Science.gov

Sample records for comparative plant uptake

  1. Comparative studies on heavy metal uptake by plants from anaerobically and aerobically digested sludge-amended soil

    SciTech Connect

    Joseph, K.T.

    1983-01-01

    A study was undertaken to compare and contrast the effects of cropland application of varying quantities of anaerobically and aerobically digested sludge from a municipal wastewater treatment plant, on the uptake of certain heavy metals such as Zn, Cd, Cu, Ni, and Pb by six different types of plants (bean, tomato, carrot, cucumber, cantaloupe and sweet corn) grown on the sludge-applied soil and the accumulation of these metals in the sludge-amended soil. The main aspects of the study were the evaluation of 1) the extent of bioconcentration of heavy metals by the different kinds of plants, and 2) the availability of the metals from soil to plants, following sludge application. Field investigations involving plot-scale gardening were conducted using the two types of sludge, at application rates of 0, 2.2, 4.4, 8.8, 17.6 and 70.4 tons/acre. At application rates of 17.6 and 70.4 tons/acre, delays in germination of seeds were observed in some instances, with no apparent adverse effects on the plant's later stages of life and the yield produced. The uptake of heavy metals from sludge-amended soil by plants did not increase in direct proportion to the increase in rate of sludge application and plant species differ considerably in their uptake of heavy metals from soil which received the same amount of sludge. In general, plants grown on anaerobically digested sludge-applied soil showed higher uptake of heavy metals than those grown on aerobically digested sludge. Among the plants investigated, sweet corn was identified to be the low accumulator of heavy metals in the edible part of the plant.

  2. New concepts for dynamic plant uptake models.

    PubMed

    Rein, A; Legind, C N; Trapp, S

    2011-03-01

    Models for the prediction of chemical uptake into plants are widely applied tools for human and wildlife exposure assessment, pesticide design and for environmental biotechnology such as phytoremediation. Steady-state considerations are often applied, because they are simple and have a small data need. However, often the emission pattern is non-steady. Examples are pesticide spraying, or the application of manure and sewage sludge on agricultural fields. In these scenarios, steady-state solutions are not valid, and dynamic simulation is required. We compared different approaches for dynamic modelling of plant uptake in order to identify relevant processes and timescales of processes in the soil-plant-air system. Based on the outcome, a new model concept for plant uptake models was developed, approximating logistic growth and coupling transpiration to growing plant mass. The underlying system of differential equations was solved analytically for the inhomogenous case, i.e. for constant input. By superposition of the results of n periods, changes in emission and input data between periods are considered. This combination allows to mimic most input functions that are relevant in practice. The model was set up, parameterized and tested for uptake into growing crops. The outcome was compared with a numerical solution, to verify the mathematical structure. PMID:21391147

  3. Plant Nitrogen Uptake in Terrestrial Biogeochemical Models

    NASA Astrophysics Data System (ADS)

    Marti Donati, A.; Cox, P.; Smith, M. J.; Purves, D.; Sitch, S.; Jones, C. D.

    2013-12-01

    higher atmospheric CO2 concentrations than originally expected. This study compares the differences in the predictions of alternative models of plant N uptake found in different terrestrial biogeochemical models with the predictions from a new N-uptake model developed under the Joint UK Land Environment Simulator (JULES) framework. We implement a methodology for the construction, parameterization and evaluation of N uptake models to fully decompose all the N uptake component processes in terms of their parameter uncertainty and the accuracy of their predictions with respect to different empirical data sets. Acknowledgements This work has been funded by the European Commission FP7-PEOPLE-ITN-2008 Marie Curie Action: "Greencycles II: FP7-PEOPLE-ITN-2008 Marie Curie Action: "Networks for Initial Training"

  4. Nitrogen uptake and utilization by intact plants

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Tolley-Henry, L. C.

    1986-01-01

    The results of experiments support the proposed conceptual model that relates nitrogen uptake activity by plants as a balanced interdependence between the carbon-supplying function of the shoot and the nitrogen-supplying function of the roots. The data are being used to modify a dynamic simulation of plant growth, which presently describes carbon flows through the plant, to describe nitrogen uptake and assimilation within the plant system. Although several models have been proposed to predict nitrogen uptake and partitioning, they emphasize root characteristics affecting nutrient uptake and relay on empirical methods to describe the relationship between nitrogen and carbon flows within the plant. Researchers, on the other hand, propose to continue to attempt a mechanistic solution in which the effects of environment on nitrogen (as well as carbon) assimilation are incorporated through their direct effects on photosynthesis, respiration, and aging processes.

  5. Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species-- implications for bioremediation of contaminated surface soils

    SciTech Connect

    Anderson, T.A.; Walton, B.T.

    1992-01-01

    The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and {sup 14}C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of {sup 14}C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the {sup 14}C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.

  6. Uptake of gaseous nitrous acid (HONO) by several plant species

    NASA Astrophysics Data System (ADS)

    Schimang, Ralf; Folkers, Achim; Kleffmann, Jörg; Kleist, Einhard; Miebach, Marco; Wildt, Jürgen

    Uptake of gaseous nitrous acid (HONO) by sunflower ( Heliantus annuus L. var. gigantheus), tobacco ( Nicotiana tabacum L. var. Bel W3), castor ( Rhicinus communis L. var. Carmencita), and birch ( Betula pendula L.) was studied under controlled conditions in a continuously stirred tank reactor. Exposing plants to HONO at concentrations between 60 ppt and 10 ppb led to significant uptake by the plants. The uptake was proportional to HONO concentrations and linearly related to stomatal conductivity. HONO losses at the cuticle were of minor importance. Our data imply a quick metabolism of HONO and it is concluded that the uptake of HONO by plants is only limited by diffusion of HONO through the plants stomata. Comparing results from measurements with and without plants in the chamber it is furthermore concluded that a compensation point for HONO uptake is below 20 ppt if it exists at all. Heterogeneous formation of HONO by reactions of NO 2 on the plant surfaces was either not effective or compensated by the stomatal uptake of HONO. The data of the present study imply that plant surfaces represent a sink for HONO. Therefore, it was concluded that processes on plant surfaces cannot explain HONO formation on ground surfaces as observed in field studies.

  7. Endocytotic uptake of nutrients in carnivorous plants.

    PubMed

    Adlassnig, Wolfram; Koller-Peroutka, Marianne; Bauer, Sonja; Koshkin, Edith; Lendl, Thomas; Lichtscheidl, Irene K

    2012-07-01

    Carnivorous plants trap, digest and absorb animals in order to supplement their mineral nutrition. Nutrients absorbed by the plant include different nitrogen species, phosphate, potassium, trace elements and small organic compounds. Uptake is usually thought to be performed via specific channels, but this study provides evidence that endocytosis is involved as well. Traps of the carnivorous plants Nepenthes coccinea, Nepenthes ventrata, Cephalotus follicularis, Drosophyllum lusitanicum, Drosera capensis, Dionaea muscipula, Aldrovanda vesiculosa, Genlisea violacea × lobata, Sarracenia psittacina and Sarracenia purpurea were stained with methylene blue in order to identify possible sites of uptake. The permeable parts of the traps were incubated with fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) and other fluorescent endocytosis markers, combined with the soluble protein BSA or respiratory inhibitors. Uptake was studied by confocal microscopy. In Nepenthes, small fluorescent vesicles became visible 1 h after incubation with FITC-BSA. These vesicles fused to larger compartments within 30 h. A similar behaviour was found in the related genera Drosera, Dionaea, Aldrovanda and Drosophyllum but also in Cephalotus with glands of different evolutionary origin. In Genlisea and Sarracenia, no evidence for endocytosis was found. We propose that in many carnivorous plants, nutrient uptake by carriers is supplemented by endocytosis, which enables absorption and intracellular digestion of whole proteins. The advantage for the plant of reducing secretion of enzymes for extracellular digestion is evident. PMID:22417315

  8. PLANT UPTAKE OF SLUDGE-BORNE PCBS

    EPA Science Inventory

    Plant uptake of sludge-borne polychlorinated biphenyls (PCBs) (similar to Aroclor 1248) was evaluated in a greenhouse study with two food-chain crops and a grass species. olychlorinated biphenyl loading to two soils was varied in one experiment by adding different rates of a muni...

  9. Plant-uptake of uranium: Hydroponic and soil system studies

    USGS Publications Warehouse

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  10. UPTAKE OF BACTERIOPHAGE F2 THROUGH PLANT ROOTS

    EPA Science Inventory

    A model system was designed to measure viral uptake through the roots of plants and translocation to distal plant parts. For this study, uptake of bacteriophage f2 was measured in corn and bean plants growing in hydroponic solutions. Few phage were detected in plants with uncut r...

  11. Temperature and pH effects on plant uptake of benzotriazoles by sunflowers in hydroponic culture.

    PubMed

    Castro, Sigifredo; Davis, Lawrence C; Erickson, Larry E

    2004-01-01

    This article describes a systematic approach to understanding the effect of environmental variables on plant uptake (phyto-uptake) of organic contaminants. Uptake (and possibly phytotransformation) of xenobiotics is a complex process that may differ from nutrient uptake. A specific group of xenobiotics (benzotriazoles) were studied using sunflowers grown hydroponically with changes of environmental conditions including solution volume, temperature, pH, and mixing. The response of plants to these stimuli was evaluated and compared using physiological changes (biomass production and water uptake) and estimated uptake rates (influx into plants), which define the uptake characteristics for the xenobiotic. Stirring of the hydroponic solution had a significant impact on plant growth and water uptake. Plants were healthier, probably because of a combination of factors such as improved aeration and increase in temperature. Uptake and possibly phytotransformation of benzotriazoles was increased accordingly. Experiments at different temperatures allowed us to estimate an activation energy for the reaction leading to triazole disappearance from the solution. The estimated activation energy was 43 kJ/mol, which indicates that the uptake process is kinetically limited. Culturing plants in triazole-amended hydroponic solutions at different pH values did not strongly affect the biomass production, water uptake, and benzotriazole uptake characteristics. The sunflowers showed an unexpected capacity to buffer the solution pH. PMID:15554474

  12. Plant uptake of sludge-borne PCBs

    SciTech Connect

    O'Connor, G.A.; Kiehl, D.; Eiceman, G.A.; Ryan, J.A.

    1990-01-01

    Plant uptake of sludge-borne polychlorinated biphenyls (PCBs) (similar to Aroclor 1248) was evaluated in a greenhouse study with two food-chain crops and a grass species. Polychlorinated biphenyl loading to two soils was varied in one experiment by adding different rates of a municipal sewage sludge heavily contaminated (52 mg/kg) with PCBs. In a second experiment, Aroclor 1248 was spiked into unamended soils or soils amended with another sludge containing <1mg/kg PCBs. Analysis of PCBs was by GC/MS with a reliable detection limit in plants of 20 microg/kg for individual chlorinated classes (tri, tetra-, and pentachlorobiphenyls) and total PCBs. Only carrots (Daucus carota) were contaminated with PCBs, and contamination was restricted to carrot peels. Current USEPA guidelines for land application of sludges based on sludge PCB content are shown to be extremely conservative.

  13. Plant water uptake strategies to cope with stochastic rainfall

    NASA Astrophysics Data System (ADS)

    Tron, Stefania; Laio, Francesco; Ridolfi, Luca

    2013-03-01

    We develop and compare two hydraulically-based schemes of the xylem structure of an individual plant. The dynamics of water uptake are analyzed under random conditions through the modeling of rainfall as a stochastic process. The two hydraulic schemes differ in the modeling of the root ability to cooperate, i.e., the capacity of roots to increase the water uptake from the wetter soil layers when other parts of the soil are dry (compensation effect) and to transfer water from moister into drier soil layers (water redistribution effect). Both compensation and water redistribution are direct consequences of the hydraulic structure of the root system, which is modeled here considering two contrasting cases corresponding to non-interacting uptake paths from different soil layers, and converging uptake paths. Only the latter hydraulic architecture allows for compensation and water redistribution. Another important difference between the hydraulic schemes is the stomatal response to soil dryness. When the soil water is unevenly distributed in the soil layers, the differences in the hydraulic schemes emerge. In semi-arid climates, plants characterized by a cooperative root system are shown to be less prone to water stress. In contrast, plants with non-interacting roots result to be better fit to humid climates, where the probability of droughts is small.

  14. Expanding the menu for carnivorous plants: uptake of potassium, iron and manganese by carnivorous pitcher plants.

    PubMed

    Adlassnig, Wolfram; Steinhauser, Georg; Peroutka, Marianne; Musilek, Andreas; Sterba, Johannes H; Lichtscheidl, Irene K; Bichler, Max

    2009-12-01

    Carnivorous plants use animals as fertiliser substitutes which allow them to survive on nutrient deficient soils. Most research concentrated on the uptake of the prey's nitrogen and phosphorus; only little is known on the utilisation of other elements. We studied the uptake of three essential nutrients, potassium, iron and manganese, in three species of carnivorous pitcher plants (Cephalotus follicularis LaBilladiere, Sarracenia purpureaL., Heliamphora nutans Bentham). Using relatively short-lived and gamma-emitting radiotracers, we significantly improved the sensitivity compared to conventional protocols and gained the following results. We demonstrated the uptake of trace elements like iron and manganese. In addition, we found direct evidence for the uptake of potassium into the pitcher tissue. Potassium and manganese were absorbed to virtually 100% if offered in physiological concentrations or below in Cephalotus. Analysis of pitcher fluid collected in the natural habitat showed that uptake was performed here as efficiently as in the laboratory. The absorption of nutrients is an active process depending on living glandular cells in the pitcher epidermis and can be inhibited by azide. Unphysiologically high amounts of nutrients were taken up for a short time, but after a few hours the absorbing cells were damaged, and uptake stopped. Absorption rates of pitcher leaves from plants under controlled conditions varied highly, indicating that each trap is functionally independent. The comparison of minerals in typical prey with the plants' tissues showed that a complete coverage of the plants' needs by prey capture is improbable. PMID:19428263

  15. Evolution of plant sucrose uptake transporters.

    PubMed

    Reinders, Anke; Sivitz, Alicia B; Ward, John M

    2012-01-01

    In angiosperms, sucrose uptake transporters (SUTs) have important functions especially in vascular tissue. Here we explore the evolutionary origins of SUTs by analysis of angiosperm SUTs and homologous transporters in a vascular early land plant, Selaginella moellendorffii, and a non-vascular plant, the bryophyte Physcomitrella patens, the charophyte algae Chlorokybus atmosphyticus, several red algae and fission yeast, Schizosaccharomyces pombe. Plant SUTs cluster into three types by phylogenetic analysis. Previous studies using angiosperms had shown that types I and II are localized to the plasma membrane while type III SUTs are associated with vacuolar membrane. SUT homologs were not found in the chlorophyte algae Chlamydomonas reinhardtii and Volvox carterii. However, the characean algae Chlorokybus atmosphyticus contains a SUT homolog (CaSUT1) and phylogenetic analysis indicated that it is basal to all other streptophyte SUTs analyzed. SUTs are present in both red algae and S. pombe but they are less related to plant SUTs than CaSUT1. Both Selaginella and Physcomitrella encode type II and III SUTs suggesting that both plasma membrane and vacuolar sucrose transporter activities were present in early land plants. It is likely that SUT transporters are important for scavenging sucrose from the environment and intracellular compartments in charophyte and non-vascular plants. Type I SUTs were only found in eudicots and we conclude that they evolved from type III SUTs, possibly through loss of a vacuolar targeting sequence. Eudicots utilize type I SUTs for phloem (vascular tissue) loading while monocots use type II SUTs for phloem loading. We show that HvSUT1 from barley, a type II SUT, reverted the growth defect of the Arabidopsis atsuc2 (type I) mutant. This indicates that type I and II SUTs evolved similar (and interchangeable) phloem loading transporter capabilities independently. PMID:22639641

  16. Dieldrin uptake and translocation in plants growing in hydroponic medium.

    PubMed

    Murano, Hirotatsu; Otani, Takashi; Seike, Nobuyasu; Sakai, Mizuki

    2010-01-01

    It has been known that the Cucurbitaceae family takes up a large amount of persistent organic pollutants from soils and that the translocation of those compounds in cucurbits is higher than those in non-cucurbits. To understand the persistent organic pollutant uptake mechanisms of plant species, we compared the dieldrin absorption and transportation potentials of several plants in hydroponic medium. Sorghum (Sorghum vulgare Moench), sunflower (Helianthus annuus L.), soybean (Glycine max), komatsuna (Brassica rapa var. peruviridis), white-flowered gourd (Lagenaria siceraria var. hispida), cucumber (Cucumis sativus L.), and zucchini (Cucurbita pepo L.) were grown in a dieldrin-added hydroponic medium for 10 d, and then the amount of dieldrin in their shoots and roots was measured. All of the roots contained dieldrin, whereas only the cucurbits (white-flowered gourd, cucumber, and zucchini) contained considerable amounts of dieldrin in their shoots. The dieldrin uptake to the roots depended on the concentration of the n-hexane soluble components in the roots, regardless of whether the dieldrin in the roots was translocated to shoots or not. The dieldrin uptake from the solution to the roots was thought to be due to a passive response, such as adsorption on the roots. The translocation of dieldrin from the roots to the shoots was probably through the xylems. The amounts of dieldrin in the shoots per transpiration rates were higher for cucurbits than for non-cucurbits. It seems likely that cucurbits have uptake mechanisms for hydrophobic organic chemicals. PMID:20821429

  17. Comparative uptake of enteric viruses into spinach and green onions.

    PubMed

    Hirneisen, Kirsten A; Kniel, Kalmia E

    2013-03-01

    Root uptake of enteric pathogens and subsequent internalization has been a produce safety concern and is being investigated as a potential route of pre-harvest contamination. The objective of this study was to determine the ability of hepatitis A virus (HAV) and the human norovirus surrogate, murine norovirus (MNV), to internalize in spinach and green onions through root uptake in both soil and hydroponic systems. HAV or MNV was inoculated into soil matrices or into two hydroponic systems, floating and nutrient film technique systems. Viruses present within spinach and green onions were detected by RT-qPCR or infectivity assays after inactivating externally present viruses with Virkon(®). HAV and MNV were not detected in green onion plants grown up to 20 days and HAV was detected in only 1 of 64 spinach plants grown in contaminated soil substrate systems up to 20 days. Compared to soil systems, a drastic difference in virus internalization was observed in hydroponic systems; HAV or pressure-treated HAV and MNV were internalized up to 4 log RT-qPCR units and internalized MNV was shown to remain infectious. Understanding the interactions of human enteric viruses on produce can aid in the elucidation of the mechanisms of attachment and internalization, and aid in understanding risks associated with contamination events. PMID:23412715

  18. Efficient solution techniques for simulation nutrient uptake by plant roots

    NASA Astrophysics Data System (ADS)

    Abesha, Betiglu; Vanderborght, Jan; Javaux, Mathieu; Schnepf, Andrea; Vereecken, Harry

    2015-04-01

    Water and nutrient transfer to plant roots is determined by processes occurring from the single root to the entire root system. A mechanistic spatially distributed description of these processes would require a sub mm discretization which is computationally not feasible. In this contribution, we present efficient solution techniques to represent accurate nutrient uptake by plant roots. The first solution technique describes nutrient transport towards a single root segment using a 1-D radially axisymmetric model (Barber and Cushman 1981). Transport to the entire root system is represented by a network of connected cylindrical models around the roots. This network of cylinders was coupled to a 3-D regular grid that was used to solve the flow and transport equations in the soil at the root system scale (Javaux et al. 2008). The second technique was a modified time compression approximation (TCA), which can be a simple and reasonably accurate semi-analytical method for predicting cumulative nutrient uptake when the convection flux and diffusion coefficient change over time due to for instance soil drying. The analytical approach presented by Roose et al. (2001) to calculate solute cumulative uptake provides means to analyze cumulative nutrient uptake at a changing diffusive-convective flux over time but with constant convection and diffusion coefficient. This analytical solution was used in TCA framework to predict uptake when convection and diffusion coefficient change over time. We compared cumulative nutrient uptake by the 1D / 3D coupled model with results obtained by spatially highly resolved 3-D model and the approximate analytical solution of Roose et al. (2001). The good agreement between both model approaches allows the use of the 1D/3D coupling approach to simulate water and nutrient transport at the a root system scale with minimal computational cost and good accuracy. This approach also accounts for the effect of transpiration and soil drying on nutrient

  19. Plant Growth and Phosphorus Uptake of Three Riparian Grass Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian buffers can significantly reduce sediment-bound phosphorus (P) entering surface water, but control of dissolved P inputs is more challenging. Because plant roots remove P from soil solution, it follows that plant uptake will reduce dissolved P losses. We evaluated P uptake of smooth bromegr...

  20. Mathematical modelling of plant water and nutrient uptake

    NASA Astrophysics Data System (ADS)

    Roose, Tiina

    2010-05-01

    In this presentation I will describe a model of plant water and nutrient uptake and how to translate this model and experimental data from the single root scale to the root branching structure scale. The model starts at the single root scale and describes the water and nutrient movement in the soil using Richards' equation (water uptake) and diffusion-convection equation (nutrient uptake). The water and nutrient uptake in the single root scale model is represented by boundary conditions. In the case of nutrient uptake this has the form of a non-linear Michaelis-Menten uptake law and in the case of water this is given by a soil-xylem pressure difference boundary condition. The flow of water in the xylem is modeled as Poiseuille flow. We solve the single root scale models using the analytic approximate technique of asymptotic expansions similar to Oseen expansions known from fluid dynamics. We will then discuss how to use the analytic expression to estimate the water and nutrient uptake by growing root branching systems. We model the growth of the root system using a dynamic population model to describe the branching and elongation of roots in the branching system. This root branching population model results in a hyperbolic equation similar to age dependent population models and it can be solved fully analytically using the method of characteristics. Thus we have a fully analytic description of the root branching system evolution. We use this branching model to estimate the nutrient uptake in a scenario when the competition between subbranches is small, i.e., as it is in the case of phosphate, potassium and arsenic. We compare our approximate analytic model to a full 3d simulation of the root system phosphate uptake and find that the analytic model almost perfectly reproduces the 3d numerical model. In addition the analytic model can be included in larger field/catchment/climate scale models something which is not practically possible with the numerical simulations

  1. Warming decreased and grazing increased plant uptake of amino acids in an alpine meadow.

    PubMed

    Ma, Shuang; Zhu, Xiaoxue; Zhang, Jing; Zhang, Lirong; Che, Rongxiao; Wang, Fang; Liu, Hanke; Niu, Haishan; Wang, Shiping; Cui, Xiaoyong

    2015-09-01

    Organic nitrogen (N) uptake by plants has been recognized as a significant component of terrestrial N cycle. Several studies indicated that plants have the ability to switch their preference between inorganic and organic forms of N in diverse environments; however, research on plant community response in organic nitrogen uptake to warming and grazing is scarce. Here, we demonstrated that organic N uptake by an alpine plant community decreased under warming with (13)C-(15)N-enriched glycine addition method. After 6 years of treatment, warming decreased plant organic N uptake by 37% as compared to control treatment. Under the condition of grazing, warming reduced plant organic N uptake by 44%. Grazing alone significantly increased organic N absorption by 15%, whereas under warming condition grazing did not affect organic N uptake by the Kobresia humilis community on Tibetan Plateau. Besides, soil NO 3-N content explained more than 70% of the variability observed in glycine uptake, and C:N ratio in soil dissolved organic matter remarkably increased under warming treatment. These results suggested warming promoted soil microbial activity and dissolved organic N mineralization. Grazing stimulated organic N uptake by plants, which counteracted the effect of warming. PMID:26442646

  2. Comparative uptake kinetics and transport of cadmium and phosphate in Phleum pratense-Glomus deserticolum associations

    SciTech Connect

    Arnold, P.T.; Kapustka, L.A. )

    1993-01-01

    Mycorrhizal plants (timothy grass, Phleum pretense with Glomus deserticolum) were compared to nonmycorrhizal timothy grass to determine the effect of the mycorrhizal condition on the uptake and transport of cadmium. Companion experiments were conducted to ascertain phosphate uptake kinetics of mycorrhizal and nonmycorrhizal plants. Divalent cation competition experiments also were employed in this study. Comparisons of the high-affinity uptake mechanisms between mycorrhizal and nonmycorrhizal plants identified higher levels of phosphate uptake were due to an increase in the number of uptake sites rather than to differences in affinity. The respective values for K[sub m] for high-affinity phosphate uptake were 2.5 [plus minus] 1.3 [mu]MP (mycorrhizal) and 3.4 [plus minus] 1.3 [mu]MP (nonmycorrhizal), but these values were not statistically different at the [alpha] = 0.05 level. High-affinity Cd[sup 2+] uptake differed significantly between mycorrhizal (4.5 [plus minus] 2.8 [mu]M) and nonmycorrhizal (2.8 [plus minus] 1.1 [mu]M) plants. Presence of Ca[sup 2+] at 1.0mM concentration conferred considerable competitive protection in both the mycorrhizal and the nonmycorrhizal conditions. The effect of Ca[sup 2+] was an approximate fourfold increase in the respective K[sub m] values.

  3. Zinc uptake by young wheat plants under two transpiration regimes

    SciTech Connect

    Grifferty, A.; Barrington, S.

    2000-04-01

    Treated wastewater for crop irrigation is an alternative for countries with a shortage of fresh water. Such practice requires strict wastewater application criteria and a better understanding of the effects of transpiration rate on plant heavy metal uptake. The experiment measured Zn uptake by young wheat plants (Triticum aestvum L.) grown in triplicated experimental pots and held in two growth chambers with constant environmental conditions (relative humidity, light and temperature) but with a different air water vapor pressure deficit to produce two different transpiration rates. After 5 wk of growth in a greenhouse, the plants were transferred to the controlled chambers and irrigated using a fertilized solution with five different levels of Zn: 0, 2, 10, 25, and 50 mg/L. These Zn levels were low enough to have no significant effect on plant growth and transpiration rate. The wheat plants started to produce their grain at 6 wk. Plants were collected at 0, 3, and 10 d of incubation in the controlled chambers and analyzed for dry matter and total Zn content. The pots were weighed daily to measure their transpiration rates. On Day 10, the remaining plants were collected and their roots, shoots, and grain were separated, weighed, dried, and analyzed for total Zn. Time and plant transpiration rate were found to affect significantly plant Zn uptake. The higher transpiration rate enhanced plant Zn uptake. The roots had the highest Zn uptake followed by the shoots and then the grain.

  4. Comparative studies on uptake pathway of cadmium by Perna viridis

    NASA Astrophysics Data System (ADS)

    Fang, Zhanqiang

    2006-01-01

    Experiments were designed to expose the filter-feeding bivalve Perna viridis to different Cd-contaminated water environments in order to compare the different pathways through which Cd is accumulated. Results show that mussels can accumulate Cd through seawater, food, sediment and suspended particle pathways in a short period of time. Mussels' uptake of Cd through the seawater pathway reaches the highest concentration approximately 3 and 9 times larger than through the algae and sediment pathways respectively after 7 d. This indicates that the Cd-accumulation through seawater is most efficient. Results also indicate that the uptake directly through contaminated algae, particles or sediments ingested by mussels is less important when compared with the uptake of Cd by mussels through the seawater pathway. Metal uptake pathways and mechanisms of bioaccumulation by marine bivalve are also discussed in this paper.

  5. Biosolids inhibit bioavailability and plant uptake of triclosan and triclocarban.

    PubMed

    Fu, Qiuguo; Wu, Xiaoqin; Ye, Qingfu; Ernst, Fredrick; Gan, Jay

    2016-10-01

    Biosolids from wastewater treatment are primarily disposed of via land applications, where numerous pharmaceuticals and personal care products (PPCPs) may contaminate food crops and pose a human exposure risk. Biosolids are rich in organic carbon and addition of biosolids can increase the sorption of certain PPCPs in soil, decreasing their bioavailability. This study tested the hypothesis that the relative plant uptake of PPCPs decreases with increasing biosolids amendment. Accumulation of triclosan and triclocarban was measured in roots of radish and carrot grown in soils with or without biosolids. Addition of biosolids significantly prolonged the persistence of triclosan in soil. When expressed in bioaccumulation factor (BCF), accumulation of triclosan drastically decreased in biosolids-amended soils, while the effect was limited for triclocarban. Compared to the unamended soil, amending biosolids at 2% (w/w) decreased BCF of triclosan in the edible tissues of radish and carrot by 85.4 and 89.3%, respectively. Measurement using a thin-film passive sampler provided direct evidence showing that the availability of triclosan greatly decreased in biosolids-amended soils. Partial correlation analysis using data from this and published studies validated that biosolids decreased plant uptake primarily by increasing soil organic carbon content and subsequently sorption. Therefore, contamination of food crops by biosolids-borne contaminants does not linearly depend on biosolids use rates. This finding bears significant implications in the overall risk evaluation of biosolids-borne contaminants. PMID:27337347

  6. Mapping the Metal Uptake in Plants from Jasper Ridge Biological Preserve - Oral Presentation

    SciTech Connect

    Lo, Allison

    2015-08-24

    Serpentine soil originates in the Earth’s mantle and contains high concentrations of potentially toxic transition metals. Although serpentine soil limits plant growth, endemic and adapted plants at Jasper Ridge Biological Preserve, located behind SLAC National Accelerator Laboratory, can tolerate these conditions. Serpentine soil and seeds belonging to native California and invasive plants were collected at Jasper Ridge. The seeds were grown hydroponically and on serpentine and potting soil to examine the uptake and distribution of ions in the roots and shoots using synchrotron micro-focused X-ray fluorescence spectroscopy. The results were used to determine differences between serpentinetolerant plants. Rye grown on potting soil was enriched in Ni, Fe, Mn, and Cr compared to purple needlegrass grown on serpentine soil. Serpentine vegetation equally suppressed the uptake of Mn, Ni, and Fe in the roots and shoots. The uptake of Ca and Mg affected the uptake of other elements such as K, S, and P.

  7. Plant water relations I: uptake and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow trach...

  8. Uptake by plants of radionuclides from FUSRAP waste materials

    SciTech Connect

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  9. A phospholipid uptake system in the model plant Arabidopsis thaliana.

    PubMed

    Poulsen, Lisbeth R; López-Marqués, Rosa L; Pedas, Pai R; McDowell, Stephen C; Brown, Elizabeth; Kunze, Reinhard; Harper, Jeffrey F; Pomorski, Thomas G; Palmgren, Michael

    2015-01-01

    Plants use solar energy to produce lipids directly from inorganic elements and are not thought to require molecular systems for lipid uptake from the environment. Here we show that Arabidopsis thaliana Aminophospholipid ATPase10 (ALA10) is a P4-type ATPase flippase that internalizes exogenous phospholipids across the plasma membrane, after which they are rapidly metabolized. ALA10 expression and phospholipid uptake are high in the epidermal cells of the root tip and in guard cells, the latter of which regulate the size of stomatal apertures to modulate gas exchange. ALA10-knockout mutants exhibit reduced phospholipid uptake at the root tips and guard cells and are affected in growth and transpiration. The presence of a phospholipid uptake system in plants is surprising. Our results suggest that one possible physiological role of this system is to internalize lysophosphatidylcholine, a signalling lipid involved in root development and stomatal control. PMID:26212235

  10. Uptake rate of nitrogen dioxide by potato plants

    SciTech Connect

    Sinn, J.P.; Pell, E.J.; Kabel, R.L.

    1984-06-01

    Greenhouse-grown potato plants were exposed to nitrogen dioxide in an exposure chamber to determine the rate of NO/sub 2/ uptake at concentrations from 228 to 817 ..mu..g/m/sup 3/ (0.12-0.43 ppm). Results show that a consistent increase in uptake rate accompanied an increase in NO/sub 2/ exposure concentrations. Exposure in the range of concentration had no significant effect on leaf diffusive resistance.

  11. Constrained preferences in nitrogen uptake across plant species and environments.

    PubMed

    Wang, Lixin; Macko, Stephen A

    2011-03-01

    Knowledge of determining factors for nitrogen uptake preferences and how they are modified in changing environments are critical to understand ecosystem nitrogen cycling and to predict plant responses to future environmental changes. Two ¹⁵N tracer experiments utilizing a unique differential labelled nitrogen source were employed in both African savannas and greenhouse settings. The results demonstrated that nitrogen uptake preferences were constrained by the climatic conditions. As mainly indicated by root δ¹⁵N signatures at 1:1 ammonium/nitrate ratio, in the drier environments, plants preferred nitrate and in the wetter environments they preferred ammonium. Nitrogen uptake preferences were different across different ecosystems (e.g. from drier to wetter environments) even for the same species. More significantly, our experiments showed that the plant progeny continued to exhibit the same nitrogen preference as the parent plants in the field, even when removed from their native environment and the nitrogen source was changed dramatically. The climatic constraint of nitrogen uptake preference is likely influenced by ammonium/nitrate ratios in the native habitats of the plants. The constancy in nitrogen preference has important implications in predicting the success of plant communities in their response to climate change, to seed bank use and to reforestation efforts. PMID:21118424

  12. MATHEMATICAL MODEL OF PLANT UPTAKE AND TRANSLOCATION OF ORGANIC CHEMICALS: APPLICATION TO EXPERIMENTS

    EPA Science Inventory

    Uptake, transport, and accumulation of organic chemicals by plants are influenced by characteristics of the plant and properties of the chemical, soil, and environmental conditions. athematical model for uptake of organic chemicals by plants was calibrated by application to data ...

  13. Cyclic Variations in Nitrogen Uptake Rate of Soybean Plants 1

    PubMed Central

    Henry, Leslie Tolley; Raper, C. David

    1989-01-01

    When NO3− is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3− is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake. PMID:11537458

  14. Myo-Inositol-Dependent Sodium Uptake in Ice Plant1

    PubMed Central

    Nelson, Donald E.; Koukoumanos, Michelle; Bohnert, Hans J.

    1999-01-01

    In salt-stressed ice plants (Mesembryanthemum crystallinum), sodium accumulates to high concentrations in vacuoles, and polyols (myo-inositol, d-ononitol, and d-pinitol) accumulate in the cytosol. Polyol synthesis is regulated by NaCl and involves induction and repression of gene expression (D.E. Nelson, B. Shen, and H.J. Bohnert [1998] Plant Cell 10: 753–764). In the study reported here we found increased phloem transport of myo-inositol and reciprocal increased transport of sodium and inositol to leaves under stress. To determine the relationship between increased translocation and sodium uptake, we analyzed the effects of exogenous application of myo-inositol: The NaCl-inducible ice plant myo-inositol 1-phosphate synthase is repressed in roots, and sodium uptake from root to shoot increases without stimulating growth. Sodium uptake and transport through the xylem was coupled to a 10-fold increase of myo-inositol and ononitol in the xylem. Seedlings of the ice plant are not salt-tolerant, and yet the addition of exogenous myo-inositol conferred upon them patterns of gene expression and polyol accumulation observed in mature, salt-tolerant plants. Sodium uptake and transport through the xylem was enhanced in the presence of myo-inositol. The results indicate an interdependence of sodium uptake and alterations in the distribution of myo-inositol. We hypothesize that myo-inositol could serve not only as a substrate for the production of compatible solutes but also as a leaf-to-root signal that promotes sodium uptake. PMID:9880357

  15. Water uptake efficiency of a maize plant - A simulation case study

    NASA Astrophysics Data System (ADS)

    Meunier, Félicien; Leitner, Daniel; Bodner, Gernot; Javaux, Mathieu; Schnepf, Andrea

    2014-05-01

    Water uptake by plant roots is a complex mechanism controlled by biological and physical properties of the soil-plant-atmosphere system and affects a major component of the water cycle, transpiration. This uptake of water by plants is one of the major factors of plant development. Since water uptake occurs at the roots, root architecture and hydraulic properties both play a crucial role in plant productivity. A fundamental understanding of the main processes of water uptake will enable better breeding of drought resistant plants and the improvement of irrigation strategies. In this work we analyzed the differences of root water uptake between idealized genotypes of a plant using mathematical modelling The numerical simulations were performed by the R-SWMS software (Javaux et al., 2008). The model describes 3-D water movement in soil by solving Richard's equation with a sink term representing root uptake. Water flow within the root xylem network and between soil and root is modelled based on water pressure gradients and calculated according to Doussan's model. The sink term is calculated by integration of local uptakes within rooted representative elementary volumes of soil. The plant water demand is described by a boundary condition at the base of the shoot. We compare the water uptake efficiency of three types of root system architectures of a maize plant. Two are actual architectures from genotypes showing significant differences regarding the internodal distance, the root growth rate and the insertion angle of their primary roots. The third one is an ideotype according to Lynch of the maize plant designed to perform better in one dry environment. We generated with RootBox five repetitions of these three root systems with the same total root volume and simulated two drought scenarios at the flowering stage (lack of water at the top or at the bottom of the soil domain). We did these simulations for two distinct distributions of local conductivities of root

  16. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  17. Fate and Uptake of Pharmaceuticals in Soil–Plant Systems

    PubMed Central

    2014-01-01

    Pharmaceuticals have been detected in the soil environment where there is the potential for uptake into crops. This study explored the fate and uptake of pharmaceuticals (carbamazepine, diclofenac, fluoxetine, propranolol, sulfamethazine) and a personal care product (triclosan) in soil–plant systems using radish (Raphanus sativus) and ryegrass (Lolium perenne). Five of the six chemicals were detected in plant tissue. Carbamazepine was taken up to the greatest extent in both the radish (52 μg/g) and ryegrass (33 μg/g), whereas sulfamethazine uptake was below the limit of quantitation (LOQ) (<0.01 μg/g). In the soil, concentrations of diclofenac and sulfamethazine dropped below the LOQ after 7 days. However, all pharmaceuticals were still detectable in the pore water at the end of the experiment. The results demonstrate the ability of plant species to accumulate pharmaceuticals from soils with uptake apparently specific to both plant species and chemical. Results can be partly explained by the hydrophobicity and extent of ionization of each chemical in the soil. PMID:24405013

  18. PLANT UPTAKE OF PENTACHLOROPHENOL FROM SLUDGE-AMENDED SOILS

    EPA Science Inventory

    A greenhouse study was conducted to determine the effects of sludge on plant uptake of 14C-pentachlorophenol (PCP). lants included all fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum I.). Minimal intact...

  19. Interaction of carbon nanohorns with plants: Uptake and biological effects

    DOE PAGESBeta

    Lahiani, Mohamed H.; Chen, Jihua; Irin, Fahmida; Puretzky, Alexander A.; Green, Micah J.; Khodakovskaya, Mariya V.

    2014-10-07

    Single-Walled Carbon Nanohorns (SWCNHs) are a unique carbon-based nanomaterial with promising application in different fields including, medicine, genetic engineering and horticulture. Here, we investigated the biological response of six crop species (barley, corn, rice, soybean, switchgrass, tomato) and tobacco cell culture to the exposure of SWCNHs. We found that SWCNHs can activate seed germination of selected crops and enhance growth of different organs of corn, tomato, rice and soybean. At cellular level, growth of tobacco cells was increased in response to exposure of SWCNHs (78% increase compared to control). Uptake of SWCNHs by exposed crops and tobacco cells was confirmedmore » by transmission electron microscopy (TEM) and quantified by microwave induced heating (MIH) technique. At genetic level, SWCNHs were able to affect expression of a number of tomato genes that are involved in stress responses, cellular responses and metabolic processes. Our conclusion is that SWCNHs can be used as plant growth regulators and have the potential for plant-related applications.« less

  20. Interaction of carbon nanohorns with plants: Uptake and biological effects

    SciTech Connect

    Lahiani, Mohamed H.; Chen, Jihua; Irin, Fahmida; Puretzky, Alexander A.; Green, Micah J.; Khodakovskaya, Mariya V.

    2014-10-07

    Single-Walled Carbon Nanohorns (SWCNHs) are a unique carbon-based nanomaterial with promising application in different fields including, medicine, genetic engineering and horticulture. Here, we investigated the biological response of six crop species (barley, corn, rice, soybean, switchgrass, tomato) and tobacco cell culture to the exposure of SWCNHs. We found that SWCNHs can activate seed germination of selected crops and enhance growth of different organs of corn, tomato, rice and soybean. At cellular level, growth of tobacco cells was increased in response to exposure of SWCNHs (78% increase compared to control). Uptake of SWCNHs by exposed crops and tobacco cells was confirmed by transmission electron microscopy (TEM) and quantified by microwave induced heating (MIH) technique. At genetic level, SWCNHs were able to affect expression of a number of tomato genes that are involved in stress responses, cellular responses and metabolic processes. Our conclusion is that SWCNHs can be used as plant growth regulators and have the potential for plant-related applications.

  1. Macroscopic modeling of plant water uptake: soil and root resistances

    NASA Astrophysics Data System (ADS)

    Vogel, Tomas; Votrubova, Jana; Dohnal, Michal; Dusek, Jaromir

    2014-05-01

    The macroscopic physically-based plant root water uptake (RWU) model, based on water-potential-gradient formulation (Vogel et al., 2013), was used to simulate the observed soil-plant-atmosphere interactions at a forest site located in a temperate humid climate of central Europe and to gain an improved insight into the mutual interplay of RWU parameters that affects the soil water distribution in the root zone. In the applied RWU model, the uptake rates are directly proportional to the potential gradient and indirectly proportional to the local soil and root resistances to water flow. The RWU algorithm is implemented in a one-dimensional dual-continuum model of soil water flow based on Richards' equation. The RWU model is defined by four parameters (root length density distribution, average active root radius, radial root resistance, and the threshold value of the root xylem potential). In addition, soil resistance to water extraction by roots is related to soil hydraulic conductivity function and actual soil water content. The RWU model is capable of simulating both the compensatory root water uptake, in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers, and the root-mediated hydraulic redistribution of soil water, contributing to more natural soil moisture distribution throughout the root zone. The present study focusses on the sensitivity analysis of the combined soil water flow and RWU model responses in respect to variations of RWU model parameters. Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154.

  2. Interactions between uptake of amino acids and inorganic nitrogen in wheat plants

    NASA Astrophysics Data System (ADS)

    Gioseffi, E.; de Neergaard, A.; Schjoerring, J. K.

    2012-04-01

    Soil-borne amino acids may constitute a source of nitrogen (N) for plants in various terrestrial ecosystems but their importance for total N nutrition is unclear, particularly in nutrient-rich arable soils. One reason for this uncertainty is lack of information on how the absorption of amino acids by plant roots is affected by the simultaneous presence of inorganic N forms. The objective of the present study was to study absorption of glycine (Gly) and glutamine (Gln) by wheat roots and their interactions with nitrate (NO3-) and ammonium (NH4+) during uptake. The underlying hypothesis was that amino acids, when present in nutrient solution together with inorganic N, may lead to down-regulation of the inorganic N uptake, thereby resulting in similar total N uptake rates. Amino acids were enriched with double-labelled 15N and 13C, while NO3- and NH4+ acquisition was determined by their rate of removal from the nutrient solution surrounding the roots. The uptake rates of NO3- and NH4+ did not differ from each other and were generally about twice as high as the uptake rate of organic N when the different N forms were supplied separately in concentrations of 2 mM. Nevertheless, replacement of 50% of the inorganic N with organic N was able to restore the N uptake to the same level as that in the presence of only inorganic N. Co-provision of NO3- did not affect glycine uptake, while the presence of glycine down-regulated NO3- uptake. The ratio between 13C and 15N were lower in shoots than in roots and also lower than the theoretical values, reflecting higher C losses via respiratory processes compared to N losses. It is concluded that organic N can constitute a significant N-source for wheat plants and that there is an interaction between the uptake of inorganic and organic N.

  3. Ammonium and Nitrate Uptake by the Floating Plant Landoltia punctata

    PubMed Central

    Fang, Yun Ying; Babourina, Olga; Rengel, Zed; Yang, Xiao E.; Pu, Pei Min

    2007-01-01

    Background and Aims Plants from the family Lemnaceae are widely used in ecological engineering projects to purify wastewater and eutrophic water bodies. However, the biology of nutrient uptake mechanisms in plants of this family is still poorly understood. There is controversy over whether Lemnaceae roots are involved in nutrient uptake. No information is available on nitrogen (N) preferences and capacity of Landoltia punctata (dotted duckweed), one of the best prospective species in Lemnaceae for phytomelioration and biomass production. The aim of this study was to assess L. punctata plants for their ability to take up NH4+ and NO3− by both roots and fronds. Methods NO3− and NH4+ fluxes were estimated by a non-invasive ion-selective microelectrode technique. This technique allows direct measurements of ion fluxes across the root or frond surface of an intact plant. Key Results Landoltia punctata plants took up NH4+ and NO3− by both fronds and roots. Spatial distribution of NH4+ and NO3− fluxes demonstrated that, although ion fluxes at the most distal parts of the root were uneven, the mature part of the root was involved in N uptake. Despite the absolute flux values for NH4+ and NO3− being lower in roots than at the frond surface, the overall capacity of roots to take up ions was similar to that of fronds because the surface area of roots was larger. L. punctata plants preferred to take up NH4+ over NO3− when both N sources were available. Conclusions Landoltia punctata plants take up nitrogen by both roots and fronds. When both sources of N are available, plants prefer to take up NH4+, but will take up NO3− when it is the only N source. PMID:17204539

  4. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.

    PubMed

    Lee, Yurim; Lim, Yeni; Kwon, Oran

    2015-01-01

    This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was tested by using human intestinal Caco-2 cells. Then, the relative contribution of the two apical-facing intestinal fructose transporters, GLUT2 and GLUT5, and the signature components for fructose uptake inhibition was confirmed in naive, phloretin-treated and forskolin-treated Caco-2 cells. HPLC/MS analysis of the chemical signature revealed that guava leaf contained quercetin and catechin, and turmeric contained curcumin, bisdemethoxycurcumin and dimethoxycurcumin. Similar inhibition of fructose uptake (by ~50%) was observed with guava leaf and turmeric in Caco-2 cells, but with a higher contribution of GLUT2 for turmeric and that of GLUT5 for guava leaf. The data suggested that, in turmeric, demethoxycurcumin specifically contributed to GLUT2-mediated fructose uptake inhibition, and curcumin did the same to GLUT5-mediated fructose uptake inhibition, but GLUT2 inhibition was more potent. By contrast, in guava leaf, catechin specifically contributed to GLUT5-mediated fructose uptake inhibition, and quercetin affected both GLUT5- and GLUT2-mediated fructose uptake inhibition, resulting in the higher contribution of GLUT5. These results suggest that demethoxycurcumin is an important contributor to GLUT2-mediated fructose uptake inhibition for turmeric extract, and catechin is the same to GLUT5-mediated fructose uptake inhibition for guava leaf extract. Quercetin, curcumin and bisdemethoxycurcumin contributed to both GLUT5- and GLUT2-mediated fructose uptake inhibition, but the contribution to GLUT5 inhibition was higher than the contribution to GLUT2 inhibition. PMID:26393568

  5. Plant uptake of pentachlorophenol from sludge-amended soils

    SciTech Connect

    Bellin, C.A.; O'Connor, G.A.

    1990-01-01

    A greenhouse study was conducted to determine the effects of sludge on plant uptake of {sup 14}C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal {sup 14}C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent of sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were <0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge.

  6. Simulation of the plant uptake of organophosphates and other emerging pollutants for greenhouse experiments and field conditions.

    PubMed

    Trapp, Stefan; Eggen, Trine

    2013-06-01

    The uptake of the organophosphates tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), tributyl phosphate (TBP), the insect repellant N,N-diethyl toluamide (DEET), and the plasticizer n-butyl benzenesulfonamide (NBBS) into plants was studied in greenhouse experiments and simulated with a dynamic physiological plant uptake model. The calibrated model was coupled to a tipping buckets soil transport model and a field scenario with sewage sludge application was simulated. High uptake of the polar, low-volatile compounds TCEP, TCPP, and DEET into plants was found, with highest concentrations in straw (leaves and stem). Uptake into carrot roots was high for TCPP and TBP. NBBS showed no high uptake but was rapidly degraded. Uptake into barley seeds was small. The pattern and levels of uptake could be reproduced by the model simulations, which indicates mainly passive uptake and transport (i.e., by the transpiration stream, with the water) into and within the plants. Also the field simulations predicted a high uptake from soil into plants of TCEP, TCPP, and DEET, while TBP is more likely taken up from air. The BCF values measured and calculated in the greenhouse study are in most cases comparable to the calculated values of the field scenario, which demonstrates that greenhouse studies can be suitable for predicting the behavior of chemicals in the field. Organophosphates have a high potential for bioaccumulation in crops and reach agricultural fields both via sewage sludge and by atmospheric deposition. PMID:23212267

  7. Natural colloidal P and its contribution to plant P uptake.

    PubMed

    Montalvo, Daniela; Degryse, Fien; McLaughlin, Mike J

    2015-03-17

    Phosphorus (P) bioavailability depends on its concentration and speciation in solution. Andisols and Oxisols have very low soil solution concentration of free orthophosphate, as they contain high concentrations of strongly P-sorbing minerals (Al/Fe oxyhydroxides, allophanes). Free orthophosphate is the form of P taken up by plants, but it is not the only P species present in the soil solution. Natural colloidal P (P associated with Al, Fe, and organic matter of sizes ranging from 1 to 1000 nm) constitutes an important fraction of soil solution P in these soils; however, its availability has not been considered. We measured the uptake of P by wheat (Triticum aestivum) from radiolabeled nonfiltered (colloid-containing) and 3-kDa filtered (nearly colloid-free) soil-water extracts from Andisols and Oxisols. In the Andisol extracts, P uptake was up to 5-fold higher from the nonfiltered solutions than the corresponding 3-kDa filtered solutions. In the Oxisol extract, no difference in P uptake between both solutions was observed. Also the diffusional flux of P as measured with the DGT technique was larger in the nonfiltered than in the 3-kDa filtered solutions. Our results suggest that colloidal P from Andisols is not chemically inert and contributes to plant uptake of P. PMID:25719745

  8. A Comparative Study of Iron Uptake Rates and Mechanisms amongst Marine and Fresh Water Cyanobacteria: Prevalence of Reductive Iron Uptake

    PubMed Central

    Lis, Hagar; Kranzler, Chana; Keren, Nir; Shaked, Yeala

    2015-01-01

    In this contribution, we address the question of iron bioavailability to cyanobacteria by measuring Fe uptake rates and probing for a reductive uptake pathway in diverse cyanobacterial species. We examined three Fe-substrates: dissolved inorganic iron (Fe') and the Fe-siderophores Ferrioxamine B (FOB) and FeAerobactin (FeAB). In order to compare across substrates and strains, we extracted uptake rate constants (kin = uptake rate/[Fe-substrate]). Fe' was the most bioavailable Fe form to cyanobacteria, with kin values higher than those of other substrates. When accounting for surface area (SA), all strains acquired Fe' at similar rates, as their kin/SA were similar. We also observed homogeneity in the uptake of FOB among strains, but with 10,000 times lower kin/SA values than Fe'. Uniformity in kin/SA suggests similarity in the mechanism of uptake and indeed, all strains were found to employ a reductive step in the uptake of Fe' and FOB. In contrast, different uptake pathways were found for FeAB along with variations in kin/SA. Our data supports the existence of a common reductive Fe uptake pathway amongst cyanobacteria, functioning alone or in addition to siderophore-mediated uptake. Cyanobacteria combining both uptake strategies benefit from increased flexibility in accessing different Fe-substrates. PMID:25768677

  9. Cyclic variations in nitrogen uptake rate in soybean plants: uptake during reproductive growth

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Raper, C. D. Jr; Henry, L. T.; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic culture was measured daily during a 63 d period of reproductive development between the first florally inductive photoperiod and [unknown word] seed growth. Removal of NO3- from a replenished solution containing 1.0 mol m-3 NO3- was determined by ion chromatography. Uptake of NO3- continued throughout reproductive development. The net uptake rate of NO3- cycled between maxima and minima with a periodicity of oscillation of 3 to 7 d during the floral stage and about 6 d during the fruiting stage. Coupled with increasing concentrations of carbon and C : N ratios in tissues, the oscillations in net uptake rates of NO3- are evidence that the demand for carbohydrate by reproductive organs is contingent on the availability of nitrogen in the shoot pool rather than that the demand for nitrogen follows the flux of carbohydrate into reproductive tissues.

  10. Uptake of antibiotics from irrigation water by plants.

    PubMed

    Azanu, David; Mortey, Christiana; Darko, Godfred; Weisser, Johan Juhl; Styrishave, Bjarne; Abaidoo, Robert Clement

    2016-08-01

    The capacity of carrot (Daucus corota L.) and lettuce (Lactuca sativa L.), two plants that are usually eaten raw, to uptake tetracycline and amoxicillin (two commonly used antibiotics) from irrigated water was investigated in order to assess the indirect human exposure to antibiotics through consumption of uncooked vegetables. Antibiotics in potted plants that had been irrigated with known concentrations of the antibiotics were extracted using accelerated solvent extraction and analyzed on a liquid chromatograph-tandem mass spectrometer. The plants absorbed the antibiotics from water in all tested concentrations of 0.1-15 mg L(-1). Tetracycline was detected in all plant samples, at concentrations ranging from 4.4 to 28.3 ng/g in lettuce and 12.0-36.8 ng g(-1) fresh weight in carrots. Amoxicillin showed absorption with concentrations ranging from 13.7 ng g(-1) to 45.2 ng g(-1) for the plant samples. The mean concentration of amoxicillin (27.1 ng g(-1)) in all the samples was significantly higher (p = 0.04) than that of tetracycline (20.2 ng g(-1)) indicating higher uptake of amoxicillin than tetracycline. This suggests that the low antibiotic concentrations found in plants could be important for causing antibiotics resistance when these levels are consumed. PMID:27213239

  11. Uptake and Metabolism of Phthalate Esters by Edible Plants.

    PubMed

    Sun, Jianqiang; Wu, Xiaoqin; Gan, Jay

    2015-07-21

    Phthalate esters (PAEs) are large-volume chemicals and are found ubiquitously in soil as a result of widespread plasticulture and waste disposal. Food plants such as vegetables may take up and accumulate PAEs from soil, potentially imposing human health risks through dietary intake. In this study, we carried out a cultivation study using lettuce, strawberry, and carrot plants to determine the potential of plant uptake, translocation, and metabolism of di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) and their primary metabolites mono-n-butyl phthalate (MnBP) and mono(2-ethylhexyl) phthalate (MEHP). All four compounds were detected in the plant tissues, with the bioconcentration factors (BCFs) ranging from 0.16 ± 0.01 to 4.78 ± 0.59. However, the test compounds were poorly translocated from roots to leaves, with a translocation factor below 1. Further, PAEs were readily transformed to their monoesters following uptake. Incubation of PAEs and monoalkyl phthalate esters (MPEs) in carrot cell culture showed that DnBP was hydrolyzed more rapidly than DEHP, while the monoesters were transformed more quickly than their parent precursors. Given the extensive metabolism of PAEs to monoesters in both whole plants and plant cells, metabolism intermediates such as MPEs should be considered when assessing human exposure via dietary intake of food produced from PAE-contaminated soils. PMID:26090545

  12. Uptake of cyantraniliprole into tomato fruit and foliage under hydroponic conditions: application to calibration of a plant/soil uptake model.

    PubMed

    Anderson, Jeffrey J; Bookhart, S Wingard; Clark, Jonathan M; Jernberg, Kathryn M; Kingston, Coleen K; Snyder, Nathan; Wallick, Kevin; Watson, Lawrence J

    2013-09-25

    Measured uptake of cyantraniliprole (3-bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2-methyl-6-[(methylamino)carbonyl]phenyl]-1H-pyrazole-5-carboxamide) into tomatoes following hydroponic exposure allowed calibration of a novel soil uptake model. The total mass of plant parts in treated plants was derived from the weights of successively harvested control plants (no cyantraniliprole provided) over 18 days following the first sampling of ripe tomatoes. Transpired water measured during plant growth was coupled with the calculated increase in plant mass to determine a transpiration coefficient constant (L/kg plant fresh weight) for use in the model. Cyantraniliprole concentrations in mature fruit, fresh foliage, and plant uptake solutions were used as the basis for a nonlinear least-squares optimization that consistently resolved to values that were empirically valid compared to metabolism studies in whole plants. This calibrated reference model adequately described uptake from soil pore water into plant fruit, and served as the basis for describing residues in fruit following commercial greenhouse growing conditions. PMID:24000775

  13. Interactions between uptake of amino acids and inorganic nitrogen in wheat plants

    NASA Astrophysics Data System (ADS)

    Gioseffi, E.; de Neergaard, A.; Schjoerring, J. K.

    2011-11-01

    Soil-borne amino acids may constitute a nitrogen (N) source for plants in various terrestrial ecosystems but their importance for total N nutrition is unclear, particularly in nutrient-rich arable soils. One reason for this uncertainty is lack of information on how the absorption of amino acids by plant roots is affected by the simultaneous presence of inorganic N forms. The objective of the present study was to study absorption of glycine (Gly) and glutamine (Gln) by wheat roots and their interactions with nitrate (NO3-) and (NH4+) during uptake. The underlying hypothesis was that amino acids, when present in nutrient solution together with inorganic N, may lead to down-regulation of the inorganic N uptake. Amino acids were enriched with double-labelled 15N and 13C, while NO3- and NH4+ acquisition was determined by their rate of removal from the nutrient solution surrounding the roots. The uptake rates of NO3- and NH4+ did not differ from each other and were about twice as high as the uptake rate of organic N when the different N forms were supplied separately in concentrations of 2 mM. Nevertheless, replacement of 50 % of the inorganic N with organic N was able to restore the N uptake to the same level as that in the presence of only inorganic N. Co-provision of NO3- did not affect glycine uptake, while the presence of glycine down-regulated NO3- uptake. The ratio between 13C and 15N were lower in shoots than in roots and also lower than the theoretical values, reflecting higher C losses via respiratory processes compared to N losses. It is concluded that organic N can constitute a significant N-source for wheat plants and that there is an interaction between the uptake of inorganic and organic nitrogen.

  14. Quantitative Understanding of Nanoparticle Uptake in Watermelon Plants.

    PubMed

    Raliya, Ramesh; Franke, Christina; Chavalmane, Sanmathi; Nair, Remya; Reed, Nathan; Biswas, Pratim

    2016-01-01

    The use of agrochemical-nutrient fertilizers has come under scrutiny in recent years due to concerns that they damage the ecosystem and endanger public health. Nanotechnology offers many possible interventions to mitigate these risks by use of nanofertilizers, nanopesticides, and nanosensors; and concurrently increases profitability, yields, and sustainability within the agricultural industry. Aerosol based foliar delivery of nanoparticles may help to enhance nanoparticle uptake and reduce environmental impacts of chemical fertilizers conventionally applied through a soil route. The purpose of this work was to study uptake, translocation, and accumulation of various gold nanostructures, 30-80 nm, delivered by aerosol application to a watermelon plant. Cellular uptake and accumulation of gold nanoparticles were quantified by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS). Observations suggested that nanoparticles could be taken up by the plant through direct penetration and transport through the stomatal opening. Observed translocation of nanoparticles from leaf to root shows evidence that nanoparticles travel by the phloem transport mechanism. Accumulation and transport of nanoparticles depend on nanoparticle shape, application method, and nature of plant tissues. PMID:27617020

  15. Quantitative Understanding of Nanoparticle Uptake in Watermelon Plants

    PubMed Central

    Raliya, Ramesh; Franke, Christina; Chavalmane, Sanmathi; Nair, Remya; Reed, Nathan; Biswas, Pratim

    2016-01-01

    The use of agrochemical-nutrient fertilizers has come under scrutiny in recent years due to concerns that they damage the ecosystem and endanger public health. Nanotechnology offers many possible interventions to mitigate these risks by use of nanofertilizers, nanopesticides, and nanosensors; and concurrently increases profitability, yields, and sustainability within the agricultural industry. Aerosol based foliar delivery of nanoparticles may help to enhance nanoparticle uptake and reduce environmental impacts of chemical fertilizers conventionally applied through a soil route. The purpose of this work was to study uptake, translocation, and accumulation of various gold nanostructures, 30–80 nm, delivered by aerosol application to a watermelon plant. Cellular uptake and accumulation of gold nanoparticles were quantified by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS). Observations suggested that nanoparticles could be taken up by the plant through direct penetration and transport through the stomatal opening. Observed translocation of nanoparticles from leaf to root shows evidence that nanoparticles travel by the phloem transport mechanism. Accumulation and transport of nanoparticles depend on nanoparticle shape, application method, and nature of plant tissues. PMID:27617020

  16. Plant traits related to nitrogen uptake influence plant-microbe competition.

    PubMed

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  17. Uptake of perfluorinated compounds by plants grown in nutrient solution.

    PubMed

    García-Valcárcel, A I; Molero, E; Escorial, M C; Chueca, M C; Tadeo, J L

    2014-02-15

    The uptake rates of three perfluorinated carboxylates and three perfluorinated sufonates by a grass (B diandrus) grown in nutrient solution at two different perfluorinated compounds (PFCs) concentrations were assessed. Grass can be ingested by grazing animals causing the PFCs to enter the food chain, which is a pathway of human exposure to these compounds. A rapid and miniaturized method was developed to determine PFCs in plants, based on a matrix solid-phase dispersion (MSPD) extraction procedure followed by quantitation by HPLC-MS/MS with an MQL in the range from 1 to 9 ng/g. An increase of PFCs levels in plant was observed along the exposure time. Differences in uptake for studied perfluorinated carboxylates were found, showing a decrease with carbon chain length (from 3027 to 1,167 ng/g at the end of assay), whereas no significant differences in absorption were obtained between perfluorinated sulfonates (about 1,700 ng/g). Initially, higher PFC transfer factors (ratio between concentration in plant and concentration in initial nutrient solution) were obtained for plants growing in the nutrient solution at the highest PFC concentration, but these factors became similar with time to plants exposed to the lowest concentration. PMID:24291554

  18. Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases.

    PubMed

    Carter, Laura J; Williams, Mike; Böttcher, Christine; Kookana, Rai S

    2015-10-20

    The detection of a range of active pharmaceutical ingredients (APIs) in the soil environment has led to a number of publications demonstrating uptake by crops, however very few studies have explored the potential for impacts on plant development as a result of API uptake. This study investigated the effect of carbamazepine and verapamil (0.005-10 mg/kg) on a range of plant responses in zucchini (Cucurbita pepo). Uptake increased in a dose-dependent manner, with maximum leaf concentrations of 821.9 and 2.2 mg/kg for carbamazepine and verapamil, respectively. Increased carbamazepine uptake by zucchini resulted in a decrease in above (<60%) and below (<30%) ground biomass compared to the controls (p < 0.05). At soil concentrations >4 mg/kg the mature leaves suffered from burnt edges and white spots as well as a reduction in photosynthetic pigments but no such effects were seen for verapamil. For both APIs, further investigations revealed significant differences in the concentrations of selected plant hormones (auxins, cytokinins, abscisic acid and jasmonates), and in the nutrient composition of the leaves in comparison to the controls (p < 0.05). This is some of the first research to demonstrate that the exposure of plants to APIs is likely to cause impacts on plant development with unknown implications. PMID:26418514

  19. Mercury uptake and accumulation by four species of aquatic plants.

    PubMed

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. PMID:16781033

  20. Uptake of human pharmaceuticals by plants grown under hydroponic conditions.

    PubMed

    Herklotz, Patrick A; Gurung, Prakash; Vanden Heuvel, Brian; Kinney, Chad A

    2010-03-01

    Cabbage (Brassica rapa var. pekinensis) and Wisconsin Fast Plants (Brassica rapa) were chosen for a proof of concept study to determine the potential uptake and accumulation of human pharmaceuticals by plants. These plants were grown hydroponically under high-pressure sodium lamps in one of two groups including a control and test group exposed to pharmaceuticals. The control plants were irrigated with a recirculating Hoagland's nutrient solution while the test plants were irrigated with a Hoagland's nutrient solution fortified with the pharmaceuticals carbamazepine, salbutamol, sulfamethoxazole, and trimethoprim at 232.5 microg L(-1). When plants reached maturity, nine entire plants of each species were separated into components such as roots, leaves, stems, and seedpods where applicable. An analytical method for quantifying pharmaceuticals and personal care products was developed using pressurized liquid extraction and liquid chromatography electrospray ionization mass spectrometry (LC/ESI/MS) in positive and negative ion modes using single ion monitoring. The method detection limits ranged from 3.13 ng g(-1) to 29.78 ng g(-1) with recoveries ranging from 66.83% to 113.62% from plant matrices. All four of the pharmaceuticals were detected in the roots and leaves of the cabbage. The maximum wet weight concentrations of the pharmaceuticals were detected in the root structure of the cabbage plants at 98.87 ng g(-1) carbamazepine, 114.72 ng g(-1) salbutamol, 138.26 ng g(-1) sulfamethoxazole, and 91.33 ng g(-1) trimethoprim. Carbamazepine and salbutamol were detected in the seedpods of the Wisconsin Fast Plants while all four of the pharmaceuticals were detected in the leaf/stem/root of the Wisconsin Fast Plants. Phloroglucinol staining of root cross-sections was used to verify the existence of an intact endodermis, suggesting that pharmaceuticals found in the leaf and seedpods of the plants were transported symplastically. PMID:20096438

  1. Effect of Plant Uptake on Perchlorate Isotopic Composition

    NASA Astrophysics Data System (ADS)

    Estrada, N. L.; Jackson, W. A.; Bohlke, J. K.; Sturchio, N. C.; Gu, B.; Rao, B.; Hatzinger, P. B.; Harvey, G.; Burkey, K.; McGrath, M. T.; Sevanthi, R.

    2013-12-01

    The occurrence of perchlorate (ClO4-) in the environment is attributed to both synthetic and natural sources. Unlike anthropogenic ClO4-, natural ClO4- exhibits a wide range in isotopic compositions, suggesting that natural ClO4- is formed through more than one pathway and/or undergoes post-depositional isotopic fractionation processes. One of these processes could be plant uptake and metabolism. Plants are known to reversibly accumulate ClO4-. However, there is little information available regarding the ability for plants to isotopically fractionate ClO4-. Plants could alter ClO4-isotopic composition either by mass dependent fractionation via transport carriers in the root, diffusion limitations through the root, translocation within the plant, reduction of ClO4- by plant enzymes, or non-specific exchange of oxygen in ClO4- catalyzed by plant compounds/processes. We examined the potential for plants to alter the isotopic composition of ClO4- (δ37Cl, δ18O, and Δ17O) in both hydroponic and field scale experiments. Hydroponically grown snap bean plants were exposed to variable ClO4-concentrations (2mg/L and 10mg/L) in solutions prepared from ClO4- with both normal and anomalous O isotopic abundances. At maturity, we evaluated the uptake of ClO4-relative to other anions and the isotopic compositions of ClO4- in both plants and growth solutions. Additional experiments involved field scale exposures of snap beans to irrigation water containing low levels (< 10 ug/L) of ClO4-. The majority of the initial mass of ClO4- for both the low and high exposure hydroponic treatments was recovered in the growth solutions (20-40%) or plant compartments (40-60%), while some mass was not recovered (~20%). ClO4- isotopic compositions were essentially identical between recovered ClO4- in the plant tissues and hydroponic solutions. Anion ratios indicate that ClO4-was accumulated similarly to NO3- but preferentially to Cl- (~4X). In field experiments, the isotopic composition of ClO4

  2. Grass plants bind, retain, uptake, and transport infectious prions.

    PubMed

    Pritzkow, Sandra; Morales, Rodrigo; Moda, Fabio; Khan, Uffaf; Telling, Glenn C; Hoover, Edward; Soto, Claudio

    2015-05-26

    Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrP(Sc)) to plants. Small quantities of PrP(Sc) contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrP(Sc) for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease. PMID:25981035

  3. Grass plants bind, retain, uptake and transport infectious prions

    PubMed Central

    Pritzkow, Sandra; Morales, Rodrigo; Moda, Fabio; Khan, Uffaf; Telling, Glenn C.; Hoover, Edward; Soto, Claudio

    2015-01-01

    Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here we analyzed the binding and retention of infectious prion protein (PrPSc) to plants. Small quantities of PrPSc contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrPSc for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease. PMID:25981035

  4. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest.

    PubMed

    Limm, Emily Burns; Simonin, Kevin A; Bothman, Aron G; Dawson, Todd E

    2009-09-01

    Evaluations of plant water use in ecosystems around the world reveal a shared capacity by many different species to absorb rain, dew, or fog water directly into their leaves or plant crowns. This mode of water uptake provides an important water subsidy that relieves foliar water stress. Our study provides the first comparative evaluation of foliar uptake capacity among the dominant plant taxa from the coast redwood ecosystem of California where crown-wetting events by summertime fog frequently occur during an otherwise drought-prone season. Previous research demonstrated that the dominant overstory tree species, Sequoia sempervirens, takes up fog water by both its roots (via drip from the crown to the soil) and directly through its leaf surfaces. The present study adds to these early findings and shows that 80% of the dominant species from the redwood forest exhibit this foliar uptake water acquisition strategy. The plants studied include canopy trees, understory ferns, and shrubs. Our results also show that foliar uptake provides direct hydration to leaves, increasing leaf water content by 2-11%. In addition, 60% of redwood forest species investigated demonstrate nocturnal stomatal conductance to water vapor. Such findings indicate that even species unable to absorb water directly into their foliage may still receive indirect benefits from nocturnal leaf wetting through suppressed transpiration. For these species, leaf-wetting events enhance the efficacy of nighttime re-equilibration with available soil water and therefore also increase pre-dawn leaf water potentials. PMID:19585154

  5. Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil

    SciTech Connect

    Topp, E.; Scheunert, I.; Attar, A.; Korte, F.

    1986-04-01

    The uptake of /sup 14/C from various /sup 14/C-labeled organic chemicals from different chemical classes by barley and cress seedlings from soil was studied for 7 days in a closed aerated laboratory apparatus. Uptake by roots and by leaves via the air was determined separately. Although comparative long-term outdoor studies showed that an equilibrium is not reached within a short time period, plant concentration factors after 7 days could be correlated to some physicochemical and structural substance properties. Barley root concentration factors due to root uptake, expressed as concentration in roots divided by concentration in soil, gave a fairly good negative correlation to adsorption coefficients based on soil organic carbon. Barley root concentration factors, expressed as concentration in roots divided by concentration in soil liquid, gave a positive correlation to the n-octanol/water partition coefficients. Uptake of chemicals by barley leaves via air was strongly positively correlated to volatilization of chemicals from soil. Both root and foliar uptake by barley could be correlated well to the molecular weight of 14 chemicals. Uptake of chemicals by cress differed from that by barley, and correlations to physicochemical substance properties mostly were poor.

  6. Uptake of some radionuclides by woody plants growing in the rainforest of Western Ghats in India.

    PubMed

    Manigandan, P K; Chandar Shekar, B

    2014-04-01

    Transfer of the naturally occurring radionuclides (238)U, (232)Th, and (40)K, and the fallout radionuclide (210)Po to different wild plant species in the rainforest of Western Ghats was analyzed. A number of physiologically different plants from the top storey and understorey, such as shrubs and epiphytes, were compared. The concentrations of these radionuclides in the plants and soil were measured using a gamma ray spectrometer and an alpha counter, and were found to vary widely within plants and between species. The soil-plant ratios also varied between species while Elaeocarpus oblongus and epiphytic plants exhibited preferential uptake of these radionuclides. As a result, the dust particles trapped in the root systems of epiphytes could be used as bioindicators of fallout radionuclides in the Western Ghats. PMID:24463721

  7. [Study on the nitrogen and phosphorus uptake ability of four plants cultivated on floating-bed].

    PubMed

    Wu, Jian-Qiang; Wang, Min; Wu, Jian; Jiang, Yue; Sun, Cong-Jun; Cao, Yong

    2011-04-01

    Plant floating-bed tested engineering was constructed for eutrophication control in Dian-shan Lake, the characteristics and nutrient uptake abilities of Canna indica, Iris pseudacorus, Thalia dealbata and Lythrum salicaria were compared. It shows that using upper and lower nylon nets to fix the plants on the floating-bed is beneficial for them to grow and reproduce rapidly. Survival rates of Canna indica, lris pseudacorus, Thalia dealbata and Lythrum salicaria are 83.33%, 83.33%, 76.67% and 53.33% respectively. Ramets of Canna indica and Thalia dealbata are 64 and 78 respectively in November, and the biomass (fresh weight) of these two plants are 32.0 and 38.6 kg per individual plant. Nitrogen (N) and phosphorus (P) content in stems/leaves of Canna indica and Thalia dealbata are greater than those in roots. The ratio between stems/leaves and roots of N, P content in Canna indica are 1.40 and 1.21 respectively, while 1.59 and 1.08 in Thalia dealbata. The difference of cumulative N, P content in plants is mostly on account of different plant biomass. N uptake ability of Thalia dealbata is the highest, which is 457.11 g per square; Canna indica has the highest P uptake ability, which is 41.29 g per square. N, P uptake ability of stems/leaves in Canna indica are 2.17 and 1.86 times higher than that of roots, while 1.73 and 1.17 times higher respectively in Thalia dealbata. Thus, Canna indica and Thalia dealbata are recommended as the floating-bed plants to control the eutrophication in Dian-shan Lake. PMID:21717738

  8. Concentration-dependent RDX uptake and remediation by crop plants.

    PubMed

    Chen, Diejun; Liu, Z Lewis; Banwart, Wanye

    2011-07-01

    The potential RDX contamination of food chain from polluted soil is a significant concern in regards to both human health and environment. Using a hydroponic system and selected soils spiked with RDX, this study disclosed that four crop plant species maize (Zea mays), sorghum (Sorghum sudanese), wheat (Triticum aestivum), and soybean (Glycine max) were capable of RDX uptake with more in aerial parts than roots. The accumulation of RDX in the plant tissue is concentration-dependent up to 21 mg RDX/L solution or 100 mg RDX/kg soil but not proportionally at higher RDX levels from 220 to 903 mg/kg soil. While wheat plant tissue harbored the highest RDX concentration of 2,800 μg per gram dry biomass, maize was able to remove a maximum of 3,267 μg RDX from soil per pot by five 4-week plants at 100 mg/kg of soil. Although RDX is toxic to plants, maize, sorghum, and wheat showed reasonable growth in the presence of the chemical, whereas soybeans were more sensitive to RDX. Results of this study facilitate assessment of the potential invasion of food chain by RDX-contaminated soils. PMID:21274639

  9. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants.

    PubMed

    Pinto, A P; Mota, A M; de Varennes, A; Pinto, F C

    2004-06-29

    This article describes an experiment, carried out under controlled environment conditions, to investigate the effects of a fulvic acid fraction of soil organic matter on growth, cadmium (Cd) uptake and redistribution by sorghum. In addition the uptake of copper (Cu), zinc (Zn) and iron (Fe) was also determined. Sorghum was grown in nutrient solutions with 0, 0.1, 1 and 10 mg Cd dm(-3), in the absence and presence of organic matter (32 mg C dm(-3)), for various periods up to 20 days. A decrease in sorghum biomass due to Cd toxicity was observed at 10 mg Cd dm(-3), but for concentrations of 0.1 and 1 mg Cd dm(-3) the biomass was increased compared with control, without visual toxicity symptoms. The presence of organic matter (OM) further increased biomass production. Cadmium was mainly retained in sorghum roots, as usually found in tolerant plants, but Cd accumulation in sorghum was greater than in other Gramineae, or even more tolerant plants such as lettuce. The presence of OM decreased the bioavailability of Cd that was partially retained in solution by the OM ligands. However, OM promoted the translocation of Cd to shoots, an effect that may pose a risk to public health because plant-animal transfer of Cd could be enhanced. The presence of OM decreased the uptake of Cu, Zn and Fe. The presence (vs. absence) of 0.1 mg Cd dm(-3) enhanced the uptake of Fe, both in the absence and presence of OM. PMID:15142779

  10. How do microorganisms influence trace element uptake by plants? Screening in an agar model rhizosphere.

    NASA Astrophysics Data System (ADS)

    Marchetti, M.; Robinson, B. H.; Evangelou, M. W. H.; Vachey, A.; Schwitzguebel, J. P.; Bernier-Latmani, R.; Schulin, R.

    2009-04-01

    sterile, transparent plastic boxes, whose lid was equipped with a filter allowing gas exchanges without contamination by external microorganisms. The seed surface was sterilised and the plants grew one week in agar before their rhizosphere was inoculated with LB broth containing a pure bacterial strain or agar plugs colonized by fungal hyphae. We tested 14 strains, with 5 replicates per treatment and a control where the system was inoculated with sterile LB broth. The plants grew for 2 weeks in a climate chamber and their shoots were analysed for their TEs by ICP-OES. Samples of agar and roots were collected to confirm microbial colonization of the rhizosphere, respectively sterile conditions in the control treatments. Concerning the method development, the plants grew without visible toxicity in all the boxes, and the analysis of root and agar samples indicated that the controls were sterile and the strains inoculated were growing along the roots. More than 90% of the TE and nutrients added to the system were in the liquid fraction of the agar medium, thus available for root uptake. The screening showed that the microorganisms in general decreased TE uptake by wheat and sunflower, although some of them had an opposite effect on the plants. However, with the same plant species, the microorganisms had a consistent effect on all TE tested, i.e. a given single strain caused the same effect (increase or decrease of TE uptake) on all TE tested. In sunflower, 3 microorganisms (Paenibacillus polymyxa, Pythium ultimum and Rhizoctonia solani) decreased Cu and Zn uptake by 50% compared to the control treatment. These three species are common soil microorganisms. All three are known to exude auxin, a phytohormone. This hormone can modify root morphology and physiology and thus may affect TE uptake by plants. R. solani and P. ultimum are root pathogens. Their effect was opposite to what we expected. If roots are damaged, TE should have flooded into the plant and accumulate in the

  11. MATHEMATICAL MODEL OF PLANT UPTAKE AND TRANSLOCATION OF ORGANIC CHEMICALS: DEVELOPMENT OF THE MODEL

    EPA Science Inventory

    Uptake, transport, and accumulation of organic chemicals by plants are influenced by characteristics of the plant and properties of the chemical, soil, and environmental conditions. valuations of plant contamination cannot be made experimentally for the many thousands of xenobiot...

  12. C60 fullerene soil sorption, biodegradation, and plant uptake.

    PubMed

    Avanasi, Raghavendhran; Jackson, William A; Sherwin, Brie; Mudge, Joseph F; Anderson, Todd A

    2014-01-01

    Assessments of potential exposure to fullerenes and their derivatives in the environment are important, given their increasing production and use. Our study focused on fate processes that determine the movement and bioavailability of fullerenes in soil. We evaluated the sorption, biodegradation, and plant uptake of C60 fullerene using (14)C-labeled C60 solutions in water produced by either solvent exchange with tetrahydrofuran or sonication/extended mixing in water. Organic carbon appeared to have an important influence on C60 soil sorption. The log Koc values for (14)C60 were equivalent for sandy loam and silt loam (3.55 log[mL/g]) but higher for loam (4.00 log[mL/g]), suggesting that other factors, such as pH, clay content and mineralogy, and cation exchange capacity, also influence C60 soil sorption. There was little (14)CO2 production in the silt loam or the sandy loam soil after 754 and 328 days, respectively, suggesting high resistance of C60 to mineralization in soil. Plant uptake was generally low (∼7%), with most of the uptaken (14)C accumulating in the roots (40-47%) and smaller amounts of accumulation in the tuber (22-23%), stem (12-16%), and leaves (18-22%). Our results indicate that C60 released to the environment will not be highly bioavailable but will likely persist in soil for extended periods. PMID:24521447

  13. Novel Therapeutics for Diabetes: Uptake, Usage Trends, and Comparative Effectiveness.

    PubMed

    Ahuja, Vishal; Chou, Chia-Hung

    2016-06-01

    The number of available therapies for treating type 2 diabetes has grown considerably in recent years. This growth has been fueled by availability of newer medications, whose benefits and risks have not been fully established. In this study, we review and synthesize the existing literature on the uptake, efficacy, safety, and cost-effectiveness of novel antidiabetic agents. Specifically, we focus on three drug classes that were introduced in the market recently: thiazolidinediones (TZDs), dipeptidyl peptidase-4 (DPP-4) inhibitors, and glucagon-like peptide-1 (GLP-1) receptor agonists. Not surprisingly, we find that the usage trends reflect the efficacy and safety profile of these novel drugs. The use of TZDs increased initially but decreased after a black-box warning was issued for rosiglitazone in 2007 that highlighted the cardiovascular risks associated with using the drug. Conversely, DPP-4 inhibitors and GLP-1 receptor agonists gained market shares due to their efficacy in glycemic control as an add-on treatment to metformin. DPP-4 inhibitors were the most commonly prescribed agents among the three novel drug classes, likely because they are relatively less expensive, have better safety profile, are administered orally, and are weight neutral. Sitagliptin was the most preferred DPP-4 inhibitor. The level of evidence on the comparative effectiveness, safety, and cost implications of using novel antidiabetic agents remains low and further studies with long-term follow-ups are needed. PMID:27076180

  14. The role of plant uptake on the removal of organic matter and nutrients in subsurface flow constructed wetlands: a simulation study.

    PubMed

    Langergraber, G

    2005-01-01

    Plants in constructed wetlands have several functions related to the treatment processes. It is generally agreed that nutrient uptake is a minor factor in constructed wetlands treating wastewater compared to the loadings applied. For low loaded systems plant uptake can contribute a significant amount to nutrient removal. The contribution of plant uptake is simulated for different qualities of water to be treated using the multi-component reactive transport module CW2D. CW2D is able to describe the biochemical elimination and transformation processes for organic matter, nitrogen and phosphorus in subsurface flow constructed wetlands. The model for plant uptake implemented describes nutrient uptake coupled to water uptake. Literature values are used to calculate potential water and nutrient uptake rates. For a constructed wetland treating municipal wastewater a potential nutrient uptake of about 1.9% of the influent nitrogen and phosphorus load can be expected. For lower loaded systems the potential uptake is significantly higher, e.g. 46% of the nitrogen load for treatment of greywater. The potential uptake rates could only be simulated for high loaded systems i.e. constructed wetlands treating wastewater. For low loaded systems the nutrient concentrations in the liquid phase were too low to simulate the potential uptake rates using the implemented model for plant uptake. PMID:16042261

  15. Zinc and copper uptake by plants under two transpiration rates. Part I. Wheat (Triticum aestivum L.).

    PubMed

    Tani, F H; Barrington, S

    2005-12-01

    To evaluate the environmental risk of irrigating crops with treated wastewater, an experiment was conducted using two growth chambers, each offering a different vapour pressure deficit (VPD) for high and low transpiration rates (TR), respectively. One of the two sets of 24 pots planted with 6 week old wheat (Triticum aestivum L.), was placed in each growth chamber, and irrigated in triplicates for 20 days with 8 Zn and Cu solutions (0 and 25 mg Zn/L combined with 0, 5, 15 and 30 mg Cu/L). Water losses from planted and non-planted pots served to measure evapo-transpiration and evaporation, respectively. Pots were monitored for Cu and Zn uptake by collecting three plants (shoot and grain)/pots after 0, 10 and 20 days, and roots in each pot after 20 days, and analyzing these plant parts for dry mass, and Cu and Zn levels. Transpiration rate was not affected by any Cu/Zn treatment, but Cu and Zn uptake increase with the time, irrigation solution level and higher TR, with the roots retaining most Cu and Zn, compared to the shoot followed by the grain. For the shoot and grain, Cu had a significant synergetic effect on Zn uptake, when Zn had slight but insignificant antagonistic effects on Cu uptake. For the roots, Cu and Zn had significant synergetic effect on each other. Regression equations obtained from the data indicate that Cu and Zn levels normally found in treated wastewater (0.08 mg/L) are 300 times lower than those used for the most concentrated experimental solutions (30 and 25 mg/L, respectively) and may, on a long term basis, be beneficial rather than toxic to wheat plants and do not acidify soil pH. PMID:16043273

  16. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, M.

    2000-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  17. Approaches in the Determination of Plant Nutrient Uptake and Distribution in Space Flight Conditions

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, Mark

    1998-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which may impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the nuclides Ca45 and Fe59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  18. Distinguishing diffusional and plant control of Cd and Ni uptake by hyperaccumulator and nonhyperaccumulator plants.

    PubMed

    Luo, Jun; Zhang, Hao; Zhao, Fang-Jie; Davison, William

    2010-09-01

    This work set out to test the hypothesis that uptake of metals by hyperaccumulator (HA) plants is more likely to be diffusion limited than uptake by nonhyperaccumulator (NHA) plants. Two circumneutral soils, with different contents of organic matter (0.8 and 5.8%), were amended with Cd (0.5 to 5 mg kg(-1)) and Ni (10 to 100 mg kg(-1)). A Cd HA plant, Thlaspi caerulescens, was grown in pots containing the Cd amended soils, and a Ni HA, Thlaspi goesingense, was grown in pots containing the Ni amended soils. A NHA plant of the same family, Thlaspi arvense, was grown in the same soils. Metals were measured in both roots and shoots of all plants. Concentrations of Cd and Ni were measured in soil solution and using the technique of diffusive gradients in thin-films (DGT). The dependencies of metal measured by DGT, [M]DGT, and in soil solution, [M]ss, on the amended metal concentration, [M]add, were consistent with fast supply of Cd but a slower rate of release of Ni from solid phase to solution at lower [Ni]add. Detailed consideration of the dependence of Ni and Cd in shoots and roots on [M]add, [M]ss, and [M]DGT allowed assessment of the supply mechanism. The weight of evidence suggested that diffusion limitation applies for uptake of Cd by both HA and NHA plants and for uptake of Ni by the HA. However, uptake of Ni by the NHA is not limited by diffusion and the biotic ligand model is probably appropriate. PMID:20681510

  19. Uptake, translocation and metabolism of decabromodiphenyl ether (BDE-209) in seven aquatic plants.

    PubMed

    Deng, Daiyong; Liu, Jin; Xu, Meiying; Zheng, Guolu; Guo, Jun; Sun, Guoping

    2016-06-01

    Terrestrial plant uptake of PBDEs from contaminated soils has been widely reported recently. In this study the fate of deca-BDE within a plant/PBDEs/aquatic environment system was investigated through simulated pot experiments. Accumulations of the total PBDEs and deca-BDE were observed in tissues of seven test aquatic plant species, namely Phragmites australis, Cyperus papyrus, Alternanthera philoxeroides, Colocasia esculenta, Scirpus validus, Acorus calamus and Oryza sativa. In all seven plants, O. sativa leads the uptake and accumulation both in the total PBDEs (444.8 ng g(-1)) and deca-BDE (368.0 ng g(-1)) in roots. Among the six common phytoremediation aquatic plants, A. calamus leads the uptake (236.2 ng g(-1)), and P. australis leads the translocation (Cshoot/Croot = 0.35), while A. philoxeroides (43.4%) and P. australis (80.0%) lead in the metabolism efficiencies in the root and shoot, respectively. The detection of seventeen lesser brominated PBDE congeners provided the debromination evidence, and the specific PBDEs profiles in test plant species indicated there is no common metabolic pattern. Furthermore, a relative high proportion of lesser brominated PBDE congeners in shoots suggested the possible metabolic difference between roots and shoots. Finally, a noticeable percentage of penta- and octa-BDE derived from deca-BDE also hint the ecological risk in deca-BDE use. This comparative research on the aquatic plants provide a broad vision on the understanding of plant/PBDEs/aquatic environment interaction system, and may be applied to remediate PBDEs in contaminated waters and sediments. PMID:26994429

  20. Effect, uptake and disposition of nitrobenzene in several terrestrial plants

    SciTech Connect

    McFarlane, C.; Pfleeger, T.; Fletcher, J.

    1990-01-01

    Eight species of plants were exposed to nitrobenzene in a hydroponic solution. Four species experienced no depression of either transpiration or photosynthetic rates, while one was rapidly killed and the other three were temporarily affected but recovered from the treatment. Uptake of nitrobenzene was passive and was shown to be proportional to the rate of water flux in each species. The transpiration stream concentration factor (TSCF) was 0.72. The root concentration factor (RCF) was variable between the species and was higher than expected, presumably due to deposits of insoluble metabolic products. All of the species examined displayed a capacity to chemically alter nonpolar nitrobenzene into both polar and insoluble products. Volatilization of nitrobenzene from the leaves was a major route of chemical loss.

  1. Effect of plant-uptake representation on the water-optimal root depth

    NASA Astrophysics Data System (ADS)

    Guswa, A. J.

    2008-12-01

    The depth of roots depends on a variety of conditions, including soil properties, plant type, nutrient availability, and climate. A focus on water enables the determination of a water-optimal root depth by equating the marginal carbon cost of deeper roots with the benefit of those roots to continued transpiration and carbon assimilation. Calculation of the transpiration benefit requires the mathematical representation of plant uptake as a function of root depth and soil moisture. This work compares the effect of two bounding representations of plant uptake on the water-optimal root depth and the response of that depth to changes in precipitation. Soil-moisture dynamics are driven by precipitation events that arrive as a Poisson process and are characterized by a mean frequency and depth. Infiltration and drainage are instantaneous, filling the root zone up to a maximum field capacity. Plant uptake is represented in one case as a step function of soil moisture; transpiration proceeds at a potential rate until the wilting-point saturation is reached when uptake drops to zero. Until that critical threshold, soil moisture has no effect on transpiration. In the second case, transpiration decreases linearly from its potential at field capacity to zero at the wilting point; soil moisture exerts a continuous and gradual influence on plant uptake throughout the drying cycle. With both the linear and step-function representations, the water-optimal root depth is more sensitive to changes in precipitation depth than frequency under dry conditions and more sensitive to precipitation frequency when the climate is wet. Under wet conditions, optimal root depths predicted with the step function show a greater sensitivity to climate than do those based on the linear model. Under dry conditions, the reverse is true; the water-optimal root depth is slightly more sensitive to changes in precipitation when the linear model is employed than when the step function is used. For all

  2. Dredged Illinois River Sediments: Plant Growth and Metal Uptake

    USGS Publications Warehouse

    Darmody, R.G.; Marlin, J.C.; Talbott, J.; Green, R.A.; Brewer, E.F.; Stohr, C.

    2004-01-01

    Sedimentation of the Illinois River in central Illinois has greatly diminished the utility and ecological value of the Peoria Lakes reach of the river. Consequently, a large dredging project has been proposed to improve its wildlife habitat and recreation potential, but disposal of the dredged sediment presents a challenge. Land placement is an attractive option. Previous work in Illinois has demonstrated that sediments are potentially capable of supporting agronomic crops due to their high natural fertility and water holding capacity. However, Illinois River sediments have elevated levels of heavy metals, which may be important if they are used as garden or agricultural soil. A greenhouse experiment was conducted to determine if these sediments could serve as a plant growth medium. A secondary objective was to determine if plants grown on sediments accumulated significant heavy metal concentrations. Our results indicated that lettuce (Lactuca sativa L.), barley (Hordeum vulgare L.), radish (Raphanus sativus L.), tomato (Lycopersicon lycopersicum L.), and snap bean (Phaseolus vulagaris L. var. humillis) grown in sediment and a reference topsoil did not show significant or consistent differences in germination or yields. In addition, there was not a consistent statistically significant difference in metal content among tomatoes grown in sediments, topsoil, or grown locally in gardens. In the other plants grown on sediments, while Cd and Cu in all cases and As in lettuce and snap bean were elevated, levels were below those considered excessive. Results indicate that properly managed, these relatively uncontaminated calcareous sediments can make productive soils and that metal uptake of plants grown in these sediments is generally not a concern.

  3. Enhancement of cadmium uptake by Amaranthus caudatus, an ornamental plant, using tea saponin.

    PubMed

    Cay, Seydahmet

    2016-06-01

    In this study, tea saponin (TS) was extracted from tea camellia seed by microwave-assisted extraction. The potential of TS was compared with ethylenediaminetetracetic acid (EDTA), which is used as a common chemical agent to enhance uptake of cadmium (Cd) by Amaranthus caudatus, an ornamental plant in the natural vegetation of Turkey under pot conditions. The enrichment coefficient (EC) and translocation factor (TF) values were calculated to evaluate the removal efficiency of the TS and EDTA. The results showed that an increase in both TS and EDTA concentration significantly increased Cd uptake by A. caudatus, accumulating Cd in different parts of the plant. Higher EC and TF values obtained from stems, leaves, and inflorescences of A. caudatus showed that this plant might be cultivated and used as a hyperaccumulator in the uptake of Cd from the Cd contaminated soils. Thus, the present technique can efficiently reduce the metal load in the food chain; hence, it could be applied in catchment areas of urban cities where Cd contamination has become an unavoidable factor. PMID:27142816

  4. Simultaneous monitoring of electrical capacitance and water uptake activity of plant root system

    NASA Astrophysics Data System (ADS)

    Cseresnyés, Imre; Takács, Tünde; Füzy, Anna; Rajkai, Kálmán

    2014-10-01

    Pot experiments were designed to test the applicability of root electrical capacitance measurement for in situ monitoring of root water uptake activity by growing cucumber and bean cultivars in a growth chamber. Half of the plants were inoculated with Funneliformis mosseae arbuscular mycorrhizal fungi, while the other half served as non-infected controls. Root electrical capacitance and daily transpiration were monitored during the whole plant ontogeny. Phenology-dependent changes of daily transpiration (related to root water uptake) and root electrical capacitance proved to be similar as they showed upward trends from seedling emergence to the beginning of flowering stage, and thereafter decreased continuously during fruit setting. A few days after arbuscular mycorrhizal fungi-colonization, daily transpiration and root electrical capacitance of infected plants became significantly higher than those of non-infected counterparts, and the relative increment of the measured parameters was greater for the more highly mycorrhizal-dependent bean cultivar compared to that of cucumber. Arbuscular mycorrhizal fungi colonization caused 29 and 69% relative increment in shoot dry mass for cucumbers and beans, respectively. Mycorrhization resulted in 37% increase in root dry mass for beans, but no significant difference was observed for cucumbers. Results indicate the potential of root electrical capacitance measurements for monitoring the changes and differences of root water uptake rate.

  5. Reduced plant uptake of pesticides with biochar additions to soil.

    PubMed

    Yu, Xiang-Yang; Ying, Guang-Guo; Kookana, Rai S

    2009-07-01

    We investigated the effectiveness of two types of biochars in reducing the bioavailability of two soil-applied insecticides (chlorpyrifos and carbofuran) to Spring onion (Allium cepa). The biochars prepared from the pyrolysis of Eucalyptus spp. wood chips at 450 and 850 degrees C (BC850) were thoroughly mixed into the soil to achieve 0%, 0.1%, 0.5% and 1% by soil weight. A spring onion crop was grown for 5 wk in the biochar-amended soils spiked with 50 mgkg(-1) of each pesticide. The loss of both pesticides due to degradation and or sequestration in soils decreased significantly with increasing amounts of biochars in soil. Over 35 d, 86-88% of the pesticides were lost from the control soil, whereas it was only 51% of carbofuran and 44% of chlorpyrifos from the soil amended with 1.0% BC850. Despite greater persistence of the pesticide residues in biochar-amended soils, the plant uptake of pesticides decreased markedly with increasing biochar content of the soil. With 1% of BC850 soil amendment, the total plant residues for chlorpyrifos and carbofuran decreased to 10% and 25% of that in the control treatment, respectively. The BC850 was particularly effective in reducing phytoavailability of both pesticides from soil, due to its high affinity for and ability to sequester pesticide residues. PMID:19419749

  6. How do microorganisms influence trace element uptake by plants? Screening in an agar model rhizosphere.

    NASA Astrophysics Data System (ADS)

    Marchetti, M.; Robinson, B. H.; Evangelou, M. W. H.; Vachey, A.; Schwitzguebel, J. P.; Bernier-Latmani, R.; Schulin, R.

    2009-04-01

    sterile, transparent plastic boxes, whose lid was equipped with a filter allowing gas exchanges without contamination by external microorganisms. The seed surface was sterilised and the plants grew one week in agar before their rhizosphere was inoculated with LB broth containing a pure bacterial strain or agar plugs colonized by fungal hyphae. We tested 14 strains, with 5 replicates per treatment and a control where the system was inoculated with sterile LB broth. The plants grew for 2 weeks in a climate chamber and their shoots were analysed for their TEs by ICP-OES. Samples of agar and roots were collected to confirm microbial colonization of the rhizosphere, respectively sterile conditions in the control treatments. Concerning the method development, the plants grew without visible toxicity in all the boxes, and the analysis of root and agar samples indicated that the controls were sterile and the strains inoculated were growing along the roots. More than 90% of the TE and nutrients added to the system were in the liquid fraction of the agar medium, thus available for root uptake. The screening showed that the microorganisms in general decreased TE uptake by wheat and sunflower, although some of them had an opposite effect on the plants. However, with the same plant species, the microorganisms had a consistent effect on all TE tested, i.e. a given single strain caused the same effect (increase or decrease of TE uptake) on all TE tested. In sunflower, 3 microorganisms (Paenibacillus polymyxa, Pythium ultimum and Rhizoctonia solani) decreased Cu and Zn uptake by 50% compared to the control treatment. These three species are common soil microorganisms. All three are known to exude auxin, a phytohormone. This hormone can modify root morphology and physiology and thus may affect TE uptake by plants. R. solani and P. ultimum are root pathogens. Their effect was opposite to what we expected. If roots are damaged, TE should have flooded into the plant and accumulate in the

  7. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables.

    PubMed

    Wu, Xiaoqin; Ernst, Frederick; Conkle, Jeremy L; Gan, Jay

    2013-10-01

    Reuse of treated wastewater to irrigate agricultural crops is increasing in many arid and semi-arid areas around the world. The presence of numerous pharmaceutical and personal care products (PPCPs) in treated wastewater and their potential transfer into food produce such as vegetables poses an unknown human health risk. The goal of this study was to identify PPCPs that have a comparatively high potential for plant uptake and translocation. A total of 20 frequently-occurring PPCPs were compared for their accumulation into four staple vegetables (lettuce, spinach, cucumber, and pepper) grown in nutrient solutions containing PPCPs at 0.5 or 5μgL(-1). Triclocarban, fluoxetine, triclosan, and diazepam were found at high levels in roots, while meprobamate, primidone, carbamazepine, dilantin, and diuron exhibited more active translocation from roots to leaves. Root uptake of neutral PPCPs was positively correlated with the pH adjusted log Kow(i.e., log Dow), and was likely driven by chemical adsorption onto the root surfaces. In contrast, translocation from roots to leaves was negatively related to log Dow, suggesting hydrophilicity-regulated transport via xylems. Compounds preferentially sorbed to roots should be further evaluated for their uptake in tuber vegetables (e.g., carrot, radish) under field conditions, while those easily translocated into leaves (e.g., carbamazepine, dilantin) merit focused consideration for leafy and other vegetables (e.g., lettuce, cucumber). However, estimation of dietary intake by humans suggested the implied risks from exposure to PPCPs via wastewater irrigation to be negligible. PMID:23973619

  8. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands.

    PubMed

    Hallin, Sara; Hellman, Maria; Choudhury, Maidul I; Ecke, Frauke

    2015-11-15

    Reactive nitrogen (N) species released from undetonated ammonium-nitrate based explosives used in mining or other blasting operations are an emerging environmental problem. Wetlands are frequently used to treat N-contaminated water in temperate climate, but knowledge on plant-microbial interactions and treatment potential in sub-arctic wetlands is limited. Here, we compare the relative importance of plant uptake and denitrification among five plant species commonly occurring in sub-arctic wetlands for removal of N in nitrate-rich mine drainage in northern Sweden. Nitrogen uptake and plant associated potential denitrification activity and genetic potential for denitrification based on quantitative PCR of the denitrification genes nirS, nirK, nosZI and nosZII were determined in plants growing both in situ and cultivated in a growth chamber. The growth chamber and in situ studies generated similar results, suggesting high relevance and applicability of results from growth chamber experiments. We identified denitrification as the dominating pathway for N-removal and abundances of denitrification genes were strong indicators of plant associated denitrification activity. The magnitude and direction of the effect differed among the plant species, with the aquatic moss Drepanocladus fluitans showing exceptionally high ratios between denitrification and uptake rates, compared to the other species. However, to acquire realistic estimates of N-removal potential of specific wetlands and their associated plant species, the total plant biomass needs to be considered. The species-specific plant N-uptake and abundance of denitrification genes on the root or plant surfaces were affected by the presence of other plant species, which show that both multi- and inter-trophic interactions are occurring. Future studies on N-removal potential of wetland plant species should consider how to best exploit these interactions in sub-arctic wetlands. PMID:26360231

  9. Anomalous uptake and circulatory characteristics of the plant-based small RNA MIR2911.

    PubMed

    Yang, Jian; Hotz, Tremearne; Broadnax, LaCassidy; Yarmarkovich, Mark; Elbaz-Younes, Ismail; Hirschi, Kendal D

    2016-01-01

    Inconsistent detection of plant-based dietary small RNAs in circulation has thwarted the use of dietary RNA therapeutics. Here we demonstrate mice consuming diets rich in vegetables displayed enhanced serum levels of the plant specific small RNA MIR2911. Differential centrifugation, size-exclusion chromatography, and proteinase K treatment of plant extracts suggest this RNA resides within a proteinase K-sensitive complex. Plant derived MIR2911 was more bioavailable than the synthetic RNA. Furthermore, MIR2911 exhibited unusual digestive stability compared with other synthetic plant microRNAs. The characteristics of circulating MIR2911 were also unusual as it was not associated with exosomes and fractionated as a soluble complex that was insensitive to proteinase K treatment, consistent with MIR2911 being stabilized by modifications conferred by the host. These results indicate that intrinsic stability and plant-based modifications orchestrate consumer uptake of this anomalous plant based small RNA and invite revisiting plant-based microRNA therapeutic approaches. PMID:27251858

  10. Anomalous uptake and circulatory characteristics of the plant-based small RNA MIR2911

    PubMed Central

    Yang, Jian; Hotz, Tremearne; Broadnax, LaCassidy; Yarmarkovich, Mark; Elbaz-Younes, Ismail; Hirschi, Kendal D.

    2016-01-01

    Inconsistent detection of plant-based dietary small RNAs in circulation has thwarted the use of dietary RNA therapeutics. Here we demonstrate mice consuming diets rich in vegetables displayed enhanced serum levels of the plant specific small RNA MIR2911. Differential centrifugation, size-exclusion chromatography, and proteinase K treatment of plant extracts suggest this RNA resides within a proteinase K-sensitive complex. Plant derived MIR2911 was more bioavailable than the synthetic RNA. Furthermore, MIR2911 exhibited unusual digestive stability compared with other synthetic plant microRNAs. The characteristics of circulating MIR2911 were also unusual as it was not associated with exosomes and fractionated as a soluble complex that was insensitive to proteinase K treatment, consistent with MIR2911 being stabilized by modifications conferred by the host. These results indicate that intrinsic stability and plant-based modifications orchestrate consumer uptake of this anomalous plant based small RNA and invite revisiting plant-based microRNA therapeutic approaches. PMID:27251858

  11. Regional investigations of soil and overburden analysis and plant uptake of metals

    USGS Publications Warehouse

    Gough, L.P.

    1984-01-01

    Regional studies on the bioavailability of metals at native and disturbed sites were conducted over the past seven years by the USGS. The work was concentrated in the Fort Union, Powder River, and Green River coal resource regions where measures of extractable metals in soils were found to have limited use in predicting metal levels in plants. Correlations between Cu, Fe, and Zn in plants and extractable (DTPA, EDTA, and oxalate) or total levels in native A- and C-horizons of soil were occasionally significant. A simple linear model is generally not adequate, however, in estimating element uptake by plants. Prediction capabilities were improved when a number of soil chemical and physical parameters were included as independent variables in a stepwise linear multiple regression analysis; however, never more than 54% of the total variability in the data was explained by the equations for these metals. Soil pH was the most important variable relating soil chemistry to plant chemistry. This relation was always positive and apparently a response to soil levels of metal carbonates and not Fe and Mn oxides. Studies that compared the metal uptake by rehabilitation species to extractable (DTPA) metal levels in mice soils produced similar results. ?? 1984 Science and Technology Letters.

  12. Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences

    NASA Astrophysics Data System (ADS)

    Jarvis, N. J.

    2011-07-01

    Many land surface schemes and simulation models of plant growth designed for practical use employ simple empirical sub-models of root water uptake that cannot adequately reflect the critical role water uptake from sparsely rooted deep subsoil plays in meeting atmospheric transpiration demand in water-limited environments, especially in the presence of shallow groundwater. A failure to account for this so-called "compensatory" water uptake may have serious consequences for both local and global modeling of water and energy fluxes, carbon balances and climate. Some purely empirical compensatory root water uptake models have been proposed, but they are of limited use in global modeling exercises since their parameters cannot be related to measurable soil and vegetation properties. Parsimonious physics-based models of uptake compensation have been developed that require no more parameters than empirical approaches. These models are described and compared from a conceptual point of view and some aspects of their behavior, including the phenomenon of hydraulic lift, are illustrated with the help of example simulations. These analyses demonstrate that the degree of compensation is a function of soil capillarity and the ratio of total effective root length to potential transpiration. Thus, uptake compensation increases as root to leaf area ratios increase, since potential transpiration depends on leaf area. Results of "scenario" simulations for two case studies, one at the local scale (riparian vegetation growing above shallow water tables in seasonally dry or arid climates) and one at a global scale (water balances across an aridity gradient in the continental USA), are presented to illustrate biases in model predictions that arise when water uptake compensation is neglected. In the first case, it is shown that only a compensated model can match the strong relationships between water table depth and leaf area and transpiration observed in riparian forest ecosystems, where

  13. Impact of elemental uptake in the root chemistry of wetland plants.

    PubMed

    Aryal, Rupak; Nirola, Ramkrishna; Beecham, Simon; Kamruzzaman, Mohammad

    2016-09-01

    Plants play a key role in the accumulation of metals in contaminated environment. Ephemeral plants, such as cyperus vaginatus, from the family Cyperaceae have been used in constructed wetlands to alter the biogeochemistry of waterlogged soils. High elemental content in wetlands often induces chemical changes in the root, stem and leaf of wetland plants. Elemental uptake and possible chemical changes in the roots of Cyperus vaginatus was investigated and compared with plants grown away from the wetland. Among the 9 heavy metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) and metalloid (As) measured, with the exception of Mn, all metals had higher content in the plant roots grown within the wetland. This was followed by plants grown near to the wetland that receive stormwater occasionally and then plants grown far from the wetland. The 3-D fluorescence spectra record showed notable differences in the chemical composition of roots grown in the three locations. The spectra combined with parallel factor analysis showed three dominant fluorescence components. Comparison of the fluorescence signatures showed a continuum of spectral properties constrained by the degree of metal contamination. PMID:26709636

  14. Uptake and translocation of Ti from nanoparticles in crops and wetland plants.

    PubMed

    Jacob, Donna L; Borchardt, Joshua D; Navaratnam, Leelaruban; Otte, Marinus L; Bezbaruah, Achintya N

    2013-01-01

    Bioavailability of engineered metal nanoparticles affects uptake in plants, impacts on ecosystems, and phytoremediation. We studied uptake and translocation of Ti in plants when the main source of this metal was TiO2 nanoparticles. Two crops (Phaseolus vulgaris (bean) and Triticum aestivum (wheat)), a wetland species (Rumex crispus, curly dock), and the floating aquatic plant (Elodea canadensis, Canadian waterweed), were grown in nutrient solutions with TiO2 nanoparticles (0, 6, 18 mmol Ti L(-1) for P. vulgaris, T. aestivum, and R. crispus; and 0 and 12 mmol Ti L(-1) for E. canadensis). Also examined in E. canadensis was the influence of TiO2 nanoparticles upon the uptake of Fe, Mn, and Mg, and the influence of P on Ti uptake. For the rooted plants, exposure to TiO2 nanoparticles did not affect biomass production, but significantly increased root Ti sorption and uptake. R. crispus showed translocation of Ti into the shoots. E. canadensis also showed significant uptake of Ti, P in the nutrient solution significantly decreased Ti uptake, and the uptake patterns of Mn and Mg were altered. Ti from nano-Ti was bioavailable to plants, thus showing the potential for cycling in ecosystems and for phytoremediation, particularly where water is the main carrier. PMID:23487992

  15. Calibration of a plant uptake model with plant- and site-specific data for uptake of chlorinated organic compounds into radish.

    PubMed

    Trapp, Stefan

    2015-01-01

    The uptake of organic pollutants by plants is an important process for the exposure of humans to toxic chemicals. The objective of this study was to calibrate the parameters of a common plant uptake model by comparison to experimental results from literature. Radish was grown in contaminated soil (maximum concentration 2.9 mg/kg dw) and control plot. Uptake of HCHs, HCB, PCBs, and DDT plus metabolites was studied (log K(ow) 3.66 to 7.18). Measured BCF roots-to-soil were near 1 g/g dw on the control plot and about factor 10 lower for the contaminated soil. With default data set, uptake into roots of most substances was under predicted up to factor 100. The use of site-specific data improved the predictions. Consideration of uptake from air into radish bulbs was relevant for PCBs. Measured BCF shoots ranged from <0.1 to >10 g/g dw and were much better predicted by the standard model. The results with default data and site-specific data were similar. Deposition from air was the major uptake mechanism into shoots. Transport from soil with resuspended particles was only relevant for the contaminated plot. The calculation results (in dry weight) were most sensitive to changes of the water content of plant tissue. PMID:25426767

  16. Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils.

    PubMed

    Vinichuk, M; Mårtensson, A; Ericsson, T; Rosén, K

    2013-01-01

    The potential use of mycorrhiza as a bioremediation agent for soils contaminated by radiocesium was evaluated in a greenhouse experiment. The uptake of (137)Cs by cucumber, perennial ryegrass, and sunflower after inoculation with a commercial arbuscular mycorrhizal (AM) product in soils contaminated with (137)Cs was investigated, with non-mycorrhizal quinoa included as a "reference" plant. The effect of cucumber and ryegrass inoculation with AM fungi on (137)Cs uptake was inconsistent. The effect of AM fungi was most pronounced in sunflower: both plant biomass and (137)Cs uptake increased on loamy sand and loamy soils. The total (137)Cs activity accumulated within AM host sunflower on loamy sand and loamy soils was 2.4 and 3.2-fold higher than in non-inoculated plants. Although the enhanced uptake of (137)Cs by quinoa plants on loamy soil inoculated by the AM fungi was observed, the infection of the fungi to the plants was not confirmed. PMID:22939950

  17. Plant iodine-131 uptake in relation to root concentration as measured in minirhizotron by video camera:

    SciTech Connect

    Moss, K.J.

    1990-09-01

    Glass viewing tubes (minirhizotrons) were placed in the soil beneath native perennial bunchgrass (Agropyron spicatum). The tubes provided access for observing and quantifying plant roots with a miniature video camera and soil moisture estimates by neutron hydroprobe. The radiotracer I-131 was delivered to the root zone at three depths with differing root concentrations. The plant was subsequently sampled and analyzed for I-131. Plant uptake was greater when I-131 was applied at soil depths with higher root concentrations. When I-131 was applied at soil depths with lower root concentrations, plant uptake was less. However, the relationship between root concentration and plant uptake was not a direct one. When I-131 was delivered to deeper soil depths with low root concentrations, the quantity of roots there appeared to be less effective in uptake than the same quantity of roots at shallow soil depths with high root concentration. 29 refs., 6 figs., 11 tabs.

  18. Cyberinfrastructure for (Comparative) Plant Genome Research Through PlantGDB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate and comprehensive gene structure annotation in emerging and assembled genomes is fundamental to comparative, functional, and translational genomics. We plan to build the cyberinfrastructure necessary for defining and accessing the plant gene space. Our Plant Genetic Data Base (PlantGDB) r...

  19. Improving prediction of metal uptake by Chinese cabbage (Brassica pekinensis L.) based on a soil-plant stepwise analysis.

    PubMed

    Zhang, Sha; Song, Jing; Gao, Hui; Zhang, Qiang; Lv, Ming-Chao; Wang, Shuang; Liu, Gan; Pan, Yun-Yu; Christie, Peter; Sun, Wenjie

    2016-11-01

    It is crucial to develop predictive soil-plant transfer (SPT) models to derive the threshold values of toxic metals in contaminated arable soils. The present study was designed to examine the heavy metal uptake pattern and to improve the prediction of metal uptake by Chinese cabbage grown in agricultural soils with multiple contamination by Cd, Cu, Ni, Pb, and Zn. Pot experiments were performed with 25 historically contaminated soils to determine metal accumulation in different parts of Chinese cabbage. Different soil bioavailable metal fractions were determined using different extractants (0.43M HNO3, 0.01M CaCl2, 0.005M DTPA, and 0.01M LWMOAs), soil moisture samplers, and diffusive gradients in thin films (DGT), and the fractions were compared with shoot metal uptake using both direct and stepwise multiple regression analysis. The stepwise approach significantly improved the prediction of metal uptake by cabbage over the direct approach. Strongly pH dependent or nonlinear relationships were found for the adsorption of root surfaces and in root-shoot uptake processes. Metals were linearly translocated from the root surface to the root. Therefore, the nonlinearity of uptake pattern is an important explanation for the inadequacy of the direct approach in some cases. The stepwise approach offers an alternative and robust method to study the pattern of metal uptake by Chinese cabbage (Brassica pekinensis L.). PMID:27450258

  20. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions.

    PubMed

    Gebremikael, Mesfin T; Steel, Hanne; Buchan, David; Bert, Wim; De Neve, Stefaan

    2016-01-01

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota. PMID:27605154

  1. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions

    PubMed Central

    Gebremikael, Mesfin T.; Steel, Hanne; Buchan, David; Bert, Wim; De Neve, Stefaan

    2016-01-01

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota. PMID:27605154

  2. Comparative effects of Aroclor 1254 (polychlorinated biphenyls) and phenanthrene on glucose uptake by freshwater microbial populations.

    PubMed Central

    Sayler, G S; Lund, L C; Shiaris, M P; Sherrill, T W; Perkins, R E

    1979-01-01

    The effects of polychlorinated biphenyl (PCB) and phenanthrene stress on glucose uptake by natural microbial populations were examined by the heterotrophic potential technique. Temporal and spatial distributions in glucose uptake velocities were examined for natural samples as well as PCB- and phenanthrene-stressed samples. Statistical analysis indicated significant variability among the various samples. It was demonstrated that the environmental variables contributed significantly to the variability in uptake kinetics. Although general trends indicated a PCB-induced stimulation in uptake velocities, these trends were in part masked by sample variability. Data analysis indicated no statistically significant PCB or phenanthrene effect on either total glucose uptake velocities or the proportion of 14CO2 evolved, as compared to natural unstressed samples. PMID:114110

  3. Plant uptake of explosives from contaminated soil at the Joliet Army Ammunition Plant

    SciTech Connect

    Zellmer, S.D.; Schneider, J.F.; Tomczyk, N.A.; Banwart, W.L.; Chen, D.

    1995-04-01

    Explosives and their degradation products may enter the animal and human food chains through plants grown on soils contaminated with explosives. Soil and plant samples were collected from the Group 61 area at the Joliet Army Ammunition Plant and analyzed to determine the extent to which 2,4,6-trinitrotoluene (TNT) and its degradation products are taken up by existing vegetation and crops growing on contaminated soils. Neither TNT nor its degradation products was detected in any of the aboveground plant organs of existing vegetation. Oat (Avena sativa L.) and perennial ryegrass (Lolium perenne L.) were planted on TNT-contaminated soils amended with three levels of chopped grass hay. Extractable TNT concentrations in hay-amended soils were monitored for almost 1 year. Crop establishment and growth improved with increased levels of hay amendment, but TNT uptake was not affected or detected in any aboveground crop organs. Evidence was found to indicate that soil manipulation and hay addition may reduce extractable TNT concentration in soils, but the wide variations in TNT concentrations in these soils prevented development of conclusive evidence regarding reduction of extractable TNT concentrations. Results from this study suggest that vegetation grown on TNT-contaminated soils is not a major health concern because TNT and its degradation products were not detected in aboveground plant organs. However, low concentrations of TNT, 4-amino-2,6-dinitrotoluene, and 2-amino-4,6-dinitrotoluene were detected in or on some existing vegetation and crop roots. 21 refs., 10 figs., 26 tabs.

  4. A SIMPLE MODEL FOR THE UPTAKE, TRANSLOCATION, AND ACCUMULATION OF PERCHLORATE IN TOBACCO PLANTS

    EPA Science Inventory

    A simple mathematical model is being developed to describe the uptake, translocation, and accumulation of perchlorate in tobacco plants. The model defines a plant as a set of compartments, consisting of mass balance differential equations and plant-specific physiological paramet...

  5. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants--Critical review.

    PubMed

    Schwab, Fabienne; Zhai, Guangshu; Kern, Meaghan; Turner, Amalia; Schnoor, Jerald L; Wiesner, Mark R

    2016-01-01

    Uptake, transport and toxicity of engineered nanomaterials (ENMs) into plant cells are complex processes that are currently still not well understood. Parts of this problem are the multifaceted plant anatomy, and analytical challenges to visualize and quantify ENMs in plants. We critically reviewed the currently known ENM uptake, translocation, and accumulation processes in plants. A vast number of studies showed uptake, clogging, or translocation in the apoplast of plants, most notably of nanoparticles with diameters much larger than the commonly assumed size exclusion limit of the cell walls of ∼5-20 nm. Plants that tended to translocate less ENMs were those with low transpiration, drought-tolerance, tough cell wall architecture, and tall growth. In the absence of toxicity, accumulation was often linearly proportional to exposure concentration. Further important factors strongly affecting ENM internalization are the cell wall composition, mucilage, symbiotic microorganisms (mycorrhiza), the absence of a cuticle (submerged plants) and stomata aperture. Mostly unexplored are the roles of root hairs, leaf repellency, pit membrane porosity, xylem segmentation, wounding, lateral roots, nodes, the Casparian band, hydathodes, lenticels and trichomes. The next steps towards a realistic risk assessment of nanoparticles in plants are to measure ENM uptake rates, the size exclusion limit of the apoplast and to unravel plant physiological features favoring uptake. PMID:26067571

  6. UPTAKE AND PHYTOTRANSFORMATION OF ORGANOPHOSPHORUS PESTICIDES BY AXENICALLY CULTIVATED AQUATIC PLANTS

    EPA Science Inventory

    The uptake and phytotransformation of organophosphorus (OP) pesticides (malathion, demeton-S-methyl, and crufomate) was investigated in vitro using the axenically aquatic cultivated plants parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza L.), and elodea (E...

  7. Hydraulic resistance of a plant root to water-uptake: A slender-body theory.

    PubMed

    Chen, Kang Ping

    2016-05-01

    A slender-body theory for calculating the hydraulic resistance of a single plant root is developed. The work provides an in-depth discussion on the procedure and the assumptions involved in calculating a root׳s internal hydraulic resistance as well as the physical and the mathematical aspects of the external three-dimensional flow around the tip of a root in a saturated soil and how this flow pattern enhances uptake and reduces hydraulic resistance. Analytical solutions for the flux density distribution on the stele-cortex interface, local water-uptake profile inside the stele core, the overall water-uptake at the base of the stele, and the total hydraulic resistance of a root are obtained in the slender-body limit. It is shown that a key parameter controlling a root's hydraulic resistance is the dimensionless axial conductivity in the stele, which depends on the permeabilities of the stele and the cortex as well as the root's radial and axial dimensions. Three-dimensional tip effect reduces a root's hydraulic resistance by as much as 36% when compared to the radial flow theory of Landsberg and Fowkes. In addition, the total hydraulic resistance cannot be generally decomposed into the direct sum of a radial resistance and an axial resistance. PMID:26920247

  8. Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO 2 and drought

    NASA Astrophysics Data System (ADS)

    Andresen, Louise C.; Michelsen, Anders; Jonasson, Sven; Beier, Claus; Ambus, Per

    2009-11-01

    Temperate terrestrial ecosystems are currently exposed to climatic and air quality changes with increased atmospheric CO 2, increased temperature and prolonged droughts. The responses of natural ecosystems to these changes are focus for research, due to the potential feedbacks to the climate. We here present results from a field experiment in which the effects of these three climate change factors are investigated solely and in all combinations at a temperate heath dominated by heather ( Calluna vulgaris) and wavy hair-grass ( Deschampsia flexuosa). Climate induced increases in plant production may increase plant root exudation of dissolved organic compounds such as amino acids, and the release of amino acids during decomposition of organic matter. Such free amino acids in soil serve as substrates for soil microorganisms and are also acquired as nutrients directly by plants. We investigated the magnitude of the response to the potential climate change treatments on uptake of organic nitrogen in an in situ pulse labelling experiment with 15N 13C 2-labelled glycine (amino acid) injected into the soil. In situ root nitrogen acquisition by grasses responded significantly to the climate change treatments, with larger 15N uptake in response to warming and elevated CO 2 but not additively when the treatments were combined. Also, a larger grass leaf biomass in the combined T and CO 2 treatment than in individual treatments suggest that responses to combined climate change factors cannot be predicted from the responses to single factors treatments. The soil microbes were superior to plants in the short-term competition for the added glycine, as indicated by an 18 times larger 15N recovery in the microbial biomass compared to the plant biomass. The soil microbes acquired glycine largely as an intact compound (87%), with no effects of the multi factorial climate change treatment through one year.

  9. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants

    USGS Publications Warehouse

    Li, H.; Sheng, G.; Chiou, C.T.; Xu, O.

    2005-01-01

    Plant uptake is one of the environmental processes that influence contaminant fate. Understanding the magnitude and rate of plant uptake is critical to assessing potential crop contamination and the development of phytoremediation technologies. We determined (1) the partition-dominated equilibrium sorption of lindane (LDN) and hexachlorobenzene (HCB) by roots and shoots of wheat seedlings, (2) the kinetic uptake of LDN and HCB by roots and shoots of wheat seedlings, (3) the kinetic uptake of HCB, tetrachloroethylene (PCE), and trichloroethylene (TCE) by roots and shoots of ryegrass seedlings, and (4) the lipid, carbohydrate, and water contents of the plants. Although the determined sorption and the plant composition together suggest the predominant role of plant lipids for the sorption of LDN and HCB, the predicted partition with lipids of LDN and HCB using the octanol-water partition coefficients is notably lower than the measured sorption, due presumably to underestimation of the plant lipid contents and to the fact that octanol is less effective as a partition medium than plant lipids. The equilibrium sorption or the estimated partition can be viewed as the kinetic uptake limits. The uptakes of LDN, PCE, and TCE from water at fixed concentrations increased with exposure time in approach to steady states. The uptake of HCB did not reach a plateau within the tested time because of its exceptionally high partition coefficient. In all of the cases, the observed uptakes were lower than their respective limits, due presumably to contaminant dissipation in and limited water transpiration by the plants. ?? 2005 American Chemical Society.

  10. A Series RCL Circuit Theory for Analyzing Non-Steady-State Water Uptake of Maize Plants

    PubMed Central

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-01-01

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths. PMID:25335512

  11. A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants.

    PubMed

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-01-01

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths. PMID:25335512

  12. A Series RCL Circuit Theory for Analyzing Non-Steady-State Water Uptake of Maize Plants

    NASA Astrophysics Data System (ADS)

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-10-01

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.

  13. Utilization of a Model for Uptake of Cadmium by Plants as a Phytoremediation Assessment Tool

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Furbish, D. J.; Clarke, J.

    2008-12-01

    Some traditional methods of environmental remediation, such as removal and disposal of contaminated soil, are loosing economic favor and public acceptance, while others, such as in situ phytoremediation, are being carefully examined because of their attractiveness as environmentally friendly, low-cost solutions to site clean-up. The success of phytoremediation strategies, however, hinges on the ability of selected plants, or plant communities, to effectively uptake, accumulate and tolerate targeted contaminants. Heavy metals, specifically cadmium (Cd), are not essential nutrients to plants. However, chemically similar zinc (Zn) is a micronutrient and is actively taken up by hyperaccumulators. For this reason, the mechanisms involved in uptake of Cd parallel those of Zn. Ideally, Cd would be allocated to the stem, leaf, and/or flower, where it becomes harvestable. Our modeling work simulates the uptake and the storage of Cd in a growing hyperaccumulator. After uptake, Cd is partitioned between adsorption to plant tissue and upward movement to leaves driven by transpiration. Uptake, adsorption and transport are also regulated by phytotoxicity. Simulations suggest that a young plant with small biomass can quickly reach phytotoxicity, which shuts down the normal operation of the plant. Conversely, mature plants on a mildly contaminated site, if harvested before the plants die due to phytotoxicity or natural cause, not only survive but may occasionally thrive. The immediate aim is to estimate the effectiveness and limitations of Cd uptake by hyperaccumulators. The eventual goal of this study is to expand the model in spatial and temporal scales, from individual plants to the community scale, and from one harvest interval to several generations. Understanding the interface between physical and biological processes, specifically the uptake and release of contaminants, provides scientists and engineers tools to assess whether phytoremediation is a reasonable strategy for a

  14. Phytofiltration of arsenic and cadmium by using an aquatic plant, Micranthemum umbrosum: phytotoxicity, uptake kinetics, and mechanism.

    PubMed

    Islam, Md Shariful; Saito, Takeshi; Kurasaki, Masaaki

    2015-02-01

    Arsenic (As) and cadmium (Cd) are noxious and carcinogenic pollutants that can be removed from water by using emerging, ecofriendly, phytofiltration technology that employs Micranthemum umbrosum. After culturing M. umbrosum for 7 days in a hydroponic experiment, accumulation of 1219±44.11 µg As g(-1) and 799.40±30.95 µg Cd g(-1) were observed in the leaves, from 1000 µg As L(-1) and 1000 µg Cd L(-1) of water, respectively. Plant and water samples were analyzed for assessing the As and Cd accumulations, translocations, phytotoxic effects, uptake mechanisms and kinetics, and for evaluating the potential of M. umbrosum in As and Cd phytofiltration. The uptake pattern was leaf>stem>root for both pollutants. The plant showed higher resistance to As than to that to Cd. Uptake of inorganic As species was much greater than that of organic As and was found at above the substrate concentration. However, Cd showed similar uptake pattern to that of inorganic As species, and the data was better fit to a non-linear than a linear model. Low molecular weight substances that have thiol group(s) may be responsible for the binding of As in plants whereas Cd showed a different mechanism to that of As. M. umbrosum showed good As phytofiltration capabilities without any phytotoxic effects, but it was found to be a moderate accumulator of Cd with some phytotoxic effect compare to some other previously studied plant. PMID:25463871

  15. Relative humidity: important modifier of pollutant uptake by plants

    SciTech Connect

    McLaughlin, S.B.; Taylor, G.E.

    1981-01-09

    Laboratory measurements of foliar uptake of sulfur dioxide and ozone by red kidney beans demonstrated a strong effect of relative humidity on internal pollutant dose. Foliar uptake was enhanced two- to threefold for sulfur dioxide and three- to fourfold for ozone by an increase in relative humidity from 35 to 75 percent. For the same exposure concentration, vegetation growing in humid areas (such as the eastern United States) may experience a significantly greater internal flux of pollutants than that in more arid regions. 22 references, 1 figure, 1 table.

  16. Phytotoxicity of salt and plant salt uptake: Modeling ecohydrological feedback mechanisms

    NASA Astrophysics Data System (ADS)

    Bauer-Gottwein, Peter; Rasmussen, Nikolaj F.; Feificova, Dagmar; Trapp, Stefan

    2008-04-01

    A new model of phytotoxicity of salt and plant salt uptake is presented and is coupled to an existing three-dimensional groundwater simulation model. The implementation of phytotoxicity and salt uptake relationships is based on experimental findings from willow trees grown in hydroponic solution. The data confirm an s-shaped phytotoxicity relationship as found in previous studies. Uptake data were explained assuming steady state salt concentration in plant roots, passive salt transport into the roots, and active enzymatic removal of salt from plant roots. On the one hand, transpiration strongly depends on groundwater salinity (phytotoxicity); on the other hand, transpiration significantly changes the groundwater salinity (uptake). This feedback loop generates interesting dynamic phenomena in hydrological systems that are dominated by transpiration and are influenced by significant salinity gradients. Generic simulations are performed for the Okavango island system and are shown to reproduce essential phenomena observed in nature.

  17. Mapping the metal uptake in plants from Jasper Ridge Biological Preserve using synchrotron micro-focused X-ray fluorescence spectroscopy

    SciTech Connect

    Lo, Allison

    2015-08-20

    Serpentine soil originates in the Earth’s mantle and contains high concentrations of potentially toxic transition metals. Although serpentine soil limits plant growth, endemic and adapted plants at Jasper Ridge Biological Preserve, located behind SLAC National Accelerator Laboratory, can tolerate these conditions. Serpentine soil and seeds belonging to native California and invasive plants were collected at Jasper Ridge. The seeds were grown hydroponically and on serpentine and potting soil to examine the uptake and distribution of ions in the roots and shoots using synchrotron micro-focused X-ray fluorescence spectroscopy. The results were used to determine differences between serpentine-tolerant plants. Rye grown on potting soil was enriched in Ni, Fe, Mn, and Cr compared to purple needlegrass grown on serpentine soil. Serpentine vegetation equally suppressed the uptake of Mn, Ni, and Fe in the roots and shoots. The uptake of Ca and Mg affected the uptake of other elements such as K, S, and P.

  18. Boron uptake and accumulation by higher plants: A literature review: Final report

    SciTech Connect

    Sposito, G.; Calderone, S.J.

    1988-05-01

    This study provides a review of the literature on boron uptake and accumulation by higher plants, particularly trees. It addresses those aspects of the soil chemistry of boron that are most relevant to uptake by trees, then discusses the plant biochemistry of boron, its uptake and accumulation in plant tissue, and its phytotoxicity symptoms in plant species. The literature reviewed suggests that boron uptake is accomplished by a passive, massflow mechanism, as opposed to a metabolic process, with the most likely chemical form taken up being the neutral complex, H/sub 3/BO/sub 3/. The biochemical role of boron is not well understood, but evidence exists for its involvement with carbohydrate transformations and the control of growth-regulating compounds. Because of the mass-flow uptake mechanism, the distribution of boron in trees is connected intimately with the patterns of transpiration, which are species-dependent. Precise data on the effect of plant genotype on boron uptake, however, were not found in the published literature. The phytotoxicity symptoms of boron in trees also are species-dependent, although a consensus does exist as to the general nature of external symptoms and the basis of boron tolerance.

  19. Differential effect of metals/metalloids on the growth and element uptake of mesquite plants obtained from plants grown at a copper mine tailing and commercial seeds.

    PubMed

    Haque, N; Peralta-Videa, J R; Duarte-Gardea, M; Gardea-Torresdey, J L

    2009-12-01

    The selection of appropriate seeds is essential for the success of phytoremediation/restoration projects. In this research, the growth and elements uptake by the offspring of mesquite plants (Prosopis sp.) grown in a copper mine tailing (site seeds, SS) and plants derived from vendor seeds (VS) was investigated. Plants were grown in a modified Hoagland solution containing a mixture of Cu, Mo, Zn, As(III) and Cr(VI) at 0, 1, 5 and 10 mg L(-1) each. After one week, plants were harvested and the concentration of elements was determined by using ICP-OES. At 1 mg L(-1), plants originated from SS grew faster and longer than control plants (0 mg L(-1)); whereas plants grown from VS had opposite response. At 5 mg L(-1), 50% of the plants grown from VS did not survive, while plants grown from SS had no toxicity effects on growth. Finally, plants grown from VS did not survive at 10 mg L(-1) treatment, whilst 50% of the plants grown from SS survived. The ICP-OES data demonstrated that at 1 mg L(-1) the concentration of all elements in SS plants was significantly higher compared to control plants and VS plants. While at 5 mg L(-1), the shoots of SS plants had significantly more Cu, Mo, As, and Cr. The results suggest that SS could be a better source of plants intended to be used for phytoremediation of soil impacted with Cu, Mo, Zn, As and Cr. PMID:19631524

  20. Temporal variation in the nitrogen uptake competition between plant community and soil microbial community

    NASA Astrophysics Data System (ADS)

    Legay, N.; Lavorel, S.; Personeni, E.; Bataillé, M. P.; Robson, T. M.; Clément, J. C.

    2012-04-01

    1. Subalpine grasslands are characterized by important seasonal variations and like in others cold environments, the existence of seasonal variations of nitrogen (N) dynamics is strongly plausible. It has been shown that plants and microbes were in competition for nitrogen acquisition mainly during the growing season and particularly at plant biomass peak. During snowmelt, plants could benefit from a decrease in competition potential by microbes given a greater N uptake and freeze-thaw cycles restricting microbial growth. In managed grasslands, these probable interactions are furthermore influenced by recent changes in management, and associated modifications in plant and microbial communities. A previous isotope tracing experiment during the biomass peak suggested that in more intensely managed grasslands, plants exerted a greater control over N cycling than microorganisms, and that soil N availability was stimulated by a greater nitrogen uptake by plants and microbes allowing nutrients to be more readily returned to the soil. 2. A pulse of 15N was added to estimate if the dynamics of N uptake between plants and microbes observed at the biomass peak was applicable at snowmelt. We also asked if the modifications of N dynamics observed depend on management activities across four different grassland types representing decreasing management intensities, from formerly cultivated terraces, either mown or only lightly grazed to unterraced permanent grasslands, either mown or only very lightly grazed. 3. In all grasslands, N pools of aboveground plants were smaller in May than in July while root N pools were greater, and the intrinsic plant uptake was 2 at 5 times weaker in May. N microbial pools were higher in May that in July, while microbial N uptake was 10 to 100 times smaller during snowmelt than at the biomass peak. In spite of the fact that microbial N pools were still larger than the plant N pool, in terms of plants vs microbes competition for N, a microbe N

  1. Isotopic discrimination of zinc during root-uptake and cellular incorporation in higher plants

    NASA Astrophysics Data System (ADS)

    Mason, T. F.; Weiss, D. J.; Coles, B. J.; Horstwood, M.; Parrish, R. R.; Zhao, F. J.; Kirk, G. J.

    2003-04-01

    solutions, the depletion from root to shoot is significantly larger with the former (at -0.15 to -0.25 ppm pamu compared with -0.13 to -0.18 ppm pamu). For rice plants cultivated on zinc-sufficient soils, isotopic enrichment from soil to root (+0.25 ppm pamu), and depletion from root to shoot (-0.11 ppm pamu) were observed. However, under zinc-deficient conditions no significant isotopic shifts between soil, root and shoot were found. From these results it is apparent that two or more processes are controlling the zinc isotopic composition of the plant materials: one that favours isotopically heavy zinc (which we tentatively link to isotopic partitioning between species within the nutrient/soil-solutions), and one that favours isotopically light zinc (which is consistent with biologically-mediated uptake and cellular incorporation by plants). The lack of isotopic variability in the zinc-deficient soil system may indicate the predominance of a high-affinity zinc uptake pathway that is not isotopically selective.

  2. Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater.

    PubMed

    Tanoue, Rumi; Sato, Yuri; Motoyama, Miki; Nakagawa, Shuhei; Shinohara, Ryota; Nomiyama, Kei

    2012-10-17

    Land application of recycled manure produced from biosolids and reclaimed wastewater can transfer pharmaceutical chemicals to terrestrial environments, giving rise to potential accumulation of these residues in edible plants. In this study, the potential for plant uptake of 13 pharmaceutical chemicals, and the relation between the accumulation features within the plant and the physicochemical properties were examined by exposing pea and cucumber to an aqueous solution containing pharmaceutical chemicals. Ten of 13 compounds tested were detected in plant leaves and stems. Comparison of the plant uptake characteristics and the octanol-water partition coefficient of pharmaceutical chemicals showed that compounds with an intermediate polarity such as carbamazepine and crotamiton could be easily transported to plant shoots. Moreover, these results suggest the possibility of highly hydrophilic pharmaceutical chemicals such as trimethoprim and sulfonamides to be accumulated in plant roots owing to their low permeability in root cell membranes. PMID:23003104

  3. MODEL OF CHEMICAL UPTAKE BY PLANTS FROM SOIL AND THE ATMOSPHERE

    EPA Science Inventory

    Natural and xenobiotic organic chemicals present in soil, water, and the atmosphere may be taken up by plants. hree-compartment mass balance model of a plant is developed to quantify the uptake of organic chemicals from soil and the atmosphere. he compartments are as follows: roo...

  4. Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.)

    PubMed Central

    Knipfer, Thorsten; Fricke, Wieland

    2011-01-01

    Prior to an assessment of the role of aquaporins in root water uptake, the main path of water movement in different types of root and driving forces during day and night need to be known. In the present study on hydroponically grown barley (Hordeum vulgare L.) the two main root types of 14- to 17-d-old plants were analysed for hydraulic conductivity in dependence of the main driving force (hydrostatic, osmotic). Seminal roots contributed 92% and adventitious roots 8% to plant water uptake. The lower contribution of adventitious compared with seminal roots was associated with a smaller surface area and number of roots per plant and a lower axial hydraulic conductance, and occurred despite a less-developed endodermis. The radial hydraulic conductivity of the two types of root was similar and depended little on the prevailing driving force, suggesting that water uptake occurred along a pathway that involved crossing of membrane(s). Exudation experiments showed that osmotic forces were sufficient to support night-time transpiration, yet transpiration experiments and cuticle permeance data questioned the significance of osmotic forces. During the day, 90% of water uptake was driven by a tension of about –0.15 MPa. PMID:20974734

  5. Comparative analysis of twelve Dothideomycete plant pathogens

    SciTech Connect

    Ohm, Robin; Aerts, Andrea; Salamov, Asaf; Goodwin, Stephen B.; Grigoriev, Igor

    2011-03-11

    The Dothideomycetes are one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related Dothideomycete species can have very diverse host plants. Twelve Dothideomycete genomes have currently been sequenced by the Joint Genome Institute and other sequencing centers. They can be accessed via Mycocosm which has tools for comparative analysis

  6. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    SciTech Connect

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here

  7. Scaling plant nitrogen use and uptake efficiencies in response to nutrient addition in peatlands

    SciTech Connect

    Iversen, Colleen M; Bridgham, Scott; Kellogg, Laurie E.

    2010-01-01

    Nitrogen (N) is the primary growth-limiting nutrient in many terrestrial ecosystems, and therefore plant production per unit N taken up (i.e., N use efficiency, NUE) is a fundamentally important component of ecosystem function. Nitrogen use efficiency comprises two components: N productivity (AN, plant production per peak biomass N content) and the mean residence time of N in plant biomass (MRTN). We utilized a five-year fertilization experiment to examine the manner in which increases in N and phosphorus (P) availability affected plant NUE at multiple biological scales (i.e., from leaf to community level). We fertilized a natural gradient of nutrient-limited peatland ecosystems in the Upper Peninsula of Michigan, USA, with 6 g Nm2yr1, 2 g Pm2yr1, or a combination of N and P. Our objectives were to determine how changes in carbon and N allocation within a plant to leaf and woody tissue and changes in species composition within a community, both above- and belowground, would affect (1) NUE; (2) the adaptive trade-off between the components of NUE; (3) the efficiency with which plants acquired N from the soil (N uptake efficiency); and (4) plant community production per unit soil N availability (N response efficiency, NRE). As expected, N and P addition generally increased aboveground production and N uptake. In particular, P availability strongly affected the way in which plants took up and used N. Nitrogen use efficiency response to nutrient addition was not straightforward. Nitrogen use efficiency differed between leaf and woody tissue, among species, and across the ombrotrophic minerotrophic gradient because plants and communities were adapted to maximize either AN or MRTN, but not both concurrently. Increased N availability strongly decreased plant and community N uptake efficiency, while increased P availability increased N uptake efficiency, particularly in a nitrogen-fixing shrub. Nitrogen uptake efficiency was more important in controlling overall plant

  8. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants

    NASA Astrophysics Data System (ADS)

    Larue, C.; Khodja, H.; Herlin-Boime, N.; Brisset, F.; Flank, A. M.; Fayard, B.; Chaillou, S.; Carrière, M.

    2011-07-01

    Nanoparticles (NP) are introduced in a growing number of commercial products and their production may lead to their release in the environment. Plants may be a potential entry point for NP in the food chain. Up to now, results describing NP phytotoxical effects and plant accumulation are scarce and contradictory. To increase knowledge on titanium dioxide NP (TiO2-NPs) accumulation and impact on plants, we designed a study on three plant species, namely wheat (Triticum aestivum), oilseed rape (Brassica napus) and Arabidopsis thaliana. These plants were exposed in hydroponics to a panel of well-characterized TiO2-NPs, with diameters ranging from 12 to 140 nm, either anatase or rutile. Their accumulation in plant tissues is currently being assessed by complementary imaging techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-X-ray fluorescence (SR-μ-XRF) imaging and micro-particle induced X-ray emission (μ-PIXE) imaging. Moreover, the impact of TiO2-NP exposure on germination rate, root elongation, dry biomass and evapotranspiration is evaluated. Preliminary results are presented here, with data collected on wheat plants exposed to 12 nm and 25 nm anatase TiO2-NPs. These results show that TiO2-NPs are taken up by plants, and do not significantly alter their germination and root elongation. These results underline the necessity of deeper evaluation of nanoparticle ecotoxicity, and particularly on their interaction with plants.

  9. The influence of biological soil crusts on mineral uptake by associated vascular plants

    USGS Publications Warehouse

    Harper, K.T.; Belnap, Jayne

    2001-01-01

    Soil surfaces dominated by cyanobacteria and cyanolichens (such as Collema sp.) are widespread in deserts of the world. The influence of these biological soil crusts on the uptake of bioessential elements is reported for the first time for six seed plants of the deserts of Utah. This sample almost doubles the number of species for which the influence of biological soil crusts on mineral uptake of associated vascular plants is known. These new case studies, and others previously published, demonstrate that cyanobacterial or cyanobacteria- Collema crusts significantly alter uptake by plants of many bioessential elements. In studies now available, these crusts always increase the N content of associated seed plants. Uptake of Cu, K, Mg, and Zn is usually (>70% of reported cases) increased in the presence of the biological soil crusts. Soil crusts are generally negatively associated with Fe and P levels in associated seed plant tissue, while plant tissue levels of Ca, Mn, and Na are positively as often as negatively associated with the presence of soil crusts. Increases in bioessential elements in vascular plant tissue from biologically-crusted areas are greatest for short-lived herbs that are rooted primarily within the surface soil, the horizon most influenced by crustal organisms. The mineral content of a deeply rooted shrub (Coleogyne ramosissima) was less influenced by co-occurrence of biological soil crusts.

  10. Some heavy metals in soils treated with sewage sludge, their effects on yield, and their uptake by plants

    SciTech Connect

    Valdares, J.M.A.S.; Gal, M.; Mingelgrin, U.; Page, A.L.

    1983-01-01

    The possible use of sludge with high heavy metal concentrations and at high rates in calcareous soil was demonstrated in this study. Mixtures of two sludges were added to soils in various proportions up to 4% sludge content. One sludge was rich in Ni and Cd, while the other was relatively poor in heavy metals. Three soils varying in pH from 7.7 to 5.5 were tested. The concentrations of Cd, Ni, Cu and Zn in the DTPA and saturation extracts of the soil-sludge mixtures were determined and correlated with their uptake by plants and the yield of Swiss chard (Beta vulgaris L., cv. Ford Hook Giant) grown on these mixtures. The metal-poor sludge hardly affected the yield of the relatively salt-resistant Swiss chard. The metal-rich sludge reduced the yield drastically in noncalcareous soils after a critical amount of that sludge (1.5%) was added to the soils. Yet, even 4% of this metal-rich sludge increased the yield of Swiss chard, as compared with the sludge-free control in a calcareous soil. The best fit to yield was obtained by multiple regression with metal content in the soil saturation extract. The solubility in soil solution of Cd, Ni and Zn was strongly affected by the pH. The uptake of Ni and Zn by plants was significantly larger in the acid soil than in the calcareous soil. The difference in the uptake of Cd and Cu between the soils was smaller. Plant uptake of the metals was generally predicted better by the total metal addition or concentration in the DPTA extract than by metal concentration in the soil saturation extract. In noncalcaeous soils the total metal addition correlated as well as metal content in the DTPA extracts with the metal concentration in the soil solution, with the uptake by plants and with the yield.

  11. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    PubMed

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels. PMID:27460822

  12. Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants.

    PubMed

    Shenker, M; Fan, T W; Crowley, D E

    2001-01-01

    A constant anthropogenic release of cadmium to the environment has resulted in a continuous buildup of Cd in soils. Uptake and accumulation of Cd in plant tissue and in grains may lead to food chain transfer to humans. Application of synthetic chelates was suggested to increase metal mobilization and facilitate phytoextraction as a means for the remediation of metal-polluted soils. However, most of the chelate-extracted metal may be leached rather than mobilized to plant roots. In contrast to the synthetic chelates added to soils, plant-produced chelators called phytosiderophores (PS) are excreted directly to the rhizosphere. Previous studies have shown that PS facilitate uptake of Zn and Fe by graminaceous plants. In this study, a two-step PS mediation of Cd uptake was hypothesized: (i) extraction and chelation in the soil solution, and (ii) delivery of the chelated Cd to the uptake system of the plant. We examined Cd extraction by PS, the synthetic chelate HEDTA [N-(2-hydroxyethyl)-ethylenediaminetriacetic acid], and a fungal siderophore rhizoferrin from solid-phase Cd phosphate at pH 7.3 with and without Fe competition in the presence of Ca and Mg as additional competing metals. While rhizoferrin did not extract Cd, PS and HEDTA did extract Cd even in the presence of Fe. Yet, uptake of Cd by wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) plants was not significantly influenced by Fe stress, but instead was controlled primarily by Cd2+ activity in solution. These results suggest that even though Cd may be mobilized by PS, there is no significant uptake of the Cd-PS complex by the plant roots. PMID:11790018

  13. Comparing Measures of Fine Root Uptake by Mature Trees: Applications for Determining the Potential Impacts of Climate Change-Induced Soil Freezing on Nutrient Uptake by Sugar Maple and Red Spruce

    NASA Astrophysics Data System (ADS)

    Socci, A. M.; Templer, P. H.

    2008-12-01

    Forests of the northeastern United States are predicted to experience a decrease in the depth and duration of snow pack due to global climate change. Even when coupled with milder winter temperatures, the loss of forest floor insulation can increase soil freezing depth and duration during the winter months. Soil frost leads to increased root mortality and soil nitrate leaching in stands dominated by sugar maple, a dominant tree species of northern hardwood forests. Greater nitrogen losses may be due to reduced nitrogen uptake by plant roots. As nitrogen is an essential nutrient for trees, changes in nitrogen uptake by fine roots may have implications for forest productivity and carbon storage. To test the impact of increased soil freezing on fine root uptake of nutrients from the soil, we established a snow removal experiment in sugar maple and red spruce dominated forests at the Hubbard Brook Experimental Forest in New Hampshire, USA. In the first year of this study, we measured uptake of ammonium (NH4+) and nitrate (NO3-) by fine roots of sugar maple and red spruce during the early (May), peak (July), and late (September) growing season. Individuals of sugar maple were located on paired plots (n=4 reference and snow-removal plots, n= 3 individuals per plot) and sampled for rates of nutrient uptake prior to snow removal. We used both an in situ intact root uptake measurement known as "nitrogen depletion", and an ex situ excised root measurement. Individuals of red spruce (n=1 reference and snow-removal plot, n=3 individuals per plot) were sampled after one winter of snow removal, also using one in situ and one ex situ method of measuring fine root uptake of nutrients. Individuals of sugar maple took up significantly more NH4+ than NO3- during the early growing season, but there was no significant difference between forms of nitrogen taken up during the peak growing season. Individuals of red spruce took up significantly more NH4+ than NO3- during both the early

  14. Estimating plant water uptake source depths with optimized stable water isotope labeling

    NASA Astrophysics Data System (ADS)

    Seeger, Stefan; Weiler, Markus

    2016-04-01

    Depth profiles of pore water stable isotopes in soils in conjunction with measurements of stable water isotopes (SWI) in plant transpiration allow the estimation of the contributions of different soil depths to plant water uptake (PWU).
 However, SWI depth profiles that result from the variations of SWI in natural precipitation may lead to highly ambiguous results, i.e. the same SWI signature in transpiration could result from different PWU patterns or SWI depth profiles. The aim of this study was to find an optimal stable water isotope depth profile to estimate plant water uptake patterns and to compare different PWU source depth estimation methods. We used a new soil water transport model including fractionation effects of SWI and exchange between the vapor and liquid phase to simulate different irrigation scenarios. Different amounts of water with differing SWI signatures (glacier melt water, summer precipitation water, deuterated water) were applied in order to obtain a wide variety of SWI depth profiles. Based on these simulated SWI depth profiles and a set of hypothetical PWU patterns, the theoretical SWI signatures of the respective plant transpiration were computed. In the next step, two methods - Bayesian isotope mixing models (BIMs) and optimization of a parametric distribution function (beta function) - were used to estimate the PWU patterns from the different SWI depth profiles and their respective SWI signatures in the resulting transpiration. Eventually, the estimated and computed profiles were compared to find the best SWI depth profile and the best method. The results showed, that compared to naturally occurring SWI depth profiles, the application of multiple, in terms of SWI, distinct labeling pulses greatly improves the possible spatial resolution and at the same time reduces the uncertainty of PWU estimates.
 For the PWU patterns which were assumed for this study, PWU pattern estimates based on an optimized parametric distribution function

  15. Contaminated agricultural soils: Trace-elements speciation their phytoavailability and their uptake by flax plants

    NASA Astrophysics Data System (ADS)

    Legras, M.; Kharbouch, F.; Giron, F.; Bert, F.; Llorens, J.-M.

    2003-05-01

    Flax seeds are used in animal food because of their high content in Omega 3. A number of trace-elements (TEs) - essential as micronutrients, however toxic at supraoptimal concentrations - can accumulate in this plant at quantities incompatible with their introduction in food chain. In order to control this risk and evaluate the uptake of TEs, it is necessary to assess the contents of various species of TEs in soils and plants (each organ and total contents). We were mainly interested in evaluating the availability of Cd, Cu, Ni, Pb and Zn in soils on which flax were grown. Two situations have been compared: the first corresponds to fields into which some sewage sludge were brought in agronomie doses and the second corresponds to plots of land irrigated by waste water over a 100 years period. We are currently performing TEs extractions from soils and plants using different methods : the data of sequential and total extractions (assisted by microwaves) are presented. We have studied two flax varieties in four stages of culture (sowing, stage 10cm. tlowering, maturation). The content, speciation of TEs in soils as well as their transfer in flax seeds are discussed.

  16. [Research advances in uptake, translocation, accumulation and detoxification of Pb in plants].

    PubMed

    Duan, De-Chao; Yu, Ming-Ge; Shi, Ji-Yan

    2014-01-01

    Contamination of soils by lead (Pb) is of widespread occurrence because of the industrialization, urbanization, mining, and many other anthropogenic activities. It is urgent and necessary for scientists to uncover the mechanisms of uptake, translocation, accumulation and detoxification of Pb in plants for the following two reasons. First, it helps target and regulate the key process of Pb uptake by crops and vegetables and minimize the threat of Pb introduction to the food chain. Second, it helps cultivate Pb hyperaccumulating plants that can absorb and sequester excessive amounts from contaminated soils in their biomass without incurring damage to basic metabolic functions. The purpose of this review was to summarize the research advances in uptake, translocation and accumulation of Pb in plants and address the mechanisms by which plants or plant systems detoxify Pb. The further researches on the foliar uptake, the interactions between soil components and plant cell wall, as well as the integrated technologies for phytoremediation of Pb-contaminated soils were prospected. PMID:24765873

  17. Gramene: a growing plant comparative genomics resource

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gramene (www.gramene.org) is a curated genetic, genomic and comparative genome analysis resource for the major crop species, such as rice, maize, wheat and many other plant (mainly grass) species. Gramene is an open-source project, with all data and software freely downloadable through the ftp site ...

  18. Gramene 2013: Comparative plant genomics resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework fo...

  19. [Impact of dissolved organic matter on plant uptake of phenanthrene and its mechanisms].

    PubMed

    Zhan, Xin-hua; Zhou, Li-xiang; Wan, Yin-jing; Jiang, Ting-hui

    2006-09-01

    Hydroponic assays were conducted to investigate the influence of dissolved organic matter on uptake of phenanthrene by wheat as well as its mechanisms. The results showed that, under hydroponic condition, phenanthrene impairment of plant growth occurred with wheat growth inhibited rate of 18.01%. The impairment would be greatly enhanced in the presence of dissolved organic matter (DOM) derived from pig manure, and the inhibited rate increased to 24.38%. Wheat could uptake and accumulate phenanthrene in the nutrient solution, which could be escalated by DOM, as indicated by wheat root bioconcentration factor being increased to 37.63 L x kg(-1) in the presence of DOM from 2.84 L x kg(-1) in the absence of DOM. At the same time, DOM could facilitate phenanthrene translocation from plant roots to the upper. As a result, the pH value of nutrient solution could increase by more than 1 unit when the co-existence of DOM and phenanthrene occurred in solution, suggesting that H+ -phenanthrene cotransport system is involved in the uptake of phenanthrene by plants. A synergism was also found between wheat uptakes of phenanthrene and inorganic nutrients, Moreover, DOM accelerated markedly the synergism. It is concluded that DOM affects the uptake of phenanthrene by plants and the environmental behaviors of phenanthrene. PMID:17117650

  20. Effect of selenite and selenate on plant uptake of cadmium by maize (zea mays)

    SciTech Connect

    Shanker, K.; Mishra, S.; Srivastava, S.

    1996-03-01

    Selenium has been reported to confer tolerance to toxicity of heavy metals including cadmium, a highly toxic and non essential heavy metal, which enters the food chain via plant uptake from soils. Selenium reduces availability of cadmium to plants along with other aspects of its toxicokinetics. When plants are supplied with selenite, selenium concentrations in the xylem exudate are lower than selenate. Most of the selenate was transported as selenate and unidentified organic Se compounds. In contrast, Se distribution among various Se fractions within plants does not depend significantly on whether selenite or selenate was used. Selenium has a strong tendency to form complexes with heavy metals like Cd, Hg, Ag and Tl. It has been suggested that the protective effects of selenium are due to the formation of non toxic Se-metal complexes, although the mechanism by which this protective effect is exerted remains unclear. Studies on the effect of selenium (selenite) and cadmium additions to the soil on their concentrations in lettuce and wheat has indicated the role of selenite in reduction of cadmium uptake. The cletoxifying effect of sodium selenite on cadmium ion in the freshwater fish Potyacuthus cupanus has been reported. The discovery that an element like selenium counteracts the toxicity, chemical carcinogenesis and reduces the plant uptake of other toxic metals, highlights the possibility of existence of a Se-metal interaction mechanism in soil plant systems. The uptake and translocation of root-absorbed chromium supplied through irrigation in the trivalent and hexavalant states in various parts of the onion plant (Allium cepa) grown in soil and sand culture has been recently reported by us. In continuation of that, this preliminary report describes the effect of selenite and selenate pretreatment on the uptake of cadmium in the maize plant (Zea mays).

  1. Mesoscopic aspects of root water uptake modeling - Hydraulic resistances and root geometry interpretations in plant transpiration analysis

    NASA Astrophysics Data System (ADS)

    Vogel, Tomas; Votrubova, Jana; Dusek, Jaromir; Dohnal, Michal

    2016-02-01

    In the context of soil water flow modeling, root water uptake is often evaluated based on water potential difference between the soil and the plant (the water potential gradient approach). Root water uptake rate is modulated by hydraulic resistance of both the root itself, and the soil in the root vicinity. The soil hydraulic resistance is a function of actual soil water content and can be assessed assuming radial axisymmetric water flow toward a single root (at the mesoscopic scale). In the present study, three approximate solutions of mesoscopic root water uptake - finite difference approximation, steady-state solution, and steady-rate solution - are examined regarding their ability to capture the pressure head variations in the root vicinity. Insignificance of their differences when implemented in the macroscopic soil water flow model is demonstrated using the critical root water uptake concept. Subsequently, macroscopic simulations of coupled soil water flow and root water uptake are presented for a forest site under temperate humid climate. Predicted soil water pressure heads and actual transpiration rates are compared with observed data. Scenario simulations illustrate uncertainties associated with estimates of root geometrical and hydraulic properties. Regarding the actual transpiration prediction, the correct characterization of active root system geometry and hydraulic properties seems far more important than the choice of a particular mesoscopic model.

  2. COMPARATIVE KINETIC STUDIES OF PHOSPHATE-LIMITED GROWTH AND PHOSPHATE UPTAKE IN PHYTOPLANKTON IN CONTINUOUS CULTURE

    EPA Science Inventory

    A comparative kinetic study of phosphate-limited growth and phosphate uptake was carried out in chemostat cultures of Anabaena flos-aquae Lyng. Breb., Ankistrodesmus falcatus (Corda) Ralfs, Asterionella formosa Hass., Fragilaria crotonensis Kitt., and Microcystis sp. Lemm. For ea...

  3. COMPARATIVE KINETIC STUDIES OF NITRATE-LIMITED GROWTH AND NITRATE UPTAKE IN PHYTOPLANKTON IN CONTINUOUS CULTURE

    EPA Science Inventory

    A comparative kinetic study of nitrate-limited growth and nitrate uptake was carried out in chemostat cultures of Ankistrodesmus falcatus, Asterionella formosa, Fragilaria crotonensis. In each species growth rate (microgram) was related to total cell nitrogen or cell quota (q) by...

  4. Simultaneous Simulations of Uptake in Plants and Leaching to Groundwater of Cadmium and Lead for Arable Land Amended with Compost or Farmyard Manure

    PubMed Central

    Legind, Charlotte N.; Rein, Arno; Serre, Jeanne; Brochier, Violaine; Haudin, Claire-Sophie; Cambier, Philippe; Houot, Sabine; Trapp, Stefan

    2012-01-01

    The water budget of soil, the uptake in plants and the leaching to groundwater of cadmium (Cd) and lead (Pb) were simulated simultaneously using a physiological plant uptake model and a tipping buckets water and solute transport model for soil. Simulations were compared to results from a ten-year experimental field study, where four organic amendments were applied every second year. Predicted concentrations slightly decreased (Cd) or stagnated (Pb) in control soils, but increased in amended soils by about 10% (Cd) and 6% to 18% (Pb). Estimated plant uptake was lower in amended plots, due to an increase of Kd (dry soil to water partition coefficient). Predicted concentrations in plants were close to measured levels in plant residues (straw), but higher than measured concentrations in grains. Initially, Pb was mainly predicted to deposit from air into plants (82% in 1998); the next years, uptake from soil became dominating (30% from air in 2006), because of decreasing levels in air. For Cd, predicted uptake from air into plants was negligible (1–5%). PMID:23056555

  5. The uptake of TcO-4 by plants: A mathematical description

    SciTech Connect

    Van Loon, L.R.; Desmet, G.M.; Cremers, A. )

    1989-08-01

    A model describing the uptake of TcO-4 by spinach plants was developed. The equation relates both plant and soil parameters (e.g., growth, metabolism, concentration of TcO-4 and composition of the growth medium) to the concentration of Tc in the shoot of the plant. As the soil solution is the medium from which plants obtain nutrients and non-nutrients, the modeling parameters have been obtained from uptake experiments using nutrient solutions (= simulated soil solutions) as the growth medium. Two important model assumptions are: (1) that an equilibrium exists between TcO-4 in the plant and the growth medium and (2) that the leaf TcO-4 metabolism is a pseudofirst order reaction occurring in a non-constant volume.

  6. Plant uptake of cations under nutrient limitation: An environmental tracer study using Ca/Sr and K/Rb ratios

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Keller, C. K.; Stacks, D.; Grant, M.; Harsh, J. B.; Letourneau, M.; Gill, R. A.; Balogh-Brunstad, Z.; Thomashow, L.; Dohnalkova, A.

    2012-12-01

    Vascular plant growth builds soils and ecosystem nutrient capital by sequestering and partitioning atmospheric CO2 into organic matter and continental runoff and driving terrestrial water and energy balances. Plant root-system functions, e.g. nutrient mobilization and uptake, are altered by environmental stress. However, the stress-response relationships are poorly understood. Chemical tracers have potential for assessing contributions of nutrients from various nutrient pools. Our objective is to quantitatively study how varying degrees of nutrient limitation (and corresponding needs to extract base cations from mineral sources) influence Ca and K uptake functions in a plant-root-mineral system. We are studying plant-driven mineral weathering in column experiments with red pine (Pinus resinosa) seedlings. The columns contain quartz sand amended with anorthite and biotite that constitute the sole mineral sources of Ca and K. These minerals also contain known amounts of Sr and Rb, which exhibit chemical behavior similar to Ca and K, respectively. The solution source of Ca and K was varied by adding 0% (no dissolved Ca and K), 10%, 30%, or 100% of a full strength Ca and K nutrient solution through irrigation water in which both Sr and Rb concentrations were negligible. Selected columns were destructively sampled at 3, 6 and 9 months to harvest biomass and measure plant uptake of cations. We used Ca/Sr and K/Rb ratio results to estimate the contributions of Ca and K from mineral and solution sources. For the 0% nutrient treatment, the Ca/Sr and K/Rb ratios in total biomass at 3 months, compared with those in the mineral phases, suggested preferential uptake of Ca and K over Sr and Rb, respectively, and allowed us to determine uptake discrimination factors for both cations. The K/Rb ratios in total biomass increased with greater K availability in the solution source, as expected, but Ca/Sr ratios did not show any dependence on Ca availability in the solution source

  7. Phytoremediation: modeling plant uptake and contaminant transport in the soil plant atmosphere continuum

    NASA Astrophysics Data System (ADS)

    Ouyang, Ying

    2002-09-01

    Phytoremediation is an emerging technology that uses plants and their associated rhizospheric microorganisms to remove, degrade, detoxify, or contain contaminants located in the soil, sediments, groundwater, surface water, and even the atmosphere. This study investigates phytoremediation of 1,4-dioxane from a contaminated sandy soil by a poplar cutting, which is associated with water flow in the soil as well as water movement and 1,4-dioxane translocation in the xylem and phloem systems. An existing one-dimensional mathematical model for coupled transport of water, heat, and solutes in the soil-plant-atmosphere continuum (CTSPAC) is modified for the purpose of this study. The model is calibrated with the laboratory experimental measurements prior to its applications. A simulation scenario is then performed to investigate phytoremediation of 1,4-dioxane by a poplar cutting in response to daily water flow and 1,4-dioxane transport for a simulation period of 7 days. Simulation shows that 1,4-dioxane concentration is high in leaves and low in roots with the stem in between. However, 1,4-dioxane mass in the stem (60%) is higher than that of leaves (28%) and roots (12%). This occurs because the stem volume used in this study is larger than those of leaves and roots. The simulation further reveals that about 30% of the soil 1,4-dioxane is removed within 7 days, resulting mainly from root uptake. A plot of the 1,4-dioxane concentrations in plant compartments as a function of time shows that the highest concentration in leaves is about 2600 μg/cm 3 and the lowest concentration in roots is about 350 μg/cm 3 at the end of the simulation. Results indicate that leaves are an important compartment for 1,4-dioxane accumulation and transpiration. This study suggests that the modified CTSPAC model could be a useful tool for phytoremediation estimations.

  8. Uptake and physiological response of crop plants irrigated with water containing RDX and TNT

    SciTech Connect

    Simini, M.; Checkai, R.T.

    1995-12-31

    Regulatory agencies have expressed concern about possible bioconcentration of TNT (2,4,6-trinitrotoluene) and RDX (cyclotrimethylenetrinitramine) in food and forage crops irrigated with contaminated groundwater. Field and home-garden crops grown in site-collected soil were irrigated with water containing RDX and TNT to simulate field conditions at Cornhusker Army Ammunition Plant (CAAP), Nebraska. Pots were watered in an environment-controlled greenhouse to field capacity throughout the life-cycle of each crop with 2, 20, and 100 ppb RDX; 2, 100, and 800 ppb TNT; 100 ppb RDX + 800 ppb TNT; or uncontaminated water in response to evapo-transpirative demand. Uptake of RDX in lettuce leaves, corn stover, and alfalfa shoots was positively correlated with treatment level, however, concentrations of RDX in these crops were generally equal to or below soil loading concentrations. RDX was not significantly (p = 0.05) taken up into tomato fruit, bush bean seeds and pods, radish roots, and soybean seeds. TNT was not significantly take up into tissues of any of the crops analyzed in this study. Yield and biomass of tomato fruit, bush bean fruit, corn stover, and soybean seeds were significantly (p = 0.05) less when irrigated with the RDX + TNT treatment compared to controls. Lettuce leaf, radish root, and alfalfa shoot yield and biomass were unaffected by treatment level. For site-specific criteria used in this study, RDX and TNT did not bioconcentrate in edible plant tissues. This is the first controlled study to investigate uptake of RDX and TNT in crops irrigated with water containing explosives concentrations commonly found in contaminated groundwater.

  9. Plant uptake of pesticides and human health: dynamic modeling of residues in wheat and ingestion intake.

    PubMed

    Fantke, Peter; Charles, Raphaël; de Alencastro, Luiz Felippe; Friedrich, Rainer; Jolliet, Olivier

    2011-11-01

    Human intake of pesticide residues from consumption of processed food plays an important role for evaluating current agricultural practice. We take advantage of latest developments in crop-specific plant uptake modeling and propose an innovative dynamic model to estimate pesticide residues in the wheat-environment system, dynamiCROP. We used this model to analyze uptake and translocation of pesticides in wheat after foliar spray application and subsequent intake fractions by humans. Based on the evolution of residues in edible parts of harvested wheat we predict that between 22 mg and 2.1 g per kg applied pesticide are taken in by humans via consumption of processed wheat products. Model results were compared with experimentally derived concentrations in wheat ears and with estimated intake via inhalation and ingestion caused by indirect emissions, i.e. the amount lost to the environment during pesticide application. Modeled and measured concentrations in wheat fitted very well and deviate from less than a factor 1.5 for chlorothalonil to a maximum factor 3 for tebuconazole. Main aspects influencing pesticide fate behavior are degradation half-life in plant and time between pesticide application and crop harvest, leading to variations in harvest fraction of at least three orders of magnitude. Food processing may further reduce residues by approximately 63%. Intake fractions from residues in sprayed wheat were up to four orders of magnitude higher than intake fractions estimated from indirect emissions, thereby demonstrating the importance of exposure from consumption of food crops after direct pesticide treatment. PMID:21955352

  10. Plant uptake and transport of /sup 241/Am

    SciTech Connect

    Wallace, A.; Romney, E.M.; Mueller, R.T. Sr.; soufi, S.M.

    1981-07-01

    We conducted several experiments with /sup 241/Am to obtain a more complete understanding of how this transuranium element is absorbed and transported in plants. In a plant species (Tamarix pentandra Pall.) that has salt glands in the leaves excreting NaCl and other ions, /sup 241/Am was not pumped through these glands. Cyanide, which forms complexes with any metals, when applied to a calcareous soil, greatly increased the transport of /sup 241/Am into stems and leaves of bush bean plants. Radioactive cyanide (/sup 14/C) was also transported to leaves and stems. When radish was grown in both calcareous and noncalcareous soils, /sup 241/Am appeared to be fixed on the peel so firmly that it was resistant to removal by HNO/sub 3/ washing. The chelating agent DTPA induced increased transport of /sup 241/Am to leaves and into the fleshy roots of the radish.

  11. Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1989-01-01

    When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.

  12. EFFECT, UPTAKE AND DISPOSITION OF NITROBENZENE IN SEVERAL TERRESTRIAL PLANTS

    EPA Science Inventory

    Eight species of plants were exposed to nitrobenzene in a hydroponic solution. our species experienced no depression of either transpiration or photosynthetic rates, while one was rapidly killed and the other three were temporarily affected but recovered from the treatment. ptake...

  13. Uptake, metabolism, and volatilization of selenium by terrestrial plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The green technology of phytoremediation has being developed for the management of metal(loid)-contaminated soils and waters via the processes of phytoextraction, and phytovolatilization. Based upon these processes a plant management remediation strategy for selenium (Se) has been developed for the ...

  14. PLUTONIUM UPTAKE BY PLANTS GROWN IN SOLUTION CULTURE

    EPA Science Inventory

    Plants grown in aquatic systems were shown to rapidly accumulate large amounts of plutonium, about 40% of which was removed by washing. Detergent removed debris, most of which consisted of particles larger than 0.8 micrometers. After removing a portion of the bound Pu by rinsing ...

  15. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold.

    PubMed

    Taylor, Andrew F; Rylott, Elizabeth L; Anderson, Christopher W N; Bruce, Neil C

    2014-01-01

    We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522

  16. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold

    PubMed Central

    Taylor, Andrew F.; Rylott, Elizabeth L.; Anderson, Christopher W. N.; Bruce, Neil C.

    2014-01-01

    We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522

  17. Uptake of explosives from contaminated soil by vegetation at the Joliet Army Ammunition Plant

    SciTech Connect

    Schneider, J.F.; Tomczyk, N.A.; Zellmer, S.D.; Banwart, W.L.; Houser, W.P.

    1994-06-01

    This study examines the uptake of explosives by vegetation growing on soils contaminated by 2,4,6-trinitrotoluene (TNT) in Group 61 at the Joliet Army Ammunition Plant (JAAP). Plant materials and soil from the root zone were sampled and analyzed to determine TNT uptake under natural field conditions. Standard USATHAMA methods were used to determine concentrations of explosives, their derivatives, and metabolites in the soil samples. No- explosives were detected in the aboveground portion of any plant sample. However, results indicate that TNT, 2-aminodinitrotoluene (2-ADNT), and/or 4-ADNT were present in some root samples. The presence of 2-ADNT and 4-ADNT increases the likelihood that explosives were taken up by plant roots, as opposed to their presence resulting from external soil contamination.

  18. Application of microbial inoculants promote plant growth, increased nutrient uptake and improve root morphology of corn plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing fertilizers impacts from agriculture is a world-wide concern, both from an environmental and human health perspective. One way to reduce impacts of fertilizers is by enhancing plant uptake which improves nutrient use efficiency and also potentially reduce the amounts of fertilizer needed. ...

  19. In vivo assay to monitor flavonoid uptake across plant cell membranes

    PubMed Central

    Filippi, Antonio; Petrussa, Elisa; Peresson, Carlo; Bertolini, Alberto; Vianello, Angelo; Braidot, Enrico

    2015-01-01

    Flavonoids represent one of the most important molecules of plant secondary metabolism, playing many different biochemical and physiological roles. Although their essential role in plant life and human health has been elucidated by many studies, their subcellular transport and accumulation in plant tissues remains unclear. This is due to the absence of a convenient and simple method to monitor their transport. In the present work, we suggest an assay able to follow in vivo transport of quercetin, the most abundant flavonoid in plant tissues. This uptake was monitored using 2-aminoethoxydiphenyl borate (DPBA), a fluorescent probe, in non-pigmented Vitis vinifera cell cultures. PMID:26504740

  20. The critical levels and the maximum metal uptake for wheat and rice plants when applying metal oxides to soil

    SciTech Connect

    Muramoto, S.; Nishizaki, H.; Aoyama, I. )

    1990-04-01

    Wheat is more sensitive to CdO and ZnO compared with rice plant. The yield of wheat decreased by 30% in the presence of 30 ppm Cd, but that of rice plants by only 8%. The critical levels of meal uptake by wheat and rice plants for applying metal oxides to soil (CdO, ZnO, PbO) were determined. The highest concentration obtained for wheat grain was 141 micrograms/g Cd at the Cd 10,000 ppm in soil. This value is higher than the value of 4.97 micrograms/g for unpolished rice and higher than any other we have seen in the reports for treatment with CdO. Also, concentration of more than 1.0 micrograms/g Cd in wheat was observed at 5 pm Cd, while similar concentrations for rice plants were observed at 30 ppm Cd in soil.

  1. Do anthropogenic aerosols enhance CO2 uptake by plants?

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.

    2013-12-01

    Plant productivity (photosynthesis) is tightly connected to the supply of solar radiation and water and to surface temperature. Solar radiation reaching the Earth's surface and the water cycle are strongly modified by anthropogenic aerosols. Aerosols reduce the amount of global radiation and surface temperature, and they modify the partitioning between direct and diffuse radiation. Moreover, they modify cloud radiative properties and lifetime. These aerosols effects may influence Gross Primary Productivity (GPP): (1) by intensifying the diffuse-radiation fertilization effect (i.e. plant productivity is more efficient under diffuse light whose amount may increase due to aerosol loading); (2) by modifying water supply through suppression/enhancement of rainfall; (3) by reducing surface temperature. Among aerosol impacts on GPP, it is unclear if there exists a prevailing one, or if the prevailing impact varies across ecosystems. Feedbacks to GPP from the effects of biogenic secondary organic aerosol (BSOA) formed from vegetation reactive carbon emissions have not been investigated. Moreover, human-made pollution and biomass burning induce high ozone concentrations that simultaneously reduce plant productivity. We apply satellite observations and global model simulations to investigate the spatial pattern in the relationship between aerosols and plant productivity across different ecosystems, and whether plants control their diffuse radiation environment through the reactive carbon emissions. We quantify the correlation between MODIS GPP and: (1) fine-fraction Aerosol Optical Depth from MODIS (fAOD); (2) ozone levels in the middle troposphere from TES. The analysis of satellite data reveals strong positive correlation between GPP and fAOD in temperate and boreal ecosystems, and strong negative correlation in tropical ecosystems. The tropical ecosystem also presents strong negative correlation between GPP and O3. Simulations using Yale-E2 global carbon

  2. Simulated Soil Water Content Effects On Plant Nitrogen Uptake and Export for Watershed Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In watershed nutrient management for water quality assessment, it is important to understand the critical pathways of nutrient cycles and nutrient transport processes from lands to the receiving water bodies. Soil moisture content influences plant nitrogen uptake significantly. This paper discussed...

  3. Nutrient uptake and loss by container-grown deciduous and evergreen Rhododendron nursery plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of N fertilizer application on plant uptake and demand for other nutrients was evaluated from May 2005 to February 2006 in container-grown evergreen Rhododendron ‘P.J.M. Compact’ (PJM) and ‘English Roseum’ (ER) and deciduous Rhododendron ‘Gibraltar’ (AZ). Increased N-availability incre...

  4. EFFECTS OF SEWAGE SLUDGE ON DI-(2-ETHYLHEXYL) PHTHALATE UPTAKE BY PLANTS

    EPA Science Inventory

    Di-(2-ethylhexyl) phthalate (DEHP) is a priority organic pollutant frequently found in municipal sludges. reenhouse study was conducted to determine the effects of sludge on plant uptake of 14 C-DEHP (carbonyl labeled). lants grown included three food chain crops, lettuce (Lactuc...

  5. Plant uptake and soil retention of phthalic acid applied to Norfolk sandy loam

    SciTech Connect

    Dorney, J.R.; Weber, J.B.; Overcash, M.R.; Strek, H.J.

    1985-01-01

    Plant uptake and soil retention of /sup 14/C carboxyl-labeled phthalic acid were studied at application rates of 0.6, 6.0, 60.0, and 600.0 ppm (soil dry weight) to Norfolk sandy loam (Typic Paleudult, fine loamy, kaolinitic, thermic). Height and dry weight of corn (Zea mays L. Pioneer 3368A) (21 day), tall fescue (Festuca arundinacea Schreb. Kentucky 31) (45 day) immature soybean (Glycine max (L.) Merr. Altoona) (21 day) plant, mature soybean plant, and mature wheat (Triticum aestivum L. Butte) straw were not affected by phthalic acid applied to soil. In addition, soybean seed and wheat seed dry weight were unaffected. Immature wheat (40 day) height decreased at the 600 ppm rate. Plant uptake of phthalic acid ranged from 0 to 23 ppm and was significantly above background for all plants and plant materials except soybean pods. Fescue and immature plants exhibited the highest concentration of phthalic acid while mature wheat plants and wheat seeds exhibited the least. Most of the phthalic acid volatilized or was decomposed from the soil by the end of the study; an average of only 5.7% of the originally applied chemical was recovered in both soil or plants. An average of 0.02% of the originally applied phthalic acid leached out of the treated zone. Considering the low toxicity of phthalic acid and its relatively rapid disappearance from soil, it is unlikely to become a health hazard from contaminated plants. However, plant uptake of other toxic organics could potentially become a hazard on soils treated with sludge containing significant quantities of these substances.

  6. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa.

    PubMed

    Kamran, Muhammad Aqeel; Syed, Jabir Hussain; Eqani, Syed Ali Musstjab Akber Shah; Munis, Muhammad Farooq Hussain; Chaudhary, Hassan Javed

    2015-06-01

    Microbe-assisted phyto-remediation approach is widely applied and appropriate choice to reduce the environmental risk of heavy metals originated from contaminated soils. The present study was designed to screen out the nested belongings of Eruca sativa plants and Pseudomonas putida (ATCC 39213) at varying cadmium (Cd) levels and their potential to deal with Cd uptake from soils. We carried out pot trial experiment by examining the soil containing E. sativa seedlings either treated with P. putida and/or untreated plants subjected to three different levels (ppm) of Cd (i.e., 150, 250, and 500). In all studied cases, we observed an increase in Cd uptake for E. sativa plants inoculated with P. putida than those of un-inoculated plants. Cd toxicity was assessed by recording different parameters including stunted shoot growth, poor rooting, and Cd residual levels in the plants that were not inoculated with P. putida. Significant difference (p < 0.05) of different growth parameters for inoculated vs non-inoculated plants was observed at all given treatments. However, among the different treatments, E. sativa exhibited increased values for different growth parameters (except proline contents) at lower Cd levels than those of their corresponding higher levels, shoot length (up to 27 %), root length (up to 32 %), whole fresh plant (up to 40 %), dry weight (up to 22 %), and chlorophyll contents (up to 26 %). Despite the hyperaccumulation of Cd in whole plant of E. sativa, P. putida improved the plant growth at varying levels of Cd supply than those of associated non-inoculated plants. Present results indicated that inoculation with P. putida enhanced the Cd uptake potential of E. sativa and favors the healthy growth under Cd stress. PMID:25592913

  7. Cyclic variations in nitrogen uptake rate of soybean plants: effects of external nitrate concentration

    NASA Technical Reports Server (NTRS)

    Tolley-Henry, L.; Raper, C. D. Jr; Granato, T. C.; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic cultures containing 0.5, 1.0 and 10.0 mol m-3 NO3- was measured daily during a 24-d period of vegetative development to determine if amplitude of maximum and minimum rates of net NO3- uptake are responsive to external concentrations of NO3-. Removal of NO3- from the replenished solutions during each 24-h period was determined by ion chromatography. Neither dry matter accumulation nor the periodicity of oscillations in net uptake rate was altered by the external NO3- concentrations. The maxima of the oscillations in net uptake rate, however, increased nearly 3-fold in response to external NO3- concentrations. The maxima and minima, respectively, changed from 4.0 and 0.6 mmol NO3- per gram root dry weight per day at an external solution level of 0.5 mol m-3 NO3- to 15.2 and -2.7 mmol NO3- per gram root dry weight per day at an external solution level of 10.0 mol m-3 NO3-. The negative values for minimum net uptake rate from 10.0 mol m-3 NO3- solutions show that net efflux was occurring and indicate that the magnitude of the efflux component of net uptake was responsive to external concentration of NO3-.

  8. Uptake of Uranium and Other Elements of Concern by Plants Growing on Uranium Mill Tailings Disposal Cells

    NASA Astrophysics Data System (ADS)

    Joseph, C. N.; Waugh, W.; Glenn, E.

    2015-12-01

    The U.S. Department of Energy (DOE) is responsible for long-term stewardship of disposal cells for uranium mill tailings throughout the United States. Rock-armored disposal cell covers create favorable habitat for deep-rooted plants by reducing soil evaporation, increasing soil water storage, and trapping windblown dust, thereby providing water and nutrients for plant germination and establishment. DOE is studying the tradeoffs of potential detrimental and beneficial effects of plants growing on disposal cell covers to develop a rational and consistent vegetation management policy. Plant roots often extend vertically through disposal cell covers into underlying tailings, therefore, uptake of tailings contaminants and dissemination through animals foraging on stems and leaves is a possible exposure pathway. The literature shows that plant uptake of contaminants in uranium mill tailings occurs, but levels can vary widely depending on plant species, tailings and soil chemistry, and cover soil hydrology. Our empirical field study measured concentrations of uranium, radium, thorium, molybdenum, selenium, manganese, lead, and arsenic in above ground tissues harvested from plants growing on disposal cells near Native American communities in western states that represent a range of climates, cover designs, cover soil types, and vegetation types. For risk screening, contaminant levels in above ground tissues harvested from plants on disposal cells were compared to Maximum Tolerance Levels (MTLs) set for livestock by the National Research Council, and to tissue levels in the same plant species growing in reference areas near disposal cells. Although tailings were covered with uncontaminated soils, for 14 of 46 comparisons, levels of uranium and other contaminants were higher in plants growing on disposal cells compared to reference area plants, indicating possible mobilization of these elements from the tailing into plant tissues. However, with one exception, all plant

  9. Phytozome System for Comparative Plant Genomics

    Energy Science and Technology Software Center (ESTSC)

    2011-09-27

    Phytozome is a joint project of the Department of Energy's Joint Genome Institute and the UC Berkeley Center for Integrative Genomics to facilitate comparative genomic studies amongst green plants. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of release 7.0, Phytozome providesmore » access to twenty-five sequenced and annotated green plant genomes which have been clustered into gene families at eleven evolutionarily significant nodes., Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are lyper-linked and searchable.« less

  10. Phytozome System for Comparative Plant Genomics

    SciTech Connect

    2011-09-27

    Phytozome is a joint project of the Department of Energy's Joint Genome Institute and the UC Berkeley Center for Integrative Genomics to facilitate comparative genomic studies amongst green plants. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of release 7.0, Phytozome provides access to twenty-five sequenced and annotated green plant genomes which have been clustered into gene families at eleven evolutionarily significant nodes., Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are lyper-linked and searchable.

  11. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia.

    PubMed

    Millett, J; Foot, G W; Svensson, B M

    2015-04-15

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant-prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific. PMID:25655989

  12. Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation.

    PubMed

    Islam, Faisal; Yasmeen, Tahira; Ali, Qasim; Mubin, Muhammad; Ali, Shafaqat; Arif, Muhammad Saleem; Hussain, Sabir; Riaz, Muhammad; Abbas, Farhat

    2016-01-01

    For effective microbe-assisted bioremediation, metal-resistant plant growth-promoting bacteria (PGPB) must facilitate plant growth by restricting excess metal uptake in plants, leading to prevent its bio-amplification in the ecosystem. The aims of our study were to isolate and characterize copper (Cu)-resistant PGPB from waste water receiving contaminated soil. In addition, we investigated the phytotoxic effect of copper on the lentil plants inoculated with copper-resistant bacteria Providencia vermicola, grown in copper-contaminated soil. Copper-resistant P. vermicola showed multiple plant growth promoting characteristics, when used as a seed inoculant. It protected the lentil plants from copper toxicity with a considerable increase in root and shoot length, plant dry weight and leaf area. A notable increase in different gas exchange characteristics such as A, E, C i , g s , and A/E, as well as increase in N and P accumulation were also recorded in inoculated plants as compared to un-inoculated copper stressed plants. In addition, leaf chlorophyll content, root nodulation, number of pods, 1,000 seed weight were also higher in inoculated plants as compared with non-inoculated ones. Anti-oxidative defense mechanism improved significantly via elevated expression of reactive oxygen species -scavenging enzymes including ascorbate peroxidase, superoxide dismutase, catalase, and guaiacol peroxidase with alternate decrease in malondialdehyde and H2O2 contents, reduced electrolyte leakage, proline, and total phenolic contents suggesting that inoculation of P. vermicola triggered heavy metals stress-related defense pathways under copper stress. Overall, the results demonstrated that the P. vermicola seed inoculation confer heavy metal stress tolerance in lentil plant which can be used as a potent biotechnological tool to cope with the problems of copper pollution in crop plants for better yield. PMID:26387695

  13. Environmental dependencies of plant CO2 uptake in theory, data, and simulations

    NASA Astrophysics Data System (ADS)

    Wang, Han; Prentice, Colin; Keenan, Trevor; Peng, Shushi; Piao, Shilong; Cornwell, William; Davis, Tyler; Wright, Ian; Peng, Changhui

    2016-04-01

    The rate of carbon uptake by land plants depends on the light use efficiency (LUE) of photosynthesis. LUE is the ratio of primary production to light absorbed by foliage. This in turn depends on the ratio of leaf-internal to ambient carbon dioxide partial pressures (χ). However, current state-of-the-art land ecosystem models represent the environmental dependencies of these two key quantities in an empirical and incomplete way. Their modeled values have not been systematically tested against observations, a situation contributing to the many uncertainties afflicting current model estimates and future projections of terrestrial carbon uptake. We present a theory for the dependencies of χ and LUE on growing-season air temperature, vapour pressure deficit (VPD), CO2 concentration and elevation based on two hypotheses rooted in eco-physiological optimality. Theoretically derived environmental dependencies of χ and LUE are shown to be precisely and quantitatively consistent with global data sets of (a) stable carbon isotope measurements, and (b) gross primary production derived from CO2 flux measurements. The modeled environmental dependencies of χ and LUE according to seven state-of-the-art land ecosystem models participating in the TRENDY2 model intercomparison project are then derived from model outputs and compared with the theoretical relationships as a benchmark. The results show large discrepancies among model-predicted relationships of χ and LUE to temperature and VPD both in spatial and temporal dimensions. The influence of elevation on χ and LUE is also inconsistent among models, as is their predicted sensitivity to CO2 enrichment. This work suggests that a top-priority task for land ecosystem models should be to reformulate the environmental drivers of χ and LUE relationships to be consistent with observations. It also indicates that eco-physiological optimality hypotheses provide a promising route to an improved predictive understanding of terrestrial

  14. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies.

    PubMed

    Zhao, Fang-Jie; McGrath, Steve P; Meharg, Andrew A

    2010-01-01

    Arsenic (As) is an environmental and food chain contaminant. Excessive accumulation of As, particularly inorganic arsenic (As(i)), in rice (Oryza sativa) poses a potential health risk to populations with high rice consumption. Rice is efficient at As accumulation owing to flooded paddy cultivation that leads to arsenite mobilization, and the inadvertent yet efficient uptake of arsenite through the silicon transport pathway. Iron, phosphorus, sulfur, and silicon interact strongly with As during its route from soil to plants. Plants take up arsenate through the phosphate transporters, and arsenite and undissociated methylated As species through the nodulin 26-like intrinsic (NIP) aquaporin channels. Arsenate is readily reduced to arsenite in planta, which is detoxified by complexation with thiol-rich peptides such as phytochelatins and/or vacuolar sequestration. A range of mitigation methods, from agronomic measures and plant breeding to genetic modification, may be employed to reduce As uptake by food crops. PMID:20192735

  15. Development of real-time radioisotope imaging systems for plant nutrient uptake studies

    PubMed Central

    Kanno, Satomi; Yamawaki, Masato; Ishibashi, Hiroki; Kobayashi, Natsuko I.; Hirose, Atsushi; Tanoi, Keitaro; Nussaume, Laurent; Nakanishi, Tomoko M.

    2012-01-01

    Ionic nutrition is essential for plant development. Many techniques have been developed to image and (or) measure ionic movement in plants. Nevertheless, most of them are destructive and limit the analysis. Here, we present the development of radioisotope imaging techniques that overcome such restrictions and allow for real-time imaging of ionic movement. The first system, called macroimaging, was developed to visualize and measure ion uptake and translocation between organs at a whole-plant scale. Such a device is fully compatible with illumination of the sample. We also modified fluorescent microscopes to set up various solutions for ion uptake analysis at the microscopic level. Both systems allow numerical analysis of images and possess a wide dynamic range of detection because they are based on radioactivity. PMID:22527392

  16. Molecular and physiological interactions of urea and nitrate uptake in plants.

    PubMed

    Pinton, Roberto; Tomasi, Nicola; Zanin, Laura

    2016-01-01

    While nitrate acquisition has been extensively studied, less information is available on transport systems of urea. Furthermore, the reciprocal influence of the two sources has not been clarified, so far. In this review, we will discuss recent developments on plant response to urea and nitrate nutrition. Experimental evidence suggests that, when urea and nitrate are available in the external solution, the induction of the uptake systems of each nitrogen (N) source is limited, while plant growth and N utilization is promoted. This physiological behavior might reflect cooperation among acquisition processes, where the activation of different N assimilatory pathways (cytosolic and plastidic pathways), allow a better control on the nutrient uptake. Based on physiological and molecular evidence, plants might increase (N) metabolism promoting a more efficient assimilation of taken-up nitrogen. The beneficial effect of urea and nitrate nutrition might contribute to develop new agronomical approaches to increase the (N) use efficiency in crops. PMID:26338073

  17. Molecular and physiological interactions of urea and nitrate uptake in plants

    PubMed Central

    Pinton, Roberto; Tomasi, Nicola; Zanin, Laura

    2016-01-01

    While nitrate acquisition has been extensively studied, less information is available on transport systems of urea. Furthermore, the reciprocal influence of the two sources has not been clarified, so far. In this review, we will discuss recent developments on plant response to urea and nitrate nutrition. Experimental evidence suggests that, when urea and nitrate are available in the external solution, the induction of the uptake systems of each nitrogen (N) source is limited, while plant growth and N utilization is promoted. This physiological behavior might reflect cooperation among acquisition processes, where the activation of different N assimilatory pathways (cytosolic and plastidic pathways), allow a better control on the nutrient uptake. Based on physiological and molecular evidence, plants might increase (N) metabolism promoting a more efficient assimilation of taken-up nitrogen. The beneficial effect of urea and nitrate nutrition might contribute to develop new agronomical approaches to increase the (N) use efficiency in crops. PMID:26338073

  18. Uptake of explosives from contaminated soil by existing vegetation at the Joliet Army Ammunition Plant

    SciTech Connect

    Schneider, J.F.; Tomczyk, N.A.; Zellmer, S.D.; Banwart, W.L. |

    1994-01-01

    This study examines the uptake of explosives by existing vegetation growing in TNT-contaminated soils on Group 61 at the Joliet Army Ammunition Plant (JAAP). The soils in this group were contaminated more than 40 years ago. In this study, existing plant materials and soil from the root zone were sampled from 15 locations and analyzed to determine TNT uptake by plants under natural field conditions. Plant materials were separated by species if more than one species was present at a sampling location. Standard methods were used to determine concentrations of explosives, their derivatives, and metabolites in the soil samples. Plant materials were also analyzed. No. explosives were detected in the aboveground portion of any plant sample. However, the results indicate that TNT, 2-amino DNT, and/or 4-amino DNT were found in some root samples of false boneset (Kuhnia eupatorioides), teasel (Dipsacus sylvestris), and bromegrass (Bromus inermis). It is possible that slight soil contamination remained on the roots, especially in the case of the very fine roots for species like bromegrass, where washing was difficult. The presence of 2-amino DNT and 4-amino DNT, which could be plant metabolites of TNT, increases the likelihood that explosives were taken up by plant roots, as opposed to their presence resulting from external soil contamination.

  19. Uptake of explosives from contaminated soil by existing vegetation at the Iowa Army Ammunition Plant

    SciTech Connect

    Schneider, J.F.; Zellmer, S.D.; Tomczyk, N.A.; Rastorier, J.R.; Chen, D.; Banwart, W.L.

    1995-02-01

    This study examines the uptake of explosives by existing vegetation growing in soils contaminated with 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-3,5-triazine (RDX) in three areas at the Iowa Army Ammunition Plant (IAAP). To determine explosives uptake under natural environmental conditions, existing plant materials and soil from the root zone were sampled at different locations in each area, and plant materials were separated by species. Standard methods were used to determine the concentrations of explosives, their derivatives, and metabolites in the soil samples. Plant materials were also analyzed. The compound TNT was not detected in the aboveground portion of plants, and vegetation growing on TNT-contaminated soils is not considered a health hazard. However, soil and plant roots may contain TNT degradation products that may be toxic; hence, their consumption is not advised. The compound RDX was found in the tops and roots of plants growing on RDX-contaminated soils at all surveyed sites. Although RDX is not a listed carcinogen, several of its potentially present degradation products are carcinogens. Therefore, the consumption of any plant tissues growing on RDX-contaminated sites should be considered a potential health hazard.

  20. Vanadium uptake and translocation in dominant plant species on an urban coastal brownfield site.

    PubMed

    Qian, Yu; Gallagher, Frank J; Feng, Huan; Wu, Meiyin; Zhu, Qingzhi

    2014-04-01

    This study, conducted at a brownfield site in New Jersey, USA, investigated factors controlling V uptake and translocation in naturally assembled plant species. Six dominant species were collected from 22 stations in the study area. We found that V concentration in the plants decreased in a sequence of root>leaf>stem. No significant differences were found among the six dominant plant species in terms of root V uptake efficiency (V BCF) and V root to shoot translocation (V TF). Although soil pH and TOC did not show significant impact on V accumulation in the roots, soil labile V content showed significant positive linear correlation (p<0.05) with plant root V. Non-linear regression analysis indicates that V translocation efficiency decreases with increasing concentration in the soil, implying that excessive V in the soil might inhibit its absorption by the plant roots. Leaf V concentration was constant in all the plant species regardless of the variation in soil V concentration. The study shows that the six dominant plant species on site had limited amount of V translocated to the aerial part of the plant. PMID:24518306

  1. Differential uptake and translocation of β-HCH and dieldrin by several plant species from hydroponic medium.

    PubMed

    Namiki, Sayuri; Otani, Takashi; Seike, Nobuyasu; Satoh, Shinobu

    2015-03-01

    To compare the uptake and translocation of hydrophobic organic chemicals by plant species, the authors performed uptake experiments with β-1,2,3,4,5,6-hexachlorocyclohexane (β-HCH) and 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-endo-1,4-exo-5,8-dimethanonaphthalene (dieldrin) using 5 species: Hordeum vulgare, Glycine max, Solanum lycopersicum, Brassica oleracea, and Cucurbita pepo. The present study evaluated uptake ability using root concentration factor (RCF) and translocation ability by transpiration stream concentration factor (TSCF). The RCFs of β-HCH and dieldrin did not differ remarkably among species, except that the RCF of β-HCH in B. oleracea was high. The TSCFs of β-HCH and dieldrin were high in C. pepo, which was not superior in uptake as estimated by RCF. The TSCF of dieldrin in C. pepo was decreased in darkness and was markedly decreased by heating of roots. These results support the hypothesis that transport proteins produced in the root contribute to dieldrin translocation. In contrast, TSCF of β-HCH was not decreased by these treatments. Therefore, translocation of β-HCH might not need the contribution of transport proteins. It is possible that C. pepo has a certain function to transport hydrophobic organic chemicals smoothly in root tissues. PMID:25470472

  2. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress.

    PubMed

    Nath, Manoj; Tuteja, Narendra

    2016-05-01

    Sessile nature of higher plants consequently makes it highly adaptable for nutrient absorption and acquisition from soil. Plants require 17 essential elements for their growth and development which include 14 minerals (macronutrients: N, P, K, Mg, Ca, S; micronutrients: Cl, Fe, B, Mn, Zn, Cu, Ni, Mo) and 3 non-mineral (C, H, O) elements. The roots of higher plants must acquire these macronutrients and micronutrients from rhizosphere and further allocate to other plant parts for completing their life cycle. Plants evolved an intricate series of signaling and sensing cascades to maintain nutrient homeostasis and to cope with nutrient stress/availability. The specific receptors for nutrients in root, root system architecture, and internal signaling pathways help to develop plasticity in response to the nutrient starvation. Nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) are essential for various metabolic processes, and their deficiency negatively effects the plant growth and yield. Genes coding for transporters and receptors for nutrients as well as some small non-coding RNAs have been implicated in nutrient uptake and signaling. This review summarizes the N, P, K, and S uptake, sensing and signaling events in nutrient stress condition especially in model plant Arabidopsis thaliana and involvement of microRNAs in nutrient deficiency. This article also provides a framework of uptake, sensing, signaling and to highlight the microRNA as an emerging major players in nutrient stress condition. Nutrient-plant-miRNA cross talk may help plant to cope up nutrient stress, and understanding their precise mechanism(s) will be necessary to develop high yielding smart crop with low nutrient input. PMID:26085375

  3. Uptake of Cadmium by Flue-Cured Tobacco Plants: Exploring Bioavailability

    NASA Astrophysics Data System (ADS)

    Holzer, I.; Robarge, W. P.; Vann, M. C.

    2015-12-01

    Scientific understanding of cadmium (Cd) cycling in North Carolina tobacco plants and soils has lagged, even as production of flue-cured tobacco remains an important part of the NC economy ($903 million in 2014). Cd is considered a tobacco contaminant. When tobacco is burned, Cd can exist as a fine aerosol and subsequent inhalation is linked to cancer. Tobacco root exudates enhance Cd uptake, even though the Cd concentration in NC soils is <0.1 mg/kg. Quantifying Cd concentrations in tobacco plants is crucial to understanding Cd bioavailability and implementing soil remediation efforts. The objective of this study was to develop a Cd mass balance for flue-cured tobacco grown under field conditions in NC. Whole plant samples were collected at transplanting and every 2 weeks thereafter until harvest. Individual plants were segregated into root, stalk and individual leaves (n = 15 whole plants/sampling date; composite samples were taken early in the growing season). After recording dry mass, samples were analyzed using ion-coupled plasma optical emission spectrometry or ion-coupled plasma mass spectrometry. Lower leaves contained the highest Cd concentrations ( 7-10 mg/kg). Leaves occupying the upper 50% of the plant had Cd concentrations of 2 mg/kg. Uptake rate was greatest from day 27 to 66 ( 21.5 μg Cd/day). Selective Cd uptake appears evident between day 27 and 43, but overall the relative rate of Cd uptake was similar to other trace metals and micronutrients. Cd distribution within the plants mirrored the distribution of calcium, a macronutrient. Of the 8 mg of soil extractable Cd (0.075 mg/kg) in the rooting zone, 15.0% (1203 μg) is removed by uptake. Of this 15%, 64.2% (772.2 μg) is exported at harvest, and 35.8% (430.8 μg; lower leaves, roots, stalks) is returned to the soil. This study must be replicated to account for seasonal and soil variations. These results do inform selection of tobacco strains that limit uptake of trace metals, particularly Cd.

  4. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms.

    PubMed

    Nieves-Cordones, Manuel; Alemán, Fernando; Martínez, Vicente; Rubio, Francisco

    2014-05-15

    Potassium (K(+)) is an essential macronutrient for plants. It is taken into the plant by the transport systems present in the plasma membranes of root epidermal and cortical cells. The identity of these systems and their regulation is beginning to be understood and the systems of K(+) transport in the model species Arabidopsis thaliana remain far better characterized than in any other plant species. Roots can activate different K(+) uptake systems to adapt to their environment, important to a sessile organism that needs to cope with a highly variable environment. The mechanisms of K(+) acquisition in the model species A. thaliana are the best characterized at the molecular level so far. According to the current model, non-selective channels are probably the main pathways for K(+) uptake at high concentrations (>10mM), while at intermediate concentrations (1mM), the inward rectifying channel AKT1 dominates K(+) uptake. Under lower concentrations of external K(+) (100μM), AKT1 channels, together with the high-affinity K(+) uptake system HAK5 contribute to K(+) acquisition, and at extremely low concentrations (<10μM) the only system capable of taking up K(+) is HAK5. Depending on the species the high-affinity system has been named HAK5 or HAK1, but in all cases it fulfills the same functions. The activation of these systems as a function of the K(+) availability is achieved by different mechanisms that include phosphorylation of AKT1 or induction of HAK5 transcription. Some of the characteristics of the systems for root K(+) uptake are shared by other organisms, whilst others are specific to plants. This indicates that some crucial properties of the ancestral of K(+) transport systems have been conserved through evolution while others have diverged among different kingdoms. PMID:24810767

  5. Comparative uptake and impact of TiO₂ nanoparticles in wheat and rapeseed.

    PubMed

    Larue, Camille; Veronesi, Giulia; Flank, Anne-Marie; Surble, Suzy; Herlin-Boime, Nathalie; Carrière, Marie

    2012-01-01

    Up to 2 million tons per year of titanium dioxide (TiO₂) nanoparticles (NP) are produced worldwide. This extensive production is postulated to result in release into the environment with subsequent contamination of soils and plants; however, few studies have examined TiO₂-NP uptake and impact on plants. In this study, wheat and rapeseed plantlets were exposed to 14 nm or 25 nm anatase TiO₂-NP in hydroponics conditions, either through root or leaf exposure. Microparticle-induced x-ray emission (μPIXE) coupled with Rutherford backscattering spectroscopy (RBS) was used to quantify absorbed titanium (Ti). Micro x-ray fluorescence (μXRF) based on synchrotron radiation was used to evaluate Ti distribution in roots and leaves. Our results show that both TiO₂-NP are accumulated in these plantlets upon root exposure and that Ti content is higher in rapeseed than wheat. Ti distribution in root cross sections depended on NP agglomeration state. NP are also accumulated in plantlets upon leaf exposure. Finally, it was found that TiO₂-NP exposure induced increased root elongation but did not affect germination, evapotranspiration, and plant biomass. Taken together, these results confirm that TiO₂-NP may be accumulated in plant crops but may only moderately impact plant development. PMID:22788360

  6. A review of plant-pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands.

    PubMed

    Carvalho, Pedro N; Basto, M Clara P; Almeida, C Marisa R; Brix, Hans

    2014-10-01

    Pharmaceuticals are commonly found both in the aquatic and the agricultural environments as a consequence of the human activities and associated discharge of wastewater effluents to the environment. The utilization of treated effluent for crop irrigation, along with land application of manure and biosolids, accelerates the introduction of these compounds into arable lands and crops. Despite the low concentrations of pharmaceuticals usually found, the continuous introduction into the environment from different pathways makes them 'pseudo-persistent'. Several reviews have been published regarding the potential impact of veterinary and human pharmaceuticals on arable land. However, plant uptake as well as phytotoxicity data are scarcely studied. Simultaneously, phytoremediation as a tool for pharmaceutical removal from soils, sediments and water is starting to be researched, with promising results. This review gives an in-depth overview of the phytotoxicity of pharmaceuticals, their uptake and their removal by plants. The aim of the current work was to map the present knowledge concerning pharmaceutical interactions with plants in terms of uptake and the use of plant-based systems for phytoremediation purposes. PMID:24481515

  7. Investigation of Metal Uptake and Translocation in Wetland Plants from Urban Coastal Areas

    NASA Astrophysics Data System (ADS)

    Feng, H.; Zhang, W.; Qian, Y.; Liu, W.; Yu, L.; Jones, K. W.; Liu, C.; Tappero, R.

    2013-12-01

    This research mainly focused on the use of synchrotron micro XRF technique to study the mechanisms of metal uptake by plants in conjunction with other measurements to provide insight metal concentrations and distributions in the rhizosphere root system. Many urban-industrial areas exhibit environmental degradation. One of the most common issues is sediment metal contamination resulting from past industrial land uses. The wetland ecosystem in urban coastal areas, such as New Jersey, USA, and Shanghai, China, is a unique laboratory for investigating sediment remediation and wetland ecological rehabilitations. Understanding the natural processes that control the mobility of metals in wetland plants is important to understand the metal biochemical cycle. Wetland plants can uptake metals from rhizosphere soils through their root system and store these metals within the plant biomass. The accumulation of metals in wetland plants provides a potential approach for brownfield remediation and wetland restoration. In the rhizosphere, the role of Fe plaque, which forms on the surface of wetland plant roots, has been an issue of debate in controlling metal biogeochemical cycle. It was reported that due to the large specific surface area of iron-oxides for metal sequestration, Fe plaque can provide a reactive substrate to scavenge metals. Several early studies suggest that the Fe plaque serves as a barrier preventing heavy metals from entering plant roots. However, others suggest that Fe plaque is not the main barrier. Therefore, investigation of the natural processes that control the mobility of metals from sediment to wetland plants is a critical step in understanding metal translocation and geochemical cycling in wetlands. In this study we found that metal concentrations and distributions in the root cross section from the epidermis to the vascular cylinder were apparently different. Two clusters of metal distributions were seen with Fe and Pb mainly distributed in the

  8. Uptake of oxytetracycline, sulfamethoxazole and ketoconazole from fertilised soils by plants.

    PubMed

    Chitescu, Carmen Lidia; Nicolau, Anca Ioana; Stolker, Alida Adriana Maria

    2013-01-01

    This study was performed to investigate the potential for a set of two antibiotics and one antifungal compound to be taken up from the soil by plants. Plants are used for animal or human consumption, and so the measured concentrations in the plant material will be used to model potential human exposure to these compounds. The uptake by two types of plants (grass and watercress) from two types of soil was studied. The compounds used for these experiments were sulfamethoxazole, oxytetracycline and ketoconazole at concentrations of 5 and 10 mg kg(-1) in the soil. The compounds of interest were extracted out of the plant matrix by applying accelerated solvent extraction. Analyses were carried out by a LC-MS/MS. From the results, it was concluded that the plant materials used for this study were able to take up sulfamethoxazole and ketoconazole when the soil was contaminated with these compounds at a concentration ranging from 5 to 10 mg kg(-1). Sulfamethoxazole was detected in all samples, at levels ranging from 7 to 21 µ kg(-1) for grass and 4 to 7.5 µ kg(-1) for watercress. For ketoconazole, the results showed low absorption. Oxytetracycline was not detected in any sample. A partition-limited model approach was applied for the comparison of experimental and estimated data, and the relationship between physicochemical properties of the compounds and plant uptake was highlighted. PMID:22994558

  9. Plant diversity effects on ecosystem evapotranspiration and carbon uptake: a controlled environment (Ecotron) and modeling approach

    NASA Astrophysics Data System (ADS)

    Milcu, Alexandru; Roy, Jacques

    2016-04-01

    Effects of species and functional diversity of plants on ecosystem evapotranspiration and carbon fluxes have been rarely assessed simultaneously. Here we present the results from an experiment that combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/ monoliths originating from a long-term biodiversity experiment ("The Jena Experiment") and a modelling approach. We aimed at (1) quantifying the impact of plant species richness (4 vs. 16 species) on day- and night-time ecosystem water vapor fluxes and carbon uptake, (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model, and (3) identifying the most parsimonious predictors of water vapor vapor and CO2 fluxes using plant functional trait-based metrics such as functional diversity and community weighted means. The SW model indicated that at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while at higher species richness the proportion of ecosystem transpiration (a production-related water flux) increased. This led to an increased carbon gain per amount of water vapor loss (i.e. increased water use efficiency). While the LAI controlled the carbon and water fluxes, we also found that the diversity of plant functional traits, and in particular of leaf nitrogen concentration are potential important predictors of ecosystem transpiration and carbon uptake and consequently significantly contributed to increase in water use efficiency in communities with higher plant diversity.

  10. Mathematical modelling study for water uptake of steadily growing plant root

    NASA Astrophysics Data System (ADS)

    Chu, Jiaqing; Jiao, Weiping; Xu, Jianjun

    2008-02-01

    The root system of plant is a vitally important organ for living plant. One of the major functions of the root system is uptaking water and nutrients from the soil. The present paper analyzes the whole process of water uptake from soil by a steadily growing plant with a single slender root. We start from the basic principles of physics and fluid-dynamics, consider the structure characteristics of the water transport channel formed by the tiny xylems tubes inside plant, and establish a simplified coherent mathematical model to describe the water transport in the complete system consisting of soil, individual plant, including root, stem and leaves-atmosphere, on the basis of the plant physiology. Moreover, we resolve the proposed mathematical model for a simple artificial plant model under a variety of conditions, in terms of the numerical approach as well as analytical approach. It is shown that the results obtained by both approaches are in very good agreement; the theoretical predictions are qualitatively consistent with the practical experiences very well. The simplified mathematical model established in the present paper may provide a basis for the further investigations on the more sophisticated mathematical model.

  11. Comparative uptake of uranium, thorium, and plutonium by biota inhabiting a contaminated Tennessee floodplain

    SciTech Connect

    Garten, C.T. Jr.; Bondietti, E.A.; Walker, R.L.

    1981-04-01

    The uptake of /sup 238/U, /sup 232/Th, and /sup 239/Pu from soil by fescue, grasshoppers, and small mammals was compared at the contaminated White Oak Creek floodplain in East Tennessee. Comparisons of actinide uptake were based on analyses of radionuclide ratios (U/Pu and Th/Pu) in soil and biota. U:Pu ratios in small mammal carcasses (shrews, mice, and rats) and bone samples from larger mammals (rabbit, woodchuck, opossum, and raccoon) were significantly greater (P less than or equal to 0.05) than U/Pu ratios in soil (based on 8M HNO/sub 3/ extractable). There was no significant difference between Th/Pu ratios in animals and soil. The order of actinide accumulation by biota from the site relative to contaminated soil was U > Th approx. = Pu.

  12. A comparative study of water uptake by and transport through ionomeric fuel cell membranes

    SciTech Connect

    Zawodzinski, T.A.Jr.; Springer, T.E.; Davey, J.; Jestel, R.; Lopez, C.; Valerio, J.; Gottesfeld, S. . Electronics Materials and Device Research)

    1993-07-01

    Water uptake and transport parameters measured at 30 C for several available perfluorosulfonic acid membranes are compared. The water sorption characteristics, diffusion coefficient of water, electroosmotic drag, and protonic conductivity were determined for Nafion 117, Membrane C, and Dow XUS 13204.10 developmental fuel cell membrane. The diffusion coefficient and conductivity of each of these membranes were determined as functions of membrane water content. Experimental determination of transport parameters, enables one to compare membranes without the skewing effects of extensive features such as membrane thickness which contributes in a nonlinear fashion to performance in polymer electrolyte fuel cells.

  13. Eco-Hydro-Connectivity: Tracking the Diurnal Signal of Plant Water Uptake through the Hydrologic System

    NASA Astrophysics Data System (ADS)

    Blume, T.; Hassler, S. K.; Heidbuechel, I.; Simard, S.; Guntner, A.; Weiler, M.

    2014-12-01

    Plant water uptake during summer is characterized by strong diurnal fluctuations. As a result a diurnal sink term is imposed on catchment storage, affecting the unsaturated zone, sometimes the saturated zone and even streamflow. Detecting this signal and understanding its propagation through the hydrological system may help to better quantify eco-hydrological connectivity. The extent and strength of the propagation of this signal from plant to soil to ground- and streamwater was investigated with a unique setup of 46 field sites in Luxemburg and 15 field sites in Germany. These sites cover a range of geologies, soils, topographies and types of vegetation. Vegetation types include grassland, pine forest (young and old) and different deciduous forest stands. Available data at all sites includes information at high temporal resolution from 3-5 soil moisture profiles, matrix potential, piezometers and sapflow sensors (as proxy for plant water uptake) as well as standard climate data. At sites with access to a stream, discharge or water level is also recorded. Signal strength (amplitude of diurnal fluctuations) can thus be traced through the system and gives an indication of the physical sphere of influence of plant water uptake i.e. the "eco-hydro-connectivity". The analysis of time lags (or phase shifts) between daily fluctuations in temperature, radiation, sapflow, soil water, groundwater and streamflow gives further insights into the processes driving and propagating these signals and inter-site comparison allows for the investigation of local controls.

  14. Iron Uptake and Transport in Plants: The Good, the Bad, and the Ionome

    SciTech Connect

    Morrissey, J.; Guerinot, M

    2009-01-01

    Fe is essential for plant growth. At the same time, Fe is highly reactive and toxic via the Fenton reaction. Consequently, plants tightly control Fe homeostasis and react to Fe deficiency as well as Fe overload. The ability of plants to respond to Fe availability ultimately affects human nutrition, both in terms of crop yield and the Fe concentration of edible tissues. Thus, elucidating the mechanisms of Fe uptake and transport is essential for the breeding of crops that are more nutrient rich and more tolerant of Fe-limited soils.This review covers Fe transport and homeostasis in plants, focusing on the research published in the past five years. Because Fe transporters often have a broad range of substrates, we also examine the relationship between Fe and the toxic metals that often accompany Fe uptake, namely Cd, Co, and Ni. We begin by discussing Fe uptake into the root, then long-distance transport to the shoot, and finally, the loading of Fe into seeds. And, as Fe is essential to the metabolism of the mitochondria and chloroplast, we also look at the recent discoveries in Fe transport and homeostasis at the intracellular level. We do not cover the regulation of these transporters as this topic has been recently reviewed.

  15. A comparison of 90Sr and 137Cs uptake in plants via three pathways at two Chernobyl-contaminated sites.

    PubMed

    Malek, M A; Hinton, T G; Webb, S B

    2002-01-01

    Foliar absorption of resuspended 90Sr, root uptake and contamination adhering to leaf surfaces (i.e. soil loading) were compared at two Chernobyl-contaminated sites, Chistogalovka and Polesskoye. Although foliar absorption of resuspended 90Sr was quantifiable, its contribution amounted to less than 10% of the plants' total, above-ground contamination. Root uptake was 200 times greater than foliar absorption at the near-field site of Chistogalovka and eight times greater at Polesskoye, where the fallout consisted of the more soluble condensation-type, rather than fuel particles. Strontium's bioavailability exceeded that of 137Cs (analyzed in the same plants) by orders of magnitude when compared using concentration ratios. Simplistic, cumulative effective dose calculations for humans ingesting 90Sr- and 137Cs-contaminated plants revealed that the dose at Chistogalovka was greater from 90Sr (185 mSv vs. 3 mSv from 137Cs), while at Polesskoye the dose from 137Cs (66 mSv) was 30 times greater than from 90Sr (2 mSv). PMID:11814162

  16. Screening for bioactive metabolites in plant extracts modulating glucose uptake and fat accumulation.

    PubMed

    El-Houri, Rime B; Kotowska, Dorota; Olsen, Louise C B; Bhattacharya, Sumangala; Christensen, Lars P; Grevsen, Kai; Oksbjerg, Niels; Færgeman, Nils; Kristiansen, Karsten; Christensen, Kathrine B

    2014-01-01

    Dichloromethane and methanol extracts of seven different food and medicinal plants were tested in a screening platform for identification of extracts with potential bioactivity related to insulin-dependent glucose uptake and fat accumulation. The screening platform included a series of in vitro bioassays, peroxisome proliferator-activated receptor (PPAR) γ-mediated transactivation, adipocyte differentiation of 3T3-L1 cell cultures, and glucose uptake in both 3T3-L1 adipocytes and primary porcine myotubes, as well as one in vivo bioassay, fat accumulation in the nematode Caenorhabditis elegans. We found that dichloromethane extracts of aerial parts of golden root (Rhodiola rosea) and common elder (Sambucus nigra) as well as the dichloromethane extracts of thyme (Thymus vulgaris) and carrot (Daucus carota) were able to stimulate insulin-dependent glucose uptake in both adipocytes and myotubes while weekly activating PPARγ without promoting adipocyte differentiation. In addition, these extracts were able to decrease fat accumulation in C. elegans. Methanol extracts of summer savory (Satureja hortensis), common elder, and broccoli (Brassica oleracea) enhanced glucose uptake in myotubes but were not able to activate PPARγ, indicating a PPARγ-independent effect on glucose uptake. PMID:25254050

  17. Screening for Bioactive Metabolites in Plant Extracts Modulating Glucose Uptake and Fat Accumulation

    PubMed Central

    El-Houri, Rime B.; Kotowska, Dorota; Olsen, Louise C. B.; Bhattacharya, Sumangala; Christensen, Lars P.; Oksbjerg, Niels; Færgeman, Nils; Kristiansen, Karsten; Christensen, Kathrine B.

    2014-01-01

    Dichloromethane and methanol extracts of seven different food and medicinal plants were tested in a screening platform for identification of extracts with potential bioactivity related to insulin-dependent glucose uptake and fat accumulation. The screening platform included a series of in vitro bioassays, peroxisome proliferator-activated receptor (PPAR) γ-mediated transactivation, adipocyte differentiation of 3T3-L1 cell cultures, and glucose uptake in both 3T3-L1 adipocytes and primary porcine myotubes, as well as one in vivo bioassay, fat accumulation in the nematode Caenorhabditis elegans. We found that dichloromethane extracts of aerial parts of golden root (Rhodiola rosea) and common elder (Sambucus nigra) as well as the dichloromethane extracts of thyme (Thymus vulgaris) and carrot (Daucus carota) were able to stimulate insulin-dependent glucose uptake in both adipocytes and myotubes while weekly activating PPARγ without promoting adipocyte differentiation. In addition, these extracts were able to decrease fat accumulation in C. elegans. Methanol extracts of summer savory (Satureja hortensis), common elder, and broccoli (Brassica oleracea) enhanced glucose uptake in myotubes but were not able to activate PPARγ, indicating a PPARγ-independent effect on glucose uptake. PMID:25254050

  18. Assessment of plant uptake models used in exposure assessment tools for soils contaminated with organic pollutants.

    PubMed

    Takaki, Koki; Wade, Andrew J; Collins, Chris D

    2014-10-21

    The aim of this study was to evaluate and improve the accuracy of plant uptake models for neutral hydrophobic organic pollutants (1 < logK(OW) < 9, -8 < logK(AW) < 0) used in regulatory exposure assessment tools, using uncertainty and sensitivity analyses. The models considered were RAIDAR, EUSES, CSOIL, CLEA, and CalTOX. In this research, CSOIL demonstrated the best performance of all five exposure assessment tools for root uptake from polluted soil in comparison with observed data, but no model predicted shoot uptake well. Recalibration of the transpiration and volatilisation parameters improved the performance of CSOIL and CLEA. The dominant pathway for shoot uptake simulated differed according to the properties of the chemical under consideration; those with a higher air-water partition coefficient were transported into shoots via the soil-air-plant pathway, while chemicals with a lower octanol-water partition coefficient and air-water partition coefficient were transported via the root. The soil organic carbon content was a particularly sensitive parameter in each model and using a site specific value improved model performance. PMID:25203369

  19. Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake

    NASA Astrophysics Data System (ADS)

    Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung

    2015-03-01

    High concentrations of cesium (Cs+) inhibit plant growth but the detailed mechanisms of Cs+ uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs+, chemical library screening was performed using Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs+ tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs+ concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs+. Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs+ tolerance enhancer isolated here renders plants tolerant to Cs+ by inhibiting Cs+ entry into roots via specific binding to the ion thus, for instance, providing a basis for phytostabilisation of radiocesium-contaminated farmland.

  20. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture

    PubMed Central

    Masclaux-Daubresse, Céline; Daniel-Vedele, Françoise; Dechorgnat, Julie; Chardon, Fabien; Gaufichon, Laure; Suzuki, Akira

    2010-01-01

    Background Productive agriculture needs a large amount of expensive nitrogenous fertilizers. Improving nitrogen use efficiency (NUE) of crop plants is thus of key importance. NUE definitions differ depending on whether plants are cultivated to produce biomass or grain yields. However, for most plant species, NUE mainly depends on how plants extract inorganic nitrogen from the soil, assimilate nitrate and ammonium, and recycle organic nitrogen. Efforts have been made to study the genetic basis as well as the biochemical and enzymatic mechanisms involved in nitrogen uptake, assimilation, and remobilization in crops and model plants. The detection of the limiting factors that could be manipulated to increase NUE is the major goal of such research. Scope An overall examination of the physiological, metabolic, and genetic aspects of nitrogen uptake, assimilation and remobilization is presented in this review. The enzymes and regulatory processes manipulated to improve NUE components are presented. Results obtained from natural variation and quantitative trait loci studies are also discussed. Conclusions This review presents the complexity of NUE and supports the idea that the integration of the numerous data coming from transcriptome studies, functional genomics, quantitative genetics, ecophysiology and soil science into explanatory models of whole-plant behaviour will be promising. PMID:20299346

  1. Tracking the diurnal signal of plant water uptake through the hydrologic system

    NASA Astrophysics Data System (ADS)

    Blume, Theresa; Hassler, Sibylle; Heidbüchel, Ingo; Weiler, Markus; Simard, Sonia; Güntner, Andreas; Heinrich, Ingo

    2015-04-01

    Plant water uptake during summer is characterized by strong diurnal fluctuations. As a result a diurnal sink term is imposed on catchment storage, affecting the unsaturated zone, sometimes the saturated zone and even streamflow. Detecting this signal and understanding its propagation through the hydrological system may help to better quantify eco-hydrological connectivity. The extent and strength of the propagation of this signal from plant to soil to ground- and stream water was investigated with a unique setup of 46 field sites in Luxemburg and 15 field sites in Germany. These sites cover a range of geologies, soils, topographies and types of vegetation. Vegetation types include grassland, pine forest (young and old) and different deciduous forest stands. Available data at all sites includes information at high temporal resolution from 3-5 soil moisture profiles, matrix potential, piezometers and sapflow sensors (as proxy for plant water uptake) as well as standard climate data. At sites with access to a stream, discharge or water level is also recorded. Signal strength (amplitude of diurnal fluctuations) can thus be traced through the system and gives an indication of the physical sphere of influence of plant water uptake i.e. the "eco-hydro-connectivity". Temporal dynamics of signal strength furthermore suggest a shifting spatial distribution of root water uptake with time. The analysis of time lags (or phase shifts) between daily fluctuations in temperature, radiation, sapflow, soil water, groundwater and streamflow gives further insights into the processes driving and propagating these signals and inter-site comparison allows for the investigation of local controls.

  2. Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey.

    PubMed

    Sasmaz, Merve; Akgül, Bunyamin; Yıldırım, Derya; Sasmaz, Ahmet

    2016-01-01

    This study investigated mercury (Hg) uptake and transport from the soil to different plant parts by documenting the distribution and accumulation of Hg in the roots and shoots of 12 terrestrial plant species, all of which grow naturally in surface soils of the Gumuskoy Pb-Ag mining area. Plant samples and their associated soils were collected and analyzed for Hg content by ICP-MS. Mean Hg values in the soils, roots, and shoots of all plants were 6.914, 460, and 206 µg kg(-1), respectively and lower than 1. The mean enrichment factors for the roots (ECR) and shoots (ECS) of these plants were 0.06 and 0.09, respectively and lower than 1. These results show that the roots of the studied plants prevented Hg from reaching the aerial parts of the plants. The mean translocation factor (TLF) was 1.29 and higher than 1. The mean TLF values indicated that all 12 plant species had the ability to transfer Hg from the roots to the shoots but that transfer was more efficient in plants with higher ECR and ECS. Therefore, these plants could be useful for the biomonitoring of environmental pollution and for rehabilitating areas contaminated by Hg. PMID:26114359

  3. Sudden cold temperature regulates the time-lag between plant CO2 uptake and release

    NASA Astrophysics Data System (ADS)

    Barthel, M.; Cieraad, E.; Zakharova, A.; Hunt, J. E.

    2013-11-01

    Since substrates for respiration are supplied mainly by recent photo-assimilates, there is a strong but time-lagged link between short-term above- and belowground carbon (C) cycling. However, regulation of this coupling by environmental variables is poorly understood. Whereas recent studies focussed on the effect of drought and shading on the link between above and belowground short-term C cycling, the effect of temperature remains unclear. We used a 13CO2 pulse-chase labelling experiment to investigate the effect of a sudden temperature change from 25 °C to 10 °C on the short-term coupling between assimilatory C uptake and respiratory loss. The study was done in the laboratory using two month old perennial rye-grass plants (plants at cold temperature invest relatively more carbon into respiration compared to growth or storage. These results increase our understanding of environmental controls on the link between short-term above- and belowground C cycling.

  4. How does altered precipitation and annual grass invasion affect plant N uptake in a native semi-arid shrub community?

    NASA Astrophysics Data System (ADS)

    Mauritz, M.; Lipson, D.; Cleland, E. E.

    2012-12-01

    concentrations are more variable in grasses which could indicate higher plasticity in grass N uptake compared to shrubs. Resin N supports the 15N patterns. Resin N declined more rapidly under grasses and was lower than under shrubs, presumably due to high grass N uptake. Resin N was particularly high under shrubs in wetter conditions indicating that shrubs could not take advantage of high N supply. Together the 15N and resin N patterns indicate that grasses accumulate more N and begin N uptake earlier in the season than shrubs. Although 15N did not differ in response to rainfall, invasion alters the distribution of N in the system. Rain was only manipulated for one growing season; multiple years of altered precipitation may yield significant differences. Early season N uptake by grasses, the low variability in shrub 15N and low shrub 15N in wetter conditions, despite high resin N, indicates that N competition between invasive grasses and native shrubs is weak. If N supply is sufficient for shrub demands, invasive grasses and shrubs could coexist. This study contributes to a broader understanding of how changes in resource supply, plant phenology and functional type interact and respond to climate change.

  5. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review.

    PubMed

    Tasho, Reep Pandi; Cho, Jae Yong

    2016-09-01

    Therapeutic and sub-therapeutic use of antibiotics in livestock farming is and has been, a common practice worldwide. These bioactive organic compounds have short retention period and partial uptake into the animal system. The uptake effects of this pharmaceutics, with plants as the primary focus, has not been reviewed so far. This review addresses three main concerns 1) the extensive use of veterinary antibiotics in livestock farming, 2) disposal of animal waste containing active biosolids and 3) effects of veterinary antibiotics in plants. Depending upon the plant species and the antibiotic used, the response can be phytotoxic, hormetic as well as mutational. Additionally, the physiological interactions that make the uptake of these compounds relatively easy have also been discussed. High water solubility, longer half-lives, and continued introduction make them relatively persistent in the environment. Lastly, some prevention measures that can help limit their impact on the environment have been reviewed. There are three methods of control: treatment of animal manure before field application, an alternative bio-agent for disease treatment and a well targeted legalized use of antibiotics. Limiting the movement of these biosolids in the environment can be a challenge because of their varying physiological interactions. Electron irradiation and supervised inoculation of beneficial microorganisms can be effective remediation strategies. Thus, extensive future research should be focused in this area. PMID:27139307

  6. Uptake of carbamazepine by cucumber plants--a case study related to irrigation with reclaimed wastewater.

    PubMed

    Shenker, Moshe; Harush, Daniella; Ben-Ari, Julius; Chefetz, Benny

    2011-02-01

    Reclaimed wastewater is an important source of irrigation in semiarid and arid zones. Here we report data on carbamazepine (CBZ) uptake by cucumber plants in hydroponic culture and greenhouse experiments using different soil types irrigated with fresh water or reclaimed wastewater. Data obtained from the hydroponic culture experiments suggest that CBZ is mainly translocated by water mass flow, and thus it is concentrated and accumulated to the largest extent in the mature/older leaves. Carbamazepine concentration in cucumber fruits and leaves was negatively correlated with soil organic matter content. The concentrations of CBZ in the roots and stems were relatively low, and most CBZ in the plant (76-84% of total uptake) was detected in the leaves. A greenhouse experiment using fresh water and reclaimed wastewater spiked, or not, with CBZ at 1 μg L(-1) (typical concentration in effluents) revealed that CBZ can be taken up and bioaccumulated from its background concentration in reclaimed wastewater. Bioaccumulation factor (calculated as the ratio of CBZ concentration in the plant to that in the soil solution) for the fruits (0.8-1) was significantly lower than the value calculated for the leaves (17-20). This study emphasizes the potential uptake of active pharmaceutical compounds by crops in organic-matter-poor soils irrigated with reclaimed wastewater and highlights the potential risks associated with this agricultural practice. PMID:21071061

  7. PlantGDB: A Resource for Comparative Plant Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PlantGDB (http://www.plantgdb.org/) is a genomics database encompassing sequence data for green plants (Viridiplantae). PlantGDB provides annotated transcript assemblies for >100 plant species, with transcripts mapped to their cognate genomic context where available, integrated with a variety of seq...

  8. Phytotoxicity, Uptake, and Translocation of Fluorescent Carbon Dots in Mung Bean Plants.

    PubMed

    Li, Wei; Zheng, Yinjian; Zhang, Haoran; Liu, Zulang; Su, Wei; Chen, Shi; Liu, Yingliang; Zhuang, Jianle; Lei, Bingfu

    2016-08-10

    Fluorescent carbon dots (CDs) have been widely studied in bioscience and bioimaging, but the effect of CDs on plants has been rarely studied. Herein, mung bean was adopted as a model plant to study the phytotoxicity, uptake, and translocation of red emissive CDs in plants. The incubation with CDs at a concentration range from 0.1 to 1.0 mg/mL induced physiological response of mung bean plant and imposed no phytotoxicity on mung bean growth. The lengths of the root and stem presented an increasing trend up to the treatment of 0.4 mg/mL. Confocal imaging showed that CDs were transferred from the roots to the stems and leaves by the vascular system through the apoplastic pathway. The uptake kinetics study was performed and demonstrated that the CDs were abundantly incubated by mung beans during both germination and growth periods. Furthermore, in vivo visualization of CDs provides potential for their successful application as delivery vehicles in plants based on the unique optical properties. PMID:27425200

  9. Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria.

    PubMed

    Sun, Leni; Wang, Xiaohan; Li, Ya

    2016-05-01

    The effects of inoculation with two metal-resistant and plant growth-promoting endophytic bacteria (Burkholderia sp. GL12 and Bacillus megaterium JL35) were evaluated on the plant growth and Cu uptake in their host Elsholtzia splendens and non-host Brassica napus plants grown in natural Cu-contaminated soil. The two strains showed a high level of ACC deaminase activities. In pot experiments, inoculation with strain GL12 significantly increased root and above-ground tissue dry weights of both plants, consequently increasing the total Cu uptake of E. splendens and Brassica napus by 132% and 48.2% respectively. Inoculation with strain JL35 was found to significantly increase not only the biomass of B. napus, consequently increasing the total Cu uptake of B. napus by 31.3%, but Cu concentration of E. splendens for above-ground tissues by 318% and roots by 69.7%, consequently increasing the total Cu uptake of E. splendens by 223%. The two strains could colonize the rhizosphere soils and root interiors of both plants. Notably, strain JL35 could colonize the shoot tissues and significantly increase the translocation factors and bioaccumulation factors of E. splendens. These results suggested that Burkholderia sp. GL12 and B. megaterium JL35 were valuable bacterial resource which had the potential in improving the efficiency of Cu phytoextraction by E. splendens and B. napus in a natural Cu-contaminated soil. PMID:26587767

  10. Selenium uptake and volatilization from plants growing in soil. [Astragalus bisulcatus

    SciTech Connect

    Duckhart, E.C.; Waldron, L.J.; Donner, H.E. )

    1992-02-01

    Selenium volatilization rates from plants and soil confined in a closed transparent chamber varied greatly among five plant species over 3- to 6-day collection periods. Astragalus bisulcatus and broccoli showed the highest rates of volatilization, 1.7 and 1.1 {mu}g Se/kg dry soil/day, respectively. Volatilization rates for soil only, tomato, tall fescue, and alfalfa were 0.7, 0.5, 0.3, and 0.2 {mu}g/kg/day, respectively. Although it was not possible to separate plant and soil microbial volatilization, the large differences between plant species suggest a significant role for plants in Se volatilization from soils. Se(VI) added to soil as sodium selenate was rapidly taken up by all five plant types to the extent that plant uptake dominated Se removal from the soil. Volatilization accounted for only 0.5% (alfalfa) to 6.1% (Astragalus bis.) of the selenium lost from the soil. Although Astragalus had the highest tissue selenium concentration and selenium volatilization rates, it ranked fourth behind broccoli, tomato, and alfalfa in order of selenium removal because of its small biomass at 15 weeks. Alfalfa accumulated 22.1 {mu}g Se/g plant tissue from the Se(VI) amended soil, a concentration exceeded only by Astragalus (80.6) and broccoli (22.3). However, alfalfa had the lowest short-term net volatilization rate of the five plant types.

  11. Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants.

    PubMed

    Schwabe, Franziska; Tanner, Simon; Schulin, Rainer; Rotzetter, Aline; Stark, Wendelin; von Quadt, Albrecht; Nowack, Bernd

    2015-03-01

    We investigated the uptake of cerium (Ce) dioxide nanoparticles (NPs) by hydroponically grown wheat, pumpkin and sunflower plants. The presence of plant roots in nutrient solution led to a substantial increase in the dissolution of CeO2-NP compared to plant-free medium. Experiments with Zr/CeOx-NP revealed that Ce was not only taken up in the form of NPs, but simultaneously to a significant degree also as dissolved Ce(iii) ions, which then re-precipitated in the form of CeO2-NPs inside the leaves. The contribution of dissolved Ce uptake was particularly large for particles smaller than 10 nm due to their higher dissolution rate. Our data also indicate that the translocation of Ce resulting from NP-root-exposure is species dependent. When Ce was supplied as dissolved ions, sunflower had the highest capacity of Ce-ion accumulation inside the leaves, while there was no significant difference between pumpkin and wheat. We found no Ce translocation from roots into shoots when only NPs bigger than 20 nm were applied. This study highlights that plant root activity can have a significant impact on the dissolution of CeO2-NPs in soil solution and that uptake of dissolved Ce(iii) followed by re-precipitation needs to be considered as an important pathway in studies of CeO2-NP uptake by plants. PMID:25634091

  12. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture.

    PubMed

    Kiba, Takatoshi; Krapp, Anne

    2016-04-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability. PMID:27025887

  13. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture

    PubMed Central

    Kiba, Takatoshi; Krapp, Anne

    2016-01-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability. PMID:27025887

  14. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri.

    PubMed

    Muehe, E Marie; Weigold, Pascal; Adaktylou, Irini J; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas; Behrens, Sebastian

    2015-03-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  15. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  16. Aridity and plant uptake interact to make dryland soils hotspots for nitric oxide (NO) emissions.

    PubMed

    Homyak, Peter M; Blankinship, Joseph C; Marchus, Kenneth; Lucero, Delores M; Sickman, James O; Schimel, Joshua P

    2016-05-10

    Nitric oxide (NO) is an important trace gas and regulator of atmospheric photochemistry. Theory suggests moist soils optimize NO emissions, whereas wet or dry soils constrain them. In drylands, however, NO emissions can be greatest in dry soils and when dry soils are rewet. To understand how aridity and vegetation interact to generate this pattern, we measured NO fluxes in a California grassland, where we manipulated vegetation cover and the length of the dry season and measured [δ(15)-N]NO and [δ(18)-O]NO following rewetting with (15)N-labeled substrates. Plant N uptake reduced NO emissions by limiting N availability. In the absence of plants, soil N pools increased and NO emissions more than doubled. In dry soils, NO-producing substrates concentrated in hydrologically disconnected microsites. Upon rewetting, these concentrated N pools underwent rapid abiotic reaction, producing large NO pulses. Biological processes did not substantially contribute to the initial NO pulse but governed NO emissions within 24 h postwetting. Plants acted as an N sink, limiting NO emissions under optimal soil moisture. When soils were dry, however, the shutdown in plant N uptake, along with the activation of chemical mechanisms and the resuscitation of soil microbial processes upon rewetting, governed N loss. Aridity and vegetation interact to maintain a leaky N cycle during periods when plant N uptake is low, and hydrologically disconnected soils favor both microbial and abiotic NO-producing mechanisms. Under increasing rates of atmospheric N deposition and intensifying droughts, NO gas evasion may become an increasingly important pathway for ecosystem N loss in drylands. PMID:27114523

  17. Comparative uptake of trace elements in vines and olive trees over calcareous soils in western La Mancha

    NASA Astrophysics Data System (ADS)

    Ángel Amorós, José; Higueras, Pablo; Pérez-de-los-Reyes, Caridad; Jesús García, Francisco; Villaseñor, Begoña; Bravo, Sandra; Losilla, María Luisa; María Moreno, Marta

    2014-05-01

    Grapevine (Vitis vinifera L.) and olive-tree (Olea europea L.) are very important cultures in Castilla-La Mancha for its extension and contribution to the regional economy. This study was carried out in the municipality of Carrión de Calatrava (Ciudad Real) where the variability of soils of different geological origin, with different evolutions giving a great diversity of soils. The metabolism of trace elements in plants has been extensively studied although each soil-plant system must be investigated, especially since small variations in composition can lead to marked differences. It can be stated that the composition of the plant reflects the environment where it is cultivated and the products of the plant (leaves, fruits, juices, etc…) will be influenced by the composition of the soil. The main aim of the work was to compare the uptake of 24 trace elements in grapevine and olive-tree cultivated in the same soil. Samples from surface soils and plant material (leaf) have been analyzed by X-ray fluorescence, obtaining trace elements in mg/kg. It can be concluded that the leaves of grapevines in the studied plots have shown content in elements: -Similar to the olive-tree in case of: Co, Ga, Y, Ta, Th, U y Nd. -Over to the olive-tree in: Sc, V, Cr, Ni, Rb, Sr, Zr, Nb, Ba, La, Ce, Hf y W. -Below to the olive-tree in: Cu, Zn, Cs y Pb. Keywords: woody culture soils, mineral nutrition, X-ray fluorescence.

  18. Plant uptake of depleted uranium from manure-amended and citrate treated soil.

    PubMed

    Sevostianova, Elena; Lindemann, William C; Ulery, April L; Remmenga, Marta D

    2010-08-01

    Six plant species were tested for their ability to accumulate depleted uranium in their above-ground biomass from deployed munitions contaminated soil in New Mexico. In greenhouse experiments, Kochia (Kochia scoparia L. Schrad.) and pigweed (Amaranthus retroflexus L) were grown with steer manure added at rates of 22.4, 44.8, and 89.6 Mg ha(-1). Citric acid and glyphosate (N-(phosphonomethyl) glycine) applied at the end of the growing season increased DU concentrations from 2.5 to 17 times. Leaf and stem DU concentrations in kochia increased from 17.0 to 41.9 mg kg(-1) and from 3.5 to 18.0 mg kg(-1), respectively. In pigweed, leaf and stem DU concentrations increased from 1.0 to 17.3 and from 1.0 to 4.7 mg kg(-1), respectively. Manure generally decreased or had no effect on DU uptake. The effect of citric acid and ammonium citrate on DU uptake by kochia, sunflower (Helianthus annuus L), and sweet corn (Zea mays L) was also studied. Ammonium citrate was just as effective in enhancing DU uptake as citric acid. This implies that the citrate ion is more important in DU uptake and translocation than the solubilization of DU through acidification. In both experiments, leaves had higher DU concentrations than stems. PMID:21166280

  19. Hydrogeophysical Monitoring of Water Uptake in Root Zones of Small Plants

    NASA Astrophysics Data System (ADS)

    Al Hagrey, S.; Werban, U.; Meissner, R.; Ismaeil, A.; Rabbel, W.

    2005-05-01

    We have monitored the water content in root zones in hydrogeophysical experiments and studied daily and seasonal variations of water uptake. Plants grew in plastic pots filled with fine sand. The surface of the pots was isolated to minimize evaporation, i.e., most water is consumed for transpiration. We installed geoelectric surface and subsurface profiles (electrode interval = 1.5 cm), and used 900/1500 MHz antennas to measure the travel times of radar waves reflected from a metallic plate at the base. Also a central and peripheral TDR and a tensiometer probe were installed. A continuous data acquisition was conducted to monitor the spatiotemporal water content of root zones and its variations. Our observations clearly reflect a decrease of pore water content with time and its abrupt increase directly after each irrigation cycle. TDR and tensiometer curves are parallel and mirror images of the resistivity curve. Observed soil water content in the day time was consistently lower than in the night time (no plant transpiration). Long-term observations of water uptake by roots show that the plants behavior is a function of the background moisture content. The maximum water uptake of optimum growth occurs at intermediate water content. Seasonal variations could be observed. The water uptake in May is obviously twice that of November. This can be explained by the fact that the available light (required for photosynthesis) was higher in May than in November. Also the effect of day light on the water uptake can be observed. The light sunny days show higher water uptake than the dark rainy days. The peripheral water content values that decrease with time are lower than that of the central root zone and show small night and day changes. This may imply that the central TDR probe measures the water content both within the wet root branches and the bounding soils, whereas the peripheral TDR reading represents the soil pore water only. Electrical models of the root zone show a

  20. Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences

    NASA Astrophysics Data System (ADS)

    Jarvis, N. J.

    2011-11-01

    Many land surface schemes and simulation models of plant growth designed for practical use employ simple empirical sub-models of root water uptake that cannot adequately reflect the critical role water uptake from sparsely rooted deep subsoil plays in meeting atmospheric transpiration demand in water-limited environments, especially in the presence of shallow groundwater. A failure to account for this so-called "compensatory" water uptake may have serious consequences for both local and global modeling of water and energy fluxes, carbon balances and climate. Some purely empirical compensatory root water uptake models have been proposed, but they are of limited use in global modeling exercises since their parameters cannot be related to measurable soil and vegetation properties. A parsimonious physics-based model of uptake compensation has been developed that requires no more parameters than empirical approaches. This model is described and some aspects of its behavior are illustrated with the help of example simulations. These analyses demonstrate that hydraulic lift can be considered as an extreme form of compensation and that the degree of compensation is principally a function of soil capillarity and the ratio of total effective root length to potential transpiration. Thus, uptake compensation increases as root to leaf area ratios increase, since potential transpiration depends on leaf area. Results of "scenario" simulations for two case studies, one at the local scale (riparian vegetation growing above shallow water tables in seasonally dry or arid climates) and one at a global scale (water balances across an aridity gradient in the continental USA), are presented to illustrate biases in model predictions that arise when water uptake compensation is neglected. In the first case, it is shown that only a compensated model can match the strong relationships between water table depth and leaf area and transpiration observed in riparian forest ecosystems, where

  1. Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii.

    PubMed

    Li, W C; Ye, Z H; Wong, M H

    2007-01-01

    To investigate the effects of bacteria (Burkholderia cepacia) on metal uptake by the hyperaccumulating plant, Sedum alfredii, a hydroponic experiment with different concentrations of Cd and Zn was conducted. It was found that inoculation of bacteria on S. alfredii significantly enhanced plant growth (up to 110% with Zn treatment), P (up to 56.1% with Cd treatment), and metal uptake (up to 243% and 96.3% with Cd and Zn treatment, respectively) in shoots, tolerance index (up to 134% with Zn added treatment), and better translocation of metals (up to 296% and 135% with Cd and Zn treatment, respectively) from root to shoot. In the ampicillin added treatment with metal addition, stimulation of organic acid production (up to an increase of 133% of tartaric acid with Cd treatment) by roots of S. alfredii was observed. The secretion of organic acids appears to be a functional metal resistance mechanism that chelates the metal ions extracellularly, reducing their uptake and subsequent impacts on root physiological processes. PMID:18039737

  2. Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture

    NASA Astrophysics Data System (ADS)

    Chaparro-Suarez, I. G.; Meixner, F. X.; Kesselmeier, J.

    2011-10-01

    Nitrogen dioxide (NO2) exchange between the atmosphere and five European tree species was investigated in the laboratory using a dynamic branch enclosure system (consisting of two cuvettes) and a highly specific NO2 analyzer. NO2 measurements were performed with a sensitive gas phase chemiluminescence NO detector combined with a NO2 specific (photolytic) converter, both from Eco-Physics (Switzerland). This highly specific detection system excluded bias from other nitrogen compounds. Investigations were performed at two light intensities (Photosynthetic Active Radiation, PAR, 450 and 900 μmol m-2 s-1) and NO2 concentrations between 0 and 5 ppb. Ambient parameters (air temperature and relative humidity) were held constant. The data showed dominant NO2 uptake by the respective tree species under all conditions. The results did not confirm the existence of a compensation point within a 95% confidence level, though we cannot completely exclude emission of NO2 under very low atmospheric concentrations. Induced stomatal stricture, or total closure, by changing light conditions, as well as by application of the plant hormone ABA (Abscisic Acid) caused a corresponding decrease of NO2 uptake. No loss of NO2 to plant surfaces was observed under stomatal closure and species dependent differences in uptake rates could be clearly related to stomatal behavior.

  3. Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants

    PubMed Central

    Vaculík, Marek; Landberg, Tommy; Greger, Maria; Luxová, Miroslava; Stoláriková, Miroslava; Lux, Alexander

    2012-01-01

    Background and Aims Silicon (Si) has been shown to ameliorate the negative influence of cadmium (Cd) on plant growth and development. However, the mechanism of this phenomenon is not fully understood. Here we describe the effect of Si on growth, and uptake and subcellular distribution of Cd in maize plants in relation to the development of root tissues. Methods Young maize plants (Zea mays) were cultivated for 10 d hydroponically with 5 or 50 µm Cd and/or 5 mm Si. Growth parameters and the concentrations of Cd and Si were determined in root and shoot by atomic absorption spectrometry or inductively coupled plasma mass spectroscopy. The development of apoplasmic barriers (Casparian bands and suberin lamellae) and vascular tissues in roots were analysed, and the influence of Si on apoplasmic and symplasmic distribution of 109Cd applied at 34 nm was investigated between root and shoot. Key Results Si stimulated the growth of young maize plants exposed to Cd and influenced the development of Casparian bands and suberin lamellae as well as vascular tissues in root. Si did not affect the distribution of apoplasmic and symplasmic Cd in maize roots, but considerably decreased symplasmic and increased apoplasmic concentration of Cd in maize shoots. Conclusions Differences in Cd uptake of roots and shoots are probably related to the development of apoplasmic barriers and maturation of vascular tissues in roots. Alleviation of Cd toxicity by Si might be attributed to enhanced binding of Cd to the apoplasmic fraction in maize shoots. PMID:22455991

  4. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: a review.

    PubMed

    Wu, Xiaoqin; Dodgen, Laurel K; Conkle, Jeremy L; Gan, Jay

    2015-12-01

    Reuse of treated wastewater for agricultural irrigation is growing in arid and semi-arid regions, while increasing amounts of biosolids are being applied to fields to improve agricultural outputs. These historically under-utilized resources contain "emerging contaminants", such as pharmaceutical and personal care products (PPCPs), which may enter agricultural soils and potentially contaminate food crops. In this review, we summarize recent research and provide a detailed overview of PPCPs in the soil-plant systems, including analytical methods for determination of PPCPs in plant tissues, fate of PPCPs in agricultural soils receiving treated wastewater irrigation or biosolids amendment, and plant uptake of PPCPs under laboratory and field conditions. Mechanisms of uptake and translocation of PPCPs and their metabolisms in plants are also reviewed. Field studies showed that the concentration levels of PPCPs in crops that were irrigated with treated wastewater or applied with biosolids were very low. Potential human exposure to PPCPs through dietary intake was discussed. Information gaps and questions for future research have been identified in this review. PMID:26254067

  5. Effect of residue combinations on plant uptake of nutrients and potentially toxic elements.

    PubMed

    Brännvall, Evelina; Nilsson, Malin; Sjöblom, Rolf; Skoglund, Nils; Kumpiene, Jurate

    2014-01-01

    The aim of the plant pot experiment was to evaluate potential environmental impacts of combined industrial residues to be used as soil fertilisers by analysing i) element availability in fly ash and biosolids mixed with soil both individual and in combination, ii) changes in element phytoavailability in soil fertilised with these materials and iii) impact of the fertilisers on plant growth and element uptake. Plant pot experiments were carried out, using soil to which fresh residue mixtures had been added. The results showed that element availability did not correlate with plant growth in the fertilised soil with. The largest concentrations of K (3534 mg/l), Mg (184 mg/l), P (1.8 mg/l), S (760 mg/l), Cu (0.39 mg/l) and Zn (0.58 mg/l) in soil pore water were found in the soil mixture with biosolids and MSWI fly ashes; however plants did not grow at all in mixtures containing the latter, most likely due to the high concentration of chlorides (82 g/kg in the leachate) in this ash. It is known that high salinity of soil can reduce germination by e.g. limiting water absorption by the seeds. The concentrations of As, Cd and Pb in grown plants were negligible in most of the soils and were below the instrument detection limit values. The proportions of biofuel fly ash and biosolids can be adjusted in order to balance the amount and availability of macronutrients, while the possible increase of potentially toxic elements in biomass is negligible seeing as the plant uptake of such elements was low. PMID:24321288

  6. Effects of different treatments on soil-borne DDT and HCH dynamics and plant uptake.

    PubMed

    Li, Huashou; Ling, Weifeng; Lin, Chuxia

    2011-01-01

    Pot experiments were conducted to examine the effects of various fertilizers, as well as soil dilution treatments on the dynamics of soil-borne DDTs [sum of dichlorodiphenyltrichloroethane (DDT), chlorodiphenyldichloroethylene (DDE) and di- chlorodiphenyldichloroethane (DDD)] and hexachlorocyclohexanes (HCHs, sum of α-HCH, β-HCH, γ-HCH and δ-HCH) and their subsequent impacts on the uptake of DDTs and HCHs by a test plant. The results show that the soil residual DDTs and HCHs concentrations in the iron-rich fertilizer-treated soil were significantly lower than those in other fertilizer-treated soils. There was a close relationship between the soil residual DDTs and the plant tissue DDTs. This suggests that the uptake rate of DDTs by the plant was dependent on the concentration of soil-borne DDTs. A less close relationship between soil residual HCHs and plant tissue HCHs was also observed. Dilution of pesticide-contaminated soil with the non-contaminated soil not only physically reduced the concentration of pesticides in the soil but also enhanced the loss of soil-borne pesticides, possibly through the improvement of soil conditions for microbial degradation. Soil dilution had a better effect on promoting the loss of soil-borne HCHs, relative to soil-borne-DDTs. The research findings obtained from this study have implications for management of heavily contaminated soils with DDTs and HCHs. Remediation of DDTs and HCHs-contaminated soils in a cost-effective way can be achieved by incorporating treatment techniques into conventional agricultural practices. Applications of iron-rich fertilizer and soil dilution treatments could cost-effectively reduce soil-borne DDTs and HCHs, and subsequently the uptake of these organochlorine pesticides by vegetables. PMID:21790304

  7. Is nutrient uptake by plant roots sensitive to the rate of mass flow? Reappraisal of an old chestnut for spatially distributed root systems

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Näsholm, T.

    2015-12-01

    Numerous modelling papers have considered the contribution of mass flow to nutrient uptake by a single plant root, but few have evaluated its contribution at the scale of an entire root system. We derive equations for nitrogen (N) influx per unit root surface area (J) and N uptake by a single root (U) as functions of soil nitrogen supply, root-length density (RLD) and the velocity of water at the root surface (vo). This model of N uptake by a single root can be used to evaluate N uptake by an entire root system if spatial distributions are known for soil N supply, root biomass and water-uptake velocity. In this paper we show that spatial distributions of RLD and vo can be estimated simultaneously under an optimisation hypothesis (MaxNup, McMurtrie et al. 2012), according to which total root mass and total water uptake are distributed vertically in order to maximise total N uptake. The MaxNup hypothesis leads to equations for optimal vertical profiles of RLD, vo, J and U, maximum rooting depth and the fraction of total available soil nitrogen taken up by the root system. Predicted values of vo are enhanced at depths where nitrogen influx per unit root surface area (J) is more sensitive to vo and diminished at depths where J is less sensitive to vo. Predicted vo is largest at the base of the root system where RLD is lowest, and is smallest in upper soil layers where RLD is highest. MaxNup thus predicts that water uptake will be distributed preferentially to soil depths where it will enhance nitrogen uptake U; this tendency will amplify the sensitivity of total N uptake to total water uptake, compared with strategies where vo is the same for all roots, or where vo is elevated for roots in upper soil layers. Reference McMurtrie RE, Iversen CM, Dewar RC, Medlyn BE, Näsholm T, Pepper DA, Norby RJ. 2012. Plant root distributions and nitrogen uptake predicted by a hypothesis of optimal root foraging. Ecology and Evolution 2: 1235-1250.

  8. Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots.

    PubMed

    Gao, Yanzheng; Cheng, Zhaoxia; Ling, Wanting; Huang, Jing

    2010-09-01

    The arbuscular mycorrhizal (AM) hyphae-mediated uptake of polycyclic aromatic hydrocarbons (PAHs) by the roots of ryegrass (Lolium multiflorum Lam.) was investigated using three-compartment systems. Glomus mosseae and Glomus etunicatum were chosen, and fluorene and phenanthrene were used as representative PAHs. When roots were grown in un-spiked soils, AM hyphae extended into PAH-spiked soil and clearly absorbed and transported PAHs to roots, resulting in high concentrations of fluorene and phenanthrene in roots. This was further confirmed by the batch equilibration experiment, which revealed that the partition coefficients (K(d)) of tested PAHs by mycorrhizal hyphae were 270-356% greater than those by roots, suggesting the great potential of hyphae to absorb PAHs. Because of fluorene's lower molecular weight and higher water solubility, its translocation by hyphae was greater than that of phenanthrene. These results provide new perspectives on the AM hyphae-mediated uptake by plants of organic contaminants from soil. PMID:20403686

  9. Major factors influencing cadmium uptake from the soil into wheat plants.

    PubMed

    Liu, Ke; Lv, Jialong; He, Wenxiang; Zhang, Hong; Cao, Yingfei; Dai, Yunchao

    2015-03-01

    At present, soil quality standards for agriculture have not been improved for many years and are applied uniformly for a diverse variety of crops and different soil types, not fully considering the effects of soil properties on cadmium (Cd) uptake via soil-plant transfer. In this study, the characteristics of Cd transfer from soil to eight wheat varieties were investigated, and the results showed that Xiaoyan 22 was moderately sensitive to Cd. Upon growing Xiaoyan 22 in 18 different Chinese soils, we studied the major controlling factors of Cd transfer and constructed a bioaccumulation prediction model from the soil properties. The results showed that pH was the most important factor contributing to Cd uptake. After calibration for the eight wheat varieties, a continuous soil threshold model for wheat was derived for the species sensitive distribution based on food safety standards. PMID:25499054

  10. Effects of VA mycorrhiza formation on plant nitrogen uptake and rhizosphere bacteria

    SciTech Connect

    Ames, R.N.

    1983-01-01

    Mycorrhizal and nonmycorrhizal sorghum plants were grown in pots at three levels of fertilizer nitrogen ((NH/sub 4/)/sub 2/SO/sub 4/) which had been enriched with /sup 15/N. Root colonization by Glomus mosseae did not affect plant growth or total N uptake, but significant reductions in mycorrhizal plant /sup 15/N:/sup 14/N ratios and increased 'A' values were found. This suggested that mycorrhizal plants had access to an N source which was less available to nonmycorrhizal plants. In two additional experiments, mycorrhizal and nonmycorrhizal celery plants were grown in pots which allowed VAM fungal hyphae, but not roots, to have direct access to /sup 15/N-enriched organic or inorganic N sources. Root dry weight was significantly reduced in mycorrhizal plants. Mycorrhizal plants had significantly greater shoot and root /sup 15/N content than nonmycorrhizal plants. Number and length of VAM fungal hyphae crossing into the area of /sup 15/N placement were positively correlated with mycorrhizal plant /sup 15/N content in the inorganic-N but not organic-N treatment. In a fourth experiment, the effect of G. mosseae on the rhizosphere populations of five bacterial isolates associated with blue grama (Bouteloua gracilis) was examined. No significant differences in bacterial populations were found in nonrhizosphere soil samples from pots of mycorrhizal and nonmycorrhizal plants. One bacterial isolate was significantly increased in number, while a different isolate and total bacterial populations were significantly reduced by the presence of the mycorrhizal fungus. The results suggest that root colonization by VAM fungi can alter rhizosphere bacterial populations.

  11. Metal uptake in plants along a pollution gradient from a metal smelter

    NASA Astrophysics Data System (ADS)

    Westerheim, A.; Steinnes, E.; Sjobakk, T. E.

    2003-05-01

    Until 1987 the largest single source of S02 emission in Norway was the Sulitjelma copper smelter, situated in a narrow valley in the northern part of the country. A previous study, based on sampling in 1982, showed substantial influence of smelter emissions on metal concentrations in natural vegetation along a western gradient from the smelter. Reasons for this may party have been impacts of soil acidification, partly direct effects of heavy metal deposition. Repeated sampling of the same plant species at the same sites was carried out in 1988, 1992, and 2000 in order to study the development in plant metal uptake following the closing of the smelter in 1987. The plant samples from the recent samplings show only moderate influence from the previous smelter emissions, indicating that the soil has at lest party recovered from the chemical influence caused by the smelter.

  12. Elevated CO2 increases plant uptake of organic and inorganic N in the desert shrub Larrea tridentata.

    PubMed

    Jin, Virginia L; Evans, R D

    2010-05-01

    Resource limitations, such as the availability of soil nitrogen (N), are expected to constrain continued increases in plant productivity under elevated atmospheric carbon dioxide (CO(2)). One potential but under-studied N source for supporting increased plant growth under elevated CO(2) is soil organic N. In arid ecosystems, there have been no studies examining plant organic N uptake to date. To assess the potential effects of elevated atmospheric CO(2) on plant N uptake dynamics, we quantified plant uptake of organic and inorganic N forms in the dominant desert shrub Larrea tridentata under controlled environmental conditions. Seedlings of L. tridentata were grown in the Mojave Desert (NV, USA) soils that had been continuously exposed to ambient or elevated atmospheric CO(2) for 8 years at the Nevada Desert FACE Facility. After 6 months of growth in environmentally controlled chambers under ambient (380 micromol mol(-1)) or elevated (600 micromol mol(-1)) CO(2), pots were injected with stable isotopically labeled sole-N sources ((13)C-[2]-(15)N glycine, (15)NH(4) (+), or (15)NO(3) (-)) and moved back to their respective chambers for the remainder of the study. Plants were destructively harvested at 0, 2, 10, 24, and 49 days. Plant uptake of soil N derived from glycine, NH(4) (+), and NO(3) (-) increased under elevated CO(2) at days 2 and 10. Further, root uptake of organic N as glycine occurred as intact amino acid within the first hour after N treatment, indicated by approximately 1:1 M enrichment ratios of (13)C:(15)N. Plant N uptake responses to elevated CO(2) are often species-specific and could potentially shift competitive interactions between co-occurring species. Thus, physiological changes in root N uptake dynamics coupled with previously observed changes in the availability of soil N resources could impact plant community structure as well as ecosystem nutrient cycling under increasing atmospheric CO(2) levels in the Mojave Desert. PMID:20094733

  13. A New Oidiodendron maius Strain Isolated from Rhododendron fortunei and its Effects on Nitrogen Uptake and Plant Growth

    PubMed Central

    Wei, Xiangying; Chen, Jianjun; Zhang, Chunying; Pan, Dongming

    2016-01-01

    A new mycorrhizal fungal strain was isolated from hair roots of Rhododendron fortunei Lindl. grown in Huading Forest Park, Zhejiang Province, China. Morphological characterization and internal transcribed spacer rDNA analysis suggested that it belongs to Oidiodendron maius Barron, and we designated it as strain Om19. Methods for culturing Om19 were established, and the ability of Om19 to form mycorrhizae on R. fortunei was evaluated in a peat-based substrate. Microscopic observations showed hyaline hyphae on the surface of hair roots and crowded hyphal complexes (hyphal coils) inside root cortical cells of R. fortunei after inoculation, indicating that the roots were well colonized by Om19. In a second experiment, fresh and dry weight of R. fortunei 2 months after Om19 inoculation were greater than uninoculated plants, and the total nitrogen absorbed by plants inoculated with Om19 was greater than the uninoculated controls. qRT-PCR analysis of five genes related to N uptake and metabolism (two nitrate transporters, an ammonium transporter, glutamine synthetase, and glutamate synthase) showed that these genes were highly upregulated with twofold to ninefold greater expression in plants inoculated with Om19 compared to uninoculated plants. In the third experiment, Om19 was inoculated into the peat-based substrate for growing Formosa azalea (Rhododendron indica ‘Formosa’). ‘Formosa’ azalea plants grown in the inoculated substrate had larger canopies and root systems compared to uninoculated plants. Our results show that Om19 could be an important microbial tool for improving production of Rhododendron plants. PMID:27602030

  14. A New Oidiodendron maius Strain Isolated from Rhododendron fortunei and its Effects on Nitrogen Uptake and Plant Growth.

    PubMed

    Wei, Xiangying; Chen, Jianjun; Zhang, Chunying; Pan, Dongming

    2016-01-01

    A new mycorrhizal fungal strain was isolated from hair roots of Rhododendron fortunei Lindl. grown in Huading Forest Park, Zhejiang Province, China. Morphological characterization and internal transcribed spacer rDNA analysis suggested that it belongs to Oidiodendron maius Barron, and we designated it as strain Om19. Methods for culturing Om19 were established, and the ability of Om19 to form mycorrhizae on R. fortunei was evaluated in a peat-based substrate. Microscopic observations showed hyaline hyphae on the surface of hair roots and crowded hyphal complexes (hyphal coils) inside root cortical cells of R. fortunei after inoculation, indicating that the roots were well colonized by Om19. In a second experiment, fresh and dry weight of R. fortunei 2 months after Om19 inoculation were greater than uninoculated plants, and the total nitrogen absorbed by plants inoculated with Om19 was greater than the uninoculated controls. qRT-PCR analysis of five genes related to N uptake and metabolism (two nitrate transporters, an ammonium transporter, glutamine synthetase, and glutamate synthase) showed that these genes were highly upregulated with twofold to ninefold greater expression in plants inoculated with Om19 compared to uninoculated plants. In the third experiment, Om19 was inoculated into the peat-based substrate for growing Formosa azalea (Rhododendron indica 'Formosa'). 'Formosa' azalea plants grown in the inoculated substrate had larger canopies and root systems compared to uninoculated plants. Our results show that Om19 could be an important microbial tool for improving production of Rhododendron plants. PMID:27602030

  15. Comparative Metabolism of Carbon Tetrachloride in Rats, Mice and Hamsters Using Gas Uptake and PBPK Modeling

    SciTech Connect

    Thrall, Karla D. ); Vucelick, Mark E.; Gies, Richard A. ); Zangar, Richard C. ); Weitz, Karl K. ); Poet, Torka S. ); Springer, David L. ); Grant, Donna M. ); Benson, Janet M.

    2000-08-25

    No study has comprehensively compared the rate of metabolism of carbon tetrachloride (CCl4) across species. Therefore, the in vivo metabolism of CCl4 was evaluated using groups of male animals (F344 rats, B6C3F1 mice, and Syrian hamsters) exposed to 40-1800 ppm CCl4 in a closed, recirculating gas-uptake system. For each species, an optimal fit of the family of uptake curves was obtained by adjusting Michaelis-Menten metabolic constants Km (affinity) and Vmax (capacity) using a physiologically based pharmacokinetic (PBPK) model. The results show that the mouse has a slightly higher capacity and lower affinity for metabolizing CCl4 compared to the rat, while the hamster has a higher capacity and lower affinity than either rat or mouse. A comparison of the Vmax to Km ratio, normalized for mg of liver protein (L/hr/mg) across species indicates that hamsters metabolize more CCl4 than either rats or mice, and should be more susceptible to CCl4-induced hepatotoxicity. These species comparisons were evaluated against toxicokinetic studies conducted in animals exposed by nose-only inhalation to 20 ppm 14C-labeled CCl4 for 4 hours. The toxicokinetic study results are consistent with the in vivo rates of metabolism, with rats eliminating less radioactivity associated with metabolism (14CO2 and urine/feces) and more radioactivity associated with the parent compound (radioactivity trapped on charcoal) compared to either hamsters or mice. The in vivo metabolic constants determined here, together with in vitro constants determined using rat, mouse, hamster and human liver microsomes, were used to estimate human in vivo metabolic rates of 1.49 mg/hr/kg body weight and 0.25 mg/L for Vmax and Km, respectively. Normalizing the rate of metabolism (Vmax/Km) by mg liver protein, the rate of metabolism of CCl4 differs across species, with hamster > mouse& > rat > human.

  16. Uptake by roots and translocation to shoots of polychlorinated dibenzo-p-dioxins and dibenzofurans in typical crop plants.

    PubMed

    Zhang, Haijun; Chen, Jiping; Ni, Yuwen; Zhang, Qing; Zhao, Liang

    2009-08-01

    Root uptake and subsequent translocation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in 12 agricultural crops were comparatively investigated. All crop plants were exposed hydroponically to a mixture of three kinds of dioxin congeners over 4d. The root concentration factor (RCF) of dioxin showed a logarithmic correlation with extractable lipid content in plant root. On the assumption that the dioxin escaping via gas phase from nutrient solution in the closed container can evenly diffuse in the air and equally absorb onto the shoot tissues of the dioxin-exposed plant and their nearby blank control plant, the amount of translocated dioxin was estimated by subtracting dioxin content in the shoot tissues of the blank control plant from that of the dioxin-exposed plant, and then the transpiration stream concentration factor (TSCF) of dioxin was calculated. The TSCF values of PCDD/Fs largely varied according to the plant species, and the TSCF values of 2,4,8-TrCDF were a little higher than those for 1,3,6,8-TeCDD expect for zucchini. For 1,3,6,8-TeCDD, zucchini had the highest TSCF value of 0.0089, followed by pumpkin (0.0064) towel gourd (0.0027), and cucumber (0.0010), verifying plants of the genus Cucurbita have the higher abilities of dioxin translocation. The TSCF values of 1,3,6,8-TeCDD for wheat and sorghum were 0.0013 and 0.0012, respectively. For maize, soybean, rice, Chinese cabbage, tomato and garland chrysanthemum, translocation was an insignificant mechanism of dioxin contamination in shoot tissues. PMID:19541345

  17. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior.

    PubMed

    López-Luna, J; Silva-Silva, M J; Martinez-Vargas, S; Mijangos-Ricardez, O F; González-Chávez, M C; Solís-Domínguez, F A; Cuevas-Díaz, M C

    2016-09-15

    The aim of this work was to assess the uptake of citrate-coated magnetite nanoparticles (NPs) by wheat plants and its effect on the bioaccumulation and toxicity of individual and joint Cd(2+) and Cr(6+) levels. Seven-day assays were conducted using quartz sand as the plant growth substrate. The endpoints measured were seed germination, root and shoot lengths, and heavy metal accumulation. Magnetite exhibited very low toxicity, regardless of the wheat seedling NP uptake and distribution into roots and shoots. The seed germination and shoot length were not sensitive enough, while the root length was a more sensitive toxicity endpoint. The root length of wheat seedlings exposed to individual metals decreased by 50% at 2.67mgCd(2)(+)kg(-1) and 5.53mgCr(6+)kg(-1). However, when magnetite NPs (1000mgkg(-1)) were added, the root length of the plants increased by 25 and 50%. Cd(2+) and Cr(6+) showed similar and noninteractive joint action, but strongly impaired the wheat seedlings. In contrast, an interactive infra-additive or antagonistic effect was observed upon adding magnetite NPs. Thus, cadmium and chromium accumulation in vegetable tissues was considerately diminished and the toxicity alleviated. PMID:26806072

  18. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth.

    PubMed

    Vert, Grégory; Grotz, Natasha; Dédaldéchamp, Fabienne; Gaymard, Frédéric; Guerinot, Mary Lou; Briat, Jean-François; Curie, Catherine

    2002-06-01

    Plants are the principal source of iron in most diets, yet iron availability often limits plant growth. In response to iron deficiency, Arabidopsis roots induce the expression of the divalent cation transporter IRT1. Here, we present genetic evidence that IRT1 is essential for the uptake of iron from the soil. An Arabidopsis knockout mutant in IRT1 is chlorotic and has a severe growth defect in soil, leading to death. This defect is rescued by the exogenous application of iron. The mutant plants do not take up iron and fail to accumulate other divalent cations in low-iron conditions. IRT1-green fluorescent protein fusion, transiently expressed in culture cells, localized to the plasma membrane. We also show, through promoter::beta-glucuronidase analysis and in situ hybridization, that IRT1 is expressed in the external cell layers of the root, specifically in response to iron starvation. These results clearly demonstrate that IRT1 is the major transporter responsible for high-affinity metal uptake under iron deficiency. PMID:12084823

  19. IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth

    PubMed Central

    Vert, Grégory; Grotz, Natasha; Dédaldéchamp, Fabienne; Gaymard, Frédéric; Guerinot, Mary Lou; Briat, Jean-François; Curie, Catherine

    2002-01-01

    Plants are the principal source of iron in most diets, yet iron availability often limits plant growth. In response to iron deficiency, Arabidopsis roots induce the expression of the divalent cation transporter IRT1. Here, we present genetic evidence that IRT1 is essential for the uptake of iron from the soil. An Arabidopsis knockout mutant in IRT1 is chlorotic and has a severe growth defect in soil, leading to death. This defect is rescued by the exogenous application of iron. The mutant plants do not take up iron and fail to accumulate other divalent cations in low-iron conditions. IRT1–green fluorescent protein fusion, transiently expressed in culture cells, localized to the plasma membrane. We also show, through promoter::β-glucuronidase analysis and in situ hybridization, that IRT1 is expressed in the external cell layers of the root, specifically in response to iron starvation. These results clearly demonstrate that IRT1 is the major transporter responsible for high-affinity metal uptake under iron deficiency. PMID:12084823

  20. Uptake of munitions materiels (TNT, RDX) by crop plants and potential interactions of nitrogen nutrition

    SciTech Connect

    Fellows, R.J.; Harvey, S.D.; Cataldo, D.A.; Mitchell, W.

    1995-12-31

    Munitions materiel such as trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and their combustion/decomposition products can accumulate/cycle in terrestrial environs. High soil organic matter and fertility have been previously shown to negatively correlate with both TNT or RDX uptake in plants such as grass, wheat, and bean. The present study was therefore conducted using low fertility soil to assess uptake and distribution patterns of C-radiolabelled TNT and RDX (15 and 30 {micro}g/g) within corn (Zea mays), spinach (Spinacea oleraceae), carrot (Daucus carota), and alfalfa (Medicago sativa) grown to maturity in growth chambers. Uptake by the plants at maturity (90- to 120-days) ranged from 1.8 to 2.7% of total amended {sup 14}C-TNT for carrots and corn respectively and 17 to 33% of total amended {sup 14}C-RDX for corn and carrots respectively. Distribution patterns of total radiolabel indicate that the TNT-derived label was primarily retained within the roots (60 to 85%) while the RDX-derived label was distributed to the shoots (85 to 97%). Less than 0.01 {micro}g/g dry wt. TNT was found in all analyzed shoot tissues with > 90% of the TNT-derived radiolabel in the form of polar metabolites. Concentrations of RDX in shoot tissues of corn exceeded 180 {micro}g/g dry wt. Alfalfa grown in unfertilized, fertilized (NO{sub 3}), or unfertilized-inoculated (Rhizobia) soil exhibited a 70 to 100% increase in dry wt. after 45 days in the TNT-amended (15 {micro}g/g) fertilized and unfertilized-inoculated plants versus the controls. A potential TNT/nitrogen interaction will be discussed.

  1. A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds.

    PubMed

    Matsui, Kenji

    2016-08-01

    Plants have the ability to sense volatile organic compounds (VOCs) so as to efficiently adapt to their environment. The mechanisms underlying such plant 'olfactory' systems are largely unknown. Here I would like to propose that the metabolism of VOCs in plant tissues is one of the mechanisms by which plants sense VOCs. During the gas-exchange that is essential for photosynthesis, VOCs in the atmosphere are taken into the intercellular spaces of leaves. Each VOC is partitioned between the gas phase (intercellular space) and liquid phase (cell wall) at a certain ratio determined by Henry's law. The VOCs in the cell wall diffuse through the plasma membrane to the cytosol depending on their oil/water partition coefficients. Plants detoxify some VOCs, especially those that are oxidized, through glycosylation, glutathionylation, and reduction. These metabolic processes lower the concentration of VOCs in the cytosol, which facilitates further cytosolic uptake. As a result, vigorous metabolism of VOCs in the cytosol can lead to a substantial accumulation of VOC metabolites and the depletion of glutathione or NADPH. One such metabolite (a VOC glycoside) is known to mount a direct defense against herbivores, whilst deprivation of glutathione and NADPH can fortify plants with responses similar to the oxidative stress response. PMID:27281633

  2. Analysing global ecosystem CO2 uptake capacity with plant trait data

    NASA Astrophysics Data System (ADS)

    van de Weg, Martine; Sadat Musavi, Talie; van Bodegom, Peter; Kattge, Jens; Mahecha, Miguel; Reichstein, Markus; Bahn, Michael

    2014-05-01

    Given the modulating role of vegetation in the global carbon cycle, there is a demand for simple and general scaling relationships of vegetation characteristics and ecosystem CO2-uptake and emissions. On a leaf level, is it well established that plant trait foliar nitrogen (N) relates strongly with leaf level CO2. Furthermore, ecosystem productivity or CO2 uptake capacity have been related directly with whole-canopy N concentrations for a variety of ecosystems such as grasslands, and boreal, temporal and tropical forests. However, studies on the global validity of these leaf and ecosystem level relationships have been lacking up to date. The arrival of the large plant trait database TRY database offers the opportunity to link plant trait and ecosystem functioning on a global scale. In this study, we used CO2 flux data from the FLUXNET database, with plant trait (Narea) data from TRY and Narea measurements from a selection of FLUXNET sites as well. For 83 global FLUXNET sites, which had information available on species composition, we derived the light saturated gross primary productivity (GPP1000). We used MODIS LAI and fPAR, together with the species' relative height and abundance data, to up-scale the TRY derived Narea values to a canopy value per site (Ncanopy). For this calculation we assumed that top canopy leaves contribute more to CO2 uptake, and used a Lambert-Beer canopy light extinction principle to weigh the relative contribution per species to the final Ncanopy value. For our analyses, we divided the sites in five different vegetation classes: broad leaved forests, needle leaved forests, grasslands, crops and (sub)arctic non-forest vegetation. Site-measured Nareadata corroborated well with TRY derived Narea data, giving confidence in using a database such as TRY for global analyses like ours. Ncanopy alone explained 18 % of the observed variation in maximum (90th percentile) GPP1000 with a linear model. When adding the different vegetation types as a

  3. Uptake of tri-p-cresyl phosphate (TCP) in soybean plants

    SciTech Connect

    Casterline, J.L. Jr.; Ku, Y.; Barnett, N.M.

    1985-08-01

    Because of the possible release of TCP to the environment, this study was undertaken to determine the uptake and translocation of TCP by soybean plants, using pure tri-p-cresyl phosphate (TpCP) as a model compound. The authors wished to learn the propensity of TpCP to move into the food crops from the soil. This study was not concerned with phytotoxicity, but with the possibility of foods becoming contaminated with TCP through the use of sludge or waste-water on agricultural lands.

  4. Comparative Effects of Aerobic Training and Erythropoietin on Oxygen Uptake in Untrained Humans.

    PubMed

    Sieljacks, Peter; Thams, Line; Nellemann, Birgitte; Larsen, Mads Sørensen; Vissing, Kristian; Christensen, Britt

    2016-08-01

    Sieljacks, P, Thams, L, Nellemann, B, Larsen, MS, Vissing, K, and Christensen, B. Comparative effects of aerobic training and erythropoietin on oxygen uptake in untrained humans. J Strength Cond Res 30(8): 2307-2317, 2016-The present study examines responses to 10 weeks of aerobic training and/or erythropoiesis-stimulating agent (ESA) treatment on maximal oxygen uptake (V[Combining Dot Above]O2max). Thirty-six healthy, untrained men were randomly assigned to sedentary-placebo (n = 9), sedentary-ESA (SE) (n = 9), training-placebo (TP) (n = 10), or training-ESA (TE) (n = 8). The participants were treated subcutaneously once weekly with ESA (darbepoietin-α, week 1-3; 40 μg and week 4-10; 20 μg) or a placebo for 10 weeks. The training consisted of supervised cycling 3 times per week for 1 hour at an average of 65% of maximal watt, with a progressive overload during the intervention period. V[Combining Dot Above]O2max, wattmax, and hematological values were measured throughout the study. In addition, the total training workload and estimated energy consumption were recorded after each training session. ESA treatment increased hemoglobin (∼11 and ∼14%, p < 0.001) and hematocrit (∼12 and ∼13%, p < 0.001) in the SE and TE groups, respectively. The relative (but not absolute) increases in V[Combining Dot Above]O2max were more pronounced (p < 0.01) in TE (27 ± 6%), compared with SE (15 ± 4%) but not TP (19 ± 4%), indicating that training is superior to ESA in stimulating V[Combining Dot Above]O2max in untrained men. The increased oxygen uptake in the TE group did not result in higher absolute training workloads than in the TP group. In untrained men, training exhibits a greater stimulus for improvements in V[Combining Dot Above]O2max than ESA treatment, without pronounced additive effects, which is supported by similar average training workloads and energy consumption in TP and TE. Thus, in untrained men, training alone seems sufficient to induce improvement in

  5. Increased Plant Uptake of Nitrogen from 15N Depleted Fertilizer Using Plant Growth-Promoting Rhizobacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The techniques of 15N isotope have been very useful for determining the behavior and fate of N in soil, including the use efficiency of applied N fertilizers by plants. Our objective in this study was to use 15N isotope techniques to demonstrate that a model plant growth-promoting rhizobacteria (PGP...

  6. Leaf nitrogen dioxide uptake coupling apoplastic chemistry, carbon/sulfur assimilation, and plant nitrogen status.

    PubMed

    Hu, Yanbo; Sun, Guangyu

    2010-10-01

    Emission and plant uptake of atmospheric nitrogen oxides (NO + NO(2)) significantly influence regional climate change by regulating the oxidative chemistry of the lower atmosphere, species composition and the recycling of carbon and nutrients, etc. Plant uptake of nitrogen dioxide (NO(2)) is concentration-dependent and species-specific, and covaries with environmental factors. An important factor determining NO(2) influx into leaves is the replenishment of the substomatal cavity. The apoplastic chemistry of the substomatal cavity plays crucial roles in NO(2) deposition rates and the tolerance to NO(2), involving the reactions between NO(2) and apoplastic antioxidants, NO(2)-responsive germin-like proteins, apoplastic acidification, and nitrite-dependent NO synthesis, etc. Moreover, leaf apoplast is a favorable site for the colonization by microbes, which disturbs nitrogen metabolism of host plants. For most plant species, NO(2) assimilation in a leaf primarily depends on the nitrate (NO(3) (-)) assimilation pathway. NO(2)-N assimilation is coupled with carbon and sulfur (sulfate and SO(2)) assimilation as indicated by the mutual needs for metabolic intermediates (or metabolites) and the NO(2)-caused changes of key metabolic enzymes such as phosphoenolpyruvate carboxylase (PEPc) and adenosine 5'-phosphosulfate sulfotransferase, organic acids, and photorespiration. Moreover, arbuscular mycorrhizal (AM) colonization improves the tolerance of host plants to NO(2) by enhancing the efficiency of nutrient absorption and translocation and influencing foliar chemistry. Further progress is proposed to gain a better understanding of the coordination between NO(2)-N, S and C assimilation, especially the investigation of metabolic checkpoints, and the effects of photorespiratory nitrogen cycle, diverse PEPc and the metabolites such as cysteine, O-acetylserine (OAS) and glutathione. PMID:20628880

  7. Rhizospheric mobilization and plant uptake of radiocesium from weathered micas: II. Influence of mineral alterability.

    PubMed

    Thiry, Yves; Gommers, Annick; Iserentant, Anne; Delvaux, Bruno

    2005-01-01

    Acute K depletion in the rhizosphere can lead to increased root uptake of radiocesium. Two processes can govern this increase: the very low uptake of potassium and the weathering of Cs-fixing clay minerals. Their respective importance is, however, unknown. We investigated the effects of these processes on radiocesium mobilization by roots of willow (Salix viminalis L.) from three micas: muscovite, biotite, and phlogopite. Willows were grown in a mixed quartz-mica substrate with the three respective (134)Cs-contaminated micas as sole sources of potassium and radiocesium. After 7 wk of plant growth, the micas were partially weathered. The degree of mica weathering and the prevalent potassium concentration in the solution increased in the order muscovite (5-11 microM K) < biotite (25-32 microM K) < phlogopite (25-35 microM K). The mobilization and root uptake of radiocesium were negligible with muscovite but increased in the same order. These results show that mica weathering directly and chiefly governs the mobility of radiocesium in K-depleted rhizosphere soil. The low mobility of trace Cs in the muscovite rhizosphere is linked with the dioctahedral character of this mica, and hence to its very low alterability. PMID:16275718

  8. Comparative analysis of plant lycopene cyclases.

    PubMed

    Koc, Ibrahim; Filiz, Ertugrul; Tombuloglu, Huseyin

    2015-10-01

    Carotenoids are essential isoprenoid pigments produced by plants, algae, fungi and bacteria. Lycopene cyclase (LYC) commonly cyclize carotenoids, which is an important branching step in the carotenogenesis, at one or both end of the backbone. Plants have two types of LYC (β-LCY and ϵ-LCY). In this study, plant LYCs were analyzed. Based on domain analysis, all LYCs accommodate lycopene cyclase domain (Pf05834). Furthermore, motif analysis indicated that motifs were conserved among the plants. On the basis of phylogenetic analysis, β-LCYs and ϵ-LCYs were classified in β and ϵ groups. Monocot and dicot plants separated from each other in the phylogenetic tree. Subsequently, Oryza sativa Japonica Group and Zea mays of LYCs as monocot plants and Vitis vinifera and Solanum lycopersicum of LYCs as dicot plants were analyzed. According to nucleotide diversity analysis of β-LCY and ϵ-LCY genes, nucleotide diversities were found to be π: 0.30 and π: 0.25, respectively. The result highlighted β-LCY genes showed higher nucleotide diversity than ϵ-LCY genes. LYCs interacting genes and their co-expression partners were also predicted using String server. The obtained data suggested the importance of LYCs in carotenoid metabolism. 3D modeling revealed that depicted structures were similar in O. sativa, Z mays, S. lycopersicum, and V. vinifera β-LCYs and ϵ-LCYs. Likewise, the predicted binding sites were highly similar between O. sativa, Z mays, S. lycopersicum, and V. vinifera LCYs. Most importantly, analysis elucidated the V/IXGXGXXGXXXA motif for both type of LYC (β-LCY and ϵ-LCY). This motif related to Rossmann fold domain and probably provides a flat platform for binding of FAD in O. sativa, Z mays, S. lycopersicum, and V. vinifera β-LCYs and ϵ-LCYs with conserved structure. In addition to lycopene cyclase domain, the V/IXGXGXXGXXXA motif can be used for exploring LYCs proteins and to annotate the function of unknown proteins containing lycopene cyclase

  9. Effects of a phospholipase A/sub 2/ inhibitor on uptake and toxicity of liposomes containing plant phosphatidylinositol

    SciTech Connect

    Jett, M.; Alving, C.R.

    1986-05-01

    Plant phosphatidylinositol (PI) has been shown by us to have a direct cytotoxic effect on cultured tumor cells but not on normal cells. Synthetic PI containing /sup 14/C-linoleic acid in the sn-2 position, also showed the same pattern of selective cytotoxicity. When the metabolic fate of synthetic PI was examined with tumor cells, the radioactivity which no longer occurred as PI, was found as either products of phospholipase A/sub 2/ (93%, free fatty acids and phosphatidylcholine) or phospholipase C (7%, diglycerides). Uptake of liposomal PI was directly correlated with cytotoxicity. They tested a variety of inhibitors to see the effect on uptake and/or cytotoxicity of plant PI. General metabolic inhibitors such as metrizamide or sodium azide did not alter cellular uptake of the plant PI liposomes. Inhibitors of lipoxygenase formation, such as indomethacin, also did not alter the uptake or cytotoxicity induced by plant PI. Quinacrine, an inhibitor of phospholipase A/sub 2/, decreased the uptake of the PI containing liposomes to 50% of that seen in the presence or absence of any other inhibitor. Although quinacrine is itself toxic to cells, at low concentrations of quinacrine, plant PI did not show the same degree of cytotoxicity as in the absence of quinacrine. These data are compatible with the hypothesis that plant PI exerts cytotoxicity by serving as a substrate for phospholipase A/sub 2/.

  10. Effects of Posidonia Oceanica Beach-Cast on Germination, Growth and Nutrient Uptake of Coastal Dune Plants

    PubMed Central

    Del Vecchio, Silvia; Marbà, Núria; Acosta, Alicia; Vignolo, Clara; Traveset, Anna

    2013-01-01

    Seagrass meadows play an important role in marine ecosystems. A part of seagrass production is also exported to adjacent coastal terrestrial systems, possibly influencing their functioning. In this work we experimentally analyzed the effect of Posidonia oceanica beach-cast on plant germination, growth, and nutrient uptake of two plant species (Cakile maritima and Elymus farctus) that grow on upper beaches and fore dunes along the Mediterranean coasts. We compared plants growing in simple sand (control) with those growing in a substrate enriched with P. oceanica wrack (treatment) in laboratory. P. oceanica wrack doubled the N substrate pool and kept the substrate humid. Plants growing in the treated substrate grew faster, were twice as large as those growing in the control substrate, while tissues were enriched in N and P (Cakile by the 1.3 fold in N and 2.5 fold in P; Elymus by 1.5 fold in N and 2 fold in P). Our results suggest a positive effect of seagrass litter for the enhancing of dune species, highlighting its role for the conservation of coastal dune ecosystems. PMID:23894678