutive ∼100 kb loops. The mechanism underlying the active process of chromosome compaction into a stack of loops is unknown. Here we test the hypothesis that chromosomes are compacted by enzymatic machines that actively extrude chromatin loops. When such loop-extruding factors (LEF) bind to chromosomes, they progressively bridge sites that are further away along the chromosome, thus extruding a loop. We demonstrate that collective action of LEFs leads to formation of a dynamic array of consecutive loops. Simulations and an analytically solved model identify two distinct steady states: a sparse state, where loops are highly dynamic but provide little compaction; and a dense state, where there are more stable loops and dramatic chromosome compaction. We find that human chromosomes operate at the border of the dense steady state. Our analysis also shows how the macroscopic characteristics of the loop array are determined by the microscopic properties of LEFs and their abundance. When the number of LEFs are used that match experimentally based estimates, the model can quantitatively reproduce the average loop length, the degree of compaction, and the general loop-array morphology of compact human chromosomes. Our study demonstrates that efficient chromosome compaction can be achieved solely by an active loop-extrusion process. PMID:27224481

  19. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations.

    PubMed

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  20. Nuclear Plant Analyzer: an interactive TRAC/RELAP Power-Plant Simulation Program

    SciTech Connect

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.; Mahaffy, J.; Turner, M.; Wiley, R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis.

  1. Los Alamos Nuclear Plant Analyzer: an interactive power-plant simulation program

    SciTech Connect

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.R.; Mahaffy, J.H.; Turner, M.R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware-adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis.

  2. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    PubMed Central

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  3. Numerical Simulations of Single Flow Element in a Nuclear Thermal Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed and global thermo-fluid environments of a single now element in a hypothetical solid-core nuclear thermal thrust chamber assembly, Several numerical and multi-physics thermo-fluid models, such as chemical reactions, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver. The numerical simulations of a single now element provide a detailed thermo-fluid environment for thermal stress estimation and insight for possible occurrence of mid-section corrosion. In addition, detailed conjugate heat transfer simulations were employed to develop the porosity models for efficient pressure drop and thermal load calculations.

  4. Multicomponent leach tests in Standard Canadian Shield Saline Solution on glasses containing simulated nuclear waste

    SciTech Connect

    Heimann, R.B.; Wood, D.D.; Hamon, R.F.

    1984-01-01

    Leaching experiments on borosilicate glass frit and simulated nuclear waste glasses were performed as a preliminary to leaching experiments on glasses incorporating radioactive waste. The experimental design included (1) simulated waste glass, (2) ASTM Grade-2 titanium container material, (3) clay buffer material, (4) Standard Canadian Shield Saline Solution, and (5) granitic rock. Cumulative fractions of release for boron were determined, as well as the solution concentrations of silicon, iron, strontium and cesium. The leach rates for boron after 28 d were approximately 5 x 10/sup -6/ kg x m/sup -2/ x s/sup -1/ in Hastelloy vessels. There is an apparently strong relationship between the clay/groundwater ratio, the concentration of iron in the solution, and the concentrations of silicon, strontium, and cesium.

  5. Start-up simulation of a thermionic space nuclear reactor system

    SciTech Connect

    El-Genk, M.S.; Xue, H.; Paramonov, D. )

    1993-01-15

    The Thermionic Transient Analysis Model (TITAM) is used in this paper to simulate the start-up of the TOPAZ-II space nuclear power system in orbit. The start-up procedures simulated herein are assumed for the purpose of demonstrating the capabilities of the model and may not represent an accurate account of the actual start-up procedures of the TOPAZ-II system. The temperature reactivity feedback effects of the moderator, UO[sub 2] fuel, electrodes, coolant, and other components in the core are calculated and their effects on the thermal and criticality conditions of the reactor are investigated. Also, estimates of the time constants of the temperature reactivity feedback for the UO[sub 2] fuel and the ZrH moderator during start-up, as well as of the total temperature reactivity feedback as a function of the reactor steady-state thermal power, are obtained.

  6. Transient analysis and startup simulation of a thermionic space nuclear reactor system

    SciTech Connect

    El-Genk, M.S.; Xue, Huimin; Paramonov, D. . Dept. of Chemical and Nuclear Engineering)

    1994-01-01

    The thermionic transient analysis model is used to simulate the startup of the TOPAZ-2 space nuclear power system in orbit. The simulated startup procedures are assumed for the purpose of demonstrating the capabilities of the model and may not represent an accurate account of the actual startup procedures of the TOPAZ-2 system. The temperature reactivity feedback effects of the moderator, UO[sub 2] fuel, electrodes, coolant, and other components in the core are calculated, and their effects on the thermal and criticality conditions of the reactor are investigated. Also, estimates of the time constants of the temperature reactivity feedback for the UO[sub 2] fuel and the ZrH moderator during startup, as well as of the total temperature reactivity feedback as a function of the reactor steady-state thermal power, are obtained.

  7. Fission product partitioning in aerosol release from simulated spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Di Lemma, F. G.; Colle, J. Y.; Rasmussen, G.; Konings, R. J. M.

    2015-10-01

    Aerosols created by the vaporization of simulated spent nuclear fuel (simfuel) were produced by laser heating techniques and characterised by a wide range of post-analyses. In particular attention has been focused on determining the fission product behaviour in the aerosols, in order to improve the evaluation of the source term and consequently the risk associated with release from spent fuel sabotage or accidents. Different simulated spent fuels were tested with burn-up up to 8 at. %. The results from the aerosol characterisation were compared with studies of the vaporization process by Knudsen Effusion Mass Spectrometry and thermochemical equilibrium calculations. These studies permit an understanding of the aerosol gaseous precursors and the gaseous reactions taking place during the aerosol formation process.

  8. A numerical simulation package for analysis of neutronics and thermal fluids of space nuclear power and propulsion systems

    SciTech Connect

    Anghaie, S.; Feller, G.J. ); Peery, S.D.; Parsley, R.C. )

    1993-01-20

    A system of computer codes for engineering simulation and in-depth analysis of nuclear and thermal fluid design of nuclear thermal rockets is developed. The computational system includes a neutronic solver package, a thermal fluid solver package and a propellant and materials property package. The Rocket Engine Transient Simulation (ROCETS) system code is incorporated with computational modules specific to nuclear powered engines. ROCETS features a component based performance architecture that interfaces component modules into the user designed configuration, interprets user commands, creates an executable FORTRAN computer program, and executes the program to provide output to the user. Basic design features of the Pratt Whitney XNR2000 nuclear rocket concept and its operational performance are analyzed and simulated.

  9. Corrosion Behavior of Alloy 625 in Simulated Nuclear High-Level Waste Medium

    NASA Astrophysics Data System (ADS)

    Girija, S.; Nandakumar, T.; Mudali, U. Kamachi

    2015-11-01

    The present investigation aims to study the effect of various ions present in nuclear high-level waste (HLW) (acidic) medium on the corrosion resistance of Alloy 625, with solution-annealed and sensitized microstructure. The heat-affected zones are prone to sensitization during welding of components and subsequent exposure to acidic waste during service could result in intergranular corrosion in these regions and hence it was attempted to study the corrosion behavior of the alloy under sensitized conditions. Double loop electrochemical potentiokinetic reactivation test was carried out to obtain the extent of chromium depletion. Potentiodynamic anodic polarization and electrochemical noise investigations were carried out on Alloy 625 in 3 M nitric acid and simulated nuclear HLW medium (prepared in 3 M nitric acid) at 298 K and 323 K. The study showed that the alloy possess good corrosion resistance in 3 M nitric acid and simulated HLW medium. However, a marginal decrease in the corrosion resistance occurred in simulated HLW when compared to the plain acid, as observed from an increase in passivation current density, decrease in transpassive potentials, and decrease in electrochemical noise resistance. Increase in temperature of the medium and change in microstructure from solution-annealed to sensitized state further decreased the corrosion resistance of Alloy 625. Electrochemical noise time records obtained at open circuit conditions showed a stable passive film for 22 h of immersion of the alloy in 3 M nitric acid and simulated HLW. However, the amplitude of current fluctuations was higher for the sensitized microstructure when compared to the solution-annealed microstructure.

  10. Physics-based multiscale coupling for full core nuclear reactor simulation

    SciTech Connect

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; Slaughter, Andrew E.; Andrš, David; Wang, Yaqi; Short, Michael P.; Perez, Danielle M.; Tonks, Michael R.; Ortensi, Javier; Zou, Ling; Martineau, Richard C.

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different data exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license

  11. Simulation of beta radiator handling procedures in nuclear medicine by means of a movable hand phantom.

    PubMed

    Blunck, Ch; Becker, F; Urban, M

    2011-03-01

    In nuclear medicine therapies, people working with beta radiators such as (90)Y may be exposed to non-negligible partial body doses. For radiation protection, it is important to know the characteristics of the radiation field and possible dose exposures at relevant positions in the working area. Besides extensive measurements, simulations can provide these data. For this purpose, a movable hand phantom for Monte Carlo simulations was developed. Specific beta radiator handling scenarios can be modelled interactively with forward kinematics or automatically with an inverse kinematics procedure. As a first investigation, the dose distribution on a medical doctor's hand injecting a (90)Y solution was measured and simulated with the phantom. Modelling was done with the interactive method based on five consecutive frames from a video recorded during the injection. Owing to the use of only one camera, not each detail of the radiation scenario is visible in the video. In spite of systematic uncertainties, the measured and simulated dose values are in good agreement. PMID:21044994

  12. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  13. Physics-based multiscale coupling for full core nuclear reactor simulation

    DOE PAGESBeta

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; Slaughter, Andrew E.; Andrš, David; Wang, Yaqi; Short, Michael P.; Perez, Danielle M.; Tonks, Michael R.; Ortensi, Javier; et al

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore » exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less

  14. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    SciTech Connect

    Ames, David E.

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  15. LWR spent fuel reduction by the removal of U and the compact storage of Pu with FP for long-term nuclear sustainability

    SciTech Connect

    Fukasawa, T.; Hoshino, K.; Takano, M.; Sato, S.; Shimazu, Y.

    2013-07-01

    Fast breeder reactors (FBR) nuclear fuel cycle is needed for long-term nuclear sustainability while preventing global warming and maximum utilizing the limited uranium (U) resources. The 'Framework for Nuclear Energy Policy' by the Japanese government on October 2005 stated that commercial FBR deployment will start around 2050 under its suitable conditions by the successive replacement of light water reactors (LWR) to FBR. Even after Fukushima Daiichi Nuclear Power Plant accident which made Japanese tendency slow down the nuclear power generation activities, Japan should have various options for energy resources including nuclear, and also consider the delay of FBR deployment and increase of LWR spent fuel (LWR-SF) storage amounts. As plutonium (Pu) for FBR deployment will be supplied from LWR-SF reprocessing and Japan will not possess surplus Pu, the authors have developed the flexible fuel cycle initiative (FFCI) for the transition from LWR to FBR. The FFCI system is based on the possibility to stored recycled materials (U, Pu)temporarily for a suitable period according to the FBR deployment rate to control the Pu demand/supply balance. This FFCI system is also effective after the Fukushima accident for the reduction of LWR-SF and future LWR-to-FBR transition. (authors)

  16. Thermal striping in nuclear reactors: POD analysis of LES simulations and experiment

    NASA Astrophysics Data System (ADS)

    Merzari, Elia; Alvarez, Andres; Marin, Oana; Obabko, Aleksandr; Lomperski, Steve; Aithal, Shashi

    2015-11-01

    Thermal fatigue caused due to thermal striping impacts design and analyses of a wide-range of industrial apparatus. This phenomena is of particular significance in nuclear reactor applications, primarily in sodium cooled fast reactors. In order to conduct systematic analyses of the thermal striping phenomena a simplified experimental set-up was designed and built at Argonne National Laboratory. In this set-up two turbulent jets with a temperature difference of about 20K were mixed in a rectangular tank. The jets entered the tank via 2 hexagonal inlets. Two different inlet geometries were studied, both experimentally and via high-fidelity LES simulations. Proper Orthogonal Decomposition (POD) was performed on the turbulent velocity field in the tank to identify the most dominant energetic modes. The POD analyses of the experimental data in both inlet geometrical configurations were compared with LES simulations. Detailed POD analyses are presented to highlight the impact of geometry on the velocity and thermal fields. These can be correlated with experimental and numerical data to assess the impact of thermal striping on the design of the upper plenum of sodium-cooled nuclear reactors. ALCF.

  17. Comparison of chemical and nuclear explosions: Numerical simulations of the Non-Proliferation Experiment

    SciTech Connect

    Kamm, J.R.; Bos, R.J.

    1995-06-01

    In this paper the authors discuss numerical simulations of the Non-Proliferation Experiment (NPE), which was an underground explosion conducted in September 1993 in the volcanic tuff of the Nevada Test Site. The NPE source consisted of 1.29 {times} 10{sup 6} kg of ANFO-emulsion blasting agent, with the approximate energy of 1.1 kt, emplaced 389 m beneath the surface of Rainier Mesa. The authors compare detailed numerical simulations of the NPE with data collected from that experiment, and with calculations of an equally energetic nuclear explosion in identical geology. Calculated waveforms, at ranges out to approximately 1 km, agree moderately well in the time domain with free-field data, and are in qualitative agreement with free-surface records. Comparison of computed waveforms for equally energetic chemical and nuclear sources reveals relatively minor differences beyond the immediate near-source region, with the chemical source having an {approximately}25% greater seismic moment but otherwise indistinguishable (close-in) seismic source properties. 41 refs., 67 figs., 7 tabs.

  18. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    DOE PAGESBeta

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; Svard, Staffan Jacobsson; Jansson, Peter; Swinhoe, Martyn T.; Tobin, Stephen J.

    2015-03-04

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetricallymore » burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.« less

  19. A virtual control room with an embedded, interactive nuclear reactor simulator

    SciTech Connect

    Markidis, S.; Rizwan, U.

    2006-07-01

    The use of virtual nuclear control room can be an effective and powerful tool for training personnel working in the nuclear power plants. Operators could experience and simulate the functioning of the plant, even in critical situations, without being in a real power plant or running any risk. 3D models can be exported to Virtual Reality formats and then displayed in the Virtual Reality environment providing an immersive 3D experience. However, two major limitations of this approach are that 3D models exhibit static textures, and they are not fully interactive and therefore cannot be used effectively in training personnel. In this paper we first describe a possible solution for embedding the output of a computer application in a 3D virtual scene, coupling real-world applications and VR systems. The VR system reported here grabs the output of an application running on an X server; creates a texture with the output and then displays it on a screen or a wall in the virtual reality environment. We then propose a simple model for providing interaction between the user in the VR system and the running simulator. This approach is based on the use of internet-based application that can be commanded by a laptop or tablet-pc added to the virtual environment. (authors)

  20. Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.

    SciTech Connect

    Smith, William S.; Bull, Jeffrey S.; Wilcox, Trevor; Bos, Randall J.; Shao, Xuan-Min; Goorley, John T.; Costigan, Keeley R.

    2012-08-13

    In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, and diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.

  1. Simulating experimental investigation on the safety of nuclear heating reactor in loss-of-coolant accidents

    NASA Astrophysics Data System (ADS)

    Xu, Zhanjie

    1996-12-01

    The 5MW low temperature nuclear heating reactor (NHR-5) is a new and advanced type of nuclear reactor developed by Institute of Nuclear Energy Technology (INET) of Tsinghua University of China in 1989. Its main loop is a thermal-hydraulic system with natural circulation. This paper studies the safety of NHR under the condition of loss-of-coolant accidents (LOCAs) by means of simulant experiments. First, the background and necessity of the experiments are presented, then the experimental system, including the thermal-hydraulic system and the data collection system, and similarity criteria are introduced. Up to now, the discharge experiments with the residual heating power (20% rated heating power) have been carried out on the experimental system. The system parameters including circulation flow rate, system pressure, system temperature, void fraction, discharge mass and so on have been recorded and analyzed. Based on the results of the experiments, the conclusions are shown as follos: on the whole, the reactor is safe under the condition of LOCAs, but the thermal vacillations resulting from the vibration of the circulation flow rate are disadvantageous to the internal parts of the reactor core.

  2. Compact Laser-Compton X-ray Source Development

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun

    The state-of-the-art X-ray source based on inverse-Compton scattering between a high-brightness, relativistic electron beam produced by an X-band RF accelerator and a high-intensity laser pulse generated by chirped-pulse amplification (CPA) has been carried out by our research team at Lawrence Livermore National Laboratory. This system is called "Compact Laser-Compton X-ray Source". The applications include nuclear resonance fluorescence, medical imaging and therapy, and nuclear waste imaging and assay. One of the key factors in this system is how we know the interaction happened in the vacuum chamber, which is the spectrometer of electron beams. The other key factor is the interaction after the spectrometer, which is the outgoing X-ray. In this thesis, the work in the simulation for the result of the interaction between electrons and the laser, the calibration of spectrometer, and laser focus characterization are discussed.

  3. Monte Carlo simulations for analysis and design of nuclear isomer experiments

    NASA Astrophysics Data System (ADS)

    Winick, Tristan; Goddard, Brian; Carroll, James

    2014-09-01

    The well-established GEANT4 Monte Carlo code was used to analyze the results from a test of bremsstrahlung-induced nuclear isomer switching and to guide development of an experiment to test nuclear excitation by electron capture (NEEC). Bremsstrahlung-induced experiments have historically been analyzed with the assumption that the photon flux of the bremsstrahlung spectrum at a given energy varies linearly with the spectrum's endpoint. The results obtained with GEANT4 suggest that this assumption is not justified; the revised function differs enough to warrant a re-analysis of the experimental data. This re-analysis has been applied to the switching of the unusually long-lived isomer of 180Ta (T1/2 > 1016 yr.), showing that the energies of its switching states differ by about 30 keV compared to those previously identified. GEANT4 was also employed in the design of a NEEC experiment to test the isomer switching of 93Mo via coupled atomic-nuclear processes. Initial work involved modeling a beam of 93Mo ions incident on a volume of 4He gas and observing the charge exchange process and associated emitted fluorescence. The beam and 4He volume, the ionization trails of the electrons liberated from the 4He atoms, and the subsequent fluorescence were successfully simulated; however, it was found that GEANT4 does not currently support ion charge exchange. Future work will entail either the development of the requisite code for GEANT4, or the use of a different model that can accurately simulate ion charge exchange.

  4. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. PMID:27475854

  5. Impact of a simulated nuclear winter environment on growth development and productivity of potatoes, winter wheat, pines and soybeans

    SciTech Connect

    Palta, J.P.

    1988-01-01

    Several recent studies predict strong land surface cooling and reduction in solar irradiance following nuclear explosions (Turco et al., 1983; Covey et al., 1984; Thompson et al., 1984). Although there is disagreement among scientists on the extent and the duration of temperature and irradiation decrease, there is a general agreement on the nuclear winter'' hypothesis following nuclear war (Covey, 1985). Agreements between the timing of excessive frost events and volcanic eruptions supports such nuclear winter scenarios (La Marche Jr. and Hirschboek, 1984). More recently Robock (1988) recorded a drop in surface temperatures following the entrapment of smoke from a forest fire in northern California. These measurements also support the nuclear winter hypothesis. The present study was conducted to investigate the impact of a simulated nuclear winter environment on productivity of four plant species. 20 refs., 21 figs., 10 tabs.

  6. High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Kapernick, Richard

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer. and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics and assess potential design improvements at relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design is developed

  7. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01

    The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation

  8. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    SciTech Connect

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  9. Reversible DNA compaction.

    PubMed

    González-Pérez, Alfredo

    2014-01-01

    In this review we summarize and discuss the different methods we can use to achieve reversible DNA compaction in vitro. Reversible DNA compaction is a natural process that occurs in living cells and viruses. As a result these process long sequences of DNA can be concentrated in a small volume (compacted) to be decompacted only when the information carried by the DNA is needed. In the current work we review the main artificial compacting agents looking at their suitability for decompaction. The different approaches used for decompaction are strongly influenced by the nature of the compacting agent that determines the mechanism of compaction. We focus our discussion on two main artificial compacting agents: multivalent cations and cationic surfactants that are the best known compacting agents. The reversibility of the process can be achieved by adding chemicals like divalent cations, alcohols, anionic surfactants, cyclodextrins or by changing the chemical nature of the compacting agents via pH modifications, light induced conformation changes or by redox-reactions. We stress the relevance of electrostatic interactions and self-assembly as a main approach in order to tune up the DNA conformation in order to create an on-off switch allowing a transition between coil and compact states. The recent advances to control DNA conformation in vitro, by means of molecular self-assembly, result in a better understanding of the fundamental aspects involved in the DNA behavior in vivo and serve of invaluable inspiration for the development of potential biomedical applications. PMID:24444152

  10. Thermodynamic analysis of compact formation; compaction, unloading, and ejection. I. Design and development of a compaction calorimeter and mechanical and thermal energy determinations of powder compaction.

    PubMed

    DeCrosta, M T; Schwartz, J B; Wigent, R J; Marshall, K

    2000-03-30

    The aim of this investigation was to determine and evaluate the thermodynamic properties, i.e. heat, work, and internal energy change, of the compaction process by developing a 'Compaction Calorimeter'. Compaction of common excipients and acetaminophen was performed by a double-ended, constant-strain tableting waveform utilizing an instrumented 'Compaction Simulator.' A constant-strain waveform provides a specific quantity of applied compaction work. A calorimeter, built around the dies, used a metal oxide thermistor to measure the temperature of the system. A resolution of 0.0001 degrees C with a sampling time of 5 s was used to monitor the temperature. An aluminum die within a plastic insulating die, in conjunction with fiberglass punches, comprised the calorimeter. Mechanical (work) and thermal (heat) calibrations of the elastic punch deformation were performed. An energy correction method was outlined to account for system heat effects and mechanical work of the punches. Compaction simulator transducers measured upper and lower punch forces and displacements. Measurements of the effective heat capacity of the samples were performed utilizing an electrical resistance heater. Specific heat capacities of the samples were determined by differential scanning calorimetry. The calibration techniques were utilized to determine heat, work, and the change in internal energies of powder compaction. Future publications will address the thermodynamic evaluation of the tablet sub-processes of unloading and ejection. PMID:10722955

  11. Atomistic Simulations of Mass and Thermal Transport in Oxide Nuclear Fuels

    SciTech Connect

    Andersson, Anders D.; Uberuaga, Blas P.; Du, Shiyu; Liu, Xiang-Yang; Nerikar, Pankaj; Stanek, Christopher R.; Tonks, Michael; Millet, Paul; Biner, Bulent

    2012-06-04

    In this talk we discuss simulations of the mass and thermal transport in oxide nuclear fuels. Redistribution of fission gases such as Xe is closely coupled to nuclear fuel performance. Most fission gases have low solubility in the fuel matrix, specifically the insolubility is most pronounced for large fission gas atoms such as Xe, and as a result there is a significant driving force for segregation of gas atoms to grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. The first step of the fission gas redistribution is diffusion of individual gas atoms through the fuel matrix to existing sinks, which is governed by the activation energy for bulk diffusion. Fission gas bubbles are then formed by either separate nucleation events or by filling voids that were nucleated at a prior stage; in both cases their formation and latter growth is coupled to vacancy dynamics and thus linked to the production of vacancies via irradiation or thermal events. In order to better understand bulk Xe behavior (diffusion mechanisms) in UO{sub 2{+-}x} we first calculate the relevant activation energies using density functional theory (DFT) techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism, though other alternatives may exist in high irradiation fields. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next a continuum transport model for Xe and U is formulated based on the diffusion mechanisms established from DFT. After combining this model with descriptions of the interaction between Xe and grain

  12. Compaction behavior of isomalt after roll compaction.

    PubMed

    Quodbach, Julian; Mosig, Johanna; Kleinebudde, Peter

    2012-01-01

    The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist. PMID:24300366

  13. Compaction Behavior of Isomalt after Roll Compaction

    PubMed Central

    Quodbach, Julian; Mosig, Johanna; Kleinebudde, Peter

    2012-01-01

    The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist. PMID:24300366

  14. Description of an aircraft lightning and simulated nuclear electromagnetic pulse (NEMP) threat based on experimental data

    NASA Technical Reports Server (NTRS)

    Rustan, Pedro L., Jr.

    1987-01-01

    Lightning data obtained by measuring the surface electromagnetic fields on a CV-580 research aircraft during 48 lightning strikes between 1500 and 18,000 feet in central Florida during the summers of 1984 and 1985, and nuclear electromagnetic pulse (NEMP) data obtained by surface electromagnetic field measurements using a 1:74 CV-580 scale model, are presented. From one lightning event, maximum values of 3750 T/s for the time rate of change of the surface magnetic flux density, and 4.7 kA for the peak current, were obtained. From the simulated NEMP test, maximum values of 40,000 T/s for the time rate of change of the surface magnetic flux density, and 90 A/sq m for the total normal current density, were found. The data have application to the development of a military aircraft lightning/NEMP standard.

  15. Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in UO2 nuclear fuel rods

    SciTech Connect

    Chris Newman; Glen Hansen; Derek Gaston

    2009-07-01

    The simulation of nuclear reactor fuel performance involves complex thermomechanical processes between fuel pellets, made of fissile material, and the protective cladding barrier that surrounds the pellets. This paper examines asubset of phenomena that are important in the development of a predictive capability for fuel performance calculations, focusing on thermomechanics and diffusion within UO2 fuel pellets. In this study, correlations from the literature are used for thermal conductivity, specific heat, and oxygen diffusion. This study develops a three dimensional thermomechanical model fully-coupled to an oxygen diffusion model. Both steady state and transient results are examined to compare this three dimensional model with the literature. Further, this equation system is solved in a parallel, fully-coupled, fully-implicit manner using a preconditioned Jacobian-free Newton Krylov method. Numerical results are presented to explore the efficacy of this approach for examining selected fuel performance problems. INL’s BISON fuels performance code is used to perform this analysis.

  16. Nuclear Reaction Models Responsible for Simulation of Neutron-induced Soft Errors in Microelectronics

    SciTech Connect

    Watanabe, Y. Abe, S.

    2014-06-15

    Terrestrial neutron-induced soft errors in MOSFETs from a 65 nm down to a 25 nm design rule are analyzed by means of multi-scale Monte Carlo simulation using the PHITS-HyENEXSS code system. Nuclear reaction models implemented in PHITS code are validated by comparisons with experimental data. From the analysis of calculated soft error rates, it is clarified that secondary He and H ions provide a major impact on soft errors with decreasing critical charge. It is also found that the high energy component from 10 MeV up to several hundreds of MeV in secondary cosmic-ray neutrons has the most significant source of soft errors regardless of design rule.

  17. Two-dimensional simulations of possible mesoscale effects of nuclear war fires: 1. Model description

    NASA Astrophysics Data System (ADS)

    Giorgi, Filippo

    1989-01-01

    In this paper and the companion paper by Giorgi and Visconti [this issue] a two-dimensional mesoscale meteorological model is coupled to an aerosol model to investigate possible mesoscale effects of nuclear war fires. The meteorological model used in this study is a two-dimensional analog of the Penn State/NCAR mesoscale model with enhancements in the areas of radiative transfer, surface physics, and moisture physics. The aerosol model solves equations for the hygroscopic and hydrophobic fractions of particulate material and includes particle transport, sedimentation, dry-deposition, in-cloud and below-cloud scavenging, and a first order term accounting for aerosol aging. In this paper the meteorological model and the aerosol model are first described and then applied, as an illustrative example, to a simulation of the development of sea-breezelike circulations induced by contrasts in soil moisture available for evaporation.

  18. Two-dimensional simulations of possible mesoscale effects of nuclear war fires 1. Model description

    SciTech Connect

    Giorgi, F.

    1989-01-20

    In this paper and the companion paper by Giorgi and Visconti (this issue) a two-dimensional mesoscale meteorological model is coupled to an aerosol model to investigate possible mesoscale effects of nuclear war fires. The meteorological model used in this study is a two-dimensional analog of the Penn State/NCAR mesoscale model with enhancements in the areas of radiative transfer, surface physics, and moisture physics. The aerosol model solves equations for the hygroscopic and hydrophobic fractions of particulate material and includes particle transport, sedimentation, dry-deposition, in-cloud and below-cloud scavenging, and a first order term accounting for aerosol aging. In this paper the meteorological model and the aerosol model are first described and then applied, as an illustrative example, to a simulation of the development of sea-breezelike circulations induced by contrasts in soil moisture available for evaporation. copyright American Geophysical Union 1989

  19. Assessment of scaling criteria adopted in designing nuclear power plants experimental simulators

    NASA Astrophysics Data System (ADS)

    D'Auria, F.; Galassi, G. M.; Moschetti, L.

    1985-02-01

    The choice of the scaling laws and particularly the extrapolation of data measured in experimental facilities for application to real plants remains an important unresolved issue in Nuclear Reactor Safety. One of such experimental facilities, named PIPER-ONE, is in construction at "Dipartimento di Costruzioni Meccaniche e Nucleari" of Pisa University with the aim of simulating Small Break LOCAs in BWRs. This paper presents an in depth analysis of scaling principles adopted in similar apparatuses in the world. Besides it deals with the problem of the extrapolation of experimental data to real systems; in order to achieve this, a comparative analysis is carried out with reference to calculated or measured transients arising or assumed in ROSA-III, FIX-II, PIPER-ONE and BWR plants.

  20. Corrosion behavior of Alloy 690 and Alloy 693 in simulated nuclear high level waste medium

    NASA Astrophysics Data System (ADS)

    Samantaroy, Pradeep Kumar; Suresh, Girija; Paul, Ranita; Kamachi Mudali, U.; Raj, Baldev

    2011-11-01

    Nickel based alloys are candidate materials for the storage of high level waste (HLW) generated from reprocessing of spent nuclear fuel. In the present investigation Alloy 690 and Alloy 693 are assessed by potentiodynamic anodic polarization technique for their corrosion behavior in 3 M HNO 3, 3 M HNO 3 containing simulated HLW and in chloride medium. Both the alloys were found to possess good corrosion resistance in both the media at ambient condition. Microstructural examination was carried out by SEM for both the alloys after electrolytic etching. Compositional analysis of the passive film formed on the alloys in 3 M HNO 3 and 3 M HNO 3 with HLW was carried out by XPS. The surface of Alloy 690 and Alloy 693, both consists of a thin layer of oxide of Ni, Cr, and Fe under passivation in both the media. The results of investigation are presented in the paper.

  1. The study of ionization by electron impact of a substance simulating spent nuclear fuel components

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Bochkarev, E. I.; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P.

    2015-11-01

    Plasma sources of model substances are necessary to solve problems associated with development of the spent nuclear fuel (SNF) plasma separation method. Lead was chosen to simulate kinetic and dynamic properties of the heavy SNF components. In this paper we present the results of a study of a lead vapor discharge with a lead concentration of 1012-1013 cm-3. Ionization was carried out by an electron beam (with energy of up to 500 eV per electron) inside a centimeter gap between planar electrodes. The discharge was numerically modeled using the hydrodynamic and single-particle approximation. Current-voltage characteristics and single ionization efficiency were obtained as functions of the vapors concentration and thermoelectric current. An ion current of hundreds of microamperes at the ionization efficiency near tenths of a percent was experimentally obtained. These results are in good agreement with our model.

  2. Nuclear reaction measurements on tissue-equivalent materials and GEANT4 Monte Carlo simulations for hadrontherapy

    NASA Astrophysics Data System (ADS)

    De Napoli, M.; Romano, F.; D'Urso, D.; Licciardello, T.; Agodi, C.; Candiano, G.; Cappuzzello, F.; Cirrone, G. A. P.; Cuttone, G.; Musumarra, A.; Pandola, L.; Scuderi, V.

    2014-12-01

    When a carbon beam interacts with human tissues, many secondary fragments are produced into the tumor region and the surrounding healthy tissues. Therefore, in hadrontherapy precise dose calculations require Monte Carlo tools equipped with complex nuclear reaction models. To get realistic predictions, however, simulation codes must be validated against experimental results; the wider the dataset is, the more the models are finely tuned. Since no fragmentation data for tissue-equivalent materials at Fermi energies are available in literature, we measured secondary fragments produced by the interaction of a 55.6 MeV u-1 12C beam with thick muscle and cortical bone targets. Three reaction models used by the Geant4 Monte Carlo code, the Binary Light Ions Cascade, the Quantum Molecular Dynamic and the Liege Intranuclear Cascade, have been benchmarked against the collected data. In this work we present the experimental results and we discuss the predictive power of the above mentioned models.

  3. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    SciTech Connect

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  4. The Nuclear Energy Advanced Modeling and Simulation Safeguards and Separations Reprocessing Plant Toolkit

    SciTech Connect

    McCaskey, Alex; Billings, Jay Jay; de Almeida, Valmor F

    2011-08-01

    This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usability and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.

  5. Simulation of differential die-away instrument's response to asymmetrically burned spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; Svärd, Staffan Jacobsson; Jansson, Peter; Swinhoe, Martyn T.; Tobin, Stephen J.

    2015-07-01

    Previous simulation studies of Differential Die-Away (DDA) instrument's response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument's response to interrogation of asymmetrically burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs. The results of this study suggest that DDA instrument response depends on the position of the individual neutron detectors and in fact can be split in two modes. The first mode, measured by the back detectors, is not significantly sensitive to the spatial distribution of fissile isotopes and neutron absorbers, but rather reflects the total amount of both contributors as in the cases of symmetrically burned SFAs. In contrary, the second mode, measured by the front detectors, yields certain sensitivity to the orientation of the asymmetrically burned SFA inside the assaying instrument. This study thus provides evidence that the DDA instrument can potentially be utilized as necessary in both ways, i.e. a quick determination of the average SFA characteristics in a single assay, as well as a more detailed characterization involving several DDA observables through assay of the SFA from all of its four sides that can possibly map the burn-up distribution and/or identify diversion or

  6. Nuclear Engine System Simulation (NESS). Version 2.0: Program user's guide

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman

    1993-01-01

    This Program User's Guide discusses the Nuclear Thermal Propulsion (NTP) engine system design features and capabilities modeled in the Nuclear Engine System Simulation (NESS): Version 2.0 program (referred to as NESS throughout the remainder of this document), as well as its operation. NESS was upgraded to include many new modeling capabilities not available in the original version delivered to NASA LeRC in Dec. 1991, NESS's new features include the following: (1) an improved input format; (2) an advanced solid-core NERVA-type reactor system model (ENABLER 2); (3) a bleed-cycle engine system option; (4) an axial-turbopump design option; (5) an automated pump-out turbopump assembly sizing option; (6) an off-design gas generator engine cycle design option; (7) updated hydrogen properties; (8) an improved output format; and (9) personal computer operation capability. Sample design cases are presented in the user's guide that demonstrate many of the new features associated with this upgraded version of NESS, as well as design modeling features associated with the original version of NESS.

  7. Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures

    SciTech Connect

    Jacob J. Jacobson; Steven J. Piet; Gretchen E. Matthern; David E. Shropshire; Robert F. Jeffers; A. M. Yacout; Tyler Schweitzer

    2010-11-01

    The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

  8. Evaluation and Numerical Simulation of Tsunami for Coastal Nuclear Power Plants of India

    SciTech Connect

    Sharma, Pavan K.; Singh, R.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-07-01

    Recent tsunami generated on December 26, 2004 due to Sumatra earthquake of magnitude 9.3 resulted in inundation at the various coastal sites of India. The site selection and design of Indian nuclear power plants demand the evaluation of run up and the structural barriers for the coastal plants: Besides it is also desirable to evaluate the early warning system for tsunami-genic earthquakes. The tsunamis originate from submarine faults, underwater volcanic activities, sub-aerial landslides impinging on the sea and submarine landslides. In case of a submarine earthquake-induced tsunami the wave is generated in the fluid domain due to displacement of the seabed. There are three phases of tsunami: generation, propagation, and run-up. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC), Trombay has initiated computational simulation for all the three phases of tsunami source generation, its propagation and finally run up evaluation for the protection of public life, property and various industrial infrastructures located on the coastal regions of India. These studies could be effectively utilized for design and implementation of early warning system for coastal region of the country apart from catering to the needs of Indian nuclear installations. This paper presents some results of tsunami waves based on different analytical/numerical approaches with shallow water wave theory. (authors)

  9. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-11-01

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  10. RBS/ERD simulation problems: Stopping powers, nuclear reactions and detector resolution

    NASA Astrophysics Data System (ADS)

    Ziegler, J. F.

    1998-03-01

    A new program has been developed for the graphical analysis of data from Rutherford Back scattering (RBS) and Elastic Recoil Detection (ERD) material analysis experiments. The program can evaluate experiments using any incident ion, at any energy, for any planar target. It incorporates the full stopping power database of the SRIM/TRIM ion beam programs. All scattered ions and recoiling target atoms are followed out of the target and through any filtering absorbers (ERD absorber foils and foils on detector windows). Straggling is included using any of five optional straggling theories. Commonly used nuclear reaction cross-sections are automatically incorporated. By comparison with experimental data, weaknesses in the theoretical basis of RBS/ERD simulations become apparent. These will be discussed with emphasis on stopping powers, detector resolution, target setup and nuclear reaction cross-sections. The complete RBS/ERD software package can be downloaded from the web site: http://www.research.ibm.com/ionbeams. This package includes an installation manual and a full tutorial.

  11. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (~100 keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  12. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (˜100keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  13. Development of the simulation system {open_quotes}IMPACT{close_quotes} for analysis of nuclear power plant severe accidents

    SciTech Connect

    Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi

    1997-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed by three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.

  14. Rapid compaction during RNA folding

    NASA Astrophysics Data System (ADS)

    Russell, Rick; Millett, Ian S.; Tate, Mark W.; Kwok, Lisa W.; Nakatani, Bradley; Gruner, Sol M.; Mochrie, Simon G. J.; Pande, Vijay; Doniach, Sebastian; Herschlag, Daniel; Pollack, Lois

    2002-04-01

    We have used small angle x-ray scattering and computer simulations with a coarse-grained model to provide a time-resolved picture of the global folding process of the Tetrahymena group I RNA over a time window of more than five orders of magnitude. A substantial phase of compaction is observed on the low millisecond timescale, and the overall compaction and global shape changes are largely complete within one second, earlier than any known tertiary contacts are formed. This finding indicates that the RNA forms a nonspecifically collapsed intermediate and then searches for its tertiary contacts within a highly restricted subset of conformational space. The collapsed intermediate early in folding of this RNA is grossly akin to molten globule intermediates in protein folding.

  15. Self-optimizing Monte Carlo method for nuclear well logging simulation

    NASA Astrophysics Data System (ADS)

    Liu, Lianyan

    1997-09-01

    In order to increase the efficiency of Monte Carlo simulation for nuclear well logging problems, a new method has been developed for variance reduction. With this method, an importance map is generated in the regular Monte Carlo calculation as a by-product, and the importance map is later used to conduct the splitting and Russian roulette for particle population control. By adopting a spatial mesh system, which is independent of physical geometrical configuration, the method allows superior user-friendliness. This new method is incorporated into the general purpose Monte Carlo code MCNP4A through a patch file. Two nuclear well logging problems, a neutron porosity tool and a gamma-ray lithology density tool are used to test the performance of this new method. The calculations are sped up over analog simulation by 120 and 2600 times, for the neutron porosity tool and for the gamma-ray lithology density log, respectively. The new method enjoys better performance by a factor of 4~6 times than that of MCNP's cell-based weight window, as per the converged figure-of-merits. An indirect comparison indicates that the new method also outperforms the AVATAR process for gamma-ray density tool problems. Even though it takes quite some time to generate a reasonable importance map from an analog run, a good initial map can create significant CPU time savings. This makes the method especially suitable for nuclear well logging problems, since one or several reference importance maps are usually available for a given tool. Study shows that the spatial mesh sizes should be chosen according to the mean-free-path. The overhead of the importance map generator is 6% and 14% for neutron and gamma-ray cases. The learning ability towards a correct importance map is also demonstrated. Although false-learning may happen, physical judgement can help diagnose with contributon maps. Calibration and analysis are performed for the neutron tool and the gamma-ray tool. Due to the fact that a very

  16. Information Theory and Undersampling Diagnostics for Monte Carlo Simulation of Nuclear Criticality

    SciTech Connect

    Ueki, Taro

    2005-11-15

    The criterion of information-theoretic stationarity diagnostics for the Monte Carlo simulation of nuclear criticality has been extended to undersampling diagnostics. Here, undersampling diagnostics means the posterior checking of the number of neutron histories per cycle. A statistically sound criterion using Shannon and relative entropies is defined based on the inequality with a penalty term for the minimum descriptive length of instantaneously decodable encoding. An alternative criterion based on a large sample property of particle population is defined within the information-theoretic framework of the asymptotic equipartition property and the method of types. An auxiliary criterion is proposed using the concave property of Shannon entropy. Numerical results are presented for the 'k-effective of the world' problem by Whitesides. The results indicate that the estimation bias of the neutron effective multiplication factor will be reduced to a practically negligible level if these criteria are satisfied. It can be concluded that equilibrium is a stronger condition than stationarity concerning the source distribution in the Monte Carlo simulation.

  17. Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges

    SciTech Connect

    Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.

    2004-01-23

    Oxidative alkaline leaching has been proposed to pre-treat the high-level nuclear waste sludges to remove some of the problematic (e.g., Cr) and/or non-radioactive (e.g., Na, Al) constituents before vitrification. It is critical to understand the behavior of actinides, americium and plutonium in particular, in oxidative alkaline leaching. We have studied the leaching behavior of americium from four different sludge simulants (BiPO{sub 4}, BiPO{sub 4 modified}, Redox, PUREX) using potassium permanganate and potassium persulfate in alkaline solutions. Up to 60% of americium sorbed onto the simulants is leached from the sludges by alkaline persulfate and permanganate. The percentage of americium leached increases with [NaOH] (between 1.0 and 5.0 M). The initial rate of americium leaching by potassium persulfate increases in the order BiPO{sub 4} sludge < Redox sludge < PUREX sludge. The data are most consistent with oxidation of Am{sup 3+} in the sludge to either AmO{sub 2}{sup +} or AmO{sub 2}{sup 2+} in solution. Though neither of these species is expected to exhibit long-term stability in solution, the potential for mobilization of americium from sludge samples would have to be accommodated in the design of any oxidative leaching process for real sludge samples.

  18. Fire simulation in nuclear facilities: the FIRAC code and supporting experiments

    SciTech Connect

    Burkett, M.W.; Martin, R.A.; Fenton, D.L.; Gunaji, M.V.

    1984-01-01

    The fire accident analysis computer code FIRAC was designed to estimate radioactive and nonradioactive source terms and predict fire-induced flows and thermal and material transport within the ventilation systems of nuclear fuel cycle facilities. FIRAC maintains its basic structure and features and has been expanded and modified to include the capabilities of the zone-type compartment fire model computer code FIRIN developed by Battelle Pacific Northwest Laboratory. The two codes have been coupled to provide an improved simulation of a fire-induced transient within a facility. The basic material transport capability of FIRAC has been retained and includes estimates of entrainment, convection, deposition, and filtration of material. The interrelated effects of filter plugging, heat transfer, gas dynamics, material transport, and fire and radioactive source terms also can be simulated. Also, a sample calculation has been performed to illustrate some of the capabilities of the code and how a typical facility is modeled with FIRAC. In addition to the analytical work being performed at Los Alamos, experiments are being conducted at the New Mexico State University to support the FIRAC computer code development and verification. This paper summarizes two areas of the experimental work that support the material transport capabiities of the code: the plugging of high-efficiency particulate air (HEPA) filters by combustion aerosols and the transport and deposition of smoke in ventilation system ductwork.

  19. Development and investigations of compact heat-transfer equipment for a nuclear power station equipped with a high-temperature gas-cooled reactor

    NASA Astrophysics Data System (ADS)

    Golovko, V. F.; Dmitrieva, I. V.; Kodochigov, N. G.; Bykh, O. A.

    2013-07-01

    The project of a nuclear power station the reactor coolant system of which includes a high-temperature gas-cooled reactor combined with a gas-turbine energy conversion unit supposes the use of high-efficient gas-cycle-based heat-transfer equipment. An analysis aimed at selecting the optimal heat-transfer surfaces is presented together with the results from their calculated and experimental investigation. The design features of recuperators arranged integrally with end and intermediate coolers and placed in a vertical sealed high-pressure vessel of limited sizes are considered.

  20. ACOUSTIC COMPACTION LAYER DETECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The depth and strength of compacted layers in fields have been determined traditionally using the ASAE standardized cone penetrometer method. However, an on-the-go method would be much faster and much less labor intensive. The soil measurement system described here attempts to locate the compacted...

  1. Dynamical compactness and sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Khilko, Danylo; Kolyada, Sergiĭ; Zhang, Guohua

    2016-05-01

    To link the Auslander point dynamics property with topological transitivity, in this paper we introduce dynamically compact systems as a new concept of a chaotic dynamical system (X , T) given by a compact metric space X and a continuous surjective self-map T : X → X. Observe that each weakly mixing system is transitive compact, and we show that any transitive compact M-system is weakly mixing. Then we discuss the relationships between it and other several stronger forms of sensitivity. We prove that any transitive compact system is Li-Yorke sensitive and furthermore multi-sensitive if it is not proximal, and that any multi-sensitive system has positive topological sequence entropy. Moreover, we show that multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity for M-systems. We also give a quantitative analysis for multi-sensitivity of a dynamical system.

  2. Stabilization of compactible waste

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

  3. Application of laboratory data from small-scale simulators to human performance issues in the nuclear industry

    SciTech Connect

    Spettell, C.M.

    1986-01-01

    Laboratory analogs of nuclear power plant tasks were simulated on personal computers in two experimental studies. Human performance data were collected during each experimental study. The goal of the first experiment was to validate a quantitative model of dependence among human errors during testing, calibration, and maintenance activities. This model, the Multiple Sequential Failure (MSF) model (NUREG/CR-2211) has been used to quantify dependent human error failure probabilities for human reliability analyses in Probabilistic Risk Assessments (PRAs). The goal of the second experiment was to examine the relationship among psychological and behavioral characteristics of individuals and their performance at controlling a simulated nuclear power plant. These studies demonstrated the usefulness of the experimental psychology approach for validating models of human performance at nuclear power plant tasks.

  4. Dynamic Compaction Modeling of Porous Silica Powder

    NASA Astrophysics Data System (ADS)

    Borg, John P.; Schwalbe, Larry; Cogar, John; Chapman, D. J.; Tsembelis, K.; Ward, Aaron; Lloyd, Andrew

    2006-07-01

    A computational analysis of the dynamic compaction of porous silica is presented and compared with experimental measurements. The experiments were conducted at Cambridge University's one-dimensional flyer plate facility. The experiments shock loaded samples of silica dust of various initial porous densities up to a pressure of 2.25 GPa. The computational simulations utilized a linear Us-Up Hugoniot. The compaction events were modeled with CTH, a 3D Eulerian hydrocode developed at Sandia National Laboratory. Simulated pressures at two test locations are presented and compared with measurements.

  5. Numerical analysis of applied magnetic field dependence in Malmberg-Penning Trap for compact simulator of energy driver in heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Sato, T.; Park, Y.; Soga, Y.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob

    2016-05-01

    To simulate a pulse compression process of space charge dominated beams in heavy ion fusion, we have demonstrated a multi-particle numerical simulation as an equivalent beam using the Malmberg-Penning trap device. The results show that both transverse and longitudinal velocities as a function of external magnetic field strength are increasing during the longitudinal compression. The influence of space-charge effect, which is related to the external magnetic field, was observed as the increase of high velocity particles at the weak external magnetic field.

  6. Compact radio sources in luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Parra, Rodrigo

    2007-08-01

    Radio interferometry is an observational technique of high sensitivity and incomparably high spatial resolution. Moreover, because radio waves can freely propagate through interstellar dust and gas, it allows the study of regions of the universe completely obscured at other wavelengths. This thesis reports the observational and theoretical results of my research during the past four years which are mostly based on interferometric radio data. The COLA sample is an infrared selected sample of active star forming galaxies. We conducted 6 cm VLA and VLBI snapshot observations of the northern half of this sample. The radio emission seen at VLA scales is consistent with being powered by star formation activity because it follows the far infrared to radio correlation. We detect 22% of the sample sources in our VLBI snapshots. Based on luminosity arguments, we argue that these sub-parsec VLBI sources are powered by AGN activity. Furthermore, we find that VLBI detections are preferentially found in sources whose VLA scale structures have the highest peak brightnesses suggesting a strong correlation between compact starburst and AGN activity. This observational result is consistent with the theoretical picture of an Eddington-limited nuclear starburst acting as the last valve in the pipeline transporting the gas from kiloparsec scales onto the accretion disc of a buried AGN. Arp 220 is the archetypical ultra luminous infrared galaxy. For many years this source has been known to harbour a compact (~100 pc) cluster of unresolved 18 cm bright sources believed to be bright core collapse supernovae. Using multiwavelength VLBI observations, we obtained for the first time radio spectra for 18 of these sources. We find that over a half of them have spectra consistent with young supernovae. The rest can be better explained as older supernova remnants interacting with the high density starburst ISM. This finding allowed us to constrain the number of possible scenarios for the Arp 220

  7. Specification and verification of nuclear-power-plant training-simulator response characteristics. Part II. Conclusions and recommendations

    SciTech Connect

    Haas, P M; Selby, D L; Kerlin, T W; Felkins, L

    1982-05-01

    The nuclear industry should adopt and NRC regulatory and research actions should support the systems approach to training as a structured framework for development and validation of personnel training systems. Potential exists for improving the ability to assess simulator fidelity. Systems Identification Technology offers a potential framework for model validation. Installation of the data collection/recording equipment required by NUREG-0696 could provide a vastly improved source of data for simulator fidelity assessment. The NRC needs to continue its post-TMI actions to involve itself more rigorously and more formally in the entire process of NPP personnel training system development. However, this involvement should be a participative one with industry. The existing similator standards and guidelines should be reorganized to support the use of systems approach to training. The standards should require and support a holistic approach to training system development that recognizes simulators and simulator training as only parts of the complete training program and full-scope, high-fidelity, site-specific simulators as only one useful training device. Some recommendations for adapting the SAT/ISD process to the nuclear industry are: The formation of an NRC/industry planning/coordination group, a program planning study to develop a programmatic plan, development of a user's guide and NRC/industry workshops to establish common terminology and practice, and a pilot study applying the adopted SAT/ISD methodology to an actual nuclear industry training program.

  8. Numerical simulations of cloud rise phenomena associated with nuclear bursts: compressible and low Mach approaches

    NASA Astrophysics Data System (ADS)

    Kanarska, Y.; Lomov, I.; Antoun, T.

    2008-12-01

    The nuclear cloud rise is a two stage phenomenon. The initial phase (fireball expansion) of the cloud formation is dominated by compressible flow effects and propagation of shock waves. At the later stage, shock waves become weak, the Mach number decreases and the time steps required by an explicit code to model the acoustic waves make simulation of the late time cloud dynamics with a compressible code very expensive. The buoyant cloud rise at this stage can be efficiently simulated by low Mach-number approximation. In this approach acoustic waves are removed analytically, compressible effects are included as a non-zero divergence constraint due to background stratification and the system of equations is solved implicitly using pressure projection methods. Our numerical approach includes fluid mechanical models that are able to simulate both compressible, incompressible and low Mach regimes. Compressible dynamics is simulated with the explicit high order Eulerian code GEODYN (Lomov et al., 2001). It is based on the second-order Godunov method of Colella and Woodward (1984) that is extended for multiple dimensions using operator-splitting. The code includes the material interface tracking based on a volume-of-fluid (VOF) approach of Miller and Puckett (1996). The code we use for the low Mach approximation (LMC) is based on the incompressible solver of Bell et al., (2003). An unsplit second-order Godunov method and the MAC projection method (Bell et al., 2003) are used. An algebraic slip multiphase model is implemented to describe fallout of dust particles. Both codes incorporate adaptive mesh refinement (AMR). Additionally, the codes are explicitly coupled via input/output files. First, we compared solutions for an idealized buoyant bubble rise problem, that is characterized by low Mach numbers, in GEODYN and LMC codes. While the cloud evolution process is reproduced in both codes, some differences are found in the cloud rise speed and the cloud interface structure

  9. Compaction Waves in Granular HMX

    SciTech Connect

    E. Kober; R. Menikoff

    1999-01-01

    Piston driven compaction waves in granular HMX are simulated with a two-dimensional continuum mechanics code in which individual grains are resolved. The constitutive properties of the grains are modeled with a hydrostatic pressure and a simple elastic-plastic model for the shear stress. Parameters are chosen to correspond to inert HMX. For a tightly packed random grain distribution (with initial porosity of 19%) we varied the piston velocity to obtain weak partly compacted waves and stronger fully compacted waves. The average stress and wave speed are compatible with the porous Hugoniot locus for uni- axial strain. However, the heterogeneities give rise to stress concentrations, which lead to localized plastic flow. For weak waves, plastic deformation is the dominant dissipative mechanism and leads to dispersed waves that spread out in time. In addition to dispersion, the granular heterogeneities give rise to subgrain spatial variation in the thermodynamic variables. The peaks in the temperature fluctuations, known as hot spots, are in the range such that they are the critical factor for initiation sensitivity.

  10. Assessing the Sensitivity of Satellite-Derived Estimates of Ice Sheet Mass Balance to Regional Climate Model Simulations of Snow Accumulation and Firn Compaction

    NASA Astrophysics Data System (ADS)

    Briggs, K.; Shepherd, A.; Horwath, M.; Horvath, A.; Nagler, T.; Wuite, J.; Muir, A.; Gilbert, L.; Mouginot, J.

    2015-12-01

    Surface mass balance (SMB) estimates from Regional Climate Models (RCMs) are fundamental for assessing and understanding ice sheet mass trends. Mass budget and altimetry assessments rely on RCMs both directly for estimates of the SMB contribution to the total mass trend, and indirectly for ancillary data in the form of firn compaction corrections. As such, mass balance assessments can be highly sensitive to RCM outputs and therefore their accuracy. Here we assess the extent to which geodetic measurements of mass balance are sensitive to RCM model outputs at different resolutions. We achieve this by comparing SMB dependent estimates of mass balance from the mass budget method and altimetry, with those from satellite gravimetry that are independent of SMB estimates. Using the outputs of the RACMO/ANT 2.3 model at 5.5 km and 27 km horizontal spatial resolution, we generate estimates of mass balance using the mass budget method and altimetry for the Western Palmer Land region of the Antarctic Peninsula between 2003 and 2014. We find a 19% increase in the long-term (1980 to 2014) mean annual SMB for the region when enhancing the model resolution to 5.5 km. This translates into an approximate 50% reduction in the total mass loss from 2003 to 2014 calculated with the mass budget method and a 15% increase in the altimetry estimate. The use of the enhanced resolution product leads to consistency between the estimates of mass loss from the altimetry and the mass budget method that is not observed with the coarser resolution product, in which estimates of cumulative mass fall beyond the relative errors. Critically, when using the 5.5 km product, we find excellent agreement, both in pattern and magnitude, with the independent estimate derived from gravimetry. Our results point toward the crucial need for high resolution SMB products from RCMs for mass balance assessments, particularly in regions of high mass turnover and complex terrain as found over the Antarctic Peninsula.

  11. Compaction of North-sea chalk

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Dániel; Dysthe, Dag Kristian; Jamtveit, Bjørn

    2014-05-01

    The Ekofisk field is the largest petroleum field in the Norwegian North Sea territory where oil is produced from chalk formations. Early stage of oil production caused considerable changes in pore fluid pressure which led to a reservoir compaction. Pore collapse mechanism caused by the dramatic increase of effective stress, which in turn was caused by the pressure reduction by hydrocarbon depletion, was early identified as a principal reason for the reservoir compaction (Sulak et al. 1991). There have been several attempts to model this compaction. They performed with variable success on predicting the Ekofisk subsidence. However, the most of these models are based on empirical relations and do not investigate in detail the phenomena involved in the compaction. In sake of predicting the Ekofisk subsidence while using only independently measurable variables we used a chalk compaction model valid on geological time-scales (Japsen et al. 2011) assuming plastic pore-collapse mechanism at a threshold effective stress level. We identified the phenomena involved in the pore collapse. By putting them in a sequential order we created a simple statistical analytical model. We also investigated the time-dependence of the phenomena involved and by assuming that one of the phenomena is rate-limiting we could make estimations of the compaction rate at smaller length-scales. By carefully investigating the nature of pressure propagation we could upscale our model to reservoir scale. We found that the predicted compaction rates are close enough to the measured rates. We believe that we could further increase accuracy by refining our model. Sulak, R. M., Thomas, L. K., Boade R. R. (1991) 3D reservoir simulation of Ekofisk compaction drive. Journal of Petroleum Technology, 43(10):1272-1278, 1991. Japsen, P., Dysthe, D. K., Hartz, E. H., Stipp, S. L. S., Yarushina, V. M., Jamtveit. (2011) A compaction front in North Sea chalk. Journal of Geophysical Research: Solid Earth (1978

  12. Large-eddy simulation of turbulent winds during the Fukushima Daiichi Nuclear Power Plant accident by coupling with a meso-scale meteorological simulation model

    NASA Astrophysics Data System (ADS)

    Nakayama, H.; Takemi, T.; Nagai, H.

    2015-06-01

    A significant amount of radioactive material was accidentally discharged into the atmosphere from the Fukushima Dai-ichi Nuclear Power Plant from 12 March 2011, which produced high contaminated areas over a wide region in Japan. In conducting regional-scale atmospheric dispersion simulations, the computer-based nuclear emergency response system WSPEEDI-II developed by Japan Atomic Energy Agency was used. Because this system is driven by a meso-scale meteorological (MM) model, it is difficult to reproduce small-scale wind fluctuations due to the effects of local terrain variability and buildings within a nuclear facility that are not explicitly represented in MM models. In this study, we propose a computational approach to couple an LES-based CFD model with a MM model for detailed simulations of turbulent winds with buoyancy effects under real meteorological conditions using turbulent inflow technique. Compared to the simple measurement data, especially, the 10 min averaged wind directions of the LES differ by more than 30 degrees during some period of time. However, distribution patterns of wind speeds, directions, and potential temperature are similar to the MM data. This implies that our coupling technique has potential performance to provide detailed data on contaminated area in the nuclear accidents.

  13. Dynamic magnetic compaction of porous materials

    SciTech Connect

    1998-10-29

    IAP Research began development of the Dynamic Magnetic Compaction (DMC) process three years before the CRADA was established. IAP Research had experimentally demonstrated the feasibility of the process, and conducted a basic market survey. IAP identified and opened discussions with industrial partners and established the basic commercial cost structure. The purpose of this CRADA project was to predict and verify optimum pressure vs. time history for the compaction of porous copper and tungsten. LLNL modeled the rapid compaction of powdered material from an initial density of about 30% theoretical maximum to more than 90% theoretical maximum. The compaction simulations were benchmarked against existing data and new data was acquired by IAP Research. The modeling was used to perform parameter studies on the pressure loading time history, initial porosity and temperature. LLNL ran simulations using codes CALE or NITO and compared the simulations with published compaction data and equation of state (EOS) data. This project did not involve the development or modification of software code. CALE and NITO were existing software programs at LLNL. No modification of these programs occurred within the scope of the CRADA effort.

  14. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of {sup 64}Cu and {sup 67}Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    SciTech Connect

    Nasrabadi, M. N. Sepiani, M.

    2015-03-30

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  15. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of 64Cu and 67Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    NASA Astrophysics Data System (ADS)

    Nasrabadi, M. N.; Sepiani, M.

    2015-03-01

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE & LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  16. Multi-physics simulation and fabrication of a compact 128 × 128 micro-electro-mechanical system Fabry-Perot cavity tunable filter array for infrared hyperspectral imager.

    PubMed

    Meng, Qinghua; Chen, Sihai; Lai, Jianjun; Huang, Ying; Sun, Zhenjun

    2015-08-01

    This paper demonstrates the design and fabrication of a 128×128 micro-electro-mechanical systems Fabry-Perot (F-P) cavity filter array, which can be applied for the hyperspectral imager. To obtain better mechanical performance of the filters, F-P cavity supporting structures are analyzed by multi-physics finite element modeling. The simulation results indicate that Z-arm is the key component of the structure. The F-P cavity array with Z-arm structures was also fabricated. The experimental results show excellent parallelism of the bridge deck, which agree with the simulation results. A conclusion is drawn that Z-arm supporting structures are important to hyperspectral imaging system, which can achieve a large tuning range and high fill factor compared to straight arm structures. The filter arrays have the potential to replace the traditional dispersive element. PMID:26368101

  17. Proof-of-Principle Experiment for Compact, Energy Efficient Neutron Source: Enabling Technology for Radioactive Waste Transmutation or Sub-Critical Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady; Roser, Thomas; Santarius, John

    2013-10-01

    A novel neutron source is proposed for radioactive waste transmutation or sub-critical nuclear reactors; it's based on injecting 125 keV deuterium beam through 1-inch tube filled with magnetized tritium plasma to generate 14 MeV D-T neutrons. T target thickness is chosen to slow the D ions to 75 keV. At the opposite end of the tube D ion energy is recovered. Each ion source and tube forms a module. Larger systems can be formed from multiple units. As a D beam propagates through T plasma, it is slowed down by plasma electrons, which are consequently heated. Electron temperature rises until heating is balanced by energy losses. Equilibrium electron temperature is the crucial parameter, since higher temperature, leads to lower drag on the ion beam; therefore, larger target thickness is needed to slow deuterons to 75 keV; with consequently higher neutron yield. A proof of principle experiment, to determine the equilibrium electron temperature, can be perform by injecting 62.5 keV hydrogen beam into hydrogen plasma target and measure the equilibrium electron temperature with Thomson scattering. To reduce electron equilibration with target ions, electron pre-heating can be done rather efficiently with 2.45 GHz microwaves. Supported by USDOE under Contract No. DE-AC02-98CH10886.

  18. SQUIDs vs. Faraday coils for ultlra-low field nuclear magnetic resonance: experimental and simulation comparison

    SciTech Connect

    Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H; Sayukov, Igor M; Schultz, Larry J; Urbaitis, Algis V; Volegov, Petr L; Wurden, Caroline J

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.

  19. Evaluation of effective-stress-function algorithm for nuclear fuel simulation

    SciTech Connect

    Kim, H. C.; Yang, Y. S.; Koo, Y. H.

    2013-07-01

    In a pressurized water reactor (PWR), the mechanical integrity of nuclear fuel is the most critical issue as it is an important barrier for fission products released into the environment. The integrity of zirconium cladding that surrounds uranium oxide can be threatened during off-normal operation owing to a pellet-cladding mechanical interaction (PCMI). To analyze the fuel and cladding behavior during off-operation, the fuel performance code should calculate an inelastic analysis in two - or three-dimensional calculations. In this paper, the effective stress function (ESF) algorithm based on a two-dimensional FE module has been implemented to simulate the inelastic behavior of the cladding with stability and accuracy. The ESF algorithm solves the governing equations of the inelastic constitutive behavior by calculating the zero of the appropriate effective-stress-function. To verify the accuracy of the ESF algorithm for an inelastic analysis, a code-to-code benchmark was performed using the commercial FE code, ANSYS 13.0. To demonstrate the stability and convergence of the implemented algorithm, the number of iterations in the ESF algorithm was compared with that in a sequential algorithm in the case of an inelastic problem. Consequently, the evaluation results demonstrate that the implemented ESF algorithm improves the efficiency of the computation without a loss of accuracy for an inelastic analysis. (authors)

  20. Ceramic Coatings for Corrosion Resistant Nuclear Waste Container Evaluated in Simulated Ground Water at 90?C

    SciTech Connect

    Haslam, J J; Farmer, J C

    2004-03-31

    Ceramic materials have been considered as corrosion resistant coatings for nuclear waste containers. Their suitability can be derived from the fully oxidized state for selected metal oxides. Several types of ceramic coatings applied to plain carbon steel substrates by thermal spray techniques have been exposed to 90 C simulated ground water for nearly 6 years. In some cases no apparent macroscopic damage such as coating spallation was observed in coatings. Thermal spray processes examined in this work included plasma spray, High Velocity Oxy Fuel (HVOF), and Detonation Gun. Some thermal spray coatings have demonstrated superior corrosion protection for the plain carbon steel substrate. In particular the HVOF and Detonation Gun thermal spray processes produced coatings with low connected porosity, which limited the growth rate of corrosion products. It was also demonstrated that these coatings resisted spallation of the coating even when an intentional flaw (which allowed for corrosion of the carbon steel substrate underneath the ceramic coating) was placed in the coating. A model for prediction of the corrosion protection provided by ceramic coatings is presented. The model includes the effect of the morphology and amount of the porosity within the thermal spray coating and provides a prediction of the exposure time needed to produce a crack in the ceramic coating.

  1. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes

    NASA Astrophysics Data System (ADS)

    Liao, Qilong; Wang, Fu; Chen, Kuiru; Pan, Sheqi; Zhu, Hanzhen; Lu, Mingwei; Qin, Jianfa

    2015-07-01

    30 wt.% simulated nuclear wastes were successfully immobilized by B2O3-doped iron phosphate base glasses. The structure and thermal stability of the prepared wasteforms were characterized by Fourier transform infrared spectroscopy and differential thermal analysis, respectively. The subtle structural variations attributed to different B2O3 doping modes have been discussed in detail. The results show that the thermal stability and glass forming tendency of the iron borophosphate glass wasteforms are faintly affected by different B2O3 doping modes. The main structural networks of iron borophosphate glass wasteforms are PO43-, P2O74-, [BO4] groups. Furthermore, for the wasteform prepared by using 10B2O3-36Fe2O3-54P2O5 as base glass, the distributions of Fe-O-P bonds, [BO4], PO43- and P2O74- groups are optimal. In general, the dissolution rate (DR) values of the studied iron borophosphate wasteforms are about 10-8 g cm-2 min-1. The obtained conclusions can offer some useful information for the disposal of high-level radioactive wastes using boron contained phosphate glasses.

  2. Discrete Element Simulations of Granular Flow in a Pebble Bed Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.; Rycroft, Chris H.; Landry, James W.

    2005-03-01

    Pebble-bed reactor technology, which is currently being revived around the world, raises fundamental questions about granular flow in silos. The reactor core is composed of spherical billiard-ball sized (6cm diameter) graphite fuel pebbles containing sand-sized uranium fuel particles. The fuel pebbles drain very slowly through the core as a continuous refueling process. In some designs, a dynamical central column is formed from graphite moderator pebbles, physically identical to the fuel pebbles without any fuel. The total number of pebbles is of order 440,000 in a cell approximately 3.5m in diameter and 8.5m tall. Using discrete element (molecular dynamics) simulations we have studied a full scale model of the system. We find that the interface between the fuel and moderator particles remains sharp, as there is very little horizontal motion of the pebbles as they flow through the reactor. We measure mean velocity profiles and compare to various continuum models. We also investigated the feasibility of a bi-disperse core, containing smaller moderator pebbles, with the same size fuel pebbles, which could improve performance by focusing helium gas flow on the hotter fuel region. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000.

  3. Design of a mixing system for simulated high-level nuclear waste melter feed slurries

    SciTech Connect

    Peterson, M.E.; McCarthy, D.; Muhlstein, K.D.

    1986-03-01

    The Nuclear Waste Treatment Program development program consists of coordinated nonradioactive and radioactive testing combined with numerical modeling of the process to provide a complete basis for design and operation of a vitrification facility. The radioactive demonstration tests of equipment and processes are conducted before incorporation in radioactive pilot-scale melter systems for final demonstration. The mixing system evaluation described in this report was conducted as part of the nonradioactive testing. The format of this report follows the sequence in which the design of a large-scale mixing system is determined. The initial program activity was concerned with gaining an understanding of the theoretical foundation of non-Newtonian mixing systems. Section 3 of this report describes the classical rheological models that are used to describe non-Newtonian mixing systems. Since the results obtained here are only valid for the slurries utilized, Section 4, Preparation of Simulated Hanford and West Valley Slurries, describes how the slurries were prepared. The laboratory-scale viscometric and physical property information is summarized in Section 5, Laboratory Rheological Evaluations. The bench-scale mixing evaluations conducted to define the effects of the independent variables described above on the degree of mixing achieved with each slurry are described in Section 6. Bench-scale results are scaled-up to establish engineering design requirements for the full-scale mixing system in Section 7. 24 refs., 37 figs., 44 tabs.

  4. Electrochemical reduction of nitrate and nitrite in simulated liquid nuclear wastes.

    PubMed

    Katsounaros, I; Dortsiou, M; Kyriacou, G

    2009-11-15

    The electrochemical reduction of nitrate and nitrite in simulated low-level nuclear wastes containing 1.8 M NaNO(3)+0.55 M NaNO(2)+1.16 M NaOH was studied under galvanostatic polarization on tin and bismuth cathodes. The rate of the reduction of nitrate was about the same on both metals. The selectivity (%S) to ammonia was similar on the two metals (12% at 450 mA/cm(2)) and that to nitrogen 82% on Sn and 72% on Bi. On the other hand, the %S to nitrous oxide was lower on Sn (8%) than that on Bi (18%) under the same conditions. The current efficiency (%CE) on both metals was 80% when the 99% of the initial nitrogen was removed. The %CE gradually decreases as the concentration of the nitrogen containing species in the solution decreases during the electrolysis. The energy consumption for the removal of 1g of N was 100 Wh at 450 mA/cm(2) but it can be significantly reduced by a better design of the electrolysis cell.The presence of chromate in the electrolyte, which is a known inhibitor of the cathodic reduction of nitrate, has no influence on the rate of the reduction and the distribution of the products. PMID:19559523

  5. Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal

    SciTech Connect

    Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

    2002-06-15

    Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems.

  6. SQUIDs vs. Induction Coils for Ultra-Low Field Nuclear Magnetic Resonance: Experimental and Simulation Comparison.

    PubMed

    Matlashov, Andrei N; Schultz, Larry J; Espy, Michelle A; Kraus, Robert H; Savukov, Igor M; Volegov, Petr L; Wurden, Caroline J

    2011-01-01

    Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification. PMID:21747638

  7. Numerical Simulation of the Seismic Response for the Recent North Korean Nuclear Tests (Invited)

    NASA Astrophysics Data System (ADS)

    Rodgers, A. J.; Vorobiev, O.; Petersson, A.; Sjogreen, B.; Matzel, E.

    2009-12-01

    We performed a series of numerical simulations of the 2006 and 2009 North Korean nuclear tests to model the observed seismic data and gain insight into the wave propagation phenomena that may impact source estimates of these events, such as the waveform shapes and amplitudes of direct P-waves, the generation of S-waves, high-frequency P/S ratios. Simulations span the hydrodynamic (near-field, non-linear), local and regional distance ranges, although seismic data are only available for regional and teleseismic distances. Firstly, we modeled the response of the immediate near-field assuming emplacement in granite for small explosions (yields 0.5-3 kiloton) with GEODYN, an Eulerian finite-volume hydrodynamics code. This is a rather hard material that results in an impulsive short duration source time function and small cavity. Secondly, we modeled the elastic response of simple earth models including free surface topography with WPP (an anelastic finite difference code) for a domain ~20 km around the sources. Topographic relief is significant at the test site, with elevations rising from 300 m to 2000 m over short distances. We found that the inclusion of topography has a strong impact on the wavefield, causing azimuthal dependence of both the P-wave scattering and S-wave generation. Furthermore, the scattering by the rough free-surface causes decorrelation of the emerging P-waves for the 2006 and 2009 events, spaced only ~4 km apart. Thirdly, we simulated seismic wave propagation to regional distances (< 2000 km) using three-dimensional (3D) wavespeed models and SPECFEM3D, a spectral element code, and compared results with the available long-period waveforms. We used the source models of Dreger et al. (manuscript submitted) and find that the synthetics for 3D models and an isotropic source predict some features of the observed waveforms. The one-dimensional (1D) iasp91 (Kennett and Engdahl, 1991) model performs surprisingly well for the vertical and radial component

  8. Ground-water flow near two radioactive-waste-disposal areas at the Western New York Nuclear Service Center, Cattaraugus County, New York; results of flow simulation

    USGS Publications Warehouse

    Bergeron, M.P.; Bugliosi, E.F.

    1988-01-01

    Two adjacent burial areas were excavated in a clay-rich till at a radioactive waste disposal site near West Valley in Cattaraugus County, N.Y.: (1) which contains mainly low-level radioactive wastes generated onsite by a nuclear fuel reprocessing plant, has been in operation since 1966; and (2) which contains commercial low-level radioactive wastes, was operated during 1963-75. Groundwater below the upper 3 meters of till generally moves downward through a 20- to 30-meter thick sequence of tills underlain by lacustrine and kame-delta deposits of fine sand and silt. Groundwater in the weathered, upper 3 meters of till can move laterally for several meters before either moving downward into the kame-delta deposits or discharging to the land surface. A two-dimensional finite-element model that simulates two vertical sections was used to evaluate hydrologic factors that control groundwater flow in the till. Conditions observed during March 1983 were reproduced accurately in steady-state simulations that used four isotropic units of differing hydraulic conductivity to represent two fractured and weathered till units near land surfaces, an intermediate group of isolated till zones that contain significant amounts of fine sand and silt, and a sequence of till units at depths that have been consolidated by overburden pressure. Recharge rates used in the best-fit simulation ranged from 1.4 cm/yr along smooth, sloping or compacted surfaces to 3.8 cm/yr near swampy areas. Values of hydraulic conductivity and infiltration used in the calibrated best-fit model were nearly identical to values used in a previous model analysis of the nearby commercial-waste burial area. Results of the model simulations of a burial pit assumed to be filled with water indicate that water near the bottom of the burial pit would migrate laterally in the shallow, weathered till for 5 to 6 meters before moving downward into the unweathered till, and water near the top of the pit would move laterally

  9. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  10. Dark compact planets

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Schaffner-Bielich, Jürgen

    2015-12-01

    We investigate compact objects formed by dark matter admixed with ordinary matter made of neutron-star matter and white-dwarf material. We consider non-self annihilating dark matter with an equation of state given by an interacting Fermi gas. We find new stable solutions, dark compact planets, with Earth-like masses and radii from a few Km to few hundred Km for weakly interacting dark matter which are stabilized by the mutual presence of dark matter and compact star matter. For the strongly interacting dark matter case, we obtain dark compact planets with Jupiter-like masses and radii of few hundred Km. These objects could be detected by observing exoplanets with unusually small radii. Moreover, we find that the recently observed 2 M⊙ pulsars set limits on the amount of dark matter inside neutron stars which is, at most, 1 0-6 M⊙ .

  11. Compact baby Skyrmions

    SciTech Connect

    Adam, C.; Klimas, P.; Sanchez-Guillen, J.; Wereszczynski, A.

    2009-11-15

    For the baby Skyrme model with a specific potential, compacton solutions, i.e., configurations with a compact support and parabolic approach to the vacuum, are derived. Specifically, in the nontopological sector, we find spinning Q-balls and Q-shells, as well as peakons. Moreover, we obtain compact baby skyrmions with nontrivial topological charge. All these solutions may form stable multisoliton configurations provided they are sufficiently separated.

  12. MC 93 - Proceedings of the International Conference on Monte Carlo Simulation in High Energy and Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Dragovitsch, Peter; Linn, Stephan L.; Burbank, Mimi

    1994-01-01

    The Table of Contents for the book is as follows: * Preface * Heavy Fragment Production for Hadronic Cascade Codes * Monte Carlo Simulations of Space Radiation Environments * Merging Parton Showers with Higher Order QCD Monte Carlos * An Order-αs Two-Photon Background Study for the Intermediate Mass Higgs Boson * GEANT Simulation of Hall C Detector at CEBAF * Monte Carlo Simulations in Radioecology: Chernobyl Experience * UNIMOD2: Monte Carlo Code for Simulation of High Energy Physics Experiments; Some Special Features * Geometrical Efficiency Analysis for the Gamma-Neutron and Gamma-Proton Reactions * GISMO: An Object-Oriented Approach to Particle Transport and Detector Modeling * Role of MPP Granularity in Optimizing Monte Carlo Programming * Status and Future Trends of the GEANT System * The Binary Sectioning Geometry for Monte Carlo Detector Simulation * A Combined HETC-FLUKA Intranuclear Cascade Event Generator * The HARP Nucleon Polarimeter * Simulation and Data Analysis Software for CLAS * TRAP -- An Optical Ray Tracing Program * Solutions of Inverse and Optimization Problems in High Energy and Nuclear Physics Using Inverse Monte Carlo * FLUKA: Hadronic Benchmarks and Applications * Electron-Photon Transport: Always so Good as We Think? Experience with FLUKA * Simulation of Nuclear Effects in High Energy Hadron-Nucleus Collisions * Monte Carlo Simulations of Medium Energy Detectors at COSY Jülich * Complex-Valued Monte Carlo Method and Path Integrals in the Quantum Theory of Localization in Disordered Systems of Scatterers * Radiation Levels at the SSCL Experimental Halls as Obtained Using the CLOR89 Code System * Overview of Matrix Element Methods in Event Generation * Fast Electromagnetic Showers * GEANT Simulation of the RMC Detector at TRIUMF and Neutrino Beams for KAON * Event Display for the CLAS Detector * Monte Carlo Simulation of High Energy Electrons in Toroidal Geometry * GEANT 3.14 vs. EGS4: A Comparison Using the DØ Uranium/Liquid Argon

  13. Simulated alteration tests on non-radioactive SON 68 nuclear glass in the presence of corrosion products and environmental materials

    NASA Astrophysics Data System (ADS)

    Jollivet, Patrick; Minet, Yves; Nicolas, Michèle; Vernaz, Étienne

    2000-10-01

    Alteration tests with non-radioactive French SON 68 (R7T7-type) nuclear glass in the presence of simulated metal canister corrosion products (CP) or environmental materials (EM) were simulated using the LIXIVER2 computer code. The code incorporates hypotheses concerning glass alteration in aqueous media based on the first-order kinetic law for total silicon with variable silicon retention in the gel and silicon diffusion in the gel interstitial water, coupled with silicon adsorption and diffusion in the materials in contact with the glass. The canister CP are considered as a localized medium with a mass adsorption capacity Rad, while the EM are considered as a porous medium with a diffusion coefficient Dp and a distribution coefficient Kd. L IXIVER2 simulates these media in one-dimensional Cartesian geometry. The Kd values determined by simulating alteration tests logically increase with the aggressiveness of the materials with respect to the glass.

  14. Numerical simulation of free evolution in solid-state nuclear magnetic resonance using low-order correlations in Liouville space

    NASA Astrophysics Data System (ADS)

    Dumez, Jean-Nicolas; Butler, Mark C.; Emsley, Lyndon

    2010-12-01

    The design of simulations of free evolution in dipolar-coupled nuclear-spin systems using low-order correlations in Liouville space (LCL) is discussed, and a computational scheme relying on the Suzuki-Trotter algorithm and involving minimal memory requirements is described. The unusual nature of the approximation introduced by Liouville-space reduction in a spinning solid is highlighted by considering the accuracy of LCL simulations at different spinning frequencies, the quasiequilibria achieved by spin systems in LCL simulations, and the growth of high-order coherences in the exact dynamics. In particular, it is shown that accurate LCL simulations of proton spin diffusion occur in a regime where the reduced space excludes the coherences that make the dominant contribution to Vert σ Vert ^2, the norm-squared of the density matrix.

  15. Rotational spectra, nuclear quadrupole hyperfine tensors, and conformational structures of the mustard gas simulent 2-chloroethyl ethyl sulfide

    NASA Astrophysics Data System (ADS)

    Tubergen, M. J.; Lesarri, A.; Suenram, R. D.; Samuels, A. C.; Jensen, J. O.; Ellzy, M. W.; Lochner, J. M.

    2005-10-01

    Rotational spectra have been recorded for both the 35Cl and 37Cl isotopic forms of two structural conformations of 2-chloroethyl ethyl sulfide (CEES). The rotational constants of the 35Cl and 37Cl isotopomers were used to identify the conformational isomers. A total of 236 hyperfine transitions have been assigned for 47 rotational transitions of the 35Cl isotope of a GGT conformer, and 146 hyperfine have been assigned for 37 rotational transitions of the 37Cl isotopomer. For the second conformer, a total of 128 (110) hyperfine and 30 (28) rotational transitions have also been assigned to the 35Cl ( 37Cl) isotopes of a TGT conformation. The extensive hyperfine splitting data, measured to high resolution with a compact Fourier transform microwave spectrometer, were used to determine both the diagonal and off-diagonal elements of the 35Cl and 37Cl nuclear quadrupole coupling tensors in the inertial tensor principal axis system. The experimental rotational constant data, as well as the 35Cl and 37Cl nuclear quadrupole coupling tensors, were compared to the results from 27 optimized ab initio (HF/6-311++G ∗∗ and MP2/6-311++G ∗∗) model structures.

  16. Nanoparticles of compacted DNA transfect postmitotic cells.

    PubMed

    Liu, Ge; Li, DeShan; Pasumarthy, Murali K; Kowalczyk, Tomasz H; Gedeon, Christopher R; Hyatt, Susannah L; Payne, Jennifer M; Miller, Timothy J; Brunovskis, Peter; Fink, Tamara L; Muhammad, Osman; Moen, Robert C; Hanson, Richard W; Cooper, Mark J

    2003-08-29

    Charge-neutral DNA nanoparticles have been developed in which single molecules of DNA are compacted to their minimal possible size. We speculated that the small size of these DNA nanoparticles may facilitate gene transfer in postmitotic cells, permitting nuclear uptake across the 25-nm nuclear membrane pore. To determine whether DNA nanoparticles can transfect nondividing cells, growth-arrested neuroblastoma and hepatoma cells were transfected with DNA/liposome mixtures encoding luciferase. In both models, growth-arrested cells were robustly transfected by compacted DNA (6,900-360-fold more than naked DNA). To evaluate mechanisms responsible for enhanced transfection, HuH-7 cells were microinjected with naked or compacted plasmids encoding enhanced green fluorescent protein. Cytoplasmic microinjection of DNA nanoparticles generated a approximately 10-fold improvement in transgene expression as compared with naked DNA; this enhancement was reversed by the nuclear pore inhibitor, wheat germ agglutinin. To determine the upper size limit for gene transfer, DNA nanoparticles of various sizes were microinjected into the cytoplasm. A marked decrease in transgene expression was observed as the minor ellipsoidal diameter approached 25 nm. In summary, suitably sized DNA nanoparticles productively transfect growth arrested cells by traversing the nuclear membrane pore. PMID:12807905

  17. Severe Accident Sequence Analysis Program: Anticipated transient without scram simulations for Browns Ferry Nuclear Plant Unit 1

    SciTech Connect

    Dallman, R J; Gottula, R C; Holcomb, E E; Jouse, W C; Wagoner, S R; Wheatley, P D

    1987-05-01

    An analysis of five anticipated transients without scram (ATWS) was conducted at the Idaho National Engineering Laboratory (INEL). The five detailed deterministic simulations of postulated ATWS sequences were initiated from a main steamline isolation valve (MSIV) closure. The subject of the analysis was the Browns Ferry Nuclear Plant Unit 1, a boiling water reactor (BWR) of the BWR/4 product line with a Mark I containment. The simulations yielded insights to the possible consequences resulting from a MSIV closure ATWS. An evaluation of the effects of plant safety systems and operator actions on accident progression and mitigation is presented.

  18. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    NASA Astrophysics Data System (ADS)

    Yusufali, C.; Kshirsagar, R. J.; Mishra, R. K.; Kaushik, C. P.; Sengupta, P.; Dutta, R. S.; Dey, G. K.

    2014-04-01

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al2O3 layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  19. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    SciTech Connect

    Yusufali, C. Sengupta, P.; Dutta, R. S.; Dey, G. K.; Kshirsagar, R. J.; Mishra, R. K.; Kaushik, C. P.

    2014-04-24

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al{sub 2}O{sub 3} layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  20. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    DOE PAGESBeta

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methodsmore » for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma

  1. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    SciTech Connect

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry

  2. Thermally Simulated Testing of a Direct-Drive Gas-Cooled Nuclear Reactor

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Bragg-Sitton, Shannon; VanDyke, Melissa

    2003-01-01

    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet-sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrical thermal simulation of reactor components and concepts.

  3. Effects of {alpha}-decay on mechanical properties of simulated nuclear waste glass

    SciTech Connect

    Inagaki, Y.; Furuya, H.; Ono, Y.; Idemitsu, K.; Banba, T.; Matsumoto, S.; Muraoka, S.

    1993-12-31

    A simulated nuclear waste glass was self-irradiated by doping with short-lived actinides of {sup 238}Pu and {sup 244}Cm. Changes in the hardness, the Young`s modulus and the fracture toughness, as a function of irradiation dose, were measured by use of identation techniques. The irradiated glass was annealed at temperatures from 573K to 723K for periods of up to 48 hours, and the recovery of these changes were measured as a function of annealing and time. It was observed that the hardness and the Young`s modulus decreased, while the fracture toughness increased exponentially with the cumulative dose. The maximum values of the relative changes in the hardness, the Young`s modulus and the fracture toughness were about -25%, -30% and +45%, respectively. The results of the annealing show that the hardness and the Young`s modulus were almost recovered to the original values at temperatures above 673 K within 10 hours, while the recovery of the fracture toughness was minimal in this region of temperature and time. The changes in the hardness and the Young`s modulus can be well explained by the model, in which the changes is proportional to the volume fraction of damaged zones, F, and the recovery of F is first order. On the other hand, the changes in the fracture toughness cannot be explained by the model, which suggests that the mechanism of the change in the fracture toughness is different from that in the hardness and the Young`s modulus.

  4. The behavior of ANGRA 2 nuclear power plant core for a small break LOCA simulated with RELAP5 code

    NASA Astrophysics Data System (ADS)

    Sabundjian, Gaianê; Andrade, Delvonei A.; Belchior, Antonio, Jr.; da Silva Rocha, Marcelo; Conti, Thadeu N.; Torres, Walmir M.; Macedo, Luiz A.; Umbehaun, Pedro E.; Mesquita, Roberto N.; Masotti, Paulo H. F.; de Souza Lima, Ana Cecília

    2013-05-01

    This work discusses the behavior of Angra 2 nuclear power plant core, for a postulate Loss of Coolant Accident (LOCA) in the primary circuit for Small Break Loss Of Coolant Accident (SBLOCA). A pipe break of the hot leg Emergency Core Cooling System (ECCS) was simulated with RELAP 5 code. The considered rupture area is 380 cm2, which represents 100% of the ECCS pipe flow area. Results showed that the cooling is enough to guarantee the integrity of the reactor core.

  5. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  6. Geoelectrical monitoring of simulated subsurface leakage to support high-hazard nuclear decommissioning at the Sellafield Site, UK.

    PubMed

    Kuras, Oliver; Wilkinson, Paul B; Meldrum, Philip I; Oxby, Lucy S; Uhlemann, Sebastian; Chambers, Jonathan E; Binley, Andrew; Graham, James; Smith, Nicholas T; Atherton, Nick

    2016-10-01

    A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites. PMID:27228305

  7. Study of Underwater Shock Compaction Device for Compaction of Titanium Diboride

    NASA Astrophysics Data System (ADS)

    Kennedy, G. B.; Kim, Y. K.; Hokamoto, K.; Itoh, S.

    2007-12-01

    Shock compaction for powders has been used to study bulk consolidation of powder materials. Shock compaction has the advantage of processing at low temperatures and short duration to limit effects of high temperatures for long times, such as increased grain size and high energy cost. Many methods of shock loading of powders have been employed: direct contact with explosive, explosively driven flyer plates, and flyer plates launched with light gas or propellant gun. Another method, using explosives to create a shockwave in water that is then contact with a powder container, has been used extensively at Kumamoto University. This work presents a study of the development of the underwater shockwave device and investigates the water container geometry for control of parameters for shockwave peak pressure, duration, and distribution through the powder compaction process. Results of simulations for optimization of shock compaction properties are presented along with measurements from manganin gauge pressure measurements obtained from underwater shock compaction of titanium diboride. The goal of this work is to develop a better understanding of the entire compaction process to utilize the in-situ data to modify numerical simulations to predict performance.

  8. Explosive compaction of WC+Co mixture by axisymmetric scheme

    NASA Astrophysics Data System (ADS)

    Buzyurkin, A. E.; Kraus, E. I.; Lukyanov, Ya L.

    2015-11-01

    This paper is devoted to the problem of development and optimization of schemes for explosive compaction of mixtures of solid powder materials with metal bond. For this purpose, experiments were conducted on explosive compaction of mixtures of tungsten carbide (WC) and cobalt (Co) using a simple cylindrical compaction system. In addition, a numerical simulation of shock waves propagation in two-phase porous medium WC+Co was carried out. Based on experimental and numerical studies of shock wave propagation, the optimal modes of explosive compaction of two-phase powder media, representing mixtures of solid powder materials with metal bond, were found. It is shown that the most preferable compaction mode for obtaining a uniform durable compact of a mixture of powders WC+Co with ratio 9:1 by volume in axially symmetric scheme with central mandrel corresponds to the detonation velocity of 4.6 km/s followed by sintering.

  9. PARTNERSHIP FOR THE DEVELOPMENT OF NEXT GENERATION SIMULATION TOOLS TO EVALUATE CEMENTITIOUS BARRIERS AND MATERIALS USED IN NUCLEAR APPLICATION - 8388

    SciTech Connect

    Langton, C; Richard Dimenna, R

    2008-01-29

    The US DOE has initiated a multidisciplinary cross cutting project to develop a reasonable and credible set of tools to predict the structural, hydraulic and chemical performance of cement barriers used in nuclear applications over extended time frames (e.g., > 100 years for operating facilities and > 1000 years for waste management). A partnership that combines DOE, NRC, academia, private sector, and international expertise has been formed to accomplish the project objectives by integrating existing information and realizing advancements where necessary. The set of simulation tools and data developed under this project will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems, e.g., waste forms, containment structures, entombments and environmental remediation, including decontamination and decommissioning (D&D) activities. The simulation tools will also support analysis of structural concrete components of nuclear facilities (spent fuel pools, dry spent fuel storage units, and recycling facilities, e.g., fuel fabrication, separations processes). Simulation parameters will be obtained from prior literature and will be experimentally measured under this project, as necessary, to demonstrate application of the simulation tools for three prototype applications (waste form in concrete vault, high level waste tank grouting, and spent fuel pool). Test methods and data needs to support use of the simulation tools for future applications will be defined. This is a national issue that affects all waste disposal sites that use cementitious waste forms and structures, decontamination and decommissioning activities, service life determination of existing structures, and design of future public and private nuclear facilities. The problem is difficult because it requires projecting conditions and responses over extremely long times. Current performance assessment analyses show that engineered barriers are

  10. The dynamic ejecta of compact object mergers and eccentric collisions.

    PubMed

    Rosswog, Stephan

    2013-06-13

    Compact object mergers eject neutron-rich matter in a number of ways: by the dynamical ejection mediated by gravitational torques, as neutrino-driven winds, and probably also a good fraction of the resulting accretion disc finally becomes unbound by a combination of viscous and nuclear processes. If compact binary mergers indeed produce gamma-ray bursts, there should also be an interaction region where an ultra-relativistic outflow interacts with the neutrino-driven wind and produces moderately relativistic ejecta. Each type of ejecta has different physical properties, and therefore plays a different role for nucleosynthesis and for the electromagnetic (EM) transients that go along with compact object encounters. Here, we focus on the dynamic ejecta and present results for over 30 hydrodynamical simulations of both gravitational wave-driven mergers and parabolic encounters as they may occur in globular clusters. We find that mergers eject approximately 1 per cent of a Solar mass of extremely neutron-rich material. The exact amount, as well as the ejection velocity, depends on the involved masses with asymmetric systems ejecting more material at higher velocities. This material undergoes a robust r-process and both ejecta amount and abundance pattern are consistent with neutron star mergers being a major source of the 'heavy' (A>130) r-process isotopes. Parabolic collisions, especially those between neutron stars and black holes, eject substantially larger amounts of mass, and therefore cannot occur frequently without overproducing gala- ctic r-process matter. We also discuss the EM transients that are powered by radioactive decays within the ejecta ('macronovae'), and the radio flares that emerge when the ejecta dissipate their large kinetic energies in the ambient medium. PMID:23630377

  11. Discrete Element Model for Simulations of Early-Life Thermal Fracturing Behaviors in Ceramic Nuclear Fuel Pellets

    SciTech Connect

    Hai Huang; Ben Spencer; Jason Hales

    2014-10-01

    A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to the formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.

  12. Green strength of zirconium sponge and uranium dioxide powder compacts

    SciTech Connect

    Balakrishna, Palanki Murty, B. Narasimha; Sahoo, P.K.; Gopalakrishna, T.

    2008-07-15

    Zirconium metal sponge is compacted into rectangular or cylindrical shapes using hydraulic presses. These shapes are stacked and electron beam welded to form a long electrode suitable for vacuum arc melting and casting into solid ingots. The compact electrodes should be sufficiently strong to prevent breakage in handling as well as during vacuum arc melting. Usually, the welds are strong and the electrode strength is limited by the green strength of the compacts, which constitute the electrode. Green strength is also required in uranium dioxide (UO{sub 2}) powder compacts, to withstand stresses during de-tensioning after compaction as well as during ejection from the die and for subsequent handling by man and machine. The strengths of zirconium sponge and UO{sub 2} powder compacts have been determined by bending and crushing respectively, and Weibul moduli evaluated. The green density of coarse sponge compact was found to be larger than that from finer sponge. The green density of compacts from lightly attrited UO{sub 2} powder was higher than that from unattrited category, accompanied by an improvement in UO{sub 2} green crushing strength. The factors governing green strength have been examined in the light of published literature and experimental evidence. The methodology and results provide a basis for quality control in metal sponge and ceramic powder compaction in the manufacture of nuclear fuel.

  13. Simulation of ground-water flow near the nuclear-fuel reprocessing facility at the Western New York Nuclear Service Center, Cattaraugus County, New York

    USGS Publications Warehouse

    Yager, R.M.

    1987-01-01

    A two-dimensional finite-difference model was developed to simulate groundwater flow in a surficial sand and gravel deposit underlying the nuclear fuel reprocessing facility at Western New York Nuclear Service Center near West Valley, N.Y. The sand and gravel deposit overlies a till plateau that abuts an upland area of siltstone and shale on its west side, and is bounded on the other three sides by deeply incised stream channels that drain to Buttermilk Creek, a tributary to Cattaraugus Creek. Radioactive materials are stored within the reprocessing plant and are also buried within a till deposit at the facility. Tritiated water is stored in a lagoon system near the plant and released under permit to Franks Creek, a tributary to Buttermilk Creek. Groundwater levels predicted by steady-state simulations closely matched those measured in 23 observation wells, with an average error of 0.5 meter. Simulated groundwater discharges to two stream channels and a subsurface drain were within 5% of recorded values. Steady-state simulations used an average annual recharge rate of 46 cm/yr; predicted evapotranspiration loss from the ground was 20 cm/yr. The lateral range in hydraulic conductivity obtained through model calibration was 0.6 to 10 m/day. Model simulations indicated that 33% of the groundwater discharged from the sand and gravel unit (2.6 L/sec) is lost by evapotranspiration, 3% (3.0 L/sec) flows to seepage faces at the periphery of the plateau, 20% (1.6 L/sec) discharges to stream channels that drain a large wetland area near the center of the plateau, and the remaining 8% (0.6 L/sec) discharges to a subsurface french drain and to a wastewater treatment system. Groundwater levels computed by a transient-state simulation of an annual climatic cycle, including seasonal variation in recharge and evapotranspiration, closely matched water levels measured in eight observation wells. The model predicted that the subsurface drain and the stream channel that drains the

  14. Panel sees limited interest in compact nukes

    SciTech Connect

    Not Available

    1983-11-01

    Participants in the Joint Power Generation conference thought compact (200- to 300-MW) nuclear reactors would be useful to developing countries, but only the Canadians showed interest in becoming suppliers. Others said they would simply downsize existing designs. A 300-MW mini-Candu that can be built in 48 months will use proven components and have the same price tag as a full-sized unit. A market may develop in the future in the US and other industrialized countries for low-temperature heat sources. Another 5 to 10 developing countries would likely join the 7 now using nuclear power. (DCK)

  15. Seminar on Aspects of Planning and Implementing a Nuclear Power Program: A Simulation-Based Exercise

    SciTech Connect

    Apt, Kenneth E.; Bissani, Mo; Morris, Frederic A.; Frazar, Sarah L.; Mathews, Caroline E.; Kessler, Carol E.; Hund, Gretchen; Kreyling, Sean J.; Essner, Jonathan; Vergino, Eileen; Li, Sheng T.

    2008-07-17

    Countries worldwide are considering developing or expanding existing nuclear power programs to meet growing energy demand, to reduce reliance on declining domestic and foreign-based oil supplies, , and to limit the effects of climate change. Safe, secure and sustainable operation of these new reactors will require extensive planning and preparation, possibly as much as ten to 15 years before the first nuclear plant an be brought online, particularly in countries with little nuclear infrastructure in place. The planning and preparation will focus on development of the technical, legal, regulatory and human resources needed to support a nuclear power program. Countries and institutions that can provide technical assistance are already coordinating activities and leveraging resources to ensure these nascent nuclear needs are met cost-effectively. To this end, the National Nuclear Security Administration (NNSA) is hosting seminars aimed at helping countries make more informed decisions about key nuclear safety, security and nonproliferation issues. This paper discusses the challenges associated with infrastructure development, particularly in countries with limited infrastructure, and summarizes the outcomes of the seminars NNSA has held to date .

  16. Limestone compaction: an enigma

    USGS Publications Warehouse

    Shinn, Eugene A.; Halley, Robert B.; Hudson, J. Harold; Lidz, Barbara H.

    1977-01-01

    Compression of an undisturbed carbonate sediment core under a pressure of 556 kg/cm2 produced a “rock” with sedimentary structures similar to typical ancient fine-grained limestones. Surprisingly, shells, foraminifera, and other fossils were not noticeably crushed, which indicates that absence of crushed fossils in ancient limestones can no longer be considered evidence that limestones do not compact.

  17. Compact optical transconductance varistor

    SciTech Connect

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  18. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  19. Numerical simulation of gas dynamics and heat exchange tasks in fuel assemblies of the nuclear reactors

    SciTech Connect

    Zhuchenko, S. V.

    2014-11-12

    This report presents a PC-based program for solution gas dynamics and heat exchange mathematical tasks in fuel assemblies of the fast-neutron nuclear reactors. A fuel assembly consisting of bulk heat-generating elements, which are integrated together by the system of supply and pressure manifolds, is examined. Spherical heat-generating microelements, which contain nuclear fuel, are pulled into the heat-generating elements. Gaseous coolant proceed from supply manifolds to heat-generating elements, where it withdraws the nuclear reaction heat and assembles in pressure manifolds.

  20. Biosorption of strontium from simulated nuclear wastewater by Scenedesmus spinosus under culture conditions: adsorption and bioaccumulation processes and models.

    PubMed

    Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan

    2014-06-01

    Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately 10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions. PMID:24919131

  1. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    PubMed Central

    Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan

    2014-01-01

    Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions. PMID:24919131

  2. A Compact Wakefield Measurement Facility

    NASA Astrophysics Data System (ADS)

    Power, J. G.; Gai, W.

    2015-10-01

    The conceptual design of a compact, photoinjector-based, facility for high precision measurements of wakefields is presented. This work is motivated by the need for a thorough understanding of beam induced wakefield effects for any future linear collider. We propose to use a high brightness photoinjector to generate (approximately) a 2 nC, 2 mm-mrad drive beam at 20 MeV to excite wakefields and a second photoinjector to generate a 5 MeV, variably delayed, trailing witness beam to probe both the longitudinal and transverse wakefields in the structure under test. Initial estimates show that we can detect a minimum measurable dipole transverse wake function of 0.1 V/pC/m/mm and a minimum measurable monopole longitudinal wake function of 2.5 V/pC/m. Simulations results for the high brightness photoinjector, calculations of the facility's wakefield measurement resolution, and the facility layout are presented.

  3. Compact Radio Sources in NGC 660

    NASA Astrophysics Data System (ADS)

    Wiercigroch, A. B.

    1995-12-01

    The nuclei of starburst galaxies are often obscured by dust and hence are probed best in non-visual wavelength regimes such as the infrared and radio. For example, radio studies of classical starburst galaxies such as NGC 253 and M82 have identified ~ 50 compact sources in each galaxy. One of the purposes of this type of observing program has been to classify the compact radio sources as H II regions or radio supernovae, and to estimate the supernova rates. If obtainable, spectral indices are used to identify the compact structures; otherwise supporting evidence or assumptions are needed. NGC 660, located at a distance of 7.5 Mpc, is a strong candidate for a search for compact radio sources. It is a relatively strong infrared emitter, has far infrared colors similar to NGC 253 and M82, and shows several peaks in published Very Large Array (VLA) maps at 6 cm and 20 cm. We therefore observed NGC 660 at 3.6 cm in the A-configuration of the VLA on 1995 July 13--14. Total integration time on-source was 4.8 hrs. The image shows a large family ( ~ 20) of compact radio structures with a flux density range of 0.1--3.4 mJy, three of which have fluxes > 2.0 mJy. The source luminosities are comparable to those of the stronger sources in M82 and NGC 253, typically a few times more powerful than Cas A. A number of the compact sources appear to lie along a ring projected against the more diffuse radio emission in the galaxy's nuclear region. The work described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  4. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation

    PubMed Central

    Chen, Zhe; Luo, Qing; Lin, Chuanchuan; Kuang, Dongdong; Song, Guanbin

    2016-01-01

    Microgravity induces observed bone loss in space flight, and reduced osteogenesis of bone mesenchymal stem cells (BMSCs) partly contributes to this phenomenon. Abnormal regulation or functioning of the actin cytoskeleton induced by microgravity may cause the inhibited osteogenesis of BMSCs, but the underlying mechanism remains obscure. In this study, we demonstrated that actin cytoskeletal changes regulate nuclear aggregation of the transcriptional coactivator with PDZ-binding motif (TAZ), which is indispensable for osteogenesis of bone mesenchymal stem cells (BMSCs). Moreover, we utilized a clinostat to model simulated microgravity (SMG) and demonstrated that SMG obviously depolymerized F-actin and hindered TAZ nuclear translocation. Interestingly, stabilizing the actin cytoskeleton induced by Jasplakinolide (Jasp) significantly rescued TAZ nuclear translocation and recovered the osteogenic differentiation of BMSCs in SMG, independently of large tumor suppressor 1(LATS1, an upstream kinase of TAZ). Furthermore, lysophosphatidic acid (LPA) also significantly recovered the osteogenic differentiation of BMSCs in SMG through the F-actin-TAZ pathway. Taken together, we propose that the depolymerized actin cytoskeleton inhibits osteogenic differentiation of BMSCs through impeding nuclear aggregation of TAZ, which provides a novel connection between F-actin cytoskeleton and osteogenesis of BMSCs and has important implications in bone loss caused by microgravity. PMID:27444891

  5. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation.

    PubMed

    Chen, Zhe; Luo, Qing; Lin, Chuanchuan; Kuang, Dongdong; Song, Guanbin

    2016-01-01

    Microgravity induces observed bone loss in space flight, and reduced osteogenesis of bone mesenchymal stem cells (BMSCs) partly contributes to this phenomenon. Abnormal regulation or functioning of the actin cytoskeleton induced by microgravity may cause the inhibited osteogenesis of BMSCs, but the underlying mechanism remains obscure. In this study, we demonstrated that actin cytoskeletal changes regulate nuclear aggregation of the transcriptional coactivator with PDZ-binding motif (TAZ), which is indispensable for osteogenesis of bone mesenchymal stem cells (BMSCs). Moreover, we utilized a clinostat to model simulated microgravity (SMG) and demonstrated that SMG obviously depolymerized F-actin and hindered TAZ nuclear translocation. Interestingly, stabilizing the actin cytoskeleton induced by Jasplakinolide (Jasp) significantly rescued TAZ nuclear translocation and recovered the osteogenic differentiation of BMSCs in SMG, independently of large tumor suppressor 1(LATS1, an upstream kinase of TAZ). Furthermore, lysophosphatidic acid (LPA) also significantly recovered the osteogenic differentiation of BMSCs in SMG through the F-actin-TAZ pathway. Taken together, we propose that the depolymerized actin cytoskeleton inhibits osteogenic differentiation of BMSCs through impeding nuclear aggregation of TAZ, which provides a novel connection between F-actin cytoskeleton and osteogenesis of BMSCs and has important implications in bone loss caused by microgravity. PMID:27444891

  6. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  7. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    SciTech Connect

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-21

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

  8. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    NASA Technical Reports Server (NTRS)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  9. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment.

    PubMed

    Wise, Kimberly C; Manna, Sunil K; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L; Thomas, Renard L; Sarkar, Shubhashish; Kulkarni, Anil D; Pellis, Neil R; Ramesh, Govindarajan T

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent. PMID:16029073

  10. Influence of solar heating and precipitation scavenging on the simulated lifetime of post-nuclear war smoke

    NASA Technical Reports Server (NTRS)

    Malone, R. C.; Auer, L. H.; Glatzmaier, G. A.; Wood, M. C.; Toon, O. B.

    1985-01-01

    The behavior of smoke injected into the atmosphere by massive fires that might follow a nuclear war was simulated. Studies with a three-dimensional global atmospheric circulation model showed that heating of the smoke by sunlight would be important and might produce several effects that would decrease the efficiency with which precipitation removes smoke from the atmosphere. The heating gives rise to vertical motions that carry smoke well above the original injection height. Heating of the smoke also causes the tropopause, which is initially above the smoke, to reform below the heated smoke layer. Smoke above the tropopause is physically isolated from precipitation below. Consequently, the atmospheric residence time of the remaining smoke is greatly increased over the prescribed residence times used in previous models of nuclear winter.

  11. Investigation on critical structural motifs of ligands for triggering glucocorticoid receptor nuclear migration through molecular docking simulations.

    PubMed

    Liu, Ya-Lin; Jang, Soonmin; Wang, Shih-Min; Chen, Chiu-Hao; Li, Feng-Yin

    2016-06-01

    The glucocorticoid receptor (GR), a transcription factor regulating gene expression in a ligand-dependent fashion, is known for flexibility in adapting various ligands with their structures ranging from steroid to non-steroid. However, in our previous study, GR shows a stringent discrimination against a set of steroid ligands with highly similar structures for triggering its nuclear migration. In order to resolve this puzzle, we employed molecular docking simulations to investigate the origin of this structural discrimination. By analyzing the docking orientations and the related ligand-GR interaction patterns, we found that the hydrophilicity mismatch between the docking ligand and the GR ligand-binding site is the main cause combined with the steric hindrance and structural rigidness of these steroid ligands. Furthermore, we utilized this knowledge to rationalize how the structure-binding interaction of non-steroid ligands triggers GR nuclear migration with their structures available in Protein Data Bank. PMID:26198481

  12. Progress in Compact Toroid Experiments

    SciTech Connect

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  13. Study of Underwater Shock Compaction Device for Compaction of Titanium Diboride Powder

    NASA Astrophysics Data System (ADS)

    Kennedy, G. B.; Kim, Y. K.; Hokamoto, K.; Itoh, S.

    2007-06-01

    Shock compaction for powders has been used to study bulk consolidation of powder materials. Shock compaction has the advantage of processing at low temperatures and short duration to limit effects of high temperatures for long times, such as increased grain size and high energy cost. Many methods of shock loading of powders have been employed: direct contact with explosive, explosively driven flyer plates, and flyer plates launched with light gas or propellant gun. Another method, using explosives to create a shockwave in water that is in contact with a powder container, has been used extensively at Kumamoto University. This work presents a study of the development of the underwater shockwave device and investigates the water container geometry for control of parameters for shockwave peak pressure, duration, and distribution through the powder compaction process. Results of simulations for optimization of shock compaction properties are presented along with measurements from input and propagated manganin gauge pressure measurements obtained from underwater shock compaction of titanium diboride. The hardness measurements throughout the bulk of the shock compacted titanium diboride are discussed.

  14. The formation of compact groups of galaxies. I: Optical properties

    NASA Technical Reports Server (NTRS)

    Diaferio, Antonaldo; Geller, Margaret J.; Ramella, Massimo

    1994-01-01

    The small crossing time of compact groups of galaxies (t(sub cr)H(sub 0) approximately less than 0.02) makes it hard to understand why they are observable at all. Our dissipationless N-body simulations show that within a single rich collapsing group compact groups of galaxies continually form. The mean lifetime of a particular compact configuration if approximately 1 Gyr. On this time scale, members may merge and/or other galaxies in the loose group may join the compact configuration. In other words, compact configurations are continually replaced by new systems. The frequency of this process explains the observability of compact groups. Our model produces compact configurations (compact groups (CG's) with optical properties remarkably similar to Hickson's (1982) compact groups (HCG's): (1) CG's have a frequency distribution of members similar to that of HCG's; (2) CG's are approximately equals 10 times as dense as loose groups; (3) CG's have dynamical properties remarkably similar to those of HCG's; (4) most of the galaxy members of CG's are not merger remnants. The crucial aspect of the model is the relationship between CG's and the surrounding rich loose group. Our model predicts the frequency of occurrence of CG's. A preliminary analysis of 18 rich loose groups is consistent with the model prediction. We suggest further observational tests of the model.

  15. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  16. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  17. Monte Carlo simulation of the nuclear-electromagnetic cascade development and the energy response of ionization spectrometers

    NASA Technical Reports Server (NTRS)

    Jones, W. V.

    1973-01-01

    Modifications to the basic computer program for performing the simulations are reported. The major changes include: (1) extension of the calculations to include the development of cascades initiated by heavy nuclei, (2) improved treatment of the nuclear disintegrations which occur during the interactions of hadrons in heavy absorbers, (3) incorporation of accurate multi-pion final-state cross sections for various interactions at accelerator energies, (4) restructuring of the program logic so that calculations can be made for sandwich-type detectors, and (5) logic modifications related to execution of the program.

  18. The behavior of ANGRA 2 nuclear power plant core for a small break LOCA simulated with RELAP5 code

    SciTech Connect

    Sabundjian, Gaiane; Andrade, Delvonei A.; Belchior, Antonio Jr.; Silva Rocha, Marcelo da; Conti, Thadeu N.; Torres, Walmir M.; Macedo, Luiz A.; Umbehaun, Pedro E.; Mesquita, Roberto N.; Masotti, Paulo H. F.; Souza Lima, Ana Cecilia de

    2013-05-06

    This work discusses the behavior of Angra 2 nuclear power plant core, for a postulate Loss of Coolant Accident (LOCA) in the primary circuit for Small Break Loss Of Coolant Accident (SBLOCA). A pipe break of the hot leg Emergency Core Cooling System (ECCS) was simulated with RELAP 5 code. The considered rupture area is 380 cm{sup 2}, which represents 100% of the ECCS pipe flow area. Results showed that the cooling is enough to guarantee the integrity of the reactor core.

  19. A survey of non-U.S. nuclear electromagnetic pulse (EMP) simulators

    SciTech Connect

    Giles, J.C.

    1997-12-01

    This paper, an update of papers presented in 1984 and 1995, describes the large number and diverse variety of EMP simulators that exist outside the US. The end of the Cold War has provided the opportunity to learn of new simulators and to compare their characteristics as well as the test methods employed in them. While similarities exist with EMP simulators developed in the US and other western countries, in some cases the simulators developed by researchers of the former Soviet Union and other Warsaw Pact nations provide some very interesting differences in approach. As is the case with US EMP simulators, no one perfect EMP simulator exists. Baum has classified non-source region EMP simulators in three categories: (1) guided wave, (2) dipole, and (3) hybrid. This paper describes several examples that fall into these three categories as well as a unique source region simulator in Russia that does not. All designs have inherent limitations; thus the large variety that exists. Some analysis and extrapolation of results must always be done. The ideal of a simple zap test to prove a system hard to EMP is just that--an unachievable ideal.

  20. Compact heat exchangers

    SciTech Connect

    Kays, W.M.; London, A.L.

    1984-01-01

    This third edition is an update of the second edition published in 1964. New data and more modern theoretical solutions for flow in the simple geometries are included, although this edition does not differ radically from the second edition. It contains basic test data for eleven new surface configurations, including some of the very compact ceramic matrices. Al dimensions are given in both the English and the Systeme International (SI) system of units.

  1. Compact infrared detector

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Hong, S.; Moacanin, J.

    1981-01-01

    Broadband IR detector integrated into compact package for pollution monitoring and weather prediction is small, highly responsive, and immune to high noise. Sensing material is transparent sheet metalized with reflecting coating and overcoated with black material on same side. Pulse produced by chopping of infrared source beam creates transient "thermal lens" that temporarily defocuses laser beam probe. Detector monitoring beam measures defocusing which parallels infrared intensity.

  2. Nuclear power plant human computer interface design incorporating console simulation, operations personnel, and formal evaluation techniques

    SciTech Connect

    Chavez, C.; Edwards, R.M.; Goldberg, J.H.

    1993-12-31

    New CRT-based information displays which enhance the human machine interface are playing a very important role and are being increasingly used in control rooms since they present a higher degree of flexibility compared to conventional hardwired instrumentation. To prototype a new console configuration and information display system at the Experimental Breeder Reactor II (EBR-II), an iterative process of console simulation and evaluation involving operations personnel is being pursued. Entire panels including selector switches and information displays are simulated and driven by plant dynamical simulations with realistic responses that reproduce the actual cognitive and physical environment. Careful analysis and formal evaluation of operator interaction while using the simulated console will be conducted to determine underlying principles for effective control console design for this particular group of operation personnel. Additional iterations of design, simulation, and evaluation will then be conducted as necessary.

  3. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    SciTech Connect

    Tome, Carlos N; Caro, J A; Lebensohn, R A; Unal, Cetin; Arsenlis, A; Marian, J; Pasamehmetoglu, K

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.

  4. Granule consolidation during compaction.

    PubMed

    Rubinstein, M H

    1976-03-01

    The deformation of small cylindrical aggregates of dibasic calcium phosphate was measured during compaction. An analogy between these aggregates and cylindrical granules was proposed. No change in the original shape of the aggregates occurred; the cylindrical shape was maintained even at high compaction pressures. Relaxation of the aggregates occurred at pressures higher than 420 MNm-2 (60.9 x 10(3) lb in.-2) when removed from the compacts, but no relaxation took place at pressures below this value. In addition, the aggregates relaxed by an increase in thickness only; there was no corresponding change in diameter. Up to a pressure of 200 MNm-2 (29.0 x 10(3) lb in.-2), an increase in aggregate diameter occurred, which was accompanied by a reduction in thickness. This change produced only a small reduction in volume, which was attributable to interparticulate slippage resulting in a closer packed arrangement. At a pressure of 200 MNm-2, the aggregate diameter no longer increased because solid bridges were formed between the particles and the die wall, preventing further spreading. From 200 to 420 MNm-2, failure of the material occurred by plastic deformation, which produced only a decrease in aggregate thickness. From 420 to 800 MNm-2 (116.0 x 10(3) lb in.-2), a structure was formed that could support the applied load without further reduction of thickness, and this structure was shown to behave elastically. PMID:1263085

  5. Development of a test system for verification and validation of nuclear transport simulations

    SciTech Connect

    White, Morgan C; Triplett, Brian S; Anghaie, Samim

    2008-01-01

    Verification and validation of nuclear data is critical to the accuracy of both stochastic and deterministic particle transport codes. In order to effectively test a set of nuclear data, the data must be applied to a wide variety of transport problems. Performing this task in a timely, efficient manner is tedious. The nuclear data team at Los Alamos National laboratory in collaboration with the University of Florida has developed a methodology to automate the process of nuclear data verification and validation (V and V). This automated V and V process can efficiently test a number of data libraries using well defined benchmark experiments, such as those in the International Criticality Safety Benchmark Experiment Project (ICSBEP). The process is implemented through an integrated set of Pyton scripts. Material and geometry data are read from an existing medium or given directly by the user to generate a benchmark experiment template file. The user specifies the choice of benchmark templates, codes, and libraries to form a V and V project. The Python scripts generate input decks for multiple transport codes from the templates, run and monitor individual jobs, and parse the relevant output automatically. The output can then be used to generate reports directly or can be stored into a database for later analysis. This methodology eases the burden on the user by reducing the amount of time and effort required for obtaining and compiling calculation results. The resource savings by using this automated methodology could potentially be an enabling technology for more sophisticated data studies, such as nuclear data uncertainty quantification. Once deployed, this tool will allow the nuclear data community to more thoroughly test data libraries leading to higher fidelity data in the future.

  6. Monte Carlo simulation and parameterized treatment on the effect of nuclear elastic scattering in high-energy proton radiography

    NASA Astrophysics Data System (ADS)

    Xu, Hai-Bo; Zheng, Na

    2015-07-01

    A version of Geant4 has been developed to treat high-energy proton radiography. This article presents the results of calculations simulating the effects of nuclear elastic scattering for various test step wedges. Comparisons with experimental data are also presented. The traditional expressions of the transmission should be correct if the angle distribution of the scattering is Gaussian multiple Coulomb scattering. The mean free path (which depends on the collimator angle) and the radiation length are treated as empirical parameters, according to transmission as a function of thickness obtained by simulations. The results can be used in density reconstruction, which depends on the transmission expressions. Supported by NSAF (11176001) and Science and Technology Developing Foundation of China Academy of Engineering Physics (2012A0202006)

  7. Discrete-event simulation of nuclear-waste transport in geologic sites subject to disruptive events. Final report

    SciTech Connect

    Aggarwal, S.; Ryland, S.; Peck, R.

    1980-06-19

    This report outlines a methodology to study the effects of disruptive events on nuclear waste material in stable geologic sites. The methodology is based upon developing a discrete events model that can be simulated on the computer. This methodology allows a natural development of simulation models that use computer resources in an efficient manner. Accurate modeling in this area depends in large part upon accurate modeling of ion transport behavior in the storage media. Unfortunately, developments in this area are not at a stage where there is any consensus on proper models for such transport. Consequently, our work is directed primarily towards showing how disruptive events can be properly incorporated in such a model, rather than as a predictive tool at this stage. When and if proper geologic parameters can be determined, then it would be possible to use this as a predictive model. Assumptions and their bases are discussed, and the mathematical and computer model are described.

  8. Numerical Simulation of Plasma Behavior in a Magnetic Nozzle of a Laser-plasma Driven Nuclear Electric Propulsion System

    NASA Astrophysics Data System (ADS)

    Kajimura, Y.; Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H.

    2008-12-01

    Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction (α) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease α value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.

  9. Multiple-code simulation study of the long-term EDZ evolution of geological nuclear waste repositories

    SciTech Connect

    Rutqvist, J.; Backstrom, A.; Chijimatsu, M.; Feng, X.-T.; Pan, P.-Z.; Hudson, J.; Jing, L.; Kobayashi, A.; Koyama, T.; Lee, H.-S.; Huang, X.-H.; Rinne, M.; Shen, B.

    2008-10-23

    This simulation study shows how widely different model approaches can be adapted to model the evolution of the excavation disturbed zone (EDZ) around a heated nuclear waste emplacement drift in fractured rock. The study includes modeling of coupled thermal-hydrological-mechanical (THM) processes, with simplified consideration of chemical coupling in terms of time-dependent strength degradation or subcritical crack growth. The different model approaches applied in this study include boundary element, finite element, finite difference, particle mechanics, and elastoplastic cellular automata methods. The simulation results indicate that thermally induced differential stresses near the top of the emplacement drift may cause progressive failure and permeability changes during the first 100 years (i.e., after emplacement and drift closure). Moreover, the results indicate that time-dependent mechanical changes may play only a small role during the first 100 years of increasing temperature and thermal stress, whereas such time-dependency is insignificant after peak temperature, because decreasing thermal stress.

  10. Numerical Simulation of Plasma Behavior in a Magnetic Nozzle of a Laser-plasma Driven Nuclear Electric Propulsion System

    SciTech Connect

    Kajimura, Y.; Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H.

    2008-12-31

    Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction ({alpha}) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease {alpha} value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.

  11. Nuclear power plant accident simulations of gasket materials under simultaneous radiation plus thermal plus mechanical stress conditions

    SciTech Connect

    Gillen, K.T.; Malone, G.M.

    1997-07-01

    In order to probe the response of silicone door gasket materials to a postulated severe accident in an Italian nuclear power plant, compression stress relaxation (CSR) and compression set (CS) measurements were conducted under combined radiation (approximately 6 kGy/h) and temperature (up to 230{degrees}C) conditions. By making some reasonable initial assumptions, simplified constant temperature and dose rates were derived that should do a reasonable job of simulating the complex environments for worst-case severe events that combine overall aging plus accidents. Further simplification coupled with thermal-only experiments allowed us to derive thermal-only conditions that can be used to achieve CSR and CS responses similar to those expected from the combined environments that are more difficult to simulate. Although the thermal-only simulations should lead to sealing forces similar to those expected during a severe accident, modulus and density results indicate that significant differences in underlying chemistry are expected for the thermal-only and the combined environment simulations. 15 refs., 31 figs., 15 tabs.

  12. On-the-fly nuclear data processing methods for Monte Carlo simulations of fast spectrum systems

    SciTech Connect

    Walsh, Jon

    2015-08-31

    The presentation summarizes work performed over summer 2015 related to Monte Carlo simulations. A flexible probability table interpolation scheme has been implemented and tested with results comparing favorably to the continuous phase-space on-the-fly approach.

  13. Nuclear Winter.

    ERIC Educational Resources Information Center

    Ehrlich, Anne

    1984-01-01

    "Nuclear Winter" was recently coined to describe the climatic and biological effects of a nuclear war. These effects are discussed based on models, simulations, scenarios, and projections. Effects on human populations are also considered. (JN)

  14. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    SciTech Connect

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are

  15. Electrolyte diffusion in compacted montmorillonite engineered barriers

    SciTech Connect

    Jahnke, F.M.; Radke, C.J.

    1985-09-01

    The bentonite-based engineered barrier or packing is a proposed component of several designs conceived to dispose of high-level nuclear waste in geologic repositories. Once radionuclides escape the waste package, they must first diffuse through the highly impermeable clay-rich barrier before they reach the host repository. To determine the effectiveness of the packing as a sorption barrier in the transient release period and as a mass-transfer barrier in the steady release period over the geologic time scales involved in nuclear waste disposal, a fundamental understanding of the diffusion of electrolytes in compacted clays is required. We present, and compare with laboratory data, a model quantifying the diffusion rates of cationic cesium and uncharged tritium in compacted montmorillonite clay. Neutral tritium characterizes the geometry (i.e., tortuosity) of the particulate gel. After accounting for cation exchange, we find that surface diffusion is the dominant mechanism of cation transport, with an approximate surface diffusion coefficient of 2 x 10 W cmS/s for cesium. This value increases slightly with increasing background ionic strength. The implications of this work for the packing as a migration barrier are twofold. During the transient release period, K/sub d/ values are of little importance in retarding ion migration. This is because sorption also gives rise to a surface diffusion path, and it is surface diffusion which controls the diffusion rate of highly sorbing cations in compacted montmorillonite. During the steady release period, the presence of surface diffusion leads to a flux through the packing which is greatly enhanced. In either case, if surface diffusion is neglected, the appropriate diffusion coefficient of ions in compacted packing will be in considerable error relative to current design recommendations. 11 refs., 4 figs., 1 tab.

  16. FAULT DIAGNOSIS WITH MULTI-STATE ALARMS IN A NUCLEAR POWER CONTROL SIMULATOR

    SciTech Connect

    Austin Ragsdale; Roger Lew; Brian P. Dyre; Ronald L. Boring

    2012-10-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effect of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. We used sensitivity and criterion based on Signal Detection Theory to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  17. Numerical simulations of blast/shock wave propagations after nuclear explosions

    NASA Astrophysics Data System (ADS)

    Song, Seungho; Choi, Jung-Il; Li, Yibao; Lee, Changhoon

    2013-11-01

    Pressure waves develop immediately after nuclear explosions and start to move outward from the fireball. The most of initial damages are caused by the blast waves. We performed the blast wave propagations by solving two-dimensional and axisymmetric Euler equations. For shock capturing, inviscid fluxes are discretized using a variant of the piecewise parabolic method (PPM) and an approximate Riemann solver based on Roe's method is used. A clean air burst of fireball above the ground zero is considered. The initial condition of fireball is given at the point of breakaway that shock waves are appeared on the surface of the fireball. The growth of fireball is also calculated by solving one-dimensional radiation hydrodynamics (RHD) equation from point explosion. Characteristics of the blast wave propagations due to the various heights of burst and amount of the nuclear detonations are investigated. The results of parametric studies will be shown in the final presentation. Supported by Agency for Defense Development.

  18. Fault Diagnosis with Multi-State Alarms in a Nuclear Power Control Simulation

    SciTech Connect

    Stuart A. Ragsdale; Roger Lew; Ronald L. Boring

    2014-09-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effects of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized the use of three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. Sensitivity and criterion based on the Signal Detection Theory were used to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  19. The Molecular Mechanism of Bisphenol A (BPA) as an Endocrine Disruptor by Interacting with Nuclear Receptors: Insights from Molecular Dynamics (MD) Simulations

    PubMed Central

    Li, Lanlan; Wang, Qianqian; Zhang, Yan; Niu, Yuzhen; Yao, Xiaojun; Liu, Huanxiang

    2015-01-01

    Bisphenol A (BPA) can interact with nuclear receptors and affect the normal function of nuclear receptors in very low doses, which causes BPA to be one of the most controversial endocrine disruptors. However, the detailed molecular mechanism about how BPA interferes the normal function of nuclear receptors is still undiscovered. Herein, molecular dynamics simulations were performed to explore the detailed interaction mechanism between BPA with three typical nuclear receptors, including hERα, hERRγ and hPPARγ. The simulation results and calculated binding free energies indicate that BPA can bind to these three nuclear receptors. The binding affinities of BPA were slightly lower than that of E2 to these three receptors. The simulation results proved that the binding process was mainly driven by direct hydrogen bond and hydrophobic interactions. In addition, structural analysis suggested that BPA could interact with these nuclear receptors by mimicking the action of natural hormone and keeping the nuclear receptors in active conformations. The present work provided the structural evidence to recognize BPA as an endocrine disruptor and would be important guidance for seeking safer substitutions of BPA. PMID:25799048

  20. Simulation of electromagnetic and strange probes of dense nuclear matter at NICA/MPD

    NASA Astrophysics Data System (ADS)

    Zinchenko, A.; Kolesnikov, V.; Vasendina, V.

    2016-01-01

    The main task of the NICA/MPD physics program is a study of the properties of nuclear matter under extreme conditions achieved in collisions of heavy ions. These properties can reveal themselves through different probes, the most promising among those being the lepton-antilepton pairs and strange hadrons. In this paper the MPD performance for measuring the electron-positron pairs and strange hyperons in central Au+Au collisions at NICA energies is presented.