Sample records for compact pmn-pt modulator

  1. Electrical manipulation of perpendicular magnetic anisotropy in a Pt/Co/Pt trilayer grown on PMN-PT(0 1 1) substrate

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Sun, L.; Luo, Y. M.; Zhang, D.; Liang, J. H.; Wu, Y. Z.

    2018-03-01

    Strain-induced modulation of perpendicular magnetic anisotropy (PMA) is demonstrated in a wedge-shaped Pt/Co/Pt sandwich grown on PMN-PT(0 1 1) substrate using magnetic torque measurements. An anisotropic in-plane strain is generated by applying an electric field across the PMN-PT substrate and transferred to the ferromagnetic Pt/Co/Pt sandwich. The critical thickness of spin reorientation transition is tuned to the thicker region of the Pt/Co/Pt wedge. The strain-induced change of PMA is quantitatively extracted. Only the first order anisotropy term is tuned by the electric field, while the second order anisotropy term has negligible electric field-dependence. Both of the volume and interface contributions of the first order anisotropy term show tunable electric field modulation. These results may benefit the understanding of strain-mediated magnetoelectric coupling effect in artificial multiferroic structures containing a ferromagnetic layer with PMA.

  2. Energy scavenging based on a single-crystal PMN-PT nanobelt

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-03-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs.

  3. Energy scavenging based on a single-crystal PMN-PT nanobelt.

    PubMed

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-03-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs.

  4. Structure comparison of PMN-PT and PMN-PZT nanocrystals prepared by gel-combustion method at optimized temperatures

    NASA Astrophysics Data System (ADS)

    Ghasemifard, M.; Hosseini, S. M.; Bagheri-Mohagheghi, M. M.; Shahtahmasbi, N.

    2009-09-01

    We have synthesized and were performed a comparison of structures and optical properties between relaxor ferroelectric PMN-PT and PMN-PZT nanopowders. A gel-combustion method has been used to synthesize PMN-PT and PMN-PZT nanocrystalline with the perovskite structure. The precursors employed in the gel-combustion process were lead nitrate, magnesium acetate, niobium ammonium oxalate and zirconium nitrate. The nanopowders were characterized using the X-ray diffraction (XRD) and transmission electron microscopy (TEM) observation. Fourier transform infrared (FTIR) spectroscopy was employed to monitor the transformation of precursor solutions during the thermal reactions leading to the formation of perovskite phase.

  5. PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.

    PubMed

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2012-06-01

    We have successfully fabricated x (0.65PMN-0.35PT)-(1 - x )PZT ( x PMN-PT-(1 - x )PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of x PMN-PT-(1 - x )PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB.

  6. Electric field control of magnetic properties in FeRh/PMN-PT heterostructures

    NASA Astrophysics Data System (ADS)

    Xie, Yali; Zhan, Qingfeng; Shang, Tian; Yang, Huali; Liu, Yiwei; Wang, Baomin; Li, Run-Wei

    2018-05-01

    We investigated electric control of magnetic properties in FeRh/PMN-PT heterostructures. An electric field of 1 kV/cm applied on the PMN-PT substrate could increase the coercivity of FeRh film from 60 to 161 Oe at 360 K where the FeRh antiferromagnetic to ferromagnetic phase transition occurs. The electric field dependent coercive field reveals a butterfly shape, indicating a strain-mediated magnetoelectric coupling across the FeRh/PMN-PT interface. However, the uniaxial magnetic anisotropy of FeRh is almost unchanged with the applied electric field on the PMN-PT substrate, which suggests the change of coercivity in FeRh films is mainly due to the shift of the magnetic transition temperature under the electric field.

  7. PMN-PT Single-Crystal High-Frequency Kerfless Phased Array

    PubMed Central

    Chen, Ruimin; Cabrera-Munoz, Nestor E.; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at −6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application. PMID:24859667

  8. Micromachined PIN-PMN-PT Crystal Composite Transducer for High-Frequency Intravascular Ultrasound (IVUS) Imaging

    PubMed Central

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3–PbMg1/3Nb2/3O3–PbTiO3 (PIN-PMN-PT) single crystal 1–3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT. PMID:24960706

  9. Fabrication and properties of radially <001>C textured PMN-PT cylinders for transducer applications

    NASA Astrophysics Data System (ADS)

    Poterala, Stephen F.; Meyer, Richard J.; Messing, Gary L.

    2012-07-01

    <001>C Textured PMN-PT ceramics have electromechanical properties (d33 = 850-1050 pm/V, k33 = 0.79-0.83) between those of conventional PZT ceramics and relaxor PMN-PT crystals. In this work, we tailor crystallographic orientation in textured PMN-PT ceramics for transducer designs with non-planar poling surfaces. Specifically, omni-directional cylindrical transducer elements were fabricated using monolithic, radially <001>C textured and poled PMN-PT ceramic. Texture was produced by templated grain growth using NBT-PT templates, which were oriented radially by wrapping green ceramic tapes around a cylindrical mandrel. Finished transducer elements measure ˜5 cm in diameter by ˜2.5 cm in height and demonstrate scalability of textured ceramic fabrication techniques. The fabricated cylinders are ˜50 vol. % textured and show high 31-mode electromechanical properties compared to PZT ceramics (d31 = -259 pm/V, k31 = 0.43, ɛT33 = 3000, and Qm = 350). Frequency bandwidth is related to the square of the hoop mode coupling coefficient kh2, which is ˜60% higher in textured PMN-PT cylinders compared to PZT 5H. Finite element simulations show that this parameter may be further increased by improving texture quality to ≥90 vol. %. Radially textured PMN-PT may thus improve performance in omni-directional cylindrical transducers while avoiding the need for segmented single crystal designs.

  10. Thermal-Independent Properties of PIN-PMN-PT Single-Crystal Linear-Array Ultrasonic Transducers

    PubMed Central

    Chen, Ruimin; Wu, Jinchuan; Lam, Kwok Ho; Yao, Liheng; Zhou, Qifa; Tian, Jian; Han, Pengdi; Shung, K. Kirk

    2013-01-01

    In this paper, low-frequency 32-element linear-array ultrasonic transducers were designed and fabricated using both ternary Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–PbTiO3 (PIN-PMN-PT) and binary Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-PT) single crystals. Performance of the array transducers was characterized as a function of temperature ranging from room temperature to 160°C. It was found that the array transducers fabricated using the PIN-PMN-PT single crystal were capable of satisfactory performance at 160°C, having a −6-dB bandwidth of 66% and an insertion loss of 37 dB. The results suggest that the potential of PIN-PMN-PT linear-array ultrasonic transducers for high-temperature ultrasonic transducer applications is promising. PMID:23221227

  11. Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging.

    PubMed

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K Kirk

    2014-07-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3-PbMg1/3Nb2/3O3-PbTiO 3 (PIN-PMNPT) single crystal 1-3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT.

  12. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface.

    PubMed

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M; Brown, Gail J; Sun, Nian X

    2014-01-14

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.

  13. Nanoscale insight of high piezoelectricity in high-TC PMN-PH-PT ceramics

    NASA Astrophysics Data System (ADS)

    Zhu, Rongfeng; Zhang, Qihui; Fang, Bijun; Zhang, Shuai; Zhao, Xiangyong; Ding, Jianning

    2018-03-01

    The piezoelectric properties of the high-Curie temperature (high-TC) 0.15Pb(Mg1/3Nb2/3)O3-0.38PbHfO3-0.47PbTiO3 (0.15PMN-0.38PH-0.47PT) ceramics prepared by three different methods were compared. The 0.15PMN-0.38PH-0.47PT ceramics synthesized by the partial oxalate route exhibit the optimum properties, in which d33* = 845.3 pm/V, d33 = 456.2 pC/N, Kp = 67.2%, and TC = 291 °C. The nanoscale origin of the high piezoelectric response of the 0.15PMN-0.38PH-0.47PT ceramics was investigated by piezoresponse force microscopy (PFM) using the ceramics synthesized by the partial oxalate route. Large quantities of fine stripe submicron ferroelectric domains are observed, which form large island domains. In order to give further insights into the piezoelectric properties of the 0.15PMN-0.38PH-0.47PT ceramics from a microscopic point of view, the local poling experiments and local switching spectroscopy piezoresponse force microscopy (SS-PFM) were investigated, from which the local converse piezoelectric coefficient d33*(l) is calculated as 220 pm/V.

  14. Application of PMN-32PT Piezoelectric Crystals for Novel Air-coupled Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    Kazys, Rymantas Jonas; Sliteris, Reimondas; Sestoke, Justina

    Due to very high piezoelectric properties of PMN-PT crystals they may significantly improve performance of air-coupled ultrasonic transducers. For these purpose vibrations of PMN-PT rectangular plates and strips were investigated. An air-coupled ultrasonic transducer and array consisting of 8 single piezoelectric strips were designed. Operation of the transducer was simulated by the finite element method using ANSYS Mechanical APDL Product Launcher software. Spatial distributions of displacements inside piezoelectric elements and matching strip were obtained. Experimental investigations were carried out by the laser Doppler vibrometer Polytec OFV-5000 and the Bruel&Kjaer microphone 4138 with the measurement amplifier NEXUS WH 3219. It was found that performance of the ultrasonic transducer with PMN-32PT crystals was a few times better than of a PZT based ultrasonic transducer.

  15. Effect of manganese doping on PIN-PMN-PT single crystals for high power applications

    NASA Astrophysics Data System (ADS)

    Sahul, Raffi

    Single crystals based on relaxor-lead titanate (relaxor-PT) solid solutions have advanced the world of piezoelectric materials for the past two decades with their giant piezoelectric properties achieved by domain engineered configurations. When single crystals of lead magnesium niobate-lead titanate (PMN-PT) solid solution in the rhombohedral phase were poled along [001]c direction with "4R" domain configuration, they exhibited high piezoelectric charge coefficient (d33 >2000 pC/N) and high electromechanical coupling (k33 >0.9) which led to their widespread use in advanced medical imaging systems and underwater acoustic devices. However, PMN-PT crystals suffer from low phase transition temperature (Trt ˜85-95 °C) and lower coercive field (depolarizing electric field, Ec ˜2-3 kV/cm). Lead indium niobate - lead magnesium niobate - lead titanate (PIN-PMN-PT) ternary single crystals formed by adding indium as another constituent exhibit higher coercive field (E c ˜5kV/cm) and higher Curie temperature (Tc >210 °C) than the binary PMN-PT crystals (Ec ˜2.5 kV/cm and Tc <140 °C). When these ternary PIN-PMN-PT crystals are doped with manganese (Mn:PIN-PMN-PT), they behave like hard piezoelectric materials demonstrating an internal bias field (Ei ˜0.8-1.6 kV/cm), leading to low elastic losses and high mechanical Q-factor (Qm >600) compared to the undoped binary crystals (Qm of PMN-PT <150). Although the spontaneous polarization directions for these rhombohedral crystals are in the c directions, the giant piezoelectric effect (d33 >2000 pC/N for PMN-PT) occurs in the [001]c poled crystals, which is attributed to the polarization rotation mechanisms. Hence, domain engineering configurations induced by poling these crystals in orientations other than their polarization axis are critical for achieving large piezoelectric effects. Based on the phase diagram of these solid solutions, with the increase in PT content beyond the rhombohedral phase region, orthorhombic

  16. Electric field poling induced self-biased converse magnetoelectric response in PMN-PT/NiFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Ahlawat, Anju; Satapathy, S.; Deshmukh, Pratik; Shirolkar, M. M.; Sinha, A. K.; Karnal, A. K.

    2017-12-01

    In this letter, studies on structural transitions and the effect of electric field poling on magnetoelectric (ME) properties in 0.65Pb (Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT)/NiFe2O4 (NFO) nanocomposites are reported. The composite illustrates dramatic changes in the NFO crystal structure across ferroelectric transition temperature [Curie temperature (Tc) ˜ 450 K] of PMN-PT, while pure NFO does not exhibit any structural change in the temperature range (300 K-650 K). Synchrotron based X-ray diffraction analysis revealed the splitting of NFO peaks across the Tc of PMN-PT in the PMN-PT/NFO composite. Consequently, the anomalies are observed in temperature dependent magnetization of the NFO phase at the Tc of PMN-PT, establishing ME coupling in the PMN-PT/NFO composite. Furthermore, the composite exhibits drastic modification in ME coupling under electrically poled and unpoled conditions. A large self-biased ME effect characterized by non-zero ME response at zero Hbias was observed in electrically poled composites, which was not observed in unpoled PMN-PT/NFO. These results propose an alternative mechanism for intrinsic converse ME effects. The maximum magnetoelectric output was doubled after electrical poling. The observed self-biased converse magnetoelectric effect at room temperature provides potential applications in electrically controlled memory devices and magnetic flux control devices.

  17. 80-MHz intravascular ultrasound transducer using PMN-PT free-standing film.

    PubMed

    Li, Xiang; Wu, Wei; Chung, Youngsoo; Shih, Wan Y; Shih, Wei-Heng; Zhou, Qifa; Shung, K Kirk

    2011-11-01

    [Pb(Mg(1/3)Nb(2/3))O(3)](0.63)[PbTiO(3)](0.37) (PMN-PT) free-standing film of comparable piezoelectric properties to bulk material with thickness of 30 μm has been fabricated using a modified precursor coating approach. At 1 kHz, the dielectric permittivity and loss were 4364 and 0.033, respectively. The remnant polarization and coercive field were 28 μC/cm(2) and 18.43 kV/cm. The electromechanical coupling coefficient k(t) was measured to be 0.55, which was close to that of bulk PMN-PT single-crystal material. Based on this film, high-frequency (82 MHz) miniature ultrasonic transducers were fabricated with 65% bandwidth and 23 dB insertion loss. Axial and lateral resolutions were determined to be as high as 35 and 176 μm. In vitro intravascular imaging on healthy rabbit aorta was performed using the thin film transducers. In comparison with a 35-MHz IVUS transducer, the 80-MHz transducer showed superior resolution and contrast with satisfactory penetration depth. The imaging results suggest that PMN-PT free-standing thin film technology is a feasible and efficient way to fabricate very-high-frequency ultrasonic transducers.

  18. Structural health monitoring of glass/epoxy composite plates with MEMS PMN-PT sensors

    NASA Astrophysics Data System (ADS)

    Simon, Brenton R.; Tang, Hong-Yue; Horsley, David A.; La Saponara, Valeria; Lestari, Wahyu

    2009-03-01

    Sensors constructed with single-crystal PMN-PT, i.e. Pb(Mg1/3Nb2/3)O3-PbTiO3 or PMN, are developed in this paper for structural health monitoring of composite plates. To determine the potential of PMN-PT for this application, glass/epoxy composite specimens were created containing an embedded delamination-starter. Two different piezoelectric materials were bonded to the surface of each specimen: PMN-PT, the test material, was placed on one side of the specimen, while a traditional material, PZT-4, was placed on the other. A comparison of the ability of both materials to transmit and receive an ultrasonic pulse was conducted, with the received signal detected by both a second surface-bonded transducer constructed of the same material, as well as a laser Doppler vibrometer (LDV) analyzing the same location. The optimal frequency range of both sets of transducers is discussed and a comparison is presented of the experimental results to theory. The specimens will be fatigued until failure with further data collected every 3,000 cycles to characterize the ability of each material to detect the growing delamination in the composite structure. This additional information will be made available during the conference.

  19. Evidence of spin phonon coupling in magnetoelectric NiFe{sub 2}O{sub 4}/PMN-PT composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlawat, Anju; Satapathy, S., E-mail: srinu73@rrcat.gov.in, E-mail: srinusatapathy@gmail.com; Gupta, P. K.

    2013-12-16

    The coupling of phonon with spin in strain coupled magnetoelectric NiFe{sub 2}O{sub 4} (NFO)/0.65Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–0.35PbTiO{sub 3} (PMN-PT) composite was investigated by temperature-dependent Raman spectroscopy and magnetic measurements in the range 30–350 °C. Pure NFO shows usual ferromagnetic behaviour in this temperature range while NFO/PMN-PT composite show dramatic change in magnetic moment across ferroelectric transition temperature (T{sub c} ∼ 180 °C) of PMN-PT. The temperature evolution of the Raman spectra for the composite shows significant phonon anomalies in T-site (Fe-O) and O-site (Ni/Fe-O) phonon modes at ferroelectric transition temperature is attributed to spin phonon coupling in NFO/PMN-PT composite. The strain mediated magnetoelectric couplingmore » mechanism in this composite is apparent from the observed spin phonon interaction.« less

  20. Novel PMN-PT free standing film for high frequency (80MHz) intravascular ultrasonic imaging

    PubMed Central

    Li, Xiang; Zhou, Qifa; Shung, K. Kirk; Shih, Wei-Heng; Shih, Wan Y.

    2011-01-01

    [Pb(Mg1/3Nb2/3)O3]0.63[PbTiO3]0.37 (PMN-PT) free standing film of comparable piezoelectric property to bulk PMN-PT with a thickness of 33 μm has been fabricated using a modified precursor coating approach. At 1 KHz, the dielectric constant and loss were 4,160 and 0.0291, respectively. The remnant polarization and coercive field were 28 μC/cm2 and 18.43 kV/cm. The electromechanical coupling coefficient kt was measured to be 0.55, which was close to that of bulk PMN-PT single crystal material. A high frequency (80 MHz) miniature ultrasonic transducer with high sensitivity was fabricated from this film. In vitro imaging of a rabbit aorta was performed to demonstrate the application of this material to intravascular ultrasound imaging at 80 MHz. Compared to a 35 MHz ultrasonic image, the 80 MHz image showed superior resolution and contrast. PMID:22083761

  1. Method to tune electrical impedance of LSMO/PMN-PT by nanocontact

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Pei, Yongmao; Wang, Yaobing; Lei, Hongshuai

    2018-01-01

    Electromagnetic composites have wide application in the functional devices. For the best performance of devices, the regulation of the electrical impedance has been being desired for the impedance matching in service. However, the keeping of impedance matching in service is quite challenging. In the present work, a mechanical method for tuning the electrical impedance of La0.7Sr0.3MnO3/0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (LSMO/PMN-PT) based on the nanocontact technique is proposed. It is found that the electrical impedance reduces with the increase of the nanocontact load. A linear relationship is found between the square of impedance magnitude and the inverse of nanocontact depth. Furthermore, a method for predicting the contact-depth-dependent impedance magnitude of LSMO/PMN-PT is proposed.

  2. In-plane electric field controlled ferromagnetism and anisotropic magnetoresistance in an LSMO/PMN-PT heterostructure.

    PubMed

    Guo, Qi; Xu, Xiaoguang; Wang, Fang; Lu, Yunhao; Chen, Jikun; Wu, Yanjun; Meng, Kangkang; Wu, Yong; Miao, Jun; Jiang, Yong

    2018-06-01

    We report the in-plane electric field controlled ferromagnetism of La 2/3 Sr 1/3 MnO 3 (LSMO) films epitaxially deposited on [Pb(Mg 1/3 Nb 2/3 )O 3 ] 0.7 -(PbTiO 3 ) 0.3 (PMN-PT) (001), (011) and (111) single crystal substrates. The in-plane coercivities (H c∥ ) and remanences of the LSMO films greatly depend on the in-plane electric field applied on the PMN-PT (001) and (011) substrates. The experimental change of H c∥ is consistent with the Stoner-Wohlfarth model and first principle calculation with the electric field varying from -10 to 10 kV cm -1 . Moreover, the Curie temperature and anisotropic magnetoresistance of the LSMO films can also be manipulated by an in-plane electric field. Finally, the LSMO/PMN-PT (001) heterostructure is designed to be a new kind of magnetic signal generator with the source of electric field.

  3. In-plane electric field controlled ferromagnetism and anisotropic magnetoresistance in an LSMO/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Xu, Xiaoguang; Wang, Fang; Lu, Yunhao; Chen, Jikun; Wu, Yanjun; Meng, Kangkang; Wu, Yong; Miao, Jun; Jiang, Yong

    2018-06-01

    We report the in-plane electric field controlled ferromagnetism of La2/3Sr1/3MnO3 (LSMO) films epitaxially deposited on [Pb(Mg1/3Nb2/3)O3]0.7-(PbTiO3)0.3 (PMN-PT) (001), (011) and (111) single crystal substrates. The in-plane coercivities (H c∥) and remanences of the LSMO films greatly depend on the in-plane electric field applied on the PMN-PT (001) and (011) substrates. The experimental change of H c∥ is consistent with the Stoner–Wohlfarth model and first principle calculation with the electric field varying from ‑10 to 10 kV cm‑1. Moreover, the Curie temperature and anisotropic magnetoresistance of the LSMO films can also be manipulated by an in-plane electric field. Finally, the LSMO/PMN-PT (001) heterostructure is designed to be a new kind of magnetic signal generator with the source of electric field.

  4. Bulk Crystal Growth of Piezoelectric PMN-PT Crystals Using Gradient Freeze Technique for Improved SHM Sensors

    NASA Technical Reports Server (NTRS)

    Aggarwal, Mohan D.; Kochary, F.; Penn, Benjamin G.; Miller, Jim

    2007-01-01

    There has been a growing interest in recent years in lead based perovskite ferroelectric and relaxor ferroelectric solid solutions because of their excellent dielectric, piezoelectric and electrostrictive properties that make them very attractive for various sensing, actuating and structural health monitoring (SHM) applications. We are interested in the development of highly sensitive and efficient PMN-PT sensors based on large single crystals for the structural health monitoring of composite materials that may be used in future spacecrafts. Highly sensitive sensors are needed for detection of defects in these materials because they often tend to fail by distributed and interacting damage modes and much of the damage occurs beneath the top surface of the laminate and not detectable by visual inspection. Research is being carried out for various combinations of solid solutions for PMN-PT piezoelectric materials and bigger size crystals are being sought for improved sensor applications. Single crystals of this material are of interest for sensor applications because of their high piezoelectric coefficient (d33 greater than 1700 pC/N) and electromechanical coefficients (k33 greater than 0.90). For comparison, the commonly used piezoelectric ceramic lead zirconate titanate (PZT) has a d33 of about 600 pC/N and electromechanical coefficients k33 of about 0.75. At the present time, these piezoelectric relaxor crystals are grown by high temperature flux growth method and the size of these crystals are rather small (3x4x5 mm(exp 3). In the present paper, we have attempted to grow bulk single crystals of PMN-PT in a 2 inch diameter platinum crucible and successfully grown a large size crystal of 67%PMN-33%PT using the vertical gradient freeze technique with no flux. Piezoelectric properties of the grown crystals are investigated. PMN-PT plates show excellent piezoelectric properties. Samples were poled under an applied electric field of 5 kV/cm. Dielectric properties at a

  5. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    NASA Astrophysics Data System (ADS)

    Zietek, Slawomir; Ogrodnik, Piotr; Skowroński, Witold; Stobiecki, Feliks; van Dijken, Sebastiaan; Barnaś, Józef; Stobiecki, Tomasz

    2016-08-01

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  6. Analysis of PMN-PT and PZT circular diaphragm energy harvesters for use in implantable medical devices

    NASA Astrophysics Data System (ADS)

    Mo, Changki; Radziemski, Leon J.; Clark, William W.

    2007-04-01

    This paper presents current work on a project to demonstrate the feasibility of harvesting energy for medical devices from internal biomechanical forces using piezoelectric transducer technology based on PMN-PT. The energy harvesting device in this study is a partially covered, simply-supported PMN-PT unimorph circular plate to capture biomechanical energy and to provide power to implanted medical devices. Power harvesting performance for the piezoelectric energy harvesting diaphragm structure is examined analytically. The analysis includes comprehensive modeling and parametric study to provide a design primer for a specific application. An expression for the total power output from the devices for applied pressure is shown, and then used to determine optimal design parameters. It is shown that the device's deflections and stresses under load are the limiting factors in the design. While the primary material choice for energy harvesting today is PZT, an advanced material, PMN-PT, which exhibits improved potential over current materials, is used.

  7. Voltage Control of Metal-insulator Transition and Non-volatile Ferroelastic Switching of Resistance in VOx/PMN-PT Heterostructures

    PubMed Central

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X.

    2014-01-01

    The central challenge in realizing electronics based on strongly correlated electronic states, or ‘Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices. PMID:25088796

  8. Voltage control of metal-insulator transition and non-volatile ferroelastic switching of resistance in VOx/PMN-PT heterostructures.

    PubMed

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X

    2014-08-04

    The central challenge in realizing electronics based on strongly correlated electronic states, or 'Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices.

  9. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziętek, Slawomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Stobiecki, Tomasz

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions formore » optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.« less

  10. PMN-PT based quaternary piezoceramics with enhanced piezoelectricity and temperature stability

    NASA Astrophysics Data System (ADS)

    Luo, Nengneng; Zhang, Shujun; Li, Qiang; Yan, Qingfeng; He, Wenhui; Zhang, Yiling; Shrout, Thomas R.

    2014-05-01

    The phase structure, piezoelectric, dielectric, and ferroelectric properties of (0.80 - x)PMN-0.10PFN-0.10PZ-xPT were investigated systematically. The morphotropic phase boundary (MPB) was confirmed to be 0.30 < x < 0.34. Both MPB compositions of x = 0.32 and x = 0.33 exhibit high piezoelectric coefficients d33 = 640 pC/N and 580 pC/N, electromechanical couplings kp of 0.53 and 0.52, respectively. Of particular importance is that the composition with x = 0.33 was found to process high field-induced piezoelectric strain coefficient d33* of 680 pm/V, exhibiting a minimal temperature-dependent behavior, being less than 8% in the temperature range of 25-165 °C, which can be further confirmed by d31, with a variation of less than 9%. The temperature-insensitive d33* values can be explained by the counterbalance of the ascending dielectric permittivity and descending polarization with increasing temperature. These features make the PMN-PT based quaternary MPB compositions promising for actuator applications demanding high temperature stability.

  11. Multiple receptors mobilize calcium through a pertussis toxin (PT) sensitive GTP-binding protein in human neutrophils (PMN's)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lad, P.M.; Olson, C.V.; Grewal, I.S.

    1986-03-05

    Treatment of PMN's with PT causes an abolition of chemotaxis, enzyme release, superoxide generation and aggregation caused by f-met-leu-phe (FMLP),C5a and platelet activating factor (PAF). Lectin (Con-A) induced capping and receptor induced shape change are abolished, but phagocytosis is unaltered. In whole cells, calcium mobilization induced by FMLP, PAF and Con-A inhibited by PT although the FMLP-mediated effect is more susceptible to PT's effects. Treatment of PMN's with phorbol 12-myristate 13 acetate (PMA) causes an abolition of calcium mobilization by all agents in a range which also inhibits cap formation. Investigation of calcium uptake reveals PT sensitive and insensitive components.more » Reciprocal interactions between Ns and Ni proteins are also observed since pretreatment with FMLP and PAF causes a stimulation of Ns-mediated cyclic AMP enhancement while pretreatment with Ns linked receptors (PGE/sub 1/ and beta receptor agonists) inhibits calcium mobilization. Comparative peptide mapping studies indicate substantial similarity between Ni proteins in PMN's, platelets and human erythrocytes. The authors results suggest that the Ni linked calcium mobilization sensitive to PMA is important to the regulation of the human neutrophil.« less

  12. Reversible electrical-field control of magnetization and anomalous Hall effect in Co/PMN-PT hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, J.; Huang, Q. K.; Lu, S. Y.; Tian, Y. F.; Chen, Y. X.; Bai, L. H.; Dai, Y.; Yan, S. S.

    2018-04-01

    Room-temperature reversible electrical-field control of the magnetization and the anomalous Hall effect was reported in hybrid multiferroic heterojunctions based on Co/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT). We demonstrate herein that electrical-field-induced strain and oxygen-ion migration in ZnO/Co/PMN-PT junctions exert opposing effects on the magnetic properties of the Co sublayer, and the competition between these effects determines the final magnitude of magnetization. This proof-of-concept investigation opens an alternative way to optimize and enhance the electrical-field effect on magnetism through the combination of multiple electrical manipulation mechanisms in hybrid multiferroic devices.

  13. Magnetoimpedance and magnetodielectric properties of single phase 45PMN-20PFW-35PT ceramics

    NASA Astrophysics Data System (ADS)

    Ramachandran, B.; Sudarshan, N.; Rao, M. S. Ramachandra

    2010-05-01

    Phase pure and dense polycrystalline 45PMN-20PFW-35PT sample has been synthesized using a columbite precursor method. Structure and surface morphology of the samples were studied using x-ray diffraction and scanning electron microscope. The sample showed the expected reduction in dielectric constant and polarization (Pmax=17 μC/cm2) compared with that of the parent compound, 65PMN-35PT (Pmax=22 μC/cm2). The sample is also found to be paramagnetic, which is confirmed by magnetization measurements as a function of temperature and an applied magnetic field. The sample was also tested for magnetoelectric coupling by measuring its dielectric constant and impedance at different applied magnetic fields. The observed colossal negative magnetodielectrics (177%) and colossal positive magnetoimpedance (130%) effect at 7 MHz, which is due to piezoelectric radial vibration. This is an indirect confirmation of the coupling between the electric and magnetic order parameters.

  14. PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application.

    PubMed

    Zhou, Qifa; Xu, Xiaochen; Gottlieb, Emanuel J; Sun, Lei; Cannata, Jonathan M; Ameri, Hossein; Humayun, Mark S; Han, Pengdi; Shung, K Kirk

    2007-03-01

    High-frequency needle ultrasound transducers with an aperture size of 0.4 mm were fabricated using lead magnesium niobate-lead titanate (PMN-33% PT) as the active piezoelectric material. The active element was bonded to a conductive silver particle matching layer and a conductive epoxy backing through direct contact curing. An outer matching layer of parylene was formed by vapor deposition. The active element was housed within a polyimide tube and a 20-gauge needle housing. The magnitude and phase of the electrical impedance of the transducer were 47 omega and -38 degrees, respectively. The measured center frequency and -6 dB fractional bandwidth of the PMN-PT needle transducer were 44 MHz and 45%, respectively. The two-way insertion loss was approximately 15 dB. In vivo high-frequency, pulsed-wave Doppler patterns of blood flow in the posterior portion and in vitro ultrasonic backscatter microscope (UBM) images of the rabbit eye were obtained with the 44-MHz needle transducer.

  15. Effect of Elevated Pressure on the Heat Transfer and Power Requirements During Bridgman Growth of PMN-PT Crystals

    NASA Technical Reports Server (NTRS)

    Bune, Andris; Ostrogorsky, Aleksandar; Marin, Carlos; Nicoara, Irina; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Performance of the furnace during Bridgman growth of the lead magnesium niobate-lead titanate crystal (PMN-PT) is analyzed. PMN-PT is electrostrictive ceramic that has near ideal strain-voltage function. Furthermore piezoelectric (2000 to 2300 pC/N) and coupling (92 to 95%) constants are exceptionally good. Due to these properties PMN-PT has wide range of applications - from sonars to transducers in a high precision optical systems. In this research first attempt to crystallize PMN-PT in a Mellen type vertical Bridgman furnace was not successful, as melting temperature of precursor materials was not achieved. At this point choice was between building a new more powerful facility or finding ways to enhance performance of the existing furnace. Besides adjusting power supply to the individual heating elements, redesigning ampoule holding cartridge and improving furnace insulation one more radical improvement was proposed. The entire furnace was placed into the high pressure chamber. Further experiments confirmed that temperature inside the furnace was increased sufficiently to melt precursor materials to obtain PMN-PT. Numerical modeling is undertaken to find limitations of this technique and to predict temperature distribution inside the ampoule. It is of interest also to account for main factors contributing to a higher temperatures achieved in the furnace under the higher pressure (up to 10 atm.). Numerical model of the furnace is based on general purpose finite - element code FIDAP and on previous efforts to model Bridgman type furnace with multiply heaters. In order to account for all heat transfer mechanism involved - conduction, convection and radiation - different parts of the furnace are modeled in accordance with expected dominant mode of heat transfer - conduction in the solid parts, conduction and radiation in the ampoule, gas convection and conduction in the furnace openings complemented with wall-to-wall radiation. Because of these complicating factors

  16. Air-Coupled Ultrasonic Receivers with High Electromechanical Coupling PMN-32%PT Strip-Like Piezoelectric Elements

    PubMed Central

    Kazys, Rymantas J.; Sliteris, Reimondas; Sestoke, Justina

    2017-01-01

    For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used—rectangular or non-rectangular—with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz) in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was found that in order

  17. Air-Coupled Ultrasonic Receivers with High Electromechanical Coupling PMN-32%PT Strip-Like Piezoelectric Elements.

    PubMed

    Kazys, Rymantas J; Sliteris, Reimondas; Sestoke, Justina

    2017-10-16

    For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used-rectangular or non-rectangular-with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz) in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was found that in order to

  18. Co-incubation of PMN and CaCo-2 cells modulates inflammatory potential.

    PubMed

    Schaefer, M B; Schaefer, C A; Hecker, M; Morty, R E; Witzenrath, M; Seeger, W; Mayer, K

    2017-05-20

    Polymorphonuclear granulocytes (PMN) are activated in inflammatory reactions. Intestinal epithelial cells are relevant for maintaining the intestinal barrier. We examined interactions of PMN and intestinal epithelial cell-like CaCo-2 cells to elucidate their regulation of inflammatory signalling and the impact of cyclooxygenase (COX), nitric oxide (NO) and platelet-activating factor (PAF). Human PMN and CaCo-2 cells, separately and in co-incubation, were stimulated with the calcium ionophore A23187 or with N-Formyl-methionyl-leucyl-phenylalanin (fMLP) that activates PMN only. Human neutrophil elastase (HNE) and respiratory Burst were measured. To evaluate the modulation of inflammatory crosstalk we applied inhibitors of COX (acetyl salicylic acid; ASA), NO-synthase (N-monomethyl-L-arginin; L-NMMA), and the PAF-receptor (WEB2086). Unstimulated, co-incubation of CaCo-2 cells and PMN led to significantly reduced Burst and elevated HNE as compared to PMN. After stimulation with A23187, co-incubation resulted in an inhibition of Burst and HNE. Using fMLP co-incubation failed to modulate Burst but increased HNE. Without stimulation, all three inhibitors abolished the effect of co-incubation on Burst but did not change HNE.  ASA partly prevented modulation of Burst L-NMMA and WEB2086 did not change Burst but abolished mitigation of HNE. Without stimulation, co-incubation reduced Burst and elevated HNE. Activation of PMN and CaCo-2 cells by fMLP as compared to A23187 resulted in a completely different pattern of Burst and HNE, possibly due to single vs. dual cell activation. Anti-inflammatory effect of co-incubation might in part be due to due to COX-signalling governing Burst whereas NO- and PAF-dependent signalling seemed to control HNE release.

  19. Tuning the functional properties of PMN-PT single crystals via doping and thermoelectrical treatments

    NASA Astrophysics Data System (ADS)

    Luo, Laihui; Dietze, Matthias; Solterbeck, Claus-Henning; Luo, Haosu; Es-Souni, Mohammed

    2013-12-01

    Single crystals based on solid solutions of lead-magnesium-niobate (PMN) and lead titanate (PT) have emerged as highly promising multifunctional systems combining piezoelectric, pyroelectric, and electro-optic properties that surpass by far those of the best known lead-zirkonium-titanate ceramics. In this paper we present new findings on how the phase transition temperature and the dielectric and ferroelectric properties can be tuned depending on crystal composition, orientation, and thermoelectrical treatment. Mn-doped and pure 0.72PbMg1/3Nb2/3O3-0.28PbTiO3 (0.72PMN-0.28PT) single crystals with ⟨111⟩ and ⟨001⟩ orientations were investigated. A special attention was devoted to field cooling (FC), i.e., cooling under electric field from different temperatures. The results illustrate different findings that were not reported before: the Curie temperature, i.e., ferroelectric-paraelectric transition temperature, is enhanced after field cooling of the Mn-doped, ⟨001⟩-oriented crystal while such a shift is not observed in the ⟨111⟩-oriented and the non-doped crystals. In addition, substantial polarization suppression occurs in the Mn-doped crystals upon FC from high temperature regardless of orientation. Based on piezoforce microscopy of the domain structure that shows suppression of domain growth following field cooling from 200 °C, we propose a mechanism for polarization suppression based on domain pinning by charged defects. The practical importance of our results lies in showing the opportunity offered by a proper choice of crystal composition and poling conditions for tuning the functional properties of PMN-PT single crystals for a specific application. This should contribute to the understanding of their properties towards advanced sensor and transducers devices.

  20. Electrical and mechanical behavior of PMN-PT/CNT based polymer composite film for energy harvesting

    NASA Astrophysics Data System (ADS)

    Das, Satyabati; Biswal, Asutya Kumar; Parida, Kalpana; Choudhary, R. N. P.; Roy, Amritendu

    2018-01-01

    The pyrochlore-free 30-PMN-PT/CNT/PVDF based piezoelectric flexible composite film has been synthesized for potential application in piezoelectric energy harvesting. Electrical characterization reveals that the maximum output voltage and current generated by the 30 vol.% PMN-PT/CNT/PVDF composite is ∼4 V and 30 nA respectively, comparable with the available literature. Further, impedance analysis has revealed a significant improvement in permittivity at low frequency and high temperature with a minimal dielectric loss. AC conductivity behavior fits well with Johnscher's universal power law that predicts the motion of the charge carriers is translational with sudden hopping. The Nyquist plots indicate the contributions of both grain and grain boundaries at lower temperature (25-100 °C) and additional electrode effect of higher temperature (100-150 °C) on the capacitive and resistive properties of the composite. Mechanical characterization of the composite shows an increase in Young's modulus of 705 MPa compared to 597 MPa in pure PVDF.

  1. Magnetocaloric effect and its modulation by electric field in La0.325Pr0.3Ca0.375MnO3 films grown on (0 1 1)-PMN-PT substrates

    NASA Astrophysics Data System (ADS)

    Qiao, K. M.; Li, J.; Liu, Y.; Kuang, H.; Wang, J.; Hu, F. X.; Sun, J. R.; Shen, B. G.

    2018-06-01

    In this paper, we have investigated the magnetocaloric effect (MCE) and its modulation by electric field in La0.325Pr0.3Ca0.375MnO3 (LPCMO) films grown on (0 1 1)-oriented PMN-PT substrates. As a typical perovskite manganite with phase separation, the LPCMO bulk shows a considerable MCE, but the MCE of the LPCMO films has never been investigated. We found that the LPCMO films exhibit a MCE over a wide temperature range. A modulation of magnetization by electric field has been observed in the temperature dependent (M-T) and magnetic field dependent (M-H) curves. As a result, enhanced magnetic entropy change and refrigeration capacity by about 4% under an electric field of +6 kV/cm has been demonstrated.

  2. Micromachined High Frequency PMN-PT/Epoxy 1-3 Composite Ultrasonic Annular Array

    PubMed Central

    Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 μm × 9 μm. The width of the kerf among pillars was ~ 5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers e.g. 1D and 2D arrays. PMID:22119324

  3. Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications.

    PubMed

    Kim, Ki-Bok; Hsu, David K; Ahn, Bongyoung; Kim, Young-Gil; Barnard, Daniel J

    2010-08-01

    This paper describes fabrication and comparison of PMN-PT single crystal, PZT, and PZT-based 1-3 composite ultrasonic transducers for NDE applications. As a front matching layer between test material (Austenite stainless steel, SUS316) and piezoelectric materials, alumina ceramics was selected. The appropriate acoustic impedance of the backing materials for each transducer was determined based on the results of KLM model simulation. Prototype ultrasonic transducers with the center frequencies of approximately 2.25 and 5MHz for contact measurement were fabricated and compared to each other. The PMN-PT single crystal ultrasonic transducer shows considerably improved performance in sensitivity over the PZT and PZT-based 1-3 composite ultrasonic transducers. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Fabrication and Performance of Endoscopic Ultrasound Radial Arrays Based on PMN-PT Single Crystal/Epoxy 1-3 Composite

    PubMed Central

    Zhou, Dan; Cheung, Kwok Fung; Chen, Yan; Lau, Sien Ting; Zhou, Qifa; Shung, K. Kirk; Luo, Hao Su; Dai, Jiyan; Chan, Helen Lai Wa

    2011-01-01

    In this paper, 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystal/epoxy 1–3 composite was used as the active material of the endoscopic ultrasonic radial array transducer, because this composite exhibited ultrahigh electromechanical coupling coefficient (kt = 0.81%), very low mechanical quality factor (Qm = 11) and relatively low acoustic impedance (Zt = 12 MRayls). A 6.91 MHz PMN-PT/epoxy 1–3 composite radial array transducer with 64 elements was tested in a pulse-echo response measurement. The −6-dB bandwidth of the composite array transducer was 102%, which was ~30% larger than that of traditional lead zirconate titanate array transducer. The two-way insertion loss was found to be −32.3 dB. The obtained results show that this broadband array transducer is promising for acquiring high-resolution endoscopic ultrasonic images in many clinical applications. PMID:21342833

  5. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals

    PubMed Central

    Kazys, Rymantas J.; Sliteris, Reimondas; Sestoke, Justina

    2017-01-01

    Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space. PMID:28067807

  6. Influence of piezoelectric strain on the Raman spectra of BiFeO 3 films deposited on PMN-PT substrates

    DOE PAGES

    Himcinschi, Cameliu; Guo, Er -Jia; Talkenberger, Andreas; ...

    2016-01-27

    In this study, BiFeO 3 epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg 1/3Nb 2/3)O 3-0.28PbTiO 3 (PMN-PT) substrates with a conductive buffer layer (La 0.7Sr 0.3MnO 3 or SrRuO 3) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows to obtain a quantitative correlation between strain and the shift of the Raman-active phonons, ruling out the influence of extrinsic factors, such as growth conditions, crystalline quality of substrates, or film thickness. Using the Poissonmore » number for BiFeO 3 one can determine the volume change induced by strain, and therefore the Gr neisen parameters for specific phonon modes.« less

  7. On the Binding Stress-Enhanced Sensitivity of (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO3) 0.35 (PMN-PT) Piezoelectric Plate Sensor (PEPS)

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO 3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) showed enhanced sensitivity in chemical and biological sensing applications which has been attributed to binding-induced crystalline orientation switching in the PMN-PT layer. However, so far there has been no direct demonstration of PEPS crystalline orientation switching upon target-analyte binding. Using biotin and streptavidin binding as a model detection system and by direct X-Ray diffraction observations after analyte binding we have unambiguously demonstrated that switching of the crystalline orientations of the PMN-PT layer indeed occurred. In addition, we have shown that PEPS sensitivity enhancement increased with an increasing transverse electromechanical coupling constant, -k31, of the PMN-PT layer--which is known to correlate with the crystalline orientation switching capability--by increasing the grain size of the PMN-PT layer or by applying a DC bias electric field. Finally, unprecedented high sensitivity of PEPS with high -k31, (i.e., -k31 > 0.3) were illustrated by the aM (10-18 M) sensitivity of in situ DNA hybridization detection without amplification and by the 100 fg/ml (10-13 g/ml) sensitivity of rapid, in situ protein detection in biological fluids such as troponin I detection in serum for early sign of myocardial infarction (heart attack), Her2 detection in serum for cancer treatment and monitoring, Tn antigen and anti-Tn antibody detection in serum for early cancer detection, and Toxins detection in stool for Clostridium difficile infection detection.

  8. Performance of PIN-PMN-PT Single Crystal Piezoelectric versus PZT8 Piezoceramic Materials in Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The recent advancements in the manufacturing of single crystal PIN-PMN-PT piezoelectric materials now make them a cost-competitive alternative to PZT4 and PZT8 (Navy Types I and III) piezoceramic materials, which have been the workhorse of power ultrasonic applications (e.g., welding, cutting, sonar, etc.) for over 50 years. Although there are great benefits to the use of single crystal materials with respect to high output, as well as added actuating and sensing abilities, many transducer designers are still reluctant to explore these materials due to inadequate design guidelines for substituting the familiar PZT materials; for example, what are the implications of the higher capacitance, sensitivity to chipping/cracks, aging effects, frequency shifts, or how much preload can be used are all common questions. This research is a case study on the performance of identical ultrasonic transducer bodies, used for semiconductor wire bonding, assembled with either PZT8 or PIN-PMN-PT piezo material. The main purpose of the study is to establish rule-of-thumb design guidelines for direct substitution of single crystal materials in existing PZT8 transducer designs, along with a side-by-side performance comparison to highlight benefits. Several metrics are investigated such as impedance, frequency, displacement gain, quality factor and electromechanical coupling factor.

  9. Influence of piezoelectric strain on the Raman spectra of BiFeO{sub 3} films deposited on PMN-PT substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himcinschi, Cameliu, E-mail: himcinsc@physik.tu-freiberg.de; Talkenberger, Andreas; Kortus, Jens

    2016-01-25

    BiFeO{sub 3} epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.28PbTiO{sub 3} (PMN-PT) substrates with a conductive buffer layer (La{sub 0.7}Sr{sub 0.3}MnO{sub 3} or SrRuO{sub 3}) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows one to directly obtain a quantitative correlation between the strain and the shift of the Raman-active phonons. This is a prerequisite for making Raman scattering a strong tool to probe the strain coupling in multiferroic nanostructures. Using themore » Poisson's number for BiFeO{sub 3}, one can determine the volume change induced by strain, and therefore the Grüneisen parameters for specific phonon modes.« less

  10. Performance of direct-driven flapping-wing actuator with piezoelectric single-crystal PIN-PMN-PT

    NASA Astrophysics Data System (ADS)

    Ozaki, Takashi; Hamaguchi, Kanae

    2018-02-01

    We present a prototype flapping-wing actuator with a direct-driven mechanism to generate lift in micro- and nano-aerial vehicles. This mechanism has an advantage of simplicity because it has no transmission system between the actuator and wing. We fabricated the piezoelectric unimorph actuator from single-crystal PIN-PMN-PT, which achieved a lift force up to 1.45 mN, a value about 1.9 times larger than the mass of the actuator itself. This is the first reported demonstration of an insect-scale actuator with a direct-driven mechanism that can generate a lift force greater than its own weight.

  11. Electric-Field-Induced Amplitude Tuning of Ferromagnetic Resonance Peak in Nano-granular Film FeCoB-SiO2/PMN-PT Composites.

    PubMed

    Luo, Mei; Zhou, Peiheng; Liu, Yunfeng; Wang, Xin; Xie, Jianliang

    2016-12-01

    One of the challenges in the design of microwave absorbers lies in tunable amplitude of dynamic permeability. In this work, we demonstrate that electric-field-induced magnetoelastic anisotropy in nano-granular film FeCoB-SiO 2 /PMN-PT (011) composites can be used to tune the amplitude of ferromagnetic resonance peak at room temperature. The FeCoB magnetic particles are separated from each other by SiO 2 insulating matrix and present slightly different in-plane anisotropy fields. As a result, multi-resonances appear in the imaginary permeability (μ″) curve and mixed together to form a broadband absorption peak. The amplitude of the resonance peak could be modulated by external electric field from 118 to 266.

  12. Compaction Behavior of Granular Materials

    NASA Astrophysics Data System (ADS)

    Endicott, Mark R.; Kenkre, V. M.; Glass, S. Jill; Hurd, Alan J.

    1996-03-01

    We report the results of our recent study of compaction of granular materials. A theoretical model is developed for the description of the compaction of granular materials exemplified by granulated ceramic powders. Its predictions are compared to observations of uniaxial compaction tests of ceramic granules of PMN-PT, spray dried alumina and rutile. The theoretical model employs a volume-based statistical mechanics treatment and an activation analogy. Results of a computer simulation of random packing of discs in two dimensions are also reported. The effect of type of particle size distribution and other parameters of that distribution on the calculated quantities are discussed. We examine the implications of the results of the simulation for the theoretical model.

  13. Probing the Nanodomain Origin and Phase Transition Mechanisms in (Un)Poled PMN-PT Single Crystals and Textured Ceramics

    PubMed Central

    Slodczyk, Aneta; Colomban, Philippe

    2010-01-01

    Outstanding electrical properties of solids are often due to the composition heterogeneity and/or the competition between two or more sublattices. This is true for superionic and superprotonic conductors and supraconductors, as well as for many ferroelectric materials. As in PLZT ferroelectric materials, the exceptional ferro- and piezoelectric properties of the PMN-PT ((1−x)PbMg1/3Nb2/3O3−xPbTiO3) solid solutions arise from the coexistence of different symmetries with long and short scales in the morphotropic phase boundary (MPB) region. This complex physical behavior requires the use of experimental techniques able to probe the local structure at the nanoregion scale. Since both Raman signature and thermal expansion behavior depend on the chemical bond anharmonicity, these techniques are very efficient to detect and then to analyze the subtitle structural modifications with an efficiency comparable to neutron scattering. Using the example of poled (field cooling or room temperature) and unpoled PMN-PT single crystal and textured ceramic, we show how the competition between the different sublattices with competing degrees of freedom, namely the Pb-Pb dominated by the Coulombian interactions and those built of covalent bonded entities (NbO6 and TiO6), determine the short range arrangement and the outstanding ferro- and piezoelectric properties. PMID:28883367

  14. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure

    PubMed Central

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X.; Yang, Xi; Liu, Ming

    2016-01-01

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also “store” the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities. PMID:26847469

  15. Electric-regulated enhanced in-plane uniaxial anisotropy in FeGa/PMN-PT composite using oblique pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Huang, Chaojuan; Turghun, Mutellip; Duan, Zhihua; Wang, Feifei; Shi, Wangzhou

    2018-04-01

    The FeGa film with in-plane uniaxial magnetic anisotropy was fabricated onto different oriented single-crystal lead magnesium niobate-lead titanate using oblique pulsed laser deposition. An enhanced in-plane uniaxial magnetic anisotropy field of FeGa film can be adjusted from 18 Oe to 275 Oe by tuning the oblique angle and polarizing voltage. The competitive relationship of shape anisotropy and strain anisotropy has been discussed, which was induced by oblique angle and polarizing voltage, respectively. The (100)-oriented and (110)-oriented PMN-PT show completely different characters on voltage-dependent magnetic properties, which could be attributed to various anisotropy directions depended on different strain directions.

  16. In situ visualization of domain structure evolution during field cooling in 0.67PMN-0.33PT single crystal

    NASA Astrophysics Data System (ADS)

    Ushakov, A. D.; Esin, A. A.; Chezganov, D. S.; Turygin, A. P.; Akhmatkhanov, A. R.; Hu, Q.; Sun, L.; Wei, X.; Shur, V. Ya

    2017-10-01

    The evolution of the domain structure during in-field cooling was in situ studied in [001]-cut single crystals of relaxor ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) with x = 0.33 with maximum of dielectric permittivity at 150°C. The main stages of domain evolution have been separated. The visualization of the static as-grown and polarized domain structures with high spatial resolution by piezoresponse force microscopy and scanning electron microscopy allowed measuring the characteristic features of maze and needle-like domain structures.

  17. PMN-PT–PZT composite films for high frequency ultrasonic transducer applications

    PubMed Central

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    We have successfully fabricated x(0.65PMN-0.35PT)–(1 − x)PZT (xPMN-PT–(1 − x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol–gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT–(1 − x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT–0.1PZT thick film transducer is built. It has 200 MHz center frequency with a −6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB. PMID:23750072

  18. Dynamics of the stress-mediated magnetoelectric memory cell N×(TbCo2/FeCo)/PMN-PT

    NASA Astrophysics Data System (ADS)

    Preobrazhensky, Vladimir; Klimov, Alexey; Tiercelin, Nicolas; Dusch, Yannick; Giordano, Stefano; Churbanov, Anton; Mathurin, Theo; Pernod, Philippe; Sigov, Alexander

    2018-08-01

    Stress-mediated magnetoelectric heterostructures represent a very promising approach for the realization of ultra-low energy Random Access Memories. The magnetoelectric writing of information has been extensively studied in the past, but it was demonstrated only recently that the magnetoelectric effect can also provide means for reading the stored information. We hereby theoretically study the dynamic behaviour of a magnetoelectric random access memory cell (MELRAM) typically composed of a magnetostrictive multilayer N × (TbCo2 / FeCo) that is elastically coupled with a 〈0 1 1〉 PMN-PT ferroelectric crystal and placed in a Wheatstone bridge-like configuration. The numerical resolution of the LLG and electrodynamics equation system demonstrates high speed write and read operations with an associated extra-low energy consumption. In this model, the reading energy for a 50 nm cell size is estimated to be less than 5 aJ/bit.

  19. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.

    PubMed

    Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa

    2017-01-01

    In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d 33 >1000pC/N) and electromechanical coupling (k 33 >0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Reversible tuning of magnetocaloric Ni-Mn-Ga-Co films on ferroelectric PMN-PT substrates.

    PubMed

    Schleicher, Benjamin; Niemann, Robert; Schwabe, Stefan; Hühne, Ruben; Schultz, Ludwig; Nielsch, Kornelius; Fähler, Sebastian

    2017-10-31

    Tuning functional properties of thin caloric films by mechanical stress is currently of high interest. In particular, a controllable magnetisation or transition temperature is desired for improved usability in magnetocaloric devices. Here, we present results of epitaxial magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg 1/3 Nb 2/3 ) 0.72 Ti 0.28 O 3 (PMN-PT) substrates. Utilizing X-ray diffraction measurements, we demonstrate that the strain induced in the substrate by application of an electric field can be transferred to the thin film, resulting in a change of the lattice parameters. We examined the consequences of this strain on the magnetic properties of the thin film by temperature- and electric field-dependent measurements. We did not observe a change of martensitic transformation temperature but a reversible change of magnetisation within the austenitic state, which we attribute to the intrinsic magnetic instability of this metamagnetic Heusler alloy. We demonstrate an electric field-controlled entropy change of about 31 % of the magnetocaloric effect - without any hysteresis.

  1. Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2004-01-01

    The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  2. Electromechanical properties of a textured ceramic material in the (1 - x)PMN- xPT system: Simulation based on the effective-medium method

    NASA Astrophysics Data System (ADS)

    Aleshin, V. I.; Raevskiĭ, I. P.; Sitalo, E. I.

    2008-11-01

    A complete set of dielectric, piezoelectric, and elastic parameters for the textured ceramic material 0.67PMN-0.33PT is calculated by the self-consistency method with due regard for the anisotropy and piezoelectric activity of the medium. It is shown that the best piezoelectric properties corresponding to those of a single crystal are observed for the ceramic material with a texture in which all crystallites are oriented parallel to the [001] direction of the parent perovskite cubic cell. The simplest models of the polarization of an untextured ceramic material with a random initial orientation of crystallites are considered. The results obtained are compared with experimental data.

  3. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (< 2mm), have smooth surfaces and excellent optical shape. The mirrors are not astigmatic and do not develop surface irregularities when cooled. The actuators are small footprint multilayer PMN-PT ceramic devices with large stroke (2- 20 microns), high linearity, low hysteresis, low power, and flat frequency response to >2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  4. Giant Electric Field Control of Magnetism and Narrow Ferromagnetic Resonance Linewidth in FeCoSiB/Si/SiO2/PMN PT Multiferroic Heterostructures (Open Access Author’s Manuscript)

    DTIC Science & Technology

    2016-06-06

    the widely used lead zirconate titanate ceramics which have a typical piezoelectric coefficient d31 of ~- 200pC/N, PMN-PT single crystals used in...substrate clamping effect, therefore, a relatively giant tunability can be obtained. However, the normally large roughness of piezoelectric layer...is the saturation magnetostriction constant, Y the Young’s modulus of the magnetic film, deff the effective piezoelectric coefficient, E

  5. Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2006-01-01

    The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  6. Modulated spin orbit torque in a Pt/Co/Pt/YIG multilayer by nonequilibrium proximity effect

    NASA Astrophysics Data System (ADS)

    Liu, Q. B.; Meng, K. K.; Cai, Y. Z.; Qian, X. H.; Wu, Y. C.; Zheng, S. Q.; Jiang, Y.

    2018-01-01

    We have compared the spin orbit torque (SOT) induced magnetization switching in Pt/Co/Pt/Y3Fe5O12 (YIG) and Pt/Co/Pt/SiO2 multilayers. The critical switching current in Pt/Co/Pt/YIG is almost half of that in Pt/Co/Pt/SiO2. Through harmonic measurements, we demonstrated the enhancement of the effective spin Hall angle in Pt/Co/Pt/YIG. The increased efficiency of SOT is ascribed to the nonequilibrium proximity effect at the Pt/YIG interface, which suppresses the spin current reflection and enhances the effective spin accumulation at the Co/Pt interface. Our method can effectively reduce the switching current density and provide another way to modulate SOT.

  7. Electric field controlled strain induced reversible switching of magnetization in Galfenol nanomagnets delineated on PMN-PT substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    We report a non-volatile converse magneto-electric effect in elliptical Galfenol (FeGa) nanomagnets of ~300 nm lateral dimensions and ~10nm thickness delineated on a PMN-PT substrate. This effect can be harnessed for energy-efficient non-volatile memory. The nanomagnets are fabricated with e-beam lithography and sputtering. Their major axes are aligned parallel to the direction in which the substrate is poled and they are magnetized in this direction with a magnetic field. An electric field in the opposite direction generates compressive strain in the piezoelectric substrate which is partially transferred to the nanomagnets and rotates their magnetization away from the major axes to metastable orientations. There they remain after the field is removed, resulting in non-volatility. Reversing the electric field generates tensile strain which returns the magnetization to the original state. The two states can encode two binary bits which can be written using the correct voltage polarity, resulting in non-toggle behavior. Scaled memory fashioned on this effect can exhibit write energy dissipation of only ~2 aJ. Work is supported by NSF under ECCS-1124714 and CCF-1216614. Sputtering was carried out at NIST Gaithersburg.

  8. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  9. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  10. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu

    2017-01-01

    Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  11. Global e-VLBI observations of the gamma-ray narrow line Seyfert 1 PMN J0948+0022

    NASA Astrophysics Data System (ADS)

    Giroletti, M.; Paragi, Z.; Bignall, H.; Doi, A.; Foschini, L.; Gabányi, K. É.; Reynolds, C.; Blanchard, J.; Campbell, R. M.; Colomer, F.; Hong, X.; Kadler, M.; Kino, M.; van Langevelde, H. J.; Nagai, H.; Phillips, C.; Sekido, M.; Szomoru, A.; Tzioumis, A. K.

    2011-04-01

    Context. There is growing evidence of relativistic jets in radio-loud narrow-line Seyfert 1 (RL-NLS1) galaxies. Aims: We constrain the observational properties of the radio emission in the first RL-NLS1 galaxy ever detected in gamma-rays, PMN J0948+0022, i.e., its flux density and structure in both total intensity and polarization, its compactness, and variability. Methods: We performed three real-time e-VLBI observations of PMN J0948+0022 at 22 GHz, using a global array including telescopes in Europe, East Asia, and Australia. These are the first e-VLBI science observations ever carried out with a global array, reaching a maximum baseline length of 12 458 km. The observations were part of a large multiwavelength campaign in 2009. Results: The source is detected at all three epochs. The structure is dominated by a bright component, more compact than 55 μas, with a fainter component at a position angle θ ~ 35°. Relativistic beaming is required by the observed brightness temperature of 3.4 × 1011 K. Polarization is detected at a level of about 1%. Conclusions: The parameters derived by the VLBI observations, in addition to the broad-band properties, confirm that PMN J0948+0022 is similar to flat spectrum radio quasars. Global e-VLBI is a reliable and promising technique for future studies.

  12. Electric field control of magnetic states in isolated and dipole-coupled FeGa nanomagnets delineated on a PMN-PT substrate.

    PubMed

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-10-09

    We report observation of a 'non-volatile' converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in 'non-volatility'. In isolated nanomagnets, the magnetization rotates by <90° upon application of the electric field, but in a dipole-coupled pair consisting of one 'hard' and one 'soft' nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet's magnetization rotates by [Formula: see text] upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate.

  13. Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity.

    PubMed

    Ma, Teng; Fu, Qiang; Su, Hai-Yan; Liu, Hong-Yang; Cui, Yi; Wang, Zhen; Mu, Ren-Tao; Li, Wei-Xue; Bao, Xin-He

    2009-05-11

    Tunable surface: The surface structure of the Fe-Pt bimetallic catalyst can be reversibly modulated between the iron-oxide-rich Pt surface and the Pt-skin structure with subsurface Fe via alternating reduction and oxidation treatments (see figure). The regenerated active Pt-skin structure is active in reactions involving CO and/or O.

  14. On-line upgrade of program modules using AdaPT

    NASA Technical Reports Server (NTRS)

    Waldrop, Raymond S.; Volz, Richard A.; Smith, Gary W.; Goldsack, Stephen J.; Holzbach-Valero, A. A.

    1993-01-01

    One purpose of our research is the investigation of the effectiveness and expressiveness of AdaPT, a set of language extensions to Ada 83, for distributed systems. As a part of that effort, we are now investigating the subject of replacing, e.g. upgrading, software modules while the software system remains in operation. The AdaPT language extensions provide a good basis for this investigation for several reasons: they include the concept of specific, self-contained program modules which can be manipulated; support for program configuration is included in the language; and although the discussion will be in terms of the AdaPT language, the AdaPT to Ada 83 conversion methodology being developed as another part of this project will provide a basis for the application of our findings to Ada 83 and Ada 9X systems. The purpose of this investigation is to explore the basic mechanisms of the replacement process. With this purpose in mind, we will avoid including issues whose presence would obscure these basic mechanisms by introducing additional, unrelated concerns. Thus, while replacement in the presence of real-time deadlines, heterogeneous systems, and unreliable networks is certainly a topic of interest, we will first gain an understanding of the basic processes in the absence of such concerns. The extension of the replacement process to more complex situations can be made later. A previous report established an overview of the module replacement problem, a taxonomy of the various aspects of the replacement process, and a solution to one case in the replacement taxonomy. This report provides solutions to additional cases in the replacement process taxonomy: replacement of partitions with state and replacement of nodes. The solutions presented here establish the basic principles for module replacement. Extension of these solutions to other more complicated cases in the replacement taxonomy is direct, though requiring substantial work beyond the available funding.

  15. Er{sub 1.33}Pt{sub 3}Ga{sub 8}: A modulated variant of the Er{sub 4}Pt{sub 9}Al{sub 24}-structure type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oswald, Iain W.H.; Gourdon, Olivier; Bekins, Amy

    Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were synthesized in a molten Ga flux. Er{sub 1.33}Pt{sub 3}Ga{sub 8} can be considered to be a modulated variant of the Er{sub 4}Pt{sub 9}Al{sub 24}-structure type, where the partial occupancies are ordered. Indeed, the presence of weak satellite reflections indicates a complex organization and distribution of the Er and Ga atoms within the [ErGa] slabs. The structure has been solved based on single crystal X-ray diffraction data in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*. Precession images also indicate diffusion in the perpendicular direction indicating a partial disorder ofmore » this arrangement from layer to layer. In addition, Er{sub 1.33}Pt{sub 3}Ga{sub 8} shows antiferromagnetic ordering at T{sub N}~5 K. - Graphical abstract: A precession image of the hk0 zone showing weak, periodic, unindexed reflections indicating modulation and representation of the commensurate [ErGa] layer showing the waving modulated occupation. - Highlights: • Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were grown from gallium flux. • The structure of Er{sub 1.33}Pt{sub 3}Ga{sub 8} is compared to Er{sub 4}Pt{sub 9}Al{sub 24}. • Structure has been solved in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*.« less

  16. Sol-gel preparation of lead magnesium niobate (PMN) powders and thin films

    DOEpatents

    Boyle, T.J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films. 3 figs.

  17. Sol-Gel Preparation Of Lead Magnesium Ni Obate (Pmn) Powdersand Thin Films

    DOEpatents

    Boyle, Timothy J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg.sub.1/3 Nb.sub.2/3)O.sub.3, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films.

  18. Modulation of ferroelectricity and resistance switching in SrTiO3 films

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Wang, Weihua; Guo, Jiandong

    SrTiO3 has remarkable dielectric property; it also exhibits ferroelectricity in thin films with strain or defects. It is expected that modulation of its ferroelectricity and electricity is potential in oxide electronics. The nonstoichiometry SrTiO3 thin films with different cation concentrations were prepared on Si (001) substrates. Piezoresponse force microscopy measurements show that those films with Sr deficiency display obvious ferroelectricity. The scanning transmission electron microscopy results show that there are interstitial Ti atoms in the unit cells. Polar defect pairs can be formed by the interstitial Ti atoms and Sr vacancies along [100] or [110] direction. Such antisitelike defects observed in SrTiO3 films are considered as the origin of the ferroelectricity. In this way, the SrTiO3 ferroelectricity can be modulated by control the concentration of the antisitelike defects via changing the cation concentration. Further, [(SrTiO3)3 /(LaTiO3)2 ]3 superlattices have been prepared on 0.67[Pb(Mg1/3Nb2/3) O3]-0.33[PbTiO3] (PMN-PT) substrate. The superlattices show resistance switching under the ferroelectric polarization of the PMN-PT substrate. The on/off ratio of the interfacial resistance is about 20% 25%. This can be applied in oxide electronics in potential. This work is supported by Chinese MOST (Grant No. 2014CB921001), Chinese NSFC (Grant No. 11404381 & Grant No. 11225422) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030100).

  19. Compact multiwavelength transmitter module for multimode fiber optic ribbon cable

    DOEpatents

    Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.

    2002-01-01

    A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.

  20. Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia

    PubMed Central

    Hieke, Cathleen; Kriebel, Katja; Engelmann, Robby; Müller-Hilke, Brigitte; Lang, Hermann; Kreikemeyer, Bernd

    2016-01-01

    Periodontitis is characterized by inflammation associated with the colonization of different oral pathogens. We here aimed to investigate how bacteria and host cells shape their environment in order to limit inflammation and tissue damage in the presence of the pathogen. Human dental follicle stem cells (hDFSCs) were co-cultured with gram-negative P. intermedia and T. forsythia and were quantified for adherence and internalization as well as migration and interleukin secretion. To delineate hDFSC-specific effects, gingival epithelial cells (Ca9-22) were used as controls. Direct effects of hDFSCs on neutrophils (PMN) after interaction with bacteria were analyzed via chemotactic attraction, phagocytic activity and NET formation. We show that P. intermedia and T. forsythia adhere to and internalize into hDFSCs. This infection decreased the migratory capacity of the hDFSCs by 50%, did not disturb hDFSC differentiation potential and provoked an increase in IL-6 and IL-8 secretion while leaving IL-10 levels unaltered. These environmental modulations correlated with reduced PMN chemotaxis, phagocytic activity and NET formation. Our results suggest that P. intermedia and T. forsythia infected hDFSCs maintain their stem cell functionality, reduce PMN-induced tissue and bone degradation via suppression of PMN-activity, and at the same time allow for the survival of the oral pathogens. PMID:27974831

  1. Compact 2100 nm laser diode module for next-generation DIRCM

    NASA Astrophysics Data System (ADS)

    Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas

    2017-10-01

    Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.

  2. Modular compact solid-state modulators for particle accelerators

    NASA Astrophysics Data System (ADS)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  3. Investigating source confusion in PMN J1603-4904

    NASA Astrophysics Data System (ADS)

    Krauß, F.; Kreter, M.; Müller, C.; Markowitz, A.; Böck, M.; Burnett, T.; Dauser, T.; Kadler, M.; Kreikenbohm, A.; Ojha, R.; Wilms, J.

    2018-02-01

    PMN J1603-4904 is a likely member of the rare class of γ-ray emitting young radio galaxies. Only one other source, PKS 1718-649, has been confirmed so far. These objects, which may transition into larger radio galaxies, are a stepping stone to understanding AGN evolution. It is not completely clear how these young galaxies, seen edge-on, can produce high-energy γ rays. PMN J1603-4904 has been detected by TANAMI Very Long Baseline Interferometry (VLBI) observations and has been followed-up with multiwavelength observations. A Fermi Gamma-ray Space Telescope Large Area Telescope (Fermi-LAT) γ-ray source has been associated with this young galaxy in the LAT catalogs. We have obtained Chandra observations of the source to consider the possibility of source confusion due to the relatively large positional uncertainty of Fermi-LAT. The goal was to investigate the possibility of other X-ray bright sources in the vicinity of PMN J1603-4904 that could be counterparts to the γ-ray emission. With Chandra/ACIS, we find no other sources in the uncertainty ellipse of Fermi-LAT data, which includes an improved localization analysis of eight years of data. We further study the X-ray fluxes and spectra. We conclude that PMN J1603-4904 is indeed the second confirmed γ-ray bright young radio galaxy.

  4. Frequency locking of compact laser-diode modules at 633 nm

    NASA Astrophysics Data System (ADS)

    Nölleke, Christian; Leisching, Patrick; Blume, Gunnar; Jedrzejczyk, Daniel; Pohl, Johannes; Feise, David; Sahm, Alexander; Paschke, Katrin

    2018-02-01

    This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10-8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.

  5. Mechanical compaction directly modulates the dynamics of bile canaliculi formation.

    PubMed

    Wang, Yan; Toh, Yi-Chin; Li, Qiushi; Nugraha, Bramasta; Zheng, Baixue; Lu, Thong Beng; Gao, Yi; Ng, Mary Mah Lee; Yu, Hanry

    2013-02-01

    Homeostatic pressure-driven compaction is a ubiquitous mechanical force in multicellular organisms and is proposed to be important in the maintenance of multicellular tissue integrity and function. Previous cell-free biochemical models have demonstrated that there are cross-talks between compaction forces and tissue structural functions, such as cell-cell adhesion. However, its involvement in physiological tissue function has yet to be directly demonstrated. Here, we use the bile canaliculus (BC) as a physiological example of a multicellular functional structure in the liver, and employ a novel 3D microfluidic hepatocyte culture system to provide an unprecedented opportunity to experimentally modulate the compaction states of primary hepatocyte aggregates in a 3D physiological-mimicking environment. Mechanical compaction alters the physical attributes of the hepatocyte aggregates, including cell shape, cell packing density and cell-cell contact area, but does not impair the hepatocytes' remodeling and functional capabilities. Characterization of structural and functional polarity shows that BC formation in compact hepatocyte aggregates is accelerated to as early as 12 hours post-seeding; whereas non-compact control requires 48 hours for functional BC formation. Further dynamic immunofluorescence imaging and gene expression profiling reveal that compaction accelerated BC formation is accompanied by changes in actin cytoskeleton remodeling dynamics and transcriptional levels of hepatic nuclear factor 4α and Annexin A2. Our report not only provides a novel strategy of modeling BC formation for in vitro hepatology research, but also shows a first instance that homeostatic pressure-driven compaction force is directly coupled to the higher-order multicellular functions.

  6. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton

    PubMed Central

    Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu

    2018-01-01

    To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human–robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human–robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility. PMID:29562684

  7. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton.

    PubMed

    Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu

    2018-03-19

    To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human-robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human-robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility.

  8. Role of crystal orientation on electrical tuning of dynamic permeability in strain-mediated multiferroic structures

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Ong, C. K.

    2017-06-01

    Multiferroic structures of FeCo/NiFe/[Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (PMN-PT) with three different crystal orientations of PMN-PT(0 1 1), PMN-PT(0 0 1) and PMN-PT(1 1 1) were fabricated by a sputtering deposition system. Their dynamic magnetic properties were characterized under various applied electrical fields. The sample with PMN-PT(0 1 1) orientation shows a large tuning of the permeability spectra while the ones with PMN-PT(0 0 1) and PMN-PT(1 1 1) orientations exhibit a moderate and little change in the permeability spectra, respectively. The result can be explained via the magnetoelectric effect by considering the role of the piezoelectric coefficients being highly dependent on the crystal orientation along which the PMN-PT is poled. This explanation is consistent with the static magnetic characteristics of the samples before and after poling.

  9. Spectroscopic and phosphorescent modulation in triphosphine-supported PtAg2 heterotrinuclear alkynyl complexes.

    PubMed

    Zhang, Li-Yi; Xu, Liang-Jin; Zhang, Xu; Wang, Jin-Yun; Li, Jia; Chen, Zhong-Ning

    2013-05-06

    A series of highly phosphorescent PtAg2 heterotrinuclear alkynyl complexes with bis(diphenylphosphinomethyl)phenylphosphine (dpmp) were prepared and characterized structurally. The solution phosphorescence with various emitting colors is systematically modulated by modifying substituents as well as π-conjugated systems in aromatic acetylides. The crystals, powders, or films exhibit reversible stimuli-responsive phosphorescence changes upon exposure to vapor of MeCN, pyridine, DMF, etc., resulting from perturbation of d(8)-d(10) metallophilic interaction in the excited states as a consequence of the formation/disruption of Ag-solvent bonds. Both experimental and time-dependent density functional theory (TD-DFT) studies demonstrate that d(8)-d(10) metallophilic interaction exerts a crucial role on phosphorescent characteristics due to the PtAg2 cluster-based (3)[d → p] state. This study affords a paradigm for phosphorescence modulation in d(8)-d(10) heteronuclear complexes.

  10. Performance of compact fast pyrolysis reactor with Auger-type modules for the continuous liquid biofuel production

    NASA Astrophysics Data System (ADS)

    Nishimura, Shun; Ebitani, Kohki

    2018-01-01

    Development of a compact fast pyrolysis reactor constructed using Auger-type technology to afford liquid biofuel with high yield has been an interesting concept in support of local production for local consumption. To establish a widely useable module package, details of the performance of the developing compact module reactor were investigated. This study surveyed the properties of as-produced pyrolysis oil as a function of operation time, and clarified the recent performance of the developing compact fast pyrolysis reactor. Results show that after condensation in the scrubber collector, e.g. approx. 10 h for a 25 kg/h feedstock rate, static performance of pyrolysis oil with approximately 20 MJ/kg (4.8 kcal/g) calorific values were constantly obtained after an additional 14 h. The feeding speed of cedar chips strongly influenced the time for oil condensation process: i.e. 1.6 times higher feeding speed decreased the condensation period by half (approx. 5 h in the case of 40 kg/h). Increasing the reactor throughput capacity is an important goal for the next stage in the development of a compact fast pyrolysis reactor with Auger-type modules.

  11. EPA + DHA supplementation reduces PMN activation in microenvironment of chronic venous leg ulcers: A randomized, double-blind, controlled study.

    PubMed

    McDaniel, Jodi C; Szalacha, Laura; Sales, Michelle; Roy, Sashwati; Chafee, Scott; Parinandi, Narasimham

    2017-08-01

    Sustained high levels of activated polymorphonuclear leukocytes (PMNs) and PMN-derived proteases in the microenvironment of chronic venous leg ulcers (CVLUs) are linked to chronic inflammation and delayed healing. Uncontrolled PMN activity eventually destroys newly developed tissue and degrades critical growth factors. The bioactive components of fish oil (n-3 eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) have strong inflammation-resolving actions and have been shown to assuage PMN activity, but have not been tested in CVLU patients. This randomized controlled study compared the effectiveness of oral EPA + DHA therapy to a placebo for reducing PMN activation in CVLU microenvironments. At Days 0, 28, and 56, markers of PMNs (CD15) and activated PMNs (CD66b), and levels of PMN-derived proteases human neutrophil elastase and matrix metalloproteinase-8 were measured in CVLU fluid from patients receiving standard compression therapy and (1) EPA + DHA therapy (n = 16) or (2) placebo (n = 19). By Day 56, the EPA + DHA Group had a significantly lower percentage of CD66b+ cells in CVLU fluid compared to Day 0 (p = 0.02) and to Day 28 (p = 0.05). Importantly, there were downward trends in levels of both matrix metalloproteinase-8 and human neutrophil elastase over time in the EPA + DHA Group, which also demonstrated greater reductions in wound area by Day 28 (57% reduction) and Day 56 (76% reduction) than the Control Group (35% and 59%, respectively). Moreover, reductions in wound area had significant negative relationships with CD15+ cells in wound fluid at Days 28 (p = 0.008) and 56 (p < 0.001), and CD66b+ cells at Days 28 (p = 0.04) and 56 (p = 0.009). The collective findings provide supplemental evidence that high levels of activated PMNs in CVLU microenvironments inhibit healing, and suggest that EPA + DHA oral therapy may modulate PMN activity and facilitate healing of CVLUs when added to standard care

  12. Qualitative and quantitative analysis of PMN/T-cell interactions by InFlow and super-resolution microscopy.

    PubMed

    Balta, Emre; Stopp, Julian; Castelletti, Laura; Kirchgessner, Henning; Samstag, Yvonne; Wabnitz, Guido H

    2017-01-01

    Neutrophils or polymorphonuclear cells (PMN) eliminate bacteria via phagocytosis and/or NETosis. Apart from these conventional roles, PMN also have immune-regulatory functions. They can transdifferentiate and upregulate MHCII as well as ligands for costimulatory receptors which enables them to behave as antigen presenting cells (APC). The initial step for activating T-cells is the formation of an immune synapse between T-cells and antigen-presenting cells. However, the immune synapse that develops at the PMN/T-cell contact zone is as yet hardly investigated due to the non-availability of methods for analysis of large number of PMN interactions. In order to overcome these obstacles, we introduce here a workflow to analyse the immune synapse of primary human PMN and T-cells using multispectral imaging flow cytometry (InFlow microscopy) and super-resolution microscopy. For that purpose, we used CD3 and CD66b as the lineage markers for T-cells and PMN, respectively. Thereafter, we applied and critically discussed various "masks" for identification of T-cell PMN interactions. Using this approach, we found that a small fraction of transdifferentiated PMN (CD66b + CD86 high ) formed stable PMN/T-cell conjugates. Interestingly, while both CD3 and CD66b accumulation in the immune synapse was dependent on the maturation state of the PMN, only CD3 accumulation was greatly enhanced by the presence of superantigen. The actin cytoskeleton was weakly rearranged at the PMN side on the immune synapse upon contact with a T-cell in the presence of superantigen. A more detailed analysis using super-resolution microscopy (structured-illumination microscopy, SIM) confirmed this finding. Together, we present an InFlow microscopy based approach for the large scale analysis of PMN/T-cell interactions and - combined with SIM - a possibility for an in-depth analysis of protein translocation at the site of interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Electrical-pulse-induced resistivity modulation in Pt/TiO2-δ/Pt multilayer device related to nanoionics-based neuromorphic function

    NASA Astrophysics Data System (ADS)

    Kawamura, Kinya; Tsuchiya, Takashi; Takayanagi, Makoto; Terabe, Kazuya; Higuchi, Tohru

    2017-06-01

    Resistivity modulation behavior in Pt/TiO2-δ/Pt multilayer devices was investigated in terms of nanoionics-based neuromorphic function. The current relaxation behavior, which corresponds to short-term and long-term memorization in neuromorphic function, was analyzed using electrical pulses. In contrast to the huge difference in ionic conductivity for bulk crystal materials of TiO2-δ and WO3, the difference in the relaxation behavior was small. Rutherford backscattering spectrometry and hydrogen forward scattering spectrometry revealed that the TiO2-δ thin film contained 5.6 at. % of protons. This indicates that the neuromorphic function in TiO2-δ-based devices is caused by extrinsic proton transport, presumably through the grain boundary.

  14. Custom chipset and compact module design for a 75-110 GHz laboratory signal source

    NASA Astrophysics Data System (ADS)

    Morgan, Matthew A.; Boyd, Tod A.; Castro, Jason J.

    2016-12-01

    We report on the development and characterization of a compact, full-waveguide bandwidth (WR-10) signal source for general-purpose testing of mm-wave components. The monolithic microwave integrated circuit (MMIC) based multichip module is designed for compactness and ease-of-use, especially in size-constrained test sets such as a wafer probe station. It takes as input a cm-wave continuous-wave (CW) reference and provides a factor of three frequency multiplication as well as amplification, output power adjustment, and in situ output power monitoring. It utilizes a number of custom MMIC chips such as a Schottky-diode limiter and a broadband mm-wave detector, both designed explicitly for this module, as well as custom millimeter-wave multipliers and amplifiers reported in previous papers.

  15. Processing, properties, and application of textured 0.72lead(magnesium niobate)-0.28lead titanate ceramics

    NASA Astrophysics Data System (ADS)

    Brosnan, Kristen H.

    In this study, XRD and electron backscatter diffraction (EBSD) techniques were used to characterize the fiber texture in oriented PMN-28PT and the intensity data were fit with a texture model (the March-Dollase equation) that describes the texture in terms of texture fraction (f), and the width of the orientation distribution (r). EBSD analysis confirmed the <001> orientation of the microstructure, with no distinguishable randomly oriented, fine grain matrix. Although XRD rocking curve and EBSD data analysis gave similar f and r values, XRD rocking curve analysis was the most efficient and gave a complete description of texture fraction and texture orientation (f = 0.81 and r = 0.21, respectively). XRD rocking curve analysis was the preferred approach for characterization of the texture volume and the orientation distribution of texture in fiber-oriented PMN-PT. The dielectric, piezoelectric and electromechanical properties for random ceramic, 69 vol% textured, 81 vol% textured, and single crystal PMN-28PT were fully characterized and compared. The room temperature dielectric constant at 1 kHz for highly textured PMN-28PT was epsilonr ≥ 3600 with low dielectric loss (tan delta = 0.004). The temperature dependence of the dielectric constant for 81 vol% textured ceramic followed a similar trend as the single crystal PMN-28PT up to the rhombohedral to tetragonal transition temperature (TRT) at 104°C. 81 vol% textured PMN-28PT consistently displayed 60 to 65% of the single crystal PMN-28PT piezoelectric coefficient (d33) and 1.5 to 3.0 times greater than the random ceramic d33 (measured by Berlincourt meter, unipolar strain-field curves, IEEE standard resonance method, and laser vibrometry). The 81 vol% textured PMN-28PT displayed similarly low piezoelectric hysteresis as single crystal PMN-28PT measured by strain-field curves at 5 kV/cm. 81 vol% textured PMN-28PT and single crystal PMN-28PT displayed similar mechanical quality factors of QM = 74 and 76

  16. Strong Nonvolatile Magnon-Driven Magnetoelectric Coupling in Single-Crystal Co /[PbMg1/3Nb2/3O3] 0.71[PbTiO3]0.29 Heterostructures

    NASA Astrophysics Data System (ADS)

    Zhou, Cai; Shen, Lvkang; Liu, Ming; Gao, Cunxu; Jia, Chenglong; Jiang, Changjun

    2018-01-01

    The ability to manipulate the magnetism on interfacing ferromagnetic and ferroelectric materials via electric fields to achieve an emergent multiferroic response has enormous potential for nanoscale devices with novel functionalities. Herein, a strong electric-field control of the magnetism modulation is reported for a single-crystal Co (14 nm )/(001 )Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (PMN-PT) heterostructure by fabricating an epitaxial Co layer on a PMN-PT substrate. Electric-field-tuned ferromagnetic resonance exhibits a large resonance field shift, with a 120-Oe difference between that under positive and negative remanent polarizations, which demonstrates nonvolatile electric-field control of the magnetism. Further, considering the complexity of the twofold symmetry magnetic anisotropy, the linear change of the fourfold symmetry magnetic anisotropy, relating to the single-crystal cubic magnetocrystal anisotropy of the Co thin film, is resolved and quantified to exert a magnon-driven, strong direct magnetoelectric effect on the Co /PMN -PT interface. These results are promising for future multiferroic devices.

  17. Apparatus for the compact cooling of modules

    DOEpatents

    Iyengar, Madhusudan K.; Parida, Pritish R.

    2015-07-07

    An apparatus for the compact cooling of modules. The apparatus includes a clip, a first cover plate coupled to a first side of the clip, a second cover plate coupled to a second side of the clip opposite to the first side of the clip, a first frame thermally coupled to the first cover plate, and a second frame thermally coupled to the second cover plate. Each of the first frame and the second frame may include a plurality of channels for passing coolant through the first frame and the second frame, respectively. Additionally, the apparatus may further include a filler for directing coolant through the plurality of channels, and for blocking coolant from flowing along the first side of the clip and the second side of the clip.

  18. Influence of the dynamic lattice strain on the transport behavior of oxide heterojunctions

    NASA Astrophysics Data System (ADS)

    Wang, J.; Hu, F. X.; Chen, L.; Zhao, Y. Y.; Lu, H. X.; Sun, J. R.; Shen, B. G.

    2013-01-01

    All-perovskite oxide heterojunctions composed of electron-doped titanate LaxSr1 - xTiO3 (x = 0.1, 0.15) and hole-doped manganite La0.67Ca0.33MnO3 films were fabricated on piezoelectric substrate of (001)-0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT). Taking advantage of the excellent converse piezoelectric effect of PMN-PT, we investigated the influence of the dynamic lattice strain on transport properties of the heterojunctions by applying external bias electric fields on the PMN-PT substrate. Photovoltaic experiments were carried out to characterize the interfacial barrier of the heterojunction. A linear reduction in the barrier height was observed with the increase of the bias field applied on PMN-PT. The value of the barrier height reduces from ˜1.55 (˜1.30) to 1.02 (1.08) eV as the bias field increases from 0 to 12 kV/cm for the junction of La0.10Sr0.9TiO3/La0.67Ca0.33MnO3 (La0.15Sr0.85TiO3/La0.67Ca0.33MnO3). The observed dependency of barrier height on external field can be ascribed to the increasing release of trapped carriers by strain modulation, which results in a suppression of the depletion layer and increases the opportunity for electron tunneling across the depletion area.

  19. One- and two-dimensional gap solitons and dynamics in the PT-symmetric lattice potential and spatially-periodic momentum modulation

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Yan, Zhenya; Li, Xin

    2018-02-01

    The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.

  20. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    PubMed Central

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222

  1. Controlling the anomalous Hall effect by electric-field-induced piezo-strain in Fe40Pt60/(001)-Pb(Mg1/3Nb2/3)0.67Ti0.33O3 multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Yuanjun; Yao, Yingxue; Chen, Lei; Huang, Haoliang; Zhang, Benjian; Lin, Hui; Luo, Zhenlin; Gao, Chen; Lu, Y. L.; Li, Xiaoguang; Xiao, Gang; Feng, Ce; Zhao, Y. G.

    2018-01-01

    Electric-field control of the anomalous Hall effect (AHE) was investigated in Fe40Pt60/(001)-Pb(Mg1/3Nb2/3)0.67Ti0.33O3 (FePt/PMN-PT) multiferroic heterostructures at room temperature. It was observed that a very large Hall resistivity change of up to 23.9% was produced using electric fields under a magnetic field bias of 100 Oe. A pulsed electric field sequence was used to generate nonvolatile strain to manipulate the Hall resistivity. Two corresponding nonvolatile states with distinct Hall resistivities were achieved after the electric fields were removed, thus enabling the encoding of binary information for memory applications. These results demonstrate that the Hall resistivity can be reversibly switched in a nonvolatile manner using programmable electric fields. Two remanent magnetic states that were created by electric-field-induced piezo-strain from the PMN-PT were attributed to the nonvolatile and reversible properties of the AHE. This work suggests that a low-energy-consumption-based approach can be used to create nonvolatile resistance states for spintronic devices based on electric-field control of the AHE.

  2. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    PubMed

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-03-15

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  3. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    PubMed Central

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-01-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199

  4. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  5. Regulation of Endothelial Cell Inflammation and Lung PMN Infiltration by Transglutaminase 2

    PubMed Central

    Bijli, Kaiser M.; Kanter, Bryce G.; Minhajuddin, Mohammad; Leonard, Antony; Xu, Lei; Fazal, Fabeha; Rahman, Arshad

    2014-01-01

    We addressed the role of transglutaminase2 (TG2), a calcium-dependent enzyme that catalyzes crosslinking of proteins, in the mechanism of endothelial cell (EC) inflammation and lung PMN infiltration. Exposure of EC to thrombin, a procoagulant and proinflammatory mediator, resulted in activation of the transcription factor NF-κB and its target genes, VCAM-1, MCP-1, and IL-6. RNAi knockdown of TG2 inhibited these responses. Analysis of NF-κB activation pathway showed that TG2 knockdown was associated with inhibition of thrombin-induced DNA binding as well as serine phosphorylation of RelA/p65, a crucial event that controls transcriptional capacity of the DNA-bound RelA/p65. These results implicate an important role for TG2 in mediating EC inflammation by promoting DNA binding and transcriptional activity of RelA/p65. Because thrombin is released in high amounts during sepsis and its concentration is elevated in plasma and lavage fluids of patients with Acute Respiratory Distress Syndrome (ARDS), we determined the in vivo relevance of TG2 in a mouse model of sepsis-induced lung PMN recruitment. A marked reduction in NF-κB activation, adhesion molecule expression, and lung PMN sequestration was observed in TG2 knockout mice compared to wild type mice exposed to endotoxemia. Together, these results identify TG2 as an important mediator of EC inflammation and lung PMN sequestration associated with intravascular coagulation and sepsis. PMID:25057925

  6. Role of random electric fields in relaxors

    PubMed Central

    Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang; Ganesh, Panchapakesan; Gehring, Peter M.

    2014-01-01

    PbZr1–xTixO3 (PZT) and Pb(Mg1/3Nb2/3)1–xTixO3 (PMN-xPT) are complex lead-oxide perovskites that display exceptional piezoelectric properties for pseudorhombohedral compositions near a tetragonal phase boundary. In PZT these compositions are ferroelectrics, but in PMN-xPT they are relaxors because the dielectric permittivity is frequency dependent and exhibits non-Arrhenius behavior. We show that the nanoscale structure unique to PMN-xPT and other lead-oxide perovskite relaxors is absent in PZT and correlates with a greater than 100% enhancement of the longitudinal piezoelectric coefficient in PMN-xPT relative to that in PZT. By comparing dielectric, structural, lattice dynamical, and piezoelectric measurements on PZT and PMN-xPT, two nearly identical compounds that represent weak and strong random electric field limits, we show that quenched (static) random fields establish the relaxor phase and identify the order parameter. PMID:24449912

  7. Compact Modules for Wireless Communication Systems in the E-Band (71-76 GHz)

    NASA Astrophysics Data System (ADS)

    Montero-de-Paz, Javier; Oprea, Ion; Rymanov, Vitaly; Babiel, Sebastian; García-Muñoz, Luis Enrique; Lisauskas, Alvydas; Hoefle, Matthias; Jimenez, Álvaro; Cojocari, Oleg; Segovia-Vargas, Daniel; Palandöken, Merih; Tekin, Tolga; Stöhr, Andreas; Carpintero, Guillermo

    2013-04-01

    The millimeter-wave spectrum above 70 GHz provides a cost-effective solution to increase the wireless communications data rates by increasing the carrier wave frequencies. We report on the development of two key components of a wireless transmission system, a high-speed photodiode (HS-PD) and a Schottky Barrier Diode (SBD). Both components operate uncooled, a key issue in the development of compact modules. On the transmitter side, an improved design of the HS-PD allows it to deliver an output RF power exceeding 0 dBm (1 mW). On the receiver side, we present the design process and achieved results on the development of a compact direct envelope detection receiver based on a quasi-optical SDB module. Different resonant (meander dipole) and broadband (Log-Spiral and Log-Periodic) planar antenna solutions are designed, matching the antenna and Schottky diode impedances at high frequency. Impedance matching at baseband is also provided by means of an impedance transition to a 50 Ohm output. From this comparison, we demonstrate the excellent performance of the broadband antennas over the entire E-band by setting up a short-range wireless link transmitting a 1 Gbps data signal.

  8. Effect of additional elements on compositional modulated atomic layered structure of hexagonal Co{sub 80}Pt{sub 20} alloy films with superlattice diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinata, Shintaro; Research Fellowship Division Japan Society for the Promotion of Science; Yamane, Akira

    2016-05-15

    The effect of additional element on compositionally modulated atomic layered structure of hexagonal Co{sub 80}Pt{sub 20} alloy films with superlattice diffraction was investigated. In this study it is found that the addition of Cr or W element to Co{sub 80}Pt{sub 20} alloy film shows less deterioration of hcp stacking structure and compositionally modulated atomic layer stacking structure as compared to Si or Zr or Ti with K{sub u} of around 1.4 or 1.0 × 10{sup 7} erg/cm{sup 3} at 5 at.% addition. Furthermore, for O{sub 2} addition of O{sub 2} ≥ 5.0 × 10{sup −3} Pa to CoPt alloy, compositionallymore » modulated atomic layer stacking structure will be deteriorated with enhancement of formation of hcp stacking structure which leads higher K{sub u} of 1.0 × 10{sup 7} erg/cm{sup 3}.« less

  9. PT-symmetric mode-locking.

    PubMed

    Longhi, S

    2016-10-01

    Parity-time (PT) symmetry is one of the most important accomplishments in optics over the past decade. Here the concept of PT mode-locking (ML) of a laser is introduced, in which active phase-locking of cavity axial modes is realized by asymmetric mode coupling in a complex time crystal. PT ML shows a transition from single- to double-pulse emission as the PT symmetry breaking point is crossed. The transition can show a turbulent behavior, depending on a dimensionless modulation parameter that plays the same role as the Reynolds number in hydrodynamic flows.

  10. Numerical and experimental simulation of linear shear piezoelectric phased arrays for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Zhang, Hui; Lynch, Jerome P.; Cesnik, Carlos E. S.; Li, Hui

    2017-04-01

    A novel d36-type piezoelectric wafer fabricated from lead magnesium niobate-lead titanate (PMN-PT) is explored for the generation of in-plane horizontal shear waves in plate structures. The study focuses on the development of a linear phased array (PA) of PMN-PT wafers to improve the damage detection capabilities of a structural health monitoring (SHM) system. An attractive property of in-plane horizontal shear waves is that they are nondispersive yet sensitive to damage. This study characterizes the directionality of body waves (Lamb and horizontal shear) created by a single PMN-PT wafer bonded to the surface of a metallic plate structure. Second, a linear PA is designed from PMN-PT wafers to steer and focus Lamb and horizontal shear waves in a plate structure. Numerical studies are conducted to explore the capabilities of a PMN-PT-based PA to detect damage in aluminum plates. Numerical simulations are conducted using the Local Interaction Simulation Approach (LISA) implemented on a parallelized graphical processing unit (GPU) for high-speed execution. Numerical studies are further validated using experimental tests conducted with a linear PA. The study confirms the ability of an PMN-PT phased array to accurately detect and localize damage in aluminum plates.

  11. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as wellmore » as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for

  12. Propriétés électrostrictives de céramiques massives du type PbMg{1/3}Nb{2/3}O3 (PMN)

    NASA Astrophysics Data System (ADS)

    Lattard, E.; Lejeune, M.; Abelard, P.

    1994-07-01

    Loop hysteresis, dielectric and electrostrictive properties of bulk ceramics (1 - x) PbMg{1/3}Nb{2/3}O3 - xPbTiO3 - yMgO for x = 0, 5, 10 % and y = 0, 6, 12 % have been investigated. An initial lead oxide magnesium excess stabilises the perovskite structure during its formation and leads to an improvement of the electrical properties. These materials are relaxor type ferroelectrics with high permittivities in a large space of temperature around - 12 ^circC for x = 0 % to + 45 ^circC for x = 10 %. They exhibit, at 25 ^circC, large electrostrictive longitudinal (x_3 = Δ e/e) and transversal (x_1 = Δ d/d) strains without hysteresis, under an electric field of ± 2 kV/mm and at low frequency (F = 20 mHz) : x_3 = 3.5 × 10^{-4} and x_1 =10^{-4} for PMN 0.12-MgO and x_3 = 10^{-3} and x_1 = 2 × 10^{-4} for 0.9 PMN-0.1 PT-0.12 MgO. Additions of titanium improve the polarization of material which largely contribute to large strains whereas electrostrictive coefficients Q_{ij} (x_i = Q_{ij} \\cdot P_j^2), determined at 25 ^circC, slightly increase with PbTiO3 percent (for a constant magnesium excess). Les propriétés diélectriques, d'hystérésis de polarisation et électrostrictives (déformation sous champ électrique) ont été étudiées sur des composés massifs du type (1 - x) PbMg{1/3}Nb{2/3}O3 - xPbTiO3 - y Mgo pour x = 0, 5, 10 % et y = 0, 6, 12 %. L'excès initial d'oxyde de magnésium stabilise la phase pérovskite lors de sa formation et permet d'éviter la dégradation des propriétés électriques observée sur un composé de type PMN stœchiométrique. Ces matériaux sont des relaxeurs ferroélectriques caractérisés par une transition ferroélectrique diffuse. Les permittivités sont élevées dans un domaine de température centré autour de - 12 ^circC pour x = 0 % à + 45 ^circC pour x = 10 %. Ils présentent, à 25 ^circC, des déformations notables en mode longitudinal (x_3 = Δ e/e) et transversal (x_1 = Δ d/d), dépourvues d'hystérèse, d

  13. Fermi/Large Area Telescope Discovery of Gamma-Ray Emission from a Relativistic Jet in the Narrow-Line Quasar PMN J0948+0022

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-06-17

    In this paper, we report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy γ-ray emission from the peculiar quasar PMN J0948+0022 (z = 0.5846). The optical spectrum of this object exhibits rather narrow Hβ (FWHM(Hβ) ~1500 km s –1), weak forbidden lines, and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at a high Eddington ratio. The radio loudness and variability of the compact radio core indicate the presence of a relativistic jet. Quasi-simultaneous radio/optical/X-raymore » and γ-ray observations are presented. Both radio and γ-ray emissions (observed over five months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broadband spectral energy distribution (SED) and, in particular, the γ-ray spectrum measured by Fermi are similar to those of more powerful Flat-Spectrum Radio Quasars (FSRQs). A comparison of the radio and γ-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and γ-ray power with respect to other FSRQs. The physical parameters obtained from modeling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini. Finally, we suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.« less

  14. The July 2010 Outburst of the NLS1 PMN J0948+0022

    NASA Technical Reports Server (NTRS)

    Foschini, L.; Ghisellini, G.; Marashi, L.; Tagliaferri, G.; Tavecchio, F.; Kovalev, Y. Y.; Kovalev, Yu. A.; Lister, M. L.; Richards, J. L.; D'Ammando, F.; hide

    2011-01-01

    We report about the multiwavelength campaign on the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948+0022 (z = 0.5846) performed in 2010 July-September and triggered by high activity as measured by Fermi/LAT. The peak luminosity in the 0.1 - 100 GeV energy band exceeded, for the first time in this type of source, the value of 1048 erg/s, a level comparable to the most powerful blazars. The comparison of the spectral energy distribution of the NLS1 PMN J0948+0022 with that of a typical blazar like 3C 273 shows that the power emitted at gamma rays is extreme.

  15. A compact, all-optical, THz wave generator based on self-modulation in a slab photonic crystal waveguide with a single sub-nanometer graphene layer.

    PubMed

    Asadi, R; Ouyang, Z; Mohammd, M M

    2015-07-14

    We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.

  16. l-Arginine modulates neonatal lymphocyte proliferation through an interleukin-2 independent pathway

    PubMed Central

    Yu, Hong-Ren; Kuo, Ho-Chang; Huang, Li-Tung; Chen, Chih-Cheng; Tain, You-Lin; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Huang, Hsin-Chun; Yang, Kuender D; Ou, Chia-Yo; Hsu, Te-Yao

    2014-01-01

    In cases of arginine depletion, lymphocyte proliferation, cytokine production and CD3ζ chain expression are all diminished. In addition to myeloid suppressor cells, polymorphonuclear cells (PMN) also exert T-cell immune suppressive effects through arginase-induced l-arginine depletion, especially during pregnancy. In this study, we investigated how arginase/l-arginine modulates neonatal lymphocyte proliferation. Results showed that the neonatal plasma l-arginine level was lower than in adults (48·1 ± 11·3 versus 86·5 ± 14·6 μm; P = 0·003). Neonatal PMN had a greater abundance of arginase I protein than adult PMN. Both transcriptional regulation and post-transcriptional regulation were responsible for the higher arginase I expression of neonatal PMN. Exogenous l-arginine enhanced neonate lymphocyte proliferation but not that of adult cells. The RNA-binding protein HuR was important but was not the only modulation factor in l-arginine-regulated neonatal T-cell proliferation. l-Arginine-mediated neonatal lymphocyte proliferation could not be blocked by interleukin-2 receptor blocking antibodies. These results suggest that the altered arginase/l-arginine cascade may be one of the mechanisms that contribute to altered neonatal immune responses. Exogenous l-arginine could enhance neonate lymphocyte proliferation through an interleukin-2-independent pathway. PMID:24697328

  17. Female-specific down-regulation of tissue-PMN drives impaired Treg and amplified effector T cell responses in autoimmune dry eye disease1

    PubMed Central

    Gao, Yuan; Min, Kyungji; Zhang, Yibing; Su, John; Greenwood, Matthew; Gronert, Karsten

    2015-01-01

    Immune-driven dry eye disease primarily affects women; the cause for this sex-specific prevalence is unknown. PMN have distinct phenotypes that drive inflammation but also regulate lymphocytes and are the rate-limiting cell for generating anti-inflammatory lipoxin A4 (LXA4). Estrogen regulates the LXA4 circuit to induce delayed female-specific wound healing in the cornea. However, the role of PMN in dry eye disease remains unexplored. We discovered a LXA4-producing tissue-PMN population in the corneal limbus, lacrimal glands and cervical lymph nodes of healthy male and female mice. These tissue-PMN, unlike inflammatory-PMN, expressed a highly amplified LXA4 circuit and were sex-specifically regulated during immune-driven dry eye disease. Desiccating stress in females, unlike in males, triggered a remarkable decrease in lymph node PMN and LXA4 formation that remained depressed during dry eye disease. Depressed lymph node PMN and LXA4 in females correlated with an increase in T effector cells (TH1 and TH17), a decrease in regulatory T cells (Treg) and increased dry eye pathogenesis. Antibody depletion of tissue-PMN abrogated LXA4 formation in lymph nodes, caused a marked increase in TH1 and TH17 and decrease in Treg cells. To establish an immune regulatory role for PMN-derived LXA4 in dry eye females were treated with LXA4. LXA4 treatment markedly inhibited TH1 and TH17 and amplified Treg cells in draining lymph nodes, while reducing dry eye pathogenesis. These results identify female-specific regulation of LXA4-producing tissue-PMN as a potential key factor in aberrant T effector cell activation and initiation of immune-driven dry eye disease. PMID:26324767

  18. GanedenBC30 cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro.

    PubMed

    Jensen, Gitte S; Benson, Kathleen F; Carter, Steve G; Endres, John R

    2010-03-24

    This study was performed to evaluate anti-inflammatory and immune modulating properties of the probiotic, spore-forming bacterial strain: Bacillus coagulans: GBI-30, (PTA-6086, GanedenBC30TM). In addition, cell wall and metabolite fractions were assayed separately to address whether biological effects were due to cell wall components only, or whether secreted compounds from live bacteria had additional biological properties. The spores were heat-activated, and bacterial cultures were grown. The culture supernatant was harvested as a source of metabolites (MTB), and the bacteria were used to isolate cell wall fragments (CW). Both of these fractions were compared in a series of in vitro assays. Both MTB and CW inhibited spontaneous and oxidative stress-induced ROS formation in human PMN cells and increased the phagocytic activity of PMN cells in response to bacteria-like carboxylated fluorospheres. Both fractions supported random PMN and f-MLP-directed PMN cell migration, indicating a support of immune surveillance and antibacterial defense mechanisms. In contrast, low doses of both fractions inhibited PMN cell migration towards the inflammatory mediators IL-8 and LTB4. The anti-inflammatory activity was strongest for CW, where the PMN migration towards IL-8 was inhibited down to dilutions of 1010.Both MTB and CW induced the expression of the CD69 activation marker on human CD3- CD56+ NK cells, and enhanced the expression of CD107a when exposed to K562 tumor cells in vitro.The fractions directly modulated cytokine production, inducing production of the Th2 cytokines IL-4, IL-6, and IL-10, and inhibiting production of IL-2.Both fractions further modulated mitogen-induced cytokine production in the following manner: Both fractions enhanced the PHA-induced production of IL-6 and reduced the PHA-induced production of TNF-alpha. Both fractions enhanced the PWM-induced production of TNF-alpha and IFN-gamma. In addition, MTB also enhanced both the PHA- and the PWM

  19. Direct observation of binding stress-induced crystalline orientation change in piezoelectric plate sensors

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Shih, Wei-Heng; Shih, Wan Y.

    2016-03-01

    We have examined the mechanism of the detection resonance frequency shift, Δf/f, of a 1370 μm long and 537 μm wide [Pb(Mg1/3Nb2/3)O3]0.65[PbTiO3]0.35 (PMN-PT) piezoelectric plate sensor (PEPS) made of a 8-μm thick PMN-PT freestanding film. The Δf/f of the PEPS was monitored in a three-step binding model detections of (1) binding of maleimide-activated biotin to the sulfhydryl on the PEPS surface followed by (2) binding of streptavidin to the bound biotin and (3) subsequent binding of biotinylated probe deoxyribonucleic acid to the bound streptavidin. We used a PMN-PT surrogate made of the same 8-μm thick PMN-PT freestanding film that the PEPS was made of but was about 1 cm in length and width to carry out crystalline orientation study using X-ray diffraction (XRD) scan around the (002)/(200) peaks after each of the binding steps. The result of the XRD studies indicated that each binding step caused the crystalline orientation of the PMN-PT thin layer to switch from the vertical (002) orientation to the horizontal (200) orientation, and most of the PEPS detection Δf/f was due to the change in the lateral Young's modulus of the PMN-PT thin layer as a result of the crystalline orientation change.

  20. Local strain heterogeneity and elastic relaxation dynamics associated with relaxor behavior in the single-crystal perovskite Pb (I n1 /2N b1 /2 ) O3-PbZr O3-Pb (M g1 /3N b2 /3 ) O3-PbTi O3

    NASA Astrophysics Data System (ADS)

    He, Wenhui; Carpenter, Michael A.; Lampronti, Giulio I.; Li, Qiang; Yan, Qingfeng

    2017-10-01

    Recently, Pb (In1/2Nb1/2 ) O3-PbZr O3-Pb (Mg1/3Nb2/3 ) O3-PbTiO3 (PIN-PZ-PMN-PT) relaxor single crystals were demonstrated to possess improved temperature-insensitive properties, which would be desirable for high-power device applications. The relaxor character associated with the development of local random fields (RFs) and a high rhombohedral-tetragonal (R-T) ferroelectric transition temperature (TR-T>120°C) would be critical for the excellent properties. A significant effect of the chemical substitution of In3+ and Zr4+ in PMN-PT to give PIN-PZ-PMN-PT is the development of local strain heterogeneity, which acts to suppress the development of macroscopic shear strains without suppressing the development of local ferroelectric moments and contribute substantially to the RFs in PIN-PZ-PMN-PT. Measurements of elastic and anelastic properties by resonant ultrasound spectroscopy show that PIN-PZ-PMN-PT crystal has a quite different form of elastic anomaly due to Vogel-Fulcher freezing, rather than the a discrete cubic-T transition seen in a single crystal of PMN-28PT. It also has high acoustic loss of the relaxor phase down to TR-T. Analysis of piezoresponse force microscopy phase images at different temperatures provides a quantitative insight into the extent to which the RFs influence the microdomain structure and the short-range order correlation length 〈ξ 〉 .

  1. Comparison of the properties of tonpilz transducers fabricated with 001 fiber-textured lead magnesium niobate-lead titanate ceramic and single crystals.

    PubMed

    Brosnan, Kristen H; Messing, Gary L; Markley, Douglas C; Meyer, Richard J

    2009-11-01

    Tonpilz transducers are fabricated from 001 fiber-textured 0.72Pb(Mg(1/3)Nb(2/3))O(3)-0.28PbTiO(3) (PMN-28PT) ceramics, obtained by the templated grain growth process, and PMN-28PT ceramic and Bridgman grown single crystals of the same composition. In-water characterization of single element transducers shows higher source levels, higher in-water coupling, and more usable bandwidth for the 81 vol % textured PMN-28PT device than for the ceramic PMN-28PT element. The 81 vol % textured PMN-28PT tonpilz element measured under large signals shows linearity in sound pressure levels up to 0.23 MV/m drive field but undergoes a phase transition due to a lowered transition temperature from the SrTiO(3) template particles. Although the textured ceramic performs well in this application, it could be further improved with compositional tailoring to raise the transition temperature and better processing to improve the texture quality. With these improvements textured piezoelectric ceramics will be viable options for medical ultrasound, actuators, and sonar applications because of their ease of processing, compositional homogeneity, and potentially lower cost than single crystal.

  2. Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Javid, Mohammad Reza; Miri, Mehdi; Zarifkar, Abbas

    2018-03-01

    A hybrid plasmonic electro-optic modulator based on a polymer-filled one dimensional photonic crystal nanobeam (1D PhCNB) cavity is proposed here. In the proposed structure the optical intensity modulation is realized by shifting the resonant wavelength of the cavity through electrically tuning the refractive index of the electro-optic polymer in the hybrid plasmonic waveguide. As a result of the subwavelength light confinement in the hybrid plasmonic waveguide and the compact footprint of the 1D PhCNB cavity, the designed modulator has the small overall footprint of 3 . 6 μm2 and the required wavelength shift can be achieved by applying very small actuating power. Three dimensional finite-difference time-domain (3D-FDTD) simulations show that the modulation depth of 10.9 dB, and insertion loss of 1.14 dB, along with very high modulation speed of 224 GHz can be achieved in the proposed modulator with very low modulation energy of 0.75 fJ/bit. A comparison between the performance parameters of the proposed modulator and those of previously reported PhCNB based modulators reveals the superior performance of the proposed structure in terms of modulation speed, energy consumption and overall footprint.

  3. GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro

    PubMed Central

    2010-01-01

    Background This study was performed to evaluate anti-inflammatory and immune modulating properties of the probiotic, spore-forming bacterial strain: Bacillus coagulans: GBI-30, (PTA-6086, GanedenBC30TM). In addition, cell wall and metabolite fractions were assayed separately to address whether biological effects were due to cell wall components only, or whether secreted compounds from live bacteria had additional biological properties. The spores were heat-activated, and bacterial cultures were grown. The culture supernatant was harvested as a source of metabolites (MTB), and the bacteria were used to isolate cell wall fragments (CW). Both of these fractions were compared in a series of in vitro assays. Results Both MTB and CW inhibited spontaneous and oxidative stress-induced ROS formation in human PMN cells and increased the phagocytic activity of PMN cells in response to bacteria-like carboxylated fluorospheres. Both fractions supported random PMN and f-MLP-directed PMN cell migration, indicating a support of immune surveillance and antibacterial defense mechanisms. In contrast, low doses of both fractions inhibited PMN cell migration towards the inflammatory mediators IL-8 and LTB4. The anti-inflammatory activity was strongest for CW, where the PMN migration towards IL-8 was inhibited down to dilutions of 1010. Both MTB and CW induced the expression of the CD69 activation marker on human CD3- CD56+ NK cells, and enhanced the expression of CD107a when exposed to K562 tumor cells in vitro. The fractions directly modulated cytokine production, inducing production of the Th2 cytokines IL-4, IL-6, and IL-10, and inhibiting production of IL-2. Both fractions further modulated mitogen-induced cytokine production in the following manner: Both fractions enhanced the PHA-induced production of IL-6 and reduced the PHA-induced production of TNF-alpha. Both fractions enhanced the PWM-induced production of TNF-alpha and IFN-gamma. In addition, MTB also enhanced both the PHA

  4. Critical role of non-muscle myosin light chain kinase in thrombin-induced endothelial cell inflammation and lung PMN infiltration.

    PubMed

    Fazal, Fabeha; Bijli, Kaiser M; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N; Finkelstein, Jacob N; Watterson, D Martin; Rahman, Arshad

    2013-01-01

    The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation.

  5. Critical Role of Non-Muscle Myosin Light Chain Kinase in Thrombin-Induced Endothelial Cell Inflammation and Lung PMN Infiltration

    PubMed Central

    Fazal, Fabeha; Bijli, Kaiser M.; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N.; Finkelstein, Jacob N.; Watterson, D. Martin; Rahman, Arshad

    2013-01-01

    The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation. PMID:23555849

  6. Nonlinear dielectric properties and tunability of 0.9Pb(Mg1/3,Nb2/3)O3-0.1 PbTiO3 and Ba(Ti0.85,Sn0.15)O3 paraelectrics

    NASA Astrophysics Data System (ADS)

    Akdogan, E. K.; Hall, A.; Simon, W. K.; Safari, A.

    2007-01-01

    We investigate the nonlinear dielectric properties of 0.9Pb(Mg1/3,Nb2/3)O3•0.1PbTiO3 (PMN-PT) and Ba[Ti0.85,Sn0.15]O3 (BTS) paraelectrics experimentally and theoretically. We measure the nonlinear dielectric response in the parallel plate capacitor configuration, whereby we obtain the low frequency linear permittivity (ε33), and the higher order permittivities (ε3333,ε333333) at 298K as ε33PMN-PT=2.1×10-7 and ε33BTS=4.1×10-8F /m, ε3333PMN-PT=-4.9×10-20 and ε3333BTS=-7.3×10-21F3m /C2, and ε333333PMN-PT=7.6×10-33 and ε333333BTS=9.85×10-34F5m3/C4. By using a self-consistent thermodynamic theory in conjunction with the experimental data, we compute the E3 dependence of electrostatic free energy ΔG, the field-induced polarization P3, and the thermodynamic tunability ∂2P3/∂E32, and prove that electrostatic free energy has to be expanded at least up to the sixth order in the electric field to define the critical field ∣E3*∣ at which maximum tunability is attained. We also show that ∣E3*∣ is a function on ∣ε3333∣/ε333333 only. Consequently, we find ∣E3*∣PMN-PT=8.0×105V /m and ∣E3*∣BTS=8.6×105V/m. We compute the engineering tunabilities as ΓPMN-PT=65% and ΓBTS=55%, and then define a normalized tunability ξ to take into account the ∣E3*∣ parameter. Thereof, we determine ∣ξ ∣PMT-PT=8.1×10-5%/Vm-1 and ∣ξ∣BTS=6.4×10-5%/Vm-1. Our results reveal that ∣E3*∣BTS>∣E3*∣PMN-PT although ΓBTS<ΓPMN-PT, unequivocally showing the need for defining a critical field parameter in evaluating the nonlinear dielectric response and tunability, in particular, and in nonlinear dielectrics in general. The results also indicate that the nonlinear dielectric properties of PMN-PT are an order of magnitude higher than that of BTS, which we discuss in the context of structure-property relations of relaxors.

  7. A compact 16-module camera using 64-pixel CsI(Tl)/Si p-i-n photodiode imaging modules

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Gruber, G. J.; Moses, W. W.; Derenzo, S. E.; Holland, S. E.; Pedrali-Noy, M.; Krieger, B.; Mandelli, E.; Meddeler, G.; Wang, N. W.; Witt, E. K.

    2002-10-01

    We present a compact, configurable scintillation camera employing a maximum of 16 individual 64-pixel imaging modules resulting in a 1024-pixel camera covering an area of 9.6 cm/spl times/9.6 cm. The 64-pixel imaging module consists of optically isolated 3 mm/spl times/3 mm/spl times/5 mm CsI(Tl) crystals coupled to a custom array of Si p-i-n photodiodes read out by a custom integrated circuit (IC). Each imaging module plugs into a readout motherboard that controls the modules and interfaces with a data acquisition card inside a computer. For a given event, the motherboard employs a custom winner-take-all IC to identify the module with the largest analog output and to enable the output address bits of the corresponding module's readout IC. These address bits identify the "winner" pixel within the "winner" module. The peak of the largest analog signal is found and held using a peak detect circuit, after which it is acquired by an analog-to-digital converter on the data acquisition card. The camera is currently operated with four imaging modules in order to characterize its performance. At room temperature, the camera demonstrates an average energy resolution of 13.4% full-width at half-maximum (FWHM) for the 140-keV emissions of /sup 99m/Tc. The system spatial resolution is measured using a capillary tube with an inner diameter of 0.7 mm and located 10 cm from the face of the collimator. Images of the line source in air exhibit average system spatial resolutions of 8.7- and 11.2-mm FWHM when using an all-purpose and high-sensitivity parallel hexagonal holes collimator, respectively. These values do not change significantly when an acrylic scattering block is placed between the line source and the camera.

  8. Synaptic transistor with a reversible and analog conductance modulation using a Pt/HfOx/n-IGZO memcapacitor

    NASA Astrophysics Data System (ADS)

    Yang, Paul; Kim, Hyung Jun; Zheng, Hong; Beom, Geon Won; Park, Jong-Sung; Kang, Chi Jung; Yoon, Tae-Sik

    2017-06-01

    A synaptic transistor emulating the biological synaptic motion is demonstrated using the memcapacitance characteristics in a Pt/HfOx/n-indium-gallium-zinc-oxide (IGZO) memcapacitor. First, the metal-oxide-semiconductor (MOS) capacitor with Pt/HfOx/n-IGZO structure exhibits analog, polarity-dependent, and reversible memcapacitance in capacitance-voltage (C-V), capacitance-time (C-t), and voltage-pulse measurements. When a positive voltage is applied repeatedly to the Pt electrode, the accumulation capacitance increases gradually and sequentially. The depletion capacitance also increases consequently. The capacitances are restored by repeatedly applying a negative voltage, confirming the reversible memcapacitance. The analog and reversible memcapacitance emulates the potentiation and depression synaptic motions. The synaptic thin-film transistor (TFT) with this memcapacitor also shows the synaptic motion with gradually increasing drain current by repeatedly applying the positive gate and drain voltages and reversibly decreasing one by applying the negative voltages, representing synaptic weight modulation. The reversible and analog conductance change in the transistor at both the voltage sweep and pulse operations is obtained through the memcapacitance and threshold voltage shift at the same time. These results demonstrate the synaptic transistor operations with a MOS memcapacitor gate stack consisting of Pt/HfOx/n-IGZO.

  9. Synaptic transistor with a reversible and analog conductance modulation using a Pt/HfOx/n-IGZO memcapacitor.

    PubMed

    Yang, Paul; Jun Kim, Hyung; Zheng, Hong; Won Beom, Geon; Park, Jong-Sung; Jung Kang, Chi; Yoon, Tae-Sik

    2017-06-02

    A synaptic transistor emulating the biological synaptic motion is demonstrated using the memcapacitance characteristics in a Pt/HfOx/n-indium-gallium-zinc-oxide (IGZO) memcapacitor. First, the metal-oxide-semiconductor (MOS) capacitor with Pt/HfOx/n-IGZO structure exhibits analog, polarity-dependent, and reversible memcapacitance in capacitance-voltage (C-V), capacitance-time (C-t), and voltage-pulse measurements. When a positive voltage is applied repeatedly to the Pt electrode, the accumulation capacitance increases gradually and sequentially. The depletion capacitance also increases consequently. The capacitances are restored by repeatedly applying a negative voltage, confirming the reversible memcapacitance. The analog and reversible memcapacitance emulates the potentiation and depression synaptic motions. The synaptic thin-film transistor (TFT) with this memcapacitor also shows the synaptic motion with gradually increasing drain current by repeatedly applying the positive gate and drain voltages and reversibly decreasing one by applying the negative voltages, representing synaptic weight modulation. The reversible and analog conductance change in the transistor at both the voltage sweep and pulse operations is obtained through the memcapacitance and threshold voltage shift at the same time. These results demonstrate the synaptic transistor operations with a MOS memcapacitor gate stack consisting of Pt/HfOx/n-IGZO.

  10. High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture

    PubMed Central

    Zhou, Wenbin; Fan, Qingxia; Zhang, Qiang; Cai, Le; Li, Kewei; Gu, Xiaogang; Yang, Feng; Zhang, Nan; Wang, Yanchun; Liu, Huaping; Zhou, Weiya; Xie, Sishen

    2017-01-01

    It is a great challenge to substantially improve the practical performance of flexible thermoelectric modules due to the absence of air-stable n-type thermoelectric materials with high-power factor. Here an excellent flexible n-type thermoelectric film is developed, which can be conveniently and rapidly prepared based on the as-grown carbon nanotube continuous networks with high conductivity. The optimum n-type film exhibits ultrahigh power factor of ∼1,500 μW m−1 K−2 and outstanding stability in air without encapsulation. Inspired by the findings, we design and successfully fabricate the compact-configuration flexible TE modules, which own great advantages compared with the conventional π-type configuration modules and well integrate the superior thermoelectric properties of p-type and n-type carbon nanotube films resulting in a markedly high performance. Moreover, the research results are highly scalable and also open opportunities for the large-scale production of flexible thermoelectric modules. PMID:28337987

  11. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Brendan T.; Oleksak, Richard P.; Thevuthasan, Suntharampillai

    A method to modulate the Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. The interfacial chemistries that modulate barrier heights for the Pt/a-IGZO system were investigated using in-situ X-ray photoelectron spectroscopy. A significant reduction of indium, from In3+ to In0, occurs during deposition of Pt on to the a-IGZO surface in ultra-high vacuum. Post-annealing and controlling the background ambient O2 pressure allows tuning the degree of indium reduction and the corresponding Schottky barrier height between 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries atmore » Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metalsemiconductor field-effect transistors.« less

  12. Phase coexistence and domain configuration in Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.34PbTiO{sub 3} single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Yang, Bin, E-mail: binyang@hit.edu.cn; Sun, Enwei

    The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.34PbTiO{sub 3} (PMN-0.34PT) single crystal have been investigated by synchrotron-based X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic M{sub C} phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, themore » lattice parameters of T and M{sub C} phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less

  13. Phase coexistence and domain configuration in Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Xu, Han; Yang, Bin

    The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PMN-0.34PT) single crystal have been investigated by synchrotronbased X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic MC phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, the lattice parameters of T andmore » MC phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less

  14. A compact roller-gear pitch-yaw joint module: Design and control issues

    NASA Technical Reports Server (NTRS)

    Dohring, Mark E.; Anderson, William J.; Newman, Wyatt S.; Rohn, Douglas A.

    1993-01-01

    Robotic systems have been proposed as a means of accomplishing assembly and maintenance tasks in space. The desirable characteristics of these systems include compact size, low mass, high load capacity, and programmable compliance to improve assembly performance. In addition, the mechanical system must transmit power in such a way as to allow high performance control of the system. Efficiency, linearity, low backlash, low torque ripple, and low friction are all desirable characteristics. This work presents a pitch-yaw joint module designed and built to address these issues. Its effectiveness as a two degree-of-freedom manipulator using natural admittance control, a method of force control, is demonstrated.

  15. Voltage Control of Two-Magnon Scattering and Induced Anomalous Magnetoelectric Coupling in Ni–Zn Ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Xu; Dong, Guohua; Zhou, Ziyao

    2017-12-01

    Controlling spin dynamics through modulation of spin interactions in a fast, compact, and energy-efficient way is compelling for its abundant physical phenomena and great application potential in next-generation voltage controllable spintronic devices. In this work, we report electric field manipulation of spin dynamics-the two-magnon scattering (TMS) effect in Ni0.5Zn0.5Fe2O4 (NZFO)/Pb(Mg2/3Nb1/3)-PbTiO3 (PMN-PT) multiferroic heterostructures, which breaks the bottleneck of magnetostatic interaction-based magnetoelectric (ME) coupling in multiferroics. An alternative approach allowing spin-wave damping to be controlled by external electric field accompanied by a significant enhancement of the ME effect has been demonstrated. A two-way modulation of the TMS effect with a largemore » magnetic anisotropy change up to 688 Oe has been obtained, referring to a 24 times ME effect enhancement at the TMS critical angle at room temperature. Furthermore, the anisotropic spin-freezing behaviors of NZFO were first determined via identifying the spatial magnetic anisotropy fluctuations. A large spin-freezing temperature change of 160 K induced by the external electric field was precisely determined by electron spin resonance.« less

  16. Voltage Control of Two-Magnon Scattering and Induced Anomalous Magnetoelectric Coupling in Ni-Zn Ferrite.

    PubMed

    Xue, Xu; Dong, Guohua; Zhou, Ziyao; Xian, Dan; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Chen, Wei; Jiang, Zhuang-De; Liu, Ming

    2017-12-13

    Controlling spin dynamics through modulation of spin interactions in a fast, compact, and energy-efficient way is compelling for its abundant physical phenomena and great application potential in next-generation voltage controllable spintronic devices. In this work, we report electric field manipulation of spin dynamics-the two-magnon scattering (TMS) effect in Ni 0.5 Zn 0.5 Fe 2 O 4 (NZFO)/Pb(Mg 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) multiferroic heterostructures, which breaks the bottleneck of magnetostatic interaction-based magnetoelectric (ME) coupling in multiferroics. An alternative approach allowing spin-wave damping to be controlled by external electric field accompanied by a significant enhancement of the ME effect has been demonstrated. A two-way modulation of the TMS effect with a large magnetic anisotropy change up to 688 Oe has been obtained, referring to a 24 times ME effect enhancement at the TMS critical angle at room temperature. Furthermore, the anisotropic spin-freezing behaviors of NZFO were first determined via identifying the spatial magnetic anisotropy fluctuations. A large spin-freezing temperature change of 160 K induced by the external electric field was precisely determined by electron spin resonance.

  17. Compact silicon photonics-based multi laser module for sensing

    NASA Astrophysics Data System (ADS)

    Ayotte, S.; Costin, F.; Babin, A.; Paré-Olivier, G.; Morin, M.; Filion, B.; Bédard, K.; Chrétien, P.; Bilodeau, G.; Girard-Deschênes, E.; Perron, L.-P.; Davidson, C.-A.; D'Amato, D.; Laplante, M.; Blanchet-Létourneau, J.

    2018-02-01

    A compact three-laser source for optical sensing is presented. It is based on a low-noise implementation of the Pound Drever-Hall method and comprises high-bandwidth optical phase-locked loops. The outputs from three semiconductor distributed feedback lasers, mounted on thermo-electric coolers (TEC), are coupled with micro-lenses into a silicon photonics (SiP) chip that performs beat note detection and several other functions. The chip comprises phase modulators, variable optical attenuators, multi-mode-interference couplers, variable ratio tap couplers, integrated photodiodes and optical fiber butt-couplers. Electrical connections between a metallized ceramic and the TECs, lasers and SiP chip are achieved by wirebonds. All these components stand within a 35 mm by 35 mm package which is interfaced with 90 electrical pins and two fiber pigtails. One pigtail carries the signals from a master and slave lasers, while another carries that from a second slave laser. The pins are soldered to a printed circuit board featuring a micro-processor that controls and monitors the system to ensure stable operation over fluctuating environmental conditions. This highly adaptable multi-laser source can address various sensing applications requiring the tracking of up to three narrow spectral features with a high bandwidth. It is used to sense a fiber-based ring resonator emulating a resonant fiber optics gyroscope. The master laser is locked to the resonator with a loop bandwidth greater than 1 MHz. The slave lasers are offset frequency locked to the master laser with loop bandwidths greater than 100 MHz. This high performance source is compact, automated, robust, and remains locked for days.

  18. Determination of the apparent transfer coefficient for CO oxidation on Pt(poly), Pt(111), Pt(665) and Pt(332) using a potential modulation technique.

    PubMed

    Wang, Han-Chun; Ernst, Siegfried; Baltruschat, Helmut

    2010-03-07

    The apparent transfer coefficient, which gives the magnitude of the potential dependence of the electrochemical reaction rates, is the key quantity for the elucidation of electrochemical reaction mechanisms. We introduce the application of an ac method to determine the apparent transfer coefficient alpha' for the oxidation of pre-adsorbed CO at polycrystalline and single-crystalline Pt electrodes in sulfuric acid. The method allows to record alpha' quasi continuously as a function of potential (and time) in cyclic voltammetry or at a fixed potential, with the reaction rate varying with time. At all surfaces (Pt(poly), Pt(111), Pt(665), and Pt(332)) we clearly observed a transition of the apparent transfer coefficient from values around 1.5 at low potentials to values around 0.5 at higher potentials. Changes of the apparent transfer coefficients for the CO oxidation with potential were observed previously, but only from around 0.7 to values as low as 0.2. In contrast, our experimental findings completely agree with the simulation by Koper et al., J. Chem. Phys., 1998, 109, 6051-6062. They can be understood in the framework of a Langmuir-Hinshelwood mechanism. The transition occurs when the sum of the rate constants for the forward reaction (first step: potential dependent OH adsorption, second step: potential dependent oxidation of CO(ad) with OH(ad)) exceeds the rate constant for the back-reaction of the first step. We expect that the ac method for the determination of the apparent transfer coefficient, which we used here, will be of great help also in many other cases, especially under steady conditions, where the major limitations of the method are avoided.

  19. Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation.

    PubMed

    Xu, P; Zhao, L N; Lv, X J; Lu, J; Yuan, Y; Zhao, G; Zhu, S N

    2009-06-08

    1W quasi-white-light source has been generated from a single lithium tantalate with cascaded domain modulation. The quasi-white-light is combined by proper proportion of the red, green and blue laser light. The red and the blue result from a compact self-sum frequency optical parametric oscillation when pumped by a single green laser. The efficiency of quasi-white-light from the green pump reaches 27%. This compact design can be employed not only as a stable and powerful RGB light source but also an effective blue laser generator.

  20. 16 CFR Appendix F2 to Part 305 - Compact Clothes Washers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Compact Clothes Washers F2 Appendix F2 to... LABELING RULEâ) Pt. 305, App. F2 Appendix F2 to Part 305—Compact Clothes Washers Range Information “Compact” includes all household clothes washers with a tub capacity of less than 1.6 cu. ft. Capacity Range of...

  1. A compact 7-cell Si-drift detector module for high-count rate X-ray spectroscopy.

    PubMed

    Hansen, K; Reckleben, C; Diehl, I; Klär, H

    2008-05-01

    A new Si-drift detector module for fast X-ray spectroscopy experiments was developed and realized. The Peltier-cooled module comprises a sensor with 7 × 7-mm 2 active area, an integrated circuit for amplification, shaping and detection, storage, and derandomized readout of signal pulses in parallel, and amplifiers for line driving. The compactness and hexagonal shape of the module with a wrench size of 16mm allow very short distances to the specimen and multi-module arrangements. The power dissipation is 186mW. At a shaper peaking time of 190 ns and an integration time of 450 ns an electronic rms noise of ~11 electrons was achieved. When operated at 7 °C, FWHM line widths around 260 and 460 eV (Cu-K α ) were obtained at low rates and at sum-count rates of 1.7 MHz, respectively. The peak shift is below 1% for a broad range of count rates. At 1.7-MHz sum-count rate the throughput loss amounts to 30%.

  2. High energy-storage performance of 0.9Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.1PbTiO{sub 3} relaxor ferroelectric thin films prepared by RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaolin; Zhang, Le; Hao, Xihong, E-mail: xhhao@imust.cn

    2015-05-15

    Highlights: • High-quality PMN-PT 90/10 RFE thin films were prepared by RF magnetron sputtering. • The maximum discharged density of 31.3 J/cm{sup 3} was obtained in the 750-nm-thick film. • PMN-PT RFE films might be a promising material for energy-storage application. - Abstract: 0.9Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.1PbTiO{sub 3} (PMN-PT 90/10) relaxor ferroelectric thin films with different thicknesses were deposited on the LaNiO{sub 3}/Si (100) by the radio-frequency (RF) magnetron sputtering technique. The effects of thickness and deposition temperature on the microstructure, dielectric properties and the energy-storage performance of the thin films were investigated in detail. X-ray diffraction spectra indicated thatmore » the thin films had crystallized into a pure perovskite phase with a (100)-preferred orientation after annealed at 700 °C. Moreover, all the PMN-PT 90/10 thin films showed the uniform and crack-free surface microstructure. As a result, a larger recoverable energy density of 31.3 J/cm{sup 3} was achieved in the 750-nm-thick film under 2640 kV/cm at room temperature. Thus, PMN-PT 90/10 relaxor thin films are the promising candidate for energy-storage capacitor application.« less

  3. Optical-NIR spectroscopy of the puzzling γ-ray source 3FGL 1603.9-4903/PMN J1603-4904 with X-Shooter

    NASA Astrophysics Data System (ADS)

    Goldoni, P.; Pita, S.; Boisson, C.; Müller, C.; Dauser, T.; Jung, I.; Krauß, F.; Lenain, J.-P.; Sol, H.

    2016-02-01

    Context. The Fermi/LAT instrument has detected about two thousand extragalactic high energy (E ≥ 100 MeV) γ-ray sources. One of the brightest is 3FGL J1603.9-4903; it is associated to the radio source PMN J1603-4904. Its nature is not yet clear, it could be either a very peculiar BL Lac or a compact symmetric object radio source which are considered as the early stage of a radio galaxy. The latter, if confirmed, would be the first detection in γ-rays for this class of objects. A redshift z = 0.18 ± 0.01 has recently been claimed on the basis of the detection of a single X-ray line at 5.44 ± 0.05 keV which has been interpreted as a 6.4 keV (rest frame) fluorescent line. Aims: We aim to investigate the nature of 3FGL J1603.9-4903/PMN J1603-4904 using optical-to near-IR (NIR) spectroscopy. Methods: We observed PMN J1603-4904 with the UV-NIR VLT/X-Shooter spectrograph for two hours. We extracted spectra in the visible and NIR range that we calibrated in flux and corrected for telluric absorption. We systematically searched for absorption and emission features. Results: The source was detected starting from ~6300 Å down to 24 000 Å with an intensity similar to that of its 2MASS counterpart and a mostly featureless spectrum. The continuum lacks absorption features and thus is non-stellar in origin and most likely non-thermal. In addition to this spectrum, we detected three emission lines that we interpret as the Hα-[NII] complex, the [SII]λ,λ6716, 6731 doublet and the [SIII]λ 9530 line; we obtain a redshift estimate of z = 0.2321 ± 0.0004. The line ratios suggest that a LINER/Seyfert nucleus powers the emission. This new redshift measurement implies that the X-ray line previously detected should be interpreted as a 6.7 keV line which is very peculiar. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program 095.B-0400(A). The raw FITS data files are available in the ESO archive.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Shih, Wei-Heng; Shih, Wan Y., E-mail: shihwy@drexel.edu

    We have examined the mechanism of the detection resonance frequency shift, Δf/f, of a 1370 μm long and 537 μm wide [Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}]{sub 0.65}[PbTiO{sub 3}]{sub 0.35} (PMN-PT) piezoelectric plate sensor (PEPS) made of a 8-μm thick PMN-PT freestanding film. The Δf/f of the PEPS was monitored in a three-step binding model detections of (1) binding of maleimide-activated biotin to the sulfhydryl on the PEPS surface followed by (2) binding of streptavidin to the bound biotin and (3) subsequent binding of biotinylated probe deoxyribonucleic acid to the bound streptavidin. We used a PMN-PT surrogate made of the same 8-μm thick PMN-PTmore » freestanding film that the PEPS was made of but was about 1 cm in length and width to carry out crystalline orientation study using X-ray diffraction (XRD) scan around the (002)/(200) peaks after each of the binding steps. The result of the XRD studies indicated that each binding step caused the crystalline orientation of the PMN-PT thin layer to switch from the vertical (002) orientation to the horizontal (200) orientation, and most of the PEPS detection Δf/f was due to the change in the lateral Young's modulus of the PMN-PT thin layer as a result of the crystalline orientation change.« less

  5. Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems

    NASA Astrophysics Data System (ADS)

    Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain

    2018-01-01

    Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.

  6. Demonstration of Compact and Low-Loss Athermal Arrayed-Waveguide Grating Module Based on 2.5%-Δ Silica-Based Waveguides

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Abe, Yukio; Uetsuka, Hisato

    2008-10-01

    We demonstrated a compact and low-loss athermal arrayed-waveguide grating (AWG) module utilizing silica-based planar lightwave circuit (PLC) technology. Spot-size converters based on a vertical ridge-waveguide taper were integrated with a 2.5%-Δ athermal AWG to reduce the loss at chip-to-fiber interface. Spot-size converters based on a segmented core were formed around resin-filled trenches for athermalization formed in the slab to reduce the diffraction loss at the trenches. A 16-channel athermal AWG module with 100-GHz channel spacing was fabricated. The use of a 2.5%-Δ athermal chip with a single-side fiber array enabled a compact package of the size of 41.6×16.6×4.5 mm3. Athermal characteristics and a small insertion loss of 3.5-3.8 dB were obtained by virtue of low fiber-to-chip coupling loss and athermalization with low excess loss.

  7. On the number of light rings in curved spacetimes of ultra-compact objects

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2018-01-01

    In a very interesting paper, Cunha, Berti, and Herdeiro have recently claimed that ultra-compact objects, self-gravitating horizonless solutions of the Einstein field equations which have a light ring, must possess at least two (and, in general, an even number of) light rings, of which the inner one is stable. In the present compact paper we explicitly prove that, while this intriguing theorem is generally true, there is an important exception in the presence of degenerate light rings which, in the spherically symmetric static case, are characterized by the simple dimensionless relation 8 πrγ2 (ρ +pT) = 1 [here rγ is the radius of the light ring and { ρ ,pT } are respectively the energy density and tangential pressure of the matter fields]. Ultra-compact objects which belong to this unique family can have an odd number of light rings. As a concrete example, we show that spherically symmetric constant density stars with dimensionless compactness M / R = 1 / 3 possess only one light ring which, interestingly, is shown to be unstable.

  8. Development of a Compact Wireless Laplacian Electrode Module for Electromyograms and Its Human Interface Applications

    PubMed Central

    Fukuoka, Yutaka; Miyazawa, Kenji; Mori, Hiroki; Miyagi, Manabi; Nishida, Masafumi; Horiuchi, Yasuo; Ichikawa, Akira; Hoshino, Hiroshi; Noshiro, Makoto; Ueno, Akinori

    2013-01-01

    In this study, we developed a compact wireless Laplacian electrode module for electromyograms (EMGs). One of the advantages of the Laplacian electrode configuration is that EMGs obtained with it are expected to be sensitive to the firing of the muscle directly beneath the measurement site. The performance of the developed electrode module was investigated in two human interface applications: character-input interface and detection of finger movement during finger Braille typing. In the former application, the electrode module was combined with an EMG-mouse click converter circuit. In the latter, four electrode modules were used for detection of finger movements during finger Braille typing. Investigation on the character-input interface indicated that characters could be input stably by contraction of (a) the masseter, (b) trapezius, (c) anterior tibialis and (d) flexor carpi ulnaris muscles. This wide applicability is desirable when the interface is applied to persons with physical disabilities because the disability differs one to another. The investigation also demonstrated that the electrode module can work properly without any skin preparation. Finger movement detection experiments showed that each finger movement was more clearly detectable when comparing to EMGs recorded with conventional electrodes, suggesting that the Laplacian electrode module is more suitable for detecting the timing of finger movement during typing. This could be because the Laplacian configuration enables us to record EMGs just beneath the electrode. These results demonstrate the advantages of the Laplacian electrode module. PMID:23396194

  9. Modulational instability in a PT-symmetric vector nonlinear Schrödinger system

    NASA Astrophysics Data System (ADS)

    Cole, J. T.; Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.

    2016-12-01

    A class of exact multi-component constant intensity solutions to a vector nonlinear Schrödinger (NLS) system in the presence of an external PT-symmetric complex potential is constructed. This type of uniform wave pattern displays a non-trivial phase whose spatial dependence is induced by the lattice structure. In this regard, light can propagate without scattering while retaining its original form despite the presence of inhomogeneous gain and loss. These constant-intensity continuous waves are then used to perform a modulational instability analysis in the presence of both non-hermitian media and cubic nonlinearity. A linear stability eigenvalue problem is formulated that governs the dynamical evolution of the periodic perturbation and its spectrum is numerically determined using Fourier-Floquet-Bloch theory. In the self-focusing case, we identify an intensity threshold above which the constant-intensity modes are modulationally unstable for any Floquet-Bloch momentum belonging to the first Brillouin zone. The picture in the self-defocusing case is different. Contrary to the bulk vector case, where instability develops only when the waves are strongly coupled, here an instability occurs in the strong and weak coupling regimes. The linear stability results are supplemented with direct (nonlinear) numerical simulations.

  10. Ultra-compact imaging plate scanner module using a MEMS mirror and specially designed MPPC

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuichi; Sasaki, Kensuke; Takasaka, Masaomi; Fujimoto, Masatoshi; Yamamoto, Koei

    2017-02-01

    Computed radiography (CR), which is one of the most useful methods for dental imaging and nondestructive testing, uses a phosphor imaging plate (IP) because it is flexible, reusable, and inexpensive. Conventional IP scanners utilize a galvanometer or a polygon mirror as a scanning device and a photomultiplier as an optical sensor. Microelectromechanical systems (MEMS) technology currently provides silicon-based devices and has the potential to replace such discrete devices and sensors. Using these devices, we constructed an ultra-compact IP scanner. Our extremely compact plate scanner utilizes a module that is composed of a one-dimensional MEMS mirror and a long multi-pixel photon counter (MPPC) that is combined with a specially designed wavelength filter and a rod lens. The MEMS mirror, which is a non-resonant electromagnetic type, is 2.6 mm in diameter with a recommended optical scanning angle up to +/-15°. The CR's wide dynamic range is maintained using a newly developed MPPC. The MPPC is a sort of silicon photomultiplier and is a high-sensitivity photon-counting device. To achieve such a wide dynamic range, we developed a long MPPC that has over 10,000 pixels. For size reduction and high optical efficiency, we set the MPPC close to an IP across the rod lens. To prevent the MPPC from detecting excitation light, which is much more intense than photo-stimulated light, we produced a sharp-cut wavelength filter that has a wide angle (+/-60°) of tolerance. We evaluated our constructed scanner module through gray chart and resolution chart images.

  11. Non-Compact Cardiomyopathy or Ventricular Non-Compact Syndrome?

    PubMed Central

    2014-01-01

    Ventricular myocardial non-compaction has been recognized and defined as a genetic cardiomyopathy by American Heart Association since 2006. The argument on the nomenclature and pathogenesis of this kind of ventricular myocardial non-compaction characterized by regional ventricular wall thickening and deep trabecular recesses often complicated with chronic heart failure, arrhythmia and thromboembolism and usually overlap the genetics and phenotypes of other kind of genetic or mixed cardiomyopathy still exist. The proper classification and correct nomenclature of the non-compact ventricles will contribute to the precisely and completely understanding of etiology and its related patho-physiological mechanism for a better risk stratification and more personalized therapy of the disease individually. All of the genetic heterogeneity and phenotypical overlap and the variety in histopathological, electromechanical and clinical presentation indicates that some of the cardiomyopathies might just be the different consequence of myocardial development variations related to gene mutation and phenotype of one or group genes induced by the interacted and disturbed process of gene modulation at different links of gene function expression and some other etiologies. This review aims to establish a new concept of "ventricular non-compaction syndrome" based on the demonstration of the current findings of etiology, epidemiology, histopathology and echocardiography related to the disorder of ventricular myocardial compaction and myocardial electromechanical function development. PMID:25580189

  12. Piezoelectric performance enhancement of Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 crystals by alternating current polarization for ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Xu, Jialin; Deng, Hao; Zeng, Zhou; Zhang, Zhang; Zhao, Kunyu; Chen, Jianwei; Nakamori, Nami; Wang, Feifei; Ma, Jinpeng; Li, Xiaobing; Luo, Haosu

    2018-04-01

    The [001]-oriented Pb(Mg1/3Nb2/3)O3-0.25PbTiO3(PMN-0.25PT) single crystal has been poled by alternating current polarization (ACP). The piezoelectric, dielectric, and electromechanical properties of PMN-0.25PT crystals were investigated with the variations of the electric field, polarization frequency, and cycles. For the piezoelectric performance of the PMN-0.25PT crystal, the optimum ACP condition was obtained under the electric field of 12-18 kV/cm in the frequency range of 20-40 Hz and after 20 cycles. It gives the crystals an increase by 40% from 1220 pC/N to 1730 pC/N in the piezoelectric coefficient compared with traditional direct current polarization. The patterns of the periodic stripe nanodomains under different polarization conditions were revealed by piezoresponse force microscopy. The enhancement of the piezoelectric performance is attributed to the high density of these domain walls. This work indicates that ACP is an effective way to modify the piezoelectric performance of PMN-0.25PT crystals and make it a promising candidate for sensors and transducers.

  13. Compact terahertz spectrometer based on disordered rough surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Jiang, Bing; Ge, Jia-cheng; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei

    2018-01-01

    In this paper, a compact spectrometer based on disordered rough surfaces for operation in the terahertz band is presented. The proposed spectrometer consists of three components, which are used for dispersion, modulation and detection respectively. The disordered rough surfaces, which are acted as the dispersion component, are modulated by the modulation component. Different scattering intensities are captured by the detection component with different extent of modulation. With a calibration measurement process, one can reconstruct the spectra of the probe terahertz beam by solving a system of simultaneous linear equations. A Tikhonov regularization approach has been implemented to improve the accuracy of the spectral reconstruction. The reported broadband, compact, high-resolution terahertz spectrometer is well suited for portable terahertz spectroscopy applications.

  14. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  15. Comparative evaluation of levels of C-reactive protein and PMN in periodontitis patients related to cardiovascular disease.

    PubMed

    Anitha, G; Nagaraj, M; Jayashree, A

    2013-05-01

    Numerous cross-sectional studies have suggested that chronic periodontitis is a risk factor for cardiovascular diseases. There is evidence that periodontitis and cardiovascular diseases are linked by inflammatory factors including C-reactive protein. The purpose of the study was to investigate the levels of CRP and PNM cells as a marker of inflammatory host response in the serum of chronic periodontitis patients and in patients with CVD. Study population included 75 patients; both male and female above 35 years were included for the study. The patients were divided into three groups of 25 each - Group I: Chronic periodontitis patients with CVD, Group II: Chronic periodontitis patients without CVD and Group III: Control subjects (without chronic periodontitis and CVD). Patients with chronic periodontitis had ≥8 teeth involved with probing depth (PD) ≥5 mm involved. The control group had PD ≤ 3 mm and no CVD. Venous blood was collected from the patients and C-reactive protein levels were analyzed by immunoturbidimetry. PMN was recorded by differential count method. On comparison, OHI-S Index, GI, mean PD, CRP and PMN values showed significant difference from Group I to III. CRP level was highly significant in Group I when compared with Group II and Group III. PMN level was highly significant in Group I when compared with Group III PMN level which was not significant. This study indicated that periodontitis may add the inflammation burden of the individual and may result in increased levels of CVD based on serum CRP levels. Thus, controlled prospective trials with large sample size should be carried out to know the true nature of the relationship if indeed one exists.

  16. The robustness of truncated Airy beam in PT Gaussian potentials media

    NASA Astrophysics Data System (ADS)

    Wang, Xianni; Fu, Xiquan; Huang, Xianwei; Yang, Yijun; Bai, Yanfeng

    2018-03-01

    The robustness of truncated Airy beam in parity-time (PT) symmetric Gaussian potentials media is numerically investigated. A high-peak power beam sheds from the Airy beam due to the media modulation while the Airy wavefront still retain its self-bending and non-diffraction characteristics under the influence of modulation parameters. Increasing the modulation factor results in the smaller value of maximum power of the center beam, and the opposite trend occurs with the increment of the modulation depth. However, the parabolic trajectory of the Airy wavefront does not be influenced. By utilizing the unique features, the Airy beam can be used as a long distance transmission source under the PT symmetric Gaussian potentials medium.

  17. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2006-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  18. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2007-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  19. [Relationship between HPLC fingerprint chromatogram and inhibitory effect on respiratory burst of rat PMN of leaves of crataegus].

    PubMed

    Liu, Rong-hua; Yu, Bo-yang; Chen, Lan-ying; Liu, Ji-hua; Shao, Feng; Ma, Zhi-lin; Yang, Ming

    2008-08-01

    To study the relationship between HPLC fingerprint chromatogram and inhibitory effect on respiratory burst of rat PMN of leaves of crataegus L. HPLC fingerprint peaks of different species of hawthorn leaves were isolated and used for the effective experiment on the respiratory burst of rat PMN. The mathematic models of the relationship between the area and the effect of fingerprint peaks were established. According to the mathematic models, the HPLC fingerprint were change into bioactive fingerprint (include effective fingerprint and potency fingerprint) with the helps of mathematics, chemometrics, computer program simulation and etc. The chromatogram-effect relationship of leaves of crataegus. on respiratory burst of rat PMN was established. According to this relationship, the activities of fourteen samples of leaves of crataegus. were forecasted. It was positive correlation between the expected value and the practical value. And the correlation coefficients was 0.968 (P < 0.01). An all-around evaluative system, which includes not only chemical identification but also effective evaluation for traditional Chinese medicine was established. It will provide a new idea for study on fingerprint chromatogram of traditional Chinese medicine.

  20. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure.

    PubMed

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-04-24

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  1. Yeast-derived Particulate β-Glucan Treatment Subverts the Suppression of Myeloid-derived Suppressor Cells by Inducing PMN-MDSC Apoptosis and M-MDSC Differentiation to APC in Cancer

    PubMed Central

    Albeituni, Sabrin H.; Ding, Chuanlin; Liu, Min; Hu, Xiaoling; Luo, Fengling; Kloecker, Goetz; Bousamra, Micahel; Zhang, Huang-ge; Yan, Jun

    2016-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells that promote tumor progression. Herein, we demonstrated that activation of a C-type lectin receptor, dectin-1, in MDSC differentially modulates the function of different MDSC subsets. Yeast-derived whole β-glucan particles (WGP), a ligand to engage and activate dectin-1, oral treatment in vivo significantly decreased tumor weight and splenomegaly in tumor-bearing mice with reduced accumulation of PMN-MDSC but not M-MDSC, and decreased PMN-MDSC suppression in vitro through the induction of respiratory burst and apoptosis. On a different axis, WGP-treated M-MDSC differentiated into F4/80+CD11c+ cells in vitro that served as potent antigen-presenting cells (APC) to induce Ag-specific CD4+ and CD8+ T cell responses in a dectin-1 dependent manner. In addition, ERK1/2 phosphorylation was required for the acquisition of APC properties in M-MDSC. Moreover, WGP-treated M-MDSC differentiated into CD11c+ cells in vivo with high MHC class II expression and induced decreased tumor burden when inoculated subcutaneously with LLC cells. This effect was dependent of the dectin-1 receptor. Strikingly, patients with non-small cell lung cancer (NSCLC) that had received WGP treatment for 10–14 days prior to any other treatment had a decreased frequency of CD14−HLA-DR−CD11b+CD33+ MDSC in the peripheral blood. Overall, these data indicate that WGP may be a potent immune modulator of MDSC suppressive function and differentiation in cancer. PMID:26810222

  2. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy.

    PubMed

    Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S

    2018-01-31

    A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.

  3. Dimensionality effects on magnetic properties of FexCo1-x nanoclusters on Pt(1 1 1)

    NASA Astrophysics Data System (ADS)

    Miranda, I. P.; Igarashi, R. N.; Klautau, A. B.; Petrilli, H. M.

    2017-11-01

    The behavior of local magnetic moments and exchange coupling parameters of FexCo1-x nanostructures (nanowires and compact clusters) on the fcc Pt(1 1 1) surface is here investigated using the first-principles real-space RS-LMTO-ASA method, in the framework of the DFT. Different configurations of FexCo1-x trimers and heptamers on Pt(1 1 1) are considered, varying the positions and the concentration of Fe or Co atoms. We discuss the influence of dimensionality and stoichiometry changes on the magnetic properties, specially on the orbital moments, which are very important in establishing a nanoscopic understanding of delocalized electron systems. We demonstrate the existence of a strictly decreasing nonlinear trend of the average orbital moments with the Fe concentration for the compact clusters, different from what was found for FexCo1-x nanowires on Pt(1 1 1) and also for corresponding higher-dimensional systems (FexCo1-x monolayer on Pt(1 1 1) and FexCo1-x bulk). The average spin moments, however, are invariably described by a linear function with respect to stoichiometry. In all studied cases, the nearest neighbors exchange couplings have shown to be strongly ferromagnetic.

  4. Comparative evaluation of levels of C-reactive protein and PMN in periodontitis patients related to cardiovascular disease

    PubMed Central

    Anitha, G.; Nagaraj, M.; Jayashree, A.

    2013-01-01

    Background: Numerous cross-sectional studies have suggested that chronic periodontitis is a risk factor for cardiovascular diseases. There is evidence that periodontitis and cardiovascular diseases are linked by inflammatory factors including C-reactive protein. The purpose of the study was to investigate the levels of CRP and PNM cells as a marker of inflammatory host response in the serum of chronic periodontitis patients and in patients with CVD. Materials and Methods: Study population included 75 patients; both male and female above 35 years were included for the study. The patients were divided into three groups of 25 each – Group I: Chronic periodontitis patients with CVD, Group II: Chronic periodontitis patients without CVD and Group III: Control subjects (without chronic periodontitis and CVD). Patients with chronic periodontitis had ≥8 teeth involved with probing depth (PD) ≥5 mm involved. The control group had PD ≤ 3 mm and no CVD. Venous blood was collected from the patients and C-reactive protein levels were analyzed by immunoturbidimetry. PMN was recorded by differential count method. Results: On comparison, OHI-S Index, GI, mean PD, CRP and PMN values showed significant difference from Group I to III. CRP level was highly significant in Group I when compared with Group II and Group III. PMN level was highly significant in Group I when compared with Group III PMN level which was not significant. Conclusion: This study indicated that periodontitis may add the inflammation burden of the individual and may result in increased levels of CVD based on serum CRP levels. Thus, controlled prospective trials with large sample size should be carried out to know the true nature of the relationship if indeed one exists. PMID:24049333

  5. Reversible unidirectional reflection and absorption of PT-symmetry structure under electro-optical modulation

    NASA Astrophysics Data System (ADS)

    Fang, Yun-tuan; Zhang, Yi-chi; Xia, Jing

    2018-06-01

    In order to obtain tunable unidirectional device, we assumed an ideal periodic layered Parity-Time (PT) symmetry structure inserted by doped LiNbO3 (LN) interlayers. LN is a typical electro-optical material of which the refractive index depends on the external electric field. In our work, we theoretically investigate the modulation effect of the external electric field on the transmittance and reflectance of the structure through numerical method. Through selected structural parameters, the one-way enhanced reflection and high absorption (above 0.9) behaviors are found. Within a special frequency band (not a single frequency), our theoretical model performs enhanced reflection in one incidence direction and high absorption in the other direction. Furthermore, the directions of enhanced reflection and absorption can be reversed through reversing the direction of applied electric field. Such structure with reversible properties has the potential in designing new optical devices.

  6. Linear Thermal Expansion Measurements of Lead Magnesium Niobate (PMN) Electroceramic Material for the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    Karlmann, Paul B.; Halverson, Peter G.; Peters, Robert D.; Levine, Marie B.; VanBuren, David; Dudik, Matthew J.

    2005-01-01

    Linear thermal expansion measurements of nine samples of Lead Magnesium Niobate (PMN) electroceramic material were recently performed in support of NASA's Terrestrial Planet Finder Coronagraph (TPF-C) mission. The TPF-C mission is a visible light coronagraph designed to look at roughly 50 stars pre- selected as good candidates for possessing earth-like planets. Upon detection of an earth-like planet, TPF-C will analyze the visible-light signature of the planet's atmosphere for specific spectroscopic indicators that life may exist there. With this focus, the project's primary interest in PMN material is for use as a solid-state actuator for deformable mirrors or compensating optics. The nine test samples were machined from three distinct boules of PMN ceramic manufactured by Xinetics Inc. Thermal expansion measurements were performed in 2005 at NASA Jet Propulsion Laboratory (JPL) in their Cryogenic Dilatometer Facility. All measurements were performed in vacuum with sample temperature actively controlled over the range of 270K to 3 10K. Expansion and contraction of the test samples with temperature was measured using a JPL developed interferometric system capable of sub-nanometer accuracy. Presented in this paper is a discussion of the sample configuration, test facilities, test method, data analysis, test results, and future plans.

  7. Guidance Documents and Sample Forms for Central Data Exchange (CDX) Registration and e-PMN Software (Thin Client)

    EPA Pesticide Factsheets

    For users submitting electronic notices through CDX, this page contains guidance documents and sample forms to help you, submit Premanufacture Notices (PMN), Bona Fide and biotechnology notices, among others.

  8. Elliptic complexes over C∗-algebras of compact operators

    NASA Astrophysics Data System (ADS)

    Krýsl, Svatopluk

    2016-03-01

    For a C∗-algebra A of compact operators and a compact manifold M, we prove that the Hodge theory holds for A-elliptic complexes of pseudodifferential operators acting on smooth sections of finitely generated projective A-Hilbert bundles over M. For these C∗-algebras and manifolds, we get a topological isomorphism between the cohomology groups of an A-elliptic complex and the space of harmonic elements of the complex. Consequently, the cohomology groups appear to be finitely generated projective C∗-Hilbert modules and especially, Banach spaces. We also prove that in the category of Hilbert A-modules and continuous adjointable Hilbert A-module homomorphisms, the property of a complex of being self-adjoint parametrix possessing characterizes the complexes of Hodge type.

  9. High speed turning of compacted graphite iron using controlled modulation

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging

  10. Study of 0.9PMN 0.1PT Dielectric Behaviour in Relation to the Nanostructure

    NASA Astrophysics Data System (ADS)

    Lattard, E.; Lejeune, M.; Imhoff, D.; Guinebretière, R.; Elissalde, C.; Abelard, P.

    1997-06-01

    (1 - x)PbMg{1/3}Nb{2/3}O{3-x}PbTiO3 ceramics with x = 0, 0.1 were prepared with a 12 mol% MgO excess to obtain dense and perovskite phase materials after sintering. The dielectric characterization has revealed that a local polarization appears at a T_d temperature largely above the temperature of the maximum of permittivity (T_m, respectively -13 ^{circ}C and +36 ^{circ}C for x = 0 and 0.1). This phenomena is consistent with the nucleation of polar clusters. Moreover, a dielectric relaxation is observed for 0.9PMN-0.1PT-0.12MgO, in a large frequency range (100 Hz 1 GHz), which corresponds to a multi-Debye process with broadening of the relaxation time distribution as the temperature decreases. This suggests a nucleation and growth mechanism of polar clusters with decreasing temperature, which can result from the successive transitions of different compositions. This hypothesis was confirmed by the identification of large chemical heterogeneities on a nanometric scale by TEM using two spectroscopy techniques (EDXS and EELS), because of the association of low and high atomic number elements in the materials, different types of equipment and also the simulation of the patterns with standards. In fact, these quantitative analyses have revealed large fluctuations of the local composition around the nominal one: lead and magnesium deficient areas enriched in niobium coexist with nanodomains largely enriched in lead and slightly in magnesium, which the size depends on the titanium content. The origin of these heterogeneities in correlation with the reactions sequences during calcination and sintering is discussed: in particular the addition of titanium contributes, by stabilizing the perovskite phase, to limit the diffusion of lead oxide, which consequently increases the homogeneity of the ceramics. Due to such heterogeneities, the material remains mainly paraelectric up to very low temperatures. This effect can be balanced by the application of a high electric field

  11. Colossal dielectric response in all-ceramic percolative composite 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3-Pb2Ru2O6.5

    NASA Astrophysics Data System (ADS)

    Bobnar, V.; Hrovat, M.; Holc, J.; Filipič, C.; Levstik, A.; Kosec, M.

    2009-02-01

    An exceptionally high dielectric constant was obtained by making use of the conductive percolative phenomenon in all-ceramic composite, comprising of Pb2Ru2O6.5 with high electrical conductivity denoted as the conductive phase and ferroelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) perovskite systems. Structural analysis revealed a uniform distribution of conductive ceramic grains within the PMN-PT matrix. Consequently, the dielectric response in the PMN-PT-Pb2Ru2O6.5 composite follows the predictions of the percolation theory. Thus, close to the percolation point exceptionally high values of the dielectric constant were obtained—values higher than 105 were detected at room temperature at 1 kHz. Fit of the data, obtained for samples of different compositions, revealed critical exponent and percolation point, which reasonably agree with the theoretically predicted values.

  12. Strain-induced nanostructure of Pb(Mg1/3Nb2/3)O3-PbTiO3 on SrTiO3 epitaxial thin films with low PbTiO3 concentration

    NASA Astrophysics Data System (ADS)

    Kiguchi, Takanori; Fan, Cangyu; Shiraishi, Takahisa; Konno, Toyohiko J.

    2017-10-01

    The singularity of the structure in (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) (x = 0-50 mol %) epitaxial thin films of 100 nm thickness was investigated from the viewpoint of the localized residual strain in the nanoscale. The films were deposited on SrTiO3 (STO) (001) single-crystal substrates by chemical solution deposition (CSD) using metallo-organic decomposition (MOD) solutions. X-ray and electron diffraction patterns revealed that PMN-xPT thin films included a single phase of the perovskite-type structure with the cube-on-cube orientation relationship between PMN-xPT and STO: (001)Film ∥ (001)Sub, [100]Film ∥ [100]Sub. X-ray reciprocal space maps showed an in-plane tensile strain in all the compositional ranges considered. Unit cells in the films were strained from the rhombohedral (pseudocubic) (R) phase to a lower symmetry crystal system, the monoclinic (MB) phase. The morphotropic phase boundary (MPB) that split the R and tetragonal (T) phases was observed at x = 30-35 for bulk crystals of PMN-xPT, whereas the strain suppressed the transformation from the R phase to the T phase in the films up to x = 50. High-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) analysis and its related local strain analysis revealed that all of the films have a bilayer morphology. The nanoscale strained layer formed only above the film/substrate semi-coherent interface. The misfit dislocations generated the localized and periodic strain fields deformed the unit cells between the dislocation cores from the R to an another type of the monoclinic (MA) phase. Thus, the singular and localized residual strains in the PMN-xPT/STO (001) epitaxial thin films affect the phase stability around the MPB composition and result in the MPB shift phenomena.

  13. Temperature and pressure effects on elastic properties of relaxor ferroelectrics and thermoelectrics: A resonant ultrasound spectroscopy study

    NASA Astrophysics Data System (ADS)

    Tennakoon, Sumudu P.

    Relaxor ferroelectric lead magnesium niobate-lead titanate (PMN-PT) material exhibits exceptional electromechanical properties. The material undergoes a series of structural phase transitions with changes in temperature and the chemical composition. The work covered in this dissertation seek to gain insight into the phase diagram of PMN-PT using temperature and pressure dependence of the elastic properties. Single crystal PMN-PT with a composition near morphotropic phase boundary (MPB) was investigated using a resonant ultrasound spectroscopy (RUS) methodologies in the temperature range of 293 K - 800 K and the pressure range from near vacuum to 3.4 MPa. At atmospheric pressure, significantly high acoustic attenuation of PMN-PT is observed at temperatures below 400 K. A strong stiffening is observed in the temperature range of 400 K - 673 K, followed by a gradual softening at higher temperatures. With varying pressure, an increased pressure sensitivity of the elastic properties of PMN-PT is observed at the temperatures in the stiffening phase. Elastic behavior at elevated temperatures and pressures were studied for correlations with the ferroelectric domains at temperatures below the Curie temperature (TC), the locally polarized nano-regions, and an existence of pseudo-cubic crystalline at higher temperatures between (TC and TB). Thermoelectric lanthanum tellurides and skutterudites are being investigated by NASA's Jet Propulsion Laboratory for advanced thermoelectric generates (TEGs). Effects of nickel (Ni) doping on elastic properties of lanthanum tellurides at elevated temperatures were investigated in the temperature range of 293 K - 800 K. A linear stiffening was observed with increasing the Ni content in the material. Elastic properties of p-type and n-type bismuth-based skutterudites were investigated in the temperature range of 293 K - 723 K. Elastic properties of rare-earth doped strontium titanate were also investigated in the temperature range of 293 K

  14. Compact optical transconductance varistor

    DOEpatents

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  15. Magnetic-optical bifunctional CoPt3/Co multilayered nanowire arrays

    NASA Astrophysics Data System (ADS)

    Su, Yi-Kun; Yan, Zhi-Long; Wu, Xi-Ming; Liu, Huan; Ren, Xiao; Yang, Hai-Tao

    2015-10-01

    CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic (fcc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472165, 51471185, and 11274370).

  16. The interface between ferroelectric and 2D material for a Ferroelectric Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Park, Nahee; Kang, Haeyong; Lee, Sang-Goo; Lee, Young Hee; Suh, Dongseok

    We have studied electrical property of ferroelectric field-effect transistor which consists of graphene on hexagonal Boron-Nitride (h-BN) gated by a ferroelectric, PMN-PT (i.e. (1-x)Pb(Mg1/3Nb2/3) O3-xPbTiO3) single-crystal substrate. The PMN-PT was expected to have an effect on polarization field into the graphene channel and to induce a giant amount of surface charge. The hexagonal Boron-Nitride (h-BN) flake was directly exfoliated on the PMN-PT substrate for preventing graphene from directly contacting on the PMN-PT substrate. It can make us to observe the effect of the interface between ferroelectric and 2D material on the device operation. Monolayer graphene as 2D channel material, which was confirmed by Raman spectroscopy, was transferred on top of the hexagonal Boron-Nitride (h-BN) by using the conventional dry-transfer method. Here, we can demonstrate that the structure of graphene/hexagonal-BN/ferroelectric field-effect transistor makes us to clearly understand the device operation as well as the interface between ferroelectric and 2D materials by inserting h-BN between them. The phenomena such as anti-hysteresis, current saturation behavior, and hump-like increase of channel current, will be discussed by in terms of ferroelectric switching, polarization-assisted charge trapping.

  17. Compact nanomechanical plasmonic phase modulators [Ultracompact nano-mechanical plasmonic phase modulators

    DOE PAGES

    Dennis, B. S.; Haftel, M. I.; Czaplewski, D. A.; ...

    2015-03-30

    Highly confined optical energy in plasmonic devices is advancing miniaturization in photonics. However, for mode sizes approaching ≈10 nm, the energy increasingly shifts into the metal, raising losses and hindering active phase modulation. Here, we propose a nanoelectromechanical phase-modulation principle exploiting the extraordinarily strong dependence of the phase velocity of metal–insulator–metal gap plasmons on dynamically variable gap size. We experimentally demonstrate a 23-μm-long non-resonant modulator having a 1.5π rad range, with 1.7 dB excess loss at 780 nm. Analysis shows that by simultaneously decreasing the gap, length and width, an ultracompact-footprint π rad phase modulator can be realized. This ismore » achieved without incurring the extra loss expected for plasmons confined in a decreasing gap, because the increasing phase-modulation strength from a narrowing gap offsets rising propagation losses. Here, such small, high-density electrically controllable components may find applications in optical switch fabrics and reconfigurable plasmonic optics.« less

  18. Xe adsorption site distributions on Pt(111), Pt(221) and Pt(531)

    NASA Astrophysics Data System (ADS)

    Gellman, Andrew J.; Baker, L.; Holsclaw, B. S.

    2016-04-01

    The ideal structures of the Pt(111), Pt(221) and Pt(531) surfaces expose adsorption sites that can be qualitatively described as terrace sites on Pt(111), both step and terrace sites on Pt(221), and kink sites on Pt(531). The real surface structures of these surfaces can be complicated by imperfections such as misorientation, reconstruction and thermal roughening, all of which will influence their distributions of adsorption sites. Xe adsorption sites on the Pt(111), Pt(221) and Pt(531) surfaces have been probed using both photoemission of adsorbed Xe (PAX) and temperature programmed desorption (TPD) of Xe. Both PAX and Xe TPD are sensitive to the adsorption sites of the Xe and serve as complementary means of assessing the distributions of adsorption sites on these three Pt surfaces. The adsorption of Xe is sufficiently sensitive to detect the presence of residual steps on the Pt(111) surface at a density of 1.5% step atoms per Pt atom. On the Pt(221) surface, PAX and Xe TPD reveal adsorption at both terrace and step sites simultaneously. Although the ideal structure of the Pt(531) surface has no well-defined steps or terraces, Xe adsorption indicates that its adsorption sites are best described as a distribution of both step and kink sites with roughly twice as many steps sites as kinks.

  19. Implementation of enterprise resource planning using Odoo module sales and CRM. Case study: PT Ecosains Hayati

    NASA Astrophysics Data System (ADS)

    Terminanto, A.; Hidayat, R.; Hidayanto, A. N.

    2017-12-01

    Marketing is the most important part of PT Ecosains Hayati as a distributor company. Sales looking for prospective buyers and provide product price quotations. Quotations are made by accessing various data in a separate document. It makes the work process less efficient. Implementation of ERP system could improve the efficiency of sales work. It used RAD method that faster than other methods. The selected ERP system is Odoo, which contains various business application programs. Gap and efficiency analysis were performed to compare business processes before and after using Odoo. User Acceptance Test (UAT) is conducted to determine user acceptance of the applications and features available in Odoo module. After implementation of Odoo, there was an increase in the efficiency of the quotations business process by 63% in numberf of activity and by 50% in number of the actors involved. Odoo customization is done on 26 of the 41 module menus used. Based on UAT results, the implementation of Odoo meets the usability aspect with the overall average value 3.7. This indicates that users have a good level of understanding in the use of Odoo, and the features on Odoo can meet the needs of users.

  20. Compact DFB laser modules with integrated isolator at 935 nm

    NASA Astrophysics Data System (ADS)

    Reggentin, M.; Thiem, H.; Tsianos, G.; Malach, M.; Hofmann, J.; Plocke, T.; Kneier, M.; Richter, L.

    2018-02-01

    New developments in industrial applications and applications under rough environmental conditions within the field of spectroscopy and quantum technology in the 935 nm wavelength regime demand new compact, stable and robust laser systems. Beside a stable laser source the integration of a compact optical isolator is necessary to reduce size and power consumption for the whole laser system. The integration of a suitable optical isolator suppresses back reflections from the following optical system efficiently. However, the miniaturization of the optics inside the package leads to high optical power density levels that make a more detailed analysis of the components and their laser damage threshold necessary. We present test results on compact stable DFB laser sources (butterfly style packages) with newly integrated optical isolators operating around 935 nm. The presented data includes performance and lifetime tests for the laser diodes as well as package components. Overall performance data of the packaged laser diodes will be shown as well.

  1. Compact 3D printed module for fluorescence and label-free imaging using evanescent excitation

    NASA Astrophysics Data System (ADS)

    Pandey, Vikas; Gupta, Shalini; Elangovan, Ravikrishnan

    2018-01-01

    Total internal reflection fluorescence (TIRF) microscopy is widely used for selective excitation and high-resolution imaging of fluorophores, and more recently label-free nanosized objects, with high vertical confinement near a liquid-solid interface. Traditionally, high numerical aperture objectives (>1.4) are used to simultaneously generate evanescent waves and collect fluorescence emission signals which limits their use to small area imaging (<0.1 mm2). Objective-based TIRFs are also expensive as they require dichroic mirrors and efficient notch filters to prevent specular reflection within the objective lenses. We have developed a compact 3D module called cTIRF that can generate evanescent waves in microscope glass slides via a planar waveguide illumination. The module can be attached as a fixture to any existing optical microscope, converting it into a TIRF and enabling high signal-to-noise ratio (SNR) fluorescence imaging using any magnification objective. As the incidence optics is perpendicular to the detector, label-free evanescent scattering-based imaging of submicron objects can also be performed without using emission filters. SNR is significantly enhanced in this case as compared to cTIRF alone, as seen through our model experiments performed on latex beads and mammalian cells. Extreme flexibility and the low cost of our approach makes it scalable for limited resource settings.

  2. Vimentin, a Novel NF-κB Regulator, Is Required for Meningitic Escherichia coli K1-Induced Pathogen Invasion and PMN Transmigration across the Blood-Brain Barrier.

    PubMed

    Huang, Sheng-He; Chi, Feng; Peng, Liang; Bo, Tao; Zhang, Bao; Liu, Li-Qun; Wu, Xuedong; Mor-Vaknin, Nirit; Markovitz, David M; Cao, Hong; Zhou, Yan-Hong

    NF-κB activation, pathogen invasion, polymorphonuclear leukocytes (PMN) transmigration (PMNT) across the blood-brain barrier (BBB) are the pathogenic triad hallmark features of bacterial meningitis, but the mechanisms underlying these events remain largely unknown. Vimentin, which is a novel NF-κB regulator, is the primary receptor for the major Escherichia coli K1 virulence factor IbeA that contributes to the pathogenesis of neonatal bacterial sepsis and meningitis (NSM). We have previously shown that IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PTB-associated splicing factor (PSF) is required for pathogen penetration and leukocyte transmigration across the BBB. This is the first in vivo study to demonstrate how vimentin and related factors contributed to the pathogenic triad of bacterial meningitis. The role of vimentin in IbeA+ E. coli K1-induced NF-κB activation, pathogen invasion, leukocyte transmigration across the BBB has now been demonstrated by using vimentin knockout (KO) mice. In the in vivo studies presented here, IbeA-induced NF-κB activation, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the BBB were significantly reduced in Vim-/- mice. Decreased neuronal injury in the hippocampal dentate gyrus was observed in Vim-/- mice with meningitis. The major inflammatory regulator α7 nAChR and several signaling molecules contributing to NF-κB activation (p65 and p-CamKII) were significantly reduced in the brain tissues of the Vim-/- mice with E. coli meningitis. Furthermore, Vim KO resulted in significant reduction in neuronal injury and in α7 nAChR-mediated calcium signaling. Vimentin, a novel NF-κB regulator, plays a detrimental role in the host defense against meningitic infection by modulating the NF-κB signaling pathway to increase pathogen invasion, PMN recruitment, BBB permeability and neuronal inflammation. Our findings provide the first evidence for Vim

  3. Vimentin, a Novel NF-κB Regulator, Is Required for Meningitic Escherichia coli K1-Induced Pathogen Invasion and PMN Transmigration across the Blood-Brain Barrier

    PubMed Central

    Zhang, Bao; Liu, Li-Qun; Wu, Xuedong; Mor-Vaknin, Nirit; Markovitz, David M.; Cao, Hong; Zhou, Yan-Hong

    2016-01-01

    Background NF-κB activation, pathogen invasion, polymorphonuclear leukocytes (PMN) transmigration (PMNT) across the blood-brain barrier (BBB) are the pathogenic triad hallmark features of bacterial meningitis, but the mechanisms underlying these events remain largely unknown. Vimentin, which is a novel NF-κB regulator, is the primary receptor for the major Escherichia coli K1 virulence factor IbeA that contributes to the pathogenesis of neonatal bacterial sepsis and meningitis (NSM). We have previously shown that IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PTB-associated splicing factor (PSF) is required for pathogen penetration and leukocyte transmigration across the BBB. This is the first in vivo study to demonstrate how vimentin and related factors contributed to the pathogenic triad of bacterial meningitis. Methodology/Principal Findings The role of vimentin in IbeA+ E. coli K1-induced NF-κB activation, pathogen invasion, leukocyte transmigration across the BBB has now been demonstrated by using vimentin knockout (KO) mice. In the in vivo studies presented here, IbeA-induced NF-κB activation, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the BBB were significantly reduced in Vim-/- mice. Decreased neuronal injury in the hippocampal dentate gyrus was observed in Vim-/- mice with meningitis. The major inflammatory regulator α7 nAChR and several signaling molecules contributing to NF-κB activation (p65 and p-CamKII) were significantly reduced in the brain tissues of the Vim-/- mice with E. coli meningitis. Furthermore, Vim KO resulted in significant reduction in neuronal injury and in α7 nAChR-mediated calcium signaling. Conclusion/Significance Vimentin, a novel NF-κB regulator, plays a detrimental role in the host defense against meningitic infection by modulating the NF-κB signaling pathway to increase pathogen invasion, PMN recruitment, BBB permeability and neuronal

  4. The influence of thermal stresses on the phase composition of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 thick films

    NASA Astrophysics Data System (ADS)

    Uršič, Hana; Zarnik, Marina Santo; Tellier, Jenny; Hrovat, Marko; Holc, Janez; Kosec, Marija

    2011-01-01

    The influence of thermal stresses versus the phase composition for 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (0.65PMN-0.35PT) thick films is being reported. The thermal residual stresses in the films have been calculated using the finite-element method. It has been observed that in 0.65PMN-0.35PT films a compressive stress enhances the thermodynamic stability of the tetragonal phase with the space group P4mm.

  5. A new anisotropic compact star model having Matese & Whitman mass function

    NASA Astrophysics Data System (ADS)

    Bhar, Piyali; Ratanpal, B. S.

    2016-07-01

    Present paper proposed a new singularity free model of anisotropic compact star. The Einstein field equations are solved in closed form by utilizing Matese & Whitman mass function. The model parameters ρ, pr and pt all are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically acceptable. The model given in the present work is compatible with observational data of compact objects like SAX J 1808.4-3658 (SS1), SAX J 1808.4-3658 (SS2) and 4U 1820-30. A particular model of 4U 1820-30 is studied in detail and found that it satisfies all the condition needed for physically acceptable model. The present work is the generalization of Sharma and Ratanpal (Int. J. Mod. Phys. D 22:1350074, 2013) model for compact stars admitting quadratic equation of state.

  6. Portable low-power thermal cycler with dual thin-film Pt heaters for a polymeric PCR chip.

    PubMed

    Jeong, Sangdo; Lim, Juhun; Kim, Mi-Young; Yeom, JiHye; Cho, Hyunmin; Lee, Hyunjung; Shin, Yong-Beom; Lee, Jong-Hyun

    2018-01-29

    Polymerase chain reaction (PCR) has been widely used for major definite diagnostic tool, but very limited its place used only indoor such as hospital or diagnosis lab. For the rapid on-site detection of pathogen in an outdoor environment, a low-power cordless polymerase chain reaction (PCR) thermal cycler is crucial module. At this point of view, we proposed a low-power PCR thermal cycler that could be operated in an outdoor anywhere. The disposable PCR chip was made of a polymeric (PI/PET) film to reduce the thermal mass. A dual arrangement of the Pt heaters, which were positioned on the top and bottom of the PCR chip, improved the temperature uniformity. The temperature sensor, which was made of the same material as the heater, utilized the temperature dependence of the Pt resistor to ensure simple fabrication of the temperature sensor. Cooling the PCR chip using dual blower fans enabled thermal cycling to operate with a lower power than that of a Peltier element with a high power consumption. The PCR components were electrically connected to a control module that could be operated with a Li-ion battery (12 V), and the PCR conditions (temperature, time, cycle, etc.) were inputted on a touch screen. For 30 PCR cycles, the accumulated power consumption of heating and cooling was 7.3 Wh, which is easily available from a compact battery. Escherichia coli genomic DNA (510 bp) was amplified using the proposed PCR thermal cycler and the disposable PCR chip. A similar DNA amplification capability was confirmed using the proposed portable and low-power thermal cycler compared with a conventional thermal cycler.

  7. Dimensional scaling of perovskite ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Keech, Ryan R.

    Dimensional size reduction has been the cornerstone of the exponential improvement in silicon based logic devices for decades. However, fundamental limits in the device physics were reached ˜2003, halting further reductions in clock speed without significant penalties in power consumption. This has motivated the research into next generation transistors and switching devices to reinstate the scaling laws for clock speed. This dissertation aims to support the scaling of devices that are based on ferroelectricity and piezoelectricity and to provide a roadmap for the corresponding materials performance. First, a scalable growth process to obtain highly {001}-oriented lead magnesium niobate - lead titanate (PMN-PT) thin films was developed, motivated by the high piezoelectric responses observed in bulk single crystals. It was found that deposition of a 2-3 nm thick PbO buffer layer on {111} Pt thin film bottom electrodes, prior to chemical solution deposition of PMN-PT reduces the driving force for Pb diffusion from the PMN-PT to the bottom electrode, and facilitates nucleation of {001}-oriented perovskite grains. Energy dispersive spectroscopy demonstrated that up to 10% of the Pb from a PMN-PT precursor solution may diffuse into the bottom electrode. PMN-PT grains with a mixed {101}/{111} orientation in a matrix of Pb-deficient pyrochlore phase were then promoted near the interface. When this is prevented, phase pure films with {001} orientation with Lotgering factors of 0.98-1.0, can be achieved. The resulting films of only 300 nm in thickness exhibit longitudinal effective d33,f coefficients of ˜90 pm/V and strain values of ˜1% prior to breakdown. 300 nm thick epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) blanket thin films were studied for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO3, while

  8. PtSi gimbal-based FLIR for airborne applications

    NASA Astrophysics Data System (ADS)

    Wallace, Joseph; Ornstein, Itzhak; Nezri, M.; Fryd, Y.; Bloomberg, Steve; Beem, S.; Bibi, B.; Hem, S.; Perna, Steve N.; Tower, John R.; Lang, Frank B.; Villani, Thomas S.; McCarthy, D. R.; Stabile, Paul J.

    1997-08-01

    A new gimbal-based, FLIR camera for several types of airborne platforms has been developed. The FLIR is based on a PtSi on silicon technology: developed for high volume and minimum cost. The gimbal scans an area of 360 degrees in azimuth and an elevation range of plus 15 degrees to minus 105 degrees. It is stabilized to 25 (mu) Rad-rms. A combination of uniformity correction, defect substitution, and compact optics results in a long range, low cost FLIR for all low-speed airborne platforms.

  9. Compact cryocooling system for HTS sampler

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Maruyama, M.; Hato, T.; Wakana, H.; Tanabe, K.; Konno, T.; Uekusa, K.; Sato, N.; Kawabata, M.

    2007-10-01

    This paper describes a compact cooling system using a single-stage stirling-type cryocooler for a practical HTS sampler. The system was designed to cool down an HTS sampler module below 50 K, enabling a bandwidth of the chip more than 100 GHz. The system measures 150 mm in width, 140 mm in height and 310 mm in depth, and weighs 5 kg. Semi-rigid coaxial cables made of brass with a silver coated inner conductor were adopted for a signal to be measured and a trigger pulse. The loss for the signal line was less than 1.5 dB at 50 GHz with relatively small thermal inflow. Thermal inflows from low frequency lines, IF signal lines for control/output of the sampler and dc bias lines, were minimized by choosing proper wires. A new sampler module with reduced weight was placed on the cold stage, which was surrounded by double magnetic shields. The module was successfully cooled down to less than 50 K with cooling time of 1 h in the system. We have also succeeded in observing sinusoidal waveforms with the HTS sampler cooled by the compact cooling system.

  10. 640 x 480 PtSi infrared engine

    NASA Astrophysics Data System (ADS)

    Lang, Frank B.; Coyle, Peter J.; Stabile, Paul J.; Tower, John R.; Zubalsky, I.; Ornstein, Itzhak

    1996-06-01

    The design and performance of a compact, light-weight, low power infrared engine is presented. The 3 - 5 micron MWIR imaging subsystem consists of a Stirling-cooled, 640 (H) by 480 (V) staring PtSi infrared focal plane array (IRFPA) with associated drive and analog video processing electronics. The IR engine provides user-selectable integration time control. This infrared imaging subsystem is designed to be gimbal-mounted, and has been qualified to be operated in minus 10 Celsius to plus 50 Celsius environments. The infrared engine is also designed to meet the requirements of demanding shock and vibration environments.

  11. Phase diagram of the relaxor ferroelectric (1- x )Pb(Mg 1/3Nb 2/3)O 3+ x PbTiO 3 revisited: a neutron powder diffraction study of the relaxor skin effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelan, D.; Rodriguez, E. E.; Gao, J.

    2014-11-17

    We revisit the phase diagram of the relaxor ferroelectric PMN- xPT using neutron powder diffraction to test suggestions that residual oxygen vacancies and/or strain affect the ground state crystal structure. Powdered samples of PMN- xPT were prepared with nominal compositions of x = 0:10, 0.20, 0.30, and 0.40 and divided into two identical sets, one of which was annealed in air to relieve grinding-induced strain and to promote an ideal oxygen stoichiometry. For a given composition and temperature the same structural phase is observed for each specimen. However, the distortions in all of the annealed samples are smaller than thosemore » in the as-grown samples. Further, the diffraction patterns for x = 0:10, 0.20, and 0.30 are best refined using the monoclinic Cm space group. By comparing our neutron diffraction results to those obtained on single crystals having similar compositions, we conclude that the relaxor skin effect in PMN- xPT vanishes on the Ti-rich side of the morphotropic phase boundary.« less

  12. Properties of epitaxial, (001)- and (110)-oriented (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 films on silicon described by polarization rotation

    PubMed Central

    Boota, Muhammad; Houwman, Evert P.; Dekkers, Matthijn; Nguyen, Minh D.; Vergeer, Kurt H.; Lanzara, Giulia; Koster, Gertjan; Rijnders, Guus

    2016-01-01

    Abstract Epitaxial (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 (PMN-PT) films with different out-of-plane orientations were prepared using a CeO2/yttria stabilized ZrO2 bilayer buffer and symmetric SrRuO3 electrodes on silicon substrates by pulsed laser deposition. The orientation of the SrRuO3 bottom electrode, either (110) or (001), was controlled by the deposition conditions and the subsequent PMN-PT layer followed the orientation of the bottom electrode. The ferroelectric, dielectric and piezoelectric properties of the (SrRuO3/PMN-PT/SrRuO3) ferroelectric capacitors exhibit orientation dependence. The properties of the films are explained in terms of a model based on polarization rotation. At low applied fields domain switching dominates the polarization change. The model indicates that polarization rotation is easier in the (110) film, which is ascribed to a smaller effect of the clamping on the shearing of the pseudo-cubic unit cell compared to the (001) case. PMID:27877857

  13. Engineering Pt/Pd Interfacial Electronic Structures for Highly Efficient Hydrogen Evolution and Alcohol Oxidation.

    PubMed

    Fan, Jinchang; Qi, Kun; Zhang, Lei; Zhang, Haiyan; Yu, Shansheng; Cui, Xiaoqiang

    2017-05-31

    Tailoring the interfacial structure of Pt-based catalysts has emerged as an effective strategy to improve catalytic activity. However, little attention has been focused on investigating the relationship between the interfacial facets and their catalytic activity. Here, we design and implement Pd-Pt interfaces with controlled heterostructure features by epitaxially growing Pt nanoparticles on Pd nanosheets. On the basis of both density functional theory calculation and experimental results, we demonstrate that charge transfer from Pd to Pt is highly dependent on the interfacial facets of Pd substrates. Therefore, the Pd-Pt heterostructure with Pd(100)-Pt interface exhibits excellent activity and long-term stability for hydrogen evolution and methanol/ethanol oxidation reactions in alkaline medium, much better than that with Pd (111)-Pt interface or commercial Pt/C. Interfacial crystal facet-dependent electronic structural modulation sheds a light on the design and investigation of new heterostructures for high-activity catalysts.

  14. Time-domain detection of current controlled magnetization damping in Pt/Ni{sub 81}Fe{sub 19} bilayer and determination of Pt spin Hall angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, A.; Haldar, A.; Sinha, J.

    2014-09-15

    The effect of spin torque from the spin Hall effect in Pt/Ni{sub 81}Fe{sub 19} rectangular bilayer film was investigated using time-resolved magneto-optical Kerr microscopy. Current flow through the stack resulted in a linear variation of effective damping up to ±7%, attributed to spin current injection from the Pt into the Ni{sub 81}Fe{sub 19}. The spin Hall angle of Pt was estimated as 0.11 ± 0.03. The modulation of the damping depended on the angle between the current and the bias magnetic field. These results demonstrate the importance of optical detection of precessional magnetization dynamics for studying spin transfer torque due to spinmore » Hall effect.« less

  15. Neutrophil (PMN) surface contact with keratocytes following corneal epithelial abrasion in the mouse: a novel role for ICAM-1

    USDA-ARS?s Scientific Manuscript database

    Corneal epithelial abrasion is associated with an inflammatory response that involves PMN recruitment from the limbal vessels into the corneal stroma. Previously, in the injured mouse cornea, we showed that migrating PMNs not only make contact with collagen, but they also make extensive surface cont...

  16. Hexagonal boron nitride cover on Pt(111): a new route to tune molecule-metal interaction and metal-catalyzed reactions.

    PubMed

    Zhang, Yanhong; Weng, Xuefei; Li, Huan; Li, Haobo; Wei, Mingming; Xiao, Jianping; Liu, Zhi; Chen, Mingshu; Fu, Qiang; Bao, Xinhe

    2015-05-13

    In heterogeneous catalysis molecule-metal interaction is often modulated through structural modifications at the surface or under the surface of the metal catalyst. Here, we suggest an alternative way toward this modulation by placing a two-dimensional (2D) cover on the metal surface. As an illustration, CO adsorption on Pt(111) surface has been studied under 2D hexagonal boron nitride (h-BN) overlayer. Dynamic imaging data from surface electron microscopy and in situ surface spectroscopic results under near ambient pressure conditions confirm that CO molecules readily intercalate monolayer h-BN sheets on Pt(111) in CO atmosphere but desorb from the h-BN/Pt(111) interface even around room temperature in ultrahigh vacuum. The interaction of CO with Pt has been strongly weakened due to the confinement effect of the h-BN cover, and consequently, CO oxidation at the h-BN/Pt(111) interface was enhanced thanks to the alleviated CO poisoning effect.

  17. Increased compactibility of acetames after roll compaction.

    PubMed

    Kuntz, Theresia; Schubert, Martin A; Kleinebudde, Peter

    2011-01-01

    A common technique for manufacturing granules in a continuous way is the combination of roll compaction and subsequent milling. Roll compaction can considerably impact tableting performance of a material. The purpose of this study was to investigate the influence of roll compaction/dry granulation on the compaction behavior of acetames, a class of active pharmaceutical substances, which are mainly used for the treatment of central nervous diseases. Some representatives of acetames were roll compacted and then compressed into tablets. Compactibility of granules was compared with the compaction behavior of the directly compressed drug powders. In contrast to many other materials, the roll compaction step induced an increase in compactibility for all investigated acetames. Specific surface areas of the untreated and the roll compacted drugs were determined by nitrogen adsorption. The raise in compactibility observed was accompanied by an increase in specific surface area during roll compaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Processing and properties of Pb(Mg(1/3)Nb(2/3))O3--PbTiO3 thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Tantigate, C.; Lee, J.; Safari, A.

    1995-03-01

    The objectives of this study were to prepare in situ Pb(Mg(1/3)Nb(2/3))O3 (PMN) and PMN-PT thin films by pulsed laser deposition and to investigate the electrical features of thin films for possible dynamic random access memory (DRAM) and microactuator applications. The impact of processing parameters such compositions, substrate temperature, and oxygen pressure on perovskite phase formation and dielectric characteristics were reported. It was found that the highest dielectric constant, measured at room temperature and 10 kHz, was attained from the PMN with 99% perovskite.

  19. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  20. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    NASA Astrophysics Data System (ADS)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more

  1. Modeling of the multilevel conduction characteristics and fatigue profile of Ag/La1/3Ca2/3MnO3/Pt structures using a compact memristive approach

    NASA Astrophysics Data System (ADS)

    Miranda, E.; Román Acevedo, W.; Rubi, D.; Lüders, U.; Granell, P.; Suñé, J.; Levy, P.

    2017-05-01

    The hysteretic conduction characteristics and fatigue profile of La1/3Ca2/3MnO3 (LCMO)-based memristive devices were investigated. The oxide films were grown by pulsed laser deposition (PLD) and sandwiched between Ag and Pt electrodes. The devices exhibit bipolar resistive switching (RS) effect with well-defined intermediate conduction states that arise from partial SET and RESET events. The current-voltage curves are modeled and simulated using a compact memristive approach. Two equations are considered: one for the electron transport based on the double-diode equation and the other for the memory state of the device driven by the play operator with logistic ridge functions. An expression that accounts for the remnant resistance of the device is obtained after simplifying the model equations in the low-voltage limit. The role played by the power dissipation in the LCMO reset dynamics as well as the asymmetrical reduction of the resistance window caused by long trains of switching pulses are discussed.

  2. Transforming AdaPT to Ada

    NASA Technical Reports Server (NTRS)

    Goldsack, Stephen J.; Holzbach-Valero, A. A.; Waldrop, Raymond S.; Volz, Richard A.

    1991-01-01

    This paper describes how the main features of the proposed Ada language extensions intended to support distribution, and offered as possible solutions for Ada9X can be implemented by transformation into standard Ada83. We start by summarizing the features proposed in a paper (Gargaro et al, 1990) which constitutes the definition of the extensions. For convenience we have called the language in its modified form AdaPT which might be interpreted as Ada with partitions. These features were carefully chosen to provide support for the construction of executable modules for execution in nodes of a network of loosely coupled computers, but flexibly configurable for different network architectures and for recovery following failure, or adapting to mode changes. The intention in their design was to provide extensions which would not impact adversely on the normal use of Ada, and would fit well in style and feel with the existing standard. We begin by summarizing the features introduced in AdaPT.

  3. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure

    NASA Astrophysics Data System (ADS)

    Cai, Kaiming; Yang, Meiyin; Ju, Hailang; Wang, Sumei; Ji, Yang; Li, Baohe; Edmonds, Kevin William; Sheng, Yu; Zhang, Bao; Zhang, Nan; Liu, Shuai; Zheng, Houzhi; Wang, Kaiyou

    2017-07-01

    All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.

  4. Suppression of polymorphonuclear (PMN) and monocyte-mediated inhibition of Candida albicans growth by delta-9-tetrahydrocannabinol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djeu, J.Y.; Parapanios, A.; Halkias, D.

    This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr atmore » 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10..mu..g/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4..mu..g/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated.« less

  5. Comparisons of switching characteristics between Ti/Al2O3/Pt and TiN/Al2O3/Pt RRAM devices with various compliance currents

    NASA Astrophysics Data System (ADS)

    Qi, Yanfei; Zhao, Ce Zhou; Liu, Chenguang; Fang, Yuxiao; He, Jiahuan; Luo, Tian; Yang, Li; Zhao, Chun

    2018-04-01

    In this study, the influence of the Ti and TiN top electrodes on the switching behaviors of the Al2O3/Pt resistive random access memory devices with various compliance currents (CCs, 1-15 mA) has been compared. Based on the similar statistical results of the resistive switching (RS) parameters such as V set/V reset, R HRS/R LRS (measured at 0.10 V) and resistance ratio with various CCs for both devices, the Ti/Al2O3/Pt device differs from the TiN/Al2O3/Pt device mainly in the forming process rather than in the following switching cycles. Apart from the initial isolated state, the Ti/Al2O3/Pt device has the initial intermediate state as well. In addition, its forming voltage is relatively lower. The conduction mechanisms of the ON and OFF state for both devices are demonstrated as ohmic conduction and Frenkel-Poole emission, respectively. Therefore, with the combined modulations of the CCs and the stop voltages, the TiN/Al2O3/Pt device is more stable for nonvolatile memory applications to further improve the RS performance.

  6. Magnetic properties of Co-based multilayers with layer-alloyed modulations

    NASA Astrophysics Data System (ADS)

    Poulopoulos, P.; Angelakeris, M.; Niarchos, D.; Krishnan, R.; Porte, M.; Batas, C.; Flevaris, N. K.

    1995-07-01

    Various types of Co-based multilayers such as Pt mCo n, Pt m[CoPt] n, Co m[CoPd] n and Co m[CoPt] n were prepared by e-gun evaporation. Strong perpendicular anisotropy with considerable coercivity of ˜ 1 kOe was found for PtCo samples with thin Co layers. Moreover, the magnetization of Pt m[CoPt] n samples was found to approach that of pure Co and in the case of n > 5 enhancement of 30% or more exhibited. Magnetic properties were found to be strongly influenced by variations of modulation parameters.

  7. Compact electro-optical module with polymer waveguides on a flexible substrate for high-density board-level communication

    NASA Astrophysics Data System (ADS)

    Weiss, J. R. M.; Lamprecht, T.; Meier, N.; Dangel, R.; Horst, F.; Jubin, D.; Beyeler, R.; Offrein, B. J.

    2010-02-01

    We report on the co-packaging of electrical CMOS transceiver and VCSEL chip arrays on a flexible electrical substrate with optical polymer waveguides. The electro-optical components are attached to the substrate edge and butt-coupled to the waveguides. Electrically conductive silver-ink connects them to the substrate at an angle of 90°. The final assembly contacts the surface of a package laminate with an integrated compressible connector. The module can be folded to save space, requires only a small footprint on the package laminate and provides short electrical high-speed signal paths. With our approach, the electro-optical package becomes a compact electro-optical module with integrated polymer waveguides terminated with either optical connectors (e.g., at the card edge) or with an identical assembly for a second processor on the board. Consequently, no costly subassemblies and connectors are needed, and a very high integration density and scalability to virtually arbitrary channel counts and towards very high data rates (20+ Gbps) become possible. Future cost targets of much less than US$1 per Gbps will be reached by employing standard PCB materials and technologies that are well established in the industry. Moreover, our technology platform has both electrical and optical connectivity and functionality.

  8. Evolution of histone 2A for chromatin compaction in eukaryotes

    PubMed Central

    Macadangdang, Benjamin R; Oberai, Amit; Spektor, Tanya; Campos, Oscar A; Sheng, Fang; Carey, Michael F; Vogelauer, Maria; Kurdistani, Siavash K

    2014-01-01

    During eukaryotic evolution, genome size has increased disproportionately to nuclear volume, necessitating greater degrees of chromatin compaction in higher eukaryotes, which have evolved several mechanisms for genome compaction. However, it is unknown whether histones themselves have evolved to regulate chromatin compaction. Analysis of histone sequences from 160 eukaryotes revealed that the H2A N-terminus has systematically acquired arginines as genomes expanded. Insertion of arginines into their evolutionarily conserved position in H2A of a small-genome organism increased linear compaction by as much as 40%, while their absence markedly diminished compaction in cells with large genomes. This effect was recapitulated in vitro with nucleosomal arrays using unmodified histones, indicating that the H2A N-terminus directly modulates the chromatin fiber likely through intra- and inter-nucleosomal arginine–DNA contacts to enable tighter nucleosomal packing. Our findings reveal a novel evolutionary mechanism for regulation of chromatin compaction and may explain the frequent mutations of the H2A N-terminus in cancer. DOI: http://dx.doi.org/10.7554/eLife.02792.001 PMID:24939988

  9. Structure functions in decomposing Au-Pt systems

    NASA Astrophysics Data System (ADS)

    Glas, R.; Blaschko, O.; Rosta, L.

    1992-09-01

    The evolution of Au-Pt alloys quenched within the miscibility gap is investigated by small-angle neutron-scattering techniques. Moreover, in the vicinity of fundamental Bragg reflections the evolution of ``sideband'' satellites induced by a lattice-parameter modulation connected with the precipitation pattern is investigated by diffuse scattering methods. Structure functions are evaluated for a series of concentrations within the miscibility gap and compared to recent results of the literature.

  10. Compact pulse width modulation circuitry for silicon photomultiplier readout.

    PubMed

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-08-07

    The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger

  11. Synaptic characteristics with strong analog potentiation, depression, and short-term to long-term memory transition in a Pt/CeO2/Pt crossbar array structure

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jun; Park, Daehoon; Yang, Paul; Beom, Keonwon; Kim, Min Ju; Shin, Chansun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-06-01

    A crossbar array of Pt/CeO2/Pt memristors exhibited the synaptic characteristics such as analog, reversible, and strong resistance change with a ratio of ∼103, corresponding to wide dynamic range of synaptic weight modulation as potentiation and depression with respect to the voltage polarity. In addition, it presented timing-dependent responses such as paired-pulse facilitation and the short-term to long-term memory transition by increasing amplitude, width, and repetition number of voltage pulse and reducing the interval time between pulses. The memory loss with a time was fitted with a stretched exponential relaxation model, revealing the relation of memory stability with the input stimuli strength. The resistance change was further enhanced but its stability got worse as increasing measurement temperature, indicating that the resistance was changed as a result of voltage- and temperature-dependent electrical charging and discharging to alter the energy barrier for charge transport. These detailed synaptic characteristics demonstrated the potential of crossbar array of Pt/CeO2/Pt memristors as artificial synapses in highly connected neuron-synapse network.

  12. Synaptic characteristics with strong analog potentiation, depression, and short-term to long-term memory transition in a Pt/CeO2/Pt crossbar array structure.

    PubMed

    Kim, Hyung Jun; Park, Daehoon; Yang, Paul; Beom, Keonwon; Kim, Min Ju; Shin, Chansun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-06-29

    A crossbar array of Pt/CeO 2 /Pt memristors exhibited the synaptic characteristics such as analog, reversible, and strong resistance change with a ratio of ∼10 3 , corresponding to wide dynamic range of synaptic weight modulation as potentiation and depression with respect to the voltage polarity. In addition, it presented timing-dependent responses such as paired-pulse facilitation and the short-term to long-term memory transition by increasing amplitude, width, and repetition number of voltage pulse and reducing the interval time between pulses. The memory loss with a time was fitted with a stretched exponential relaxation model, revealing the relation of memory stability with the input stimuli strength. The resistance change was further enhanced but its stability got worse as increasing measurement temperature, indicating that the resistance was changed as a result of voltage- and temperature-dependent electrical charging and discharging to alter the energy barrier for charge transport. These detailed synaptic characteristics demonstrated the potential of crossbar array of Pt/CeO 2 /Pt memristors as artificial synapses in highly connected neuron-synapse network.

  13. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  14. Reversibility of Pt-Skin and Pt-Skeleton Nanostructures in Acidic Media.

    PubMed

    Durst, Julien; Lopez-Haro, Miguel; Dubau, Laetitia; Chatenet, Marian; Soldo-Olivier, Yvonne; Guétaz, Laure; Bayle-Guillemaud, Pascale; Maillard, Frédéric

    2014-02-06

    Following a well-defined series of acid and heat treatments on a benchmark Pt3Co/C sample, three different nanostructures of interest for the electrocatalysis of the oxygen reduction reaction were tailored. These nanostructures could be sorted into the "Pt-skin" structure, made of one pure Pt overlayer, and the "Pt-skeleton" structure, made of 2-3 Pt overlayers surrounding the Pt-Co alloy core. Using a unique combination of high-resolution aberration-corrected STEM-EELS, XRD, EXAFS, and XANES measurements, we provide atomically resolved pictures of these different nanostructures, including measurement of the Pt-shell thickness forming in acidic media and the resulting changes of the bulk and core chemical composition. It is shown that the Pt-skin is reverted toward the Pt-skeleton upon contact with acid electrolyte. This change in structure causes strong variations of the chemical composition.

  15. Compact three-dimensional super-resolution system based on fluorescence emission difference microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu

    2017-12-01

    A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.

  16. Large resistivity modulation in mixed-phase metallic systems

    DOE PAGES

    Lee, Yeonbae; Liu, Z. Q.; Heron, J. T.; ...

    2015-01-07

    Giant physical responses were discovered, in numerous systems, when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. We have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a 'giant' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic andmore » antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. Finally, the observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.« less

  17. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    NASA Astrophysics Data System (ADS)

    Menendez-Mora, Christian L.

    High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus

  18. CuPt and CuPtRu Nanostructures for Ammonia Oxidation Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manso, R H.; Song, L.; Liang, Z.

    Liquid fuels, such as methanol, ethanol, and ammonia, are attractive alternative to hydrogen for fuel cells due to their lower costs for storage and distribution. However, lack of sufficiently active catalysts for their oxidation reactions is a roadblock. Our previous study found that Pt 3Cu nanodendrites yielded higher activity and durability than Pt nanoparticles for methanol oxidation reaction (MOR) in acid. In this study, we synthesized two types of nanostructures of CuPt and CuPtRu catalysts via seed-mediated growth of Pt and Ru on Cu and tested their performance for ammonia oxidation reaction (AOR) in alkaline solution. Unlike for MOR, themore » nanodendrites do not promote AOR activity - CuPt performs similar to Pt and CuPtRu is less active than Pt. Interestingly, the AOR peak current is increased by 64% on CuPt nanowires and 330% on CuPtRu nanowires as compared to Pt nanoparticles. These results suggest that AOR prefers extended surface on long nanowires, distinctly differing from MOR. This can be contributed to two factors: NH 3 oxidization to N 2 involves dimerization of two N-containing intermediates to form the N-N bond and diffusion batters for adsorbed intermediates are generally lower on terrace than at low-coordination sites. This demonstrated strong effect of surface morphology will be further studied and utilized in developing advanced AOR nanocatalysts.« less

  19. CuPt and CuPtRu Nanostructures for Ammonia Oxidation Reaction

    DOE PAGES

    Manso, R H.; Song, L.; Liang, Z.; ...

    2018-04-01

    Liquid fuels, such as methanol, ethanol, and ammonia, are attractive alternative to hydrogen for fuel cells due to their lower costs for storage and distribution. However, lack of sufficiently active catalysts for their oxidation reactions is a roadblock. Our previous study found that Pt 3Cu nanodendrites yielded higher activity and durability than Pt nanoparticles for methanol oxidation reaction (MOR) in acid. In this study, we synthesized two types of nanostructures of CuPt and CuPtRu catalysts via seed-mediated growth of Pt and Ru on Cu and tested their performance for ammonia oxidation reaction (AOR) in alkaline solution. Unlike for MOR, themore » nanodendrites do not promote AOR activity - CuPt performs similar to Pt and CuPtRu is less active than Pt. Interestingly, the AOR peak current is increased by 64% on CuPt nanowires and 330% on CuPtRu nanowires as compared to Pt nanoparticles. These results suggest that AOR prefers extended surface on long nanowires, distinctly differing from MOR. This can be contributed to two factors: NH 3 oxidization to N 2 involves dimerization of two N-containing intermediates to form the N-N bond and diffusion batters for adsorbed intermediates are generally lower on terrace than at low-coordination sites. This demonstrated strong effect of surface morphology will be further studied and utilized in developing advanced AOR nanocatalysts.« less

  20. Pressure dependence of the monoclinic phase in (1–x)Pb(Mg 1/3Nb 2/3)O 3-xPbTiO₃ solid solutions

    DOE PAGES

    Ahart, Muhtar; Sinogeikin, Stanislav; Shebanova, Olga; ...

    2012-12-26

    We combine high-pressure x-ray diffraction, high-pressure Raman scattering, and optical microscopy to investigate a series of (1–x)Pb(Mg 1/3Nb 2/3)O 3-xPbTiO₃ (PMN-xPT) solid solutions (x=0.2, 0.3, 0.33, 0.35, 0.37, 0.4) in diamond anvil cells up to 20 GPa at 300 K. The Raman spectra show a peak centered at 380 cm⁻¹ starting above 6 GPa for all samples, in agreement with previous observations. X-ray diffraction measurements are consistent with this spectral change indicating a structural phase transition; we find that the triplet at the pseudocubic (220) Bragg peak merges into a doublet above 6 GPa. Our results indicate that the morphotropicmore » phase boundary region (x=0.33–0.37) with the presence of monoclinic symmetry persists up to 7 GPa. The pressure dependence of ferroelectric domains in PMN-0.32PT single crystals was observed using a polarizing optical microscope. The domain wall density decreases with pressure and the domains disappear at a modest pressure of 3 GPa. We propose a pressure-composition phase diagram for PMN-xPT solid solutions.« less

  1. Development of "fragility" in relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Wang, Yi-zhen; Chen, Lan; Wang, Hai-yan; Frank Zhang, X.; Fu, Jun; Xiong, Xiao-min; Zhang, Jin-xiu

    2014-02-01

    Relaxor ferroelectrics (RFs), a special class of the disordered crystals or ceramics, exhibit a pronounced slowdown of their dynamics upon cooling as glass-forming liquids, called the "Super-Arrhenius (SA)" relaxation. Despite great progress in glass-forming liquids, the "fragility" property of the SA relaxation in RFs remains unclear so far. By measuring the temperature-dependent dielectric relaxation in the typical relaxor Pb(Mg1/3Nb2/3)O3-x%PbTiO3 (PMN - x%PT) with 0 ≤ x ≤ 20.0, we in-depth study the "fragility" properties of the SA relaxation in PMN - x%PT. Such fascinating issues as the mechanism of the "fragility" at an atomic scale, the roles of the systematic configurational entropy change and interaction among relaxing units (RUs, including polar nanoregions and free dipoles) and the relation between "fragility" and ferroelectric order are investigated. Our results show that both the "fragility" of the temperature-dependent SA relaxation and ferroelectric order in the PMN - x%PT systems investigated arise thermodynamically from the configurational-entropy loss due to the attractive interaction among RUs, and develops as a power law, possibly diverging at the finite critical temperature Tc. A reasonable physical scenario, based on our "configurational-entropy-loss" theory and Nowick's "stress-induced-ordering" theory, was proposed.

  2. SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response

    PubMed Central

    Mund, Andreas; Schubert, Tobias; Staege, Hannah; Kinkley, Sarah; Reumann, Kerstin; Kriegs, Malte; Fritsch, Lauriane; Battisti, Valentine; Ait-Si-Ali, Slimane; Hoffbeck, Anne-Sophie; Soutoglou, Evi; Will, Hans

    2012-01-01

    Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure. PMID:23034801

  3. Haemoglobin content modulated deformation dynamics of red blood cells on a compact disc.

    PubMed

    Kar, Shantimoy; Ghosh, Uddipta; Maiti, Tapas Kumar; Chakraborty, Suman

    2015-12-21

    We investigate the deformation characteristics of red blood cells (RBCs) on a rotating compact disc platform. Our study brings out the interplay between haemoglobin content and RBC deformability in a centrifugally actuated microfluidic environment. We reveal that RBC deformations follow the similar trend of principal stress distributed throughout the radial direction, rendering an insight into the mechano-physical processes involved. This study can be used as a diagnostic marker to determine haematological disorders in diseased blood samples tested on compact disc based microfluidic platforms.

  4. Preferential growth and enhanced dielectric properties of Ba0.7Sr0.3TiO3 thin films with preannealed Pt bottom electrode

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaohong; Defaÿ, Emmanuel; Aïd, Marc; Ren, Yinjuan; Zhang, Caiyun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2013-03-01

    Ba0.7Sr0.3TiO3 (BST) thin films, about 100 nm in thickness, were prepared on unannealed and 700 °C-preannealed Pt bottom electrodes by the ion beam sputtering and post-deposition annealing method. It was found that the preannealed Pt layer has a more compact structure, making it not only a bottom electrode but also a good template for high-quality BST thin film growth. The BST films deposited on preannealed Pt bottom electrodes showed (0 0 l)-preferred orientation, dense and uniform microstructure with no intermediate phase formed at the film/electrode interface, and thus enhanced dielectric properties. As a result, the typical relative dielectric constant and tunability (under a dc electric field of 1 MV cm-1) reach 180 and 50.1%, respectively, for the BST thin films with preannealed Pt bottom electrodes, which are significantly higher than those (166 and 41.3%, respectively) for the BST thin films deposited on unannealed Pt bottom electrodes.

  5. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications

    PubMed Central

    Sun, Enwei; Cao, Wenwu

    2014-01-01

    In the past decade, domain engineered relaxor-PT ferroelectric single crystals, including (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) and (1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3 (PIN-PMN-PT), with compositions near the morphotropic phase boundary (MPB) have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. Compared to traditional PbZr1-xTixO3 (PZT) ceramics, the piezoelectric coefficient d33 is increased by a factor of 5 and the electromechanical coupling factor k33 is increased from < 70% to > 90%. Many emerging rich physical phenomena, such as charged domain walls, multi-phase coexistence, domain pattern symmetries, etc., have posed challenging fundamental questions for scientists. The superior electromechanical properties of these domain engineered single crystals have prompted the design of a new generation electromechanical devices, including sensors, transducers, actuators and other electromechanical devices, with greatly improved performance. It took less than 7 years from the discovery of larger size PMN-PT single crystals to the commercial production of the high-end ultrasonic imaging probe “PureWave”. The speed of development is unprecedented, and the research collaboration between academia and industrial engineers on this topic is truly intriguing. It is also exciting to see that these relaxor-PT single crystals are being used to replace traditional PZT piezoceramics in many new fields outside of medical imaging. The new ternary PIN-PMN-PT single crystals, particularly the ones with Mn-doping, have laid a solid foundation for innovations in high power acoustic projectors and ultrasonic motors, hinting another revolution in underwater SONARs and miniature actuation devices. This article intends to provide a comprehensive review on the development of relaxor-PT single crystals, spanning material discovery

  6. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications.

    PubMed

    Sun, Enwei; Cao, Wenwu

    2014-08-01

    In the past decade, domain engineered relaxor-PT ferroelectric single crystals, including (1- x )Pb(Mg 1/3 Nb 2/3 )O 3 - x PbTiO 3 (PMN-PT), (1- x )Pb(Zn 1/3 Nb 2/3 )O 3 - x PbTiO 3 (PZN-PT) and (1- x - y )Pb(In 1/2 Nb 1/2 )O 3 - y Pb(Mg 1/3 Nb 2/3 )O 3 - x PbTiO 3 (PIN-PMN-PT), with compositions near the morphotropic phase boundary (MPB) have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. Compared to traditional PbZr 1- x Ti x O 3 (PZT) ceramics, the piezoelectric coefficient d 33 is increased by a factor of 5 and the electromechanical coupling factor k 33 is increased from < 70% to > 90%. Many emerging rich physical phenomena, such as charged domain walls, multi-phase coexistence, domain pattern symmetries, etc., have posed challenging fundamental questions for scientists. The superior electromechanical properties of these domain engineered single crystals have prompted the design of a new generation electromechanical devices, including sensors, transducers, actuators and other electromechanical devices, with greatly improved performance. It took less than 7 years from the discovery of larger size PMN-PT single crystals to the commercial production of the high-end ultrasonic imaging probe "PureWave". The speed of development is unprecedented, and the research collaboration between academia and industrial engineers on this topic is truly intriguing. It is also exciting to see that these relaxor-PT single crystals are being used to replace traditional PZT piezoceramics in many new fields outside of medical imaging. The new ternary PIN-PMN-PT single crystals, particularly the ones with Mn-doping, have laid a solid foundation for innovations in high power acoustic projectors and ultrasonic motors, hinting another revolution in underwater SONARs and miniature actuation devices. This article intends to provide a comprehensive review on the development of relaxor-PT

  7. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis

    DOE PAGES

    Bu, Lingzheng; Zhang, Nan; Guo, Shaojun; ...

    2016-12-16

    Compressive surface strains have been necessary to boost oxygen reduction reaction (ORR) activity in core/shell M/Pt catalysts (where M can be Ni, Co, Fe). We report a class of PtPb/Pt core/shell nanoplate catalysts that exhibit large biaxial tensile strains. The stable Pt (110) facets of the nanoplates have high ORR specific and mass activities that reach 7.8 milliampere per centimeter square and 4.3 ampere per milligram of platinum at 0.9 volts versus the reversible hydrogen electrode (RHE), respectively. Density functional theory calculations revealed that the edge-­Pt and top (bottom)-Pt (110) facets undergo large tensile strains that help optimize the Pt-­Omore » bond strength. The intermetallic core and uniform 4 layers of Pt shell of the PtPb/Pt nanoplates appear to underlie the high endurance of these catalysts, which can undergo 50,000 voltage cycles with negligible activity decay and no apparent structure and composition changes.« less

  8. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bu, Lingzheng; Zhang, Nan; Guo, Shaojun

    Compressive surface strains have been necessary to boost oxygen reduction reaction (ORR) activity in core/shell M/Pt catalysts (where M can be Ni, Co, Fe). We report a class of PtPb/Pt core/shell nanoplate catalysts that exhibit large biaxial tensile strains. The stable Pt (110) facets of the nanoplates have high ORR specific and mass activities that reach 7.8 milliampere per centimeter square and 4.3 ampere per milligram of platinum at 0.9 volts versus the reversible hydrogen electrode (RHE), respectively. Density functional theory calculations revealed that the edge-­Pt and top (bottom)-Pt (110) facets undergo large tensile strains that help optimize the Pt-­Omore » bond strength. The intermetallic core and uniform 4 layers of Pt shell of the PtPb/Pt nanoplates appear to underlie the high endurance of these catalysts, which can undergo 50,000 voltage cycles with negligible activity decay and no apparent structure and composition changes.« less

  9. Firefighting module development

    NASA Technical Reports Server (NTRS)

    Burns, R. A.

    1981-01-01

    The firefighting module is a lightweight, compact, self contained, helicopter-transportable unit for fighting harbor and other specialty fires as well as for use in emergency water pumping applications. Units were fabricated and tested. A production type unit is undergoing an inservice evaluation and demonstration program at the port of St Louis. The primary purpose is to promote enhanced harbor fire protection at inland and coastal ports. The module and its development are described.

  10. Melt infiltration of silicon carbide compacts. II - Evaluation of solidification microstructures

    NASA Technical Reports Server (NTRS)

    Asthana, Rajiv; Rohatgi, Pradeep K.

    1993-01-01

    Microstructural aspects of alloy solidification within the interstices of porous compacts of platelet-shaped single crystals of alpha-SiC, when the latter are infiltrated with a hot metal under pressure, have been described. Microstructural evidence is presented of selective reorientation of platelets and nonhomogeneous solute distribution under shear of pressurized melt, of constrained growth of primary solid within finite width zones, and of the modulation of coring due to microsegregation as a result of variations in the pore size of compacts.

  11. Compacting effect of BBR3464, a new-generation trisplatinum anticancer agent, on DNA.

    PubMed

    Banerjee, T; Dubey, P; Mukhopadhyay, R

    2010-07-01

    BBR3464 is a trinuclear platinum compound of formula [{trans-PtCl(NH(3))(2)}(2)-mu-trans-Pt(NH(3))(2){NH(2)(CH(2))(6)NH(2)}(2)](4+). It is a new-generation platinum chemotherapeutic agent that exhibits cytotoxicity at ten to thousand times lower dose limit compared to the well-known platinum drug cisplatin, in cisplatin-sensitive as well as in cisplatin-resistant cells. DNA is thought to be the primary cellular target of BBR3464. In this work, we have applied high-resolution atomic force microscopy (AFM) for the first time, to obtain direct information on BBR3464-induced structural changes of DNA. It is found that the DNA molecules get compacted after treatment with BBR3464, for the drug:DNA molar ratio and the drug treatment period of 0.01 and 48 h, respectively. These values of molar ratio and incubation period have been obtained previously, as a result of biochemical optimization studies carried out for achieving maximum drug effects. The DNA structural changes, as observed in AFM topographs, have been correlated to the bulk level spectroscopic information. A remark on the significance of BBR3464-induced DNA compaction with respect to the available AFM reports on DNA modification by cisplatin has been made. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  12. Graphene-silicon phase modulators with gigahertz bandwidth

    NASA Astrophysics Data System (ADS)

    Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A. K.; Ferrari, A. C.; Romagnoli, M.

    2018-01-01

    The modulator is a key component in optical communications. Several graphene-based amplitude modulators have been reported based on electro-absorption. However, graphene phase modulators (GPMs) are necessary for functions such as applying complex modulation formats or making switches or phased arrays. Here, we present a 10 Gb s-1 GPM integrated in a Mach-Zehnder interferometer configuration. This is a compact device based on a graphene-insulator-silicon capacitor, with a phase-shifter length of 300 μm and extinction ratio of 35 dB. The GPM has a modulation efficiency of 0.28 V cm at 1,550 nm. It has 5 GHz electro-optical bandwidth and operates at 10 Gb s-1 with 2 V peak-to-peak driving voltage in a push-pull configuration for binary transmission of a non-return-to-zero data stream over 50 km of single-mode fibre. This device is the key building block for graphene-based integrated photonics, enabling compact and energy-efficient hybrid graphene-silicon modulators for telecom, datacom and other applications.

  13. Tailoring Curie temperature and magnetic anisotropy in ultrathin Pt/Co/Pt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parakkat, Vineeth Mohanan; Ganesh, K. R.; Anil Kumar, P. S., E-mail: anil@physics.iisc.ernet.in

    The dependence of perpendicular magnetization and Curie temperature (T{sub c}) of Pt/Co/Pt thin films on the thicknesses of Pt seed (Pt{sub s}) and presence of Ta buffer layer has been investigated in this work. Pt and Co thicknesses were varied between 2 to 8 nm and 0.35 to 1.31 nm (across the spin reorientation transition thickness) respectively and the T{sub c} was measured using SQUID magnetometer. We have observed a systematic dependence of T{sub c} on the thickness of Pt{sub s}. For 8 nm thickness of Pt{sub s} the Co layer of 0.35 nm showed ferromagnetism with perpendicular anisotropy atmore » room temperature. As the thickness of the Pt{sub s} was decreased to 2 nm, the T{sub c} went down below 250 K. XRD data indicated polycrystalline growth of Pt{sub s} on SiO{sub 2}. On the contrary Ta buffer layer promoted the growth of Pt(111). As a consequence Ta(5 nm)/Pt(3 nm)/Co(0.35 nm)/Pt(2 nm) had much higher T{sub c} (above 300 K) with perpendicular anisotropy when compared to the same stack without the Ta layer. Thus we could tune the ferromagnetic T{sub c} and anisotropy by varying the Pt{sub s} thickness and also by introducing Ta buffer layer. We attribute these observations to the micro-structural evolution of Pt{sub s} layer which hosts the Co layer.« less

  14. Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Sheng, Jingwei; Wan, Shuangai; Sun, Yifan; Dou, Rongshe; Guo, Yuhao; Wei, Kequan; He, Kaiyan; Qin, Jie; Gao, Jia-Hong

    2017-09-01

    In recent years, substantial progress has been made in developing a new generation of magnetoencephalography (MEG) with a spin-exchange relaxation free (SERF)-based atomic magnetometer (AM). An AM employs alkali atoms to detect weak magnetic fields. A compact AM array with high sensitivity is crucial to the design; however, most proposed compact AMs are potassium (K)- or rubidium (Rb)-based with single beam configurations. In the present study, a pump-probe two beam configuration with a Cesium (Cs)-based AM (Cs-AM) is introduced to detect human neuronal magnetic fields. The length of the vapor cell is 4 mm, which can fully satisfy the need of designing a compact sensor array. Compared with state-of-the-art compact AMs, our new Cs-AM has two advantages. First, it can be operated in a SERF regime, requiring much lower heating temperature, which benefits the sensor with a closer distance to scalp due to ease of thermal insulation and less electric heating noise interference. Second, the two-beam configuration in the design can achieve higher sensitivity. It is free of magnetic modulation, which is necessary in one-beam AMs; however, such modulation may cause other interference in multi-channel circumstances. In the frequency band between 10 Hz and 30 Hz, the noise level of the proposed Cs-AM is approximately 10 f T/Hz1/2, which is comparable with state-of-the-art K- or Rb-based compact AMs. The performance of the Cs-AM was verified by measuring human auditory evoked fields (AEFs) in reference to commercial superconducting quantum interference device (SQUID) channels. By using a Cs-AM, we observed a clear peak in AEFs around 100 ms (M100) with a much larger amplitude compared with that of a SQUID, and the temporal profiles of the two devices were in good agreement. The results indicate the possibility of using the compact Cs-AM for MEG recordings, and the current Cs-AM has the potential to be designed for multi-sensor arrays and gradiometers for future neuroscience

  15. Suppression of Rayleigh wave spurious signal in ultra-wideband surface acoustic wave devices employing 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Ji, Xiaojun; Xiao, Qiang; Chen, Jing; Wang, Hualei; Omori, Tatsuya; Changjun, Ahn

    2017-05-01

    The propagation characteristics of surface acoustic waves (SAWs) on rotated Y-cut X-propagating 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3(PMN-33%PT) substrate are theoretically analyzed. It is shown that besides the existence of a shear horizontal (SH) SAW with ultrahigh electromechanical coupling factor K2, a Rayleigh SAW also exists causing strong spurious response. The calculated results showed that the spurious Rayleigh SAW can be sufficiently suppressed by properly selecting electrode and its thickness with optimized rotating angle while maintaining large K2 of SH SAW. The fractional -3 dB bandwidth of 47% is achievable for the ladder type filter constructed by Au IDT/48oYX-PMN-33%PT resonators.

  16. Fe Stabilization by Intermetallic L1 0-FePt and Pt Catalysis Enhancement in L1 0-FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junrui; Xi, Zheng; Pan, Yung -Tin

    We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L1 0-MPt alloy nanoparticle (NP) structure and how to surround the L1 0-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L1 0-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Ptmore » shell, especially the 2 atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO 4 solution (both at room temperature and 60°C) and in the membrane electrode assembly (MEA) at 80°C. The L1 0-FePt/Pt catalyst has a mass activity of 0.7 A/mg Pt from the half-cell ORR test and shows no obvious mass activity loss after 30,000 potential cycles between 0.6 V and 0.95 V at 80°C in the MEA, meeting the DOE 2020 target (<40% loss in mass activity). Here, we are extending the concept and preparing other L1 0-MPt/Pt NPs, such as L1 0-CoPt/Pt NPs, with reduced NP size as a highly efficient ORR catalyst for automotive fuel cell applications.« less

  17. Fe Stabilization by Intermetallic L1 0-FePt and Pt Catalysis Enhancement in L1 0-FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells

    DOE PAGES

    Li, Junrui; Xi, Zheng; Pan, Yung -Tin; ...

    2018-02-07

    We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L1 0-MPt alloy nanoparticle (NP) structure and how to surround the L1 0-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L1 0-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Ptmore » shell, especially the 2 atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO 4 solution (both at room temperature and 60°C) and in the membrane electrode assembly (MEA) at 80°C. The L1 0-FePt/Pt catalyst has a mass activity of 0.7 A/mg Pt from the half-cell ORR test and shows no obvious mass activity loss after 30,000 potential cycles between 0.6 V and 0.95 V at 80°C in the MEA, meeting the DOE 2020 target (<40% loss in mass activity). Here, we are extending the concept and preparing other L1 0-MPt/Pt NPs, such as L1 0-CoPt/Pt NPs, with reduced NP size as a highly efficient ORR catalyst for automotive fuel cell applications.« less

  18. Multiwavelength observations of the γ-ray-emitting narrow-line Seyfert 1 PMN J0948+0022 in 2011

    DOE PAGES

    D'Ammando, F.; Larsson, J.; Orienti, M.; ...

    2014-01-28

    Here, we report on radio-to-γ-ray observations during 2011 May–September of PMN J0948+0022, the first narrow-line Seyfert 1 (NLSy1) galaxy detected in γ-rays by Fermi-Large Area Telescope. Strong variability was observed in γ-rays, with two flaring periods peaking on 2011 June 20 and July 28. The variability observed in optical and near-infrared seems to have no counterpart in γ-rays. The difference in behaviour could be related to a bending and inhomogeneous jet or a turbulent extreme multicell scenario. The radio spectra showed a variability pattern typical of relativistic jets. The XMM spectrum shows that the emission from the jet dominates abovemore » ~2 keV, while a soft X-ray excess is evident in the low-energy part of the X-ray spectrum. Models where the soft emission is partly produced by blurred reflection or Comptonization of the thermal disc emission provide good fits to the data. The X-ray spectral slope is similar to that found in radio-quiet NLSy1, suggesting that a standard accretion disc is present, as expected from the high accretion rate. Except for the soft X-ray excess, unusual in jet-dominated active galactic nuclei, PMN J0948+0022, shows all characteristics of the blazar class.« less

  19. Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948 0022 in March-July 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.

    Following the recent discovery of {gamma} rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to {gamma} rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to {gamma}-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the {gamma}-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest wasmore » at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.« less

  20. Exchange coupled CoPt/FePtC media for heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Dutta, Tanmay; Piramanayagam, S. N.; Ru, Tan Hui; Saifullah, M. S. M.; Bhatia, C. S.; Yang, Hyunsoo

    2018-04-01

    L10 FePtC granular media are being studied as potential future magnetic recording media and are set to be used in conjunction with heat assisted magnetic recording (HAMR) to enable recording at write fields within the range of current day recording heads. Media structures based on a FePtC storage layer and a capping layer can alleviate the switching field distribution (SFD) requirements of HAMR and reduce the noise originating from the writing process. However, the current designs suffer from SFD issues due to high temperature writing. To overcome this problem, we study a CoPt/FePtC exchange coupled composite structure, where FePtC serves as the storage layer and CoPt (with higher Curie temperature, Tc) as the capping layer. CoPt remains ferromagnetic at near Tc of FePtC. Consequently, the counter exchange energy from CoPt would reduce the noise resulting from the adjacent grain interactions during the writing process. CoPt/FePtC bilayer samples with different thicknesses of CoPt were investigated. Our studies found that CoPt forms a continuous layer at a thickness of 6 nm and leads to considerable reduction in the saturation field and its distribution.

  1. Study on the failure temperature of Ti/Pt/Au and Pt5Si2-Ti/Pt/Au metallization systems

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Han, Jianqiang; Yin, Yijun; Dong, Lizhen; Niu, Wenju

    2017-09-01

    The Ti/Pt/Au metallization system has an advantage of resisting KOH or TMAH solution etching. To form a good ohmic contact, the Ti/Pt/Au metallization system must be alloyed at 400 °C. However, the process temperatures of typical MEMS packaging technologies, such as anodic bonding, glass solder bonding and eutectic bonding, generally exceed 400 °C. It is puzzling if the Ti/Pt/Au system is destroyed during the subsequent packaging process. In the present work, the resistance of doped polysilicon resistors contacted by the Ti/Pt/Au metallization system that have undergone different temperatures and time are measured. The experimental results show that the ohmic contacts will be destroyed if heated to 500 °C. But if a 20 nm Pt film is sputtered on heavily doped polysilicon and alloyed at 700 °C before sputtering Ti/Pt/Au films, the Pt5Si2-Ti/Pt/Au metallization system has a higher service temperature of 500 °C, which exceeds process temperatures of most typical MEMS packaging technologies. Project supported by the National Natural Science Foundation of China (No. 61376114).

  2. Compact atom interferometer using single laser

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-wey; Yu, Nan

    2018-06-01

    A typical atom interferometer requires vastly different laser frequencies at different stages of operation, e.g., near resonant light for laser cooling and far detuned light for atom optics, such that multiple lasers are typically employed. The number of laser units constrains the achievable minimum size and power in practical devices for resource critical environments such as space. We demonstrate a compact atom interferometer accelerometer operated by a single diode laser. This is achieved by dynamically changing the laser output frequency in GHz range while maintaining spectroscopic reference to an atomic transition via a sideband generated by phase modulation. At the same time, a beam path sharing configuration is also demonstrated for a compact sensor head design, in which atom interferometer beams share the same path as that of the cooling beam. This beam path sharing also significantly simplifies three-axis atomic accelerometry in microgravity using single sensor head.

  3. Analysis of laboratory compaction methods of roller compacted concrete

    NASA Astrophysics Data System (ADS)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  4. Compact Multimedia Systems in Multi-chip Module Technology

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Alkalaj, Leon

    1995-01-01

    This tutorial paper shows advanced multimedia system designs based on multi-chip module (MCM) technologies that provide essential computing, compression, communication, and storage capabilities for various large scale information highway applications.!.

  5. Tunable strain effect and ferroelectric field effect on the electronic transport properties of La0.5Sr0.5CoO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Q. X.; Wang, W.; Zhao, X. Q.; Li, X. M.; Wang, Y.; Luo, H. S.; Chan, H. L. W.; Zheng, R. K.

    2012-05-01

    Tensiled La0.5Sr0.5CoO3 (LSCO) thin films were epitaxially grown on piezoelectric 0.67Pb (Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) single-crystal substrates. Due to the epitaxial nature of the interface, the lattice strain induced by ferroelectric poling or the converse piezoelectric effect in the PMN-PT substrate is effectively transferred to the LSCO film and thus reduces the tensile strain of the film, giving rise to a decrease in the resistivity of the LSCO film. We discuss these strain effects within the framework of the spin state transition of Co3+ ions and modification of the electronic bandwidth that is relevant to the induced strain. By simultaneously measuring the strain and the resistivity, quantitative relationship between the resistivity and the strain was established for the LSCO film. Both theoretical calculation and experimental results demonstrate that the ferroelectric field effect at room temperature in the LSCO/PMN-PT field-effect transistor is minor and could be neglected. Nevertheless, with decreasing temperature, the ferroelectric field effect competes with the strain effect and plays a more and more important role in influencing the electronic transport properties of the LSCO film, which we interpreted as due to the localization of charge carriers at low temperature.

  6. Design of a Compact Actuation and Control System for Flexible Medical Robots.

    PubMed

    Morimoto, Tania K; Hawkes, Elliot Wright; Okamura, Allison M

    2017-07-01

    Flexible medical robots can improve surgical procedures by decreasing invasiveness and increasing accessibility within the body. Using preoperative images, these robots can be designed to optimize a procedure for a particular patient. To minimize invasiveness and maximize biocompatibility, the actuation units of flexible medical robots should be placed fully outside the patient's body. In this letter, we present a novel, compact, lightweight, modular actuation, and control system for driving a class of these flexible robots, known as concentric tube robots. A key feature of the design is the use of three-dimensional printed waffle gears to enable compact control of two degrees of freedom within each module. We measure the precision and accuracy of a single actuation module and demonstrate the ability of an integrated set of three actuation modules to control six degrees of freedom. The integrated system drives a three-tube concentric tube robot to reach a final tip position that is on average less than 2 mm from a given target. In addition, we show a handheld manifestation of the device and present its potential applications.

  7. 25 CFR Appendix A to Part 1000 - Model Compact of Self-Governance Between the Tribe and the Department of the Interior

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Model Compact of Self-Governance Between the Tribe and... AMENDMENTS TO THE INDIAN SELF-DETERMINATION AND EDUCATION ACT Pt. 1000, App. A Appendix A to Part 1000—Model... efficiencies in service delivery; and provide a documented example for the development of future Federal Indian...

  8. SFG study of the ethanol in an acidic medium--Pt(110) interface: effects of the alcohol concentration.

    PubMed

    Gomes, Janaina F; Busson, Bertrand; Tadjeddine, Abderrahmane

    2006-03-23

    Ethanol in an acidic solution-Pt(110) interface was studied by SFG spectroscopy (between 1820 and 2325 cm(-1)) to explore primarily the effects of the alcohol concentration. Stretching bands of H-Pt (ca. 1970 or 2050 cm(-1)) and CO (ca. 1980 and 2040 cm(-1)) species, produced by the ethanol oxidation, were detected during the adsorption and oxidation of 0-1 mol L(-1) ethanol in a 0.1 mol L(-1) HClO(4) solution on the electrode surface. Hydrogen and CO coadsorb stably on Pt(110) between 0.05 and 0.15 V in ethanol-containing solutions. In this potential range, the blue shift of the hydrogen resonance (ca. 80 cm(-1)) reveals a weakening of the hydrogen bonding between adsorbed hydrogen and water molecules in the double layer. After the hydrogen desorption (0.15 V), the formation of compact CO islands, depending on the ethanol concentration, lifts the Pt(110) surface reconstruction. In ethanol-free solution, the surface remains reconstructed. The lower-frequency CO band is assigned to the CO species adsorbed on (1 x 2) reconstructed Pt(110) domains, having smaller local coverages, while the higher-frequency CO band is attributed to the close-packed CO species adsorbed on (1 x 1) patches. The reaction pathway forming CO(2) is less favored with increasing ethanol concentration.

  9. Strategic modulation of the photonic properties of conjugated organometallic Pt-Ir polymers exhibiting hybrid CT-excited states.

    PubMed

    Soliman, Ahmed M; Zysman-Colman, Eli; Harvey, Pierre D

    2015-04-01

    Polymer 6, ([trans-Pt(PBu3 )2 (C≡C)2 ]-[Ir(dFMeppy)2 (N^N)](PF6 ))n , (([Pt]-[Ir](PF6 ))n ; N^N = 5,5'-disubstituted-2,2'-bipyridyl; dFMeppy = 2-(2,4-difluoro-phenyl)-5-methylpyridine) is prepared along with model compounds. These complexes are investigated by absorption and emission spectroscopy and their photophysical and electrochemical properties are measured and compared with their corresponding non fluorinated complexes. Density functional theory (DFT) and time-dependent DFT computations corroborate the nature of the excited state as being a hybrid between the metal-to-ligand charge transfer ((1,3) MLCT) for the trans-Pt(PBu3 )2 (C≡CAr)2 unit, [Pt] and the metal-to-ligand/ligand-to-ligand' charge transfer ((1,3) ML'CT/LL'CT) for [Ir] with L = dFMeppy. Overall, the fluorination of the phenylpyridine group expectedly does not change the nature of the excited state but desirably induces a small blue shift of the absorption and emission bands along a slight decrease in emission quantum yields and lifetimes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.

    Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst

  11. Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts

    DOE PAGES

    Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.; ...

    2016-11-01

    Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst

  12. Optical radiation emissions from compact fluorescent lamps.

    PubMed

    Khazova, M; O'Hagan, J B

    2008-01-01

    There is a drive to energy efficiency to mitigate climate change. To meet this challenge, the UK Government has proposed phasing out incandescent lamps by the end of 2011 and replacing them with energy efficient fluorescent lighting, including compact fluorescent lamps (CFLs) with integrated ballasts. This paper presents a summary of an assessment conducted by the Health Protection Agency in March 2008 to evaluate the optical radiation emissions of CFLs currently available in the UK consumer market. The study concluded that the UV emissions from a significant percentage of the tested CFLs with single envelopes may result in foreseeable overexposure of the skin when these lamps are used in desk or task lighting applications. The optical output of all tested CFLs, in addition to high-frequency modulation, had a 100-Hz envelope with modulation in excess of 15%. This degree of modulation may be linked to a number of adverse effects.

  13. Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948+0022 in 2009 March-July

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-11-25

    For this research, following the recent discovery of γ rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to γ rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to γ-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the γ-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band.more » The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. In conclusion, these results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.« less

  14. Design of CMOS compatible and compact, thermally-compensated electro-optic modulator based on off-axis microring resonator for dense wavelength division multiplexing applications.

    PubMed

    Haldar, Raktim; Banik, Abhik D; Varshney, Shailendra K

    2014-09-22

    In this work, we propose and demonstrate the performance of silicon-on-insulator (SOI) off-axis microring resonator (MRR) as electro-optic modulator (EOM). Adding an extra off-axis inner-ring in conventional microring structure provides control to compensate thermal effects on EOM. It is shown that dynamically controlled bias-voltage applied to the outer ring has the potency to quell the thermal effects over a wide range of temperature. Thus, besides the appositely biased conventional microring, off-axis inner microring with pre-emphasized electrical input message signal enables our proposed structure suitable for high data-rate dense wavelength division multiplexing scheme of optical communication within a very compact device size.

  15. A parity-time symmetric coherent plasmonic absorber-amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, Brian, E-mail: bbaum@stanford.edu; Dionne, Jennifer, E-mail: jdionne@stanford.edu; Alaeian, Hadiseh

    Non-Hermitian parity-time (PT)-symmetric optical potentials have led to a new class of unidirectional photonic components based on the spatially symmetric and balanced inclusion of loss and gain. While most proposed and implemented PT-symmetric optical devices have wavelength-scale dimensions, no physical constraints preclude development of subwavelength PT-symmetric components. We theoretically demonstrate a nanoscale PT-symmetric, all-optical plasmonic modulator capable of phase-controlled amplification and directional absorption. The modulator consists of two deeply subwavelength channels composed of either gain or loss dielectric material, embedded in a metallic cladding. When illuminating on-resonance by two counter-propagating plane waves, the aperture's total output can be modulated bymore » changing the phase offset between the two waves. Modulation depths are greater than 10 dB, with output power varying from less than one half of the incident power to more than six times amplification. Off-resonance, the aperture possesses strong phase-controlled directionality with the output from one side varying from perfect absorption to strong scattering and transmission. The device design provides a platform for nanoscale all-optical modulators with gain while potentially enabling coherent perfect absorption and lasing in a single, compact structure.« less

  16. A compact pulse shape discriminator module for large neutron detector arrays

    NASA Astrophysics Data System (ADS)

    Venkataramanan, S.; Gupta, Arti; Golda, K. S.; Singh, Hardev; Kumar, Rakesh; Singh, R. P.; Bhowmik, R. K.

    2008-11-01

    A cost-effective high-performance pulse shape discriminator module has been developed to process signals from organic liquid scintillator-based neutron detectors. This module is especially designed for the large neutron detector array used for studies of nuclear reaction dynamics at the Inter University Accelerator Center (IUAC). It incorporates all the necessary pulse processing circuits required for neutron spectroscopy in a novel fashion by adopting the zero crossover technique for neutron-gamma (n- γ) pulse shape discrimination. The detailed layout of the circuit and different features of the module are described in the present paper. The quality of n- γ separation obtained with this electronics is much better than that of commercial modules especially in the low-energy region. The results obtained with our module are compared with similar setups available in other laboratories.

  17. Developing Media Module Proposed to Editor in Editorial Division

    NASA Astrophysics Data System (ADS)

    Kristanto, A.; Mustaji; Mariono, A.; Sulistiowati; Nuryati, D. W.

    2018-01-01

    In this era of technology in Indonesia, various publishers introduce themselves and participate in advancing the quality of education through the publication of various books as the learning sources. One of the publishers is PT. JP Press. In compiling the learning sources, we found some problems that are left unresolved by the editor. The purpose of this research is to overcome the problems that exist in PT. JP Press by developing media module. This development research uses the ADDIE model. The types of data used in this study are qualitative and quantitative data obtained based on the results of structured interviews with material experts and media experts, as well as the editorial response questionnaire provided for individual try-out and small group try-out. Therefore, it can be concluded that the medium of elementary school supplementary module proposed to the editors of PT. JP Press is valuable to be used in the teaching and learning activities.

  18. Acoustic wave transmission through piezoelectric structured materials.

    PubMed

    Lam, M; Le Clézio, E; Amorín, H; Algueró, M; Holc, Janez; Kosec, Marija; Hladky-Hennion, A C; Feuillard, G

    2009-05-01

    This paper deals with the transmission of acoustic waves through multilayered piezoelectric materials. It is modeled in an octet formalism via the hybrid matrix of the structure. The theoretical evolution with the angle and frequency of the transmission coefficients of ultrasonic plane waves propagating through a partially depoled PZT plate is compared to finite element calculations showing that both methods are in very good agreement. The model is then used to study a periodic stack of 0.65 PMN-0.35 PT/0.90 PMN-0.10 PT layers. The transmission spectra are interpreted in terms of a dispersive behavior of the critical angles of longitudinal and transverse waves, and band gap structures are analysed. Transmission measurements confirm the theoretical calculations and deliver an experimental validation of the model.

  19. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Yongke; Wang, Yu. U.; Priya, Shashank

    2012-05-01

    [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) ceramics were synthesized by using templated grain growth method. Significantly high [001] texture degree corresponding to 0.98 Lotgering factor was achieved at 1 vol. % BaTiO3 template. Electromechanical properties for [001]-textured PMN-PT ceramics with 1 vol. % BaTiO3 were found to be d33 = 1000 pC/N, d31 = 371 pC/N, ɛr = 2591, and tanδ = ˜0.6%. Elastoelectric composite based modeling results showed that higher volume fraction of template reduces the overall dielectric constant and thus has adverse effect on the piezoelectric response. Clamping effect was modeled by deriving the changes in free energy as a function of applied electric field and microstructural boundary condition.

  20. Potentiation of mitochondrial dysfunction in tumor cells by conjugates of metabolic modulator dichloroacetate with a Pt(IV) derivative of oxaliplatin.

    PubMed

    Zajac, Juraj; Kostrhunova, Hana; Novohradsky, Vojtech; Vrana, Oldrich; Raveendran, Raji; Gibson, Dan; Kasparkova, Jana; Brabec, Viktor

    2016-03-01

    The molecular and cellular mechanisms of enhanced toxic effects in tumor cells of the Pt(IV) derivatives of antitumor oxaliplatin containing axial dichloroacetate (DCA) ligands were investigated. DCA ligands were chosen because DCA has shown great potential as an apoptosis sensitizer and anticancer agent reverting the Wartburg effect. In addition, DCA reverses mitochondrial changes in a wide range of cancers, promoting tumor cell apoptosis in a mitochondrial-dependent pathway. We demonstrate that (i) the transformation of oxaliplatin to its Pt(IV) derivatives containing axial DCA ligands markedly enhances toxicity in cancer cells and helps overcome inherent and acquired resistance to cisplatin and oxaliplatin; (ii) a significant fraction of the intact molecules of DCA conjugates with Pt(IV) derivative of oxaliplatin accumulates in cancer cells where it releases free DCA; (iii) mechanism of biological action of the Pt(IV) derivatives of oxaliplatin containing DCA ligands is connected with the effects of DCA released in cancer cells from the Pt(IV) prodrugs on mitochondria and metabolism of glucose; (iv) treatments with the Pt(IV) derivatives of oxaliplatin containing DCA ligands activate an autophagic response in human colorectal cancer cells; (v) the toxic effects in cancer cells of the Pt(IV) derivatives of oxaliplatin containing DCA ligands can be potentiated if cells are treated with these prodrugs in combination with 5-fluorouracil. These properties of the Pt(IV) derivatives of oxaliplatin containing DCA ligands provide opportunities for further development of new platinum-based agents with the capability of killing cancer cells resistant to conventional antitumor platinum drugs used in the clinic. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Microscopic Investigation into the Electric Field Effect on Proximity-Induced Magnetism in Pt

    NASA Astrophysics Data System (ADS)

    Yamada, K. T.; Suzuki, M.; Pradipto, A.-M.; Koyama, T.; Kim, S.; Kim, K.-J.; Ono, S.; Taniguchi, T.; Mizuno, H.; Ando, F.; Oda, K.; Kakizakai, H.; Moriyama, T.; Nakamura, K.; Chiba, D.; Ono, T.

    2018-04-01

    Electric field effects on magnetism in metals have attracted widespread attention, but the microscopic mechanism is still controversial. We experimentally show the relevancy between the electric field effect on magnetism and on the electronic structure in Pt in a ferromagnetic state using element-specific measurements: x-ray magnetic circular dichroism (XMCD) and x-ray absorption spectroscopy (XAS). Electric fields are applied to the surface of ultrathin metallic Pt, in which a magnetic moment is induced by the ferromagnetic proximity effect resulting from a Co underlayer. XMCD and XAS measurements performed under the application of electric fields reveal that both the spin and orbital magnetic moments of Pt atoms are electrically modulated, which can be explained not only by the electric-field-induced shift of the Fermi level but also by the change in the orbital hybridizations.

  2. Fermi-LAT detection of a new gamma-ray flare from the NLSy1 PMN J0948+0022

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.

    2013-01-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed an increasing gamma-ray flux from a source positionally consistent with PMN J0948+0022 (also known as 2FGL J0948.8+0020, Nolan et al. 2012, ApJS, 199, 31; R.A.= 09h48m57.3201s, Dec.= +00d22'25.558", J2000, Beasley et al. 2002, ApJS, 141, 13), a radio-loud narrow-line Seyfert 1 at z=0.5846 (Sloan Digital Sky Survey, 2004, SDSS2.C).

  3. CO 2 hydrogenation on Pt, Pt/SiO 2 and Pt/TiO 2: Importance of synergy between Pt and oxide support

    DOE PAGES

    Kattel, Shyam; Yan, Binhang; Chen, Jingguang G.; ...

    2016-01-27

    In this paper we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO 2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO 2 binding on the catalyst. Once CO 2 is stabilized, the hydrogenation of CO 2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH 4 is lessmore » significant and no CH 3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH 4 and CH 3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H 2COH species. Using SiO 2 and TiO 2 as the support, Pt NP is able to promote the overall CO 2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. Finally, the enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role.« less

  4. CO 2 hydrogenation on Pt, Pt/SiO 2 and Pt/TiO 2: Importance of synergy between Pt and oxide support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kattel, Shyam; Yan, Binhang; Chen, Jingguang G.

    In this paper we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO 2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO 2 binding on the catalyst. Once CO 2 is stabilized, the hydrogenation of CO 2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH 4 is lessmore » significant and no CH 3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH 4 and CH 3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H 2COH species. Using SiO 2 and TiO 2 as the support, Pt NP is able to promote the overall CO 2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. Finally, the enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role.« less

  5. Role of Pt during hydrodeoxygenation of biomass pyrolysis vapors over Pt/HBEA

    DOE PAGES

    Yung, Matthew M.; Foo, Guo Shiou; Sievers, Carsten

    2017-03-27

    1.3 wt% Pt/HBEA and HBEA were studied as catalysts for the hydrodeoxygenation of pine pyrolysis vapors at 500 °C. Both catalysts showed high initial conversion of oxygenated pyrolysis products into aromatic hydrocarbons, while Pt/HBEA showed higher stability in terms of hydrocarbon productivity and deferred breakthrough of oxygenated compounds. Among 1-, 2- and 3-ring aromatic hydrocarbons, Pt/HBEA had a significantly higher selectivity than HBEA towards unalkylated aromatics (e.g., benzene) as compared to the corresponding alkylated aromatics (e.g., toluene and xylene). Additionally, Pt addition to HBEA decreased coke deposition and improved resistance to pore and acid site blockage as determined by TPO,more » N 2 physisorption, and NH 3 TPD. The ability of Pt to promote cleavage and hydrogenation of methoxy and methyl groups was observed by increased methane production over Pt/HBEA relative to HBEA. A progressive decrease in the methane production over Pt/HBEA correlated with deactivation in terms of reduced benzene formation, breakthrough of oxygenated products, and increased formation of polynuclear aromatics and their degree of substitution, which indicate coke formation. In conclusion, the increased methane yield and suppressed coke formation with the addition of Pt is attributed to hydrogen spillover, through which hydrogen activated on Pt can subsequently migrate to the HBEA support to reverse the coke-forming hydrogen abstraction reaction.« less

  6. Role of Pt during hydrodeoxygenation of biomass pyrolysis vapors over Pt/HBEA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yung, Matthew M.; Foo, Guo Shiou; Sievers, Carsten

    1.3 wt% Pt/HBEA and HBEA were studied as catalysts for the hydrodeoxygenation of pine pyrolysis vapors at 500 °C. Both catalysts showed high initial conversion of oxygenated pyrolysis products into aromatic hydrocarbons, while Pt/HBEA showed higher stability in terms of hydrocarbon productivity and deferred breakthrough of oxygenated compounds. Among 1-, 2- and 3-ring aromatic hydrocarbons, Pt/HBEA had a significantly higher selectivity than HBEA towards unalkylated aromatics (e.g., benzene) as compared to the corresponding alkylated aromatics (e.g., toluene and xylene). Additionally, Pt addition to HBEA decreased coke deposition and improved resistance to pore and acid site blockage as determined by TPO,more » N 2 physisorption, and NH 3 TPD. The ability of Pt to promote cleavage and hydrogenation of methoxy and methyl groups was observed by increased methane production over Pt/HBEA relative to HBEA. A progressive decrease in the methane production over Pt/HBEA correlated with deactivation in terms of reduced benzene formation, breakthrough of oxygenated products, and increased formation of polynuclear aromatics and their degree of substitution, which indicate coke formation. In conclusion, the increased methane yield and suppressed coke formation with the addition of Pt is attributed to hydrogen spillover, through which hydrogen activated on Pt can subsequently migrate to the HBEA support to reverse the coke-forming hydrogen abstraction reaction.« less

  7. Compositional modulated atomic layer stacking and uniaxial magnetocrystalline anisotropy of CoPt alloy sputtered films with close-packed plane orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Shin, E-mail: ssaito@ecei.tohoku.ac.jp; Nozawa, Naoki; Hinata, Shintaro

    An atomic layer stacking structure in hexagonal close packed (hcp) Co{sub 100−x}Pt{sub x} alloy films with c-plane sheet texture was directly observed by a high-angle annular dark-field imaging scanning transmission electron microscopy. The analysis of sequential and/or compositional atomic layer stacking structure and uniaxial magnetocrystalline anisotropy (K{sub u} = K{sub u1} + K{sub u2}) revealed that (1) integrated intensity of the superlattice diffraction takes the maximum at x = 20 at. % and shows broadening feature against x for the film fabricated under the substrate temperature (T{sub sub}) of 400 °C. (2) Compositional separation structure in atomic layers is formed for the films fabricated under T{sub sub} = 400 °C.more » A sequential alternative stacking of atomic layers with different compositions is hardly formed in the film with x = 50 at. %, whereas easily formed in the film with x = 20 at. %. This peculiar atomic layer stacking structure consists of in-plane-disordered Pt-rich and Pt-poor layers, which is completely different from the so-called atomic site ordered structure. (3) A face centered cubic atomic layer stacking as faults appeared in the host hcp atomic layer stacking exists in accompanies with irregularities for the periodicity of the compositional modulation atomic layers. (4) K{sub u1} takes the maximum of 1.4 × 10{sup 7 }erg/cm{sup 3} at around x = 20 at. %, whereas K{sub u2} takes the maximum of 0.7 × 10{sup 7 }erg/cm{sup 3} at around x = 40 at. %, which results in the maximum of 1.8 × 10{sup 7 }erg/cm{sup 3} of K{sub u} at x = 30 at. % and a shoulder in compositional dependence of K{sub u} in the range of x = 30–60 at. %. Not only compositional separation of atomic layers but also sequential alternative stacking of different compositional layers is quite important to improve essential uniaxial magnetocrystalline anisotropy.« less

  8. Superior long-term activity for a Pt-Re alloy compared to Pt in methanol oxidation reactions

    NASA Astrophysics Data System (ADS)

    Duke, Audrey S.; Xie, Kangmin; Monnier, John R.; Chen, Donna A.

    2017-03-01

    Pt-Re bimetallic catalysts have shown enhanced activity compared to pure Pt for reactions involving oxidation, but the origins of this improved activity are not fully understood. Methanol oxidation on a Pt-Re alloy surface and pure Pt foil was studied in a microreactor coupled to an ultrahigh vacuum chamber. For reaction at 60 °C, the Pt-Re alloy surface exhibits superior long-term activity over a 24 h reaction period compared to pure Pt. The initial activity of Pt is 10-15% higher than on Pt-Re; however, the Pt surface gradually loses activity after 10 h online, whereas the activity of Pt-Re does not diminish. Post-reaction XPS shows that more carbon accumulates on the Pt than on Pt-Re, and the improved long-term activity is attributed to a greater ability of Pt-Re to oxidize the carbonaceous intermediates that eventually poison active sites. Both Pt and Pt-Re surfaces have almost no activity for methanol oxidation until a minimum coverage of oxygen is achieved from O2 dissociation. A comparison with methanol oxidation studies on Pt and Pt-Re in a pressure regime that is 150 times lower than in this work demonstrates that more carbon and less oxygen accumulate on the surfaces during reaction at the lower pressures.

  9. The first gamma-ray outburst of a narrow-line Seyfert 1 galaxy: The case of PMN J0948+0022 in 2010 July

    DOE PAGES

    Foschini, Luigi; Ghisellini, G.; Kovalev, Y. Y.; ...

    2011-05-11

    We report on a multiwavelength campaign for the radio-loud narrow-line Seyfert 1 (NLS1) galaxy PMN J0948+0022 (z= 0.5846) performed in 2010 July–September and triggered by a high-energy γ-ray outburst observed by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The peak flux in the 0.1–100 GeV energy band exceeded, for the first time in this type of source, the value of ~10–6 photon cm–2 s–1, corresponding to an observed luminosity of ~1048 erg s–1. Although the source was too close to the Sun position to organize a densely sampled follow-up, it was possible to gather some multiwavelength datamore » that confirmed the state of high activity across the sampled electromagnetic spectrum. Furthermore, the comparison of the spectral energy distribution of the NLS1 PMN J0948+0022 with that of a typical blazar – such as 3C 273 – shows that the power emitted at γ-rays is extreme.« less

  10. Low cost and compact quantum key distribution

    NASA Astrophysics Data System (ADS)

    Duligall, J. L.; Godfrey, M. S.; Harrison, K. A.; Munro, W. J.; Rarity, J. G.

    2006-10-01

    We present the design of a novel free-space quantum cryptography system, complete with purpose-built software, that can operate in daylight conditions. The transmitter and receiver modules are built using inexpensive off-the-shelf components. Both modules are compact allowing the generation of renewed shared secrets on demand over a short range of a few metres. An analysis of the software is shown as well as results of error rates and therefore shared secret yields at varying background light levels. As the system is designed to eventually work in short-range consumer applications, we also present a use scenario where the consumer can regularly 'top up' a store of secrets for use in a variety of one-time-pad (OTP) and authentication protocols.

  11. Temperature dependence of spin-orbit torques in Pt/Co/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Chen, Shiwei; Li, Dong; Cui, Baoshan; Xi, Li; Si, Mingsu; Yang, Dezheng; Xue, Desheng

    2018-03-01

    We studied the current-induced spin-orbit torques in a perpendicularly magnetized Pt (1 nm)/Co (0.8 nm)/Pt (5 nm) heterojunction by harmonic Hall voltage measurements. Owing to similar Pt/Co/Pt interfaces, the spin-orbit torques originated from the Rashba effect are reduced, but the contribution from the spin Hall effect is still retained because of asymmetrical Pt thicknesses. When the temperature increases from 50 to 300 K, two orthogonal components of the effective field, induced by spin-orbit torques, reveal opposite temperature dependencies: the field-like term (transverse effective field) decreases from 2.3 to 2.1 (10-6 Oe (A cm-2)-1), whereas the damping-like term (longitudinal effective field) increases from 3.7 to 4.8 (10-6 Oe (A cm-2)-1). It is noticed that the damping-like term, usually smaller than the field-like term in the similar Pt/Co interfaces, is twice as large as the field-like term. As a result, the damping-like spin-orbit torque reaches an efficiency of 0.15 at 300 K. Such a temperature-dependent damping-like term in a Pt/Co/Pt heterojunction can efficiently reduce the switching current density which is 2.30  ×  106 A cm-2 at 300 K, providing an opportunity to further improve and understand spin-orbit torques induced by spin Hall effect.

  12. Sintering behavior of spin-coated FePt and FePtAu nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Shishou; Jia, Zhiyong; Zoto, I.; Reed, D.; Nikles, David E.; Harrell, J. W.; Thompson, Gregory; Mankey, Gary; Krishnamurthy, Vemuru V.; Porcar, L.

    2006-04-01

    FePt and [FePt]95Au5 nanoparticles with an average size of about 4 nm were chemically synthesized and spin coated onto silicon substrates. Samples were subsequently thermally annealed at temperatures ranging from 250 to 500 °C for 30 min. Three-dimensional structural characterization was carried out with small-angle neutron scattering (SANS) and small-angle x-ray diffraction (SAXRD) measurements. For both FePt and [FePt]95Au5 particles before annealing, SANS measurements gave an in-plane coherence length parameter a=7.3 nm, while SAXRD measurements gave a perpendicular coherence length parameter c=12.0 nm. The ratio of c/a is about 1.64, indicating the as-made particle array has a hexagonal close-packed superstructure. For both FePt and FePtAu nanoparticles, the diffraction peaks shifted to higher angles and broadened with increasing annealing temperature. This effect corresponds to a shrinking of the nanoparticle array, followed by agglomeration and sintering of the nanoparticles, resulting in the eventual loss of positional order with increasing annealing temperature. The effect is more pronounced for FePtAu than for FePt. Dynamic coercivity measurements show that the FePtAu nanoparticles have both higher intrinsic coercivity and higher switching volume at the same annealing temperature. These results are consistent with previous studies that show that additive Au both lowers the chemical ordering temperature and promotes sintering.

  13. Self-assembly of core-shell structure PtO2@Pt nanodots and their formation evolution

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Liu, Junjie; Liu, Mingquan; Zhao, Zhicheng; Song, Yapeng; Tang, Xiufeng; Luo, Jianyi; Zeng, Qingguang; He, Xin

    2018-05-01

    Core-shell structure PtO2@Pt nanodots have been self-assembly by vacuum sputtering and high temperature annealing. First, Pt thin films with a small amount of PtO2 are grown on the sapphire substrates by vacuum sputtering. And then high temperature annealing on the thin films is carried out at 800 °C for 2 min to form Pt nanodots. During the cooling process, the atmosphere is deployed to supplant the nitrogen. Finally, even distributed core-shell structure PtO2@Pt nanodots with a diameter from 100 to 300 nm are achieved. Furthermore, the formation evolution of core-shell structure PtO2@Pt nanodots is also proposed. This work open up a new approach for fabricating core-shell structure nanodots.

  14. Analysis of Technology for Compact Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    In view of the recent advances in the area of solid state and semiconductor lasers has created new possibilities for the development of compact and reliable coherent lidars for a wide range of applications. These applications include: Automated Rendezvous and Capture, wind shear and clear air turbulence detection, aircraft wake vortex detection, and automobile collision avoidance. The work performed by the UAH personnel under this Delivery Order, concentrated on design and analyses of a compact coherent lidar system capable of measuring range and velocity of hard targets, and providing air mass velocity data. The following is the scope of this work. a. Investigate various laser sources and optical signal detection configurations in support of a compact and lightweight coherent laser radar to be developed for precision range and velocity measurements of hard and fuzzy targets. Through interaction with MSFC engineers, the most suitable laser source and signal detection technique that can provide a reliable compact and lightweight laser radar design will be selected. b. Analyze and specify the coherent laser radar system configuration and assist with its optical and electronic design efforts. Develop a system design including its optical layout design. Specify all optical components and provide the general requirements of the electronic subsystems including laser beam modulator and demodulator drivers, detector electronic interface, and the signal processor. c. Perform a thorough performance analysis to predict the system measurement range and accuracy. This analysis will utilize various coherent laser radar sensitivity formulations and different target models.

  15. Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim

    The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less

  16. Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles

    DOE PAGES

    Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim; ...

    2017-11-15

    The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less

  17. Temperature evolution of the local order parameter in relaxor ferroelectrics (1 - x)PMN-xPZT

    NASA Astrophysics Data System (ADS)

    Gridnev, S. A.; Glazunov, A. A.; Tsotsorin, A. N.

    2005-09-01

    The temperature dependence of the local order parameter and relaxation time distribution function have been determined in (1 - x)PMN-xPZT ceramic samples via dielectric permittivity. Above the Burns temperature, the permittivity was found to follow the Currie-Weiss law, and with temperature decreasing the deviation was observed to increase. A local order parameter was calculated from the dielectric data using a modified Landau-Devonshire approach. These results are compared to the distribution function of relaxation times. It was found that a glasslike freezing of reorientable polar clusters occurs in the temperature range of diffuse relaxor transition. The evolution of the studied system to more ordered state arises from the increased PZT content.

  18. XAS and XMCD studies of magnetic properties modifications of Pt/Co/Au and Pt/Co/Pt trilayers induced by Ga⁺ ions irradiation.

    PubMed

    Mazalski, Piotr; Sveklo, Iosif; Kurant, Zbigniew; Ollefs, Katharina; Rogalev, Andrei; Wilhelm, Fabrice; Fassbender, Juergen; Baczewski, Lech Tomasz; Wawro, Andrzej; Maziewski, Andrzej

    2015-05-01

    Magnetic and magneto-optical properties of Pt/Co/Au and Pt/Co/Pt trilayers subjected to 30 keV Ga(+) ion irradiation are compared. In two-dimensional maps of these properties as a function of cobalt thickness and ion fluence, two branches with perpendicular magnetic anisotropy (PMA) for Pt/Co/Pt trilayers are well distinguished. The replacement of the Pt capping layer with Au results in the two branches still being visible but the in-plane anisotropy for the low-fluence branch is suppressed whereas the high-fluence branch displays PMA. The X-ray absorption spectra and X-ray magnetic circular dichroism (XMCD) spectra are discussed and compared with non-irradiated reference samples. The changes of their shapes and peak amplitude, particularly for the high-fluence branch, are related to the modifications of the local environment of Co(Pt) atoms and the etching effects induced by ion irradiation. Additionally, in irradiated trilayers the XMCD measurements at the Pt L2,3-edge reveal an increase of the magnetic moment induced in Pt atoms.

  19. On the nature of the SWIFT/INTEGRAL source SWIFT J1508.6-4953 (also PMN J1508-4953)

    NASA Astrophysics Data System (ADS)

    Landi, R.; Bassani, L.; Masetti, N.; Bazzano, A.; Parisi, P.; Drave, S.; Goossens, M.

    2012-06-01

    This source is listed in the recent INTEGRAL/IBIS 9-year Galactic Hard X-ray Survey (Krivonos et al. 2012, arXiv:1205.3941) and also appears in the BAT 58-month catalogue (http://heasarc.nasa.gov/docs/swift/results/bs58mon/). It has been associated with the radio source PMN J1508-4953, also reported as a GeV emitter in the 2nd Fermi catalogue (Nolan et al. 2012, ApJS, 199, 31). We use archival Swift/XRT data to investigate its nature.

  20. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  1. Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Wang, Guofeng

    2017-12-01

    In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.

  2. Induced oxidative stress management in wounds through phenolic acids engineered fibrous protein: An in vitro assessment using polymorphonuclear (PMN) cells.

    PubMed

    Thiruselvi, T; Thirupathi Kumara Raja, S; Shanuja, S K; Iswarya, S; Gnanamani, A

    2017-03-01

    The present study explores the preparation, characterization and the role of phenolic acid tethered fibrous protein in the management of induced oxidative stress studied under in vitro conditions. In brief, the biomaterial is prepared by engineering the fibrous protein with dihydroxy and trihydroxy phenolic acid moieties and subjected to characterization to ensure the tethering. The resultant biomaterial studied for its efficacy as a free radical scavenger using polymorphonuclear (PMN) cells with induced oxidative stress and also as an agent for cell migration using fibroblasts cells. Results revealed that induced oxidative stress in PMN cells after exposure to UVB radiation managed well with the prepared biomaterial by reducing the levels of superoxide anion, oxygen and hydroxyl radicals. Further, the protein and the phenolic acid interaction supports the cell migration as evidenced from the scratch assay. In conclusion, though phenolic acids are well known for their antimicrobial and antioxidant potential, indenting these acids directly to the wounds is not sensible, but tethering to protein explored the scavenging activity as expected. The present study infers that phenolic acid engineered protein has a significant role in managing the imbalance in the redox state prevailing in wounds and supports the healing at appreciable level. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells.

    PubMed

    Wang, Gongwei; Huang, Bing; Xiao, Li; Ren, Zhandong; Chen, Hao; Wang, Deli; Abruña, Héctor D; Lu, Juntao; Zhuang, Lin

    2014-07-09

    The dependence on Pt catalysts has been a major issue of proton-exchange membrane (PEM) fuel cells. Strategies to maximize the Pt utilization in catalysts include two main approaches: to put Pt atoms only at the catalyst surface and to further enhance the surface-specific catalytic activity (SA) of Pt. Thus far there has been no practical design that combines these two features into one single catalyst. Here we report a combined computational and experimental study on the design and implementation of Pt-skin catalysts with significantly improved SA toward the oxygen reduction reaction (ORR). Through screening, using density functional theory (DFT) calculations, a Pt-skin structure on AuCu(111) substrate, consisting of 1.5 monolayers of Pt, is found to have an appropriately weakened oxygen affinity, in comparison to that on Pt(111), which would be ideal for ORR catalysis. Such a structure is then realized by substituting the Cu atoms in three surface layers of AuCu intermetallic nanoparticles (AuCu iNPs) with Pt. The resulting Pt-skinned catalyst (denoted as Pt(S)AuCu iNPs) has been characterized in depth using synchrotron XRD, XPS, HRTEM, and HAADF-STEM/EDX, such that the Pt-skin structure is unambiguously identified. The thickness of the Pt skin was determined to be less than two atomic layers. Finally the catalytic activity of Pt(S)AuCu iNPs toward the ORR was measured via rotating disk electrode (RDE) voltammetry through which it was established that the SA was more than 2 times that of a commercial Pt/C catalyst. Taking into account the ultralow Pt loading in Pt(S)AuCu iNPs, the mass-specific catalytic activity (MA) was determined to be 0.56 A/mg(Pt)@0.9 V, a value that is well beyond the DOE 2017 target for ORR catalysts (0.44 A/mg(Pt)@0.9 V). These findings provide a strategic design and a realizable approach to high-performance and Pt-efficient catalysts for fuel cells.

  4. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.

    PubMed

    Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian

    2009-07-07

    Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.

  5. Compact, Miniature MMIC Receiver Modules for an MMIC Array Spectrograph

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Gaier, Todd C.; Cooperrider, Joelle T.; Samoska, Lorene A.; Soria, Mary M.; ODwyer, Ian J.; Weinreb, Sander; Custodero, Brian; Owen, Heahter; Grainge, Keith; hide

    2009-01-01

    A single-pixel prototype of a W-band detector module with a digital back-end was developed to serve as a building block for large focal-plane arrays of monolithic millimeter-wave integrated circuit (MMIC) detectors. The module uses low-noise amplifiers, diode-based mixers, and a WR10 waveguide input with a coaxial local oscillator. State-of-the-art InP HEMT (high electron mobility transistor) MMIC amplifiers at the front end provide approximately 40 dB of gain. The measured noise temperature of the module, at an ambient temperature of 300 K, was found to be as low as 450 K at 95 GHz. The modules will be used to develop multiple instruments for astrophysics radio telescopes, both on the ground and in space. The prototype is being used by Stanford University to characterize noise performance at cryogenic temperatures. The goal is to achieve a 30-50 K noise temperature around 90 GHz when cooled to a 20 K ambient temperature. Further developments include characterization of the IF in-phase (I) and quadrature (Q) signals as a function of frequency to check amplitude and phase; replacing the InP low-noise amplifiers with state-of-the-art 35-nm-gate-length NGC low-noise amplifiers; interfacing the front-end module with a digital back-end spectrometer; and developing a scheme for local oscillator and IF distribution in a future array. While this MMIC is being developed for use in radio astronomy, it has the potential for use in other industries. Applications include automotive radar (both transmitters and receivers), communication links, radar systems for collision avoidance, production monitors, ground-penetrating sensors, and wireless personal networks.

  6. Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction.

    PubMed

    Liu, Pengpeng; Ge, Xingbo; Wang, Rongyue; Ma, Houyi; Ding, Yi

    2009-01-06

    Ultrathin Pt films from one to several atomic layers are successfully decorated onto nanoporous gold (NPG) membranes by utilizing under potential deposition (UPD) of Cu onto Au or Pt surfaces, followed by in situ redox replacement reaction (RRR) of UPD Cu by Pt. The thickness of Pt layers can be controlled precisely by repeating the Cu-UPD-RRR cycles. TEM observations coupled with electrochemical testing suggest that the morphology of Pt overlayers changes from an ultrathin epitaxial film in the case of one or two atomic layers to well-dispersed nanoislands in the case of four and more atomic layers. Electron diffraction (ED) patterns confirm that the as-prepared NPG-Pt membranes maintain a single-crystalline structure, even though the thickness of Pt films reaches six atomic layers, indicating the decorated Pt films hold the same crystallographic relationship to the NPG substrate during the entire fabrication process. Due to the regular modulation of Pt utilization, the electrocatalytic activity of NPG-Pt exhibits interesting surface structure dependence in methanol, ethanol, and CO electrooxidation reactions. These novel bimetallic nanocatalysts show excellent electrocatalytic activity and much enhanced poison tolerance as compared to the commercial Pt/C catalysts. The success in the fabrication of NPG-Pt-type materials provides a new path to prepare electrocatalysts with ultralow Pt loading and high Pt utilization, which is of great significance in energy-related applications, such as direct alcohol fuel cells (DAFCs).

  7. An ultra-compact processor module based on the R3000

    NASA Astrophysics Data System (ADS)

    Mullenhoff, D. J.; Kaschmitter, J. L.; Lyke, J. C.; Forman, G. A.

    1992-08-01

    Viable high density packaging is of critical importance for future military systems, particularly space borne systems which require minimum weight and size and high mechanical integrity. A leading, emerging technology for high density packaging is multi-chip modules (MCM). During the 1980's, a number of different MCM technologies have emerged. In support of Strategic Defense Initiative Organization (SDIO) programs, Lawrence Livermore National Laboratory (LLNL) has developed, utilized, and evaluated several different MCM technologies. Prior LLNL efforts include modules developed in 1986, using hybrid wafer scale packaging, which are still operational in an Air Force satellite mission. More recent efforts have included very high density cache memory modules, developed using laser pantography. As part of the demonstration effort, LLNL and Phillips Laboratory began collaborating in 1990 in the Phase 3 Multi-Chip Module (MCM) technology demonstration project. The goal of this program was to demonstrate the feasibility of General Electric's (GE) High Density Interconnect (HDI) MCM technology. The design chosen for this demonstration was the processor core for a MIPS R3000 based reduced instruction set computer (RISC), which has been described previously. It consists of the R3000 microprocessor, R3010 floating point coprocessor and 128 Kbytes of cache memory.

  8. Control of Ferromagnetic Resonance Frequency and Frequency Linewidth by Electrical Fields in FeCo/[Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32(011) Heterostructures

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Ong, C. K.

    2016-10-01

    We report our detailed investigation of the electrical tuning of the ferromagnetic resonance frequency and frequency linewidth in multiferroic heterostructures consisting of FeCo thin films grown onto [Pb(Mg1/3Nb2/3) O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates with NiFe underlayers. Our study shows that the electrical tuning range of both ferromagnetic resonance frequency and frequency linewidth in this FeCo/PMN-PT heterostructure can be very large. Specifically, the resonance frequency can be tuned from 1.8 GHz to 10.3 GHz, and the frequency linewidth can be changed from 1.6 GHz to 7.3 GHz. The electrical tuning of these microwave properties is discussed in conjunction with the result from the static magnetic characterization and is explained based on the strain-driven magnetoelectric heterostructured effect.

  9. A two degrees-of-freedom piezoelectric single-crystal micromotor

    NASA Astrophysics Data System (ADS)

    Chen, Zhijiang; Li, Xiaotian; Liu, Guoxi; Dong, Shuxiang

    2014-12-01

    A two degrees-of-freedom (DOF) ultrasonic micromotor made of piezoelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal square-bar (dimensions 2 × 2 × 9 mm3) was developed. The PIN-PMN-PT square-bar stator can generate standing wave elliptical motions in two orthogonal vertical planes by combining the first longitudinal and second bending vibration modes, enabling it to drive a slider in two orthogonal directions. The relatively large driving forces of 0.25 N and motion speed of 35 mm/s were obtained under a voltage of 80 Vpp at its resonance frequency of 87.5 kHz. The proposed micromotor has potential for applications in micro robots, cell manipulators, and digital cameras as a two-DOF actuator.

  10. A compact, smart Langmuir Probe control module for MAST-Upgrade

    NASA Astrophysics Data System (ADS)

    Lovell, J.; Stephen, R.; Bray, S.; Naylor, G.; Elmore, S.; Willett, H.; Peterka, M.; Dimitrova, M.; Havranek, A.; Hron, M.; Sharples, R.

    2017-11-01

    A new control module for the MAST-Upgrade Langmuir Probe system has been developed. It is based on a Xilinx Zynq FPGA, which allows for excellent configurability and ease of retrieving data. The module is capable of arbitrary bias voltage waveform generation, and digitises current and voltage readings from 16 probes. The probes are biased and measured one at a time in a time multiplexed fashion, with the multiplexing sequence completely configurable. In addition, simultaneous digitisation of the floating potential of all unbiased probes is possible. A suite of these modules, each coupled with a high voltage amplifier, enables biasing and digitisation of 640 Langmuir Probes in the MAST-Upgrade Super-X divertor. The system has been successfully tested on the York Linear Plasma Device and on the COMPASS tokamak. It will be installed on MAST-Upgrade ready for operations in 2018.

  11. Silicon technology compatible photonic molecules for compact optical signal processing

    NASA Astrophysics Data System (ADS)

    Barea, Luis A. M.; Vallini, Felipe; Jarschel, Paulo F.; Frateschi, Newton C.

    2013-11-01

    Photonic molecules (PMs) based on multiple inner coupled microring resonators allow to surpass the fundamental constraint between the total quality factor (QT), free spectral range (FSR), and resonator size. In this work, we use a PM that presents doublets and triplets resonance splitting, all with high QT. We demonstrate the use of the doublet splitting for 34.2 GHz signal extraction by filtering the sidebands of a modulated optical signal. We also demonstrate that very compact optical modulators operating 2.75 times beyond its resonator linewidth limit may be obtained using the PM triplet splitting, with separation of ˜55 GHz.

  12. Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay F. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2010-01-01

    A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.

  13. Efficient decomposition of formaldehyde at room temperature over Pt/honeycomb ceramics with ultra-low Pt content.

    PubMed

    Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo

    2014-09-14

    Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.

  14. Measurement of benzenethiol adsorption to nanostructured Pt, Pd, and PtPd films using Raman spectroelectrochemistry.

    PubMed

    Pomfret, Michael B; Pietron, Jeremy J; Owrutsky, Jeffrey C

    2010-05-04

    Raman spectroscopy and electrochemical methods were used to study the behavior of the model adsorbate benzenethiol (BT) on nanostructured Pt, Pd, and PtPd electrodes as a function of applied potential. Benzenethiol adsorbs out of ethanolic solutions as the corresponding thiolate, and voltammetric stripping data reveal that BT is oxidatively removed from all of the nanostructured metals upon repeated oxidative and reductive cycling. Oxidative stripping potentials for BT increase in the order Pt < PtPd < Pd, indicating that BT adsorbs most strongly to nanoscale Pd. Yet, BT Raman scattering intensities, measured in situ over time scales of minutes to hours, are most persistent on the film of nanostructured Pt. Raman spectra indicate that adsorbed BT desorbs from nanoscale Pt at oxidizing potentials via cleavage of the Pt-S bond. In contrast, on nanoscale Pd and PtPd, BT is irreversibly lost due to cleavage of BT C-S bonds at oxidizing potentials, which leaves adsorbed sulfur oxides on Pd and PtPd films and effects the desulfurization of BT. While Pd and PtPd films are less sulfur-resistant than Pt films, palladium oxides, which form at higher potentials than Pt oxides, oxidatively desulfurize BT. In situ spectroelectrochemical Raman spectroscopy provides real-time, chemically specific information that complements the cyclic voltammetric data. The combination of these techniques affords a powerful and convenient method for guiding the development of sulfur-tolerant PEMFC catalysts.

  15. Time-invariant PT product and phase locking in PT -symmetric lattice models

    NASA Astrophysics Data System (ADS)

    Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.

    2018-01-01

    Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.

  16. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?

    PubMed

    Escaño, Mary Clare; Gyenge, Elod; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    Bimetallic systems such as Pt-based alloys or non-alloys have exhibited interesting catalytic properties but pose a major challenge of not knowing a priori how the electronic and chemical properties will be modified relative to the parent metals. In this work, we present the origin of the changes in the reactivity of Pt/Cr and Pt/Ni catalysts, which have been of wide interest in fuel cell research. Using spin-polarized density functional theory calculations, we have shown that the modification of Pt surface reactivity in Pt/Ni is purely of geometric origin (strain). We have also found that the Pt-Ni bonding is very weak, which explains the observed instability of Pt-Ni catalysts under electrochemical measurements. On the other hand, Pt/Cr systems are governed by strong ligand effect (metal-metal interaction), which explains the experimentally observed reactivity dependence on the relative composition of the alloying components. The general characteristics of the potential energy curves for O2 dissociative adsorption on the bimetallic systems and the pure Pt clarify why the d-band center still works for Pt/Cr despite the strong Pt-Cr bonding and high spin polarization of Pt d-states. On the basis of the above clarifications, viable Pt-Cr and Pt-Ni structures, which involve nano-sized alloys and non-alloy bulk catalyst, which may strike higher than the currently observed oxidation reduction reaction activity are proposed.

  17. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    NASA Astrophysics Data System (ADS)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.

  18. Buoyancy Effects in Fully-Modulated, Turbulent Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.; Page, K. L.

    2003-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Normal-gravity experiments suggest that the fully-modulated technique also has the potential for producing turbulent jet flames significantly more compact than steady flames with no increase in exhaust emissions. The technique also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Fundamental issues addressed in this experiment include the impact of buoyancy on the structure and flame length, temperatures, radiation, and emissions of fully-modulated flames.

  19. Absence of Local Fluctuating Dimers in Superconducting Ir 1-x(Pt,Rh) xTe 2

    DOE PAGES

    Yu, Runze; Banerjee, S.; Lei, H. C.; ...

    2018-06-01

    The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correlations and demonstrate their absence. X-ray pair distribution function approach reveals that the local structure of Ir 0.95Pt 0.05Te 2 and Ir 0.8Rh 0.2Te 2 dichalcogenide superconductors with compositions just past the dimer/superconductor boundary is explained well by a dimer-free model downmore » to 10 K, ruling out the possibility of there being nanoscale dimer fluctuations in this regime. This is inconsistent with the proposed quantum-critical-point-like interplay of the dimer state and superconductivity, and precludes scenarios for dimer fluctuations mediated superconducting pairing.« less

  20. Absence of Local Fluctuating Dimers in Superconducting Ir 1-x(Pt,Rh) xTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Runze; Banerjee, S.; Lei, H. C.

    The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correlations and demonstrate their absence. X-ray pair distribution function approach reveals that the local structure of Ir 0.95Pt 0.05Te 2 and Ir 0.8Rh 0.2Te 2 dichalcogenide superconductors with compositions just past the dimer/superconductor boundary is explained well by a dimer-free model downmore » to 10 K, ruling out the possibility of there being nanoscale dimer fluctuations in this regime. This is inconsistent with the proposed quantum-critical-point-like interplay of the dimer state and superconductivity, and precludes scenarios for dimer fluctuations mediated superconducting pairing.« less

  1. Absence of local fluctuating dimers in superconducting Ir1 -x(Pt,Rh ) xTe2

    NASA Astrophysics Data System (ADS)

    Yu, Runze; Banerjee, S.; Lei, H. C.; Sinclair, Ryan; Abeykoon, M.; Zhou, H. D.; Petrovic, C.; Guguchia, Z.; Bozin, E. S.

    2018-05-01

    The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correlations and demonstrate their absence. X-ray pair distribution function approach reveals that the local structure of Ir0 :95Pt0 :05Te2 and Ir0 :8Rh0 :2Te2 dichalcogenide superconductors with compositions just past the dimer/superconductor boundary is explained well by a dimer-free model down to 10 K, ruling out the possibility of there being nanoscale dimer fluctuations in this regime. This is inconsistent with the proposed quantum-critical-point-like interplay of the dimer state and superconductivity, and precludes scenarios for dimer fluctuations mediated superconducting pairing.

  2. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  3. Atomic scale deposition of Pt around Au nanoparticles to achieve much enhanced electrocatalysis of Pt

    DOE PAGES

    Xi, Zheng; Lv, Haifeng; Erdosy, Daniel P.; ...

    2017-05-07

    Here, we report an electrochemical method to deposit atomic scale Pt on a 5 nm Au nanoparticle (NP) surface in N 2-saturated 0.5 M H 2SO 4. Furthermore, Pt is provided by the Pt wire counter electrode via one-step Pt wire oxidation, dissolution, and deposition realized by controlled electrochemical scanning. Scanning from 0.6–1.0 V (vs. RHE) for 10 000 cycles gives Au 98.2Pt 1.8, which serves as an excellent catalyst for the formic acid oxidation reaction, showing 41 times higher specific activity (20.19 mA cm -2) and 25 times higher mass activity (10.80 A mg Pt -1) with much bettermore » CO-tolerance and stability than commercial Pt. This work demonstrates a unique strategy to minimize the use of Pt as a catalyst for electrochemical reactions.« less

  4. Atomic scale deposition of Pt around Au nanoparticles to achieve much enhanced electrocatalysis of Pt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Zheng; Lv, Haifeng; Erdosy, Daniel P.

    Here, we report an electrochemical method to deposit atomic scale Pt on a 5 nm Au nanoparticle (NP) surface in N 2-saturated 0.5 M H 2SO 4. Furthermore, Pt is provided by the Pt wire counter electrode via one-step Pt wire oxidation, dissolution, and deposition realized by controlled electrochemical scanning. Scanning from 0.6–1.0 V (vs. RHE) for 10 000 cycles gives Au 98.2Pt 1.8, which serves as an excellent catalyst for the formic acid oxidation reaction, showing 41 times higher specific activity (20.19 mA cm -2) and 25 times higher mass activity (10.80 A mg Pt -1) with much bettermore » CO-tolerance and stability than commercial Pt. This work demonstrates a unique strategy to minimize the use of Pt as a catalyst for electrochemical reactions.« less

  5. Multifunctional Pt(II) Reagents: Covalent Modifications of Pt Complexes Enable Diverse Structural Variation and In-Cell Detection.

    PubMed

    White, Jonathan D; Haley, Michael M; DeRose, Victoria J

    2016-01-19

    To enhance the functionality of Pt-based reagents, several strategies have been developed that utilize Pt compounds modified with small, reactive handles. This Account encapsulates work done by us and other groups regarding the use of Pt(II) compounds with reactive handles for subsequent elaboration with fluorophores or other functional moieties. Described strategies include the incorporation of substituents for well-known condensation or nucleophilic displacement-type reactions and their use, for example, to tether spectroscopic handles to Pt reagents for in vivo investigation. Other chief uses of displacement-type reactions have included tethering various small molecules exhibiting pharmacological activity directly to Pt, thus adding synergistic effects. Click chemistry-based ligation techniques have also been applied, primarily with azide- and alkyne-appended Pt complexes. Orthogonally reactive click chemistry reactions have proven invaluable when more traditional nucleophilic displacement reactions induce side-reactivity with the Pt center or when systematic functionalization of a larger number of Pt complexes is desired. Additionally, a diverse assortment of Pt-fluorophore conjugates have been tethered via click chemistry conjugation. In addition to providing a convenient synthetic path for diversifying Pt compounds, the use of click-capable Pt complexes has proved a powerful strategy for postbinding covalent modification and detection with fluorescent probes. This strategy bypasses undesirable influences of the fluorophore camouflaged as reactivity due to Pt that may be present when detecting preattached Pt-fluorophore conjugates. Using postbinding strategies, Pt reagent distributions in HeLa and lung carcinoma (NCI-H460) cell cultures were observed with two different azide-modified Pt compounds, a monofunctional Pt(II)-acridine type and a difunctional Pt(II)-neutral complex. In addition, cellular distribution was observed with an alkyne-appended difunctional

  6. Preparation and characterization of Pt/C and Pt sbnd Ru/C electrocatalysts for direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Zhaolin; Ling, Xing Yi; Su, Xiaodi; Lee, Jim Yang; Gan, Leong Ming

    Nano-sized Pt and Pt sbnd Ru colloids are prepared by a microwave-assisted polyol process, and transferred to a toluene solution of decanthiol. Vulcan XC-72 is then added to the toluene solution to adsorb the thiolated Pt and Pt sbnd Ru colloids. Transmission electron microscopy examinations show nearly spherical particles and narrow size distributions for both supported and unsupported metals. The carbon-supported Pt and Pt sbnd Ru nanoparticles are activated by thermal treatment to remove the thiol stabilizing shell. All Pt and Pt sbnd Ru catalysts (except Pt 23sbnd Ru 77) give the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Pt 23sbnd Ru 77 alloy is more typical of the hexagonal close packed (hcp) structure. The electro-oxidation of liquid ethanol on these catalysts is investigated at room temperature by cyclic voltammetry. The results demonstrate that the alloy catalyst is catalytically more active than pure platinum. Preliminary tests on a single cell of a direct ethanol fuel cell (DEFC) indicate that a Pt 52sbnd Ru 48/C anode catalyst gives the best electrocatalytic performance among all the carbon-supported Pt and Pt sbnd Ru catalysts.

  7. PT quantum mechanics.

    PubMed

    Bender, Carl M; DeKieviet, Maarten; Klevansky, S P

    2013-04-28

    PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics.

  8. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  9. Quadrature amplitude modulation (QAM) using binary-driven coupling-modulated rings

    NASA Astrophysics Data System (ADS)

    Karimelahi, Samira; Sheikholeslami, Ali

    2016-05-01

    We propose and fully analyze a compact structure for DAC-free pure optical QAM modulation. The proposed structure is the first ring resonator-based DAC-free QAM modulator reported in the literature, to the best of our knowledge. The device consists of two segmented add-drop Mach Zehnder interferometer-assisted ring modulators (MZIARM) in an IQ configuration. The proposed architecture is investigated based on the parameters from SOI technology where various key design considerations are discussed. We have included the loss in the MZI arms in our analysis of phase and amplitude modulation using MZIARM for the first time and show that the imbalanced loss results in a phase error. The output level linearity is also studied for both QAM-16 and QAM-64 not only based on optimizing RF segment lengths but also by optimizing the number of segments. In QAM-16, linearity among levels is achievable with two segments while in QAM-64 an additional segment may be required.

  10. The Compact Environmental Anomaly Sensor (CEASE) III

    NASA Astrophysics Data System (ADS)

    Roddy, P.; Hilmer, R. V.; Ballenthin, J.; Lindstrom, C. D.; Barton, D. A.; Ignazio, J. M.; Coombs, J. M.; Johnston, W. R.; Wheelock, A. T.; Quigley, S.

    2016-12-01

    The Air Force Research Laboratory's Energetic Charged Particle (ECP) sensor project is a comprehensive effort to measure the charged particle environment that causes satellite anomalies. The project includes the Compact Environmental Anomaly Sensor (CEASE) III, building on the flight heritage of prior CEASE designs. CEASE III consists of multiple sensor modules. High energy particles are observed using independent unique silicon detector stacks. In addition CEASE III includes an electrostatic analyzer (ESA) assembly which uses charge multiplication for particle detection. The sensors cover a wide range of proton and electron energies that contribute to satellite anomalies.

  11. Structure-property relations in sputter deposited epitaxial (1-x)Pb(Mg1/3Nb2/3)O3- xPbTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Frederick, Joshua C.

    Lead-based ferroelectric materials are of significant technological importance for sensing and actuation due to their high piezoelectric performance (i.e., the ability to convert an electrical signal to mechanical displacement, and vice versa). Traditionally, bulk ceramic or single crystals materials have filled these roles; however, emerging technologies stand to benefit by incorporating thin films to achieve miniaturization while maintaining high efficiency and sensitivity. Currently, chemical systems that have been well characterized in bulk form (e.g. Pb(Mg1/3Nb2/3)O3- xPbTiO3, or PMN-xPT) require further study to optimize both the chemistry and structure for deployment in thin film devices. Furthermore, the effect of internal electric fields is more significant at the length scales of thin films, resulting in self biases that require compensation to reveal their intrinsic dielectric response. To this end, the structure-property relations of epitaxial PMN-xPT films sputter deposited on a variety of substrates were investigated. Attention was paid to how the structure (i.e., strain state, crystal structure, domain configuration, and defects) gave rise to the ferroelectric, dielectric, and piezoelectric response. Three-dimensional visualization of the dielectric response as a simultaneous function of electric field and temperature revealed the true phase transition of the films, which was found to correspond to the strain state and defect concentration. A lead-buffered anneal process was implemented to enhance the ferroelectric and dielectric response of the films without altering their stoichiometry. It was discovered that PMN- xPT films could be domain-engineered to exhibit a mixed domain state through chemistry and substrate choice. Such films exhibited a monoclinic distortion similar to that of the bulk compositions near the morphotropic phase boundary. Finally, it was revealed that the piezoelectric response could be greatly enhanced by declamping the film

  12. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  13. Compact time- and space-integrating SAR processor: design and development status

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Christensen, Marc P.; Michael, Robert R., Jr.; Mock, Michael M.

    1994-06-01

    Progress toward a flight demonstration of the acousto-optic time- and space- integrating real-time SAR image formation processor program is reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported include tests of a laboratory version of the concept, a description of the compact optical design that will be implemented, and an overview of the electronic interface and controller modules of the flight-test system.

  14. Surface structure and chemistry of Pt/Cu/Pt(1 1 1) near surface alloy model catalyst in CO

    NASA Astrophysics Data System (ADS)

    Zeng, Shibi; Nguyen, Luan; Cheng, Fang; Liu, Lacheng; Yu, Ying; Tao, Franklin (Feng)

    2014-11-01

    Near surface alloy (NSA) model catalyst Pt/Cu/Pt(1 1 1) was prepared on Pt(1 1 1) through a controlled vapor deposition of Cu atoms. Different coordination environments of Pt atoms of the topmost Pt layer with the underneath Cu atoms in the subsurface result in different local electronic structures of surface Pt atoms. Surface structure and chemistry of the NAS model catalyst in Torr pressure of CO were studied with high pressure scanning tunneling microscopy (HP-STM) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). In Torr pressure of CO, the topmost Pt layer of Pt/Cu/Pt(1 1 1) is restructured to thin nanoclusters with size of about 1 nm. Photoemission feature of O 1s of CO on Pt/Cu/Pt(1 1 1) suggests CO adsorbed on both edge and surface of these formed nanoclusters. This surface is active for CO oxidation. Atomic layers of carbon are formed on Pt/Cu/Pt(1 1 1) at 573 K in 2 Torr of CO.

  15. Bipolar resistance switching in Pt/CuO x /Pt via local electrochemical reduction

    DOE PAGES

    D'Aquila, Kenneth; Phatak, Charudatta; Holt, Martin V.; ...

    2014-06-17

    We investigated the local changes in copper oxidation state and the corresponding resistance changes in Pt/CuO x/Pt nanoscale heterostructures using x-ray nanoprobe spectro-microscopy and current-voltage characterization. After gentle electroforming, during which the current-voltage behavior remains non-linear, the low resistance state was reached, and we also observed regions of 160 nm width that show an increase in Cu K-alpha fluorescence intensity, indicative of partial reduction of the CuO x. Analysis of the current voltage curves showed that the dominant conduction mechanism is Schottky emission and that the resistance state is correlated with the Schottky barrier height. We also propose that themore » reversible resistivity change in these Pt/CuO x/Pt heterostructures occurs through local electrochemical reduction leading to change of the Schottky barrier height at the interface between Pt and the reduced CuO x layers and to change of the CuO x resistivity within laterally confined portions of the CuO x layer. Our experiments reveal important insights into the mechanism of resistance switching of Pt/CuO x/Pt performed in a current and voltage regime that does not create a metallic conduction path.« less

  16. Low Pt-content ternary PdCuPt nanodendrites: an efficient electrocatalyst for oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua

    2017-01-01

    Dendritic nanostructures are capturing increasing attentions in electrocatalysis owing to their unique structural features and low density. Herein, we report for the first time bromide ions mediated synthesis of low-Pt-content PdCuPt ternary nanodendrites via galvanic replacement reaction between Pt precursor and PdCu template in aqueous solution. The experimental results show that the ternary PdCuPt nanodendrites present enhanced electrocatalytic performance for oxygen reduction reaction in acid solution compared with commercial Pt/C as well as some state-of-the-art catalysts. In details, the mass activity of the PdCuPt catalyst with optimized composition is 1.73 A/mgPt at 0.85 V vs RHE, which is 14 timesmore » higher than that of commercial Pt/C catalyst. Moreover, the long-term stability test demonstrates its better durability in acid solution. After 5k cycles, there is still 70% electrochemical surface area maintained. This method provides an efficient way to synthesize trimetallic alloys with controllable composition and specific structure for oxygen reduction reaction.« less

  17. NMOS contact resistance reduction with selenium implant into NiPt silicide

    NASA Astrophysics Data System (ADS)

    Rao, K. V.; Khaja, F. A.; Ni, C. N.; Muthukrishnan, S.; Darlark, A.; Lei, J.; Peidous, I.; Brand, A.; Henry, T.; Variam, N.; Erokhin, Y.

    2012-11-01

    A 25% reduction in NMOS contact resistance (Rc) was achieved by Selenium implantation into NiPt silicide film in VIISta Trident high-current single-wafer implanter. The Trident implanter is designed for shallow high-dose implants with high beam currents to maintain high throughput (for low CoO), with improved micro-uniformity and no energy contamination. The integration of Se implant was realized using a test chip dedicated to investigating silicide/junction related electrical properties and testable after silicidation. The silicide module processes were optimized, including the pre-clean (prior to RF PVD NiPt dep) and pre- and post-implant anneals. A 270°C soak anneal was used for RTP1, whereas a msec laser anneal was employed for RTP2 with sufficient process window (800-850°C), while maintaining excellent junction characteristics without Rs degradation.

  18. Depoling and fatigue behavior of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal at megahertz frequencies under bipolar electric field

    NASA Astrophysics Data System (ADS)

    Chen, Zhaojiang; Li, Shiyang; Zhang, Yang; Cao, Wenwu

    2017-05-01

    Bipolar electric field induced degradation in [001]c poled Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-0.29PT) single crystals was investigated at megahertz frequencies. The electromechanical coupling factor kt, dielectric constant ɛr, dielectric loss D, and piezoelectric constant d33 were measured as a function of amplitude, frequency, and number of cycles of the applied electric field. Our results showed that samples degrade rapidly when the field amplitude is larger than a critical value due to the onset of domain switching. We define this critical value as the effective coercive field Ec at high frequencies, which increases drastically with frequency. We also demonstrate an effective counter-depoling method by using a dc bias, which could help the design of high field driven devices based on PMN-PT single crystals and operated at megahertz frequencies.

  19. Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xue; Luo, Ming; Huang, Hongwen

    We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less

  20. Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates

    DOE PAGES

    Wang, Xue; Luo, Ming; Huang, Hongwen; ...

    2016-09-06

    We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less

  1. Pt and PtRu catalyst bilayers increase efficiencies for ethanol oxidation in proton exchange membrane electrolysis and fuel cells

    NASA Astrophysics Data System (ADS)

    Altarawneh, Rakan M.; Pickup, Peter G.

    2017-10-01

    Polarization curves, product distributions, and reaction stoichiometries have been measured for the oxidation of ethanol at anodes consisting of Pt and PtRu bilayers and a homogeneous mixture of the two catalysts. These anode structures all show synergies between the two catalysts that can be attributed to the oxidation of acetaldehyde produced at the PtRu catalyst by the Pt catalyst. The use of a PtRu layer over a Pt layer produces the strongest effect, with higher currents than a Pt on PtRu bilayer, mixed layer, or either catalyst alone, except for Pt at high potentials. Reaction stoichiometries (average number of electrons transferred per ethanol molecule) were closer to the values for Pt alone for both of the bilayer configurations but much lower for PtRu and mixed anodes. Although Pt alone would provide the highest overall fuel cell efficiency at low power densities, the PtRu on Pt bilayer would provide higher power densities without a significant loss of efficiency. The origin of the synergy between the Pt and PtRu catalysts was elucidated by separation of the total current into the individual components for generation of carbon dioxide and the acetaldehyde and acetic acid byproducts.

  2. Ionic Liquid Gating Control of RKKY Interaction in FeCoB/Ru/FeCoB and (Pt/Co) 2/Ru/(Co/Pt) 2 Multilayers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qu; Wang, Lei; Zhou, Ziyao

    To overcome the fundamental challenge of the weak natural response of antiferromagnetic materials under a magnetic field, voltage manipulation of antiferromagnetic interaction is developed to realize ultrafast, high-density, and power efficient antiferromagnetic spintronics. Here, we report a low voltage modulation of Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction via ionic liquid gating in synthetic antiferromagnetic multilayers of FeCoB/Ru/FeCoB and (Pt/Co) 2/Ru/(Co/Pt) 2. At room temperature, the distinct voltage control of transition between antiferromagnetic and ferromagnetic ordering is realized and up to 80% of perpendicular magnetic moments manage to switch with a small-applied voltage bias of 2.5 V. We related this ionic liquid gating-induced RKKYmore » interaction modification to the disturbance of itinerant electrons inside synthetic antiferromagnetic heterostructure and the corresponding change of its Fermi level. Voltage tuning of RKKY interaction may enable the next generation of switchable spintronics between antiferromagnetic and ferromagnetic modes with both fundamental and practical perspectives.« less

  3. Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Lau, Judy M.; Sieth, Matthew M.; VanWinkle, Daniel; Tantawi, Sami

    2011-01-01

    HEMT-based receiver arrays with excellent noise and scalability are already starting to be manufactured at 100 GHz, but the advances in technology should make it possible to develop receiver modules with even greater operation frequency up to 200 GHz. A prototype heterodyne amplifier module has been developed for operation from 140 to 170 GHz using monolithic millimeter-wave integrated circuit (MMIC) low-noise InP high electron mobility transistor (HEMT) amplifiers. The compact, scalable module is centered on the 150-GHz atmospheric window using components known to operate well at these frequencies. Arrays equipped with hundreds of these modules can be optimized for many different astrophysical measurement techniques, including spectroscopy and interferometry. This module is a heterodyne receiver module that is extremely compact, and makes use of 35-nm InP HEMT technology, and which has been shown to have excellent noise temperatures when cooled cryogenically to 30 K. This reduction in system noise over prior art has been demonstrated in commercial mixers (uncooled) at frequencies of 160-180 GHz. The module is expected to achieve a system noise temperature of 60 K when cooled. An MMIC amplifier module has been designed to demonstrate the feasibility of expanding heterodyne amplifier technology to the 140 to 170-GHz frequency range for astronomical observations. The miniaturization of many standard components and the refinement of RF interconnect technology have cleared the way to mass-production of heterodyne amplifier receivers, making it a feasible technology for many large-population arrays. This work furthers the recent research efforts in compact coherent receiver modules, including the development of the Q/U Imaging ExperimenT (QUIET) modules centered at 40 and 90 GHz, and the production of heterodyne module prototypes at 90 GHz.

  4. Temperature-dependent elasticity of Pb [(Mg0.33Nb0.67 ) 1 -xT ix ] O3

    NASA Astrophysics Data System (ADS)

    Tennakoon, Sumudu; Gladden, Joseph; Mookherjee, Mainak; Besara, Tiglet; Siegrist, Theo

    2017-10-01

    Relaxor ferroelectric materials, such as Pb [(Mg0.33Nb0.67 ) 1 -xT ix ] O3 (PMN-PT) with generic stoichiometry, undergo a ferroelectric-to-paraelectric phase transition as a function of temperature. The exact transition characterized by Curie temperature (Tc) varies as a function of chemistry (x ), i.e., the concentration of Ti. In this study, we investigated the structural phase transition by exploring the temperature dependence of the single-crystal elastic properties of Pb [(Mg0.33Nb0.67 ) 0.7T i0.3 ] O3 , i.e., x ≈0.3 . We used resonant ultrasound spectroscopy to determine the elasticity at elevated temperatures, from which Tc=398 ±5 K for PMN-PT (x ≈0.3 ) was determined. We report the full elastic constant tensor (Ci j={ C11,C12,C44 }), acoustic attenuation (Q-1), longitudinal (VP) and shear (VS) sound velocities, and elastic anisotropy of PMN-PT as a function of temperature for 400 Tc the material first stiffens and reaches maxima in the vicinity of the Burns temperature (Tb˜673 K ), followed by a more typical gradual softening of the elastic constants. Similar temperature-dependent anomalies are also observed with anisotropy and Q-1, with minima in the vicinity of Tb. We used the temperature dependence of Ci j, Q-1, VP,VS , and anisotropy to infer the evolution of polar nanoregions as the material evolved from T >Tc .

  5. Bottom-Up Syntheses and Characterization of One Dimensional Nanomaterials

    NASA Astrophysics Data System (ADS)

    Yeh, Yao-Wen

    Nanomaterials, materials having at least one dimension below 100 nm, have been creating exciting opportunities for fundamental quantum confinement studies and applications in electronic devices and energy technologies. One obvious and important aspect of nanomaterials is their production. Although nanostructures can be obtained by top-down reductive e-beam lithography and focused ion beam processes, further development of these processes is needed before these techniques can become practical routes to large scale production. On the other hand, bottom-up syntheses, with advantages in material diversity, throughput, and the potential for large volume production, may provide an alternative strategy for creating nanostructures. In this work, we explore syntheses of one dimensional nanostructures based on hydrothermal and arc discharge methods. The first project presented in this thesis involves syntheses of technologically important nanomaterials and their potential application in energy harvesting. In particular, it was demonstrated that single crystal ferroelectric lead magnesium niobate lead titanate (PMN-PT) nanowires can be synthesized by a hydrothermal route. The chemical composition of the synthesized nanowires is near the rhombohedral-monoclinic boundary of PMN-PT, which leads to a high piezoelectric coefficient of 381 pm/V. Finally, the potential use of PMN-PT nanowires in energy harvesting applications was also demonstrated. The second part of this thesis involves the synthesis of carbon and boron nitride nanotubes by dc arc discharges. In particular, we investigated how local plasma related properties affected the synthesis of carbon nanostructures. Finally, we investigated the anodic nature of the arc and how a dc arc discharge can be applied to synthesize boron nitride nanotubes.

  6. Giant Magnetoelectric Energy Conversion Utilizing Inter-Ferroelectric Phase Transformations in Ferroics

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Staruch, Margo

    Phase transition-based electromechanical transduction permits achieving a non-resonant broadband mechanical energy conversion see (Finkel et al Actuators, 5 [1] 2. (2015)) , the idea is based on generation high energy density per cycle , at least 100x of magnitude larger than linear piezoelectric type generators in stress biased [011]cut relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal can generate reversible strain >0.35% at remarkably low fields (0.1 MV/m) for tens of millions of cycles. Recently we demonstrated that large strain and polarization rotation can be generated for over 40 x 106cycles with little fatigue by realization of reversible ferroelectric-ferroelectric phase transition in [011] cut PIN-PMN-PT relaxor ferroelectric single crystal while sweeping through the transition with a low applied electric field <0.18 MV/m under mechanical stress. This methodology was extended in the present work to propose magnetoelectric (ME) composite hybrid system comprised of highly magnetostrictive alloymFe81.4Ga18.6 (Galfenol), and lead indium niobate-lead magnesium niobate-lead titanate (PIN-PMN-PT) domain engineered relaxor ferroelectric single crystal. A small time-varying magnetic field applied to this system causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. ME coupling coefficient was fond to achieve 80 V/cm Oe near the FR-FO phase transition that is at least 100X of magnitude higher than any currently reported values.

  7. SFG study of methanol dissociative adsorption at Pt(1 0 0), Pt(1 1 0) and Pt(1 1 1) electrodes surfaces

    NASA Astrophysics Data System (ADS)

    Vidal, F.; Busson, B.; Six, C.; Pluchery, O.; Tadjeddine, A.

    2002-04-01

    The Pt( hkl)/methanol in acidic solution interface which constitutes a model of the anodic part of a fuel cell is studied by infrared-visible sum frequency generation vibrational spectroscopy. Methanol dissociative adsorption leads to CO poisoning of the Pt electrode surfaces. The structure of the CO/Pt( hkl) interface depends strongly on the orientation of the surface electrode.

  8. The 5000 GPM firefighting module evaluation test

    NASA Technical Reports Server (NTRS)

    Burns, Ralph A.

    1986-01-01

    The 5000 GPM Firefighting Module development was sponsored and shared by the Navy Facilities Engineering Command. It is a lightweight, compact, self-contained, helicopter-transportable unit for fighting harbor and other specialty fires as well as for use in emergency and shipboard water pumping applications. This unit is a more advanced model of the original 1500 GPM module developed for the U.S. Coast Guard. The module and an evaluation test program conducted at the North Island Naval Air Station, San Diego, California, by NASA and the U.S. Navy, are described.

  9. Skew chicane based betatron eigenmode exchange module

    DOEpatents

    Douglas, David

    2010-12-28

    A skewed chicane eigenmode exchange module (SCEEM) that combines in a single beamline segment the separate functionalities of a skew quad eigenmode exchange module and a magnetic chicane. This module allows the exchange of independent betatron eigenmodes, alters electron beam orbit geometry, and provides longitudinal parameter control with dispersion management in a single beamline segment with stable betatron behavior. It thus reduces the spatial requirements for multiple beam dynamic functions, reduces required component counts and thus reduces costs, and allows the use of more compact accelerator configurations than prior art design methods.

  10. Small Fermi surfaces of PtSn4 and Pt3In7

    NASA Astrophysics Data System (ADS)

    Yara, T.; Kakihana, M.; Nishimura, K.; Hedo, M.; Nakama, T.; Ōnuki, Y.; Harima, H.

    2018-05-01

    An extremely large magnetoresistance of PtSn4 has been recently observed and discussed from a viewpoint of de Haas-van Alphen (dHvA) oscillations and theoretical small Fermi surfaces. We have studied precisely the Fermi surfaces by measuring angular dependences of dHvA frequencies and have also carried out the full potential LAPW band calculation. Furthermore, small Fermi surfaces have been detected in another Pt-based compound of Pt3In7 with the cubic structure.

  11. Butterfly deformation modes in a photoexcited pyrazolate-bridged Pt complex measured by time-resolved x-ray scattering in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haldrup, Kristoffer; Dohn, Asmus O.; Shelby, Megan L.

    2016-08-27

    Pyrazolate-bridged di-nuclear Pt complexes represent a series of molecules with tunable absorption and emission properties that can be directly modulated by structural factors, such as the Pt-Pt distance. However, direct experimental information regarding the structure of the emissive triplet excited state has remained scarce. Using time-resolved wide angle X-ray scattering (WAXS), the molecular structure of the triplet excited state for one of the complexes [Pt(ppy)(μ-tBu 2pz)] 2 was obtained in a dilute (0.5 mM) toluene solution utilizing the monochromatic X-ray beamline 11IDD of the Advanced Photon Source. The excited state structural analysis was carried out based on the results frommore » both transient WAXS measurements and DFT calculations to shed light on the primary structural changes, in particular the Pt-Pt distance and ligand rotation taking place following the photo-excitation of [Pt(ppy)(μ-tBu 2pz)] 2 in toluene solution. We find that in the triplet excited state a pronounced contraction along the Pt-Pt axis has taken place accompanied by rotational motions of ppy ligands toward one another. Our results suggest that the contraction is larger than what has previously been reported, but are in good agreement with recent theoretical efforts and suggest the ppy moieties as targets for rational synthesis aimed at tuning the excited-state structure and properties« less

  12. Comparative study of n-hexane aromatization on Pt/KL, Pt/Mg(Al)O, and Pt/SiO{sub 2} catalysts: Clean and sulfur-containing feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, G.; Padro, C.L.; Resasco, D.E.

    The n-hexane aromatization has been studied on Pt/KL, Pt/Mg(Al)O, and Pt/SiO{sub 2} catalysts at 773 K using sulfur-free and 0.6 ppm sulfur containing feedstocks. Examination of the product distribution as a function of conversion suggests that the formation of benzene is preceded by the formation of hexenes. In contrast with previous reports, it has been found that the Pt/KL catalyst exhibits much higher aromatization activity than the Pt/Mg(Al)O catalyst. On Pt/KL the main product is benzene, with hexenes and lighter compounds as the principal by-products. By contrast, on the Pt/Mg(Al)O, the main products were hexenes. Since hexenes are primary productsmore » and benzene is a secondary product, the exceptional aromatization activity of Pt/KL is explained in terms of its ability to convert hexene into benzene. In the presence of sulfur, the Pt/KL exhibits a rapid loss in n-hexane conversion and benzene selectivity. Under these conditions, the sulfided Pt/KL catalyst presents a catalytic behavior typical of Pt/Mg(Al)O and Pt/SiO{sub 2}, generating larger amounts of hexenes. The observed results are consistent with the hypothesis that the most important role of the zeolite is to inhibit bimolecular interactions that lead to coke formation. The formation of coke has the net effect of selectively deactivating aromatization sites which require a large ensemble of atoms to constitute the active site but not affecting the dehydrogenation activity which is less ensemble-sensitive. Therefore, those particles that are not protected against coking inside the channels of the zeolite rapidly become unselective. In support of this hypothesis, the hydrogenolysis reaction which also requires a large ensemble of atoms, decreases in parallel with the aromatization reaction. The high sensitivity of Pt/KL to sulfur may be due to a combination of effects which may involve growth of metal particles outside the zeolite which would become unselective and partial poisoning of the

  13. A compact self-flowing lithium system for use in an industrial neutron source

    NASA Astrophysics Data System (ADS)

    Kalathiparambil, Kishor Kumar; Szott, Matthew; Jurczyk, Brian; Ahn, Chisung; Ruzic, David

    2016-10-01

    A compact trench module to flow liquid lithium in closed loops for handling high heat and particle flux have been fabricated and tested at UIUC. The module was designed to demonstrate the proof of concept in utilizing liquid metals for two principal objectives: i) as self-healing low Z plasma facing components, which is expected to solve the issues facing the current high Z components and ii) using flowing lithium as an MeV-level neutron source. A continuously flowing lithium loop ensures a fresh lithium interface and also accommodate a higher concentration of D, enabling advanced D-Li reactions without using any radioactive tritium. Such a system is expected to have a base yield of 10e7 n/s. For both the applications, the key success factor of the module is attaining the necessary high flow velocity of the lithium especially over the impact area, which will be the disruptive plasma events in fusion reactors and the incident ion beam for the neutron beam source. This was achieved by the efficient shaping of the trenches to exploit the nozzle effect in liquid flow. The compactness of the module, which can also be scaled as desired, was fulfilled by the use of high Tc permanent magnets and air cooled channels attained the necessary temperature gradient for driving the lithium. The design considerations and parameters, experimental arrangements involving lithium filling and attaining flow, data and results obtained will be elaborated. DOE SBIR project DE-SC0013861.

  14. Improvement of perpendicular anisotropy of columnar FePt-ZrO2-C films with FePt insert layer

    NASA Astrophysics Data System (ADS)

    Dong, Kaifeng; Mo, Wenqin; Jin, Fang; Song, Junlei; Cheng, Weimin; Wang, Haiwei

    2018-05-01

    The effects of various thicknesses of FePt insert layer on the microstructure and magnetic properties of FePt-ZrO2-C thin films have been investigated. It is found that with inserting 0.4 nm FePt films between the TiON intermediate layer and FePt-ZrO2-C layer, the perpendicular anisotropy indicated by Hc⊥/Hc//ratio would increase from 4 to 13.1, suggesting the perpendicular anisotropy could be improved a lot with using FePt insert layer. Simultaneously, the FePt grains of FePt-ZrO2-C thin films maintained columnar structure and the grain isolation could also be improved in a certain degree. With further increase of the FePt insert layer thickness, although the perpendicular anisotropy was still larger than that without FePt insert layer, the grain size of the FePt-ZrO2-C films would increase and the isolation would be deteriorated.

  15. The gibberellin GID1-DELLA signalling module exists in evolutionarily ancient conifers.

    PubMed

    Du, Ran; Niu, Shihui; Liu, Yang; Sun, Xinrui; Porth, Ilga; El-Kassaby, Yousry A; Li, Wei

    2017-11-30

    Gibberellins (GAs) participate in controlling various aspects of basic plant growth responses. With the exception of bryophytes, GA signalling in land plants, such as lycophytes, ferns and angiosperms, is mediated via GIBBERELLIN-INSENSITIVE DWARF1 (GID1) and DELLA proteins. To explore whether this GID1-DELLA mechanism is present in pines, we cloned an orthologue (PtGID1) of Arabidopsis AtGID1a and two putative DELLA proteins (PtDPL; PtRGA) from Pinus tabuliformis, a widespread indigenous conifer species in China, and studied their recombinant proteins. PtGID1 shares with AtGID1a the conserved HSL motifs for GA binding and an N-terminal feature that are essential for interaction with DELLA proteins. Indeed, A. thaliana 35S:PtGID1 overexpressors showed a strong GA-hypersensitive phenotype compared to the wild type. Interactions between PtGID1 and PtDELLAs, but also interactions between the conifer-angiosperm counterparts (i.e. between AtGID1 and PtDELLAs and between PtGID1 and AtDELLA), were detected in vivo. This demonstrates that pine has functional GID1-DELLA components. The Δ17-domains within PtDPL and PtRGA were identified as potential interaction sites within PtDELLAs. Our results show that PtGID1 has the ability to interact with DELLA and functions as a GA receptor. Thus, a GA-GID1-DELLA signalling module also operates in evolutionarily ancient conifers.

  16. Searching Ultra-compact Pulsar Binaries with Abnormal Timing Behavior

    NASA Astrophysics Data System (ADS)

    Gong, B. P.; Li, Y. P.; Yuan, J. P.; Tian, J.; Zhang, Y. Y.; Li, D.; Jiang, B.; Li, X. D.; Wang, H. G.; Zou, Y. C.; Shao, L. J.

    2018-03-01

    Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently 1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2). Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other binary candidates.

  17. (U) Influence of Compaction Model Form on Planar and Cylindrical Compaction Geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredenburg, David A.; Carney, Theodore Clayton; Fichtl, Christopher Allen

    The dynamic compaction response of CeO 2 is examined within the frameworks of the Ramp and P-a compaction models. Hydrocode calculations simulating the dynamic response of CeO 2 at several distinct pressures within the compaction region are investigated in both planar and cylindrically convergent geometries. Findings suggest additional validation of the compaction models is warranted under complex loading configurations.

  18. A stable dual-wavelength Q-switch using a compact passive device containing photonics crystal fiber embedded with carbon platinum

    NASA Astrophysics Data System (ADS)

    Safaei, R.; Amiri, I. S.; Rezayi, M.; Ahmad, H.

    2018-01-01

    A compact fiber laser utilizing platinum nanoparticles doped on carbon (Pt/C) embedded in photonic crystal fiber capable of generating a stable Q-switch dual-wavelength is designed and verified. Stable Q-switch pulses, with a repetition rate of 73.6 kHz, pulse width of 1.45 µs and power of 3.8 nJ in two separated wavelengths of 1557.39 nm and 1558.86 nm at a pump power of 350 mW, have been obtained. This is a novel method for generating Q-switch dual-wavelength pulses using a well-protected component that introduces both a saturable absorber and Mach-Zehnder interferometer effects simultaneously in the laser cavity. Furthermore, to best of our knowledge, this is the first time that Pt/C nanoparticles have been used in a saturable absorber for optical pulse generation.

  19. Preparation and Thermoelectric Characteristics of ITO/PtRh:PtRh Thin Film Thermocouple

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Wang, Hongmin; Zhao, Zixiang; Zhang, Wanli; Jiang, Hongchuan

    2017-12-01

    Thin film thermocouples (TFTCs) can provide more precise in situ temperature measurement for aerospace propulsion systems without disturbance of gas flow and surface temperature distribution of the hot components. ITO /PtRh:PtRh TFTC with multilayer structure was deposited on alumina ceramic substrate by magnetron sputtering. After annealing, the TFTC was statically calibrated for multiple cycles with temperature up to 1000 °C. The TFTC with excellent stability and repeatability was realized for the negligible variation of EMF in different calibration cycles. It is believed that owing to oxygen diffusion barriers by the oxidation of top PtRh layer and Schottky barriers formed at the grain boundaries of ITO, the variation of the carrier concentration of ITO film is minimized. Meanwhile, the life time of TFTC is more than 30 h in harsh environment. This makes ITO/PtRh:PtRh TFTC a promising candidate for precise surface temperature measurement of hot components of aeroengines.

  20. Preparation and Thermoelectric Characteristics of ITO/PtRh:PtRh Thin Film Thermocouple.

    PubMed

    Zhao, Xiaohui; Wang, Hongmin; Zhao, Zixiang; Zhang, Wanli; Jiang, Hongchuan

    2017-12-15

    Thin film thermocouples (TFTCs) can provide more precise in situ temperature measurement for aerospace propulsion systems without disturbance of gas flow and surface temperature distribution of the hot components. ITO/PtRh:PtRh TFTC with multilayer structure was deposited on alumina ceramic substrate by magnetron sputtering. After annealing, the TFTC was statically calibrated for multiple cycles with temperature up to 1000 °C. The TFTC with excellent stability and repeatability was realized for the negligible variation of EMF in different calibration cycles. It is believed that owing to oxygen diffusion barriers by the oxidation of top PtRh layer and Schottky barriers formed at the grain boundaries of ITO, the variation of the carrier concentration of ITO film is minimized. Meanwhile, the life time of TFTC is more than 30 h in harsh environment. This makes ITO/PtRh:PtRh TFTC a promising candidate for precise surface temperature measurement of hot components of aeroengines.

  1. Compact Polarimetry Potentials

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  2. Effects of Alloyed Metal on the Catalysis Activity of Pt for Ethanol Partial Oxidation: Adsorption and Dehydrogenation on Pt3M (M=Pt, Ru, Sn, Re, Rh, and Pd)

    PubMed Central

    Xu, Zhen-Feng; Wang, Yixuan

    2011-01-01

    The adsorption and dehydrogenation reactions of ethanol over bimetallic clusters, Pt3M (M = Pt, Ru, Sn, Re, Rh, and Pd), have been extensively investigated with density functional theory. Both the α-hydrogen and hydroxyl adsorptions on Pt as well as on the alloyed transition metal M sites of PtM were considered as initial reaction steps. The adsorptions of ethanol on Pt and M sites of some PtM via the α-hydrogen were well established. Although the α-hydrogen adsorption on Pt site is weaker than the hydroxyl, the potential energy profiles show that the dehydrogenation via the α-hydrogen path has much lower energy barrier than that via the hydroxyl path. Generally for the α-hydrogen path the adsorption is a rate-determining-step because of rather low dehydrogenation barrier for the α-hydrogen adsorption complex (thermodynamic control), while the hydroxyl path is determined by its dehydrogenation step (kinetic control). The effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation, including adsorption energy, energy barrier, electronic structure, and eventually rate constant were discussed. Among all of the alloyed metals only Sn enhances the rate constant of the dehydrogenation via the α-hydrogen path on the Pt site of Pt3Sn as compared with Pt alone, which interprets why the PtSn is the most active to the oxidation of ethanol. PMID:22102920

  3. Monodisperse core/shell Ni/FePt nanoparticles and their con-version to Ni/Pt to catalyze oxygen reduction

    DOE PAGES

    Zhang, Sen; Hao, Yizhou; Su, Dong; ...

    2014-10-28

    We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mg Pt at 0.9more » V ( vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mg Pt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.« less

  4. Differential compaction behaviour of roller compacted granules of clopidogrel bisulphate polymorphs.

    PubMed

    Khomane, Kailas S; Bansal, Arvind K

    2014-09-10

    In the present work, in-die and out-of-die compaction behaviour of dry-granulated powders of clopidogrel bisulphate (CLP) polymorphs, form I and form II, was investigated using a fully instrumented rotary tablet press. Each polymorph was compacted at three different roller pressures [70.3 (S1), 105.5 (S2) and 140.6 (S3)kgf/cm(2)], and obtained granules were characterized for their physico-mechanical properties. Compaction data were analyzed for out-of-die compressibility, tabletability and compactibility profiles, and in-die Heckel, Kawakita and Walker analysis. The roller compacted granules of both forms showed markedly different tabletting behaviour. Roller pressure exhibited a trend on compaction behaviour of form I granules, whereas, in case of form II, the effect was insignificant. Tabletability of the six granule batches follows the order; I_S1>I_S2>I_S3>II_S1≈II_S2≈II_S3. In case of form I, the reduced tabletability of the granules compacted at higher roller pressure was attributed to the decreased compressibility and plastic deformation. This was confirmed by compressibility plot and various mathematical parameters derived from Heckel (Py), Kawakita (1/b) and Walker (W) equations. The reduced tabletability of form I granules was due to 'granule hardening' during roller compaction. On the other hand, insignificant effect of roller compaction on tabletting behaviour of form II granules was attributed to brittle fragmentation. The extensive fragmentation of granules offered new 'clean' surfaces and higher contact points that negated the effect of granule hardening. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Measurements of elastic moduli of pharmaceutical compacts: a new methodology using double compaction on a compaction simulator.

    PubMed

    Mazel, Vincent; Busignies, Virginie; Diarra, Harona; Tchoreloff, Pierre

    2012-06-01

    The elastic properties of pharmaceutical powders play an important role during the compaction process. The elastic behavior can be represented by Young's modulus (E) and Poisson's ratio (v). However, during the compaction, the density of the powder bed changes and the moduli must be determined as a function of the porosity. This study proposes a new methodology to determine E and v as a function of the porosity using double compaction in an instrumented compaction simulator. Precompression is used to form the compact, and the elastic properties are measured during the beginning of the main compaction. By measuring the axial and radial pressure and the powder bed thickness, E and v can be determined as a function of the porosity. Two excipients were studied, microcrystalline cellulose (MCC) and anhydrous calcium phosphate (aCP). The values of E measured are comparable to those obtained using the classical three-point bending test. Poisson's ratio was found to be close to 0.24 for aCP with only small variations with the porosity, and to increase with a decreasing porosity for MCC (0.23-0.38). The classical approximation of a value of 0.3 for ν of pharmaceutical powders should therefore be taken with caution. Copyright © 2012 Wiley Periodicals, Inc.

  6. Monolayer PtSe₂, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt.

    PubMed

    Wang, Yeliang; Li, Linfei; Yao, Wei; Song, Shiru; Sun, J T; Pan, Jinbo; Ren, Xiao; Li, Chen; Okunishi, Eiji; Wang, Yu-Qi; Wang, Eryin; Shao, Yan; Zhang, Y Y; Yang, Hai-tao; Schwier, Eike F; Iwasawa, Hideaki; Shimada, Kenya; Taniguchi, Masaki; Cheng, Zhaohua; Zhou, Shuyun; Du, Shixuan; Pennycook, Stephen J; Pantelides, Sokrates T; Gao, Hong-Jun

    2015-06-10

    Single-layer transition-metal dichalcogenides (TMDs) receive significant attention due to their intriguing physical properties for both fundamental research and potential applications in electronics, optoelectronics, spintronics, catalysis, and so on. Here, we demonstrate the epitaxial growth of high-quality single-crystal, monolayer platinum diselenide (PtSe2), a new member of the layered TMDs family, by a single step of direct selenization of a Pt(111) substrate. A combination of atomic-resolution experimental characterizations and first-principle theoretic calculations reveals the atomic structure of the monolayer PtSe2/Pt(111). Angle-resolved photoemission spectroscopy measurements confirm for the first time the semiconducting electronic structure of monolayer PtSe2 (in contrast to its semimetallic bulk counterpart). The photocatalytic activity of monolayer PtSe2 film is evaluated by a methylene-blue photodegradation experiment, demonstrating its practical application as a promising photocatalyst. Moreover, circular polarization calculations predict that monolayer PtSe2 has also potential applications in valleytronics.

  7. Control of superconductivity by means of electric-field-induced strain in superconductor/piezoelectric hybrids

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Zeibekis, M.; Zhang, S. J.

    2018-01-01

    The controlled modification of superconductivity by any means, specifically in hybrid systems, has attracted much interest in the recent decades. Here, we present experimental data and phenomenological modeling on the control of TC of superconducting (SC) Nb thin films, with thickness 3 nm ≤ dN b≤50 nm, under the application of in-plane strain, S(Eex) induced by an external out-of-plane electric field, Eex to piezoelectric (PE) single crystals, namely, ( 1 -x )Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT), with x = 0.27 and 0.31. We report experimental modification of TC of Nb by Eex, accurately described by a phenomenological model that incorporates the constitutive relation S(Eex) of PMN-xPT. The systematic experimental-phenomenological modeling approach introduced here is generic and paves the way for an understanding of the underlying physical mechanisms in any SC/PE hybrid.

  8. Controllable piezoelectricity of Pb(Zr0.2Ti0.8)O3 film via in situ misfit strain

    NASA Astrophysics Data System (ADS)

    Lee, Hyeon Jun; Guo, Er-Jia; Kwak, Jeong Hun; Hwang, Seung Hyun; Dörr, Kathrin; Lee, Jun Hee; Young Jo, Ji

    2017-01-01

    The tetragonality (c/a) of a PbZr0.2Ti0.8O3 (PZT) thin film on La0.7Sr0.3MnO3/ 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates was controlled by applying an electric field on the PMN-PT substrate. The piezoelectric response of the PZT thin film under various biaxial strains was observed using time-resolved micro X-ray diffraction. The longitudinal piezoelectric coefficient (d33) was reduced from 29.5 to 14.9 pm/V when the c/a ratio of the PZT film slightly changed from 1.051 to 1.056. Our results demonstrate that the tetragonality of the PZT thin film plays a critical role in determining d33, and in situ strain engineering using electromechanical substrate is useful in excluding the extrinsic effect resulting from the variation in the film thickness or the interface between substrate.

  9. Frequency dispersion of longitudinal ultrasonic velocity and attenuation in [001]c-poled 0.24Pb(In₁/₂Nb₁/₂O₃- 0.45Pb(Mg₁/₃Nb₂/₃)O₃-0.31PbTiO₃ single crystal.

    PubMed

    Sun, Enwei; Cao, Wenwu; Han, Pengdi

    2011-08-01

    The frequency dispersion of ultrasonic velocity and attenuation in [001](c)-poled 0.24Pb(in(1/2)Nb(1/2))O(3)-0.45Pb(Mg(1/3)Nb(2/3))o(3)-0.31PbTio(3) (PIN-0.45PMN-0.31PT) ternary single crystal were measured by ultrasonic spectroscopy from 25 to 100 MHz for the longitudinal wave. It was found that the velocity has a linear relationship with the frequency f, but the attenuation has a quadratic relation with f. The attenuation and frequency dispersion of the ternary system are lower than that of the (1-x)Pb(Mg(1/3)Nb(2/3))O(3)-xPbTiO(3) (PMN-PT) binary system and the coercive field also increased by a factor of 2.5, hence, the ternary single system is superior to the corresponding binary single-crystal system for high-frequency and high-power transducer applications.

  10. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  11. Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Libo; Zhou, Gang, E-mail: gzhou@mail.buct.edu.cn

    2016-04-14

    The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO{sub 2} is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximatemore » to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.« less

  12. DETECTOR FOR MODULATED AND UNMODULATED SIGNALS

    DOEpatents

    Patterson, H.H.; Webber, G.H.

    1959-08-25

    An r-f signal-detecting device is described, which is embodied in a compact coaxial circuit principally comprising a detecting crystal diode and a modulating crystal diode connected in parallel. Incoming modulated r-f signals are demodulated by the detecting crystal diode to furnish an audio input to an audio amplifier. The detecting diode will not, however, produce an audio signal from an unmodulated r-f signal. In order that unmodulated signals may be detected, such incoming signals have a locally produced audio signal superimposed on them at the modulating crystal diode and then the"induced or artificially modulated" signal is reflected toward the detecting diode which in the process of demodulation produces an audio signal for the audio amplifier.

  13. Design of a compact low-power human-computer interaction equipment for hand motion

    NASA Astrophysics Data System (ADS)

    Wu, Xianwei; Jin, Wenguang

    2017-01-01

    Human-Computer Interaction (HCI) raises demand of convenience, endurance, responsiveness and naturalness. This paper describes a design of a compact wearable low-power HCI equipment applied to gesture recognition. System combines multi-mode sense signals: the vision sense signal and the motion sense signal, and the equipment is equipped with the depth camera and the motion sensor. The dimension (40 mm × 30 mm) and structure is compact and portable after tight integration. System is built on a module layered framework, which contributes to real-time collection (60 fps), process and transmission via synchronous confusion with asynchronous concurrent collection and wireless Blue 4.0 transmission. To minimize equipment's energy consumption, system makes use of low-power components, managing peripheral state dynamically, switching into idle mode intelligently, pulse-width modulation (PWM) of the NIR LEDs of the depth camera and algorithm optimization by the motion sensor. To test this equipment's function and performance, a gesture recognition algorithm is applied to system. As the result presents, general energy consumption could be as low as 0.5 W.

  14. Absorption models for low-frequency variability in compact radio sources

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.

    1979-01-01

    The consequences of the most plausible version of the absorption model for low-frequency variability in compact extragalactic radio sources are considered. The general restrictions placed on such a model are determined, and observational tests are suggested that can be used either to support the model or to discriminate among its various versions. It is shown that low-frequency variability in compact radio sources can be successfully explained by a class of models in which the flux is modulated by changes in free-free optical depth within an intervening ionized medium. Two versions of such a model are distinguished, one involving large changes in optical depth and the other, small changes. It is noted that while absorption effects are capable of causing rapid flux and structural variations at centimetric wavelengths, the models predict detailed behavior that is in direct conflict with observational data.

  15. The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients.

    PubMed

    Escribano-Lopez, Irene; Diaz-Morales, Noelia; Rovira-Llopis, Susana; de Marañon, Arantxa Martinez; Orden, Samuel; Alvarez, Angeles; Bañuls, Celia; Rocha, Milagros; Murphy, Michael P; Hernandez-Mijares, Antonio; Victor, Victor M

    2016-12-01

    It is not known if the mitochondria-targeted antioxidants such as mitoquinone (MitoQ) can modulate oxidative stress and leukocyte-endothelium interactions in T2D patients. We aimed to evaluate the beneficial effect of MitoQ on oxidative stress parameters and leukocyte-endothelium interactions in leukocytes of T2D patients. The study population consisted of 98 T2D patients and 71 control subjects. We assessed metabolic and anthropometric parameters, mitochondrial reactive oxygen species (ROS) production, glutathione peroxidase 1 (GPX-1), NFκB-p65, TNFα and leukocyte-endothelium interactions. Diabetic patients exhibited higher weight, BMI, waist circumference, SBP, DBP, glucose, insulin, HOMA-IR, HbA1c, triglycerides, hs-CRP and lower HDL-c with respect to controls. Mitochondrial ROS production was enhanced in T2D patients and decreased by MitoQ. The antioxidant also increased GPX-1 levels and PMN rolling velocity and decreased PMN rolling flux and PMN adhesion in T2D patients. NFκB-p65 and TNFα were augmented in T2D and were both reduced by MitoQ treatment. Our findings support that the antioxidant MitoQ has an anti-inflammatory and antioxidant action in the leukocytes of T2D patients by decreasing ROS production, leukocyte-endothelium interactions and TNFα through the action of NFκB. These data suggest that mitochondria-targeted antioxidants such as MitoQ should be investigated as a novel means of preventing cardiovascular events in T2D patients. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Determination of Magneto-crystalline Anisotropy Energy (MAE) Of ordered L10 CoPt and FePt nanoparticles

    NASA Astrophysics Data System (ADS)

    Alsaad, A.; Ahmad, A. A.; Shukri, A. A.; Bani-Younes, O. A.

    2018-02-01

    The structural and magnetic properties of both L10 ordered FePt and CoPt nanoparticles make them potential candidates for optical-electronic and magneto-optical devices. First, we carried out an ab initio total energy minimization study to find the geometrical optimization of both L10 phases of FePt and CoPt nanoparticles. Then, we investigated the magnetocrystalline anisotropy energy (MAE) of both systems along special line joining the points of high symmetry (A,B and C points) using super-cell slap approach with alternating layers Fe/Co and Pt along the (001) direction. We found that the point (A) has the highest MAE value for both systems, where the value of MAE in FePt is 8.89 × 107 erg/cm3 and in CoPt is 6.40 × 107 erg/cm3. Our spin density based calculations indicate that large spin-orbit interaction and the hybridization between Pt 5d states and Fe/Co 3d states are the dominant factors in determining the MAE in both systems.

  17. Schottky barrier and band edge engineering via the interfacial structure and strain for the Pt/TiO2 heterostructure.

    PubMed

    Ma, Xiangchao; Wu, Xin; Wang, Yucheng; Dai, Ying

    2017-07-19

    Charge transfer across the Pt/TiO 2 interface, which is mainly determined by the interface Schottky barrier height (SBH), is an important process in the (photo)catalytic and electronic applications of the Pt/TiO 2 composite. Therefore, systematic investigation of the factors that affect the interface SBH is indispensable for understanding and optimizing its performance. In this work, a systematic study of the effects of the interfacial structure and strain on the SBH of the Pt/TiO 2 (001) interface has been carried out based on the first-principles calculations. The results of interface adhesion energy show that two different interfacial structures for the Pt/TiO 2 (001) heterointerface may exist experimentally, namely, O-Pt bonding and Ti-Pt bonding. Moreover, the interfacial structures result in not only different values for the SBH, but also different dependences of the SBH on strain. Detailed investigations show that these versatile modulations of the SBH with the structure and strain are mainly attributed to the strong dependence of the band edges of TiO 2 and the interfacial potential alignments on the strain and structure, suggesting that these results are general and may be applicable to other metal/TiO 2 heterostructures.

  18. Simple preparations of Pd6Cl12, Pt6Cl12, and Qn[Pt2Cl8+n], n=1, 2 (Q=TBA+, PPN+) and structural characterization of [TBA][Pt2Cl9] and [PPN]2[Pt2Cl10].C7H8.

    PubMed

    Dell'Amico, Daniela Belli; Calderazzo, Fausto; Marchetti, Fabio; Ramello, Stefano; Samaritani, Simona

    2008-02-04

    The hexanuclear Pd6Cl12, i.e., the crystal phase classified as beta-PdCl2, was obtained by reacting [TBA]2[Pd2Cl6] with AlCl3 (or FeCl3) in CH2Cl2. The action of AlCl3 on PtCl42-, followed by digestion of the resulting solid in 1,2-C2H4Cl2 (DCE), CHCl3, or benzene, produced Pt6Cl12.DCE, Pt6Cl12.CHCl3, or Pt6Cl12.C6H6, respectively. Treating [TBA]2[PtCl6] with a slight excess of AlCl3 afforded [TBA][Pt2Cl9], whose anion was established crystallographically to be constituted by two "PtCl6" octahedra sharing a face. Dehydration of H2PtCl6.nH2O with SOCl2 gave an amorphous compound closely analyzing as PtCl4, reactive with [Q]Cl in SOCl2 to yield [Q][Pt2Cl9] or [Q]2[Pt2Cl10], depending on the [Q]Cl/Pt molar ratio (Q=TBA+, PPN+). A single-crystal X-ray diffraction study has shown [PPN]2[Pt2Cl10].C7H8 to contain dinuclear anions formed by two edge-sharing PtCl6 octahedra.

  19. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    PubMed

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal < Pt ox . Pt iso species exhibited a 2-fold greater turnover frequency for CO oxidation than 1 nm Pt metal clusters but share an identical reaction mechanism. We propose the active catalytic sites are cationic interfacial Pt atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  20. Development of GREET Catalyst Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhichao; Benavides, Pahola T.; Dunn, Jennifer B.

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al 2O3, and Pt/ γ-Al 2O 3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  1. Sintering of Pt nanoparticles via volatile PtO 2: Simulation and comparison with experiments

    DOE PAGES

    Plessow, Philipp N.; Abild-Pedersen, Frank

    2016-09-23

    It is a longstanding question whether sintering of platinum under oxidizing conditions is mediated by surface migration of Pt species or through the gas phase, by PtO 2(g). Clearly, a rational approach to avoid sintering requires understanding the underlying mechanism. A basic theory for the simulation of ripening through the vapor phase has been derived by Wynblatt and Gjostein. Recent modeling efforts, however, have focused entirely on surface-mediated ripening. In this work, we explicitly model ripening through PtO 2(g) and study how oxygen pressure, temperature, and shape of the particle size distribution affect sintering. On the basis of the availablemore » data on α-quartz, adsorption of monomeric Pt species on the support is extremely weak and has therefore not been explicitly simulated, while this may be important for more strongly interacting supports. Our simulations clearly show that ripening through the gas phase is predicted to be relevant. Assuming clean Pt particles, sintering is generally overestimated. This can be remedied by explicitly including oxygen coverage effects that lower both surface free energies and the sticking coefficient of PtO 2(g). Additionally, mass-transport limitations in the gas phase may play a role. Using a parameterization that accounts for these effects, we can quantitatively reproduce a number of experiments from the literature, including pressure and temperature dependence. Lastly, this substantiates the hypothesis of ripening via PtO 2(g) as an alternative to surface-mediated ripening.« less

  2. Absence of regulation of human polymorphonuclear oxidative burst by interleukin-10, interleukin-4, interleukin-13 and transforming growth factor-beta in whole blood.

    PubMed

    Réglier-Poupet, H; Hakim, J; Gougerot-Pocidalo, M A; Elbim, C

    1998-12-01

    Cytokines such as IL-10, IL-4, IL-13 and TGF-beta play a major role in the regulation of immune responses and are considered as anti-inflammatory agents mainly due to their actions on monocytes. These cytokines are also known to participate in the regulation of PMN activities. However, few and contradictory results have been reported on their direct and priming effects on the PMN oxidative burst, which is essential for killing bacteria. We used a flow cytometry method to study the effects of these cytokines on the PMN oxidative burst; we also used whole blood to avoid PMN activation related to isolation procedures and in order to simulate the in vivo situation more closely. None of the cytokines tested had direct or priming effects on PMN H2O2 production. We also show for the first time that these cytokines do not modulate TNF priming of the PMN oxidative burst in response to N-formyl peptides (fMLP). These results show that the anti-bacterial activity of PMN, in terms of the PMN respiratory burst, is not down regulated by these anti-inflammatory cytokines in whole blood.

  3. Directly Phase-Modulated Light Source

    NASA Astrophysics Data System (ADS)

    Yuan, Z. L.; Fröhlich, B.; Lucamarini, M.; Roberts, G. L.; Dynes, J. F.; Shields, A. J.

    2016-07-01

    The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.

  4. Pt–Mg, Pt–Ca, and Pt–Zn lantern complexes and metal-only donor–acceptor interactions [Pt-Mg Pt-Ca and Pt-Zn compounds with metal-only donor-acceptor interactions

    DOE PAGES

    Baddour, Frederick G.; Hyre, Ariel S.; Guillet, Jesse L.; ...

    2016-12-12

    Here, Pt-based heterobimetallic lantern complexes of the form [PtM(SOCR) 4(L)] have been shown previously to form intermolecular metallophilic interactions and engage in antiferromagnetic coupling between lanterns having M atoms with open shell configurations. In order to understand better the influence of the carboxylate bridge and terminal ligand on the electronic structure, as well as the metal–metal interactions within each lantern unit, a series of diamagnetic lantern complexes, [PtMg(SAc) 4(OH 2)] (1), [PtMg(tba) 4(OH 2)] (2), [PtCa(tba) 4(OH 2)] (3), [PtZn(tba) 4(OH 2)] (4), and a mononuclear control (Ph 4P) 2[Pt(SAc) 4] (5) have been synthesized. Crystallographic data show close Pt–Mmore » contacts enforced by the lantern structure in each dinuclear case. 195Pt-NMR spectroscopy of 1–4, (Ph 4P) 2[Pt(SAc) 4] (5), and several previously reported lanterns revealed a strong chemical shift dependence on the identity of the second metal (M), mild influence by the thiocarboxylate ligand (SOCR; R = CH 3 (thioacetate, SAc), C 6H 5 (thiobenzoate, tba)), and modest influence from the terminal ligand (L). Fluorescence spectroscopy has provided evidence for a Pt···Zn metallophilic interaction in [PtZn(SAc) 4(OH 2)], and computational studies demonstrate significant dative character. In all of 1–4, the short Pt–M distances suggest that metal-only Lewis donor (Pt)–Lewis acceptor (M) interactions could be present. DFT and NBO calculations, however, show that only the Zn examples have appreciable covalent character, whereas the Mg and Ca complexes are much more ionic.« less

  5. Pt–Mg, Pt–Ca, and Pt–Zn lantern complexes and metal-only donor–acceptor interactions [Pt-Mg Pt-Ca and Pt-Zn compounds with metal-only donor-acceptor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baddour, Frederick G.; Hyre, Ariel S.; Guillet, Jesse L.

    Here, Pt-based heterobimetallic lantern complexes of the form [PtM(SOCR) 4(L)] have been shown previously to form intermolecular metallophilic interactions and engage in antiferromagnetic coupling between lanterns having M atoms with open shell configurations. In order to understand better the influence of the carboxylate bridge and terminal ligand on the electronic structure, as well as the metal–metal interactions within each lantern unit, a series of diamagnetic lantern complexes, [PtMg(SAc) 4(OH 2)] (1), [PtMg(tba) 4(OH 2)] (2), [PtCa(tba) 4(OH 2)] (3), [PtZn(tba) 4(OH 2)] (4), and a mononuclear control (Ph 4P) 2[Pt(SAc) 4] (5) have been synthesized. Crystallographic data show close Pt–Mmore » contacts enforced by the lantern structure in each dinuclear case. 195Pt-NMR spectroscopy of 1–4, (Ph 4P) 2[Pt(SAc) 4] (5), and several previously reported lanterns revealed a strong chemical shift dependence on the identity of the second metal (M), mild influence by the thiocarboxylate ligand (SOCR; R = CH 3 (thioacetate, SAc), C 6H 5 (thiobenzoate, tba)), and modest influence from the terminal ligand (L). Fluorescence spectroscopy has provided evidence for a Pt···Zn metallophilic interaction in [PtZn(SAc) 4(OH 2)], and computational studies demonstrate significant dative character. In all of 1–4, the short Pt–M distances suggest that metal-only Lewis donor (Pt)–Lewis acceptor (M) interactions could be present. DFT and NBO calculations, however, show that only the Zn examples have appreciable covalent character, whereas the Mg and Ca complexes are much more ionic.« less

  6. Compact time- and space-integrating SAR processor: performance analysis

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.; Christensen, Marc P.

    1995-06-01

    Progress made during the previous 12 months toward the fabrication and test of a flight demonstration prototype of the acousto-optic time- and space-integrating real-time SAR image formation processor is reported. Compact, rugged, and low-power analog optical signal processing techniques are used for the most computationally taxing portions of the SAR imaging problem to overcome the size and power consumption limitations of electronic approaches. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported for this year include tests of a laboratory version of the RAPID SAR concept on phase history data generated from real SAR high-resolution imagery; a description of the new compact 2D acousto-optic scanner that has a 2D space bandwidth product approaching 106 sports, specified and procured for NEOS Technologies during the last year; and a design and layout of the optical module portion of the flight-worthy prototype.

  7. From well-defined Pt(II) surface species to the controlled growth of silica supported Pt nanoparticles.

    PubMed

    Laurent, Pierre; Veyre, Laurent; Thieuleux, Chloé; Donet, Sébastien; Copéret, Christophe

    2013-01-07

    Silica-supported Pt nanoparticles were prepared from well-defined surface platinum(II) surface species, obtained by grafting of well-defined Pt(II) molecular precursors with specific ligands (Cl, Me, N(SiMe(3))(2), OSi(OtBu)(3)) onto silica partially dehydroxylated at 200 and 700 °C yielding well-defined platinum(II) surface species. This approach allowed for testing the effect of Pt density and ligands on nanoparticle size. Higher grafting densities are achieved on silica partially dehydroxylated at 200 °C due to its initially higher surface silanol density. Surface species have been synthesized from symmetrical and dissymmetrical complexes, namely (COD)Pt(Me)(2), (COD)Pt(OSi(OtBu)(3))(2), (COD)Pt(Me)(OSi(OtBu)(3)), (COD)Pt(Me)(N(SiMe(3))(2)), (COD)Pt(Cl)(N(SiMe(3))(2)) and (COD)Pt(N(SiMe(3))(2))(OSi(OtBu)(3)) yielding mono-grafted complexes of general formula (COD)Pt(R)(OSi≡) according to elemental analyses, diffuse reflectance infrared fourier transform (DRIFT) and carbon-13 solid-state nuclear magnetic resonance (NMR) spectroscopies. While the dimethyl-complex shows low reactivity towards grafting, bis-siloxy and dissymmetric complexes demonstrate better reactivity yielding platinum loadings up to 7.4 wt%. Upon grafting amido complexes, the surface passivation yielding Me(3)SiOSi≡ surface species is demonstrated. Nanoparticles have been synthesized from these well-defined surface species by reduction under H(2) at 300 °C, under static or flow conditions. This process yields nanoparticles with sizes ranging from 2 to 3.3 nm and narrow size dispersion from 0.5 to 1.2 nm. Interestingly, the chloride complex yields large nanoparticles from 5 to 40 nm demonstrating the strong influence of chloride over the nanoparticles growth.

  8. Incorporating Sediment Compaction Into a Gravitationally Self-consistent Model for Global Sea-level Change

    NASA Astrophysics Data System (ADS)

    Ferrier, K.; Mitrovica, J. X.

    2015-12-01

    In sedimentary deltas and fans, sea-level changes are strongly modulated by the deposition and compaction of marine sediment. The deposition of sediment and incorporation of water into the sedimentary pore space reduces sea level by increasing the elevation of the seafloor, which reduces the thickness of sea-water above the bed. In a similar manner, the compaction of sediment and purging of water out of the sedimentary pore space increases sea level by reducing the elevation of the seafloor, which increases the thickness of sea water above the bed. Here we show how one can incorporate the effects of sediment deposition and compaction into the global, gravitationally self-consistent sea-level model of Dalca et al. (2013). Incorporating sediment compaction requires accounting for only one additional quantity that had not been accounted for in Dalca et al. (2013): the mean porosity in the sediment column. We provide a general analytic framework for global sea-level changes including sediment deposition and compaction, and we demonstrate how sea level responds to deposition and compaction under one simple parameterization for compaction. The compaction of sediment generates changes in sea level only by changing the elevation of the seafloor. That is, sediment compaction does not affect the mass load on the crust, and therefore does not generate perturbations in crustal elevation or the gravity field that would further perturb sea level. These results have implications for understanding sedimentary effects on sea-level changes and thus for disentangling the various drivers of sea-level change. ReferencesDalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.

  9. Evidence for anisotropic polar nanoregions in relaxor Pb(Mg1/3Nb2/3)O3: A neutron study of the elastic constants and anomalous TA phonon damping in PMN

    NASA Astrophysics Data System (ADS)

    Stock, C.; Gehring, P. M.; Hiraka, H.; Swainson, I.; Xu, Guangyong; Ye, Z.-G.; Luo, H.; Li, J.-F.; Viehland, D.

    2012-09-01

    We use neutron inelastic scattering to characterize the acoustic phonons in the relaxor Pb(Mg1/3Nb2/3)O3 (PMN) and demonstrate the presence of a highly anisotropic damping mechanism that is directly related to short-range polar correlations. For a large range of temperatures above Tc˜210 K, where dynamic, short-range polar correlations are present, acoustic phonons propagating along [11¯0] and polarized along [110] (TA2 phonons) are overdamped and softened across most of the Brillouin zone. By contrast, acoustic phonons propagating along [100] and polarized along [001] (TA1 phonons) are overdamped and softened for a more limited range of wave vectors q. The anisotropy and temperature dependence of the acoustic phonon energy linewidth Γ are directly correlated with neutron diffuse scattering cross section, indicating that polar nanoregions are the cause of the anomalous behavior. The damping and softening vanish for q→0, i.e., for long-wavelength acoustic phonons near the zone center, which supports the notion that the anomalous damping is a result of the coupling between the relaxational component of the diffuse scattering and the harmonic TA phonons. Therefore, these effects are not due to large changes in the elastic constants with temperature because the elastic constants correspond to the long-wavelength limit. We compare the elastic constants we measure to those from Brillouin scattering experiments and to values reported for pure PbTiO3. We show that while the values of C44 are quite similar, those for C11 and C12 are significantly less in PMN and result in a softening of (C11-C12) over PbTiO3. The elastic constants also show an increased elastic anisotropy [2C44/(C11-C12)] in PMN versus that in PbTiO3. These results are suggestive of an instability to TA2 acoustic fluctuations in PMN and other relaxor ferroelectrics. We discuss our results in the context of the current debate over the “waterfall” effect and show that they are inconsistent with

  10. Numerical study of a gas coupled VM-PT hybrid cryocooler using 3He as the working fluid

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pan, C. Z.; Zhang, T.; Wang, J. J.; Zhou, Y.

    2017-12-01

    The two-stage Vuilleumier gas-coupling pulse tube cryocooler (VM-PT) is one kind of novel low-frequency cryocoolers. In this gas-coupled form, the single stage Vuilleumier cryocooler serves as both pressure wave generator and a pre-cooler for coaxial pulse tube. Compared with the most commercialized GM and GM pulse tube cryocooler, the two-stage VM-PT cryocooler is characterized by its high stability, compact size and thermal actuation which are indispensable for space application. It has already been verified experimentally that this cryocooler can obtain 9.75mW@4.2K and the lowest no-load temperature 3.39K when 4He as the working fluid. However, such refrigerating capacity seems not enough for further application. 3He as a more potential substitution of 4He has better physical properties to improve performance, which has been studied in GM type and Stirling pulse tube cryocooler. For further optimization, a numerical study on the specific performance of two-stage VM-PT cryocooler using 3He is carried out in the present paper though Sage software. Working at the frequency of 1.0Hz and the pressure of 0.8MPa, the two-stage VM-PT cryocooler with 3He obtained 50mW@4.06K. The usage of 3He was 0.0038kg, about 30L under STP. At 4.2K, using 3He can obtain 58mW cooling power and 0.49% relative Carnot efficiency, about 1.6 times higher than using 4He.

  11. Monolayer PtSe 2 , a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt

    DOE PAGES

    Wang, Yeliang; Li, Linfei; Yao, Wei; ...

    2015-05-21

    For single-layer transition-metal dichalcogenides (TMDs) receive significant attention due to their intriguing physical properties for both fundamental research and potential applications in electronics, optoelectronics, spintronics, catalysis, and so on. Here, we demonstrate the epitaxial growth of high-quality single-crystal, monolayer platinum diselenide (PtSe2), a new member of the layered TMDs family, by a single step of direct selenization of a Pt(111) substrate. We found that a combination of atomic-resolution experimental characterizations and first-principle theoretic calculations reveals the atomic structure of the monolayer PtSe2/Pt(111). Angle-resolved photoemission spectroscopy measurements confirm for the first time the semiconducting electronic structure of monolayer PtSe2 (in contrastmore » to its semimetallic bulk counterpart). The photocatalytic activity of monolayer PtSe2 film is evaluated by a methylene-blue photodegradation experiment, demonstrating its practical application as a promising photocatalyst. Moreover, circular polarization calculations predict that monolayer PtSe2 has also potential applications in valleytronics.« less

  12. Nanopatterned conductive polymer films as a Pt, TCO-free counter electrode for low-cost dye-sensitized solar cells.

    PubMed

    Kwon, Jeong; Ganapathy, Veerappan; Kim, Young Hun; Song, Kyung-Deok; Park, Hong-Gyu; Jun, Yongseok; Yoo, Pil J; Park, Jong Hyeok

    2013-09-07

    A low-cost nanopatterned highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin film was fabricated on a flexible plastic substrate via a chemical polymerization method combined with a nanoimprinting technique and used as a platinum (Pt), TCO-free counter electrode for dye-sensitized solar cells (DSSCs). The catalytic properties of the nanopatterned PEDOT as the counter electrode in DSSCs were studied using cyclic voltammetry, J-V measurements, impedance spectroscopy, and finite-difference time-domain (FDTD) simulations. The nanopatterned PEDOT counter electrodes exhibit better functionality as a counter electrode for tri-iodide reduction when compared to non-patterned PEDOT-based counter electrodes. The Pt and TCO-free DSSCs with a nanopatterned PEDOT-based counter electrode exhibited a power conversion efficiency of 7.1% under one sunlight illumination (100 mW cm(-2)), which is comparable to that of conventional DSSCs with standard platinum Pt/FTO paired counter electrodes. The ability to modulate catalytic functionality with changes in nanoscale morphology represents a promising route for developing new counter electrodes of Pt and TCO-free DSSCs.

  13. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  14. West African Sorghum bicolor Leaf Sheaths Have Anti-Inflammatory and Immune-Modulating Properties In Vitro

    PubMed Central

    Benson, Kathleen F.; Beaman, Joni L.; Ou, Boxin; Okubena, Ademola; Okubena, Olajuwon

    2013-01-01

    Abstract The impact of chronic inflammatory conditions on immune function is substantial, and the simultaneous application of anti-inflammatory and immune modulating modalities has potential for reducing inflammation-induced immune suppression. Sorghum-based foods, teas, beers, and extracts are used in traditional medicine, placing an importance on obtaining an increased understanding of the biological effects of sorghum. This study examined selected anti-inflammatory and immune-modulating properties in vitro of Jobelyn™, containing the polyphenol-rich leaf sheaths from a West African variant of Sorghum bicolor (SBLS). Freshly isolated primary human polymorphonuclear (PMN) and mononuclear cell subsets were used to test selected cellular functions in the absence versus presence of aqueous and ethanol extracts of SBLS. Both aqueous and nonaqueous compounds contributed to reduced reactive oxygen species formation by inflammatory PMN cells, and reduced the migration of these cells in response to the inflammatory chemoattractant leukotriene B4. Distinct effects were seen on lymphocyte and monocyte subsets in cultures of peripheral blood mononuclear cells. The aqueous extract of SBLS triggered robust upregulation of the CD69 activation marker on CD3− CD56+ natural killer (NK) cells, whereas the ethanol extract of SBLS triggered similar upregulation of CD69 on CD3+ CD56+ NKT cells, CD3+ T lymphocytes, and monocytes. This was accompanied by many-fold increases in the chemokines RANTES/CCL5, Mip-1α/CCL3, and MIP-1β/CCL4. Both aqueous and nonaqueous compounds contribute to anti-inflammatory effects, combined with multiple effects on immune cell activation status. These observations may help suggest mechanisms of action that contribute to the traditional use of sorghum-based products, beverages, and extracts for immune support. PMID:23289787

  15. Dependence of Magnetic Properties of Co/Pt Multilayers on Deposition Temperature of Pt Buffer Layers

    NASA Astrophysics Data System (ADS)

    Shiomi, Shigeru; Nishimura, Tomotaka; Kobayashi, Tadashi; Masuda, Morio

    1993-04-01

    A 15-nm-thick Pt buffer layer was deposited on a glass slide at temperature Ts(Ptbuf) ranging from 30 to 300°C by e-gun evaporation. Following the cooling in vacuum to ambient temperature, Co and Pt layers have been alternately deposited on it. Very large perpendicular anisotropy and coercivity have been obtained at Ts(Ptbuf) higher than 200°C. The (111) preferred orientation of the Co/Pt multilayer as well as the Pt buffer layer became more pronounced with elevating Ts(Ptbuf), to which the enhancement of perpendicular anisotropy with elevating Ts(Ptbuf) might be ascribable.

  16. Pulse position modulation for compact all-fiber vehicle laser rangefinder development

    NASA Astrophysics Data System (ADS)

    Mao, Xuesong; Cheng, Yongzhi; Xiong, Ying; Inoue, Daisuke; Kagami, Manabu

    2017-10-01

    We propose a method for developing small all-fiber vehicle laser rangefinders that is based on pulse position modulation (PPM) and data integration and present a theoretical study on its performance. Compared with spatial coupling, which is employed by most of the current commercial vehicle laser rangefinders, fiber coupling has the advantage that it can guide laser echoes into the interior of a car, so the electronic components following the photodiode can operate in a moderate-temperature environment. However, optical fibers have numerical apertures (NAs), which means that a laser beam from a receiving lens cannot be coupled into an optical fiber if its incident angle exceeds the critical value. Therefore, the effective size of the receiving lens is typically small since it is limited by its focal length and the NA of the fiber, causing the power of the laser echoes gathered by the receiving lens to be insufficient for performing target identification. Instead of increasing the peak transmitting laser power unrestrictedly, PPM and data integration effectively compensate for the low signal-to-noise ratio that results from the effective receiving lens size reduction. We validated the proposed method by conducting numerical simulations and performance analysis. Finally, we compared the proposed method with pseudorandom noise (PN) code modulation and found that, although the two methods perform equally well in single-target measurement scenarios, PPM is more effective than PN code modulation for multitarget measurement. In addition, PPM enables the transmission of laser beams with higher peak powers and requires less computation than PN code modulation does.

  17. Modifying exchange-spring behavior of CoPt/NiFe bilayer by inserting a Pt or Ru spacer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw; Tsai, C. L.; Lee, C.-M.

    2015-05-07

    We herein explore the possibility of obtaining tunable tilted magnetic anisotropy in ordered-CoPt (5 nm)/NiFe(t{sub NiFe}) bilayers through modifying their exchange spring behavior by inserting Pt and Ru-spacers. The tuning process of tilt angle magnetization of NiFe-layer was systematically investigated by varying the Pt or Ru thickness (t{sub Pt} or t{sub Ru}) from 0 to 8 nm at different thicknesses of NiFe (t{sub NiFe} = 1.5, 4.0, and 6.0 nm). Polar magneto-optic Kerr effect (p-MOKE) studies reveal that the bilayers grown in absence of spacers exhibit almost a rectangular hysteresis loop. With the insertion of Pt-spacer, the loop becomes more and more tilted as t{submore » Pt} increases; whereas, in the case of Ru-spacer, the nature of the loops is not simply changing in one direction. The estimated SQR{sub ⊥} (= θ{sub r}/θ{sub s}) values from the p-MOKE loops are found to monotonically decrease with increasing t{sub Pt} when t{sub Pt} ≦ 4 nm. In contrast, in the case of Ru-spacer, an oscillatory behavior for the SQR{sub ⊥} values is apparent when t{sub Ru} ≦ 4 nm. As a result, an oscillatory tilted angle of NiFe spin configuration was obtained in the case of Ru-spacer; while a decoupling effect was prominent for the Pt-spacer. The results of present study reveal that the insertion of Pt and Ru-spacers as an appropriate means for realizing tunable tilted magnetic anisotropy in the CoPt/NiFe exchange springs.« less

  18. Skeletal reactions of n-hexane over Pt-NaY, Pt/SiO{sub 2}, HY, and mixed Pt/SiO{sub 2} + HY catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paal, Z.; Zhan, Z.; Manninger, I.

    The activity and selectivity of three samples of 8% Pt-NaY calcined at 633, 723, and 823 K, respectively, have been probed with n-hexane as the model reactant at 603 K and subatmospheric pressures in a glass closed-loop reactor. These catalysts were compared with 6.3% Pt/SiO{sub 2} (EUROPT-1), HY, and a physical mixture of the latter two. The activity of all Pt-NaY catalysts is superior to EUROPT-1 and they deactivate more slowly. The selectivity pattern of all Pt-NaY samples is closer to that characteristic of monofunctional Pt catalysts, as opposed to the pronounced acidic character of pure HY and the mechanicalmore » mixtures. The sample calcined at 633 K, which has the highest dispersion and probably contains Pt particles anchored to the support as [Pt{sub n} - H{sub x}]{sup x+} entities, shows the highest aromatization selectivity. The sample precalcined at 823 K with the lowest dispersion has a pronouncedly high skeletal isomerization selectivity. The isomerization pathway may be related to the C{sub 5} cyclic route on metal sites that are more abundant on the larger crystallites of this catalyst and are more easily accessible with its partially collapsed zeolite framework. Characteristic differences between samples in the response of their catalytic performance to changes in hydrogen and hydrocarbon pressure are discussed. 37 refs., 5 figs., 4 tabs.« less

  19. Compact transmission system using single-sideband modulation of light for quantum cryptography.

    PubMed

    Duraffourg, L; Merolla, J M; Goedgebuer, J P; Mazurenko, Y; Rhodes, W T

    2001-09-15

    We report a new transmission that can be used for quantum key distribution. The system uses single-sideband-modulated light in an implementation of the BB84 quantum cryptography protocol. The system is formed by two integrated unbalanced Mach-Zehnder interferometers and is based on interference between phase-modulated sidebands in the spectral domain. Experiments show that high interference visibility can be obtained.

  20. Pd surface and Pt subsurface segregation in Pt1-c Pd c nanoalloys

    NASA Astrophysics Data System (ADS)

    De Clercq, A.; Giorgio, S.; Mottet, C.

    2016-02-01

    The structure and chemical arrangement of Pt1-c Pd c nanoalloys with the icosahedral and face centered cubic symmetry are studied using Monte Carlo simulations with a tight binding interatomic potential fitted to density-functional theory calculations. Pd surface segregation from the lowest to the highest coordinated sites is predicted by the theory together with a Pt enrichment at the subsurface, whatever the structure and the size of the nanoparticles, and which subsists when increasing the temperature. The onion-shell chemical configuration is found for both symmetries and is initiated from the Pd surface segregation. It is amplified in the icosahedral symmetry and small sizes but when considering larger sizes, the oscillating segregation profile occurs near the surface on about three to four shells whatever the structure. Pd segregation results from the significant lower cohesive energy of Pd as compared to Pt and the weak ordering tendency leads to the Pt subsurface segregation. The very weak size mismatch does not prevent the bigger atoms (Pt) from occupying subsurface sites which are in compression whereas the smaller ones (Pd) occupy the central site of the icosahedra where the compression is an order of magnitude higher.

  1. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  2. Small pixel pitch MCT IR-modules

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Rutzinger, S.; Wendler, J.

    2016-05-01

    It is only some years ago, since VGA format detectors in 15μm pitch, manufactured with AIM's MCT n-on-p LPE standard technology, have been introduced to replace TV/4 format detector arrays as a system upgrade. In recent years a rapid increase in the demand for higher resolution, while preserving high thermal resolution, compactness and low power budget is observed. To satisfy these needs AIM has realized first prototypes of MWIR XGA format (1024x768) detector arrays in 10μm pitch. They fit in the same compact dewar as 640x512, 15μm pitch detector arrays. Therefore, they are best suited for system upgrade purposes to benefit from higher spatial resolution and keep cost on system level low. By combining pitch size reduction with recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperatures the way ahead to ultra-compact high performance MWIR-modules is prepared. For cost reduction MBE grown MCT on commercially available GaAs substrates is introduced at AIM. Recently, 640x512, 15μm pitch FPAs, grown with MBE have successfully passed long-term high temperature storage tests as a crucial step towards serial production readiness level for use in future products. Pitch size reduction is not limited to arrays sensitive in the MWIR, but is of great interest for high performance LWIR or 3rd Gen solutions. Some applications such as rotorcraft pilotage require superior spatial resolution in a compact design to master severe weather conditions or degraded visual environment such as brown-out. For these applications AIM is developing both LWIR as well as dual band detector arrays in HD-format (1280x720) with 12μm pitch. This paper will present latest results in the development of detector arrays with small pitch sizes of 10μm and 12μm at AIM, together with their usage to realize compact cooled IR-modules.

  3. Compact lidar system using laser diode, binary continuous wave power modulation, and an avalanche photodiode-based receiver controlled by a digital signal processor

    NASA Astrophysics Data System (ADS)

    Ardanuy, Antoni; Comerón, Adolfo

    2018-04-01

    We analyze the practical limits of a lidar system based on the use of a laser diode, random binary continuous wave power modulation, and an avalanche photodiode (APD)-based photereceiver, combined with the control and computing power of the digital signal processors (DSP) currently available. The target is to design a compact portable lidar system made all in semiconductor technology, with a low-power demand and an easy configuration of the system, allowing change in some of its features through software. Unlike many prior works, we emphasize the use of APDs instead of photomultiplier tubes to detect the return signal and the application of the system to measure not only hard targets, but also medium-range aerosols and clouds. We have developed an experimental prototype to evaluate the behavior of the system under different environmental conditions. Experimental results provided by the prototype are presented and discussed.

  4. Dicationic ionic liquid mediated fabrication of Au@Pt nanoparticles supported on reduced graphene oxide with highly catalytic activity for oxygen reduction and hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Shi, Ya-Cheng; Chen, Sai-Sai; Feng, Jiu-Ju; Lin, Xiao-Xiao; Wang, Weiping; Wang, Ai-Jun

    2018-05-01

    Ionic liquids as templates or directing agents have attracted great attention for shaping-modulated synthesis of advanced nanomaterials. In this work, reduced graphene oxide supported uniform core-shell Au@Pt nanoparticles (Au@Pt NPs/rGO) were fabricated by a simple one-pot aqueous approach, using N-methylimidazolium-based dicationic ionic liquid (1,1-bis(3-methylimadazoilum-1-yl)butylene bromide, [C4(Mim)2]2Br) as the shape-directing agent. The morphology evolution, structural information and formation mechanism of Au@Pt NPs anchored on rGO were investigated by a series of characterization techniques. The obtained nanocomposites displayed superior electrocatalytic features toward hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) compared with commercial Pt/C catalyst. This approach provides a novel route for facile synthesis of nanocatalysts in fuel cells.

  5. Analytic gravitational waveforms for generic precessing compact binaries

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2017-01-01

    Gravitational waves from compact binaries are subject to amplitude and phase modulations arising from interactions between the angular momenta of the system. Failure to account for such spin-precession effects in gravitational wave data analysis could hinder detection and completely ruin parameter estimation. In this talk I will describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals. The resulting waveforms can model spinning binaries of arbitrary spin magnitudes, spin orientations, and masses during the inspiral phase. I will also describe ongoing efforts to extend these inspiral waveforms to the merger and ringdown phases.

  6. Compact wearable dual-mode imaging system for real-time fluorescence image-guided surgery.

    PubMed

    Zhu, Nan; Huang, Chih-Yu; Mondal, Suman; Gao, Shengkui; Huang, Chongyuan; Gruev, Viktor; Achilefu, Samuel; Liang, Rongguang

    2015-09-01

    A wearable all-plastic imaging system for real-time fluorescence image-guided surgery is presented. The compact size of the system is especially suitable for applications in the operating room. The system consists of a dual-mode imaging system, see-through goggle, autofocusing, and auto-contrast tuning modules. The paper will discuss the system design and demonstrate the system performance.

  7. Compact wearable dual-mode imaging system for real-time fluorescence image-guided surgery

    PubMed Central

    Zhu, Nan; Huang, Chih-Yu; Mondal, Suman; Gao, Shengkui; Huang, Chongyuan; Gruev, Viktor; Achilefu, Samuel; Liang, Rongguang

    2015-01-01

    Abstract. A wearable all-plastic imaging system for real-time fluorescence image-guided surgery is presented. The compact size of the system is especially suitable for applications in the operating room. The system consists of a dual-mode imaging system, see-through goggle, autofocusing, and auto-contrast tuning modules. The paper will discuss the system design and demonstrate the system performance. PMID:26358823

  8. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  9. Preparation of Pt Nanocatalyst on Carbon Materials via a Reduction Reaction of a Pt Precursor in a Drying Process.

    PubMed

    Lee, Jae-Young; Lee, Woo-Kum; Rim, Hyung-Ryul; Joung, Gyu-Bum; Weidner, John W; Lee, Hong-Ki

    2016-06-01

    Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time.

  10. Fractional Talbot field and of finite gratings: compact analytical formulation.

    PubMed

    Arrizón, V; Rojo-Velázquez, G

    2001-06-01

    We present a compact analytical formulation for the fractional Talbot effect at the paraxial domain of a finite grating. Our results show that laterally shifted distorted images of the grating basic cell form the Fresnel field at a fractional Talbot plane of the grating. Our formulas give the positions of those images and show that they are given by the convolution of the nondistorted cells (modulated by a quadratic phase factor) with the Fourier transform of the finite-grating pupil.

  11. Evidence for inflammation and activation of cell-mediated immunity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): increased interleukin-1, tumor necrosis factor-α, PMN-elastase, lysozyme and neopterin.

    PubMed

    Maes, Michael; Twisk, Frank N M; Kubera, Marta; Ringel, Karl

    2012-02-01

    There is evidence that inflammatory pathways and cell-mediated immunity (CMI) play an important role in the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Activation of inflammatory and CMI pathways, including increased levels of cytokines, is known to induce fatigue and somatic symptoms. Given the broad spectrum inflammatory state in ME/CFS, the aim of this study was to examine whether inflammatory and CMI biomarkers are increased in individuals with ME/CFS. In this study we therefore measured plasma interleukin-(IL)1, tumor necrosis factor (TNF)α, and PMN-elastase, and serum neopterin and lysozyme in 107 patients with ME/CFS, 37 patients with chronic fatigue (CF), and 20 normal controls. The severity of ME/CFS was measured with the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale. Serum IL-1, TNFα, neopterin and lysozyme are significantly higher in patients with ME/CFS than in controls and CF patients. Plasma PMN-elastase is significantly higher in patients with ME/CFS than in controls and CF patients and higher in the latter than in controls. Increased IL-1 and TNFα are significantly correlated with fatigue, sadness, autonomic symptoms, and a flu-like malaise; neopterin is correlated with fatigue, autonomic symptoms, and a flu-like malaise; and increased PMN-elastase is correlated with concentration difficulties, failing memory and a subjective experience of infection. The findings show that ME/CFS is characterized by low-grade inflammation and activation of CMI. The results suggest that characteristic symptoms of ME/CFS, such as fatigue, autonomic symptoms and a flu-like malaise, may be caused by inflammatory mediators, e.g. IL-1 and TNFα. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Glass transitions and viscoelastic properties of carbopol and noveon compacts.

    PubMed

    Gómez-Carracedo, A; Alvarez-Lorenzo, C; Gómez-Amoza, J L; Concheiro, A

    2004-04-15

    Glass transitions of five varieties of Carbopol (acrylic acid polymers cross-linked with allyl sucrose or allyl pentaerythritol) and two varieties of Noveon (calcium salts of acrylic acid polymer cross-linked with divinylglycol) differing in cross-linking density and nature and content in residual solvents, were analysed (as compressed probes) by differential scanning calorimetry (DSC), modulated temperature differential scanning calorimetry (MTDSC), and oscillatory rheometry. All carbopol compacts showed a main glass transition, at a temperature between 130 and 140 degrees C, Tg, independently of their cross-linking degree and molecular weight. Additionally two batches of Carbopol 971P, which had greater contents in residual solvents, also presented a secondary transition at 65-70 degrees C. Sorption of water during storage of carbopol compacts at different relative humidity environments caused the Tg to strongly decrease. Compacts stored at 97.5% relative humidity have Tg below 0 degrees C and behave, at room temperature, as flexible hydrogels. The Gordon-Taylor/Kelley-Bueche equation only fit the dependence of Tg on water content well for carbopol compacts containing less than 15% water. The plasticizing effect of water was clearly evidenced in the considerable decrease in the storage and loss moduli of the compacts. Although the energy associated to the glass transitions of carbopol polymers, 0.40-0.50 Jg(-1) degrees C(-1), is high enough to be clearly detected by DSC, in some cases the evaporation of residual solvents may make it difficult to observe the Tg. This inconvenience is overcome using MTDSC or oscillatory rheometry. The decrease in Tg of carbopol caused by water sorption when compacts were stored at 97.5% R.H. explains why their loss (G") and storage (G') moduli at room temperature decreased four orders of magnitude. In contrast, in noveon varieties, calcium ions act as ionic cross-linkers of the carboxylic groups, providing rigid networks with much

  13. The Pt site reactivity of the molecular graphs of Au6Pt isomers

    NASA Astrophysics Data System (ADS)

    Xu, Tianlv; Jenkins, Samantha; Xiao, Chen-Xia; Maza, Julio R.; Kirk, Steven R.

    2013-12-01

    Within the framework of the theory of atoms in molecules (QTAIM), in an exploratory study we propose a new measure of site reactivity equivalent to the atomic coordination number based purely on the electronic structure. It was found that the number of ring critical points (NNRCPs) positioned on the boundary of the atomic basin of the dopant (Pt) nucleus correlated very well with the relative zero point energy (ZPE) corrected energies. A weaker condition (i.e. than the number of associated bond paths) for the association of the dopant Pt nucleus with the Au6Pt molecular graph is found for NNRCP = 0.

  14. Active combustion flow modulation valve

    DOEpatents

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  15. Pt-B System Revisited: Pt2B, a New Structure Type of Binary Borides. Ternary WAl12-Type Derivative Borides.

    PubMed

    Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert

    2015-11-16

    On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge

  16. Discovery of Enhanced Magnetoelectric Coupling through Electric Field Control of Two-Magnon Scattering within Distorted Nanostructures.

    PubMed

    Xue, Xu; Zhou, Ziyao; Dong, Guohua; Feng, Mengmeng; Zhang, Yijun; Zhao, Shishun; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Liu, Yaohua; Liu, Ming

    2017-09-26

    Electric field control of dynamic spin interactions is promising to break through the limitation of the magnetostatic interaction based magnetoelectric (ME) effect. In this work, electric field control of the two-magnon scattering (TMS) effect excited by in-plane lattice rotation has been demonstrated in a La 0.7 Sr 0.3 MnO 3 (LSMO)/Pb(Mn 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) (011) multiferroic heterostructure. Compared with the conventional strain-mediated ME effect, a giant enhancement of ME effect up to 950% at the TMS critical angle is precisely determined by angular resolution of the ferromagnetic resonance (FMR) measurement. Particularly, a large electric field modulation of magnetic anisotropy (464 Oe) and FMR line width (401 Oe) is achieved at 173 K. The electric-field-controllable TMS effect and its correlated ME effect have been explained by electric field modulation of the planar spin interactions triggered by spin-lattice coupling. The enhancement of the ME effect at various temperatures and spin dynamics control are promising paradigms for next-generation voltage-tunable spintronic devices.

  17. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium-gallium-zinc oxide gate stack.

    PubMed

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-20

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium-gallium-zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>10 4 ). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  18. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium–gallium–zinc oxide gate stack

    NASA Astrophysics Data System (ADS)

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-01

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium–gallium–zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>104). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  19. Roles of Pt and BaO in the Sulfation of Pt/BaO/Al2O3 Lean NOx Trap Materials: Sulfur K-edge XANES and Pt LIII XAFS Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos

    2008-02-28

    The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied (Al2O3, BaO/Al2O3, Pt/Al2O3 and Pt-BaO/Al2O3) were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas phase oxygen. In the platinum-containing samples, the presence of Pt-O species plays an important role in the formation of sulfate species. Even if bariummore » and aluminum sites are available for SO2 to form sulfate, for the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, S XANES spectroscopy results show that barium sulfates are preferentially produced over aluminum sulfates . When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the redox nature of the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g. SO2+H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g. SO2+O2) continue to show the presence of Pt-O bonds. In addition, the former condition was found to give rise to a higher degree of Pt sintering than the latter one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g. sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less

  20. Roles of Pt and BaO in the Sulfation of Pt/BaO/Al2O3 Lean NOx Trap Materials: Sulfur K-edge XANES and Pt Llll XAFS Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim,D.; Kwak, J.; Szanyi, J.

    2008-01-01

    The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied [Al2O3, BaO(x; x = 8 or 20 wt %)/Al2O3, Pt(2.5 wt %)/Al2O3, and Pt(2 wt %)-BaO(x; x = 8 or 20 wt %)/Al2O3] were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas-phase oxygen. In the platinum-containing samples, themore » presence of Pt-O species plays an important role in the formation of sulfate species. For the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, both baria and alumina phases are available for sulfation. S XANES results show that barium sulfates are formed preferentially over aluminum sulfates. When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g., SO2/H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g., SO2/O2) continue to show the presence of Pt-O bonds. In addition, a reducing environment was found to cause Pt sintering in greater extent than an oxidizing one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g., sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less

  1. Epitaxial growth of (111)-oriented BaTiO3/SrTiO3 perovskite superlattices on Pt(111)/Ti/Al2O3(0001) substrates

    NASA Astrophysics Data System (ADS)

    Panomsuwan, Gasidit; Takai, Osamu; Saito, Nagahiro

    2013-09-01

    Symmetric BaTiO3/SrTiO3 (BTO/STO) superlattices (SLs) were epitaxially grown on Pt(111)/Ti/Al2O3(0001) substrates with various modulation periods (Λ = 4.8 - 48 nm) using double ion beam sputter deposition. The BTO/STO SLs exhibit high (111) orientation with two in-plane orientation variants related by a 180° rotation along the [111]Pt axis. The BTO layer is under an in-plane compressive state, whereas the STO layer is under an in-plane tensile state due to the effect of lattice mismatch. A remarkable enhancement of dielectric constant is observed for the SL with relatively small modulation period, which is attributed to both the interlayer biaxial strain effect and the Maxwell-Wagner effect.

  2. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandl, G., E-mail: g.brandl@fz-juelich.de; Georgii, R.; Dunsiger, S. R.

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date wouldmore » have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.« less

  3. CO2 electroreduction characteristics of Pt-Ru/C powder and Pt-Ru sputtered electrodes under acidic condition

    NASA Astrophysics Data System (ADS)

    Furukawa, Hiroto; Matsuda, Shofu; Tanaka, Shoji; Shironita, Sayoko; Umeda, Minoru

    2018-03-01

    The objective of this study was to overcome the issue about the underpotential adsorption of the CO2 electroreductant on the surface of the Pt electrocatalyst under acidic conditions by the alloying of Pt and Ru. As evaluation parameters, the CO2 reduction onset potential and CO2-reductant reoxidation onset potential were employed. We prepared a porous microelectrode filled with Pt-Ru/C powder and a Pt-Ru sputtered electrode. For the Pt-Ru/C powder electrocatalyst, the CO2 reduction onset potential as well as the CO2-reductant reoxidation onset potential shifted in the direction of the CO2/CO2-reductant standard redox potential dependent on the Ru content, which is indicative of a decrease in the underpotential-adsorption energy of the CO2 reductant. For the Pt-Ru sputtered electrode, only the CO2 reduction onset potential shifted in the direction of the redox potential. Consequently, we demonstrated that the Pt-Ru/C powder electrode improved the reactivity of the CO2/CO2-reductant when discussing the relationship between the CO2 reduction onset potential and the CO2-reductant reoxidation onset potential. Based on our findings, the Pt-Ru/C (1:9) powder is the most effective electrocatalyst for the CO2 reduction, which could minimize the underpotential adsorption.

  4. Phase-change memory: A continuous multilevel compact model of subthreshold conduction and threshold switching

    NASA Astrophysics Data System (ADS)

    Pigot, Corentin; Gilibert, Fabien; Reyboz, Marina; Bocquet, Marc; Zuliani, Paola; Portal, Jean-Michel

    2018-04-01

    Phase-change memory (PCM) compact modeling of the threshold switching based on a thermal runaway in Poole–Frenkel conduction is proposed. Although this approach is often used in physical models, this is the first time it is implemented in a compact model. The model accuracy is validated by a good correlation between simulations and experimental data collected on a PCM cell embedded in a 90 nm technology. A wide range of intermediate states is measured and accurately modeled with a single set of parameters, allowing multilevel programing. A good convergence is exhibited even in snapback simulation owing to this fully continuous approach. Moreover, threshold properties extraction indicates a thermally enhanced switching, which validates the basic hypothesis of the model. Finally, it is shown that this model is compliant with a new drift-resilient cell-state metric. Once enriched with a phase transition module, this compact model is ready to be implemented in circuit simulators.

  5. Fabrication of a nanosize-Pt-embedded membrane electrode assembly to enhance the utilization of Pt in proton exchange membrane fuel cells.

    PubMed

    Choe, Junseok; Kim, Doyoung; Shim, Jinyong; Lee, Inhae; Tak, Yongsug

    2011-08-01

    A procedure to locate the Pt nanostructure inside the hydrophilic channel of a Nafion membrane was developed in order to enhance Pt utilization in PEMFCs. Nanosize Pt-embedded MEA was constructed by Cu electroless plating and subsequent Pt electrodeposition inside the hydrophilic channels of the Nafion membrane. The metallic Pt nanostructure fabricated inside the membrane was employed as an oxygen reduction catalyst for a PEMFC and facilitated effective use of the hydrophilic channels inside the membrane. Compared to the conventional MEA, a Pt-embedded MEA with only 68% Pt loading showed better PEMFC performance.

  6. Epitaxial growth of metallic buffer layer structure and c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 thin film on Si for high performance piezoelectric micromachined ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Thao, Pham Ngoc; Yoshida, Shinya; Tanaka, Shuji

    2017-12-01

    This paper reports on the development of a metallic buffer layer structure, (100) SrRuO3 (SRO)/(100) Pt/(100) Ir/(100) yttria-stabilized zirconia (YSZ) layers for the epitaxial growth of a c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 (PMnN-PZT) thin film on a (100) Si wafer for piezoelectric micro-electro mechanical systems (MEMS) application. The stacking layers were epitaxially grown on a Si substrate under the optimal deposition condition. A crack-free PMnN-PZT epitaxial thin films was obtained at a thickness up to at least 1.7 µm, which is enough for MEMS applications. The unimorph MEMS cantilevers based on the PMnN-PZT thin film were fabricated and characterized. As a result, the PMnN-PZT thin film exhibited -10 to -12 C/m2 as a piezoelectric coefficient e 31,f and ˜250 as a dielectric constants ɛr. The resultant FOM for piezoelectric micromachined ultrasonic transducer (pMUT) is higher than those of general PZT and AlN thin films. This structure has a potential to provide high-performance pMUTs.

  7. Pt skin on Pd–Co–Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Weiping; Zhu, Jing; Han, Lili

    Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). A highly active, durable, carbon supported, and monolayer Pt coated Pd–Co–Zn nanoparticle is synthesized via a simple impregnation–reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition–activity volcano curve for the Pd–Co–Zn nanoparticles and determined that Pd : Co : Zn = 8 : 1 : 1 is the optimal composition. Compared with pure Pd/C, the Pd 8CoZn/C nanoparticles show a substantial enhancement in bothmore » the catalytic activity and the durability toward the ORR. Moreover, the durability and activity are further enhanced by forming a Pt skin on Pd 8CoZn/C nanocatalysts. Interestingly, after 10 000 potential cycles in N 2-saturated 0.1 M HClO 4 solution, Pd 8CoZn@Pt/C shows improved mass activity (2.62 A mg -1Pt) and specific activity (4.76 A m -2total), which are about 1.4 and 4.4 times higher than the initial values, and 37.4 and 5.5 times higher than those of Pt/C catalysts, respectively. After accelerated stability testing in O 2-saturated 0.1 M HClO 4 solution for 30 000 potential cycles, the half-wave potential negatively shifts about 6 mV. Our results show that the Pt skin plays an important role in enhancing the activity as well as preventing degradation.« less

  8. Pt skin on Pd–Co–Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR

    DOE PAGES

    Xiao, Weiping; Zhu, Jing; Han, Lili; ...

    2016-07-15

    Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). A highly active, durable, carbon supported, and monolayer Pt coated Pd–Co–Zn nanoparticle is synthesized via a simple impregnation–reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition–activity volcano curve for the Pd–Co–Zn nanoparticles and determined that Pd : Co : Zn = 8 : 1 : 1 is the optimal composition. Compared with pure Pd/C, the Pd 8CoZn/C nanoparticles show a substantial enhancement in bothmore » the catalytic activity and the durability toward the ORR. Moreover, the durability and activity are further enhanced by forming a Pt skin on Pd 8CoZn/C nanocatalysts. Interestingly, after 10 000 potential cycles in N 2-saturated 0.1 M HClO 4 solution, Pd 8CoZn@Pt/C shows improved mass activity (2.62 A mg -1Pt) and specific activity (4.76 A m -2total), which are about 1.4 and 4.4 times higher than the initial values, and 37.4 and 5.5 times higher than those of Pt/C catalysts, respectively. After accelerated stability testing in O 2-saturated 0.1 M HClO 4 solution for 30 000 potential cycles, the half-wave potential negatively shifts about 6 mV. Our results show that the Pt skin plays an important role in enhancing the activity as well as preventing degradation.« less

  9. All-optical measurement of interlayer exchange coupling in Fe/Pt/FePt thin films

    NASA Astrophysics Data System (ADS)

    Berk, C.; Ganss, F.; Jaris, M.; Albrecht, M.; Schmidt, H.

    2018-01-01

    Time Resolved Magneto Optic Kerr Effect spectroscopy was used to all-optically study the dynamics in exchange coupled Fe(10 nm)/Pt(x = 0-5 nm)/FePt (10 nm) thin films. As the Pt spacer decreases, the effective magnetization of the layers is seen to evolve towards the strong coupling limit where the two films can be described by a single effective magnetization. The coupling begins at x = 1.5 nm and reaches a maximum exchange coupling constant of 2.89 erg/cm2 at x = 0 nm. The films are ferromagnetically coupled at all Pt thicknesses in the exchange coupled regime (x ≤ 1.5 nm). A procedure for extracting the interlayer exchange constant by measuring the magnetic precession frequencies at multiple applied fields and angles is outlined. The dynamics are well reproduced using micromagnetic simulations.

  10. Selective synthesis of cis- and trans-[(NHC(Me))2PtCl2] and [NHC(Me)Pt(cod)Cl][NHC(Me)PtCl3] using NHC(Me)SiCl4.

    PubMed

    Lewis-Alleyne, Lesley C; Bassil, Bassem S; Böttcher, Tobias; Röschenthaler, Gerd-Volker

    2014-11-14

    NHC(Me)SiCl4 (NHC(Me) = 1,3-dimethylimidazolidin-2-ylidene) was used to synthesise novel NHC(Me)-Pt(ii) complexes. An atypical trans-cis isomerisation process was also achieved for [(NHC(Me))2PtCl2], while the synthesis of the unique double-complex salt [(NHC(Me))Pt(cod)Cl] [(NHC(Me))PtCl3] (cod = 1,5-cyclooctadiene) revealed the first-ever N-heterocyclic carbene analogue of the Cossa's salt anion.

  11. 3D printed plastics for beam modulation in proton therapy

    NASA Astrophysics Data System (ADS)

    Lindsay, C.; Kumlin, J.; Jirasek, A.; Lee, R.; Martinez, D. M.; Schaffer, P.; Hoehr, C.

    2015-06-01

    Two 3D printing methods, fused filament fabrication (FFF) and PolyJet™ (PJ) were investigated for suitability in clinical proton therapy (PT) energy modulation. Measurements of printing precision, printed density and mean stopping power are presented. FFF is found to be accurate to 0.1 mm, to contain a void fraction of 13% due to air pockets and to have a mean stopping power dependent on geometry. PJ was found to print accurate to 0.05 mm, with a material density and mean stopping power consistent with solid poly(methyl methacrylate) (PMMA). Both FFF and PJ were found to print significant, sporadic defects associated with sharp edges on the order of 0.2 mm. Site standard PT modulator wheels were printed using both methods. Measured depth-dose profiles with a 74 MeV beam show poor agreement between PMMA and printed FFF wheels. PJ printed wheel depth-dose agreed with PMMA within 1% of treatment dose except for a distal falloff discrepancy of 0.5 mm.

  12. PT -symmetric slowing down of decoherence

    DOE PAGES

    Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari

    2016-10-27

    Here, we invesmore » tigate PT -symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT -symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT -symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less

  13. PT -symmetric slowing down of decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari

    Here, we invesmore » tigate PT -symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT -symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT -symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less

  14. An Embedded Reconfigurable Logic Module

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)

    2002-01-01

    A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.

  15. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.

    PubMed

    Wu, Sy-Juen; Sun, Changquan 'Calvin'

    2007-05-01

    Pharmaceutical granules prepared by roller compaction often exhibit significant loss of tabletability, that is, reduction in tensile strength, when compared to virgin powder. This may be attributed to granule size enlargement for highly plastic materials, for example, microcrystalline cellulose. The sensitivity of powder compaction properties on granule size variations impacts the robustness of the dry granulation process. We hypothesize that such sensitivity of compaction properties on granule size is minimum for brittle materials because extensive fracture of brittle granules during compaction minimizes differences in initial granule size. We tested the hypothesis using three common brittle excipients. Results show that the fine (44-106 microm), medium (106-250 microm), and coarse (250-500 microm) granules exhibit essentially identical tabletability below a certain critical compaction pressure, 100, 140, and 100 MPa for spray-dried lactose monohydrate, anhydrous dibasic calcium phosphate, and mannitol, respectively. Above respective critical pressure, tabletability lines diverge with smaller granules exhibiting slightly higher tablet tensile strength at identical compaction conditions. Overall, tabletability of brittle granules is insensitive to granule size enlargement. The results provide a scientific basis to the common practice of incorporating brittle filler to a typical tablet formulation processed by roller compaction granulation. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  16. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    NASA Astrophysics Data System (ADS)

    Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.

    Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.

  17. Dual line CW fiber laser module based on FBG combination

    NASA Astrophysics Data System (ADS)

    Dobashi, Kazuma; Hoshi, Masayuki; Hirohashi, Junji; Makio, Satoshi

    2018-02-01

    We developed the dual line fiber laser module based on FBG combination. The proposed configuration has several advantages such as compact, simple, and inexpensive. The laser was composed pump LD (40W), two HR FBGs for 1053 nm and 1058 nm, Yb-doped fiber, two OC FBGs for 1053 nm and 1058 nm, and delivery fiber. All single mode fibers were polarization maintained with approximately 6 micron core. All FBGs were mounted on holders with TECs and their temperatures were controlled independently. The center wavelengths of HR and OC FBGs were temperature dependent and their shifts are approximately 7 nm/degree-C for all integrated FBG. By adjusting the temperature, it is possible to realize the resonant condition for only 1053 nm or only for 1058 nm. Based on this configuration, we demonstrated dual line CW fiber laser module. This module was compact with the size of 200 mm X 150 mm X 23 mm. By adjusting the FBG temperatures, we obtained the output power of more than 10 W at 1053 nm and 1058 nm with linear polarization.

  18. Innovative fiber-laser architecture-based compact wind lidar

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Tracy, Allen; Vetorino, Steve; Higgins, Richard; Sibell, Russ

    2016-03-01

    This paper describes an innovative, compact and eyesafe coherent lidar system developed for use in wind and wake vortex sensing applications. This advanced lidar system is field ruggedized with reduced size, weight, and power consumption (SWaP) configured based on an all-fiber and modular architecture. The all-fiber architecture is developed using a fiber seed laser that is coupled to uniquely configured fiber amplifier modules and associated photonic elements including an integrated 3D scanner. The scanner provides user programmable continuous 360 degree azimuth and 180 degree elevation scan angles. The system architecture eliminates free-space beam alignment issues and allows plug and play operation using graphical user interface software modules. Besides its all fiber architecture, the lidar system also provides pulsewidth agility to aid in improving range resolution. Operating at 1.54 microns and with a PRF of up to 20 KHz, the wind lidar is air cooled with overall dimensions of 30" x 46" x 60" and is designed as a Class 1 system. This lidar is capable of measuring wind velocities greater than 120 +/- 0.2 m/s over ranges greater than 10 km and with a range resolution of less than 15 m. This compact and modular system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. The current lidar architecture is amenable for trace gas sensing and as such it is being evolved for airborne and space based platforms. In this paper, the key features of wind lidar instrumentation and its functionality are discussed followed by results of recent wind forecast measurements on a wind farm.

  19. Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics

    NASA Astrophysics Data System (ADS)

    Chang, Yunfei; Watson, Beecher; Fanton, Mark; Meyer, Richard J.; Messing, Gary L.

    2017-12-01

    In this work, both crystallographic texture and doping engineering strategies were integrated to develop relaxor-PbTiO3 (PT) based ternary ferroelectric ceramics with enhanced texture evolution and superior electromechanical properties. CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) piezoelectric ceramics with [001]c texture fraction ≥97% were synthesized by templated grain growth. The addition of CuO significantly promotes densification and oriented grain growth in the templated ceramics, leading to full texture development at dramatically reduced times and temperatures. Moreover, the CuO dopant remarkably enhances the piezoelectric properties of the textured ceramics while maintaining high phase transition temperatures and large coercive fields. Doping 0.125 wt. % CuO yields the electromechanical properties of d33 = 927 pC/N, d33* = 1510 pm/V, g33 = 43.2 × 10-3 Vm/N, Kp = 0.87, Ec=8.8 kV/cm, and tan δ = 1.3%, which are the best values reported so far in PIN-PMN-PT based ceramics. The high piezoelectric coefficient is mainly from the reversible piezoelectric response, with the irreversible contribution being on the order of 13.1%. We believe that this work not only facilitates closing the performance gap between ceramics and single crystals but also can expand relaxor-PT based piezoelectric application fields.

  20. Molecular oxygen detection using frequency modulation diode laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Wang, Liang-Guo; Sachse, Glen

    1990-01-01

    A high-sensitivity spectroscopic measurement of O2 using two-tone frequency modulation spectroscopy with a GaAlAs diode laser is presented. An oxygen sensor based on this technique would be non-intrusive, compact and possess high sensitivity and fast time response.

  1. Ultra-compact high-performance MCT MWIR engine

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Oelmaier, R.; Rutzinger, S.; Schenk, H.; Wendler, J.

    2017-02-01

    Size, weight and power (SWaP) reduction is highly desired by applications such as sights for the dismounted soldier or small gimbals for UAVs. But why have high performance and small size of IR systems inevitably exclude each other? Namely, recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperature (HOT) FPAs combined with pitch size reduction opens the door for very compact MWIR-modules while keeping high electro-optical performance. Now, AIM has realized first prototypes of an ultra-compact high-performance MWIR engine in a total volume of only 18cl (60mm length x 60mm height x 50mm width). Impressive SWaP characteristics are completed by a total weight below 400g and a power consumption < 4W in basic imaging mode. The engine consists of a XGA-format (1024x768) MCT detector array with 10μm pitch and a low power consuming ROIC. It is cooled down to a typical operating temperature of 160K by the miniature linear cryocooler SX020. The dewar uses a short coldfinger and is designed to reduce the heat load as much as possible. The cooler drive electronics is implemented in the CCE layout in order to reduce the required space of the printed boards and to save power. Uncorrected 14bit video data is provided via Camera Link. Optionally, a small image processing board can be stacked on top of the CCE to gain access to basic functions such as BPR, 2- point NUC and dynamic reduction. This paper will present the design, functionalities and performance data of the ultra-compact MCT MWIR engine operated at HOT.

  2. Lightning arrestor connector lead magnesium niobate qualification pellet test procedures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuohig, W.; Mahoney, Patrick A.; Tuttle, Bruce Andrew

    2009-02-01

    Enhanced knowledge preservation for DOE DP technical component activities has recently received much attention. As part of this recent knowledge preservation effort, improved documentation of the sample preparation and electrical testing procedures for lead magnesium niobate--lead titanate (PMN/PT) qualification pellets was completed. The qualification pellets are fabricated from the same parent powders used to produce PMN/PT lightning arrestor connector (LAC) granules at HWF&T. In our report, the procedures for fired pellet surface preparation, electrode deposition, electrical testing and data recording are described. The dielectric measurements described in our report are an information only test. Technical reasons for selecting the electrodemore » material, electrode size and geometry are presented. The electrical testing is based on measuring the dielectric constant and dissipation factor of the pellet during cooling from 280 C to 220 C. The most important data are the temperature for which the peak dielectric constant occurs (Curie Point temperature) and the peak dielectric constant magnitude. We determined that the peak dielectric constant for our procedure would be that measured at 1 kHz at the Curie Point. Both the peak dielectric constant and the Curie point parameters provide semi-quantitative information concerning the chemical and microstructural homogeneity of the parent material used for the production of PMN/PT granules for LACs. Finally, we have proposed flag limits for the dielectric data for the pellets. Specifically, if the temperature of the peak dielectric constant falls outside the range of 250 C {+-} 30 C we propose that a flag limit be imposed that will initiate communication between production agency and design agency personnel. If the peak dielectric constant measured falls outside the range 25,000 {+-} 10,000 we also propose that a flag limit be imposed.« less

  3. Detection of Microcracks in Trunnion Rods Using Ultrasonic Guided Waves

    DTIC Science & Technology

    2015-07-01

    49 Figure 40. Larger second echo from PMN-PT vs. PZT transducer. ........................................................ 50...Figure. 41 Nonlinear crack simulations: two polished ends pulled together (top left), fatigued aluminum (bottom left), nut coupled and shims hammered... fatigued rods, can go through opening and closing variations during their deterioration. Microcracked rods need to be detected and quantified

  4. Multiple-wavelength Variability and Quasi-periodic Oscillation of PMN J0948+0022

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jin; Zhang, Hai-Ming; Zhu, Yong-Kai

    We present a comprehensive analysis of multiple-wavelength observational data of the first GeV-selected narrow-line Seyfert 1 galaxy PMN J0948+0022. We derive its light curves in the γ -ray and X-ray bands from the data observed with Fermi /LAT and Swift /XRT, and generate the optical and radio light curves by collecting the data from the literature. These light curves show significant flux variations. With the LAT data we show that this source is analogous to typical flat spectrum radio quasars in the L {sub γ} –Γ {sub γ} plane, where L {sub γ} and Γ {sub γ} are the luminositymore » and spectral index in the LAT energy band. The γ -ray flux is correlated with the V-band flux with a lag of ∼44 days, and a moderate quasi-periodic oscillation (QPO) with a periodicity of ∼490 days observed in the LAT light curve. A similar QPO signature is also found in the V-band light curve. The γ -ray flux is not correlated with the radio flux in 15 GHz, and no similar QPO signature is found at a confidence level of 95%. Possible mechanisms of the QPO are discussed. We propose that gravitational-wave observations in the future may clarify the current plausible models for the QPO.« less

  5. Controllable piezoelectricity of Pb(Zr 0.2Ti 0.8)O 3 film via in situ misfit strain

    DOE PAGES

    Lee, Hyeon Jun; Guo, Er-Jia; Martin Luther Univ. of Halle-Wittenberg, Halle; ...

    2017-01-18

    In this paper, the tetragonality (c/a) of a PbZr 0.2Ti 0.8O 3 (PZT) thin film on La 0.7Sr 0.3MnO 3/0.72Pb(Mg 1/3Nb 2/3)O 3-0.28PbTiO 3 (PMN-PT) substrates was controlled by applying an electric field on the PMN-PT substrate. The piezoelectric response of the PZT thin film under various biaxial strains was observed using time-resolved micro X-ray diffraction. The longitudinal piezoelectric coefficient (d 33) was reduced from 29.5 to 14.9 pm/V when the c/a ratio of the PZT film slightly changed from 1.051 to 1.056. Finally, our results demonstrate that the tetragonality of the PZT thin film plays a critical role inmore » determining d 33, and in situ strain engineering using electromechanical substrate is useful in excluding the extrinsic effect resulting from the variation in the film thickness or the interface between substrate.« less

  6. Controllable piezoelectricity of Pb(Zr 0.2Ti 0.8)O 3 film via in situ misfit strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyeon Jun; Guo, Er-Jia; Martin Luther Univ. of Halle-Wittenberg, Halle

    In this paper, the tetragonality (c/a) of a PbZr 0.2Ti 0.8O 3 (PZT) thin film on La 0.7Sr 0.3MnO 3/0.72Pb(Mg 1/3Nb 2/3)O 3-0.28PbTiO 3 (PMN-PT) substrates was controlled by applying an electric field on the PMN-PT substrate. The piezoelectric response of the PZT thin film under various biaxial strains was observed using time-resolved micro X-ray diffraction. The longitudinal piezoelectric coefficient (d 33) was reduced from 29.5 to 14.9 pm/V when the c/a ratio of the PZT film slightly changed from 1.051 to 1.056. Finally, our results demonstrate that the tetragonality of the PZT thin film plays a critical role inmore » determining d 33, and in situ strain engineering using electromechanical substrate is useful in excluding the extrinsic effect resulting from the variation in the film thickness or the interface between substrate.« less

  7. Mechanical properties of non-centrosymmetric CePt3Si and CePt3B

    NASA Astrophysics Data System (ADS)

    Rogl, G.; Legut, D.; Sýkora, R.; Müller, P.; Müller, H.; Bauer, E.; Puchegger, S.; Zehetbauer, M.; Rogl, P.

    2017-05-01

    Elastic moduli, hardness (both at room temperature) and thermal expansion (4.2-670 K) have been experimentally determined for polycrystalline CePt3Si and its prototype compound CePt3B as well as for single-crystalline CePt3Si. Resonant ultrasound spectroscopy was used to determine elastic properties (Young’s modulus E and Poisson’s ratio ν) via the eigenfrequencies of the sample and the knowledge of sample mass and dimensions. Bulk and shear moduli were calculated from E and ν, and the respective Debye temperatures were derived. In addition, ab initio DFT calculations were carried out for both compounds. A comparison of parameters evaluated from DFT with those of experiments revealed, in general, satisfactory agreement. Positive and negative thermal expansion values obtained from CePt3Si single crystal data are fairly well explained in terms of the crystalline electric field model, using CEF parameters derived recently from inelastic neutron scattering. DFT calculations, in addition, demonstrate that the atomic vibrations keep almost unaffected by the antisymmetric spin-orbit coupling present in systems with crystal structures having no inversion symmetry. This is opposite to electronic properties, where the antisymmetric spin-orbit interaction has shown to distinctly influence features like the superconducting condensate of CePt3Si.

  8. Oxidation of Half-Lantern Pt2(II,II) Compounds by Halocarbons. Evidence of Dioxygen Insertion into a Pt(III)-CH3 Bond.

    PubMed

    Sicilia, V; Baya, M; Borja, P; Martín, A

    2015-08-03

    The half-lantern compound [{Pt(bzq)(μ-N^S)}2] (1) [bzq = benzo[h]quinoline, HN^S = 2-mercaptopyrimidine (C4H3N2HS)] reacts with CH3I and haloforms CHX3 (X = Cl, Br, I) to give the corresponding oxidized diplatinum(III) derivatives [{Pt(bzq)(μ-N^S)X}2] (X = Cl 2a, Br 2b, I 2c). These compounds exhibit half-lantern structures with short intermetallic distances (∼2.6 Å) due to Pt-Pt bond formation. The halogen abstraction mechanisms from the halocarbon molecules by the Pt2(II,II) compound 1 were investigated. NMR spectroscopic evidence using labeled reagents support that in the case of (13)CH3I the reaction initiates with an oxidative addition through an SN2 mechanism giving rise to the intermediate species [I(bzq)Pt(μ-N^S)2Pt(bzq)((13)CH3)}]. However, with haloforms the reactions proceed through a radical-like mechanism, thermally (CHBr3, CHI3) or photochemically (CHCl3) activated, giving rise to mixtures of species [X(bzq)Pt(μ-N^S)2Pt(bzq)R] (3a-c) and [X(bzq)Pt(μ-N^S)2Pt(bzq)X] (2a-c). In these cases the presence of O2 favors the formation of species 2 over 3. Transformation of 3 into 2 was possible upon irradiation with UV light. In the case of [I(bzq)Pt(μ-N^S)2Pt(bzq)((13)CH3)}] (3d), in the presence of O2 the formation of the unusual methylperoxo derivative [I(bzq)Pt(μ-N^S)2Pt(bzq)(O-O(13)CH3)}] (4d) was detected, which in the presence of (13)CH3I rendered the final product [{Pt(bzq)(μ-N^S)I}2] (2c) and (13)CH3OH.

  9. Longitudinal recording on FePt and FePtX (X = B, Ni) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Li, Ning

    1999-11-01

    Near field recording on high coercivity FePt intermetallic compound media using a high Bsat write element was investigated. Untextured FePt media were prepared by magnetron sputtering on ZrO2 disks at a substrate temperature of 450°C, with post annealing at 450°C for 8 hrs. Both multilayer and cosputtered precursors produced the ordered tetragonal L10 phase with high coercivity between 5kOe and 12kOe. To improve readback noise decrease magnetic domain size, FePtB media were subsequently prepared by cosputtering. Over-write, roll-off, signal to noise ratio and non-linear transition shift (NLTS) ere measured by both metal in gap (MIG) and merged MR heads. FePtB media showed similar NLTS to commercial CoCrPtTa longitudinal media, but 5dB lower signal to noise ratio. By operating recording transducers in near contact, reasonable values of (>30dB) could be obtained. VSM Rotational Transverse Magnetization has been used for measuring the anisotropy field of magnetic thin films. Magnetization reversal during rotation of a 2D isotropic an applied field is discussed. The relationship between the transverse magnetization My and the applied field H was numerically solved. An excellent approximation for the transverse magnetization is found to be: My/Ms=A(1- H/Hk) 2.5, where A = 1.1434, and Hk is the anisotropy field. For curve fitting to experimental data, both A and Hk were used as fitting parameters. Comparison between a constructed torque hysteresis method and this VSM RTM method have been made theoretically and experimentally. Both results showed that VSM RTM will give better extrapolation of the anisotropy field. The torque measurement will slightly overestimate the anisotropy field. The anisotropy fields of FePt and FePtX (X = B, Ni) films were characterized using this VSM RTM technique with comparison to a CoCrTaPt disk. Anisotropy energy was derived. Hc/Hk was used as an indicator for coherent rotation of a single domain. Interactions between magnetic domains were

  10. Compaction dynamics of crunchy granular material

    NASA Astrophysics Data System (ADS)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai

    2017-06-01

    Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  11. Highly linear ring modulator from hybrid silicon and lithium niobate.

    PubMed

    Chen, Li; Chen, Jiahong; Nagy, Jonathan; Reano, Ronald M

    2015-05-18

    We present a highly linear ring modulator from the bonding of ion-sliced x-cut lithium niobate onto a silicon ring resonator. The third order intermodulation distortion spurious free dynamic range is measured to be 98.1 dB Hz(2/3) and 87.6 dB Hz(2/3) at 1 GHz and 10 GHz, respectively. The linearity is comparable to a reference lithium niobate Mach-Zehnder interferometer modulator operating at quadrature and over an order of magnitude greater than silicon ring modulators based on plasma dispersion effect. Compact modulators for analog optical links that exploit the second order susceptibility of lithium niobate on the silicon platform are envisioned.

  12. X-ray Irradiation Induced Reversible Resistance Change in Pt/TiO 2 /Pt Cells

    DOE PAGES

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta; ...

    2014-02-25

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. But, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO 2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few ordersmore » of magnitude, depending on the intensity of impinging X-rays. Furthermore, we found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. In understanding X-ray-controlled reversible resistance changes we can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.« less

  13. X-ray irradiation induced reversible resistance change in Pt/TiO2/Pt cells.

    PubMed

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta; D'Aquila, Kenneth; Kim, Seong Keun; Kim, Jiyoon; Song, Seul Ji; Hwang, Cheol Seong; Eastman, Jeffrey A; Freeland, John W; Hong, Seungbum

    2014-02-25

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. However, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few orders of magnitude, depending on the intensity of impinging X-rays. We found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. Understanding X-ray-controlled reversible resistance changes can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.

  14. Thermal Management Optimization of a Thermoelectric-Integrated Methanol Evaporator Using a Compact CFD Modeling Approach

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Chen, Min; Snyder, G. Jeffrey; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2013-07-01

    To better manage the magnitude and direction of the heat flux in an exchanger-based methanol evaporator of a fuel cell system, thermoelectric (TE) modules can be deployed as TE heat flux regulators (TERs). The performance of the TE-integrated evaporator is strongly influenced by its heat exchange structure. The structure transfers the fuel cell exhaust heat to the evaporation chamber to evaporate the methanol, where TE modules are installed in between to facilitate the heat regulation. In this work, firstly, a numerical study is conducted to determine the working currents and working modes of the TERs under the system working condition fluctuations and during the system cold start. A three-dimensional evaporator model is generated in ANSYS FLUENT® by combining a compact TE model with various heat exchange structure geometries. The compact TE model can dramatically improve the computational efficiency, and uses a different material property acquisition method based on module manufacturers' datasheets. Secondly, a simulation study is carried out on the novel evaporator to minimize its thermal resistance and to assess the evaporator pressure drop. The factors studied include the type of fins in the heat exchange structure, the thickness of the fins, the axial conduction penalty, etc. Results show that the TE-integrated evaporator can work more efficiently and smoothly during both load fluctuations and system cold start, offering superior performance.

  15. Pt anti-cancer drug interactions with oligodeoxyribonucleotides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fouts, C.S.

    The Pt adducts of d(TGGT) were investigated by /sup 31/P and /sup 1/H NMR spectroscopy with the following compounds: cisPtA/sub 2/Cl/sub 2/ (A/sub 2/ = en, (NH/sub 3/)/sub 2/, (MeNH/sub 2/)/sub 2/, tn, Me/sub 2/ tn, and N,N-Me/sub 2/en) and transPt (NH/sub 3/)/sub 2/Cl/sub 2/. Limited studies were performed with d(TTGG), D(GGTT), D(pGGTT), and d(TAGT). For d(TGGT)Pt(en) and d(TGGT)cisPt(MeNH/sub 2/)/sub 2/, the downfield /sup 31/P NMR signal was assigned to the GpG moiety by selective 2D NMR techniques. It was demonstrated that Pt formed a crosslink with the GpG moiety and the G's were in a head-to-head configuration. A downfieldmore » /sup 31/P NMR signal appears to be characteristic of Pt-crosslinked species and can be correlated with potential hydrogen bonding ability of the Pt complexes and the oligonucleotides. The signal was not shifted as far downfield when the group cis to the 5' G was incapable of hydrogen bonding or when no phosphate group was 5' to the GpG moiety.« less

  16. Origin of Multiple Peaks in the Potentiodynamic Oxidation of CO Adlayers on Pt and Ru-Modified Pt Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongsen; Abruña, Héctor D.

    2015-05-21

    The study of the electrooxidation mechanism of COad on Pt based catalysts is very important for designing more effective CO-tolerant electrocatalysts for fuel cells. We have studied the origin of multiple peaks in the cyclic voltammograms of CO stripping from polycrystalline Pt and Ru modified polycrystalline Pt (Pt/Ru) surfaces in both acidic and alkaline media by differential electrochemical mass spectrometry (DEMS), DFT calculations, and kinetic Monte Carlo (KMC) simulations. A new COad electrooxidation kinetic model on heterogeneous Pt and Pt/Ru catalysts is proposed to account for the multiple peaks experimentally observed. In this model, OH species prefer to adsorb atmore » low-coordination sites or Ru sites and, thus, suppress CO repopulation from high-coordination sites onto these sites. Therefore, COad oxidation occurs on different facets or regions, leading to multiplicity of CO stripping peaks. This work provides a new insight into the CO electrooxidation mechanism and kinetics on heterogeneous catalysts.« less

  17. Measurement of rivaroxaban concentrations demonstrates lack of clinical utility of a PT, dPT and APTT test in estimating levels.

    PubMed

    Thom, I; Cameron, G; Robertson, D; Watson, H G

    2018-05-02

    Rivaroxaban concentrations were measured in 127 inpatient samples using an HPLC-MS/MS assay. We compared this measurement with a calibrated anti-Xa assay and performed PT, aPTT and dilute PT tests to assess the value of clot-based assays in clinical decision-making. The correlation between the anti-Xa assay and the HPLC-MS/MS at therapeutic concentrations was strong (R 2  = 0.98). The PT, RecombiPlasTin 2G, and aPTT, Actin FS, showed a linear dose-response but poor correlation (R 2  = 0.32 and 0.44, respectively) and at dilutions of 1 in 150 to 1 in 750 the dilute PT assay also showed poor correlation with rivaroxaban concentrations measured by specific assays. A normal PT or aPTT alone did not identify a likely safe rivaroxaban concentration to allow surgery or invasive procedures, but the combination of normal PT and aPTT identified a group of patients with rivaroxaban levels less than 90 ng/mL. Combined normal PT and aPTT had specificity and sensitivity of 0.97 (95% CI 0.92-0.99) and 0.37 (95% CI 0.1-0.74) for a rivaroxaban concentration < 32 ng/mL. The PT and aPTT show poor correlation with rivaroxaban levels measured by calibrated anti-Xa and HPLC-MS/MS assays. A normal combined PT and APTT identified low rivaroxaban levels with high specificity but lacked sensitivity. The dPT assay at several dilutions could not be used to quantify rivaroxaban in clinical samples. The utility of these PT, aPTT and dilute PT assays in a clinical setting is very limited, and results generated must be interpreted with caution. © 2018 John Wiley & Sons Ltd.

  18. Tri-metallic PtPdAu mesoporous nanoelectrocatalysts.

    PubMed

    Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-06-22

    The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.

  19. Tri-metallic PtPdAu mesoporous nanoelectrocatalysts

    NASA Astrophysics Data System (ADS)

    Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-06-01

    The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.

  20. Twofold Transition in PT-symmetric Coupled Oscillators

    DTIC Science & Technology

    2013-12-26

    theoretical model exhibits two PT transitions depending on the size of the coupling parameter . For small , the PT symmetry is broken and the system is...small , the PT symmetry is broken and the system is not in equilibrium, but when becomes sufficiently large, the system undergoes a transition to...an equilibrium phase in which the PT symmetry is unbroken. For very large , the system undergoes a second transition and is no longer in

  1. NaK loop testing of thermoelectric converter modules (SNAP program)

    NASA Technical Reports Server (NTRS)

    Johnson, J. L.

    1973-01-01

    The history of testing of compact tubular modules in flowing NaK loops is summarized. Test procedures, data handling, and instrument calibration are discussed. Also included is descriptive information of the test facilities, operational problems encountered, and some recommendations for testing.

  2. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei-Zhen; Nie, Lei; Cheng, Yingwen

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when themore » sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\

  3. Dextransucrase Expression Is Concomitant with that of Replication and Maintenance Functions of the pMN1 Plasmid in Lactobacillus sakei MN1

    PubMed Central

    Nácher-Vázquez, Montserrat; Ruiz-Masó, José A.; Mohedano, María L.; del Solar, Gloria; Aznar, Rosa; López, Paloma

    2017-01-01

    The exopolysaccharide synthesized by Lactobacillus sakei MN1 is a dextran with antiviral and immunomodulatory properties of potential utility in aquaculture. In this work we have investigated the genetic basis of dextran production by this bacterium. Southern blot hybridization experiments demonstrated the plasmidic location of the dsrLS gene, which encodes the dextransucrase involved in dextran synthesis. DNA sequencing of the 11,126 kbp plasmid (pMN1) revealed that it belongs to a family which replicates by the theta mechanism, whose prototype is pUCL287. The plasmid comprises the origin of replication, repA, repB, and dsrLS genes, as well as seven open reading frames of uncharacterized function. Lb. sakei MN1 produces dextran when sucrose, but not glucose, is present in the growth medium. Therefore, plasmid copy number and stability, as well as dsrLS expression, were investigated in cultures grown in the presence of either sucrose or glucose. The results revealed that pMN1 is a stable low-copy-number plasmid in both conditions. Gene expression studies showed that dsrLS is constitutively expressed, irrespective of the carbon source present in the medium. Moreover, dsrLS is expressed from a monocistronic transcript as well as from a polycistronic repA-repB-orf1-dsrLS mRNA. To our knowledge, this is the first report of a plasmid-borne dextransucrase-encoding gene, as well as the first time that co-transcription of genes involved in plasmid maintenance and replication with a gene encoding an enzyme has been established. PMID:29209293

  4. Exchange bias and perpendicular anisotropy study of ultrathin Pt-Co-Pt-IrMn multilayers sputtered on float glass

    NASA Astrophysics Data System (ADS)

    Laval, M.; Lüders, U.; Bobo, J. F.

    2007-09-01

    We have prepared ultrathin Pt-Co-Pt-IrMn polycrystalline multilayers on float-glass substrates by DC magnetron sputtering. We have determined the optimal set of thickness for both Pt layers, the Co layer and the IrMn biasing layer so that these samples exhibit at the same time out-of-plane magnetic anisotropy and exchange bias. Kerr microscopy domain structure imaging evidences an increase of nucleation rate accompanied with inhomogeneous magnetic behavior in the case of exchange-biased films compared to Pt-Co-Pt trilayers. Polar hysteresis loops are measured in obliquely applied magnetic field conditions, allowing us to determine both perpendicular anisotropy effective constant Keff and exchange-bias coupling JE, which are significantly different from the ones determined by standard switching field measurements.

  5. Radio-to-Gamma-Ray Monitoring of the Narrow-line Seyfert 1 Galaxy PMN J0948+0022 from 2008 to 2011

    NASA Technical Reports Server (NTRS)

    Foschini, L.; Angelakis, E.; Fuhrmann, L.; Ghisellini, G.; Hovatta, T.; Lahteenmaki, A.; Lister, M. L.; Braito, V.; Gallo, L.; Hamilton, T. S.; hide

    2012-01-01

    We present more than three years of observations at different frequencies, from radio to high-energy ?-rays, of the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948+0022 (z = 0.585). This source is the first NLS1 detected at energies above 100 MeV and therefore can be considered the prototype of this emerging new class of ?-ray emitting active galactic nuclei (AGN). The observations performed from 2008 August 1 to 2011 December 31 confirmed that PMN J0948+0022 generates a powerful relativistic jet, which is able to develop an isotropic luminosity at gamma-rays of the order of 1048 erg per second, at the level of powerful quasars. The evolution of the radiation emission of this source in 2009 and 2010 followed the canonical expectations of relativistic jets with correlated multiwavelength variability (gamma-rays followed by radio emission after a few months), but it was difficult to retrieve a similar pattern in the light curves of 2011. The comparison of gamma-ray spectra before and including 2011 data suggested that there was a softening of the highenergy spectral slope. We selected five specific epochs to be studied by modelling the broad-band spectrum, which are characterised by an outburst at gamma-rays or very low/high flux at other wavelengths. The observed variability can largely be explained by changes in the injected power, the bulk Lorentz factor of the jet, or the electron spectrum. The characteristic time scale of doubling/halving flux ranges from a few days to a few months, depending on the frequency and the sampling rate. The shortest doubling time scale at gamma-rays is 2.3 +/- 0.5 days. These small values underline the need of highly sampled multiwavelength campaigns to better understand the physics of these sources.

  6. Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod

    NASA Astrophysics Data System (ADS)

    Cheng, Mu-Tian; Liu, Shao-Ding; Wang, Qu-Quan

    2008-04-01

    We theoretically investigated the dynamics of exciton populations [ρyy(t ) and ρxx(t )] on two orthogonal polarization eigenstates (∣x⟩ and ∣y⟩) and the polarization ratio P(t )=[ρyy(t )-ρxx(t )]/[ρyy(t )+ρxx(t )] of an anisotropic InGaAs quantum dot modulated by the surface plasmon of an Au nanorod (NR). In the resonance of longitudinal surface plasmon of AuNR, the polarization ratio P(t ) increases from 0.22 to 0.99 during the excitation due to the efficient enhancement of Rabi frequency of the transition between the ∣y⟩ and vacuum states, and decreases from 0.02 to -0.92 after the excitation pulse due to the enhancement of decay rate of the ∣y⟩ state. This offers an approach to modulate the dynamic polarization ratio of radiative emissions.

  7. COMPACT E+A GALAXIES AS A PROGENITOR OF MASSIVE COMPACT QUIESCENT GALAXIES AT 0.2 < z < 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Hochmuth, Nicholas Baeza; Geller, Margaret J.

    We search the Sloan Digital Sky Survey and the Baryon Oscillation Sky Survey to identify ∼5500 massive compact quiescent galaxy candidates at 0.2 < z < 0.8. We robustly classify a subsample of 438 E+A galaxies based on their spectral properties and make this catalog publicly available. We examine sizes, stellar population ages, and kinematics of galaxies in the sample and show that the physical properties of compact E+A galaxies suggest that they are a progenitor of massive compact quiescent galaxies. Thus, two classes of objects—compact E+A and compact quiescent galaxies—may be linked by a common formation scenario. The typicalmore » stellar population age of compact E+A galaxies is <1 Gyr. The existence of compact E+A galaxies with young stellar populations at 0.2 < z < 0.8 means that some compact quiescent galaxies first appear at intermediate redshifts. We derive a lower limit for the number density of compact E+A galaxies. Assuming passive evolution, we convert this number density into an appearance rate of new compact quiescent galaxies at 0.2 < z < 0.8. The lower limit number density of compact quiescent galaxies that may appear at z < 0.8 is comparable to the lower limit of the total number density of compact quiescent galaxies at these intermediate redshifts. Thus, a substantial fraction of the z < 0.8 massive compact quiescent galaxy population may descend from compact E+A galaxies at intermediate redshifts.« less

  8. Neutrophil-derived 5′-Adenosine Monophosphate Promotes Endothelial Barrier Function via CD73-mediated Conversion to Adenosine and Endothelial A2B Receptor Activation

    PubMed Central

    Lennon, Paul F.; Taylor, Cormac T.; Stahl, Gregory L.; Colgan, Sean P.

    1998-01-01

    During episodes of inflammation, polymorphonuclear leukocyte (PMN) transendothelial migration has the potential to disturb vascular barrier function and give rise to intravascular fluid extravasation and edema. However, little is known regarding innate mechanisms that dampen fluid loss during PMN-endothelial interactions. Using an in vitro endothelial paracellular permeability model, we observed a PMN-mediated decrease in endothelial paracellular permeability. A similar decrease was elicited by cell-free supernatants from activated PMN (FMLP 10−6 M), suggesting the presence of a PMN-derived soluble mediator(s). Biophysical and biochemical analysis of PMN supernatants revealed a role for PMN-derived 5′-adenosine monophosphate (AMP) and its metabolite, adenosine, in modulation of endothelial paracellular permeability. Supernatants from activated PMN contained micromolar concentrations of bioactive 5′-AMP and adenosine. Furthermore, exposure of endothelial monolayers to authentic 5′-AMP and adenosine increased endothelial barrier function more than twofold in both human umbilical vein endothelial cells and human microvascular endothelial cells. 5′-AMP bioactivity required endothelial CD73-mediated conversion of 5′-AMP to adenosine via its 5′-ectonucleotidase activity. Decreased endothelial paracellular permeability occurred through adenosine A2B receptor activation and was accompanied by a parallel increase in intracellular cAMP. We conclude that activated PMN release soluble mediators, such as 5′-AMP and adenosine, that promote endothelial barrier function. During inflammation, this pathway may limit potentially deleterious increases in endothelial paracellular permeability and could serve as a basic mechanism of endothelial resealing during PMN transendothelial migration. PMID:9782120

  9. A compact 10 kW solid-state RF power amplifier at 352 MHz

    NASA Astrophysics Data System (ADS)

    Dancila, Dragos; Hoang Duc, Long; Jobs, Magnus; Holmberg, Måns; Hjort, Adam; Rydberg, Anders; Ruber, Roger

    2017-07-01

    A compact 10 kW RF power amplifier at 352 MHz was developed at FREIA for the European Spallation Source, ESS. The specifications of ESS for the conception of amplifiers are related to its pulsed operation: 3.5 ms pulse length and a duty cycle of 5%. The realized amplifier is composed of eight kilowatt level modules, combined using a planar Gysel 8-way combiner. The combiner has a low insertion loss of only 0.2 dB, measured at 10 kW peak power. Each module is built around a commercially available LDMOS transistor in a singleended architecture. During the final tests, a total output peak power of 10.5 kW was measured.

  10. Synthesis, crystal structure, theoretical calculations and antimicrobial properties of [Pt(tetramethylthiourea)4] [Pt(CN)4]·4H2O

    NASA Astrophysics Data System (ADS)

    Sadaf, Haseeba; Isab, Anvarhusein A.; Ahmad, Saeed; Espinosa, Arturo; Mas-Montoya, Míriam; Khan, Islam Ullah; Ejaz; Rehman, Seerat-ur; Ali, Muhammad Akhtar Javed; Saleem, Muhammad; Ruiz, José; Janiak, Christoph

    2015-04-01

    A new platinum(II) complex, [Pt(Tmtu)4][Pt(CN)4]·4H2O (1) was synthesized by reaction of K2[PtCl4], KCN and tetramethylthiourea (Tmtu). Its structure was determined by X-ray crystallography. The [Pt(CN)4]2- anion shows regular square planar geometry at platinum, while in the [Pt(Tmtu)4]2+ cation the geometry at platinum is somewhat distorted. Hydrogen bonding between water molecules and the cyanide nitrogen of [Pt(CN)4]2- ions stabilizes the structure and leads to a supramolecular 2D network. DFT calculations support the experimentally found dinuclear (homocoordinated) ion-pair structure 1 as the most stable in comparison to noncovalent dimer [Pt(CN)2(Tmtu)2]222 that could, in turn, be involved in the formation sequence of 1. Antimicrobial activities of the complex were evaluated by minimum inhibitory concentration and the results showed that the complex exhibited moderate activities against gram-negative bacteria (Escherichiacoli, Pseudomonas aeruginosa) and molds (Aspergillus niger,Penicilliumcitrinum).

  11. Tobacco smoke modulates ozone-induced toxicity in rat lungs and central nervous system.

    PubMed

    Bhoopalan, Vanitha; Han, Sung Gu; Shah, Mrudang M; Thomas, David M; Bhalla, Deepak K

    2013-01-01

    Adult Sprague-Dawley (SD) male rats were exposed for a single 3 h period to air, ozone (O₃) or O₃) followed by tobacco smoke (O₃/TS). For pulmonary effects, bronchoalveolar lavage (BAL) cells and fluid were analyzed. Data revealed a significant increase in polymorphonuclear leukocytes (PMN), total protein and albumin concentrations in the O₃ group, reflecting inflammatory and toxic responses. A subsequent exposure to TS attenuated PMN infiltration into the airspaces and their recovery in the BAL. A similar reduction was observed for BAL protein and albumin in the O₃/TS group, but it was not statistically significant. We also observed a significant increase in BAL total antioxidant capacity following O₃ exposure, suggesting development of protective mechanisms for oxidative stress damage from O₃. Exposure to TS attenuated the levels of total antioxidant capacity. Lung tissue protein analysis showed a significant reduction of extracellular superoxide dismutase (EC-SOD) in the O₃ or O₃/TS group and catalase in the O₃/TS group. TS further altered O₃-induced EC-SOD and catalase protein expression, but the reductions were not significant. For effects in the central nervous system (CNS), we measured striatal dopamine levels by HPLC with electrochemical detection. O₃ exposure produced a nonsignificant decrease in the striatal dopamine content. The effect was partially reversed in the O₃/TS group. Overall, the results show that the toxicity of O₃ in the lung is modulated by TS exposure, and the attenuating trend, though nonsignificant in many cases, is contrary to the synergistic toxicity predicted for TS and O₃, suggesting limited cross-tolerance following such exposures.

  12. The controlled formation and cleavage of an intramolecular d8-d8 Pt-Pt interaction in a dinuclear cycloplatinated molecular "pivot-hinge".

    PubMed

    Koo, Chi-Kin; Wong, Ka-Leung; Lau, Kai-Cheung; Wong, Wai-Yeung; Lam, Michael Hon-Wah

    2009-08-03

    The bis(diphenylphosphino)methane (dppm)-bridged dinuclear cycloplatinated complex {[Pt(L)](2)(mu-dppm)}(2+) (Pt(2)dppm; HL: 2-phenyl-6-(1H-pyrazol-3-yl)-pyridine) demonstrates interesting reversible "pivot-hinge"-like intramolecular motions in response to the protonation/deprotonation of L. In its protonated "closed" configuration, the two platinum(II) centers are held in position by intramolecular d(8)-d(8) Pt-Pt interaction. In its deprotonated "open" configuration, such Pt-Pt interaction is cleaved. To further understand the mechanism behind this hingelike motion, an analogous dinuclear cycloplatinated complex, {[Pt(L)](2)(mu-dchpm)}(2+) (Pt(2)dchpm) with bis(dicyclohexylphosphino)methane (dchpm) as the bridging ligand, was synthesized. From its protonation/deprotonation responses, it was revealed that aromatic pi-pi interactions between the phenyl moieties of the mu-dppm and the deprotonated pyrazolyl rings of L was essential to the reversible cleavage of the intramolecular Pt-Pt interaction in Pt(2)dppm. In the case of Pt(2)dchpm, spectroscopic and spectrofluorometric titrations as well as X-ray crystallography indicated that the distance between the two platinum(II) centers shrank upon deprotonation, thus causing a redshift in its room-temperature triplet metal-metal-to-ligand charge-transfer emission from 614 to 625 nm. Ab initio calculations revealed the presence of intramolecular hydrogen bonding between the deprotonated and negatively charged 1-pyrazolyl-N moiety and the methylene CH and phenyl C-H of the mu-dppm. The "open" configuration of the deprotonated Pt(2)dppm was estimated to be 19 kcal mol(-1) more stable than its alternative "closed" configuration. On the other hand, the open configuration of the deprotonated Pt(2)dchpm was 6 kcal mol(-1) less stable than its alternative closed configuration.

  13. First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp

    2015-03-15

    Catalytic oxidation of NO to NO{sub 2} is a significant research interest for improving the quality of air through exhaust gas purification systems. In this paper, the authors studied this reaction on pure Pt and Pt overlayer on 3d transition metals using kinetic Monte Carlo simulations coupled with density functional theory based first principles calculations. The authors found that on the Pt(111) surface, NO oxidation proceeds via the Eley–Rideal mechanism, with O{sub 2} dissociative adsorption as the rate-determining step. The oxidation path via the Langmuir–Hinshelwood mechanism is very slow and does not significantly contribute to the overall reaction. However, inmore » the Pt overlayer systems, the oxidation of NO on the surface is more thermodynamically and kinetically favorable compared to pure Pt. These findings are attributed to the weaker binding of O and NO on the Pt overlayer systems and the binding configuration of NO{sub 2} that promotes easier N-O bond formation. These results present insights for designing affordable and efficient catalysts for NO oxidation.« less

  14. Insertion of terminal alkyne into Pt-N bond of the square planar [PtI2(Me2phen)] complex.

    PubMed

    Benedetti, Michele; De Castro, Federica; Lamacchia, Vincenza; Pacifico, Concetta; Natile, Giovanni; Fanizzi, Francesco P

    2017-11-21

    The reactivity of [PtX 2 (Me 2 phen)] complexes (X = Cl, Br, I; Me 2 phen = 2,9-dimethyl-1,10-phenanthroline) with terminal alkynes has been investigated. Although the dichlorido species [PtCl 2 (Me 2 phen)] exhibits negligible reactivity, the bromido and iodido derivatives lead in short time to the formation of five-coordinate Pt(ii) complexes of the type [PtX 2 (Me 2 phen)(η 2 -CH[triple bond, length as m-dash]CR)] (X = Br, I; R = Ph, n-Bu), in equilibrium with the starting reagents. Similar to analogous complexes with simple acetylene, the five coordinate species can also undergo dissociation of an halido ligand and formation of the transient square-planar cationic species [PtX(Me 2 phen)(η 2 -CH[triple bond, length as m-dash]CR)] + . This latter can further evolve to give an unusual, sparingly soluble square planar product where the former terminal alkyne is converted into a :C[double bond, length as m-dash]C(H)(R) moiety with the α-carbon bridging the Pt(ii) core with one of the two N-donors of coordinated Me 2 phen. The final product [PtX 2 {κ 2 -N,C-(Z)-N[combining low line]1-N10-C[combining low line][double bond, length as m-dash]C(H)(R)}] (N1-N10 = 2,9-dimethyl-1,10-phenanthroline; X = Br, I) contains a Pt-N-C-C-N-C six-membered chelate ring in a square planar Pt(ii) coordination environment.

  15. Ternary Pt/SnO(x)/TiO2 photocatalysts for hydrogen production: consequence of Pt sites for synergy of dual co-catalysts.

    PubMed

    Gu, Quan; Long, Jinlin; Zhuang, Huaqiang; Zhang, Chaoqiang; Zhou, Yangen; Wang, Xuxu

    2014-06-28

    A variety of ternary nanoheterostructures composed of Pt nanoparticles (NPs), SnOx species, and anatase TiO2 are designed elaborately to explore the effect of interfacial electron transfer on photocatalytic H2 evolution from a biofuel-water solution. Among numerous factors controlling the H2 evolution, the significance of Pt sites for the H2 evolution is highlighted by tuning the loading procedure of Pt NPs and SnOx species over TiO2. A synergistic enhancement of H2 evolution can be achieved over the Pt/SnOx/TiO2 heterostructures formed by anchoring Pt NPs at atomically-isolated Sn-oxo sites, whereas the Pt/TiO2/SnOx counterparts prepared by grafting single-site Sn-oxo species on Pt/TiO2 show a marked decrease in the rate of H2 evolution. The characterization results clearly reveal that the synergy of Pt NPs and SnOx species originates from the vectorial electron transfer of TiO2 → SnOx → Pt occurring on the former, while the latter results from the competitive electron transfer from TiO2 to SnOx and to Pt NPs.

  16. Fast particles in a steady-state compact FNS and compact ST reactor

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M. P.; Nicolai, A.; Buxton, P.

    2014-10-01

    This paper presents results of studies of fast particles (ions and alpha particles) in a steady-state compact fusion neutron source (CFNS) and a compact spherical tokamak (ST) reactor with Monte-Carlo and Fokker-Planck codes. Full-orbit simulations of fast particle physics indicate that a compact high field ST can be optimized for energy production by a reduction of the necessary (for the alpha containment) plasma current compared with predictions made using simple analytic expressions, or using guiding centre approximation in a numerical code. Alpha particle losses may result in significant heating and erosion of the first wall, so such losses for an ST pilot plant have been calculated and total and peak wall loads dependence on the plasma current has been studied. The problem of dilution has been investigated and results for compact and big size devices are compared.

  17. Robust and Complex on-Chip Nanophotonics

    DTIC Science & Technology

    2015-04-17

    organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21- PT -2. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the...metallic on-chip nanophotonic structures, leading to novel devices in ultra-compact wavelength splitters, and nano- lasers and modulators with very low...between optical fiber and on-chip waveguide based on a novel transformation-optics approach. Finally, in Thrust 3, the team has made substantial

  18. Ultralow charge-transfer resistance with ultralow Pt loading for hydrogen evolution and oxidation using Ru@Pt core-shell nanocatalysts

    DOE PAGES

    Wang, Jia X.; Zhang, Yu; Capuano, Christopher B.; ...

    2015-07-15

    We evaluated the activities of well-defined Ru@Pt core-shell nanocatalysts for hydrogen evolution and oxidation reactions (HER-HOR) using hanging strips of gas diffusion electrode (GDE) in solution cells. With gas transport limitation alleviated by micro-porous channels in the GDEs, the charge transfer resistances (CTRs) at the hydrogen reversible potential were conveniently determined from linear fit of ohmic-loss-corrected polarization curves. In 1M HClO₄ at 23°C, a CTR as low as 0.04 Ω cm² was obtained with only 20 μg cm⁻² Pt and 11 μg cm⁻² Ru using the carbon-supported Ru@Pt with 1:1 Ru:Pt atomic ratio. Derived from temperature-dependent CTRs, the activation barriermore » of the Ru@Pt catalyst for the HER-HOR in acids is 0.2 eV or 19 kJ mol⁻¹. Using the Ru@Pt catalyst with total metal loadings <50 μg cm⁻² for the HER in proton-exchange-membrane water electrolyzers, we recorded uncompromised activity and durability compared to the baseline established with 3 mg cm⁻² Pt black.« less

  19. Electric field tuning of magnetism in heterostructure of yttrium iron garnet film/lead magnesium niobate-lead zirconate titanate ceramic

    NASA Astrophysics Data System (ADS)

    Lian, Jianyun; Ponchel, Freddy; Tiercelin, Nicolas; Chen, Ying; Rémiens, Denis; Lasri, Tuami; Wang, Genshui; Pernod, Philippe; Zhang, Wenbin; Dong, Xianlin

    2018-04-01

    In this paper, the converse magnetoelectric (CME) effect by electric field tuning of magnetization in an original heterostructure composed of a polycrystalline yttrium iron garnet (YIG) film and a lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramic is presented. The magnetic performances of the YIG films with different thicknesses under a DC electric field applied to the PMN-PZT ceramics and a bias magnetic field are investigated. All the magnetization-electric field curves are found to be in good agreement with the butterfly like strain curve of the PMN-PZT ceramic. Both the sharp deformation of about 2.5‰ of PMN-PZT and the easy magnetization switching of YIG are proposed to be the reasons for the strongest CME interaction in the composite at the small electric coercive field of PMN-PZT (4.1 kV/cm) and the small magnetic coercive field of YIG (20 Oe) where the magnetic susceptibility reaches its maximum value. A remarkable CME coefficient of 3.1 × 10-7 s/m is obtained in the system with a 600 nm-thick YIG film. This heterostructure combining multiferroics and partially magnetized ferrite concepts is able to operate under a small or even in the absence of an external bias magnetic field and is more compact and power efficient than the traditional magnetoelectric devices.

  20. Jarzynski equality in PT-symmetric quantum mechanics

    DOE PAGES

    Deffner, Sebastian; Saxena, Avadh

    2015-04-13

    We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with unbroken PT -symmetry. In the regime of broken PT -symmetry the Jarzynski equality does not hold as also the CPT -norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system – two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT -symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.

  1. Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 2: adsorption of oxygen species and ClO4(-) anions on Pt and Pt-Co alloy in HClO4 solutions.

    PubMed

    Omura, J; Yano, H; Tryk, D A; Watanabe, M; Uchida, H

    2014-01-14

    To gain deeper insight into the role of adsorbed oxygenated species in the O2 reduction reaction (ORR) kinetics on platinum and platinum-cobalt alloys for fuel cells, we carried out a series of measurements with the electrochemical quartz crystal microbalance (EQCM) and the rotating disk electrode (RDE) in acid solution. The effects of anion adsorption on the activities for the ORR were first assessed in HClO4 and HF electrolyte solutions at various concentrations. In our previous work (Part 1), we reported that the perchlorate anion adsorbs specifically on bulk-Pt, with a Frumkin-Temkin isotherm, that is, a linear relationship between Δm and log[HClO4]. Here, we find that the specific adsorption on the Pt-skin/Pt3Co alloy was significantly stronger than that on bulk-Pt, in line with its modified electronic properties. The kinetically controlled current density j(k) for the O2 reduction at the Pt-skin/Pt3Co-RDE was about 9 times larger than that of the bulk-Pt-RDE in 0.01 M HClO4 saturated with air, but the j(k) values on Pt-skin/Pt3Co decreased with increasing [HClO4] more steeply than in the case of Pt, due to the blocking of the active sites by the specifically adsorbed ClO4(-). We have detected reversible mass changes for one or more adsorbed oxygen-containing species (Ox = O2, O, OH, H2O) on the Pt-skin/Pt3Co-EQCM and Pt-EQCM in O2-saturated and He-purged 0.01 M HClO4 solutions, in which the specific adsorption of ClO4(-) anions was negligible. The coverages of oxygen species θ(Ox) on the Pt-skin/Pt3Co in the potential range from 0.86 to 0.96 V in the O2-saturated solution were found to be larger than those on pure Pt, providing strong evidence that the higher O2 reduction activity on the Pt3Co is correlated with higher θ(Ox), contrary to the conventional view.

  2. Crystallographic parameters of compounds and solid solutions in binary systems Cu-Pt and Ga-Pt

    NASA Astrophysics Data System (ADS)

    Potekaev, Alexandr; Probova, Svetlana; Klopotov, Anatolii; Vlasov, Viktor; Markov, Tatiana; Klopotov, Vladimir

    2015-10-01

    The study establishes that the packing index in compounds of the system Cu-Pt is close to the value 0.74 against a slight deviation from the Zen law of atomic volumes. The compounds in the system Ga-Pt have the highest values of the packing index in the range of the equiatomic composition, which greatly exceed ψ for close-packed structures based on FCC and HCP lattices for compounds made of the same kind of atoms. A correlation between singular points on the phase diagram of the system Ga-Pt and high values of the packing index in compounds is established.

  3. The role of the anionic and cationic pt sites in the adsorption site preference of water and ethanol on defected Pt4/Pt(111) substrates: A density functional theory investigation within the D3 van der waals corrections

    NASA Astrophysics Data System (ADS)

    Seminovski, Yohanna; Amaral, Rafael C.; Tereshchuk, Polina; Da Silva, Juarez L. F.

    2018-01-01

    Platinum (Pt) atoms in the bulk face-centered cubic structure have neutral charge because they are equivalent by symmetry, however, in clean Pt surfaces, the effective charge on Pt atoms can turn slightly negative (anionic) or positive (cationic) while increasing substantially in magnitude for defected (low-coordinated) Pt sites. The effective charge affect the adsorption properties of molecular species on Pt surfaces and it can compete in importance with the coupling of the substrate-molecule electronic states. Although several studies have been reported due to the importance of Pt for catalysis, our understanding of the role played by low-coordinated sites is still limited. Here, we employ density functional theory within the Perdew-Burke-Ernzerhof exchange-correlation functional and the D3 van der Waals (vdW) correction to investigate the role of the cationic and anionic Pt sites on the adsorption properties of ethanol and water on defected Pt4/Pt(111) substrates. Four substrates were carefully selected, namely, two two-dimensional (2D) Pt4 configurations (2D-strand and 2D-island) and two tri-dimensional (3D) Pt4 (3D-fcc and 3D-hcp), to understand the role of coordination, effective charge, and coupling of the electronic states in the adsorption properties. From the Bader charge analysis, we identified the cationic and anionic sites among the Pt atoms exposed to the vacuum region in the Pt4/Pt(111) substrates. We found that ethanol and water bind via the anionic O atoms to the low-coordinated defected Pt sites of the substrates, where the angle PtOH is nearly 100° for most configurations. In the 3D-fcc or 3D-hcp defected configurations, the lowest-coordinated Pt atoms are anionic, hence, those Pt sites are not preferable for the adsorption of O atoms. The charge transfer from water and ethanol to the Pt substrates has similar magnitude for all cases, which implies similar Coulomb contribution to the adsorption energy. Moreover, we found a correlation of the

  4. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2O 4 spinel in oxidizing atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen

    With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less

  5. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2O 4 spinel in oxidizing atmosphere

    DOE PAGES

    Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen; ...

    2017-01-13

    With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less

  6. Microstructure Analysis of Ti-xPt Alloys and the Effect of Pt Content on the Mechanical Properties and Corrosion Behavior of Ti Alloys

    PubMed Central

    Song, Ho-Jun; Han, Mi-Kyung; Jeong, Hyeon-Gyeong; Lee, Yong-Tai; Park, Yeong-Joon

    2014-01-01

    The microstructure, mechanical properties, and corrosion behavior of binary Ti-xPt alloys containing 5, 10, 15 and 20 wt% Pt were investigated in order to develop new Ti-based dental materials possessing superior properties than those of commercially pure titanium (cp-Ti). All of the Ti-xPt (x = 5, 10, 15, 20) alloys showed hexagonal α-Ti structure with cubic Ti3Pt intermetallic phase. The mechanical properties and corrosion behavior of Ti-xPt alloys were sensitive to the Pt content. The addition of Pt contributed to hardening of cp-Ti and to improving its oxidation resistance. Electrochemical results showed that the Ti-xPt alloys exhibited superior corrosion resistance than that of cp-Ti. PMID:28788660

  7. Raytheon's next generation compact inline cryocooler architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.

    2014-01-29

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determinemore » the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven

  8. Raytheon's next generation compact inline cryocooler architecture

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  9. Geometry of Pt(IV) in H 2PtCl 6 aqueous solution: An X-ray absorption spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Chu, Wangsheng; Wang, Lei; Wu, Ziyu

    2009-02-01

    The noble metal ions play an important role in many chemical reactions, but at the present time they represent also potentially new environmental contaminants. There is relatively little information available to adequately assess the potential health hazards, so that to evaluate the potential hazards and identify the necessary actions to reduce the risks associated with exposure to these metals and their compounds it is important to understand the local structure around noble metal ions. In this contribution, the local coordination around platinum (IV) ions e.g., Pt 4+ in aqueous solution, has been investigated by using X-ray absorption spectroscopy (XAS). X-ray absorption near-edge spectra (XANES) of both [PtCl 6] 2- and [PtCl 4(OH) 2] 2- in an aqueous solution have been calculated using FEFF8.2 and both are characterized by an octahedral geometry. From these calculations, we may also assign a characteristic post-edge feature to a contribution of Cl d-states. From the EXAFS analysis we also determined the corresponding Pt bond distances, e.g., 2.33 Å for the Pt-Cl distance and 2.03 Å for the Pt-O distance in these aqueous solutions. The same analysis provides evidence that the peaks in the Fourier transform at about 4.0 Å are due to multiple scattering collinear Cl-Pt-Cl contributions.

  10. Reductive elimination/oxidative addition of carbon-hydrogen bonds at Pt(IV)/Pt(II) centers: mechanistic studies of the solution thermolyses of Tp(Me2)Pt(CH3)2H.

    PubMed

    Jensen, Michael P; Wick, Douglas D; Reinartz, Stefan; White, Peter S; Templeton, Joseph L; Goldberg, Karen I

    2003-07-16

    Reductive elimination of methane occurs upon solution thermolysis of kappa(3)-Tp(Me)2Pt(IV)(CH(3))(2)H (1, Tp(Me)2 = hydridotris(3,5-dimethylpyrazolyl)borate). The platinum product of this reaction is determined by the solvent. C-D bond activation occurs after methane elimination in benzene-d(6), to yield kappa(3)-Tp(Me)2Pt(IV)(CH(3))(C(6)D(5))D (2-d(6)), which undergoes a second reductive elimination/oxidative addition reaction to yield isotopically labeled methane and kappa(3)-Tp(Me)2Pt(IV)(C(6)D(5))(2)D (3-d(11)). In contrast, kappa(2)-Tp(Me)2Pt(II)(CH(3))(NCCD(3)) (4) was obtained in the presence of acetonitrile-d(3), after elimination of methane from 1. Reductive elimination of methane from these Pt(IV) complexes follows first-order kinetics, and the observed reaction rates are nearly independent of solvent. Virtually identical activation parameters (DeltaH(++)(obs) = 35.0 +/- 1.1 kcal/mol, DeltaS(++)(obs) = 13 +/- 3 eu) were measured for the reductive elimination of methane from 1 in both benzene-d(6) and toluene-d(8). A lower energy process (DeltaH(++)(scr) = 26 +/- 1 kcal/mol, DeltaS(++)(scr) = 1 +/- 4 eu) scrambles hydrogen atoms of 1 between the methyl and hydride positions, as confirmed by monitoring the equilibration of kappa(3)-Tp(Me)()2Pt(IV)(CH(3))(2)D (1-d(1)()) with its scrambled isotopomer, kappa(3)-Tp(Me)2Pt(IV)(CH(3))(CH(2)D)H (1-d(1'). The sigma-methane complex kappa(2)-Tp(Me)2Pt(II)(CH(3))(CH(4)) is proposed as a common intermediate in both the scrambling and reductive elimination processes. Kinetic results are consistent with rate-determining dissociative loss of methane from this intermediate to produce the coordinatively unsaturated intermediate [Tp(Me)2Pt(II)(CH(3))], which reacts rapidly with solvent. The difference in activation enthalpies for the H/D scrambling and C-H reductive elimination provides a lower limit for the binding enthalpy of methane to [Tp(Me)2Pt(II)(CH(3))] of 9 +/- 2 kcal/mol.

  11. Use of Hydrogen Chemisorption and Ethylene Hydrogenation as Predictors for Aqueous Phase Reforming of Lactose over Ni@Pt and Co@Pt Bimetallic Overlayer Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Qinghua; Skoglund, Michael D.; Zhang, Chen

    Overlayer Pt on Ni (Ni@Pt) or Co (Co@Pt) were synthesized and tested for H2 generation from APR of lactose. H2 chemisorption descriptor showed that Ni@Pt and Co@Pt overlayer catalysts had reduced H2 adsorption strength compared to a Pt only catalyst, which agree with computational predictions. The overlayer catalysts also demonstrated lower activity for ethylene hydrogenation than the Pt only catalyst, which likely resulted from decreased H2 binding strength decreasing the surface coverage of H2. XAS results showed that overlayer catalysts exhibited higher white line intensity than the Pt catalyst, which indicates a negative d-band shift for the Pt overlayer, furthermore » providing evidence for overlayer formation. Lactose APR studies showed that lactose can be used as feedstock to produce H2 and CO under desirable reaction conditions. The Pt active sites of Ni@Pt and Co@Pt overlayer catalysts showed significantly enhanced H2 production selectivity and activity when compared with that of a Pt only catalyst. The single deposition overlayer with the largest d-band shift showed the highest H2 activity. The results suggest that overlayer formation using directed deposition technique could modify the behavior of the surface metal and ultimately modify the APR activity.« less

  12. Repetitively Coupled Chemical Reduction and Galvanic Exchange as a Synthesis Strategy for Expanding Applicable Number of Pt Atoms in Dendrimer-Encapsulated Pt Nanoparticles.

    PubMed

    Cho, Taehoon; Yoon, Chang Won; Kim, Joohoon

    2018-06-13

    In this study, we report the controllable synthesis of dendrimer-encapsulated Pt nanoparticles (Pt DENs) utilizing repetitively coupled chemical reduction and galvanic exchange reactions. The synthesis strategy allows the expansion of the applicable number of Pt atoms encapsulated inside dendrimers to more than 1000 without being limited by the fixed number of complexation sites for Pt 2+ precursor ions in the dendrimers. The synthesis of Pt DENs is achieved in a short period of time (i.e., ∼10 min) simply by the coaddition of appropriate amounts of Cu 2+ and Pt 2+ precursors into aqueous dendrimer solution and subsequent addition of reducing agents such as BH 4 - , resulting in fast and selective complexation of Cu 2+ with the dendrimers and subsequent chemical reduction of the complexed Cu 2+ while uncomplexed Pt 2+ precursors remain oxidized. Interestingly, the chemical reduction of Cu 2+ , leading to the formation of Cu nanoparticles encapsulated inside the dendrimers, is coupled with the galvanic exchange of the Cu nanoparticles with the nearby Pt 2+ . This coupling repetitively proceeds until all of the added Pt 2+ ions form into Pt nanoparticles encapsulated inside the dendrimers. In contrast to the conventional method utilizing direct chemical reduction, this repetitively coupled chemical reduction and galvanic exchange enables a substantial increase in the applicable number of Pt atoms up to 1320 in Pt DENs while maintaining the unique features of DENs.

  13. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach–Zehnder modulator

    PubMed Central

    Long, Yun; Zhou, Linjie; Wang, Jian

    2016-01-01

    Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach–Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated. PMID:26832305

  14. Fusion of deformed nuclei in the reactions of 76Ge+150Nd and 28Si+198Pt at the Coulomb barrier region

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Lu, J.

    2000-07-01

    Evaporation residue cross sections for 28Si+198Pt and 76Ge+150Nd, both of which form a compound nucleus 226U, were measured in the vicinity of the Coulomb barrier. The measurement gives direct evidence that the system really fuses together to form a fully equilibrated compound nucleus. For the 28Si+198Pt reaction, we have measured the fission fragments to determine the fusion cross section by taking advantage of the highly fissile character of 226U. The evaporation residue cross section and the fusion cross section for 28Si+198Pt allowed us to investigate the deexcitation process (exit channel) of the compound nucleus 226U, and the parameters entering in a statistical model calculation could be determined. By estimating the deexcitation of the compound nucleus 226U with the statistical model, the effect of the deformed nucleus 150Nd on the fusion reaction 76Ge+150Nd was extracted. The experimental data indicated that there is more than 13 MeV extra-extra-push energy for the system to fuse together when the projectile 76Ge collides at the tip of the deformed 150Nd nucleus. On the contrary, for the side collision which is more compact in configuration than the tip collision, no fusion hindrance is suggested.

  15. Laser-excited luminescence and absorption study of mixed valence for K 2Pt(CN) 4—K 2Pt(CN) 6 crystals

    NASA Astrophysics Data System (ADS)

    Kasi Viswanath, A.; Smith, Wayne L.; Patterson, H.

    1982-04-01

    Crystals of K 2Pt(CN) 6 doped with Pt(CN) 2-4 show an absorption band at 337 nm which is assigned as a mixed-valence (MV) transition from Pt (II) to Pt(IV). From a Hush model analysis, the absorption band is interpreted to be class II in the Day—Robin scheme. When the MV band is laser excited at 337 nm, emmision is observed from Pt(CN) 2-4 clusters.

  16. Organophosphorus pesticides enhance the genotoxicity of benzo(a)pyrene by modulating its metabolism.

    PubMed

    Hreljac, Irena; Filipic, Metka

    2009-12-01

    Organophosphorus compounds (OPs) are widely used as pesticides. They act primarily as neurotoxins, but there is increasing evidence for secondary mechanisms of their toxicity. We have shown that the model OPs, methyl parathion (PT) and methyl paraoxon (PO), are genotoxic. Benzo(a)pyrene (BaP) is a widespread environmental genotoxin found in cigarette smoke, polluted air and grilled food. As people are constantly exposed to low concentrations of BaP and also to OPs, the aim of this study was to determine possible synergistic effects of PT and PO on BaP-induced genotoxicity. In the bacterial reverse mutation assay, PT and PO increased the number of BaP-induced mutations. The comet assay with human hepatoma HepG2 cells showed that BaP-induced DNA strand breaks were increased by PT but slightly decreased by PO. Using the acellular comet assay with UVC-induced DNA strand breaks, we observed a decrease in DNA migration, indicating that OPs cause cross-linking, thus interfering with comet assay results. In HepG2 cells the two OPs induced micronuclei formation at very low doses (0.01 microg/ml) and together with BaP, a more than additive increase of micronuclei was observed, confirming their co-genotoxic effect. We demonstrated for the first time that PT and PO modulate the metabolic activation of BaP. Addition of PT or PO increased aldo-keto reductase (AKR1C1/2) levels in the presence of BaP, while cytochrome 1A (CYP1A) mRNA expression and activity were decreased. Further, specific inhibition of CYP1A had no effect on BaP or OP+BaP-induced micronuclei, whereas inhibition of AKR1C dramatically decreased the number of micronuclei induced by BaP or OP+BaP. Based on these results we propose that co-genotoxicity results from OPs mediated modulation of BaP metabolism, favouring the induction of AKR1C enzymes known to catalyse the formation of DNA reactive BaP o-quinones and the production of reactive oxygen species.

  17. Realization of compact, passively-cooled, high-flux photovoltaic prototypes

    NASA Astrophysics Data System (ADS)

    Feuermann, Daniel; Gordon, Jeffrey M.; Horne, Steve; Conley, Gary; Winston, Roland

    2005-08-01

    The materialization of a recent conceptual advance in high-flux photovoltaic concentrators into first-generation prototypes is reported. Our design strategy includes a tailored imaging dual-mirror (aplanatic) system, with a tapered glass rod that enhances concentration and accommodates larger optical errors. Designs were severely constrained by the need for ultra-compact (minimal aspect ratio) modules, simple passive heat rejection, liberal optical tolerances, incorporating off-the-shelf commercial solar cells, and pragmatic considerations of affordable fabrication technologies. Each unit has a geometric concentration of 625 and irradiates a single square 100 mm2 triple-junction high-efficiency solar cell at a net flux concentration of 500.

  18. Spectroscopic in situ Measurements of the Relative Pt Skin Thicknesses and Porosities of Dealloyed PtMn (Ni, Co) Electrocatalysts

    PubMed Central

    Caldwell, Keegan M.; Ramaker, David E.; Jia, Qingying; Mukerjee, Sanjeev; Ziegelbauer, Joseph M.; Kukreja, Ratandeep S.; Kongkanand, Anusorn

    2015-01-01

    X-ray adsorption near edge structure (XANES) data at the Co or Ni K-edge, analyzed using the Δμ difference procedure, are reported for dealloyed PtCox and PtNix catalysts (six different catalysts at different stages of life). All catalysts meet the 2017 DOE beginning of life target Pt mass activity target (>0.44 A mgPt−1), but exhibit varying activities and durabilities. The variance factors include different initial precursors, dealloying in HNO3 vs H2SO4, if a postdealloying thermal annealing step was performed, and different morphologies (some with a multi PtMx core and porous Pt skin, some single core with nonporous skin). Data are obtained at the initial beginning of life (BOL, ~200 voltage cycles) and after 10k and 30k (end of life, EOL) voltage cycles following DOE protocol (0.6–1.0 V vs reversible hydrogen electrode). The Δμ data are used to determine at what potential (Vpen) the Pt skin is penetrated by O. The durability, related to a drop in the electrochemical surface areas (ECSAs) after extensive voltage cycling, directly correlates with the Vpen at BOL. The data indicate that cycling produces a “characteristic” Pt skin robustness (porosity or thickness). When the Pt skin at BOL is “thin” (Vpen < 0.9 V) it grows to a “characteristic” thickness consistent with a Vpen of ≈1.1 V, and if it begins very thick, it thins to the same “characteristic” thickness. Particles dealloyed in H2SO4 appear to have a thicker Pt skin at BOL than those dealloyed in HNO3, and a postdealloying annealing procedure appears to produce a particularly nonporous skin with high Vpen, but not necessarily thicker. Furthermore, the PtM3 catalysts exhibited a fast skin “healing” process whereby the initial porous skin appears to become more nonporous after holding the potential at 0.9 V. This work is believed to be the first in situ XAS study to shed light on the nature of the Pt skin, its thickness, and/or porosity, and how it changes with respect to

  19. Experimental and DFT study of thiol-stabilized Pt/CNTs catalysts.

    PubMed

    Li, L; Chen, S G; Wei, Z D; Qi, X Q; Xia, M R; Wang, Y Q

    2012-12-28

    Using a combination of experiments and density functional theory (DFT) calculations, we explored the mechanisms of the stabilization effect of the thiolized (-SH) group on the Pt/SH-CNTs catalyst. Pt particles supported on the hydroxyl functionalized CNTs (Pt/OH-CNTs) are synthesized as a baseline for comparison. Experimentally, the platinum on OH-CNTs has a stronger tendency for aggregation than that on SH-CNTs. The differences in the oxidation resistance, migration activation energy, and corrosion resistance between the Pt/SH-CNTs and Pt/OH-CNTs are calculated using DFT. The DFT calculations indicate that the -SH group enhances the oxidation resistance of the Pt cluster and CNTs and restricts Pt migration on the CNTs. DFT calculations also suggest that the enhanced stability of Pt/SH-CNTs originates from the increased interaction between Pt and SH-CNTs and the depressed d-band center of the Pt NPs. Thus, the functional groups on the CNTs used for stabilization of supported Pt NPs should provide a deposit and anchor site for Pt NPs and maintain the perfect structure of CNTs rather than destroying it.

  20. Pt(IV) complexes as prodrugs for cisplatin.

    PubMed

    Shi, Yi; Liu, Shu-An; Kerwood, Deborah J; Goodisman, Jerry; Dabrowiak, James C

    2012-02-01

    The antitumor effects of platinum(IV) complexes, considered prodrugs for cisplatin, are believed to be due to biological reduction of Pt(IV) to Pt(II), with the reduction products binding to DNA and other cellular targets. In this work we used pBR322 DNA to capture the products of reduction of oxoplatin, c,t,c-[PtCl(2)(OH)(2)(NH(3))(2)], 3, and a carboxylate-modified analog, c,t,c-[PtCl(2)(OH)(O(2)CCH(2)CH(2)CO(2)H)(NH(3))(2)], 4, by ascorbic acid (AsA) or glutathione (GSH). Since carbonate plays a significant role in the speciation of platinum complexes in solution, we also investigated the effects of carbonate on the reduction/DNA-binding process. In pH 7.4 buffer in the absence of carbonate, both 3 and 4 are reduced by AsA to cisplatin (confirmed using ((195))Pt NMR), which binds to and unwinds closed circular DNA in a manner consistent with the formation of the well-known 1, 2 intrastrand DNA crosslink. However, when GSH is used as the reducing agent for 3 and 4, ((195))Pt NMR shows that cisplatin is not produced in the reaction medium. Although the Pt(II) products bind to closed circular DNA, their effect on the mobility of Form I DNA is different from that produced by cisplatin. When physiological carbonate is present in the reduction medium, ((13))C NMR shows that Pt(II) carbonato complexes form which block or impede platinum binding to DNA. The results of the study vis-à-vis the ability of the Pt(IV) complexes to act as prodrugs for cisplatin are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Impact of dialyzer membrane on apoptosis and function of polymorphonuclear cells and cytokine synthesis by peripheral blood mononuclear cells in hemodialysis patients.

    PubMed

    Andreoli, Maria C C; Dalboni, Maria A; Watanabe, Renato; Manfredi, Silvia R; Canziani, Maria E F; Kallás, Esper G; Sesso, Ricardo C; Draibe, Sergio A; Balakrishnan, Vaidyanathapuram S; Jaber, Bertrand L; Liangos, Orfeas; Cendoroglo, Miguel

    2007-12-01

    In an in vivo crossover trial, we compared a cellulosic with a synthetic dialyzer with respect to polymorphonuclear cells (PMN) function and apoptosis, cytokine serum levels and synthesis by peripheral blood mononuclear cells (PBMC), and complement activation. Twenty hemodialysis (HD) patients were assigned in alternate order to HD with cellulose acetate (CA) or polysulfone (PS) dialyzer. After 2 weeks, patients were crossed over to the second dialyzer and treated for another 2 weeks. Apoptosis was assessed by flow cytometry in freshly isolated PMN. Phagocytosis and production of peroxide by PMN were studied by flow cytometry in whole blood. PBMC were isolated from blood samples and incubated for 24 h with or without lipopolysaccharide (LPS). There was no impact of dialyzer biocompatibility on PMN apoptosis and function, cytokine synthesis by PBMC or on their serum levels, serum levels of C3a, and terminal complement complex (TCC). Nevertheless, after HD, serum levels of complement correlated negatively with PMN phagocytosis and peroxide production, and positively with PMN apoptosis and cytokine production by PBMC. Although the results did not show a dialyzer advantage on the immunologic parameters, complement activation may have modulated cell function and apoptosis after HD.

  2. Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes.

    PubMed

    Cheng, Jun; Zhang, Meng; Wu, Gai; Wang, Xin; Zhou, Junhu; Cen, Kefa

    2014-06-17

    The photoelectrocatalytic (PEC) reduction of CO2 into high-value chemicals is beneficial in alleviating global warming and advancing a low-carbon economy. In this work, Pt-modified reduced graphene oxide (Pt-RGO) and Pt-modified TiO2 nanotubes (Pt-TNT) were combined as cathode and photoanode catalysts, respectively, to form a PEC reactor for converting CO2 into valuable chemicals. XRD, XPS, TEM, AFM, and SEM were employed to characterize the microstructures of the Pt-RGO and Pt-TNT catalysts. Reduction products, such as C2H5OH and CH3COOH, were obtained from CO2 under band gap illumination and biased voltage. A combined liquid product generation rate (CH3OH, C2H5OH, HCOOH, and CH3COOH) of approximately 600 nmol/(h·cm(2)) was observed. Carbon atom conversion rate reached 1,130 nmol/(h·cm(2)), which were much higher than those achieved using Pt-modified carbon nanotubes and platinum carbon as cathode catalysts.

  3. The Rapid Formation of Localized Compaction Bands Under Hydrostatic Load Leading to Pore-pressure Transients in Compacting Rocks

    NASA Astrophysics Data System (ADS)

    Faulkner, D.; Leclere, H.; Bedford, J. D.; Behnsen, J.; Wheeler, J.

    2017-12-01

    Compaction of porous rocks can occur uniformly or within localized deformation bands. The formation of compaction bands and their effects on deformation behaviour are poorly understood. Porosity may be primary and compaction can occur with burial, or it can be produced by metamorphic reactions with a solid volume reduction, that can then undergo collapse. We report results from hydrostatic compaction experiments on porous bassanite (CaSO4.0.5H2O) aggregates. Gypsum (CaSO4.2H2O) is first dehydrated under low effective pressure, 4 MPa, to produce a bassanite aggregate with a porosity of 27%. Compaction is induced by increasing confining pressure at rates from 0.001 MPa/s to 0.02 MPa/s while the sample is maintained at a temperature of 115°C. At slow compaction rates, porosity collapse proceeds smoothly. At higher compaction rates, sudden increases in the pore-fluid pressure occur with a magnitude of 5 MPa. Microstructural investigations using X-ray microtomography and SEM observations show that randomly oriented localized compaction features occur in all samples, where the bulk porosity of 18% outside the band is reduced to 5% inside the band. Previous work on deformation bands has suggested that localized compactive features only form under an elevated differential stress and not under a hydrostatic stress state. The magnitude of the pore-pressure pulses can be explained by the formation of compaction bands. The results indicate that the compaction bands can form by rapid (unstable) propagation across the sample above a critical strain rate, or quasi-statically at low compaction rates without pore-fluid pressure bursts. The absence of pore-fluid pressure bursts at slow compaction rates can be explained by viscous deformation of the bassanite aggregate around the tip of a propagating compaction band, relaxing stress, and promoting stable propagation. Conversely, at higher compaction rates, viscous deformation cannot relax the stress sufficiently and unstable

  4. Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Hopper, Seth; Macedo, Caio F. B.; Palenzuela, Carlos; Pani, Paolo

    2016-10-01

    Gravitational waves from binary coalescences provide one of the cleanest signatures of the nature of compact objects. It has been recently argued that the postmerger ringdown waveform of exotic ultracompact objects is initially identical to that of a black hole, and that putative corrections at the horizon scale will appear as secondary pulses after the main burst of radiation. Here we extend this analysis in three important directions: (i) we show that this result applies to a large class of exotic compact objects with a photon sphere for generic orbits in the test-particle limit; (ii) we investigate the late-time ringdown in more detail, showing that it is universally characterized by a modulated and distorted train of "echoes"of the modes of vibration associated with the photon sphere; (iii) we study for the first time equal-mass, head-on collisions of two ultracompact boson stars and compare their gravitational-wave signal to that produced by a pair of black holes. If the initial objects are compact enough as to mimic a binary black-hole collision up to the merger, the final object exceeds the maximum mass for boson stars and collapses to a black hole. This suggests that—in some configurations—the coalescence of compact boson stars might be almost indistinguishable from that of black holes. On the other hand, generic configurations display peculiar signatures that can be searched for in gravitational-wave data as smoking guns of exotic compact objects.

  5. High Temperature Characteristics of Pt/TaSi2/Pt/W and Pt/Ti/W Diffusion Barrier Systems for Ohmic Contacts to 4H-SiC

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Lukco, Dorothy

    2017-01-01

    The degradation of ohmic contacts to 4H-SiC pressure sensors over time at high temperature is primarily due to two failure mechanisms: migrating bond pad Au and atmospheric O toward the ohmic contact SiC interface and the inter-metallic mixing between diffusion barrier systems (DBS) and the underlying ohmic contact metallization. We investigated the effectiveness of Pt/TaSi2/Pt/W (DBS-A) and Pt/Ti/W (DBS-B) in preventing Au and O diffusion through the underlying binary Ti/W or alloyed W50:Ni50 ohmic contacts to 4H-SiC and the DBS ohmic contact intermixing at temperature up to 700 C.

  6. Cluster Chemistry in Electron-Poor Ae-Pt-Cd Systems (Ae=Ca, Sr, Ba): (Sr,Ba)Pt2Cd4, Ca6Pt8Cd16, and Its Known Antitype Er6Pd16Sb8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, Saroj L.; Gulo, Fakhili; Corbett, John D.

    Three new ternary polar intermetallic compounds, cubic Ca6Pt8Cd16, and tetragonal (Sr, Ba)Pt2Cd4 have been discovered during explorations of the Ae–Pt–Cd systems. Cubic Ca6Pt8Cd16 (Fm-3m, Z = 4, a = 13.513(1) Å) contains a 3D array of separate Cd8 tetrahedral stars (TS) that are both face capped along the axes and diagonally bridged by Pt atoms to generate the 3D anionic network Cd8[Pt(1)]6/2[Pt(2)]4/8. The complementary cationic surface of the cell consists of a face-centered cube of Pt(3)@Ca6 octahedra. This structure is an ordered ternary variant of Sc11Ir4 (Sc6Ir8Sc16), a stuffed version of the close relative Na6Au7Cd16, and a network inverse ofmore » the recent Er6Sb8Pd16 (compare Ca6Pt8Cd16). The three groups of elements each occur in only one structural version. The new AePt2Cd4, Ae = Sr, Ba, are tetragonal (P42/mnm,Z = 2, a ≈ 8.30 Å, c ≈ 4.47 Å) and contain chains of edge-sharing Cd4 tetrahedra along c that are bridged by four-bonded Ba/Sr. LMTO-ASA and ICOHP calculation results and comparisons show that the major bonding (Hamilton) populations in Ca6Pt8Cd16 and Er6Sb8Pd16 come from polar Pt–Cd and Pd–Sb interactions, that Pt exhibits larger relativistic contributions than Pd, that characteristic size and orbital differences are most evident for Sb 5s, Pt8, and Pd16, and that some terms remain incomparable, Ca–Cd versus Er–Pd.« less

  7. Diverse Formation Mechanisms for Compact Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin

    2018-01-01

    Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.

  8. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  9. Designing a compact high performance brain PET scanner—simulation study

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Majewski, Stan; Kinahan, Paul E.; Harrison, Robert L.; Elston, Brian F.; Manjeshwar, Ravindra; Dolinsky, Sergei; Stolin, Alexander V.; Brefczynski-Lewis, Julie A.; Qi, Jinyi

    2016-05-01

    The desire to understand normal and disordered human brain function of upright, moving persons in natural environments motivates the development of the ambulatory micro-dose brain PET imager (AMPET). An ideal system would be light weight but with high sensitivity and spatial resolution, although these requirements are often in conflict with each other. One potential approach to meet the design goals is a compact brain-only imaging device with a head-sized aperture. However, a compact geometry increases parallax error in peripheral lines of response, which increases bias and variance in region of interest (ROI) quantification. Therefore, we performed simulation studies to search for the optimal system configuration and to evaluate the potential improvement in quantification performance over existing scanners. We used the Cramér-Rao variance bound to compare the performance for ROI quantification using different scanner geometries. The results show that while a smaller ring diameter can increase photon detection sensitivity and hence reduce the variance at the center of the field of view, it can also result in higher variance in peripheral regions when the length of detector crystal is 15 mm or more. This variance can be substantially reduced by adding depth-of-interaction (DOI) measurement capability to the detector modules. Our simulation study also shows that the relative performance depends on the size of the ROI, and a large ROI favors a compact geometry even without DOI information. Based on these results, we propose a compact ‘helmet’ design using detectors with DOI capability. Monte Carlo simulations show the helmet design can achieve four-fold higher sensitivity and resolve smaller features than existing cylindrical brain PET scanners. The simulations also suggest that improving TOF timing resolution from 400 ps to 200 ps also results in noticeable improvement in image quality, indicating better timing resolution is desirable for brain imaging.

  10. Designing a compact high performance brain PET scanner—simulation study

    PubMed Central

    Gong, Kuang; Majewski, Stan; Kinahan, Paul E; Harrison, Robert L; Elston, Brian F; Manjeshwar, Ravindra; Dolinsky, Sergei; Stolin, Alexander V; Brefczynski-Lewis, Julie A; Qi, Jinyi

    2016-01-01

    The desire to understand normal and disordered human brain function of upright, moving persons in natural environments motivates the development of the ambulatory micro-dose brain PET imager (AMPET). An ideal system would be light weight but with high sensitivity and spatial resolution, although these requirements are often in conflict with each other. One potential approach to meet the design goals is a compact brain-only imaging device with a head-sized aperture. However, a compact geometry increases parallax error in peripheral lines of response, which increases bias and variance in region of interest (ROI) quantification. Therefore, we performed simulation studies to search for the optimal system configuration and to evaluate the potential improvement in quantification performance over existing scanners. We used the Cramér–Rao variance bound to compare the performance for ROI quantification using different scanner geometries. The results show that while a smaller ring diameter can increase photon detection sensitivity and hence reduce the variance at the center of the field of view, it can also result in higher variance in peripheral regions when the length of detector crystal is 15 mm or more. This variance can be substantially reduced by adding depth-of- interaction (DOI) measurement capability to the detector modules. Our simulation study also shows that the relative performance depends on the size of the ROI, and a large ROI favors a compact geometry even without DOI information. Based on these results, we propose a compact ‘helmet’ design using detectors with DOI capability. Monte Carlo simulations show the helmet design can achieve four-fold higher sensitivity and resolve smaller features than existing cylindrical brain PET scanners. The simulations also suggest that improving TOF timing resolution from 400 ps to 200 ps also results in noticeable improvement in image quality, indicating better timing resolution is desirable for brain imaging. PMID

  11. Compact stars

    NASA Astrophysics Data System (ADS)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  12. Electronic properties and reactivity of Pt-doped carbon nanotubes.

    PubMed

    Tian, Wei Quan; Liu, Lei Vincent; Wang, Yan Alexander

    2006-08-14

    The structures of the (5,5) single-walled carbon nanotube (SWCNT) segments with hemispheric carbon cages capped at the ends (SWCNT rod) and the Pt-doped SWCNT rods have been studied within density functional theory. Our theoretical studies find that the hemispheric cages introduce localized states on the caps. The cap-Pt-doped SWCNT rods can be utilized as sensors because of the sensitivity of the doped Pt atom. The Pt-doped SWCNT rods can also be used as catalysts, where the doped Pt atom serves as the enhanced and localized active center on the SWCNT. The adsorptions of C(2)H(4) and H(2) on the Pt atom in the Pt-doped SWCNT rods reveal different adsorption characteristics. The adsorption of C(2)H(4) on the Pt atom in all of the three Pt-doped SWCNT rods studied (cap-end-doped, cap-doped, and wall-doped) is physisorption with the strongest interaction occurring in the middle of the sidewall of the SWCNT. On the other hand, the adsorption of H(2) on the Pt atom at the sidewall of the SWCNT is chemisorption resulting in the decomposition of H(2), and the adsorption of H(2) at the hemispheric caps is physisorption.

  13. Roller-compacted concrete pavements.

    DOT National Transportation Integrated Search

    2010-09-01

    Roller-compacted concrete (RCC) gets its name from the heavy vibratory steel drum and rubber-tired rollers used to help compact it into its final form. RCC has similar strength properties and consists of the same basic ingredients as conventional con...

  14. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation.

    PubMed

    Mosig, Johanna; Kleinebudde, Peter

    2015-03-01

    The influence of lubrication and particle size on the reduced compactability after dry granulation was investigated. Powder cellulose, lactose, magnesium carbonate, and two types of microcrystalline cellulose were roll compacted, granulated, and sieved into particle fractions. Particle fractions were compressed into tablets using internal and external lubrication. Internal lubrication resulted in an overlubrication of the granule material compared with the powder material. This resulted in extraordinary high reduction of compactability after dry granulation for lubricant-sensitive materials. The granule size can cause differences in strength, whereby the degree of this effect was material dependent. The loss in strength with increasing compaction force was comparable for different particles sizes of one material, suggesting a change in material properties independently of the size. Granule hardening could be one reason as for higher compaction forces the integrity of the granule structure survived the compression step. The results demonstrated that granule lubrication mainly influence the degree of the reduced compactability after dry granulation and must be considered for the evaluation of mechanism for this phenomenon. Hardening of the material as well as size enlargement will cause the loss in strength after recompression, but the influence of both depends strongly on the material. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Magnetic behavior in heterometallic one-dimensional chains or octanuclear complex regularly aligned with metal-metal bonds as -Rh-Rh-Pt-Cu-Pt

    NASA Astrophysics Data System (ADS)

    Uemura, Kazuhiro

    2018-06-01

    Heterometallic one-dimensional chains, [{Rh2(O2CCH3)4}{Pt2Cu(piam)4(NH3)4}]n(PF6)2n (1 and 2, piam = pivalamidate) and [{Rh2(O2CCH3)4}{Pt2Cu(piam)4(NH3)4}2](CF3CO2)2(ClO4)2·2H2O (3), are paramagnetic one-dimensional chains or octanuclear complexes that are either aligned as -Rh-Rh-Pt-Cu-Pt- (1 and 2) or as Pt-Cu-Pt-Rh-Rh-Pt-Cu-Pt (3) with metal-metal bonds. Compounds 1-3 have rare structures, from the standpoint of that the paramagnetic species of Cu atoms are linked by direct metal-metal bonds. Magnetic susceptibility measurements for 1-3 performed at temperatures of 2 K-300 K indicated that the unpaired electrons localize in the Cu 3dx2-y2 orbitals, where S = 1/2 Cu(II) atoms are weakly antiferromagnetically coupled with J = -0.35 cm-1 (1), -0.47 cm-1 (2), and -0.45 cm-1 (3).

  16. Mixed cerium-platinum oxides: Electronic structure of [CeO]Pt{sub n} (n = 1, 2) and [CeO{sub 2}]Pt complex anions and neutrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Manisha; Kafader, Jared O.; Topolski, Josey E.

    The electronic structures of several small Ce–Pt oxide complexes were explored using a combination of anion photoelectron (PE) spectroscopy and density functional theory calculations. Pt and Pt{sub 2} both accept electron density from CeO diatomic molecules, in which the cerium atom is in a lower-than-bulk oxidation state (+2 versus bulk +4). Neutral [CeO]Pt and [CeO]Pt{sub 2} complexes are therefore ionic, with electronic structures described qualitatively as [CeO{sup +2}]Pt{sup −2} and [CeO{sup +}]Pt{sub 2}{sup −}, respectively. The associated anions are described qualitatively as [CeO{sup +}]Pt{sup −2} and [CeO{sup +}]Pt{sub 2}{sup −2}, respectively. In both neutrals and anions, the most stable molecularmore » structures determined by calculations feature a distinct CeO moiety, with the positively charged Ce center pointing toward the electron rich Pt or Pt{sub 2} moiety. Spectral simulations based on calculated spectroscopic parameters are in fair agreement with the spectra, validating the computationally determined structures. In contrast, when Pt is coupled with CeO{sub 2}, which has no Ce-localized electrons that can readily be donated to Pt, the anion is described as [CeO{sub 2}]Pt{sup −}. The molecular structure predicted computationally suggests that it is governed by charge-dipole interactions. The neutral [CeO{sub 2}]Pt complex lacks charge-dipole stabilizing interactions, and is predicted to be structurally very different from the anion, featuring a single Pt–O–Ce bridge bond. The PE spectra of several of the complexes exhibit evidence of photodissociation with Pt{sup −} daughter ion formation. The electronic structures of these complexes are related to local interactions in Pt-ceria catalyst-support systems.« less

  17. Porous AgPt@Pt Nanooctahedra as an Efficient Catalyst toward Formic Acid Oxidation with Predominant Dehydrogenation Pathway.

    PubMed

    Jiang, Xian; Yan, Xiaoxiao; Ren, Wangyu; Jia, Yufeng; Chen, Jianian; Sun, Dongmei; Xu, Lin; Tang, Yawen

    2016-11-16

    For direct formic acid fuel cells (DFAFCs), the dehydrogenation pathway is a desired reaction pathway, to boost the overall cell efficiency. Elaborate composition tuning and nanostructure engineering provide two promising strategies to design efficient electrocatalysts for DFAFCs. Herein, we present a facile synthesis of porous AgPt bimetallic nanooctahedra with enriched Pt surface (denoted as AgPt@Pt nanooctahedra) by a selective etching strategy. The smart integration of geometric and electronic effect confers a substantial enhancement of desired dehydrogenation pathway as well as electro-oxidation activity for the formic acid oxidation reaction (FAOR). We anticipate that the obtained nanocatalyst may hold great promises in fuel cell devices, and furthermore, the facile synthetic strategy demonstrated here can be extendable for the fabrication of other multicomponent nanoalloys with desirable morphologies and enhanced electrocatalytic performances.

  18. Determination of intrinsic spin Hall angle in Pt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng

    2014-10-13

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  19. Critical assessment of Pt surface energy - An atomistic study

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  20. Comprehensive evaluation of compaction of asphalt pavements and development of compaction monitoring system.

    DOT National Transportation Integrated Search

    2012-04-01

    This study aimed to conduct a comprehensive evaluation of compaction of asphalt pavements and : develop software for monitoring field compaction in real time. In the first phase of this study, the researchers : built several test sections that were c...