Sample records for comparing displacement ventilation

  1. Numerical simulation and comparison of two ventilation methods for a restaurant - displacement vs mixed flow ventilation

    NASA Astrophysics Data System (ADS)

    Chitaru, George; Berville, Charles; Dogeanu, Angel

    2018-02-01

    This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.

  2. Experimental study of airflow characteristics of stratum ventilation in a multi-occupant room with comparison to mixing ventilation and displacement ventilation.

    PubMed

    Cheng, Y; Lin, Z

    2015-12-01

    The motivation of this study is stimulated by a lack of knowledge about the difference of airflow characteristics between a novel air distribution method [i.e., stratum ventilation (SV)] and conventional air distribution methods [i.e., mixing ventilation (MV) and displacement ventilation (DV)]. Detailed air velocity and temperature measurements were conducted in the occupied zone of a classroom with dimensions of 8.8 m (L) × 6.1 m (W) × 2.4 m (H). Turbulence intensity and power spectrum of velocity fluctuation were calculated using the measured data. Thermal comfort and cooling efficiency were also compared. The results show that in the occupied zone, the airflow characteristics among MV, DV, and SV are different. The turbulent airflow fluctuation is enhanced in this classroom with multiple thermal manikins due to thermal buoyancy and airflow mixing effect. Thermal comfort evaluations indicate that in comparison with MV and DV, a higher supply air temperature should be adopted for SV to achieve general thermal comfort with low draft risk. Comparison of the mean air temperatures in the occupied zone reveals that SV is of highest cooling efficiency, followed by DV and then MV. This study reports the unique profiles of flow, temperature, turbulence intensity, and power spectrum of stratum ventilation, which can have a number of implications for both knowledge and understanding of the flow characteristics in a stratum-ventilated room. With respect to the former, it expounds the fundamental characteristics of this air distribution method; and with respect to the latter, it reveals the mechanism of thermal comfort and energy saving under stratum ventilation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Stratification of welding fumes and grinding particles in a large factory hall equipped with displacement ventilation.

    PubMed

    Niemelä, R; Koskela, H; Engström, K

    2001-08-01

    The purpose of the study was to investigate the performance of displacement ventilation in a large factory hall where large components of stainless steel for paper, pulp and chemical industries were manufactured. The performance of displacement ventilation was evaluated in terms of concentration distributions of welding fumes and grinding particles, flow field of the supply air and temperature distributions. Large differences in vertical stratification patterns between hexavalent chromium (Cr(VI)) and other particulate contaminants were observed. The concentration of Cr(VI) was notably lower in the zone of occupancy than in the upper part of the factory hall, whereas the concentrations of total airborne particles and trivalent chromium (Cr(III)) were higher in the occupied zone than in the upper zone. The stratification of Cr(VI) had the same tendency as the air temperature stratification caused by the displacement flow field.

  4. Field study on occupant comfort and the office thermal environment in rooms with displacement ventilation.

    PubMed

    Melikov, A; Pitchurov, G; Naydenov, K; Langkilde, G

    2005-06-01

    A field survey of occupants' response to the indoor environment in 10 office buildings with displacement ventilation was performed. The response of 227 occupants was analyzed. About 24% of the occupants in the survey complained that they were daily bothered by draught, mainly at the lower leg. Vertical air temperature difference measured between head and feet levels was less than 3 degrees C at all workplaces visited. Combined local discomfort because of draught and vertical temperature difference does not seem to be a serious problem in rooms with displacement ventilation. Almost one half (49%) of the occupants reported that they were daily bothered by an uncomfortable room temperature. Forty-eight per cent of the occupants were not satisfied with the air quality. The PMV and the Draught Rating indices as well as the specifications for local discomfort because of the separate impact of draught and vertical temperature difference, as defined in the present standards, are relevant for the design of a thermal environment in rooms with displacement ventilation and for its assessment in practice. Increasing the supply air temperature in order to counteract draught discomfort is a measure that should be considered carefully; even if the desired stratification of pollution in the occupied zone is preserved, an increase of the inhaled air temperature may have a negative effect on perceived air quality.

  5. Contaminants in ventilated filling boxes

    NASA Astrophysics Data System (ADS)

    Bolster, D. T.; Linden, P. F.

    While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.

  6. Natural ventilation of buildings: opposing wind and buoyancy

    NASA Astrophysics Data System (ADS)

    Linden, Paul; Hunt, Gary

    1998-11-01

    The use of natural ventilation in buildings is an attractive way to reduce energy usage thereby reducing costs and CO2 emissions. Generally, it is necessary to remove excess heat from a building and the designer can use the buoyancy forces associated with the above ambient temperatures within the building to drive a flow - 'stack' ventilation. The most efficient mode is displacement ventilation where warm air accumulates near the top of the building and flows out through upper level vents and cooler air flows in at lower levels. Ventilation will also be driven between these lower and upper openings by the wind. We report on laboratory modeling and theory which investigates the effects of an opposing wind on stack ventilation driven by a constant source of heat within a space under displacement ventilation. We show that there is a critical wind speed, expressed in dimensionless terms as a critical Froude number, above which displacement ventilation is replaced by (less efficient) mixing ventilation with reversed flow. Below this critical speed, displacement ventilation, in which the interior has a two-layer stratification, is maintained. The criterion for the change in ventilation mode is derived from general considerations of mixing efficiencies in stratified flows. We conclude that even when wind effects might appear to be dominant, the inhibition of mixing by the stable stratification within the space ensures that stack ventilation can operate over a wide range of apparently adverse conditions.

  7. Negative pressure ventilation and positive pressure ventilation promote comparable levels of ventilator-induced diaphragmatic dysfunction in rats.

    PubMed

    Bruells, Christian S; Smuder, Ashley J; Reiss, Lucy K; Hudson, Matthew B; Nelson, William Bradley; Wiggs, Michael P; Sollanek, Kurt J; Rossaint, Rolf; Uhlig, Stefan; Powers, Scott K

    2013-09-01

    Mechanical ventilation is a life-saving intervention for patients with respiratory failure. Unfortunately, a major complication associated with prolonged mechanical ventilation is ventilator-induced diaphragmatic atrophy and contractile dysfunction, termed ventilator-induced diaphragmatic dysfunction (VIDD). Emerging evidence suggests that positive pressure ventilation (PPV) promotes lung damage (ventilator-induced lung injury [VILI]), resulting in the release of signaling molecules that foster atrophic signaling in the diaphragm and the resultant VIDD. Although a recent report suggests that negative pressure ventilation (NPV) results in less VILI than PPV, it is unknown whether NPV can protect against VIDD. Therefore, the authors tested the hypothesis that compared with PPV, NPV will result in a lower level of VIDD. Adult rats were randomly assigned to one of three experimental groups (n = 8 each): (1) acutely anesthetized control (CON), (2) 12 h of PPV, and (3) 12 h of NPV. Dependent measures included indices of VILI, diaphragmatic muscle fiber cross-sectional area, diaphragm contractile properties, and the activity of key proteases in the diaphragm. Our results reveal that no differences existed in the degree of VILI between PPV and NPV animals as evidenced by VILI histological scores (CON = 0.082 ± 0.001; PPV = 0.22 ± 0.04; NPV = 0.25 ± 0.02; mean ± SEM). Both PPV and NPV resulted in VIDD. Importantly, no differences existed between PPV and NPV animals in diaphragmatic fiber cross-sectional area, contractile properties, and the activation of proteases. These results demonstrate that NPV and PPV result in similar levels of VILI and that NPV and PPV promote comparable levels of VIDD in rats.

  8. Particle transport in low-energy ventilation systems. Part 1: theory of steady states.

    PubMed

    Bolster, D T; Linden, P F

    2009-04-01

    Many modern low-energy ventilation schemes, such as displacement or natural ventilation, take advantage of temperature stratification in a space, extracting the warmest air from the top of the room. The adoption of these energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. In this work we study the steady state transport of particulate contaminants in a displacement-ventilated space. Representing heat sources as ideal sources of buoyancy, analytical models are developed that allow us to compare the average efficiency of contaminant removal between traditional and modern low-energy systems. We found that on average traditional and low-energy systems are similar in overall pollutant removal efficiency, although quite different vertical distributions of contaminant can exist, thus affecting individual exposure. While the main focus of this work is on particles where the dominant mode of deposition is by gravitational settling, we also discuss additional deposition mechanisms and show that the qualitative observations we make carry over to cases where such mechanisms must be included. We illustrate that while average concentration of particles for traditional mixing systems and low energy displacement systems are similar, local concentrations can vary significantly with displacement systems. Depending on the source of the particles this can be better or worse in terms of occupant exposure and engineers should take due diligence accordingly when designing ventilation systems.

  9. Closed loop ventilation mode in Intensive Care Unit: a randomized controlled clinical trial comparing the numbers of manual ventilator setting changes.

    PubMed

    Arnal, Jean-Michel; Garnero, Aude; Novotni, Dominik; Corno, Gaëlle; Donati, Stéphane-Yannis; Demory, Didier; Quintana, Gabrielle; Ducros, Laurent; Laubscher, Thomas; Durand-Gasselin, Jacques

    2018-01-01

    There is an equipoise regarding closed-loop ventilation modes and the ability to reduce workload for providers. On one hand some settings are managed by the ventilator but on another hand the automatic mode introduces new settings for the user. This randomized controlled trial compared the number of manual ventilator setting changes between a full closed loop ventilation and oxygenation mode (INTELLiVENT-ASV®) and conventional ventilation modes (volume assist control and pressure support) in Intensive Care Unit (ICU) patients. The secondary endpoints were to compare the number of arterial blood gas analysis, the sedation dose and the user acceptance. Sixty subjects with an expected duration of mechanical ventilation of at least 48 hours were randomized to be ventilated using INTELLiVENT-ASV® or conventional modes with a protocolized weaning. All manual ventilator setting changes were recorded continuously from inclusion to successful extubation or death. Arterial blood gases were performed upon decision of the clinician in charge. User acceptance score was assessed for nurses and physicians once daily using a Likert Scale. The number of manual ventilator setting changes per 24 h-period per subject was lower in INTELLiVENT-ASV® as compared to conventional ventilation group (5 [4-7] versus 10 [7-17]) manuals settings per subject per day [P<0.001]). The number of arterial blood gas analysis and the sedation doses were not significantly different between the groups. Nurses and physicians reported that INTELLiVENT-ASV® was significantly easier to use as compared to conventional ventilation (P<0.001 for nurses and P<0.01 for physicians). For mechanically ventilated ICU patients, INTELLiVENT-ASV® significantly reduces the number of manual ventilator setting changes with the same number of arterial blood gas analysis and sedation dose, and is easier to use for the caregivers as compared to conventional ventilation modes.

  10. TH-E-BRF-02: 4D-CT Ventilation Image-Based IMRT Plans Are Dosimetrically Comparable to SPECT Ventilation Image-Based Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, S; University of Tokyo Hospital, Bunkyo, Tokyo; Bal, M

    Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation

  11. Multicenter comparative study of conventional mechanical gas ventilation to tidal liquid ventilation in oleic acid injured sheep.

    PubMed

    Wolfson, Marla R; Hirschl, Ronald B; Jackson, J Craig; Gauvin, France; Foley, David S; Lamm, Wayne J E; Gaughan, John; Shaffer, Thomas H

    2008-01-01

    We performed a multicenter study to test the hypothesis that tidal liquid ventilation (TLV) would improve cardiopulmonary, lung histomorphological, and inflammatory profiles compared with conventional mechanical gas ventilation (CMV). Sheep were studied using the same volume-controlled, pressure-limited ventilator systems, protocols, and treatment strategies in three independent laboratories. Following baseline measurements, oleic acid lung injury was induced and animals were randomized to 4 hours of CMV or TLV targeted to "best PaO2" and PaCO2 35 to 60 mm Hg. The following were significantly higher (p < 0.01) during TLV than CMV: PaO2, venous oxygen saturation, respiratory compliance, cardiac output, stroke volume, oxygen delivery, ventilatory efficiency index; alveolar area, lung % gas exchange space, and expansion index. The following were lower (p < 0.01) during TLV compared with CMV: inspiratory and expiratory pause pressures, mean airway pressure, minute ventilation, physiologic shunt, plasma lactate, lung interleukin-6, interleukin-8, myeloperoxidase, and composite total injury score. No significant laboratories by treatment group interactions were found. In summary, TLV resulted in improved cardiopulmonary physiology at lower ventilatory requirements with more favorable histological and inflammatory profiles than CMV. As such, TLV offers a feasible ventilatory alternative as a lung protective strategy in this model of acute lung injury.

  12. The fluid mechanics of natural ventilation

    NASA Astrophysics Data System (ADS)

    Linden, Paul

    1999-11-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. Modern buildings have extreme designs with large, tall open plan spaces and large cooling requirements. Natural ventilation offers a means of cooling these buildings and providing good indoor air quality. The essential feature of ventilation is an exchange between an interior space and the external ambient. Recent work shows that in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of buoyancy-driven ventilation are discussed: mixing ventilation in which the interior is at approximately uniform temperature and displacement ventilation where there is strong internal stratification. The dynamics of these flows are considered and the effects of wind on them are examined both experimentally and theoretically. The aim behind this work is to give designers rules and intuition on how air moves within a building and the research shows a fascinating branch of fluid mechanics.

  13. Comparing Teaching Approaches About Maxwell's Displacement Current

    NASA Astrophysics Data System (ADS)

    Karam, Ricardo; Coimbra, Debora; Pietrocola, Maurício

    2014-08-01

    Due to its fundamental role for the consolidation of Maxwell's equations, the displacement current is one of the most important topics of any introductory course on electromagnetism. Moreover, this episode is widely used by historians and philosophers of science as a case study to investigate several issues (e.g. the theory-experiment relationship). Despite the consensus among physics educators concerning the relevance of the topic, there are many possible ways to interpret and justify the need for the displacement current term. With the goal of understanding the didactical transposition of this topic more deeply, we investigate three of its domains: (1) The historical development of Maxwell's reasoning; (2) Different approaches to justify the term insertion in physics textbooks; and (3) Four lectures devoted to introduce the topic in undergraduate level given by four different professors. By reflecting on the differences between these three domains, significant evidence for the knowledge transformation caused by the didactization of this episode is provided. The main purpose of this comparative analysis is to assist physics educators in developing an epistemological surveillance regarding the teaching and learning of the displacement current.

  14. Transient natural ventilation of a room with a distributed heat source

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    We report on an experimental and theoretical study of the transient flows which develop as a naturally ventilated room adjusts from one temperature to another. We focus on a room heated from below by a uniform heat source, with both high- and low-level ventilation openings. Depending on the initial temperature of the room relative to (i) the final equilibrium temperature and (ii) the exterior temperature, three different modes of ventilation may develop. First, if the room temperature lies between the exterior and the equilibrium temperature, the interior remains well-mixed and gradually heats up to the equilibrium temperature. Secondly, if the room is initially warmer than the equilibrium temperature, then a thermal stratification develops in which the upper layer of originally hot air is displaced upwards by a lower layer of relatively cool inflowing air. At the interface, some mixing occurs owing to the effects of penetrative convection. Thirdly, if the room is initially cooler than the exterior, then on opening the vents, the original air is displaced downwards and a layer of ambient air deepens from above. As this lower layer drains, it is eventually heated to the ambient temperature, and is then able to mix into the overlying layer of external air, and the room becomes well-mixed. For each case, we present new laboratory experiments and compare these with some new quantitative models of the transient flows. We conclude by considering the implications of our work for natural ventilation of large auditoria.

  15. The Fluid Mechanics of Natural Ventilation

    NASA Astrophysics Data System (ADS)

    Linden, P. F.

    1999-01-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. The governing feature of this flow is the exchange between an interior space and the external ambient. Although the wind may often appear to be the dominant driving mechanism, in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of ventilation are discussed: mixing ventilation, in which the interior is at an approximately uniform temperature, and displacement ventilation, where there is strong internal stratification. The dynamics of these buoyancy-driven flows are considered, and the effects of wind on them are examined. The aim behind this work is to give designers rules and intuition on how air moves within a building; the research reveals a fascinating branch of fluid mechanics.

  16. Control of airborne infectious diseases in ventilated spaces

    PubMed Central

    Nielsen, Peter V.

    2009-01-01

    We protect ourselves from airborne cross-infection in the indoor environment by supplying fresh air to a room by natural or mechanical ventilation. The air is distributed in the room according to different principles: mixing ventilation, displacement ventilation, etc. A large amount of air is supplied to the room to ensure a dilution of airborne infection. Analyses of the flow in the room show that there are a number of parameters that play an important role in minimizing airborne cross-infection. The air flow rate to the room must be high, and the air distribution pattern can be designed to have high ventilation effectiveness. Furthermore, personalized ventilation may reduce the risk of cross-infection, and in some cases, it can also reduce the source of infection. Personalized ventilation can especially be used in hospital wards, aircraft cabins and, in general, where people are in fixed positions. PMID:19740921

  17. Bench performance of ventilators during simulated paediatric ventilation.

    PubMed

    Park, M A J; Freebairn, R C; Gomersall, C D

    2013-05-01

    This study compares the accuracy and capabilities of various ventilators using a paediatric acute respiratory distress syndrome lung model. Various compliance settings and respiratory rate settings were used. The study was done in three parts: tidal volume and FiO2 accuracy; pressure control accuracy and positive end-expiratory pressure (PEEP) accuracy. The parameters set on the ventilator were compared with either or both of the measured parameters by the test lung and the ventilator. The results revealed that none of the ventilators could consistently deliver tidal volumes within 1 ml/kg of the set tidal volume, and the discrepancy between the delivered volume and the volume measured by the ventilator varied greatly. The target tidal volume was 8 ml/kg, but delivered tidal volumes ranged from 3.6-11.4 ml/kg and the volumes measured by the ventilator ranged from 4.1-20.6 ml/kg. All the ventilators maintained pressure within 20% of the set pressure, except one ventilator which delivered pressures of up to 27% higher than the set pressure. Two ventilators maintained PEEP within 10% of the prescribed PEEP. The majority of the readings were also within 10%. However, three ventilators delivered, at times, PEEPs over 20% higher. In conclusion, as lung compliance decreases, especially in paediatric patients, some ventilators perform better than others. This study highlights situations where ventilators may not be able to deliver, nor adequately measure, set tidal volumes, pressure, PEEP or FiO2.

  18. Multifaceted bench comparative evaluation of latest intensive care unit ventilators.

    PubMed

    Garnier, M; Quesnel, C; Fulgencio, J-P; Degrain, M; Carteaux, G; Bonnet, F; Similowski, T; Demoule, A

    2015-07-01

    Independent bench studies using specific ventilation scenarios allow testing of the performance of ventilators in conditions similar to clinical settings. The aims of this study were to determine the accuracy of the latest generation ventilators to deliver chosen parameters in various typical conditions and to provide clinicians with a comprehensive report on their performance. Thirteen modern intensive care unit ventilators were evaluated on the ASL5000 test lung with and without leakage for: (i) accuracy to deliver exact tidal volume (VT) and PEEP in assist-control ventilation (ACV); (ii) performance of trigger and pressurization in pressure support ventilation (PSV); and (iii) quality of non-invasive ventilation algorithms. In ACV, only six ventilators delivered an accurate VT and nine an accurate PEEP. Eleven devices failed to compensate VT and four the PEEP in leakage conditions. Inspiratory delays differed significantly among ventilators in invasive PSV (range 75-149 ms, P=0.03) and non-invasive PSV (range 78-165 ms, P<0.001). The percentage of the ideal curve (concomitantly evaluating the pressurization speed and the levels of pressure reached) also differed significantly (range 57-86% for invasive PSV, P=0.04; and 60-90% for non-invasive PSV, P<0.001). Non-invasive ventilation algorithms efficiently prevented the decrease in pressurization capacities and PEEP levels induced by leaks in, respectively, 10 and 12 out of the 13 ventilators. We observed real heterogeneity of performance amongst the latest generation of intensive care unit ventilators. Although non-invasive ventilation algorithms appear to maintain adequate pressurization efficiently in the case of leakage, basic functions, such as delivered VT in ACV and pressurization in PSV, are often less reliable than the values displayed by the device suggest. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions

  19. Hemodynamic effects of external continuous negative pressure ventilation compared with those of continuous positive pressure ventilation in dogs with acute lung injury.

    PubMed

    Skaburskis, M; Helal, R; Zidulka, A

    1987-10-01

    Patients with noncardiogenic pulmonary edema requiring ventilatory assistance are usually supported with CPPV using positive end-expiratory pressure (PEEP), but CPPV requires endotracheal intubation and may decrease cardiac output (QT). The purpose of this study was to examine thoracoabdominal continuous negative pressure ventilation (CNPV) using external negative end-expiratory pressure (NEEP). The effects on gas exchange and hemodynamics were compared with those of CPPV with PEEP, with the premise that CNPV might sustain venous return and improve QT. In 6 supine, anesthetized and paralyzed dogs with oleic-acid-induced pulmonary edema, 30 min of CNPV was alternated twice with 30 min of CPPV. Positive and negative pressure ventilation were carefully matched for fractional inspired oxygen concentration (FIO2 = 0.56), breathing frequency, and tidal volume. In addition, we matched the increase in delta FRC obtained with the constant distending pressures produced by both modes of ventilation. An average of -9 cm H2O of NEEP produced the same delta FRC as 10.8 cm H2O of PEEP. Gas exchange did not differ significantly between the 2 modes. However, QT was 15.8% higher during CNPV than during CPPV (p less than 0.02). Mixed venous oxygen saturation also improved during CNPV compared with that during CPPV (58.3 versus 54.5%, p less than 0.01). Negative pressure ventilation using NEEP may be a viable alternative to positive pressure ventilation with PEEP in the management of critically ill patients with noncardiogenic pulmonary edema. It offers comparable improvement in gas exchange with the advantages of less cardiac depression and the possible avoidance of endotracheal intubation.

  20. The effect of helium on ventilator performance: study of five ventilators and a bedside Pitot tube spirometer.

    PubMed

    Oppenheim-Eden, A; Cohen, Y; Weissman, C; Pizov, R

    2001-08-01

    To assess in vitro the performance of five mechanical ventilators-Siemens 300 and 900C (Siemens-Elma; Solna, Sweden), Puritan Bennett 7200 (Nellcor Puritan Bennett; Pleasanton, CA), Evita 4 (Dragerwerk; Lubeck, Germany), and Bear 1000 (Bear Medical Systems; Riverside CA)-and a bedside sidestream spirometer (Datex CS3 Respiratory Module; Datex-Ohmeda; Helsinki, Finland) during ventilation with helium-oxygen mixtures. In vitro study. ICUs of two university-affiliated hospitals. Each ventilator was connected to 100% helium through compressed air inlets and then tested at three to six different tidal volume (VT) settings using various helium-oxygen concentrations (fraction of inspired oxygen [FIO(2)] of 0.2 to 1.0). FIO(2) and VT were measured with the Datex CS3 spirometer, and VT was validated with a water-displacement spirometer. The Puritan Bennett 7200 ventilator did not function with helium. With the other four ventilators, delivered FIO(2) was lower than the set FIO(2). For the Siemens 300 and 900C ventilators, this difference could be explained by the lack of 21% oxygen when helium was connected to the air supply port, while for the other two ventilators, a nonlinear relation was found. The VT of the Siemens 300 ventilator was independent of helium concentration, while for the other three ventilators, delivered VT was greater than the set VT and was dependent on helium concentration. During ventilation with 80% helium and 20% oxygen, VT increased to 125% of set VT for the Siemens 900C ventilator, and more than doubled for the Evita 4 and Bear 1000 ventilators. Under the same conditions, the Datex CS3 spirometer underestimated the delivered VT by about 33%. At present, no mechanical ventilator is calibrated for use with helium. This investigation offers correction factors for four ventilators for ventilation with helium.

  1. Aerosol delivery with two ventilation modes during mechanical ventilation: a randomized study.

    PubMed

    Dugernier, Jonathan; Reychler, Gregory; Wittebole, Xavier; Roeseler, Jean; Depoortere, Virginie; Sottiaux, Thierry; Michotte, Jean-Bernard; Vanbever, Rita; Dugernier, Thierry; Goffette, Pierre; Docquier, Marie-Agnes; Raftopoulos, Christian; Hantson, Philippe; Jamar, François; Laterre, Pierre-François

    2016-12-01

    Volume-controlled ventilation has been suggested to optimize lung deposition during nebulization although promoting spontaneous ventilation is targeted to avoid ventilator-induced diaphragmatic dysfunction. Comparing topographic aerosol lung deposition during volume-controlled ventilation and spontaneous ventilation in pressure support has never been performed. The aim of this study was to compare lung deposition of a radiolabeled aerosol generated with a vibrating-mesh nebulizer during invasive mechanical ventilation, with two modes: pressure support ventilation and volume-controlled ventilation. Seventeen postoperative neurosurgery patients without pulmonary disease were randomly ventilated in pressure support or volume-controlled ventilation. Diethylenetriaminepentaacetic acid labeled with technetium-99m (2 mCi/3 mL) was administrated using a vibrating-mesh nebulizer (Aerogen Solo(®), provided by Aerogen Ltd, Galway, Ireland) connected to the endotracheal tube. Pulmonary and extrapulmonary particles deposition was analyzed using planar scintigraphy. Lung deposition was 10.5 ± 3.0 and 15.1 ± 5.0 % of the nominal dose during pressure support and volume-controlled ventilation, respectively (p < 0.05). Higher endotracheal tube and tracheal deposition was observed during pressure support ventilation (27.4 ± 6.6 vs. 20.7 ± 6.0 %, p < 0.05). A similar penetration index was observed for the right (p = 0.210) and the left lung (p = 0.211) with both ventilation modes. A high intersubject variability of lung deposition was observed with both modes regarding lung doses, aerosol penetration and distribution between the right and the left lung. In the specific conditions of the study, volume-controlled ventilation was associated with higher lung deposition of nebulized particles as compared to pressure support ventilation. The clinical benefit of this effect warrants further studies. Clinical trial registration NCT01879488.

  2. Evaluation of ventilators for mouthpiece ventilation in neuromuscular disease.

    PubMed

    Khirani, Sonia; Ramirez, Adriana; Delord, Vincent; Leroux, Karl; Lofaso, Frédéric; Hautot, Solène; Toussaint, Michel; Orlikowski, David; Louis, Bruno; Fauroux, Brigitte

    2014-09-01

    Daytime mouthpiece ventilation is a useful adjunct to nocturnal noninvasive ventilation (NIV) in patients with neuromuscular disease. The aims of the study were to analyze the practice of mouthpiece ventilation and to evaluate the performance of ventilators for mouthpiece ventilation. Practice of mouthpiece ventilation was assessed by a questionnaire, and the performance of 6 home ventilators with mouthpiece ventilation was assessed in a bench test using 24 different conditions per ventilator: 3 mouthpieces, a child and an adult patient profile, and 4 ventilatory modes. Questionnaires were obtained from 30 subjects (mean age 33 ± 11 y) using NIV for 12 ± 7 y. Fifteen subjects used NIV for > 20 h/day, and 11 were totally ventilator-dependent. The subject-reported benefits of mouthpiece ventilation were a reduction in dyspnea (73%) and fatigue (93%) and an improvement in speech (43%) and eating (27%). The bench study showed that none of the ventilators, even those with mouthpiece ventilation software, were able to deliver mouthpiece ventilation without alarms and/or autotriggering in each condition. Alarms and/or ineffective triggering or autotriggering were observed in 135 of the 198 conditions. The occurrence of alarms was more common with a large mouthpiece without a filter compared to a small mouthpiece with a filter (P < .001), but it was not related to the patient profile, the ventilatory mode, or the type of ventilator. Subjects are satisfied with mouthpiece ventilation. Alarms are common with home ventilators, although less common in those with mouthpiece ventilation software. Improvements in home ventilators are needed to facilitate the expansion of mouthpiece ventilation. Copyright © 2014 by Daedalus Enterprises.

  3. Particle transport in low-energy ventilation systems. Part 2: Transients and experiments.

    PubMed

    Bolster, D T; Linden, P F

    2009-04-01

    Providing adequate indoor air quality while reducing energy consumption is a must for efficient ventilation system design. In this work, we study the transport of particulate contaminants in a displacement-ventilated space, using the idealized 'emptying filling box' model (P.F. Linden, G.F. Lane-serff and D.A. Smeed (1990) Emptying filling boxes: the fluid mechanics of natural ventilation, J. fluid Mech., 212, 309-335.). In this paper, we focused on transient contaminant transport by modeling three transient contamination scenarios, namely the so called 'step-up', 'step-down', and point source cases. Using analytical integral models and numerical models we studied the transient behavior of each of these three cases. We found that, on average, traditional and low-energy systems can be similar in overall pollutant removal efficiency, although quite different vertical gradients can exist. This plays an important role in estimating occupant exposure to contaminant. A series of laboratory experiments were conducted to validate the developed models. The results presented here illustrate that the source location plays a very important role in the distribution of contaminant concentration for spaces ventilated by low energy displacement-ventilation systems. With these results and the knowledge of typical contaminant sources for a given type of space practitioners can design or select more effective systems for the purpose at hand.

  4. Intraoperative mechanical ventilation strategies in patients undergoing one-lung ventilation: a meta-analysis.

    PubMed

    Liu, Zhen; Liu, Xiaowen; Huang, Yuguang; Zhao, Jing

    2016-01-01

    Postoperative pulmonary complications (PPCs), which are not uncommon in one-lung ventilation, are among the main causes of postoperative death after lung surgery. Intra-operative ventilation strategies can influence the incidence of PPCs. High tidal volume (V T) and increased airway pressure may lead to lung injury, while pressure-controlled ventilation and lung-protective strategies with low V T may have protective effects against lung injury. In this meta-analysis, we aim to investigate the effects of different ventilation strategies, including pressure-controlled ventilation (PCV), volume-controlled ventilation (VCV), protective ventilation (PV) and conventional ventilation (CV), on PPCs in patients undergoing one-lung ventilation. We hypothesize that both PV with low V T and PCV have protective effects against PPCs in one-lung ventilation. A systematic search (PubMed, EMBASE, the Cochrane Library, and Ovid MEDLINE; in May 2015) was performed for randomized trials comparing PCV with VCV or comparing PV with CV in one-lung ventilation. Methodological quality was evaluated using the Cochrane tool for risk. The primary outcome was the incidence of PPCs. The secondary outcomes included the length of hospital stay, intraoperative plateau airway pressure (Pplateau), oxygen index (PaO2/FiO2) and mean arterial pressure (MAP). In this meta-analysis, 11 studies (436 patients) comparing PCV with VCV and 11 studies (657 patients) comparing PV with CV were included. Compared to CV, PV decreased the incidence of PPCs (OR 0.29; 95 % CI 0.15-0.57; P < 0.01) and intraoperative Pplateau (MD -3.75; 95 % CI -5.74 to -1.76; P < 0.01) but had no significant influence on the length of hospital stay or MAP. Compared to VCV, PCV decreased intraoperative Pplateau (MD -1.46; 95 % CI -2.54 to -0.34; P = 0.01) but had no significant influence on PPCs, PaO2/FiO2 or MAP. PV with low V T was associated with the reduced incidence of PPCs compared to CV. However, PCV and VCV had similar

  5. A randomized clinical trial comparing an extended-use hygroscopic condenser humidifier with heated-water humidification in mechanically ventilated patients.

    PubMed

    Kollef, M H; Shapiro, S D; Boyd, V; Silver, P; Von Harz, B; Trovillion, E; Prentice, D

    1998-03-01

    To determine the safety and cost-effectiveness of mechanical ventilation with an extended-use hygroscopic condenser humidifier (Duration; Nellcor Puritan-Bennett; Eden Prairie, Minn) compared with mechanical ventilation with heated-water humidification. Prospective randomized clinical trial. Medical and surgical ICUs of Barnes-Jewish Hospital, St. Louis, a university-affiliated teaching hospital. Three hundred ten consecutive qualified patients undergoing mechanical ventilation. Patients requiring mechanical ventilation were randomly assigned to receive humidification with either an extended-use hygroscopic condenser humidifier (for up to the first 7 days of mechanical ventilation) or heated-water humidification. Occurrence of ventilator-associated pneumonia, endotracheal tube occlusion, duration of mechanical ventilation, lengths of intensive care and hospitalization, acquired multiorgan dysfunction, and hospital mortality. One hundred sixty-three patients were randomly assigned to receive humidification with an extended-use hygroscopic condenser humidifier, and 147 patients were randomly assigned to receive heated-water humidification. The two groups were similar at the time of randomization with regard to demographic characteristics, ICU admission diagnoses, and severity of illness. Risk factors for the development of ventilator-associated pneumonia were also similar during the study period for both treatment groups. Ventilator-associated pneumonia was seen in 15 (9.2%) patients receiving humidification with an extended-use hygroscopic condenser humidifier and in 15 (10.2%) patients receiving heated-water humidification (relative risk, 0.90; 95% confidence interval=0.46 to 1.78; p=0.766). No statistically significant differences for hospital mortality, duration of mechanical ventilation, lengths of stay in the hospital ICU, or acquired organ system derangements were found between the two treatment groups. No episode of endotracheal tube occlusion occurred during

  6. Production facility layout by comparing moment displacement using BLOCPLAN and ALDEP Algorithms

    NASA Astrophysics Data System (ADS)

    Tambunan, M.; Ginting, E.; Sari, R. M.

    2018-02-01

    Production floor layout settings include the organizing of machinery, materials, and all the equipments used in the production process in the available area. PT. XYZ is a company that manufactures rubber and rubber compounds for retreading tire threaded with hot and cold cooking system. In the production of PT. XYZ is divided into three interrelated parts, namely Masterbatch Department, Department Compound, and Procured Thread Line Department. PT. XYZ has a production process with material flow is irregular and the arrangement of machine is complicated and need to be redesigned. The purpose of this study is comparing movement displacement using BLOCPLAN and ALDEP algorithm in order to redesign existing layout. Redesigning the layout of the production floor is done by applying algorithms of BLOCPLAN and ALDEP. The algorithm used to find the best layout design by comparing the moment displacement and the flow pattern. Moment displacement on the floor layout of the company’s production currently amounts to 2,090,578.5 meters per year and material flow pattern is irregular. Based on the calculation, the moment displacement for the BLOCPLAN is 1,551,344.82 meter per year and ALDEP is 1,600,179 meter per year. Flow Material resulted is in the form of straight the line.

  7. The usability of ventilators: a comparative evaluation of use safety and user experience.

    PubMed

    Morita, Plinio P; Weinstein, Peter B; Flewwelling, Christopher J; Bañez, Carleene A; Chiu, Tabitha A; Iannuzzi, Mario; Patel, Aastha H; Shier, Ashleigh P; Cafazzo, Joseph A

    2016-08-20

    The design complexity of critical care ventilators (CCVs) can lead to use errors and patient harm. In this study, we present the results of a comparison of four CCVs from market leaders, using a rigorous methodology for the evaluation of use safety and user experience of medical devices. We carried out a comparative usability study of four CCVs: Hamilton G5, Puritan Bennett 980, Maquet SERVO-U, and Dräger Evita V500. Forty-eight critical care respiratory therapists participated in this fully counterbalanced, repeated measures study. Participants completed seven clinical scenarios composed of 16 tasks on each ventilator. Use safety was measured by percentage of tasks with use errors or close calls (UE/CCs). User experience was measured by system usability and workload metrics, using the Post-Study System Usability Questionnaire (PSSUQ) and the National Aeronautics and Space Administration Task Load Index (NASA-TLX). Nine of 18 post hoc contrasts between pairs of ventilators were significant after Bonferroni correction, with effect sizes between 0.4 and 1.09 (Cohen's d). There were significantly fewer UE/CCs with SERVO-U when compared to G5 (p = 0.044) and V500 (p = 0.020). Participants reported higher system usability for G5 when compared to PB980 (p = 0.035) and higher system usability for SERVO-U when compared to G5 (p < 0.001), PB980 (p < 0.001), and V500 (p < 0.001). Participants reported lower workload for G5 when compared to PB980 (p < 0.001) and lower workload for SERVO-U when compared to PB980 (p < 0.001) and V500 (p < 0.001). G5 scored better on two of nine possible comparisons; SERVO-U scored better on seven of nine possible comparisons. Aspects influencing participants' performance and perception include the low sensitivity of G5's touchscreen and the positive effect from the quality of SERVO-U's user interface design. This study provides empirical evidence of how four ventilators from market leaders compare and

  8. [Intensive care unit profesionals's knowledge about non invasive ventilation comparative analysis].

    PubMed

    Raurell-Torredà, M; Argilaga-Molero, E; Colomer-Plana, M; Ruiz-García, T; Galvany-Ferrer, A; González-Pujol, A

    2015-01-01

    The literature highlights the lack of noninvasive ventilation (NIV) protocols and the variability of the knowledge of NIV between intensive care units (ICU) and hospitals, so we want to compare NIV nurses's Knowledge from 4 multipurpose ICU and one surgical ICU. Multicenter, crosscutting, descriptive study in three university hospitals. The survey instrument was validated in a pilot test, and the calculated Kappa index was 0.9. Returning a completed survey is an indication of informed consent. Analysis by Chi square test. 117 responded (65%) nurses, 11±9.7 years of experience in ICU and 9.2±7.2 in use of NIV. One of the multipurpose ICU, was initiated NIV an average of 6 years later than the others (95% CI [3.3 to 8.6], P<.001). Only 23.1% of nurses would place a non-vented mask (with no exhalation port) by conventional ventilator, the rest any kind of face mask. 12.7% believed that the mask must be adjusted to the "2-finger" fit while 29% would seal the mask to the patient's face and cover the mask opening where air escapes to facilitate patient/ventilator synchronization. In the surgical ICU agitation identifies mostly as a complication of NIV compared with multipurpose UCIs (31.6% vs 1.8%, P<.001). 56.4% of nurses do not consider respiratory physiotherapy as nursing care, with no difference between units. Knowledge about types of interface is very dependent on the material of the unit. More training for complications of NIV as agitation and handling secretions it is necessary. Copyright © 2014 Elsevier España, S.L.U. y SEEIUC. All rights reserved.

  9. Oral mask ventilation is more effective than face mask ventilation after nasal surgery.

    PubMed

    Yazicioğlu, Dilek; Baran, Ilkay; Uzumcugil, Filiz; Ozturk, Ibrahim; Utebey, Gulten; Sayın, M Murat

    2016-06-01

    To evaluate and compare the face mask (FM) and oral mask (OM) ventilation techniques during anesthesia emergence regarding tidal volume, leak volume, and difficult mask ventilation (DMV) incidence. Prospective, randomized, crossover study. Operating room, training and research hospital. American Society of Anesthesiologists physical status I and II adult patients scheduled for nasal surgery. Patients in group FM-OM received FM ventilation first, followed by OM ventilation, and patients in group OM-FM received OM ventilation first, followed by FM ventilation, with spontaneous ventilation after deep extubation. The FM ventilation was applied with the 1-handed EC-clamp technique. The OM was placed only over the mouth, and the 1-handed EC-clamp technique was used again. A child's size FM was used for the OM ventilation technique, the mask was rotated, and the inferior part of the mask was placed toward the nose. The leak volume (MVleak), mean airway pressure (Pmean), and expired tidal volume (TVe) were assessed with each mask technique for 3 consecutive breaths. A mask ventilation grade ≥3 was considered DMV. DMV occurred more frequently during FM ventilation (75% with FM vs 8% with OM). In the FM-first sequence, the mean TVe was 249±61mL with the FM and 455±35mL with the OM (P=.0001), whereas in the OM-first sequence, it was 276±81mL with the FM and 409±37mL with the OM (P=.0001). Regardless of the order used, the OM technique significantly decreased the MVleak and increased the TVe when compared to the FM technique. During anesthesia emergence after nasal surgery the OM may offer an effective ventilation method as it decreases the incidence of DMV and the gas leak around the mask and provides higher tidal volume delivery compared with FM ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Initial mechanical ventilator settings and lung protective ventilation in the ED.

    PubMed

    Wilcox, Susan R; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey; Seigel, Todd A

    2016-08-01

    Mechanical ventilation with low tidal volumes has been shown to improve outcomes for patients both with and without acute respiratory distress syndrome. This study aims to characterize mechanically ventilated patients in the emergency department (ED), describe the initial ED ventilator settings, and assess for associations between lung protective ventilation strategies in the ED and outcomes. This was a multicenter, prospective, observational study of mechanical ventilation at 3 academic EDs. We defined lung protective ventilation as a tidal volume of less than or equal to 8 mL/kg of predicted body weight and compared outcomes for patients ventilated with lung protective vs non-lung protective ventilation, including inhospital mortality, ventilator days, intensive care unit length of stay, and hospital length of stay. Data from 433 patients were analyzed. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Two hundred sixty-one patients (60.3%) received lung protective ventilation, but most patients were ventilated with a low positive end-expiratory pressure, high fraction of inspired oxygen strategy. Patients were ventilated in the ED for a mean of 5 hours and 7 minutes but had few ventilator adjustments. Outcomes were not significantly different between patients receiving lung protective vs non-lung protective ventilation. Nearly 40% of ED patients were ventilated with non-lung protective ventilation as well as with low positive end-expiratory pressure and high fraction of inspired oxygen. Despite a mean ED ventilation time of more than 5 hours, few patients had adjustments made to their ventilators. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ventilation and ventilators.

    PubMed

    Hayes, B

    1982-01-01

    The history of ventilation is reviewed briefly and recent developments in techniques of ventilation are discussed. Operating features of ventilators have changed in the past few years, partly as the result of clinical progress; yet, technology appears to have outstripped the clinician's ability to harness it most effectively. Clinical discipline and training of medical staff in the use of ventilators could be improved. The future is promising if clinician and designer can work together closely. Ergonomics of ventilators and their controls and the provision of alarms need special attention. Microprocessors are likely to feature prominently in the next generation of designs.

  12. Electrical impedance tomography compared to positron emission tomography for the measurement of regional lung ventilation: an experimental study

    PubMed Central

    Richard, JC; Pouzot, C; Gros, A; Tourevieille, C; Lebars, D; Lavenne, F; Frerichs, I; Guérin, C

    2009-01-01

    Introduction Electrical impedance tomography (EIT), which can assess regional lung ventilation at the bedside, has never been compared with positron-emission tomography (PET), a gold-standard to quantify regional ventilation. This experiment systematically compared both techniques in injured and non-injured lungs. Methods The study was performed in six mechanically ventilated female piglets. In normal lungs, tidal volume (VT) was randomly changed to 6, 8, 10 and 15 ml/kg on zero end-expiratory pressure (ZEEP), then, at VT 10 ml/kg, positive end-expiratory pressure (PEEP) was randomly changed to 5, 10 and 15 cmH2O. Afterwards, acute lung injury (ALI) was subsequently created in three animals by injecting 3 ml/kg hydrochloric acid into the trachea. Then at PEEP 5 cmH2O, VT was randomly changed to 8 and 12 ml/kg and PEEP of 10 and 15 cmH2O applied at VT 10 ml/kg. EIT and PET examinations were performed simultaneously. EIT ventilation (VTEIT) and lung volume (VL) were measured in the anterior and posterior area of each lung. On the same regions of interest, ventilation (VPET) and aerated lung volume (VAatten) were determined with PET. Results On ZEEP, VTEIT and VPET significantly correlated for global (VTEIT = VPET - 2E-13, R2 = 0.95, P < 0.001) and regional (VTEIT = 0.81VPET+7.65, R2 = 0.63, P < 0.001) ventilation over both conditions. For ALI condition, corresponding R2 were 0.91 and 0.73 (P < 0.01). Bias was = 0 and limits of agreement were -37.42 and +37.42 ml/min for global ventilation over both conditions. These values were 0.04 and -29.01 and +29.08 ml/min, respectively, for regional ventilation. Significant correlations were also found between VL and VAatten for global (VL = VAatten+1E-12, R2 = 0.93, P < 0.0001) and regional (VL = 0.99VAatten+0.92, R2 = 0.65, P < 0.001) volume. For ALI condition, corresponding R2 were 0.94 (P < 0.001) and 0.54 (P < 0.05). Bias was = 0 and limits of agreement ranged -38.16 and +38.16 ml for global ventilation over both

  13. Comparison of 4-Dimensional Computed Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu; Koo, Phillip J.; Castillo, Richard

    Purpose: Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials: Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based modelmore » were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results: Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions: The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist's assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were

  14. Comparison between conventional protective mechanical ventilation and high-frequency oscillatory ventilation associated with the prone position.

    PubMed

    Fioretto, José Roberto; Klefens, Susiane Oliveira; Pires, Rafaelle Fernandes; Kurokawa, Cilmery Suemi; Carpi, Mario Ferreira; Bonatto, Rossano César; Moraes, Marcos Aurélio; Ronchi, Carlos Fernando

    2017-01-01

    To compare the effects of high-frequency oscillatory ventilation and conventional protective mechanical ventilation associated with the prone position on oxygenation, histology and pulmonary oxidative damage in an experimental model of acute lung injury. Forty-five rabbits with tracheostomy and vascular access were underwent mechanical ventilation. Acute lung injury was induced by tracheal infusion of warm saline. Three experimental groups were formed: healthy animals + conventional protective mechanical ventilation, supine position (Control Group; n = 15); animals with acute lung injury + conventional protective mechanical ventilation, prone position (CMVG; n = 15); and animals with acute lung injury + high-frequency oscillatory ventilation, prone position (HFOG; n = 15). Ten minutes after the beginning of the specific ventilation of each group, arterial gasometry was collected, with this timepoint being called time zero, after which the animal was placed in prone position and remained in this position for 4 hours. Oxidative stress was evaluated by the total antioxidant performance assay. Pulmonary tissue injury was determined by histopathological score. The level of significance was 5%. Both groups with acute lung injury showed worsening of oxygenation after induction of injury compared with the Control Group. After 4 hours, there was a significant improvement in oxygenation in the HFOG group compared with CMVG. Analysis of total antioxidant performance in plasma showed greater protection in HFOG. HFOG had a lower histopathological lesion score in lung tissue than CMVG. High-frequency oscillatory ventilation, associated with prone position, improves oxygenation and attenuates oxidative damage and histopathological lung injury compared with conventional protective mechanical ventilation.

  15. Comparison between conventional protective mechanical ventilation and high-frequency oscillatory ventilation associated with the prone position

    PubMed Central

    Fioretto, José Roberto; Klefens, Susiane Oliveira; Pires, Rafaelle Fernandes; Kurokawa, Cilmery Suemi; Carpi, Mario Ferreira; Bonatto, Rossano César; Moraes, Marcos Aurélio; Ronchi, Carlos Fernando

    2017-01-01

    Objective To compare the effects of high-frequency oscillatory ventilation and conventional protective mechanical ventilation associated with the prone position on oxygenation, histology and pulmonary oxidative damage in an experimental model of acute lung injury. Methods Forty-five rabbits with tracheostomy and vascular access were underwent mechanical ventilation. Acute lung injury was induced by tracheal infusion of warm saline. Three experimental groups were formed: healthy animals + conventional protective mechanical ventilation, supine position (Control Group; n = 15); animals with acute lung injury + conventional protective mechanical ventilation, prone position (CMVG; n = 15); and animals with acute lung injury + high-frequency oscillatory ventilation, prone position (HFOG; n = 15). Ten minutes after the beginning of the specific ventilation of each group, arterial gasometry was collected, with this timepoint being called time zero, after which the animal was placed in prone position and remained in this position for 4 hours. Oxidative stress was evaluated by the total antioxidant performance assay. Pulmonary tissue injury was determined by histopathological score. The level of significance was 5%. Results Both groups with acute lung injury showed worsening of oxygenation after induction of injury compared with the Control Group. After 4 hours, there was a significant improvement in oxygenation in the HFOG group compared with CMVG. Analysis of total antioxidant performance in plasma showed greater protection in HFOG. HFOG had a lower histopathological lesion score in lung tissue than CMVG. Conclusion High-frequency oscillatory ventilation, associated with prone position, improves oxygenation and attenuates oxidative damage and histopathological lung injury compared with conventional protective mechanical ventilation. PMID:29236845

  16. [Pressure support ventilation and proportional assist ventilation during weaning from mechanical ventilation].

    PubMed

    Aguirre-Bermeo, H; Bottiroli, M; Italiano, S; Roche-Campo, F; Santos, J A; Alonso, M; Mancebo, J

    2014-01-01

    To compare tolerance, duration of mechanical ventilation (MV) and clinical outcomes during weaning from MV in patients subjected to either pressure support ventilation (PSV) or proportional assist ventilation (PAV). A prospective, observational study was carried out. Intensive Care Unit. A total of 40 consecutive subjects were allocated to either the PSV or the PAV group until each group contained 20 patients. Patients were included in the study when they met the criteria to begin weaning and the attending physician decided to initiate the weaning process. The physician selected the modality and set the ventilatory parameters. None. Demographic data, respiratory mechanics, ventilatory parameters, duration of MV, and clinical outcomes (reintubation, tracheostomy, mortality). Baseline characteristics were similar in both groups. No significant differences were observed between the PSV and PAV groups in terms of the total duration of MV (10 [5-18] vs. 9 [7-19] days; P=.85), reintubation (5 [31%] vs. 3 [19%]; P=.69), or mortality (4 [20%] vs. 5 [25%] deaths; P=1). Eight patients (40%) in the PSV group and 6 patients (30%) in the PAV group (P=.74) required a return to volume assist-control ventilation due to clinical deterioration. Tolerance, duration of MV and clinical outcomes during weaning from mechanical ventilation were similar in PSV and PAV. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  17. 49 CFR 24.204 - Availability of comparable replacement dwelling before displacement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... before displacement. 24.204 Section 24.204 Transportation Office of the Secretary of Transportation... displacement. (a) General. No person to be displaced shall be required to move from his or her dwelling unless... requires immediate vacation of the real property, such as when continued occupancy of the displacement...

  18. 49 CFR 24.204 - Availability of comparable replacement dwelling before displacement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... before displacement. 24.204 Section 24.204 Transportation Office of the Secretary of Transportation... displacement. (a) General. No person to be displaced shall be required to move from his or her dwelling unless... requires immediate vacation of the real property, such as when continued occupancy of the displacement...

  19. 49 CFR 24.204 - Availability of comparable replacement dwelling before displacement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... before displacement. 24.204 Section 24.204 Transportation Office of the Secretary of Transportation... displacement. (a) General. No person to be displaced shall be required to move from his or her dwelling unless... requires immediate vacation of the real property, such as when continued occupancy of the displacement...

  20. 49 CFR 24.204 - Availability of comparable replacement dwelling before displacement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... before displacement. 24.204 Section 24.204 Transportation Office of the Secretary of Transportation... displacement. (a) General. No person to be displaced shall be required to move from his or her dwelling unless... requires immediate vacation of the real property, such as when continued occupancy of the displacement...

  1. 49 CFR 24.204 - Availability of comparable replacement dwelling before displacement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... before displacement. 24.204 Section 24.204 Transportation Office of the Secretary of Transportation... displacement. (a) General. No person to be displaced shall be required to move from his or her dwelling unless... requires immediate vacation of the real property, such as when continued occupancy of the displacement...

  2. A randomised crossover comparison of mouth-to-face-shield ventilation and mouth-to-pocket-mask ventilation by surf lifeguards in a manikin.

    PubMed

    Adelborg, K; Bjørnshave, K; Mortensen, M B; Espeseth, E; Wolff, A; Løfgren, B

    2014-07-01

    Thirty surf lifeguards (mean (SD) age: 25.1 (4.8) years; 21 male, 9 female) were randomly assigned to perform 2 × 3 min of cardiopulmonary resuscitation on a manikin using mouth-to-face-shield ventilation (AMBU LifeKey) and mouth-to-pocket-mask ventilation (Laerdal Pocket Mask). Interruptions in chest compressions, effective ventilation (visible chest rise) ratio, tidal volume and inspiratory time were recorded. Interruptions in chest compressions per cycle were increased with mouth-to-face-shield ventilation (mean (SD) 8.6 (1.7) s) compared with mouth-to-pocket-mask ventilation (6.9 (1.2) s, p < 0.0001). The proportion of effective ventilations was less using mouth-to-face-shield ventilation (199/242 (82%)) compared with mouth-to-pocket-mask ventilation (239/240 (100%), p = 0.0002). Tidal volume was lower using mouth-to-face-shield ventilation (mean (SD) 0.36 (0.20) l) compared with mouth-to-pocket-mask ventilation (0.45 (0.20) l, p = 0.006). No differences in inspiratory times were observed between mouth-to-face-shield ventilation and mouth-to-pocket-mask ventilation. In conclusion, mouth-to-face-shield ventilation increases interruptions in chest compressions, reduces the proportion of effective ventilations and decreases delivered tidal volumes compared with mouth-to-pocket-mask ventilation. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  3. Poleward Shift in Ventilation of the North Atlantic Subtropical Underwater

    NASA Astrophysics Data System (ADS)

    Yu, Lisan; Jin, Xiangze; Liu, Hao

    2018-01-01

    We report the findings that the sea surface salinity maximum (SSS-max) in the North Atlantic has poleward expanded in recent decades and that the expansion is a main driver of the decadal changes in subtropical underwater (STUW). We present observational evidence that the STUW ventilation zone (marked by the location of the 36.7 isohaline) has been displaced northward by1.2 ± 0.36° latitude for the 34 year (1979-2012) period. As a result of the redistribution of the SSS-max water, the ventilation zone has shifted northward and expanded westward into the Sargasso Sea. The ventilation rate of STUW has increased, which is attributed to the increased lateral induction of the sloping mixed layer. STUW has become broader, deeper, and saltier, and the changes are most pronounced on the northern and western edges of the high-saline core.

  4. Comparing the impact of time displaced and biased precipitation estimates for online updated urban runoff models.

    PubMed

    Borup, Morten; Grum, Morten; Mikkelsen, Peter Steen

    2013-01-01

    When an online runoff model is updated from system measurements, the requirements of the precipitation input change. Using rain gauge data as precipitation input there will be a displacement between the time when the rain hits the gauge and the time where the rain hits the actual catchment, due to the time it takes for the rain cell to travel from the rain gauge to the catchment. Since this time displacement is not present for system measurements the data assimilation scheme might already have updated the model to include the impact from the particular rain cell when the rain data is forced upon the model, which therefore will end up including the same rain twice in the model run. This paper compares forecast accuracy of updated models when using time displaced rain input to that of rain input with constant biases. This is done using a simple time-area model and historic rain series that are either displaced in time or affected with a bias. The results show that for a 10 minute forecast, time displacements of 5 and 10 minutes compare to biases of 60 and 100%, respectively, independent of the catchments time of concentration.

  5. Ventilation through a small-bore catheter: optimizing expiratory ventilation assistance.

    PubMed

    Hamaekers, A E W; Borg, P A J; Götz, T; Enk, D

    2011-03-01

    Emergency ventilation through a small-bore transtracheal catheter can be lifesaving in a 'cannot intubate, cannot ventilate' situation. Ejectors, capable of creating suction by the Bernoulli principle, have been proposed to facilitate expiration through small-bore catheters. In this bench study, we compared a novel, purpose-built ventilation ejector (DE 5) with a previously proposed, modified industrial ejector (SBP 07). The generated insufflation pressures, suction pressures in static and dynamic situations, and also suction capacities and entrainment ratios of the SBP 07 and the DE 5 were determined. The DE 5 was also tested in a lung simulator with a simulated complete upper airway obstruction. Inspiratory and expiratory times through a transtracheal catheter were measured at various flow rates and achievable minute volumes were calculated. In a static situation, the SBP 07 showed a more negative pressure build-up compared with the DE 5. However, in a dynamic situation, the DE 5 generated a more negative pressure, resulting in a higher suction capacity. Employment of the DE 5 at a flow rate of 18 litre min(-1) allowed a minute volume through the transtracheal catheter of up to 8.27 litre min(-1) at a compliance of 100 ml cm H(2)O(-1). The efficiency of the DE 5 depended on the flow rate of the driving gas and the compliance of the lung simulator. In laboratory tests, the DE 5 is an optimized ventilation ejector suitable for applying expiratory ventilation assistance. Further research may confirm the clinical applicability as a portable emergency ventilator for use with small-bore catheters.

  6. Calculated ventilation and effort distribution as a measure of respiratory disease and Heliox effectiveness.

    PubMed

    Pozin, N; Montesantos, S; Katz, I; Pichelin, M; Grandmont, C; Vignon-Clementel, I

    2017-07-26

    In spite of numerous clinical studies, there is no consensus on the benefit Heliox mixtures can bring to asthmatic patients in terms of work of breathing and ventilation distribution. In this article we use a 3D finite element mathematical model of the lung to study the impact of asthma on effort and ventilation distribution along with the effect of Heliox compared to air. Lung surface displacement fields extracted from computed tomography medical images are used to prescribe realistic boundary conditions to the model. Asthma is simulated by imposing bronchoconstrictions to some airways of the tracheo-bronchial tree based on statistical laws deduced from the literature. This study illuminates potential mechanisms for patient responsiveness to Heliox when affected by obstructive pulmonary diseases. Responsiveness appears to be function of the pathology severity, as well as its distal position in the tracheo-bronchial tree and geometrical position within the lung. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Epidemiology of Noninvasive Ventilation in Pediatric Cardiac ICUs.

    PubMed

    Romans, Ryan A; Schwartz, Steven M; Costello, John M; Chanani, Nikhil K; Prodhan, Parthak; Gazit, Avihu Z; Smith, Andrew H; Cooper, David S; Alten, Jeffrey; Mistry, Kshitij P; Zhang, Wenying; Donohue, Janet E; Gaies, Michael

    2017-10-01

    To describe the epidemiology of noninvasive ventilation therapy for patients admitted to pediatric cardiac ICUs and to assess practice variation across hospitals. Retrospective cohort study using prospectively collected clinical registry data. Pediatric Cardiac Critical Care Consortium clinical registry. Patients admitted to cardiac ICUs at PC4 hospitals. None. We analyzed all cardiac ICU encounters that included any respiratory support from October 2013 to December 2015. Noninvasive ventilation therapy included high flow nasal cannula and positive airway pressure support. We compared patient and, when relevant, perioperative characteristics of those receiving noninvasive ventilation to all others. Subgroup analysis was performed on neonates and infants undergoing major cardiovascular surgery. To examine duration of respiratory support, we created a casemix-adjustment model and calculated adjusted mean durations of total respiratory support (mechanical ventilation + noninvasive ventilation), mechanical ventilation, and noninvasive ventilation. We compared adjusted duration of support across hospitals. The cohort included 8,940 encounters from 15 hospitals: 3,950 (44%) received noninvasive ventilation and 72% were neonates and infants. Medical encounters were more likely to include noninvasive ventilation than surgical. In surgical neonates and infants, 2,032 (55%) received postoperative noninvasive ventilation. Neonates, extracardiac anomalies, single ventricle, procedure complexity, preoperative respiratory support, mechanical ventilation duration, and postoperative disease severity were associated with noninvasive ventilation therapy (p < 0.001 for all). Across hospitals, noninvasive ventilation use ranged from 32% to 65%, and adjusted mean noninvasive ventilation duration ranged from 1 to 4 days (3-d observed mean). Duration of total adjusted respiratory support was more strongly correlated with duration of mechanical ventilation compared with noninvasive

  8. Anaesthesia ventilators.

    PubMed

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-09-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  9. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  10. Body Density Estimates from Upper-Body Skinfold Thicknesses Compared to Air-Displacement Plethysmography

    USDA-ARS?s Scientific Manuscript database

    Technical Summary Objectives: Determine the effect of body mass index (BMI) on the accuracy of body density (Db) estimated with skinfold thickness (SFT) measurements compared to air displacement plethysmography (ADP) in adults. Subjects/Methods: We estimated Db with SFT and ADP in 131 healthy men an...

  11. Pediatric Ventilator-Associated Infections: The Ventilator-Associated INfection Study.

    PubMed

    Willson, Douglas F; Hoot, Michelle; Khemani, Robinder; Carrol, Christopher; Kirby, Aileen; Schwarz, Adam; Gedeit, Rainer; Nett, Sholeen T; Erickson, Simon; Flori, Heidi; Hays, Spencer; Hall, Mark

    2017-01-01

    Suspected ventilator-associated infection is the most common reason for antibiotics in the PICU. We sought to characterize the clinical variables associated with continuing antibiotics after initial evaluation for suspected ventilator-associated infection and to determine whether clinical variables or antibiotic treatment influenced outcomes. Prospective, observational cohort study conducted in 47 PICUs in the United States, Canada, and Australia. Two hundred twenty-nine pediatric patients ventilated more than 48 hours undergoing respiratory secretion cultures were enrolled as "suspected ventilator-associated infection" in a prospective cohort study, those receiving antibiotics of less than or equal to 3 days were categorized as "evaluation only," and greater than 3 days as "treated." Demographics, diagnoses, comorbidities, culture results, and clinical data were compared between evaluation only and treated subjects and between subjects with positive versus negative cultures. PICUs in 47 hospitals in the United States, Canada, and Australia. All patients undergoing respiratory secretion cultures during the 6 study periods. None. Treated subjects differed from evaluation-only subjects only in frequency of positive cultures (79% vs 36%; p < 0.0001). Subjects with positive cultures were more likely to have chronic lung disease, tracheostomy, and shorter PICU stay, but there were no differences in ventilator days or mortality. Outcomes were similar in subjects with positive or negative cultures irrespective of antibiotic treatment. Immunocompromise and higher Pediatric Logistic Organ Dysfunction scores were the only variables associated with mortality in the overall population, but treated subjects with endotracheal tubes had significantly lower mortality. Positive respiratory cultures were the primary determinant of continued antibiotic treatment in children with suspected ventilator-associated infection. Positive cultures were not associated with worse outcomes

  12. On buoyancy-driven natural ventilation of a room with a heated floor

    NASA Astrophysics Data System (ADS)

    Gladstone, Charlotte; Woods, Andrew W.

    2001-08-01

    The natural ventilation of a room, both with a heated floor and connected to a cold exterior through two openings, is investigated by combining quantitative models with analogue laboratory experiments. The heated floor generates an areal source of buoyancy while the openings allow displacement ventilation to operate. When combined, these produce a steady state in which the air in the room is well-mixed, and the heat provided by the floor equals the heat lost by displacement. We develop a quantitative model describing this process, in which the advective heat transfer through the openings is balanced with the heat flux supplied at the floor. This model is successfully tested with observations from small-scale analogue laboratory experiments. We compare our results with the steady-state flow associated with a point source of buoyancy: for a given applied heat flux, an areal source produces heated air of lower temperature but a greater volume flux of air circulates through the room. We generalize the model to account for the effects of (i) a cooled roof as well as a heated floor, and (ii) an external wind or temperature gradient. In the former case, the direction of the flow through the openings depends on the temperature of the exterior air relative to an averaged roof and floor temperature. In the latter case, the flow is either buoyancy dominated or wind dominated depending on the strength of the pressure associated with the wind. Furthermore, there is an intermediate multiple-solution regime in which either flow regime may develop.

  13. Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vettermann, J.; Brusasco, V.; Rehder, K.

    1988-05-01

    In 12 anesthetized paralyzed dogs, pulmonary gas exchange and intrapulmonary inspired gas distribution were compared between continuous-flow ventilation (CFV) and conventional mechanical ventilation (CMV). Nine dogs were studied while they were lying supine, and three dogs were studied while they were lying prone. A single-lumen catheter for tracheal insufflation and a double-lumen catheter for bilateral endobronchial insufflation (inspired O2 fraction = 0.4; inspired minute ventilation = 1.7 +/- 0.3 (SD) 1.kg-1.min-1) were evaluated. Intrapulmonary gas distribution was assessed from regional 133Xe clearances. In dogs lying supine, CO2 elimination was more efficient with endobronchial insufflation than with tracheal insufflation, but themore » alveolar-arterial O2 partial pressure difference was larger during CFV than during CMV, regardless of the type of insufflation. By contrast, endobronchial insufflation maintained both arterial PCO2 and alveolar-arterial O2 partial pressure difference at significantly lower levels in dogs lying prone than in dogs lying supine. In dogs lying supine, the dependent lung was preferentially ventilated during CMV but not during CFV. In dogs lying prone, gas distribution was uniform with both modes of ventilation. The alveolar-arterial O2 partial pressure difference during CFV in dogs lying supine was negatively correlated with the reduced ventilation of the dependent lung, which suggests that increased ventilation-perfusion mismatching was responsible for the increase in alveolar-arterial O2 partial pressure difference. The more efficient oxygenation during CFV in dogs lying prone suggests a more efficient matching of ventilation to perfusion, presumably because the distribution of blood flow is also nearly uniform.« less

  14. A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators

    PubMed Central

    Thille, Arnaud W.; Lyazidi, Aissam; Richard, Jean-Christophe M.; Galia, Fabrice; Brochard, Laurent

    2009-01-01

    Objective To compare 13 commercially available, new-generation, intensive-care-unit (ICU) ventilators regarding trigger function, pressurization capacity during pressure-support ventilation (PSV), accuracy of pressure measurements and expiratory resistance. Design and Setting Bench study at a research laboratory in a university hospital. Material Four turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Results Three levels of effort were simulated. Each ventilator was evaluated at four PSV levels (5, 10, 15, and 20 cm H2O), with and without positive end-expiratory pressure (5 cm H2O, Trigger function was assessed as the time from effort onset to detectable pressurization. Pressurization capacity was evaluated using the airway pressure-time product computed as the net area under the pressure-time curve over the first 0.3 s after inspiratory effort onset. Expiratory resistance was evaluated by measuring trapped volume in controlled ventilation. Significant differences were found across the ventilators, with a range of triggering-delay from 42 ms to 88 ms for all conditions averaged (P<.001). Under difficult conditions, the triggering delay was longer than 100 ms and the pressurization was poor with five ventilators at PSV5 and three at PSV10, suggesting an inability to unload patient’s effort. On average, turbine-based ventilators performed better than conventional ventilators, which showed no improvement compared to a 2000 bench comparison. Conclusion Technical performances of trigger function, pressurization capacity and expiratory resistance vary considerably across new-generation ICU ventilators. ICU ventilators seem to have reached a technical ceiling in recent years, and some ventilators still perform inadequately. PMID:19352622

  15. A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators.

    PubMed

    Thille, Arnaud W; Lyazidi, Aissam; Richard, Jean-Christophe M; Galia, Fabrice; Brochard, Laurent

    2009-08-01

    To compare 13 commercially available, new-generation, intensive-care-unit (ICU) ventilators in terms of trigger function, pressurization capacity during pressure-support ventilation (PSV), accuracy of pressure measurements, and expiratory resistance. Bench study at a research laboratory in a university hospital. Four turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Three levels of effort were simulated. Each ventilator was evaluated at four PSV levels (5, 10, 15, and 20 cm H2O), with and without positive end-expiratory pressure (5 cm H2O). Trigger function was assessed as the time from effort onset to detectable pressurization. Pressurization capacity was evaluated using the airway pressure-time product computed as the net area under the pressure-time curve over the first 0.3 s after inspiratory effort onset. Expiratory resistance was evaluated by measuring trapped volume in controlled ventilation. Significant differences were found across the ventilators, with a range of triggering delays from 42 to 88 ms for all conditions averaged (P < 0.001). Under difficult conditions, the triggering delay was longer than 100 ms and the pressurization was poor for five ventilators at PSV5 and three at PSV10, suggesting an inability to unload patient's effort. On average, turbine-based ventilators performed better than conventional ventilators, which showed no improvement compared to a bench comparison in 2000. Technical performance of trigger function, pressurization capacity, and expiratory resistance differs considerably across new-generation ICU ventilators. ICU ventilators seem to have reached a technical ceiling in recent years, and some ventilators still perform inadequately.

  16. Predictors for Long-Term Hip Survivorship Following Acetabular Fracture Surgery: Importance of Gap Compared with Step Displacement.

    PubMed

    Verbeek, Diederik O; van der List, Jelle P; Tissue, Camden M; Helfet, David L

    2018-06-06

    Historically, the greatest residual (gap or step) displacement is used to predict clinical outcome following acetabular fracture surgery. Gap and step displacement may, however, impact the outcome to different degrees. We assessed the individual relationship between gap or step displacement and hip survivorship and determined their independent association with conversion to total hip arthroplasty. Patients who had acetabular fracture fixation (from 1992 through 2014), follow-up of ≥2 years (or early conversion to total hip arthroplasty), and postoperative computed tomography (CT) scans were included. Of 227 patients, 55 (24.2%) had conversion to total hip arthroplasty at a mean follow-up (and standard deviation) of 8.7 ± 5.6 years. Residual gap and step displacement were measured using a standardized CT-based method, and assessors were blinded to the outcome. Kaplan-Meier survivorship curves for the hips were plotted and compared (log-rank test) using critical cutoff values for gap and step displacement. These values were identified using receiver operating characteristic curves. Multivariate analysis was performed to identify independent variables associated with conversion to total hip arthroplasty. Subgroup analysis was performed in younger patients (<50 years old). The critical CT cutoff value for total hip arthroplasty conversion was 5 mm for gap and 1 mm for step displacement. Hip survivorship at 10 years was 82.0% for patients with a gap of <5 mm compared with 56.5% for a gap of ≥5 mm (p < 0.001) and 80.0% for a step of <1.0 mm versus 65.5% for a step of ≥1.0 mm (p = 0.012). A gap of ≥5 mm (hazard ratio [HR], 2.3; p = 0.012) and an age of ≥50 years (HR, 4.2; p < 0.001) were independently associated with conversion to total hip arthroplasty in all patients. In the subgroup of younger patients, only a step of ≥1 mm (HR, 6.4; p = 0.017) was an independent factor for conversion to total hip arthroplasty. Residual gap and step displacement as

  17. Is fibular fracture displacement consistent with tibiotalar displacement?

    PubMed

    van den Bekerom, Michel P J; van Dijk, C Niek

    2010-04-01

    We believed open reduction with internal fixation is required for supination-external rotation ankle fractures located at the level of the distal tibiofibular syndesmosis (Lauge-Hanssen SER II and Weber B) with 2 mm or more fibular fracture displacement. The rationale for surgery for these ankle fractures is based on the notion of elevated intraarticular contact pressures with lateral displacement. To diagnose these injuries, we presumed that in patients with a fibular fracture with at least 2 mm fracture displacement, the lateral malleolus and talus have moved at least 2 mm in a lateral direction without medial displacement of the proximal fibula. We reviewed 55 adult patients treated operatively for a supination-external rotation II ankle fracture (2 mm or more fibular fracture displacement) between 1990 and 1998. On standard radiographs, distance from the tibia to the proximal fibula, distance from the tibia to the distal fibula, and displacement at the level of the fibular fracture were measured. These distances were compared preoperatively and postoperatively. We concluded tibiotalar displacement cannot be reliably assessed at the level of the fracture. Based on this and other studies, we believe there is little evidence to perform open reduction and internal fixation of supination-external rotation II ankle fractures. Level IV, case series. See Guidelines for Authors for a complete description of levels of evidence.

  18. Reduction of Airborne Bacterial Burden in the OR by Installation of Unidirectional Displacement Airflow (UDF) Systems.

    PubMed

    Fischer, Sebastian; Thieves, Martin; Hirsch, Tobias; Fischer, Klaus-Dieter; Hubert, Helmine; Beppler, Steffen; Seipp, Hans-Martin

    2015-08-13

    Intraoperative bacterial contamination is a major risk factor for postoperative wound infections. This study investigated the influence of type of ventilation system on intraoperative airborne bacterial burden before and after installation of unidirectional displacement air flow systems. We microbiologically monitored 1286 surgeries performed by a single surgical team that moved from operating rooms (ORs) equipped with turbulent mixing ventilation (TMV, according to standard DIN-1946-4 [1999], ORs 1, 2, and 3) to ORs with unidirectional displacement airflow (UDF, according to standard DIN-1946-4, annex D [2008], ORs 7 and 8). The airborne bacteria were collected intraoperatively with sedimentation plates. After incubation for 48 h, we analyzed the average number of bacteria per h, peak values, and correlation to surgery duration. In addition, we compared the last 138 surgeries in ORs 1-3 with the first 138 surgeries in ORs 7 and 8. Intraoperative airborne bacterial burden was 5.4 CFU/h, 5.5 CFU/h, and 6.1 CFU/h in ORs 1, 2, and 3, respectively. Peak values of burden were 10.7 CFU/h, 11.1 CFU/h, and 11.0 CFU/h in ORs 1, 2, and 3, respectively). With the UDF system, the intraoperative airborne bacterial burden was reduced to 0.21 CFU/h (OR 7) and 0.35 CFU/h (OR 8) on average (p<0.01). Accordingly, peak values decreased to 0.9 CFU/h and 1.0 CFU/h in ORs 7 and 8, respectively (p<0.01). Airborne bacterial burden increased linearly with surgery duration in ORs 1-3, but the UDF system in ORs 7 and 8 kept bacterial levels constantly low (<3 CFU/h). A comparison of the last 138 surgeries before with the first 138 surgeries after changing ORs revealed a 94% reduction in average airborne bacterial burden (5 CFU/h vs. 0.29 CFU/h, p<0.01). The unidirectional displacement airflow, which fulfills the requirements of standard DIN-1946-4 annex D of 2008, is an effective ventilation system that reduces airborne bacterial burden under real clinical conditions by more than 90

  19. Method for calculating internal radiation and ventilation with the ADINAT heat-flow code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butkovich, T.R.; Montan, D.N.

    1980-04-01

    One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation andmore » ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation.« less

  20. [Anesthesia ventilators].

    PubMed

    Otteni, J C; Beydon, L; Cazalaà, J B; Feiss, P; Nivoche, Y

    1997-01-01

    To review anaesthesia ventilators in current use in France by categories of ventilators. References were obtained from computerized bibliographic search. (Medline), recent review articles, the library of the service and personal files. Anaesthesia ventilators can be allocated into three groups, depending on whether they readminister expired gases or not or allow both modalities. Contemporary ventilators provide either constant volume ventilation, or constant pressure ventilation, with or without a pressure plateau. Ventilators readministering expired gases after CO2 absorption, or closed circuit ventilators, are either of a double- or a single-circuit design. Double-circuit ventilators, or pneumatical bag or bellows squeezers, or bag-in-bottle or bellows-in-bottle (or box) ventilators, consist of a primary, or driving circuit (bottle or box) and a secondary or patient circuit (including a bag or a bellows or membrane chambers). Bellows-in-bottle ventilators have either standing bellows ascending at expiration, or hanging bellows, descending at expiration. Ascending bellows require a positive pressure of about 2 cmH2O throughout exhalation to allow the bellows to refill. The expired gas volume is a valuable indicator for leak and disconnection. Descending bellows generate a slight negative pressure during exhalation. In case of leak or disconnection they aspirate ambient air and cannot act therefore as an indicator for integrity of the circuit and the patient connection. Closed circuit ventilators with a single-circuit (patient circuit) include a insufflating device consisting either in a bellows or a cylinder with a piston, operated by a electric or pneumatic motor. As the hanging bellows of the double circuit ventilators, they generate a slight negative pressure during exhalation and aspirate ambient air in case of leak or disconnection. Ventilators not designed for the readministration of expired gases, or open circuit ventilators, are generally stand

  1. Lung-protective mechanical ventilation does not protect against acute kidney injury in patients without lung injury at onset of mechanical ventilation.

    PubMed

    Cortjens, Bart; Royakkers, Annick A N M; Determann, Rogier M; van Suijlen, Jeroen D E; Kamphuis, Stephan S; Foppen, Jannetje; de Boer, Anita; Wieland, Cathrien W; Spronk, Peter E; Schultz, Marcus J; Bouman, Catherine S C

    2012-06-01

    Preclinical and clinical studies suggest that mechanical ventilation contributes to the development of acute kidney injury (AKI), particularly in the setting of lung-injurious ventilator strategies. To determine whether ventilator settings in critically ill patients without acute lung injury (ALI) at onset of mechanical ventilation affect the development of AKI. Secondary analysis of a randomized controlled trial (N = 150), comparing conventional tidal volume (V(T), 10 mL/kg) with low tidal volume (V(T), 6 mL/kg) mechanical ventilation in critically ill patients without ALI at randomization. During the first 5 days of mechanical ventilation, the RIFLE class was determined daily, whereas neutrophil gelatinase-associated lipocalin and cystatin C levels were measured in plasma collected on days 0, 2, and 4. Eighty-six patients had no AKI at inclusion, and 18 patients (21%) subsequently developed AKI, but without significant difference between ventilation strategies. (Cumulative hazard, 0.26 vs 0.23; P = .88.) The courses of neutrophil gelatinase-associated lipocalin and cystatin C plasma levels did not differ significantly between randomization groups. In the present study in critically patients without ALI at onset of mechanical ventilation, lower tidal volume ventilation did not reduce the development or worsening of AKI compared with conventional tidal volume ventilation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  3. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  4. The comparative performance of Roots type aircraft engine superchargers as affected by change in impeller speed and displacement

    NASA Technical Reports Server (NTRS)

    Ware, Marsden; Wilson, Ernest E

    1929-01-01

    This report presents the results of tests made on three sizes of roots type aircraft engine superchargers. The impeller contours and diameters of these machines were the same, but the length were 11, 8 1/4, and 4 inches, giving displacements of 0.509, 0.382, and 0.185 cubic foot per impeller revolution. The information obtained serves as a basis for the examination of the individual effects of impeller speed and displacement on performance and of the comparative performance when speed and displacement are altered simultaneously to meet definite service requirements. According to simple theory, when assuming no losses, the air weight handled and the power required for a given pressure difference are directly proportional to the speed and the displacement. These simple relations are altered considerably by the losses. When comparing the performance of different sizes of machines whose impeller speeds are so related that the same service requirements are met, it is found that the individual effects of speed and displacement are canceled to a large extent, and the only considerable difference is the difference in the power losses which decrease with increase in the displacement and the accompanying decrease in speed. This difference is small in relation to the net power of the engine supercharger unit, so that a supercharger with short impellers may be used in those applications where the space available is very limited with any considerable sacrifice in performance.

  5. Monitoring of noninvasive ventilation by built-in software of home bilevel ventilators: a bench study.

    PubMed

    Contal, Olivier; Vignaux, Laurence; Combescure, Christophe; Pepin, Jean-Louis; Jolliet, Philippe; Janssens, Jean-Paul

    2012-02-01

    Current bilevel positive-pressure ventilators for home noninvasive ventilation (NIV) provide physicians with software that records items important for patient monitoring, such as compliance, tidal volume (Vt), and leaks. However, to our knowledge, the validity of this information has not yet been independently assessed. Testing was done for seven home ventilators on a bench model adapted to simulate NIV and generate unintentional leaks (ie, other than of the mask exhalation valve). Five levels of leaks were simulated using a computer-driven solenoid valve (0-60 L/min) at different levels of inspiratory pressure (15 and 25 cm H(2)O) and at a fixed expiratory pressure (5 cm H(2)O), for a total of 10 conditions. Bench data were compared with results retrieved from ventilator software for leaks and Vt. For assessing leaks, three of the devices tested were highly reliable, with a small bias (0.3-0.9 L/min), narrow limits of agreement (LA), and high correlations (R(2), 0.993-0.997) when comparing ventilator software and bench results; conversely, for four ventilators, bias ranged from -6.0 L/min to -25.9 L/min, exceeding -10 L/min for two devices, with wide LA and lower correlations (R(2), 0.70-0.98). Bias for leaks increased markedly with the importance of leaks in three devices. Vt was underestimated by all devices, and bias (range, 66-236 mL) increased with higher insufflation pressures. Only two devices had a bias < 100 mL, with all testing conditions considered. Physicians monitoring patients who use home ventilation must be aware of differences in the estimation of leaks and Vt by ventilator software. Also, leaks are reported in different ways according to the device used.

  6. SU-F-J-219: Predicting Ventilation Change Due to Radiation Therapy: Dependency On Pre-RT Ventilation and Effort Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, T; Du, K; Bayouth, J

    Purpose: Ventilation change caused by radiation therapy (RT) can be predicted using four-dimensional computed tomography (4DCT) and image registration. This study tested the dependency of predicted post-RT ventilation on effort correction and pre-RT lung function. Methods: Pre-RT and 3 month post-RT 4DCT images were obtained for 13 patients. The 4DCT images were used to create ventilation maps using a deformable image registration based Jacobian expansion calculation. The post-RT ventilation maps were predicted in four different ways using the dose delivered, pre-RT ventilation, and effort correction. The pre-RT ventilation and effort correction were toggled to determine dependency. The four different predictedmore » ventilation maps were compared to the post-RT ventilation map calculated from image registration to establish the best prediction method. Gamma pass rates were used to compare the different maps with the criteria of 2mm distance-to-agreement and 6% ventilation difference. Paired t-tests of gamma pass rates were used to determine significant differences between the maps. Additional gamma pass rates were calculated using only voxels receiving over 20 Gy. Results: The predicted post-RT ventilation maps were in agreement with the actual post-RT maps in the following percentage of voxels averaged over all subjects: 71% with pre-RT ventilation and effort correction, 69% with no pre-RT ventilation and effort correction, 60% with pre-RT ventilation and no effort correction, and 58% with no pre-RT ventilation and no effort correction. When analyzing only voxels receiving over 20 Gy, the gamma pass rates were respectively 74%, 69%, 65%, and 55%. The prediction including both pre- RT ventilation and effort correction was the only prediction with significant improvement over using no prediction (p<0.02). Conclusion: Post-RT ventilation is best predicted using both pre-RT ventilation and effort correction. This is the only prediction that provided a significant

  7. A new system for understanding modes of mechanical ventilation.

    PubMed

    Chatburn, R L; Primiano, F P

    2001-06-01

    Numerous ventilation modes and ventilation options have become available as new mechanical ventilators have reached the market. Ventilator manufacturers have no standardized terminology for ventilator modes and ventilation options, and ventilator operator's manuals do not help the clinician compare the modes of ventilators from different manufacturers. This article proposes a standardized system for classifying ventilation modes, based on general engineering principles and a small set of explicit definitions. Though there may be resistance by ventilator manufacturers to a standardized system of ventilation terminology, clinicians and health care equipment purchasers should adopt such a system in the interest of clear communication--the lack of which prevents clinicians from fully understanding the therapies they administer and could compromise the quality of patient care.

  8. Ventilation of an hydrofoil wake

    NASA Astrophysics Data System (ADS)

    Arndt, Roger; Lee, Seung Jae; Monson, Garrett

    2013-11-01

    Ventilation physics plays a role in a variety of important engineering applications. For example, hydroturbine ventilation is used for control of vibration and cavitation erosion and more recently for improving the dissolved oxygen content of the flow through the turbine. The latter technology has been the focus of an ongoing study involving the ventilation of an hydrofoil wake to determine the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). The data are compared with previous studies of ventilated flow. The theoretical results of Hinze suggest that a scaling relationship is possible that can lead to developing appropriate design parameters for a ventilation system. Sponsored by ONR and DOE.

  9. Echocardiographic evaluation during weaning from mechanical ventilation.

    PubMed

    Schifelbain, Luciele Medianeira; Vieira, Silvia Regina Rios; Brauner, Janete Salles; Pacheco, Deise Mota; Naujorks, Alexandre Antonio

    2011-01-01

    Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T-tube; and comparing patient subgroups: success vs. failure in weaning. Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T-tube. Pressure support ventilation vs. T-tube and weaning success vs. failure were compared using ANOVA and Student's t-test. The level of significance was p<0.05. Twenty-four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T-tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T-tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients.

  10. Echocardiographic evaluation during weaning from mechanical ventilation

    PubMed Central

    Schifelbain, Luciele Medianeira; Vieira, Silvia Regina Rios; Brauner, Janete Salles; Pacheco, Deise Mota; Naujorks, Alexandre Antonio

    2011-01-01

    INTRODUCTION: Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. OBJECTIVES: To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T‐tube; and comparing patient subgroups: success vs. failure in weaning. METHODS: Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T‐tube. Pressure support ventilation vs. T‐tube and weaning success vs. failure were compared using ANOVA and Student's t‐test. The level of significance was p<0.05. RESULTS: Twenty‐four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T‐tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. CONCLUSION: No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T‐tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients. PMID:21437445

  11. Football Equipment Removal Improves Chest Compression and Ventilation Efficacy.

    PubMed

    Mihalik, Jason P; Lynall, Robert C; Fraser, Melissa A; Decoster, Laura C; De Maio, Valerie J; Patel, Amar P; Swartz, Erik E

    2016-01-01

    Airway access recommendations in potential catastrophic spine injury scenarios advocate for facemask removal, while keeping the helmet and shoulder pads in place for ensuing emergency transport. The anecdotal evidence to support these recommendations assumes that maintaining the helmet and shoulder pads assists inline cervical stabilization and that facial access guarantees adequate airway access. Our objective was to determine the effect of football equipment interference on performing chest compressions and delivering adequate ventilations on patient simulators. We hypothesized that conditions with more football equipment would decrease chest compression and ventilation efficacy. Thirty-two certified athletic trainers were block randomized to participate in six different compression conditions and six different ventilation conditions using human patient simulators. Data for chest compression (mean compression depth, compression rate, percentage of correctly released compressions, and percentage of adequate compressions) and ventilation (total ventilations, mean ventilation volume, and percentage of ventilations delivering adequate volume) conditions were analyzed across all conditions. The fully equipped athlete resulted in the lowest mean compression depth (F5,154 = 22.82; P < 0.001; Effect Size = 0.98) and delivery of adequate compressions (F5,154 = 15.06; P < 0.001; Effect Size = 1.09) compared to all other conditions. Bag-valve mask conditions resulted in delivery of significantly higher mean ventilation volumes compared to all 1- or 2-person pocketmask conditions (F5,150 = 40.05; P < 0.001; Effect Size = 1.47). Two-responder ventilation scenarios resulted in delivery of a greater number of total ventilations (F5,153 = 3.99; P = 0.002; Effect Size = 0.26) and percentage of adequate ventilations (F5,150 = 5.44; P < 0.001; Effect Size = 0.89) compared to one-responder scenarios. Non-chinstrap conditions permitted greater ventilation volumes (F3,28 = 35.17; P

  12. The impact of a ventilator bundle on preventing ventilator-associated pneumonia: a multicenter study.

    PubMed

    Eom, Joong Sik; Lee, Mi-Suk; Chun, Hee-Kyung; Choi, Hee Jung; Jung, Sun-Young; Kim, Yeon-Sook; Yoon, Seon Jin; Kwak, Yee Gyung; Oh, Gang-Bok; Jeon, Min-Hyok; Park, Sun-Young; Koo, Hyun-Sook; Ju, Young-Su; Lee, Jin Seo

    2014-01-01

    For prevention of ventilator-associated pneumonia (VAP), a bundle approach was applied to patients receiving mechanical ventilation in intensive care units. The incidence of VAP and the preventive efficacy of the VAP bundle were investigated. A quasi-experimental study was conducted in adult intensive care units of 6 university hospitals with similar VAP rates. We implemented the VAP bundle between March 2011 and June 2011, then compared the rate of VAP after implementation of the VAP bundle with the rate in the previous 8 months. Our ventilator bundle included head of bed elevation, peptic ulcer disease prophylaxis, deep venous thrombosis prophylaxis, and oral decontamination with chlorhexidine 0.12%. Continuous aspiration of subglottic secretions was an option. Implementation of the VAP bundle reduced the VAP rate from a mean of 4.08 cases per 1,000 ventilator-days to 1.16 cases per 1,000 ventilator-days. The incidence density ratio (rate) was 0.28 (95% confidence interval, 0.275-0.292). Implementing the appropriate VAP bundle significantly decreased the incidence of VAP in patients with mechanical ventilation. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  13. New modes of assisted mechanical ventilation.

    PubMed

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  14. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.

    PubMed

    Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama

    2009-04-15

    Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.

  15. The use of mechanical ventilation in the ED.

    PubMed

    Easter, Benjamin D; Fischer, Christopher; Fisher, Jonathan

    2012-09-01

    Although EDs are responsible for the initial care of critically ill patients and the amount of critical care provided in the ED is increasing, there are few data examining mechanical ventilation (MV) in the ED. In addition, characteristics of ED-based ventilation may affect planning for ventilator shortages during pandemic influenza or bioterrorist events. The study examined the epidemiology of MV in US EDs, including demographic, clinical, and hospital characteristics; indications for MV; ED length of stay (LOS); and in-hospital mortality. This study was a retrospective review of the 1993 to 2007 National Hospital Ambulatory Medical Care Survey ED data sets. Ventilated patients were compared with ED patients admitted to the intensive care unit (ICU) and to all other ED visits. There were 3.6 million ED MV visits (95% confidence interval [CI], 3.2-4.0 million) over the study period. Sex, age, race, and payment source were similar for mechanically ventilated and ICU patients (P > .05 for all). Approximately 12.5% of ventilated patients underwent cardiopulmonary resuscitation compared with 1.7% of ICU admissions and 0.2% of all other ED visits (P < .0001). Accordingly, in-hospital mortality was significantly higher for ventilated patients (24%; 95% CI, 13.1%-34.9%) than both comparison groups (9.3% and 2.5%, respectively). Median LOS for ventilated patients was 197 minutes (interquartile range, 112-313 minutes) compared with 224 minutes for ICU admissions and 140 minutes for all other ED visits. Patients undergoing ED MV have particularly high in-hospital mortality rates, but their ED LOS is sufficient for implementation of evidence-based ventilator interventions. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Space station ventilation study

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Allen, G. E.

    1972-01-01

    A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.

  17. Comparison between conventional and protective one-lung ventilation for ventilator-assisted thoracic surgery.

    PubMed

    Ahn, H J; Kim, J A; Yang, M; Shim, W S; Park, K J; Lee, J J

    2012-09-01

    Recent papers suggest protective ventilation (PV) as a primary ventilation strategy during one-lung ventilation (OLV) to reduce postoperative pulmonary morbidity. However, data regarding the advantage of the PV strategy in patients with normal preoperative pulmonary function are inconsistent, especially in the case of minimally invasive thoracic surgery. Therefore we compared conventional OLV (VT 10 ml/kg, FiO2 1.0, zero PEEP) to protective OLV (VT 6 ml/kg, FiO2 0.5, PEEP 5 cmH2O) in patients with normal preoperative pulmonary function tests undergoing video-assisted thoracic surgery. Oxygenation, respiratory mechanics, plasma interleukin-6 and malondialdehyde levels were measured at baseline, 15 and 60 minutes after OLV and 15 minutes after restoration of two-lung ventilation. PaO2 and PaO2/FiO2 were higher in conventional OLV than in protective OLV (P<0.001). Interleukin-6 and malondialdehyde increased over time in both groups (P<0.05); however, the magnitudes of increase were not different between the groups. Postoperatively there were no differences in the number of patients with PaO2/FiO2<300 mmHg or abnormalities on chest radiography. Protective ventilation did not provide advantages over conventional ventilation for video-assisted thoracic surgery in this group of patients with normal lung function.

  18. Temperature-controlled airflow ventilation in operating rooms compared with laminar airflow and turbulent mixed airflow.

    PubMed

    Alsved, M; Civilis, A; Ekolind, P; Tammelin, A; Andersson, A Erichsen; Jakobsson, J; Svensson, T; Ramstorp, M; Sadrizadeh, S; Larsson, P-A; Bohgard, M; Šantl-Temkiv, T; Löndahl, J

    2018-02-01

    To evaluate three types of ventilation systems for operating rooms with respect to air cleanliness [in colony-forming units (cfu/m 3 )], energy consumption and comfort of working environment (noise and draught) as reported by surgical team members. Two commonly used ventilation systems, vertical laminar airflow (LAF) and turbulent mixed airflow (TMA), were compared with a newly developed ventilation technique, temperature-controlled airflow (T c AF). The cfu concentrations were measured at three locations in an operating room during 45 orthopaedic procedures: close to the wound (<40cm), at the instrument table and peripherally in the room. The operating team evaluated the comfort of the working environment by answering a questionnaire. LAF and T c AF, but not TMA, resulted in less than 10cfu/m 3 at all measurement locations in the room during surgery. Median values of cfu/m 3 close to the wound (250 samples) were 0 for LAF, 1 for T c AF and 10 for TMA. Peripherally in the room, the cfu concentrations were lowest for T c AF. The cfu concentrations did not scale proportionally with airflow rates. Compared with LAF, the power consumption of T c AF was 28% lower and there was significantly less disturbance from noise and draught. T c AF and LAF remove bacteria more efficiently from the air than TMA, especially close to the wound and at the instrument table. Like LAF, the new T c AF ventilation system maintained very low levels of cfu in the air, but T c AF used substantially less energy and provided a more comfortable working environment than LAF. This enables energy savings with preserved air quality. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. A Comparative Data-Based Modeling Study on Respiratory CO2 Gas Exchange during Mechanical Ventilation

    PubMed Central

    Kim, Chang-Sei; Ansermino, J. Mark; Hahn, Jin-Oh

    2016-01-01

    The goal of this study is to derive a minimally complex but credible model of respiratory CO2 gas exchange that may be used in systematic design and pilot testing of closed-loop end-tidal CO2 controllers in mechanical ventilation. We first derived a candidate model that captures the essential mechanisms involved in the respiratory CO2 gas exchange process. Then, we simplified the candidate model to derive two lower-order candidate models. We compared these candidate models for predictive capability and reliability using experimental data collected from 25 pediatric subjects undergoing dynamically varying mechanical ventilation during surgical procedures. A two-compartment model equipped with transport delay to account for CO2 delivery between the lungs and the tissues showed modest but statistically significant improvement in predictive capability over the same model without transport delay. Aggregating the lungs and the tissues into a single compartment further degraded the predictive fidelity of the model. In addition, the model equipped with transport delay demonstrated superior reliability to the one without transport delay. Further, the respiratory parameters derived from the model equipped with transport delay, but not the one without transport delay, were physiologically plausible. The results suggest that gas transport between the lungs and the tissues must be taken into account to accurately reproduce the respiratory CO2 gas exchange process under conditions of wide-ranging and dynamically varying mechanical ventilation conditions. PMID:26870728

  20. [Lung protective ventilation. Ventilatory modes and ventilator parameters].

    PubMed

    Schädler, Dirk; Weiler, Norbert

    2008-06-01

    Mechanical ventilation has a considerable potential for injuring the lung tissue. Therefore, attention has to be paid to the proper choice of ventilatory mode and settings to secure lung-protective ventilation whenever possible. Such ventilator strategy should account for low tidal volume ventilation (6 ml/kg PBW), limited plateau pressure (30 to 35 cm H2O) and positive end-expiratory pressure (PEEP). It is unclear whether pressure controlled or volume controlled ventilation with square flow profile is beneficial. The adjustment of inspiration and expiration time should consider the actual breathing mechanics and anticipate the generation of intrinsic PEEP. Ventilatory modes with the possibility of supporting spontaneous breathing should be used as soon as possible.

  1. Variable mechanical ventilation

    PubMed Central

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini Jr., Luiz Alberto; Friedman, Gilberto

    2017-01-01

    Objective To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Methods Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". Results A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Conclusion Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation. PMID:28444076

  2. The Effect of Pressure-Controlled Ventilation and Volume-Controlled Ventilation in Prone Position on Pulmonary Mechanics and Inflammatory Markers.

    PubMed

    Şenay, Hasan; Sıvacı, Remziye; Kokulu, Serdar; Koca, Buğra; Bakı, Elif Doğan; Ela, Yüksel

    2016-08-01

    The aim of this present study is to compare the effect of pressure-controlled ventilation and volume-controlled ventilation on pulmonary mechanics and inflammatory markers in prone position. The study included 41 patients undergoing to vertebrae surgery. The patients were randomized into two groups: Group 1 received volume-controlled ventilation, while group 2 received pressure-controlled ventilation. The demographic data, pulmonary mechanics, the inflammatory marker levels just after the induction of anesthetics, at the 6th and 12th hours, and gas analysis from arterial blood samples taken at the beginning and the 30th minute were recorded. The inflammatory marker levels increased in both groups, without any significant difference among groups. Peak inspiratory pressure level was higher in the volume-controlled ventilation group. This study revealed that there is no difference regarding inflammatory marker levels between volume- and pressure-controlled ventilation.

  3. Interactive simulation system for artificial ventilation on the internet: virtual ventilator.

    PubMed

    Takeuchi, Akihiro; Abe, Tadashi; Hirose, Minoru; Kamioka, Koichi; Hamada, Atsushi; Ikeda, Noriaki

    2004-12-01

    To develop an interactive simulation system "virtual ventilator" that demonstrates the dynamics of pressure and flow in the respiratory system under the combination of spontaneous breathing, ventilation modes, and ventilator options. The simulation system was designed to be used by unexperienced health care professionals as a self-training tool. The system consists of a simulation controller and three modules: respiratory, spontaneous breath, and ventilator. The respiratory module models the respiratory system by three resistances representing the main airway, the right and left lungs, and two compliances also representing the right and left lungs. The spontaneous breath module generates inspiratory negative pressure produced by a patient. The ventilator module generates driving force of pressure or flow according to the combination of the ventilation mode and options. These forces are given to the respiratory module through the simulation controller. The simulation system was developed using HTML, VBScript (3000 lines, 100 kB) and ActiveX control (120 kB), and runs on Internet Explorer (5.5 or higher). The spontaneous breath is defined by a frequency, amplitude and inspiratory patterns in the spontaneous breath module. The user can construct a ventilation mode by setting a control variable, phase variables (trigger, limit, and cycle), and options. Available ventilation modes are: controlled mechanical ventilation (CMV), continuous positive airway pressure, synchronized intermittent mandatory ventilation (SIMV), pressure support ventilation (PSV), SIMV + PSV, pressure-controlled ventilation (PCV), pressure-regulated volume control (PRVC), proportional assisted ventilation, mandatory minute ventilation (MMV), bilevel positive airway pressure (BiPAP). The simulation system demonstrates in a graph and animation the airway pressure, flow, and volume of the respiratory system during mechanical ventilation both with and without spontaneous breathing. We developed a web

  4. Impact of Room Ventilation Rates on Mouse Cage Ventilation and Microenvironment.

    PubMed

    Reeb, Carolyn K.; Jones, Robert B.; Bearg, David W.; Bedigian, Hendrick; Paigen, Beverly

    1997-01-01

    To assess the impact of room ventilation on animal cage microenvironment, intracage ventilation rate, temperature, humidity, and concentrations of carbon dioxide and ammonia were monitored in nonpressurized, bonnet-topped mouse cages. Cages on the top, middle, and bottom rows of a mouse rack were monitored at room ventilation rates of 0, 5, 10, and 20 air changes/h (ACH). Ventilation inside the animal cage increased somewhat from 12.8 to 18.9 ACH as room ventilation rate in- creased from 0 to 20 ACH, but the differences were not statistically significant, and most of the increase occurred in cages in the top row nearest to the fresh air supply. Cages containing mice had ventilation rate between 10 and 15 ACH even when room ventilation was reduced to 0 ACH; this ventilation is a result of the thermal heat load of the mice. After 6 days of soiled bedding, intracage ammonia concentration was c 3 ppm at all room ventilation rates and was not affected by increasing room ventilation. Temperature inside cages did not change with increasing ventilation. Humidity inside cages significantly decreased with increasing ventilation, from 55% relative humidity at 5 ACH to 36% relative humidity at 20 ACH. Carbon dioxide concentration decreased from 2,500 ppm to 1,900 ppm when ventilation rate increased from 5 ACH to 10 ACH, but no further significant decrease was observed at 20 ACH. In conclusion, increasing the room ventilation rate higher than 5 ACH did not result in significant improvements in the cage microenvironment.

  5. Comparative Performance of Two Ventilation Strategies in a Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah; Martin, Eric; Chasar, Dave

    2017-02-01

    In fiscal year 2013, Pacific Northwest National Laboratory (PNNL), Florida Solar Energy Center (FSEC), and Florida Home Energy and Resources Organization (Florida HERO) began a collaborative effort to evaluate the impact of ventilation rate on interior comfort conditions, space-conditioning energy use, and indoor air contaminant concentrations. Relevant parameters were measured in 10 homes in Gainesville, Florida, along with corresponding outdoor conditions, to characterize the impact of differing ventilation rates. This report provides information about the data collection method and results from more than 1 year of data collection during a period from summer 2013 through summer 2014. Indoor air qualitymore » was sampled in three discrete periods with the first occurring in August/September 2013, the second occurring in March/April 2014, and the third occurring in August 2014.« less

  6. Comparative Performance of Two Ventilation Strategies in a Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah; Martin, Eric; Chasar, Dave

    In fiscal year 2013, Pacific Northwest National Laboratory (PNNL), Florida Solar Energy Center (FSEC), and Florida Home Energy and Resources Organization (Florida HERO) began a collaborative effort to evaluate the impact of ventilation rate on interior comfort conditions, space-conditioning energy use, and indoor air contaminant concentrations. Relevant parameters were measured in 10 homes in Gainesville, Florida, along with corresponding outdoor conditions, to characterize the impact of differing ventilation rates. This report provides information about the data collection method and results from more than 1 year of data collection during a period from summer 2013 through summer 2014. Indoor air qualitymore » was sampled in three discrete periods with the first occurring in August/September 2013, the second occurring in March/April 2014, and the third occurring in August 2014.« less

  7. Preventing Airborne Disease Transmission: Review of Methods for Ventilation Design in Health Care Facilities

    PubMed Central

    Aliabadi, Amir A.; Rogak, Steven N.; Bartlett, Karen H.; Green, Sheldon I.

    2011-01-01

    Health care facility ventilation design greatly affects disease transmission by aerosols. The desire to control infection in hospitals and at the same time to reduce their carbon footprint motivates the use of unconventional solutions for building design and associated control measures. This paper considers indoor sources and types of infectious aerosols, and pathogen viability and infectivity behaviors in response to environmental conditions. Aerosol dispersion, heat and mass transfer, deposition in the respiratory tract, and infection mechanisms are discussed, with an emphasis on experimental and modeling approaches. Key building design parameters are described that include types of ventilation systems (mixing, displacement, natural and hybrid), air exchange rate, temperature and relative humidity, air flow distribution structure, occupancy, engineered disinfection of air (filtration and UV radiation), and architectural programming (source and activity management) for health care facilities. The paper describes major findings and suggests future research needs in methods for ventilation design of health care facilities to prevent airborne infection risk. PMID:22162813

  8. Preventing airborne disease transmission: review of methods for ventilation design in health care facilities.

    PubMed

    Aliabadi, Amir A; Rogak, Steven N; Bartlett, Karen H; Green, Sheldon I

    2011-01-01

    Health care facility ventilation design greatly affects disease transmission by aerosols. The desire to control infection in hospitals and at the same time to reduce their carbon footprint motivates the use of unconventional solutions for building design and associated control measures. This paper considers indoor sources and types of infectious aerosols, and pathogen viability and infectivity behaviors in response to environmental conditions. Aerosol dispersion, heat and mass transfer, deposition in the respiratory tract, and infection mechanisms are discussed, with an emphasis on experimental and modeling approaches. Key building design parameters are described that include types of ventilation systems (mixing, displacement, natural and hybrid), air exchange rate, temperature and relative humidity, air flow distribution structure, occupancy, engineered disinfection of air (filtration and UV radiation), and architectural programming (source and activity management) for health care facilities. The paper describes major findings and suggests future research needs in methods for ventilation design of health care facilities to prevent airborne infection risk.

  9. SU-E-J-90: Lobar-Level Lung Ventilation Analysis Using 4DCT and Deformable Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, K; Bayouth, J; Patton, T

    2015-06-15

    Purpose: To assess regional changes in human lung ventilation and mechanics using four-dimensional computed tomography (4DCT) and deformable image registration. This work extends our prior analysis of the entire lung to a lobe-based analysis. Methods: 4DCT images acquired from 20 patients prior to radiation therapy (RT) were used for this analysis. Jacobian ventilation and motion maps were computed from the displacement field after deformable image registration between the end of expiration breathing phase and the end of inspiration breathing phase. The lobes were manually segmented on the reference phase by a medical physicist expert. The voxel-by-voxel ventilation and motion magnitudemore » for all subjects were grouped by lobes and plotted into cumulative voxel frequency curves respectively. In addition, to eliminate the effect of different breathing efforts across subjects, we applied the inter-subject equivalent lung volume (ELV) method on a subset of the cohort and reevaluated the lobar ventilation. Results: 95% of voxels in the lung are expanding during inspiration. However, some local regions of lung tissue show far more expansion than others. The greatest expansion with respiration occurs within the lower lobes; between exhale and inhale the median expansion in lower lobes is approximately 15%, while the median expansion in upper lobes is 10%. This appears to be driven by a subset of lung tissues within the lobe that have greater expansion; twice the number of voxels in the lower lobes (20%) expand by > 30% when compared to the upper lobes (10%). Conclusion: Lung ventilation and motion show significant difference on the lobar level. There are different lobar fractions of driving voxels that contribute to the major expansion of the lung. This work was supported by NIH grant CA166703.« less

  10. Sensor-based demand controlled ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Almeida, A.T.; Fisk, W.J.

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation ratesmore » are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.« less

  11. Noninvasive ventilation.

    PubMed

    Rabatin, J T; Gay, P C

    1999-08-01

    Noninvasive ventilation refers to the delivery of assisted ventilatory support without the use of an endotracheal tube. Noninvasive positive pressure ventilation (NPPV) can be delivered by using a volume-controlled ventilator, a pressure-controlled ventilator, a bilevel positive airway pressure ventilator, or a continuous positive airway pressure device. During the past decade, there has been a resurgence in the use of noninvasive ventilation, fueled by advances in technology and clinical trials evaluating its use. Several manufacturers produce portable devices that are simple to operate. This review describes the equipment, techniques, and complications associated with NPPV and also the indications for both short-term and long-term applications. NPPV clearly represents an important addition to the techniques available to manage patients with respiratory failure. Future clinical trials evaluating its many clinical applications will help to define populations of patients most apt to benefit from this type of treatment.

  12. High tidal volume decreases adult respiratory distress syndrome, atelectasis, and ventilator days compared with low tidal volume in pediatric burned patients with inhalation injury.

    PubMed

    Sousse, Linda E; Herndon, David N; Andersen, Clark R; Ali, Arham; Benjamin, Nicole C; Granchi, Thomas; Suman, Oscar E; Mlcak, Ronald P

    2015-04-01

    Inhalation injury, which is among the causes of acute lung injury and acute respiratory distress syndrome (ARDS), continues to represent a significant source of mortality in burned patients. Inhalation injury often requires mechanical ventilation, but the ideal tidal volume strategy is not clearly defined in burned pediatric patients. The aim of this study was to determine the effects of low and high tidal volume on the number of ventilator days, ventilation pressures, and incidence of atelectasis, pneumonia, and ARDS in pediatric burned patients with inhalation injury within 1 year post burn injury. From 1986 to 2014, inhalation injury was diagnosed by bronchoscopy in pediatric burned patients (n = 932). Patients were divided into 3 groups: unventilated (n = 241), high tidal volume (HTV, 15 ± 3 mL/kg, n = 190), and low tidal volume (LTV, 9 ± 3 mL/kg, n = 501). High tidal volume was associated with significantly decreased ventilator days (p < 0.005) and maximum positive end expiratory pressure (p < 0.0001) and significantly increased maximum peak inspiratory pressure (p < 0.02) and plateau pressure (p < 0.02) compared with those in patients with LTV. The incidence of atelectasis (p < 0.0001) and ARDS (p < 0.02) was significantly decreased with HTV compared with LTV. However, the incidence of pneumothorax was significantly increased in the HTV group compared with the LTV group (p < 0.03). High tidal volume significantly decreases ventilator days and the incidence of both atelectasis and ARDS compared with low tidal volume in pediatric burned patients with inhalation injury. Therefore, the use of HTV may interrupt sequences leading to lung injury in our patient population. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Protective ventilation of preterm lambs exposed to acute chorioamnionitis does not reduce ventilation-induced lung or brain injury.

    PubMed

    Barton, Samantha K; Moss, Timothy J M; Hooper, Stuart B; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L; Tolcos, Mary; Polglase, Graeme R

    2014-01-01

    The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to

  14. Ultra-Short-Course Antibiotics for Patients With Suspected Ventilator-Associated Pneumonia but Minimal and Stable Ventilator Settings.

    PubMed

    Klompas, Michael; Li, Lingling; Menchaca, John T; Gruber, Susan

    2017-04-01

    Many patients started on antibiotics for possible ventilator-associated pneumonia (VAP) do not have pneumonia. Patients with minimal and stable ventilator settings may be suitable candidates for early antibiotic discontinuation. We compared outcomes among patients with suspected VAP but minimal and stable ventilator settings treated with 1-3 days vs >3 days of antibiotics. We identified consecutive adult patients started on antibiotics for possible VAP with daily minimum positive end-expiratory pressure of ≤5 cm H2O and fraction of inspired oxygen ≤40% for at least 3 days within a large tertiary care hospital between 2006 and 2014. We compared time to extubation alive vs ventilator death and time to hospital discharge alive vs hospital death using competing risks models among patients prescribed 1-3 days vs >3 days of antibiotics. All models were adjusted for patient demographics, comorbidities, severity of illness, clinical signs of infection, and pathogens. There were 1290 eligible patients, 259 treated for 1-3 days and 1031 treated for >3 days. The 2 groups had similar demographics, comorbidities, and clinical signs. There were no significant differences between groups in time to extubation alive (hazard ratio [HR], 1.16 for short- vs long-course treatment; 95% confidence interval [CI], .98-1.36), ventilator death (HR, 0.82 [95% CI, .55-1.22]), time to hospital discharge alive (HR, 1.07 [95% CI, .91-1.26]), or hospital death (HR, 0.99 [95% CI, .75-1.31]). Very short antibiotic courses (1-3 days) were associated with outcomes similar to longer courses (>3 days) in patients with suspected VAP but minimal and stable ventilator settings. Assessing serial ventilator settings may help clinicians identify candidates for early antibiotic discontinuation. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  15. Comparison of exogenous surfactant therapy, mechanical ventilation with high end-expiratory pressure and partial liquid ventilation in a model of acute lung injury.

    PubMed

    Hartog, A; Vazquez de Anda, G F; Gommers, D; Kaisers, U; Verbrugge, S J; Schnabel, R; Lachmann, B

    1999-01-01

    We have compared three treatment strategies, that aim to prevent repetitive alveolar collapse, for their effect on gas exchange, lung mechanics, lung injury, protein transfer into the alveoli and surfactant system, in a model of acute lung injury. In adult rats, the lungs were ventilated mechanically with 100% oxygen and a PEEP of 6 cm H2O, and acute lung injury was induced by repeated lung lavage to obtain a PaO2 value < 13 kPa. Animals were then allocated randomly (n = 12 in each group) to receive exogenous surfactant therapy, ventilation with high PEEP (18 cm H2O), partial liquid ventilation or ventilation with low PEEP (8 cm H2O) (ventilated controls). Blood-gas values were measured hourly. At the end of the 4-h study, in six animals per group, pressure-volume curves were constructed and bronchoalveolar lavage (BAL) was performed, whereas in the remaining animals lung injury was assessed. In the ventilated control group, arterial oxygenation did not improve and protein concentration of BAL and conversion of active to non-active surfactant components increased significantly. In the three treatment groups, PaO2 increased rapidly to > 50 kPa and remained stable over the next 4 h. The protein concentration of BAL fluid increased significantly only in the partial liquid ventilation group. Conversion of active to non-active surfactant components increased significantly in the partial liquid ventilation group and in the group ventilated with high PEEP. In the surfactant group and partial liquid ventilation groups, less lung injury was found compared with the ventilated control group and the group ventilated with high PEEP. We conclude that although all three strategies improved PaO2 to > 50 kPa, the impact on protein transfer into the alveoli, surfactant system and lung injury differed markedly.

  16. Displacer Diameter Effect in Displacer Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Zhu, Shaowei

    2017-12-01

    Gas driving displacer pulse tube refrigerators are one of the work recovery type of pulse tube refrigerators whose theoretical efficiency is the same as Stirling refrigerators'. Its cooling power is from the displacement of the displacer. Displace diameter, rod diameter and pressure drop of the regenerator influence the displacement, which are investigated by numerical simulation. It is shown that the displacement ratio of the displacer over the piston is almost not affected by the displacer diameter at the same rod diameter ratio, or displacer with different diameters almost has the same performance.

  17. Natural ventilation for the prevention of airborne contagion.

    PubMed

    Escombe, A Roderick; Oeser, Clarissa C; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Pan, William; Martínez, Carlos; Chacaltana, Jesus; Rodríguez, Richard; Moore, David A J; Friedland, Jon S; Evans, Carlton A

    2007-02-01

    Institutional transmission of airborne infections such as tuberculosis (TB) is an important public health problem, especially in resource-limited settings where protective measures such as negative-pressure isolation rooms are difficult to implement. Natural ventilation may offer a low-cost alternative. Our objective was to investigate the rates, determinants, and effects of natural ventilation in health care settings. The study was carried out in eight hospitals in Lima, Peru; five were hospitals of "old-fashioned" design built pre-1950, and three of "modern" design, built 1970-1990. In these hospitals 70 naturally ventilated clinical rooms where infectious patients are likely to be encountered were studied. These included respiratory isolation rooms, TB wards, respiratory wards, general medical wards, outpatient consulting rooms, waiting rooms, and emergency departments. These rooms were compared with 12 mechanically ventilated negative-pressure respiratory isolation rooms built post-2000. Ventilation was measured using a carbon dioxide tracer gas technique in 368 experiments. Architectural and environmental variables were measured. For each experiment, infection risk was estimated for TB exposure using the Wells-Riley model of airborne infection. We found that opening windows and doors provided median ventilation of 28 air changes/hour (ACH), more than double that of mechanically ventilated negative-pressure rooms ventilated at the 12 ACH recommended for high-risk areas, and 18 times that with windows and doors closed (p < 0.001). Facilities built more than 50 years ago, characterised by large windows and high ceilings, had greater ventilation than modern naturally ventilated rooms (40 versus 17 ACH; p < 0.001). Even within the lowest quartile of wind speeds, natural ventilation exceeded mechanical (p < 0.001). The Wells-Riley airborne infection model predicted that in mechanically ventilated rooms 39% of susceptible individuals would become infected following

  18. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using {sup 68}Ga-labeled nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J.; Siva, Shankar

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with{sup 68}Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metricsmore » model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V{sub HU}) or Jacobian determinant of deformation (V{sub Jac}). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV{sub HU} and ρV{sub Jac}) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ{sub m} = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d{sub 20} for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV{sub HU}) with σ{sub m} = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d{sub 20} ⩽ 0.68, with r{sup ¯}=0.42±0.16 and d{sup ¯}{sub 20}=0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically

  19. GENERAL VIEW SHOWING VENTILATOR NUMBER NINE. THIS VENTILATOR IS SLIGHTLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW SHOWING VENTILATOR NUMBER NINE. THIS VENTILATOR IS SLIGHTLY MORE ORNATE THAN WAS GENERALLY USED BECAUSE OF ITS LOCATION - Old Croton Aqueduct, Ventilator Number 9, Spring & Everett Streets, Ossining, Westchester County, NY

  20. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, Nilesh N., E-mail: nmistry@som.umaryland.edu; Diwanji, Tejan; Shi, Xiutao

    2013-11-15

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1more » session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R{sup 2} of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized

  1. 1. GENERAL VIEW SHOWING VENTILATOR NO. 9. THIS VENTILATOR IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW SHOWING VENTILATOR NO. 9. THIS VENTILATOR IS SLIGHTLY MORE ORNATE THAN WAS GENERALLY USED BECAUSE OF ITS LOCATION. - Old Croton Aqueduct, Ventilator Number 9, Spring & Everett Streets, Ossining, Westchester County, NY

  2. Comparing fixation used for calcaneal displacement osteotomies: a look at removal rates and cost.

    PubMed

    Lucas, Douglas E; Simpson, G Alex; Philbin, Terrence M

    2015-02-01

    The calcaneal displacement osteotomy is a procedure frequently used by foot and ankle surgeons for hindfoot angular deformity. Traditional techniques use compression screw fixation that can result in prominent hardware. While the results of the procedure are generally good, a common concern is the development of plantar heel pain related to prominent hardware. The primary purpose of this study is to retrospectively compare clinical outcomes of 2 fixation methods for the osteotomy. Secondarily a cost analysis will compare implant costs to hardware removal costs. Records were reviewed for patients who had undergone a calcaneal displacement osteotomy fixated with either lag screw or a locked lateral compression plate (LLCP). Neuropathy, previous ipsilateral calcaneus surgery, heel pad trauma, or incomplete radiographic follow-up were exclusionary. Thirty-two patients (19.4%) required hardware removal from the screw fixation group compared to 1 (1.6%) of the LLCP group, which is significant (P < .05). Time to radiographic healing was not significantly different (P = .87). The screw fixation group required more follow-up visits over a longer period of time (P < .05). Implant cost was remarkably different with screw fixation costing on average $247.12, compared to the LLCP costing $1175.59. Although the LLCP cost was significantly higher, cost savings were identified when the cost of removal and removal rates were included. This study demonstrates that this device provides adequate stabilization for healing in equivalent time to screw fixation. The LLCP required decreased rates of hardware removal with fewer postoperative visits over a shorter period of time. Significant savings were demonstrated in the LLCP group despite the higher implant cost. Therapeutic, Level III, Retrospective Comparative Study. © 2014 The Author(s).

  3. [Bellows or bag? Testing 10 ventilators and some medical history comments].

    PubMed

    Kötter, K P; Maleck, W H; Altmannsberger, S; Herchet, J; Petroianu, G A

    1998-01-01

    We compared a new bellows ventilator (Kendall Cardiovent) with two other bellows (Dräger Resutator 63, Tagg Breathsaver) and seven bag or ball ventilators (Aerodyne Hope, Ambu Mark 3, Ambu Silicon, Dräger Resutator 2000, Laerdal Resu, Mercury CPR, Weinmann Combibag). Tidal volumes were measured with two Laerdal Recording Resusci Annies, one lying on the floor, one in a bed. Twelve participants performed mask ventilation with all ten devices on both manikins for two minutes, trying to achieve tidal volumes of between 0.8 and 1.21 as recommended by the AHA. The last ten ventilations each on the graphic strips were analysed for volume. The participants scored handling of the devices on a 6-point scale (1 = very good, 6 = insufficient). The results of the Cardiovent were compared to those of the other devices by rank sum test (percentage of correct ventilations) and sign test (subjective handling). The Cardiovent provided exact ventilation with 95% of ventilations) on the floor and 78% of ventilations in bed in the recommended range. However, the percentage of correct ventilations with the Cardiovent was not significantly different to the other devices except for a lower percentage of correct ventilations with the Combibag in the in bed setting. Concerning subjective handling, the Cardiovent was significantly superior to several ball ventilators.

  4. Prone versus supine position in mechanically ventilated children: a pilot study.

    PubMed

    Sawhney, Ashu; Kumar, Nirmal; Sreenivas, Vishnubhatla; Gupta, Sangeeta; Tyagi, Vineet; Puliyel, Jacob M

    2005-05-01

    It is known that mechanically ventilated patients in the prone position have improved oxygenation compared with those supine. We did a prospective, randomized, controlled trial to evaluate the effect of prone position during mechanical ventilation, on survival in critically ill children. Forty-two children needing mechanical ventilation for various illnesses were randomized to receive initial ventilation for four hours prone or supine by drawing lots. Initial severity of illness and blood gases in all children were noted. In a crossover design, after the initial four hours the children were turned over and ventilated in the alternate posture for an hour. Oxygenation parameters and mean airway pressures were noted at one hour, four hours, and five hours. Mortality, duration of ventilation, and the above parameters were compared in the two groups. Initial PRISM scores were similar in the two groups. Mortality in the prone group was less than in the supine group. The odds ratio of mortality was 0.20 (95% CI 0.05-0.75). Duration of ventilation was similar in the two groups. The oxygenation index was significantly lower in the prone group at one, four, and five hours after onset of ventilation. Prone position in the first few hours of ventilation significantly improves gas exchange and oxygenation, reduces the mean airway pressures required to ventilate children, and may cause significant improvement in survival. Our study protocol allowed ventilator settings to be changed as needed during ventilation.

  5. Cardiopulmonary function and oxygen delivery during total liquid ventilation.

    PubMed

    Tsagogiorgas, Charalambos; Alb, Markus; Herrmann, Peter; Quintel, Michael; Meinhardt, Juergen P

    2011-10-01

    Total liquid ventilation (TLV) with perfluorocarbons has shown to improve cardiopulmonary function in the injured and immature lung; however there remains controversy over the normal lung. Hemodynamic effects of TLV in the normal lung currently remain undetermined. This study compared changes in cardiopulmonary and circulatory function caused by either liquid or gas tidal volume ventilation. In a prospective, controlled study, 12 non-injured anesthetized, adult New Zealand rabbits were primarily conventionally gas-ventilated (CGV). After instrumentation for continuous recording of arterial (AP), central venous (CVP), left artrial (LAP), pulmonary arterial pressures (PAP), and cardiac output (CO) animals were randomized into (1) CGV group and (2) TLV group. In the TLV group partial liquid ventilation was initiated with instillation of perfluoroctylbromide (12 ml/kg). After 15 min, TLV was established for 3 hr applying a volume-controlled, pressure-limited, time-cycled ventilation mode using a double-piston configured TLV. Controls (CGV) remained gas-ventilated throughout the experiment. During TLV, heart rate, CO, PAP, MAP, CVP, and LAP as well as derived hemodynamic variables, arterial and mixed venous blood gases, oxygen delivery, PVR, and SVR did not differ significantly compared to CGV. Liquid tidal volumes suitable for long-term TLV in non-injured rabbits do not significantly impair CO, blood pressure, and oxygen dynamics when compared to CGV. Copyright © 2011 Wiley-Liss, Inc.

  6. Ventilation via Cut Nasotracheal Tube During General Anesthesia

    PubMed Central

    Asahi, Yoshinao; Omichi, Shiro; Adachi, Seita; Kagamiuchi, Hajime; Kotani, Junichiro

    2013-01-01

    Many patients with disabilities need recurrent dental treatment under general anesthesia because of high caries prevalence and the nature of dental treatment. We evaluated the use of a nasal device as a possible substitute for flexible laryngeal mask airway to reduce the risk of unexpected failure accompanying intubation; we succeeded in ventilating the lungs with a cut nasotracheal tube (CNT) with its tip placed in the pharynx. We hypothesized that this technique would be useful during dental treatment under general anesthesia and investigated its usefulness as part of a minimally invasive technique. A prospective study was designed using general anesthesia in 37 dental patients with disabilities such as intellectual impairment, autism, and cerebral palsy. CNT ventilation was compared with mask ventilation with the patient in 3 positions: the neck in flexion, horizontal position, and in extension. The effect of mouth gags was also recorded during CNT ventilation. The percentages of cases with effective ventilation were similar for the 2 techniques in the neck extension and horizontal positions (89.2–97.3%). However, CNT ventilation was significantly more effective than mask ventilation in the neck flexion position (94.6 vs 45.9%; P < .0001). Mouth gags slightly reduced the rate of effective ventilation in the neck flexion position. Most dental treatments involving minor oral surgeries were performed using mouth gags during CNT ventilation. CNT ventilation was shown to be superior to mask ventilation and is useful during dental treatment under general anesthesia. PMID:23506278

  7. Effects of Multiple Ventilation Courses and Duration of Mechanical Ventilation on Respiratory Outcomes in Extremely Low-Birth-Weight Infants.

    PubMed

    Jensen, Erik A; DeMauro, Sara B; Kornhauser, Michael; Aghai, Zubair H; Greenspan, Jay S; Dysart, Kevin C

    2015-11-01

    Extubation failure is common in extremely preterm infants. The current paucity of data on the adverse long-term respiratory outcomes associated with reinitiation of mechanical ventilation prevents assessment of the risks and benefits of a trial of extubation in this population. To evaluate whether exposure to multiple courses of mechanical ventilation increases the risk of adverse respiratory outcomes before and after adjustment for the cumulative duration of mechanical ventilation. We performed a retrospective cohort study of extremely low-birth-weight (ELBW; birth weight <1000 g) infants born from January 1, 2006, through December 31, 2012, who were receiving mechanical ventilation. Analysis was conducted between November 2014 and February 2015. Data were obtained from the Alere Neonatal Database. The primary study exposures were the cumulative duration of mechanical ventilation and the number of ventilation courses. The primary outcome was bronchopulmonary dysplasia (BPD) among survivors. Secondary outcomes were death, use of supplemental oxygen at discharge, and tracheostomy. We identified 3343 ELBW infants, of whom 2867 (85.8%) survived to discharge. Among the survivors, 1695 (59.1%) were diagnosed as having BPD, 856 (29.9%) received supplemental oxygen at discharge, and 31 (1.1%) underwent tracheostomy. Exposure to a greater number of mechanical ventilation courses was associated with a progressive increase in the risk of BPD and use of supplemental oxygen at discharge. Compared with a single ventilation course, the adjusted odds ratios for BPD ranged from 1.88 (95% CI, 1.54-2.31) among infants with 2 ventilation courses to 3.81 (95% CI, 2.88-5.04) among those with 4 or more courses. After adjustment for the cumulative duration of mechanical ventilation, the odds of BPD were only increased among infants exposed to 4 or more ventilation courses (adjusted odds ratio, 1.44; 95% CI, 1.04-2.01). The number of ventilation courses was not associated with increased

  8. Respirator triggering of electron-beam computed tomography (EBCT): differences in dynamic changes between augmented ventilation and controlled mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Kleinsasser, Axel; Schuster, Antonius H.; Loeckinger, Alexander; Frede, Thomas; Springer, Peter; Hoermann, Christoph; zur Nedden, Dieter

    2000-04-01

    The purpose was to evaluate differences in dynamic changes of the lung aeration (air-tissue ratio) between augmented modes of ventilation (AMV) and controlled mechanical ventilation (CMV) in normal subjects. 4 volunteers, ventilated with the different respirator protocols via face mask, were scanned using the EBCT in the 50 ms mode. A software analyzed the respirator's digitized pressure and volume signals of two subsequent ventilation phases. Using these values it was possible to calculate the onset of inspiration or expiration of the next respiratory phase. The calculated starting point was then used to trigger the EBCT. The dynamic changes of air- tissue ratios were evaluated in three separate regions: a ventral, an intermediate and a dorsal area. AMV results in increase of air-tissue ratio in the dorsal lung area due to the active contraction of the diaphragm, whereas CMV results in a more pronounced increase in air-tissue ratio of the ventral lung area. This study gives further insight into the dynamic changes of the lung's biomechanics by comparing augmented ventilation and controlled mechanical ventilation in the healthy proband.

  9. Regional lung ventilation and perfusion by electrical impedance tomography compared to single-photon emission computed tomography.

    PubMed

    Hentze, Benjamin; Muders, Thomas; Luepschen, Henning; Maripuu, Enn; Hedenstierna, Göran; Putensen, Christian; Walter, Marian; Leonhardt, Steffen

    2018-06-20

    Electrical impedance tomography (EIT) is a noninvasive imaging modality that allows real-time monitoring of regional lung ventilation ([Formula: see text]) in intensive care patients at bedside. However, for improved guidance of ventilation therapy it would be beneficial to obtain regional ventilation-to-perfusion ratio ([Formula: see text]) by EIT. In order to further explore the feasibility, we first evaluate a model-based approach, based on semi-negative matrix factorization and a gamma-variate model, to extract regional lung perfusion ([Formula: see text]) from EIT measurements. Subsequently, a combined validation of both [Formula: see text] and [Formula: see text] measured by EIT against single-photon emission computed tomography (SPECT) is performed on data acquired as part of a porcine animal trial. Four pigs were ventilated at two different levels of positive end-expiratory pressure (PEEP 0 and 15 cm H 2 O, respectively) in randomized order. Repeated injections of an EIT contrast agent (NaCl 10%) and simultaneous SPECT measurements of [Formula: see text] (81 m Kr gas) and [Formula: see text] (99 m Tc-labeled albumin) were performed. Both [Formula: see text] and [Formula: see text] from EIT and SPECT were compared by correlation analysis. Very strong (r 2   =  0.94 to 0.95) correlations were found for [Formula: see text] and [Formula: see text] in the dorsal-ventral direction at both PEEP levels. Moderate (r 2   =  0.36 to 0.46) and moderate to strong (r 2   =  0.61 to 0.82) correlations resulted for [Formula: see text] and [Formula: see text] in the right-left direction, respectively. The results of combined validation indicate that monitoring of [Formula: see text] and [Formula: see text] by EIT is possible. However, care should be taken when trying to quantify [Formula: see text] by EIT, as imaging artefacts and model bias may void necessary spatial matching.

  10. Regional Lung Ventilation Analysis Using Temporally Resolved Magnetic Resonance Imaging.

    PubMed

    Kolb, Christoph; Wetscherek, Andreas; Buzan, Maria Teodora; Werner, René; Rank, Christopher M; Kachelrie, Marc; Kreuter, Michael; Dinkel, Julien; Heuel, Claus Peter; Maier-Hein, Klaus

    We propose a computer-aided method for regional ventilation analysis and observation of lung diseases in temporally resolved magnetic resonance imaging (4D MRI). A shape model-based segmentation and registration workflow was used to create an atlas-derived reference system in which regional tissue motion can be quantified and multimodal image data can be compared regionally. Model-based temporal registration of the lung surfaces in 4D MRI data was compared with the registration of 4D computed tomography (CT) images. A ventilation analysis was performed on 4D MR images of patients with lung fibrosis; 4D MR ventilation maps were compared with corresponding diagnostic 3D CT images of the patients and 4D CT maps of subjects without impaired lung function (serving as reference). Comparison between the computed patient-specific 4D MR regional ventilation maps and diagnostic CT images shows good correlation in conspicuous regions. Comparison to 4D CT-derived ventilation maps supports the plausibility of the 4D MR maps. Dynamic MRI-based flow-volume loops and spirograms further visualize the free-breathing behavior. The proposed methods allow for 4D MR-based regional analysis of tissue dynamics and ventilation in spontaneous breathing and comparison of patient data. The proposed atlas-based reference coordinate system provides an automated manner of annotating and comparing multimodal lung image data.

  11. Are we fully utilizing the functionalities of modern operating room ventilators?

    PubMed

    Liu, Shujie; Kacmarek, Robert M; Oto, Jun

    2017-12-01

    The modern operating room ventilators have become very sophisticated and many of their features are comparable with those of an ICU ventilator. To fully utilize the functionality of modern operating room ventilators, it is important for clinicians to understand in depth the working principle of these ventilators and their functionalities. Piston ventilators have the advantages of delivering accurate tidal volume and certain flow compensation functions. Turbine ventilators have great ability of flow compensation. Ventilation modes are mainly volume-based or pressure-based. Pressure-based ventilation modes provide better leak compensation than volume-based. The integration of advanced flow generation systems and ventilation modes of the modern operating room ventilators enables clinicians to provide both invasive and noninvasive ventilation in perioperative settings. Ventilator waveforms can be used for intraoperative neuromonitoring during cervical spine surgery. The increase in number of new features of modern operating room ventilators clearly creates the opportunity for clinicians to optimize ventilatory care. However, improving the quality of ventilator care relies on a complete understanding and correct use of these new features. VIDEO ABSTRACT: http://links.lww.com/COAN/A47.

  12. Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies.

    PubMed

    Fàbregas, N; Ewig, S; Torres, A; El-Ebiary, M; Ramirez, J; de La Bellacasa, J P; Bauer, T; Cabello, H

    1999-10-01

    A study was undertaken to assess the diagnostic value of different clinical criteria and the impact of microbiological testing on the accuracy of clinical diagnosis of suspected ventilator associated pneumonia (VAP). Twenty five deceased mechanically ventilated patients were studied prospectively. Immediately after death, multiple bilateral lung biopsy specimens (16 specimens/patient) were obtained for histological examination and quantitative lung cultures. The presence of both histological pneumonia and positive lung cultures was used as a reference test. The presence of infiltrates on the chest radiograph and two of three clinical criteria (leucocytosis, purulent secretions, fever) had a sensitivity of 69% and a specificity of 75%; the corresponding numbers for the clinical pulmonary infection score (CPIS) were 77% and 42%. Non-invasive as well as invasive sampling techniques had comparable values. The combination of all techniques achieved a sensitivity of 85% and a specificity of 50%, and these values remained virtually unchanged despite the presence of previous treatment with antibiotics. When microbiological results were added to clinical criteria, adequate diagnoses originating from microbiological results which might have corrected false positive and false negative clinical judgements (n = 5) were countered by a similar proportion of inadequate diagnoses (n = 6). Clinical criteria had reasonable diagnostic values. CPIS was not superior to conventional clinical criteria. Non-invasive and invasive sampling techniques had diagnostic values comparable to clinical criteria. An algorithm guiding antibiotic treatment exclusively by microbiological results does not increase the overall diagnostic accuracy and carries the risk of undertreatment.

  13. Minute ventilation of cyclists, car and bus passengers: an experimental study.

    PubMed

    Zuurbier, Moniek; Hoek, Gerard; van den Hazel, Peter; Brunekreef, Bert

    2009-10-27

    Differences in minute ventilation between cyclists, pedestrians and other commuters influence inhaled doses of air pollution. This study estimates minute ventilation of cyclists, car and bus passengers, as part of a study on health effects of commuters' exposure to air pollutants. Thirty-four participants performed a submaximal test on a bicycle ergometer, during which heart rate and minute ventilation were measured simultaneously at increasing cycling intensity. Individual regression equations were calculated between heart rate and the natural log of minute ventilation. Heart rates were recorded during 280 two hour trips by bicycle, bus and car and were calculated into minute ventilation levels using the individual regression coefficients. Minute ventilation during bicycle rides were on average 2.1 times higher than in the car (individual range from 1.3 to 5.3) and 2.0 times higher than in the bus (individual range from 1.3 to 5.1). The ratio of minute ventilation of cycling compared to travelling by bus or car was higher in women than in men. Substantial differences in regression equations were found between individuals. The use of individual regression equations instead of average regression equations resulted in substantially better predictions of individual minute ventilations. The comparability of the gender-specific overall regression equations linking heart rate and minute ventilation with one previous American study, supports that for studies on the group level overall equations can be used. For estimating individual doses, the use of individual regression coefficients provides more precise data. Minute ventilation levels of cyclists are on average two times higher than of bus and car passengers, consistent with the ratio found in one small previous study of young adults. The study illustrates the importance of inclusion of minute ventilation data in comparing air pollution doses between different modes of transport.

  14. Automated ventilator testing.

    PubMed

    Ghaly, J; Smith, A L

    1994-06-01

    A new era has arrived for the Biomedical Engineering Department at the Royal Women's Hospital in Melbourne. We have developed a system to qualitatively test for intermittent or unconfirmed faults, associated with Bear Cub ventilators. Where previous testing has been inadequate, computer logging is now used to interface the RT200 Timeter Calibration Analyser (TCA) to obtain a real time display of data, which can be stored and graphed. Using Quick Basic version 4.5, it was possible to establish communication between the TCA and an IBM compatible computer, such that meaningful displays of machine performance were produced. From the parameters measured it has been possible to obtain data on Peak Pressure, Inspiratory to Expiratory ratio (I:E ratio) Peak Flow and Rate. Monitoring is not limited to these parameters, though these were selected for our particular needs. These parameters are plotted in two ways: 1. Compressed average versus time, up to 24 hours on one screen 2. Raw data, 36 minutes displayed on each screen. The compressed data gives an overview which allows easy identification of intermittent faults. The uncompressed data confirms that the averaged signal is a realistic representation of the situation. One of the major benefits of this type of data analysis, is that ventilator performance may be monitored over a long period of time without requiring the presence of a service technician. It also allows individual ventilator performance to be graphically compared to other ventilators.

  15. Ventilation.

    PubMed

    Turner, W A; Bearg, D W; Brennan, T

    1995-01-01

    This chapter begins with an overview of the history of ventilation guidelines, which has led to the guidelines that are in effect today. Of particular interest is the most recent return in the past 5 years to ventilation rates that more closely reflect a mean or average of the range of guidelines that have existed over the past century. OSHA's and the EPA's recognition of the need to operate ventilation systems in buildings in an accountable manner is also of note. Of even more interest is the resurgence of the concept of minimum mixing and once-through ventilation air that has been pursued in parts of Northern Europe for the past 10 years, and in a school that is being designed with this concept in New Hampshire. In addition, the design concept of equipping office buildings with low pressure drop high efficiency particle filtration to remove fine particles from all of the air that is supplied to the occupants is being used increasingly in the U.S. This chapter also presents an overview of the various types of ventilation systems found in homes and commercial office buildings and the common indoor air quality problems that may be associated with them. It also offers an overview of common HVAC evaluation techniques that can be used to determine if a ventilation system is performing in a manner that makes sense for the use of the space and the needs of the occupants. Are the occupants receiving a reasonable supply of outdoor air? Is the air that they receive of reasonable quality? Are obvious pollutants being exhausted? Ventilation systems have become extremely complex and more difficult to run and maintain over the past 40 years. This trend will continue to drive the need for professionally maintained HVAC equipment that is serviced and run by individuals who are accountable for the quality of the air that the system delivers.

  16. Energy Use Consequences of Ventilating a Net-Zero Energy House

    PubMed Central

    Ng, Lisa C.; Payne, W. Vance

    2016-01-01

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved

  17. Energy Use Consequences of Ventilating a Net-Zero Energy House.

    PubMed

    Ng, Lisa C; Payne, W Vance

    2016-03-05

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved

  18. Urban ventilation corridors mapping using surface morphology data based GIS analysis

    NASA Astrophysics Data System (ADS)

    Wicht, Marzena; Wicht, Andreas; Osińska-Skotak, Katarzyna

    2017-04-01

    This paper describes deriving the most appropriate method for mapping urban ventilation corridors, which, if properly designed, reduce heat stress, air pollution and increase air quality, as well as increase the horizontal wind speed. Urban areas are - in terms of surface texture - recognized as one of the roughest surfaces, which results in wind obstruction and decreased ventilation of densely built up areas. As urban heat islands, private household and traffic emissions or large scale industries occur frequently in many cities, both in temperate and tropical regions. A proper ventilation system has been suggested as an appropriate mitigation mean [1] . Two concepts of morphometric analyses of the urban environment are used on the example of Warsaw, representing a dense, urban environment, located in the temperate zone. The utilized methods include firstly a roughness mapping calculation [2] , which analyses zero plane displacement height (zd) and roughness length (z0) and their distribution for the eight (inter-)cardinal wind directions and secondly a grid-based frontal area index mapping approach [3] , which uses least cost path analysis. Utilizing the advantages and minimizing the disadvantages of those two concepts, we propose a hybrid approach. All concepts are based on a 3D building database obtained from satellite imagery, aided by a cadastral building database. Derived areas (ventilation corridors), that facilitate the ventilation system, should be considered by the local authorities as worth preserving, if not expanding, in order to improve the air quality in the city. The results also include designation of the problematic areas, which greatly obscure the ventilation and might be investigated as to reshape or rebuilt to introduce the air flow in particularly dense areas like city centers. Keywords: roughness mapping; GIS; ventilation corridors; frontal area index Rizwan, A. M., Dennis, L. Y., & Chunho, L. I. U. (2008). A review on the generation

  19. Comparing Teaching Approaches about Maxwell's Displacement Current

    ERIC Educational Resources Information Center

    Karam, Ricardo; Coimbra, Debora; Pietrocola, Maurício

    2014-01-01

    Due to its fundamental role for the consolidation of Maxwell's equations, the displacement current is one of the most important topics of any introductory course on electromagnetism. Moreover, this episode is widely used by historians and philosophers of science as a case study to investigate several issues (e.g. the theory-experiment…

  20. A taxonomy for mechanical ventilation: 10 fundamental maxims.

    PubMed

    Chatburn, Robert L; El-Khatib, Mohamad; Mireles-Cabodevila, Eduardo

    2014-11-01

    The American Association for Respiratory Care has declared a benchmark for competency in mechanical ventilation that includes the ability to "apply to practice all ventilation modes currently available on all invasive and noninvasive mechanical ventilators." This level of competency presupposes the ability to identify, classify, compare, and contrast all modes of ventilation. Unfortunately, current educational paradigms do not supply the tools to achieve such goals. To fill this gap, we expand and refine a previously described taxonomy for classifying modes of ventilation and explain how it can be understood in terms of 10 fundamental constructs of ventilator technology: (1) defining a breath, (2) defining an assisted breath, (3) specifying the means of assisting breaths based on control variables specified by the equation of motion, (4) classifying breaths in terms of how inspiration is started and stopped, (5) identifying ventilator-initiated versus patient-initiated start and stop events, (6) defining spontaneous and mandatory breaths, (7) defining breath sequences (8), combining control variables and breath sequences into ventilatory patterns, (9) describing targeting schemes, and (10) constructing a formal taxonomy for modes of ventilation composed of control variable, breath sequence, and targeting schemes. Having established the theoretical basis of the taxonomy, we demonstrate a step-by-step procedure to classify any mode on any mechanical ventilator. Copyright © 2014 by Daedalus Enterprises.

  1. Quantitation of Fine Displacement in Echography

    NASA Astrophysics Data System (ADS)

    Masuda, Kohji; Ishihara, Ken; Yoshii, Ken; Furukawa, Toshiyuki; Kumagai, Sadatoshi; Maeda, Hajime; Kodama, Shinzo

    1993-05-01

    A High-speed Digital Subtraction Echography was developed to visualize the fine displacement of human internal organs. This method indicates differences in position through time series images of high-frame-rate echography. Fine displacement less than ultrasonic wavelength can be observed. This method, however, lacks the ability to quantitatively measure displacement length. The subtraction between two successive images was affected by displacement direction in spite of the displacement length being the same. To solve this problem, convolution of an echogram with Gaussian distribution was used. To express displacement length as brightness quantitatively, normalization using a brightness gradient was applied. The quantitation algorithm was applied to successive B-mode images. Compared to the simply subtracted images, quantitated images express more precisely the motion of organs. Expansion of the carotid artery and fine motion of ventricular walls can be visualized more easily. Displacement length can be quantitated with wavelength. Under more static conditions, this system quantitates displacement length that is much less than wavelength.

  2. SU-E-J-120: Comparing 4D CT Computed Ventilation to Lung Function Measured with Hyperpolarized Xenon-129 MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, B; Chen, Q

    2015-06-15

    Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phasemore » based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia.« less

  3. Effect of frequency of ventilator circuit changes (3 vs 7 days) on the rate of ventilator-associated pneumonia in PICU.

    PubMed

    Samransamruajkit, Rujipat; Jirapaiboonsuk, Suree; Siritantiwat, Sirirush; Tungsrijitdee, Ornanong; Deerojanawong, Jitladda; Sritippayawan, Suchada; Prapphal, Nuanchan

    2010-03-01

    Ventilator-associated pneumonia (VAP) is associated with significant morbidity and mortality in pediatric intensive care unit (PICU). Our purpose was to evaluate the effects of ventilator circuit change on the rate of VAP in the PICU. A prospective randomized controlled trial was conducted at a university hospital PICU. Children (younger than 18 years) who received mechanical ventilation from December 2006 to November 2007 were randomly assigned to receive ventilator circuit changes every 3 or 7 days. Of 176 patients, 88 were assigned to receive ventilator circuit every 3 days and 88 patients had a change weekly. The rate of VAP was 13.9/1000 ventilator days for the 3-day circuit change (n = 12) vs 11.5/1000 ventilator days (n = 10) for the 7-day circuit change (odds ratio, 0.8; confidence interval, 0.3-1.9; P = .6). There was a trend toward decreased PICU stay and mortality rate in 7-day change group compared to 3-day change group but did not reach statistical significance. Furthermore, switching from a 3-day to a 7-day change policy could save costs up to US $22,000/y. The 7-day ventilator circuit change did not contribute to increased rates of VAP in our PICU. Thus, it may be used as a guide to save workload and supply costs. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  4. Nasal mask ventilation is better than face mask ventilation in edentulous patients.

    PubMed

    Kapoor, Mukul Chandra; Rana, Sandeep; Singh, Arvind Kumar; Vishal, Vindhya; Sikdar, Indranil

    2016-01-01

    Face mask ventilation of the edentulous patient is often difficult as ineffective seating of the standard mask to the face prevents attainment of an adequate air seal. The efficacy of nasal ventilation in edentulous patients has been cited in case reports but has never been investigated. Consecutive edentulous adult patients scheduled for surgery under general anesthesia with endotracheal intubation, during a 17-month period, were prospectively evaluated. After induction of anesthesia and administration of neuromuscular blocker, lungs were ventilated with a standard anatomical face mask of appropriate size, using a volume controlled anesthesia ventilator with tidal volume set at 10 ml/kg. In case of inadequate ventilation, the mask position was adjusted to achieve best-fit. Inspired and expired tidal volumes were measured. Thereafter, the face mask was replaced by a nasal mask and after achieving best-fit, the inspired and expired tidal volumes were recorded. The difference in expired tidal volumes and airway pressures at best-fit with the use of the two masks and number of patients with inadequate ventilation with use of the masks were statistically analyzed. A total of 79 edentulous patients were recruited for the study. The difference in expiratory tidal volumes with the use of the two masks at best-fit was statistically significant (P = 0.0017). Despite the best-fit mask placement, adequacy of ventilation could not be achieved in 24.1% patients during face mask ventilation, and 12.7% patients during nasal mask ventilation and the difference was statistically significant. Nasal mask ventilation is more efficient than standard face mask ventilation in edentulous patients.

  5. History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury.

    PubMed

    Slutsky, Arthur S

    2015-05-15

    Mechanical ventilation is a life-saving therapy that catalyzed the development of modern intensive care units. The origins of modern mechanical ventilation can be traced back about five centuries to the seminal work of Andreas Vesalius. This article is a short history of mechanical ventilation, tracing its origins over the centuries to the present day. One of the great advances in ventilatory support over the past few decades has been the development of lung-protective ventilatory strategies, based on our understanding of the iatrogenic consequences of mechanical ventilation such as ventilator-induced lung injury. These strategies have markedly improved clinical outcomes in patients with respiratory failure.

  6. Carbon dioxide clearance in rabbits during expiratory phase intratracheal pulmonary ventilation.

    PubMed

    Meyappan, Raju T; Raszynski, Andre; Bohorquez, Jorge; Totapally, Balagangadhar R; Koul, Pulin B; Norozian, Faraz M; Valcourt, Karl; Torbati, Dan

    2007-01-01

    The purpose of this study was to compare the efficacy of CO2 removal during conventional mechanical ventilation (CMV) with and without expiratory phase intratracheal pulmonary ventilation (expiratory ITPV or Exp-ITPV); and to compare CO2 clearance during Exp-ITPV, in pressure-controlled ventilation (PCV) and in volume-controlled ventilation (VCV) modes. Seven anesthetized rabbits were tracheotomized and intubated using a 4 mm endotracheal tube. Venous and arterial lines were established. The rabbits were paralyzed, mechanically ventilated, and ventilation parameters were adjusted to achieve baseline arterial hypercapnia. Animals were then ventilated during 30-minute trials of CMV and Exp-ITPV, in both PCV and VCV modes. A custom-built, microprocessor-controlled solenoid valve was used to limit ITPV gas flow to the expiratory phase. Proximal and carinal airway pressures and hemodynamic variables were continuously recorded, and arterial blood gases were analyzed at the end of each trial. Exp-ITPV, as compared with CMV, reduced arterial PCO2 by 12% and 21% in PCV and VCV modes, respectively (p < 0.02 and p < 0.001; one-sided paired t test), without significant changes in other cardiorespiratory variables. In conclusion, Exp-ITPV is more effective than CMV in clearing CO2 through a small endotracheal tube. Exp-ITPV is also more effective in VCV mode than PCV mode.

  7. Comparing influence of intermittent subglottic secretions drainage with/without closed suction systems on the incidence of ventilator associated pneumonia.

    PubMed

    Juneja, Deven; Javeri, Yash; Singh, Omender; Nasa, Prashant; Pandey, Rameshwar; Uniyal, Bhupesh

    2011-07-01

    Intermittent subglottic drainage (ISD) of secretions is recommended for prevention of ventilator-associated pneumonia (VAP) as it reduces microaspiration from the area around the cuff. Poor suction techniques can contribute to VAP, hence closed suction system (CSS) may have theoretical benefit in VAP prevention. Combination of these two techniques may provide added advantage. To study the influence of ISD with/without CSS on the incidence of VAP. Data from 311 patients requiring mechanical ventilation (MV) for more than 72 hours were collected retrospectively. They were divided into four groups as follows: group A, no intervention; group B, only CSS; group C, only ISD; and group D, ISD with CSS. These groups were compared with respect to incidence of VAP, duration of MV, length of ICU and hospital stay and ICU mortality. Patients in the four groups were comparable with respect to age, sex ratio and admission Acute Physiology and Chronic Health Evaluation (APACHE) II scores. Incidence of VAP per 1000 ventilator days in groups A, B, C, and D were 25, 23.9, 15.7 and 14.3, respectively (P=0.04). There was no significant difference in the duration of MV (P=0.33), length of ICU (P=0.55) and hospital stay (P=0.36) and ICU mortality (P=0.9) among the four groups. ISD of secretions reduces the incidence of VAP. CSS alone or in combination with ISD has no significant effect on VAP incidence. Hence, ISD may be recommended for VAP prevention, but indications other than VAP prevention should determine the type of the suction system.

  8. Effects of ventilation on hearing loss in preterm neonates: Nasal continuous positive pressure does not increase the risk of hearing loss in ventilated neonates.

    PubMed

    Rastogi, Shantanu; Mikhael, Michel; Filipov, Panayot; Rastogi, Deepa

    2013-03-01

    There is increased risk of hearing loss in preterm neonates. This risk is further increased by environmental noise exposure especially from life support equipment such as ventilation. Nasal continuous positive airway pressure (NCPAP) used for respiratory support of preterm neonates is known to be associated with prolonged exposure to high levels of noise. However, there is paucity of information on the effect of NCPAP as compared to mechanical ventilation on hearing loss among preterm neonates. A retrospective chart review was performed on neonates with birth weight (BW) <1500g. Association of clinical factors including the use of NCPAP and mechanical ventilation with failure of hearing screen were studied. Those who failed hearing screen were followed for 2 years to observe long term effects of NCPAP on the hearing loss. Of 344 neonates included in the study, 61 failed hearing screen. Gestational age (p=0.008), BW (p=0.03), ventilation (p=0.02), intrauterine growth retardation (p=0.02), necrotizing enterocolitis (NEC) (p=0.02), apnea (p<0.001), use of vancomycin (p=0.01) and furosemide (p=0.01) were associated with failure of hearing screen. On multivariate analysis, ventilation (OR 4.56, p=0.02), apnea (OR 2.2, p<0.001) and NEC (OR 2.4, p=0.02) were predictors of failed hearing screen. As compared to those not ventilated, the odds of failing hearing screen was 4.53 (p<0.01) and 4.59 (p<0.01) for those treated with NCPAP and mechanical ventilation respectively, with there being no difference between these two ventilatory modalities. Of the 61 neonates, 42 were followed for 2 years, of which 19 had confirmed hearing loss. Among these 19 neonates, there was no difference (p=0.12) between those who were treated with NCPAP or with mechanical ventilation. There is no increase in the hearing loss in preterm neonates treated with NCPAP as compared to mechanical ventilation despite being exposed to higher environmental noise generated by the NCPAP. Copyright © 2012

  9. Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies

    PubMed Central

    Fabregas, N.; Ewig, S.; Torres, A.; El-Ebiary, M.; Ramirez, J.; de la Bellacasa, J. P.; Bauer, T.; Cabello, H.

    1999-01-01

    BACKGROUND—A study was undertaken to assess the diagnostic value of different clinical criteria and the impact of microbiological testing on the accuracy of clinical diagnosis of suspected ventilator associated pneumonia (VAP).
METHODS—Twenty five deceased mechanically ventilated patients were studied prospectively. Immediately after death, multiple bilateral lung biopsy specimens (16 specimens/patient) were obtained for histological examination and quantitative lung cultures. The presence of both histological pneumonia and positive lung cultures was used as a reference test.
RESULTS—The presence of infiltrates on the chest radiograph and two of three clinical criteria (leucocytosis, purulent secretions, fever) had a sensitivity of 69% and a specificity of 75%; the corresponding numbers for the clinical pulmonary infection score (CPIS) were 77% and 42%. Non-invasive as well as invasive sampling techniques had comparable values. The combination of all techniques achieved a sensitivity of 85% and a specificity of 50%, and these values remained virtually unchanged despite the presence of previous treatment with antibiotics. When microbiological results were added to clinical criteria, adequate diagnoses originating from microbiological results which might have corrected false positive and false negative clinical judgements (n = 5) were countered by a similar proportion of inadequate diagnoses (n =6).
CONCLUSIONS—Clinical criteria had reasonable diagnostic values. CPIS was not superior to conventional clinical criteria. Non-invasive and invasive sampling techniques had diagnostic values comparable to clinical criteria. An algorithm guiding antibiotic treatment exclusively by microbiological results does not increase the overall diagnostic accuracy and carries the risk of undertreatment.

 PMID:10491448

  10. [Neurally adjusted ventilatory assist (NAVA). A new mode of assisted mechanical ventilation].

    PubMed

    Moerer, O; Barwing, J; Quintel, M

    2008-10-01

    The aim of mechanical ventilation is to assure gas exchange while efficiently unloading the respiratory muscles and mechanical ventilation is an integral part of the care of patients with acute respiratory failure. Modern lung protective strategies of mechanical ventilation include low-tidal-volume ventilation and the continuation of spontaneous breathing which has been shown to be beneficial in reducing atelectasis and improving oxygenation. Poor patient-ventilator interaction is a major issue during conventional assisted ventilation. Neurally adjusted ventilator assist (NAVA) is a new mode of mechanical ventilation that uses the electrical activity of the diaphragm (EAdi) to control the ventilator. First experimental studies showed an improved patient-ventilator synchrony and an efficient unloading of the respiratory muscles. Future clinical studies will have to show that NAVA is of clinical advantage when compared to conventional modes of assisted mechanical ventilation. This review characterizes NAVA according to current publications on this topic.

  11. Household ventilation and tuberculosis transmission in Kampala, Uganda.

    PubMed

    Chamie, G; Wandera, B; Luetkemeyer, A; Bogere, J; Mugerwa, R D; Havlir, D V; Charlebois, E D

    2013-06-01

    To test the feasibility of measuring household ventilation and evaluate whether ventilation is associated with tuberculosis (TB) in household contacts in Kampala, Uganda. Adults with pulmonary TB and their household contacts received home visits to ascertain social and structural household characteristics. Ventilation was measured in air changes per hour (ACH) in each room by raising carbon dioxide (CO₂) levels using dry ice, removing the dry ice, and measuring changes in the natural log of CO₂ (lnCO2) over time. Ventilation was compared in homes with and without co-prevalent TB. Members of 61 of 66 (92%) households approached were enrolled. Households averaged 5.4 residents/home, with a median of one room/home. Twelve homes (20%) reported co-prevalent TB in household contacts. Median ventilation for all rooms was 14 ACH (interquartile range [IQR] 10-18). Median ventilation was 12 vs. 15 ACH in index cases' sleeping rooms in households with vs. those without co-prevalent TB (P = 0.12). Among smear-positive indexes not infected by the human immunodeficiency virus (HIV), median ventilation was 11 vs. 17 ACH in index cases' sleeping rooms in homes with vs. those without co-prevalent TB (P = 0.1). Our findings provide evidence that a simple CO₂ decay method used to measure ventilation in clinical settings can be adapted to homes, adding a novel tool and a neglected variable, ventilation, to the study of household TB transmission.

  12. Nasal mask ventilation is better than face mask ventilation in edentulous patients

    PubMed Central

    Kapoor, Mukul Chandra; Rana, Sandeep; Singh, Arvind Kumar; Vishal, Vindhya; Sikdar, Indranil

    2016-01-01

    Background and Aims: Face mask ventilation of the edentulous patient is often difficult as ineffective seating of the standard mask to the face prevents attainment of an adequate air seal. The efficacy of nasal ventilation in edentulous patients has been cited in case reports but has never been investigated. Material and Methods: Consecutive edentulous adult patients scheduled for surgery under general anesthesia with endotracheal intubation, during a 17-month period, were prospectively evaluated. After induction of anesthesia and administration of neuromuscular blocker, lungs were ventilated with a standard anatomical face mask of appropriate size, using a volume controlled anesthesia ventilator with tidal volume set at 10 ml/kg. In case of inadequate ventilation, the mask position was adjusted to achieve best-fit. Inspired and expired tidal volumes were measured. Thereafter, the face mask was replaced by a nasal mask and after achieving best-fit, the inspired and expired tidal volumes were recorded. The difference in expired tidal volumes and airway pressures at best-fit with the use of the two masks and number of patients with inadequate ventilation with use of the masks were statistically analyzed. Results: A total of 79 edentulous patients were recruited for the study. The difference in expiratory tidal volumes with the use of the two masks at best-fit was statistically significant (P = 0.0017). Despite the best-fit mask placement, adequacy of ventilation could not be achieved in 24.1% patients during face mask ventilation, and 12.7% patients during nasal mask ventilation and the difference was statistically significant. Conclusion: Nasal mask ventilation is more efficient than standard face mask ventilation in edentulous patients. PMID:27625477

  13. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space...

  14. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2011-10-01 2011-10-01 false Power ventilation systems except machinery space...

  15. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2014-10-01 2014-10-01 false Power ventilation systems except machinery space...

  16. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2012-10-01 2012-10-01 false Power ventilation systems except machinery space...

  17. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2013-10-01 2013-10-01 false Power ventilation systems except machinery space...

  18. Airway Humidification During High-Frequency Percussive Ventilation

    DTIC Science & Technology

    2009-03-01

    Airway Humidification During High-Frequency Percussive Ventilation Patrick F Allan MD, Michael J Hollingsworth CRT, Gordon C Maniere CRT, Anthony K...about the risk of inadequate humidification during high- frequency percussive ventilation (HFPV). METHODS: We studied 5 humidifiers during HFPV with a...50 L/min, and the ConchaTherm Hi-Flow with VDR nebulizer) provided carinal humidification equivalent to the comparator setup, without regard to

  19. Performance of Leak Compensation in All-Age ICU Ventilators During Volume-Targeted Neonatal Ventilation: A Lung Model Study.

    PubMed

    Itagaki, Taiga; Bennett, Desmond J; Chenelle, Christopher T; Fisher, Daniel F; Kacmarek, Robert M

    2017-01-01

    Volume-targeted ventilation is increasingly used in low birthweight infants because of the potential for reducing volutrauma and avoiding hypocapnea. However, it is not known what level of air leak is acceptable during neonatal volume-targeted ventilation when leak compensation is activated concurrently. Four ICU ventilators (Servo-i, PB980, V500, and Avea) were compared in available invasive volume-targeted ventilation modes (pressure control continuous spontaneous ventilation [PC-CSV] and pressure control continuous mandatory ventilation [PC-CMV]). The Servo-i and PB980 were tested with (+) and without (-) their proximal flow sensor. The V500 and Avea were tested with their proximal flow sensor as indicated by their manufacturers. An ASL 5000 lung model was used to simulate 4 neonatal scenarios (body weight 0.5, 1, 2, and 4 kg). The ASL 5000 was ventilated via an endotracheal tube with 3 different leaks. Two minutes of data were collected after each change in leak level, and the asynchrony index was calculated. Tidal volume (V T ) before and after the change in leak was assessed. The differences in delivered V T between before and after the change in leak were within ±5% in all scenarios with the PB980 (-/+) and V500. With the Servo-i (-/+), baseline V T was ≥10% greater than set V T during PC-CSV, and delivered V T markedly changed with leak. The Avea demonstrated persistent high V T in all leak scenarios. Across all ventilators, the median asynchrony index was 1% (interquartile range 0-27%) in PC-CSV and 1.8% (0-45%) in PC-CMV. The median asynchrony index was significantly higher in the Servo-i (-/+) than in the PB980 (-/+) and V500 in 1 and 2 kg scenarios during PC-CSV and PC-CMV. The PB980 and V500 were the only ventilators to acclimate to all leak scenarios and achieve targeted V T . Further clinical investigation is needed to validate the use of leak compensation during neonatal volume-targeted ventilation. Copyright © 2017 by Daedalus Enterprises.

  20. Dosimetric feasibility of 4DCT-ventilation imaging guided proton therapy for locally advanced non-small-cell lung cancer.

    PubMed

    Huang, Qijie; Jabbour, Salma K; Xiao, Zhiyan; Yue, Ning; Wang, Xiao; Cao, Hongbin; Kuang, Yu; Zhang, Yin; Nie, Ke

    2018-04-25

    The principle aim of this study is to incorporate 4DCT ventilation imaging into functional treatment planning that preserves high-functioning lung with both double scattering and scanning beam techniques in proton therapy. Eight patients with locally advanced non-small-cell lung cancer were included in this study. Deformable image registration was performed for each patient on their planning 4DCTs and the resultant displacement vector field with Jacobian analysis was used to identify the high-, medium- and low-functional lung regions. Five plans were designed for each patient: a regular photon IMRT vs. anatomic proton plans without consideration of functional ventilation information using double scattering proton therapy (DSPT) and intensity modulated proton therapy (IMPT) vs. functional proton plans with avoidance of high-functional lung using both DSPT and IMPT. Dosimetric parameters were compared in terms of tumor coverage, plan heterogeneity, and avoidance of normal tissues. Our results showed that both DSPT and IMPT plans gave superior dose advantage to photon IMRTs in sparing low dose regions of the total lung in terms of V5 (volume receiving 5Gy). The functional DSPT only showed marginal benefit in sparing high-functioning lung in terms of V5 or V20 (volume receiving 20Gy) compared to anatomical plans. Yet, the functional planning in IMPT delivery, can further reduce the low dose in high-functioning lung without degrading the PTV dosimetric coverages, compared to anatomical proton planning. Although the doses to some critical organs might increase during functional planning, the necessary constraints were all met. Incorporating 4DCT ventilation imaging into functional proton therapy is feasible. The functional proton plans, in intensity modulated proton delivery, are effective to further preserve high-functioning lung regions without degrading the PTV coverage.

  1. Lateral displacement and rotational displacement sensor

    DOEpatents

    Duden, Thomas

    2014-04-22

    A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.

  2. [Oxidative stress in patients on mechanical ventilation].

    PubMed

    Marjanović, Vesna; Dordević, Vidosava; Marjanović, Goran

    2009-01-01

    The appearance and intensity of oxidative stress were analyzed in the course of mechanical ventilation and parameters that could point toward potential lung damage. In three time intervals on day 1, 3 and 7 of mechanical ventilation, parameters such as: triglycerides, cholesterol, lactate, serum lactic dehydrogenase, acid-base balance and lipid peroxidation products--thiobarbituric acid reactive substances, were followed in 30 patients with head injuries. A decrease in the level of partial oxygen pressure (PaO2) (p < 0.01) and PaO2/FiO2 index (p < 0.05) in arterial blood was recorded on day 3 of mechanical ventilation. This was accompanied with an increase in alveolar-arterial difference (AaDO2) (p < 0.05), thiobarbituric acid reactive substances (p < 0.001) and lactic dehydrogenase (p < 0.001) comparing to day 1 of mechanical ventilation. The patients with initial PaO2 > 120 mmHg, had significant increase of thiobarbituric acid reactive substances and AaDO2 (p < 0.05) and fall of PaO2 (p < 0.001) on day 3 of mechanical ventilation. Oxidative stress and lipid peroxide production are increased during third day of mechanical ventilation leading to disruption of oxygen diffusion through alveolar-capillary membrane and reduction of parameters of oxygenation.

  3. Field evaluation of ventilation system performance in enclosed parking garages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayari, A.M.; Grot, D.A.; Krarti, M.

    2000-07-01

    This paper summarizes the results of a field study to determine the ventilation requirements and the contaminant levels in existing enclosed parking garages. The testing was conducted in seven parking garages with different sizes, traffic flow patterns, vehicle types, and locations. In particular, the study compares the actual ventilation rates measured using the tracer gas technique with the ventilation requirements of ANSI/ASHRAE Standard 62-1989. In addition, the field test evaluated the effectiveness of the existing ventilation systems in maintaining acceptable contaminant levels within enclosed parking garages.

  4. Management and outcome of mechanically ventilated neurologic patients.

    PubMed

    Pelosi, Paolo; Ferguson, Niall D; Frutos-Vivar, Fernando; Anzueto, Antonio; Putensen, Christian; Raymondos, Konstantinos; Apezteguia, Carlos; Desmery, Pablo; Hurtado, Javier; Abroug, Fekri; Elizalde, José; Tomicic, Vinko; Cakar, Nahit; Gonzalez, Marco; Arabi, Yaseen; Moreno, Rui; Esteban, Andres

    2011-06-01

    To describe and compare characteristics, ventilatory practices, and associated outcomes among mechanically ventilated patients with different types of brain injury and between neurologic and nonneurologic patients. Secondary analysis of a prospective, observational, and multicenter study on mechanical ventilation. Three hundred forty-nine intensive care units from 23 countries. We included 552 mechanically ventilated neurologic patients (362 patients with stroke and 190 patients with brain trauma). For comparison we used a control group of 4,030 mixed patients who were ventilated for nonneurologic reasons. None. We collected demographics, ventilatory settings, organ failures, and complications arising during ventilation and outcomes. Multivariate logistic regression analysis was performed with intensive care unit mortality as the dependent variable. At admission, a Glasgow Coma Scale score ≤8 was observed in 68% of the stroke, 77% of the brain trauma, and 29% of the nonneurologic patients. Modes of ventilation and use of a lung-protective strategy within the first week of mechanical ventilation were similar between groups. In comparison with nonneurologic patients, patients with neurologic disease developed fewer complications over the course of mechanical ventilation with the exception of a higher rate of ventilator-associated pneumonia in the brain trauma cohort. Neurologic patients showed higher rates of tracheotomy and longer duration of mechanical ventilation. Mortality in the intensive care unit was significantly (p < .001) higher in patients with stroke (45%) than in brain trauma (29%) and nonneurologic disease (30%). Factors associated with mortality were: stroke (in comparison to brain trauma), Glasgow Coma Scale score on day 1, and severity at admission in the intensive care unit. In our study, one of every five mechanically ventilated patients received this therapy as a result of a neurologic disease. This cohort of patients showed a higher mortality

  5. Significant Improvements in Pyranometer Nighttime Offsets Using High-Flow DC Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalsky, Joseph J.; Kutchenreiter, Mark; Long, Charles N.

    Ventilators are used to keep the domes of pyranometers clean and dry, but they affect the nighttime offset as well. This paper examines different ventilation strategies. For the several commercial single-black-detector pyranometers with ventilators examined here, high flow rate (50 CFM and higher), 12 VDC fans lower the offsets, lower the scatter, and improve the predictability of the offsets during the night compared with lower flow rate 35 CFM, 120 VAC fans operated in the same ventilator housings. Black-and-white pyranometers sometimes show improvement with DC ventilation, but in some cases DC ventilation makes the offsets slightly worse. Since the offsetsmore » for these black-and-white pyranometers are always small, usually no more than 1 Wm -2, whether AC or DC ventilated, changing their ventilation to higher CFM DC ventilation is not imperative. Future work should include all major manufacturers of pyranometers and unventilated, as well as, ventilated pyranometers. Lastly, an important outcome of future research will be to clarify under what circumstances nighttime data can be used to predict daytime offsets.« less

  6. Significant Improvements in Pyranometer Nighttime Offsets Using High-Flow DC Ventilation

    DOE PAGES

    Michalsky, Joseph J.; Kutchenreiter, Mark; Long, Charles N.

    2017-06-20

    Ventilators are used to keep the domes of pyranometers clean and dry, but they affect the nighttime offset as well. This paper examines different ventilation strategies. For the several commercial single-black-detector pyranometers with ventilators examined here, high flow rate (50 CFM and higher), 12 VDC fans lower the offsets, lower the scatter, and improve the predictability of the offsets during the night compared with lower flow rate 35 CFM, 120 VAC fans operated in the same ventilator housings. Black-and-white pyranometers sometimes show improvement with DC ventilation, but in some cases DC ventilation makes the offsets slightly worse. Since the offsetsmore » for these black-and-white pyranometers are always small, usually no more than 1 Wm -2, whether AC or DC ventilated, changing their ventilation to higher CFM DC ventilation is not imperative. Future work should include all major manufacturers of pyranometers and unventilated, as well as, ventilated pyranometers. Lastly, an important outcome of future research will be to clarify under what circumstances nighttime data can be used to predict daytime offsets.« less

  7. Effect of Dexmedetomidine on Mortality and Ventilator-Free Days in Patients Requiring Mechanical Ventilation With Sepsis

    PubMed Central

    Kawazoe, Yu; Miyamoto, Kyohei; Morimoto, Takeshi; Yamamoto, Tomonori; Fuke, Akihiro; Hashimoto, Atsunori; Koami, Hiroyuki; Beppu, Satoru; Katayama, Yoichi; Itoh, Makoto; Ohta, Yoshinori

    2017-01-01

    occurred in 8 (8%) and 3 (3%) patients in the dexmedetomidine and control groups, respectively. Conclusions and Relevance Among patients requiring mechanical ventilation, the use of dexmedetomidine compared with no dexmedetomidine did not result in statistically significant improvement in mortality or ventilator-free days. However, the study may have been underpowered for mortality, and additional research may be needed to evaluate this further. Trial Registration clinicaltrials.gov Identifier: NCT01760967 PMID:28322414

  8. Functional differences in bi-level pressure preset ventilators.

    PubMed

    Highcock, M P; Shneerson, J M; Smith, I E

    2001-02-01

    The performance of four bilevel positive pressure preset ventilators was compared. The ventilators tested were; BiPAP ST30 (Respironics); Nippy2 (B + D Electrical); Quantum PSV (Healthdyne); and Sullivan VPAP H ST (Resmed). A patient simulator was used to determine the sensitivity of the triggering mechanisms and the responses to a leak within the patient circuit, and to changes in patient effort. Significant differences (p <0.05) between the devices were seen in the trigger delay time and inspiratory trigger pressure. When a leak was introduced into the patient circuit, the fall in tidal volume (VT) was less than ten per cent for each ventilator. The addition of patient effort produced a number of changes in the ventilation delivered. Patient efforts of 0.25 s induced a variable fall in VT. An increase in VT was seen with some ventilators with patient efforts of 1 s but the effect was variable. Trigger failures and subsequent falls in minute volume were seen with the BiPAP and the Nippy2 at the highest respiratory frequency. Differences in the responses of the ventilators are demonstrated that may influence the selection of a ventilator, particularly in the treatment of breathless patients with ventilatory failure.

  9. Characterization of natural ventilation in wastewater collection systems.

    PubMed

    Ward, Matthew; Corsi, Richard; Morton, Robert; Knapp, Tom; Apgar, Dirk; Quigley, Chris; Easter, Chris; Witherspoon, Jay; Pramanik, Amit; Parker, Wayne

    2011-03-01

    The purpose of the study was to characterize natural ventilation in full-scale gravity collection system components while measuring other parameters related to ventilation. Experiments were completed at four different locations in the wastewater collection systems of Los Angeles County Sanitation Districts, Los Angeles, California, and the King County Wastewater Treatment District, Seattle, Washington. The subject components were concrete gravity pipes ranging in diameter from 0.8 to 2.4 m (33 to 96 in.). Air velocity was measured in each pipe using a carbon-monoxide pulse tracer method. Air velocity was measured entering or exiting the components at vents using a standpipe and hotwire anemometer arrangement. Ambient wind speed, temperature, and relative humidity; headspace temperature and relative humidity; and wastewater flow and temperature were measured. The field experiments resulted in a large database of measured ventilation and related parameters characterizing ventilation in full-scale gravity sewers. Measured ventilation rates ranged from 23 to 840 L/s. The experimental data was used to evaluate existing ventilation models. Three models that were based upon empirical extrapolation, computational fluid dynamics, and thermodynamics, respectively, were evaluated based on predictive accuracy compared to the measured data. Strengths and weaknesses in each model were found and these observations were used to propose a concept for an improved ventilation model.

  10. Potential risk for bacterial contamination in conventional reused ventilator systems and disposable closed ventilator-suction systems.

    PubMed

    Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien; Wan, Gwo-Hwa

    2018-01-01

    Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. ClinicalTrials.gov PRS / NCT03359148.

  11. Maximum load to failure and tensile displacement of an all-suture glenoid anchor compared with a screw-in glenoid anchor.

    PubMed

    Dwyer, Tim; Willett, Thomas L; Dold, Andrew P; Petrera, Massimo; Wasserstein, David; Whelan, Danny B; Theodoropoulos, John S

    2016-02-01

    The purpose of this study was to evaluate the biomechanical behavior of an all-suture glenoid anchor in comparison with a more conventional screw-in glenoid anchor, with regard to maximum load to failure and tensile displacement. All mechanical testing was performed using an Instron ElectroPuls E1000 mechanical machine, with a 10 N pre-load and displacement rate of 10 mm/min. Force-displacement curves were generated, with calculation of maximum load, maximum displacement, displacement at 50 N and stiffness. Pretesting of handset Y-Knots in bone analog models revealed low force displacement below 60 N of force. Subsequently, three groups of anchors were tested for pull out strength in bovine bone and cadaver glenoid bone: a bioabsorbable screw-in anchor (Bio Mini-Revo, ConMed Linvatec), a handset all-suture anchor (Y-Knot, ConMed Linvatec) and a 60 N pre-tensioned all-suture anchor (Y-Knot). A total of 8 anchors from each group was tested in proximal tibia of bovine bone and human glenoids (age range 50-90). In bovine bone, the Bio Mini-Revo displayed greater maximum load to failure (206 ± 77 N) than both the handset (140 ± 51 N; P = 0.01) and the pre-tensioned Y-Knot (135 ± 46 N; P = 0.001); no significant difference was seen between the three anchor groups in glenoid bone. Compared to the screw-in anchors, the handset all-suture anchor displayed inferior fixation, early displacement and greater laxity in the bovine bone and cadaveric bone (P < 0.05). Pre-tensioning the all-suture anchor to 60 N eliminated this behavior in all bone models. Handset Y-Knots display low force anchor displacement, which is likely due to slippage in the pilot hole. Pre-tensioning the Y-Knot to 60 N eliminates this behavior. I.

  12. [A comparison of leak compensation in six acute care ventilators during non-invasive ventilation].

    PubMed

    Hu, X S; Wang, Y; Wang, Z T; Yan, P; Zhang, X G; Zhao, S F; Xie, F; Gu, H J; Xie, L X

    2017-02-12

    Objective: To compare the ability of leak compensation in 6 medical ventilators during non-invasive ventilation. Methods: Six medical ventilators were selected, including 3 non-invasive ventilators (V60, Flexo and Stellar150), and 3 invasive ventilators(Avea, Servo I and BellaVist). Using a lung simulator, the ability of leak compensation was evaluated during triggering and cycling in 2 respiratory mechanics conditions (high airway resistance condition and high elastance resistance condition), and each condition was performed under 2 PEEP levels (4, and 8 cmH(2)O, 1 mmHg=0.098 kPa) at 4 air leak level conditions (L0: 2-3 L/min, L1: 8-10 L/min, L2: 22-27 L/min, L3: 35-40 L/min). Results: In the high elastance resistance condition (L2, L3)with different leak levels, the number of auto-triggering and miss-triggering of the non-invasive ventilator Flexo was significantly less than those of the others (L2: 1, 1; L3: 1.67, 1.33, P <0.01), and had better synchronization (L2: 2.33, 2.33; L3: 3.33, 3.33, P <0.01). In the high airway resistance condition with PEEP 4 cmH(2)O, V60 had less number of auto-triggering than other ventilators ( P <0.01), while in the high airway resistance condition with PEEP 8 cmH(2)O, Stellar150 had less number of miss-triggering than other ventilators (1, 0.67, 0, P <0.01). Flexo had a shorter trigger delay time than other ventilators in both high airway resistance and high elastance resistance conditions with L0 and L1 leak levels and PEEP levels [ARDS, PEEP=4: (109.8±1.8) ms, (112.0±0.6) ms; ARDS, PEEP=8: (103.1±0.7) ms, (109.7±0.7) ms; COPD, PEEP=4: (207.3±1.1) ms, (220.8±1.1) ms; COPD, PEEP=8: (195.6±6.7) ms, (200.0±1.2) ms , P <0.01]. Stellar150 had the shortest trigger delay time in high airway resistance condition with PEEP 4 cmH(2)O and high leak level L3[(262.8±0.8) ms , P <0.01]. V60 had a good performance on trigger delay time in high elastance resistance condition with PEEP 4 and 8 cmH(2)O, and also was most stable in

  13. Quality of life after postconflict displacement in Ethiopia: comparing placement in a community setting with that in shelters.

    PubMed

    Araya, Mesfin; Chotai, Jayanti; Komproe, Ivan H; de Jong, Joop T V M

    2011-07-01

    The resilience of post-war displaced persons is not only influenced partly by the nature of premigration trauma, but also by postmigration psychosocial circumstances and living conditions. A lengthy civil war leading to Eritrea separating from Ethiopia and becoming an independent state in 1991 resulted in many displaced persons. A random sample of 749 displaced women living in the shelters in the Ethiopian capital Addis Ababa was compared with a random sample of 110 displaced women living in the community setting of Debre Zeit, 50 km away from Addis Ababa, regarding their quality of life, mental distress, sociodemographics, living conditions, perceived social support, and coping strategies, 6 years after displacement. Subjects from Debre Zeit reported significantly higher quality of life and better living conditions. However, mental distress did not differ significantly between the groups. Also, Debre Zeit subjects contained a higher proportion born in Ethiopia, a higher proportion married, reported higher traumatic life events, employed more task-oriented coping, and perceived higher social support. Factors that accounted for the difference in quality of life between the shelters and Debre Zeit groups in three of the four quality of life domains of WHOQOL-BREF (physical health, psychological, environment), included protection from insects/rodents and other living conditions. However, to account for the difference in the fourth domain (social relationships), psychosocial factors also contributed significantly. Placement and rehabilitation in a community setting seems better than in the shelters. If this possibility is not available, measures to improve specific living conditions in the shelters are likely to lead to a considerable increase in quality of life.

  14. Pulmonary Ventilation Imaging Based on 4-Dimensional Computed Tomography: Comparison With Pulmonary Function Tests and SPECT Ventilation Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu; Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California; Kabus, Sven

    Purpose: 4-dimensional computed tomography (4D-CT)-based pulmonary ventilation imaging is an emerging functional imaging modality. The purpose of this study was to investigate the physiological significance of 4D-CT ventilation imaging by comparison with pulmonary function test (PFT) measurements and single-photon emission CT (SPECT) ventilation images, which are the clinical references for global and regional lung function, respectively. Methods and Materials: In an institutional review board–approved prospective clinical trial, 4D-CT imaging and PFT and/or SPECT ventilation imaging were performed in thoracic cancer patients. Regional ventilation (V{sub 4DCT}) was calculated by deformable image registration of 4D-CT images and quantitative analysis for regional volumemore » change. V{sub 4DCT} defect parameters were compared with the PFT measurements (forced expiratory volume in 1 second (FEV{sub 1}; % predicted) and FEV{sub 1}/forced vital capacity (FVC; %). V{sub 4DCT} was also compared with SPECT ventilation (V{sub SPECT}) to (1) test whether V{sub 4DCT} in V{sub SPECT} defect regions is significantly lower than in nondefect regions by using the 2-tailed t test; (2) to quantify the spatial overlap between V{sub 4DCT} and V{sub SPECT} defect regions with Dice similarity coefficient (DSC); and (3) to test ventral-to-dorsal gradients by using the 2-tailed t test. Results: Of 21 patients enrolled in the study, 18 patients for whom 4D-CT and either PFT or SPECT were acquired were included in the analysis. V{sub 4DCT} defect parameters were found to have significant, moderate correlations with PFT measurements. For example, V{sub 4DCT}{sup HU} defect volume increased significantly with decreasing FEV{sub 1}/FVC (R=−0.65, P<.01). V{sub 4DCT} in V{sub SPECT} defect regions was significantly lower than in nondefect regions (mean V{sub 4DCT}{sup HU} 0.049 vs 0.076, P<.01). The average DSCs for the spatial overlap with SPECT ventilation defect regions were only

  15. Accuracy of tidal volume delivered by home mechanical ventilation during mouthpiece ventilation

    PubMed Central

    Prigent, Helene; Falaize, Line; Leroux, Karl; Santos, Dante; Vaugier, Isabelle; Orlikowski, David; Lofaso, Frederic

    2016-01-01

    The aim of our study was to evaluate efficacy and reliability of currently available ventilators for mouthpiece ventilation (MPV). Five life-support home ventilators were assessed in a bench test using different settings simulating the specificities of MPV, such as intermittent circuit disconnection and presence of continuous leaks. The intermittent disconnection of the circuit caused relevant swings in the delivered tidal volume (VT), showing a VT overshoot during the disconnection periods and a VT decrease when the interface was reconnected to the test lung. The five ventilators showed substantial differences in the number of respiratory cycles necessary to reach a stable VT in the volume-controlled setting, ranging from 1.3 ± 0.6 to 7.3 ± 1.2 cycles. These differences were less accentuated in the volume-assisted setting (MPV-dedicated mode, when available). Our data show large differences in the capacity of the different ventilators to deal with the rapidly changing respiratory load features that characterize MPV, which can be further accentuated according to the used ventilator setting. The dedicated MPV modes allow improvement in the performance of ventilators only in some defined situations. This has practical consequences for the choice of the ventilator to be used for MPV in a specific patient. PMID:27146811

  16. Potential risk for bacterial contamination in conventional reused ventilator systems and disposable closed ventilator-suction systems

    PubMed Central

    Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien

    2018-01-01

    Background Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. Methods The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. Results The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Conclusions Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. Trial registration Clinical

  17. Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel

    NASA Astrophysics Data System (ADS)

    Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei

    2018-03-01

    In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.

  18. Measuring vulnerability to disaster displacement

    NASA Astrophysics Data System (ADS)

    Brink, Susan A.; Khazai, Bijan; Power, Christopher; Wenzel, Friedemann

    2015-04-01

    aggregate these ideas into a framework of disaster displacement vulnerability that distinguishes between three main aspects of disaster displacement. Disaster displacement can be considered in terms of the number of displaced people and the length of that displacement. However, the literature emphasizes that the severity of disaster displacement can not be measured completely in quantitative terms. Thus, we include a measure representing people who are trapped and unable to leave their homes due to mobility, resources or for other reasons. Finally the third main aspect considers the difficulties that are associated with displacement and reflects the difference between the experiences of those who are displaced into safe and supportive environments as compared to those whose only alternate shelter is dangerous and inadequate for their needs. Finally, we apply the framework to demonstrate a methodology to estimate vulnerability to disaster displacement. Using data from the Global Earthquake Model (GEM) Social and Economic Vulnerability sub-National Database, we generate an index to measure the vulnerability of Japanese prefectures to the dimensions of displacement included in the framework. References Yonitani, M. (2014). Global Estimates 2014: People displaced by disasters. http://www.internal-displacement.org/publications/2014/global-estimates-2014-people-displaced-by-disasters/

  19. A multicenter randomized, controlled clinical trial comparing the use of displacement cords, an aluminum chloride paste, and a combination of paste and cords for tissue displacement.

    PubMed

    Einarsdottir, Erna R; Lang, Niklaus P; Aspelund, Thor; Pjetursson, Bjarni E

    2018-01-01

    Gingival recession after soft tissue displacement for impression making in fixed prosthodontics may pose a problem for treatment success in the esthetic areas of the mouth. Knowledge about the soft tissue reaction of common gingival displacement methods is limited. The purpose of this clinical randomized controlled trial (RCT) was to evaluate changes in the marginal soft tissue height with 3 different gingival tissue displacement techniques for definitive impression making of natural teeth. A total of 67 individuals were randomized to 3 groups. In test group 1 (P; n=22), only aluminum chloride paste was used to displace the gingiva. In test group 2 (CP; n=23), a cord was inserted, and aluminum chloride paste was also used. In the control group (C; n=22), 2 cords were used to displace the gingiva (double-cord technique). Clinical measurements of the gingival position were made before treatment began and at 30 ±10 days after prosthesis delivery. Study casts were fabricated at different stages of the treatment, standardized photographs were made, and changes in the buccal gingival position were measured using graphics editing software. In addition, the participants' perception of the clinical procedure and the technicians' evaluation of the die preparation were recorded. One-way ANOVA models were applied to compare the response variables among the groups: (a) the position of the gingival margin (millimeters), (b) mean probing pocket depth (millimeters), (c) gingival thickness (millimeters), (d) amount of keratinized tissue (millimeters), and (e) mean changes in gingival margin height (millimeters). Unpaired t tests were also used to compare the mean values between groups. For comparisons between different categories, chi-square tests were performed (α=.05 for all tests). In the period between impression and delivery, a minor gain in gingival height of 0.058 mm (±0.13 SD) for P and 0.013 mm (±1.19 SD) for CP. However, a minor gingival recession of 0.049 mm (±0

  20. Clinical challenges in mechanical ventilation.

    PubMed

    Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J

    2016-04-30

    Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Delivery of tidal volume from four anaesthesia ventilators during volume-controlled ventilation: a bench study.

    PubMed

    Wallon, G; Bonnet, A; Guérin, C

    2013-06-01

    Tidal volume (V(T)) must be accurately delivered by anaesthesia ventilators in the volume-controlled ventilation mode in order for lung protective ventilation to be effective. However, the impact of fresh gas flow (FGF) and lung mechanics on delivery of V(T) by the newest anaesthesia ventilators has not been reported. We measured delivered V(T) (V(TI)) from four anaesthesia ventilators (Aisys™, Flow-i™, Primus™, and Zeus™) on a pneumatic test lung set with three combinations of lung compliance (C, ml cm H2O(-1)) and resistance (R, cm H2O litre(-1) s(-2)): C60R5, C30R5, C60R20. For each CR, three FGF rates (0.5, 3, 10 litre min(-1)) were investigated at three set V(T)s (300, 500, 800 ml) and two values of PEEP (0 and 10 cm H2O). The volume error = [(V(TI) - V(Tset))/V(Tset)] ×100 was computed in body temperature and pressure-saturated conditions and compared using analysis of variance. For each CR and each set V(T), the absolute value of the volume error significantly declined from Aisys™ to Flow-i™, Zeus™, and Primus™. For C60R5, these values were 12.5% for Aisys™, 5% for Flow-i™ and Zeus™, and 0% for Primus™. With an increase in FGF, absolute values of the volume error increased only for Aisys™ and Zeus™. However, in C30R5, the volume error was minimal at mid-FGF for Aisys™. The results were similar at PEEP 10 cm H2O. Under experimental conditions, the volume error differed significantly between the four new anaesthesia ventilators tested and was influenced by FGF, although this effect may not be clinically relevant.

  2. Adaptive support ventilation may deliver unwanted respiratory rate-tidal volume combinations in patients with acute lung injury ventilated according to an open lung concept.

    PubMed

    Dongelmans, Dave A; Paulus, Frederique; Veelo, Denise P; Binnekade, Jan M; Vroom, Margreeth B; Schultz, Marcus J

    2011-05-01

    With adaptive support ventilation, respiratory rate and tidal volume (V(T)) are a function of the Otis least work of breathing formula. We hypothesized that adaptive support ventilation in an open lung ventilator strategy would deliver higher V(T)s to patients with acute lung injury. Patients with acute lung injury were ventilated according to a local guideline advising the use of lower V(T) (6-8 ml/kg predicted body weight), high concentrations of positive end-expiratory pressure, and recruitment maneuvers. Ventilation parameters were recorded when the ventilator was switched to adaptive support ventilation, and after recruitment maneuvers. If V(T) increased more than 8 ml/kg predicted body weight, airway pressure was limited to correct for the rise of V(T). Ten patients with a mean (±SD) Pao(2)/Fio(2) of 171 ± 86 mmHg were included. After a switch from pressure-controlled ventilation to adaptive support ventilation, respiratory rate declined (from 31 ± 5 to 21 ± 6 breaths/min; difference = 10 breaths/min, 95% CI 3-17 breaths/min, P = 0.008) and V(T) increased (from 6.5 ± 0.8 to 9.0 ± 1.6 ml/kg predicted body weight; difference = 2.5 ml, 95% CI 0.4-4.6 ml/kg predicted body weight, P = 0.02). Pressure limitation corrected for the rise of V(T), but minute ventilation declined, forcing the user to switch back to pressure-controlled ventilation. Adaptive support ventilation, compared with pressure-controlled ventilation in an open lung strategy setting, delivers a lower respiratory rate-higher V(T) combination. Pressure limitation does correct for the rise of V(T), but leads to a decline in minute ventilation.

  3. Histochemical alterations in one lung ventilation.

    PubMed

    Yin, Kingsley; Gribbin, Elizabeth; Emanuel, Steven; Orndorff, Rebecca; Walker, Jean; Weese, James; Fallahnejad, Manucher

    2007-01-01

    One lung ventilation is a commonly performed surgical procedure. Although there have been several reports showing that one-lung ventilation can cause pathophysiological alterations such as pulmonary hypoxic vasoconstriction and intrapulmonary shunting, there have been virtually no reports on the effects of one-lung ventilation on lung histology. Yorkshire pigs (11-17 kg) were anesthetized, a tracheotomy performed and a tracheal tube inserted. The chest was opened and one lung ventilation (OLV), was induced by clamping of the right main bronchus. OLV was continued for 60 min before the clamp was removed and two lung ventilation (TLV) started. TLV was continued for 30 to 60 min. Blood and lung biopsies were taken immediately before OLV, 30 min and 60 min of OLV and after restoration of TLV. Histological analyses revealed that the non-ventilated lung was totally collapsed during OLV. On reventilation, there was clear evidence of vascular congestion and alveolar wall thickening at 30 min after TLV. At 60 min of TLV, there was still vascular congestion. Serum nitrite levels (as an index of nitric oxide production) showed steady decline over the course of the experimental period, reaching a significantly low level on reventilation (compared with baseline levels before OLV). Lung MPO activity (marker of neutrophil sequestration) and serum TNFalpha levels were not raised during the entire experimental period. These results suggest that there was lung vascular injury after OLV, which was associated with reduced levels of nitric oxide production and not associated with an inflammatory response.

  4. Thermoregulation and ventilation of termite mounds.

    PubMed

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO(2) concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  5. Thermoregulation and ventilation of termite mounds

    NASA Astrophysics Data System (ADS)

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO2 concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  6. The use of a displacement device negatively affects the performance of dogs (Canis familiaris) in visible object displacement tasks.

    PubMed

    Müller, Corsin A; Riemer, Stefanie; Range, Friederike; Huber, Ludwig

    2014-08-01

    Visible and invisible displacement tasks have been used widely for comparative studies of animals' understanding of object permanence, with evidence accumulating that some species can solve invisible displacement tasks and, thus, reach Piagetian stage 6 of object permanence. In contrast, dogs appear to rely on associative cues, such as the location of the displacement device, during invisible displacement tasks. It remains unclear, however, whether dogs, and other species that failed in invisible displacement tasks, do so because of their inability to form a mental representation of the target object, or simply because of the involvement of a more salient but potentially misleading associative cue, the displacement device. Here we show that the use of a displacement device impairs the performance of dogs also in visible displacement tasks: their search accuracy was significantly lower when a visible displacement was performed with a displacement device, and only two of initially 42 dogs passed the sham-baiting control conditions. The negative influence of the displacement device in visible displacement tasks may be explained by strong associative cues overriding explicit information about the target object's location, reminiscent of an overshadowing effect, and/or object individuation errors as the target object is placed within the displacement device and moves along a spatiotemporally identical trajectory. Our data suggest that a comprehensive appraisal of a species' performance in object permanence tasks should include visible displacement tasks with the same displacement device used in invisible displacements, which typically has not been done in the past.

  7. Improved lung recruitment and oxygenation during mandatory ventilation with a new expiratory ventilation assistance device: A controlled interventional trial in healthy pigs.

    PubMed

    Schmidt, Johannes; Wenzel, Christin; Mahn, Marlene; Spassov, Sashko; Cristina Schmitz, Heidi; Borgmann, Silke; Lin, Ziwei; Haberstroh, Jörg; Meckel, Stephan; Eiden, Sebastian; Wirth, Steffen; Buerkle, Hartmut; Schumann, Stefan

    2018-05-04

    In contrast to conventional mandatory ventilation, a new ventilation mode, expiratory ventilation assistance (EVA), linearises the expiratory tracheal pressure decline. We hypothesised that due to a recruiting effect, linearised expiration oxygenates better than volume controlled ventilation (VCV). We compared the EVA with VCV mode with regard to gas exchange, ventilation volumes and pressures and lung aeration in a model of peri-operative mandatory ventilation in healthy pigs. Controlled interventional trial. Animal operating facility at a university medical centre. A total of 16 German Landrace hybrid pigs. The lungs of anaesthetised pigs were ventilated with the EVA mode (n=9) or VCV (control, n=7) for 5 h with positive end-expiratory pressure of 5 cmH2O and tidal volume of 8 ml kg. The respiratory rate was adjusted for a target end-tidal CO2 of 4.7 to 6 kPa. Tracheal pressure, minute volume and arterial blood gases were recorded repeatedly. Computed thoracic tomography was performed to quantify the percentages of normally and poorly aerated lung tissue. Two animals in the EVA group were excluded due to unstable ventilation (n=1) or unstable FiO2 delivery (n=1). Mean tracheal pressure and PaO2 were higher in the EVA group compared with control (mean tracheal pressure: 11.6 ± 0.4 versus 9.0 ± 0.3 cmH2O, P < 0.001 and PaO2: 19.2 ± 0.7 versus 17.5 ± 0.4 kPa, P = 0.002) with comparable peak inspiratory tracheal pressure (18.3 ± 0.9 versus 18.0 ± 1.2 cmH2O, P > 0.99). Minute volume was lower in the EVA group compared with control (5.5 ± 0.2 versus 7.0 ± 1.0 l min, P = 0.02) with normoventilation in both groups (PaCO2 5.4 ± 0.3 versus 5.5 ± 0.3 kPa, P > 0.99). In the EVA group, the percentage of normally aerated lung tissue was higher (81.0 ± 3.6 versus 75.8 ± 3.0%, P = 0.017) and of poorly aerated lung tissue lower (9.5 ± 3.3 versus 15.7 ± 3.5%, P

  8. Low tidal volume mechanical ventilation against no ventilation during cardiopulmonary bypass heart surgery (MECANO): study protocol for a randomized controlled trial.

    PubMed

    Nguyen, Lee S; Merzoug, Messaouda; Estagnasie, Philippe; Brusset, Alain; Law Koune, Jean-Dominique; Aubert, Stephane; Waldmann, Thierry; Grinda, Jean-Michel; Gibert, Hadrien; Squara, Pierre

    2017-12-02

    Postoperative pulmonary complications are a leading cause of morbidity and mortality after cardiac surgery. There are no recommendations on mechanical ventilation associated with cardiopulmonary bypass (CPB) during surgery and anesthesiologists perform either no ventilation (noV) at all during CPB or maintain low tidal volume (LTV) ventilation. Indirect evidence points towards better pulmonary outcomes when LTV is performed but no large-scale prospective trial has yet been published in cardiac surgery. The MECANO trial is a single-center, double-blind, randomized, controlled trial comparing two mechanical ventilation strategies, noV and LTV, during cardiac surgery with CPB. In total, 1500 patients are expected to be included, without any restrictions. They will be randomized between noV and LTV on a 1:1 ratio. The noV group will receive no ventilation during CPB. The LTV group will receive 5 breaths/minute with a tidal volume of 3 mL/kg and positive end-expiratory pressure of 5 cmH2O. The primary endpoint will be a composite of all-cause mortality, early respiratory failure defined as a ratio of partial pressure of oxygen/fraction of inspired oxygen <200 mmHg at 1 hour after arrival in the ICU, heavy oxygenation support (defined as a patient requiring either non-invasive ventilation, mechanical ventilation or high-flow oxygen) at 2 days after arrival in the ICU or ventilator-acquired pneumonia defined by the Center of Disease Control. Lung recruitment maneuvers will be performed in the noV and LTV groups at the end of surgery and at arrival in ICU with an insufflation at +30 cmH20 for 5 seconds. Secondary endpoints are those composing the primary endpoint with the addition of pneumothorax, CPB duration, quantity of postoperative bleeding, red blood cell transfusions, revision surgery requirements, length of stay in the ICU and in the hospital and total hospitalization costs. Patients will be followed until hospital discharge. The MECANO trial is the first of

  9. MO-A-BRD-05: Evaluation of Composed Lung Ventilation with 4DCT and Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, K; Bayouth, J; Reinhardt, J

    Purpose: Regional pulmonary function can be derived using fourdimensional computed tomography (4DCT) combined with deformable image registration. However, only peak inhale and exhale phases have been used thus far while the lung ventilation during intermediate phases is not considered. In our previous work, we have investigated the spatiotemporal heterogeneity of lung ventilation and its dependence on respiration effort. In this study, composed ventilation is introduced using all inspiration phases and compared to direct ventilation. Both methods are evaluated against Xe-CT derived ventilation. Methods: Using an in-house tissue volume preserving deformable image registration, unlike the direct ventilation method, which computes frommore » end expiration to end inspiration, Jacobian ventilation maps were computed from one inhale phase to the next and then composed from all inspiration steps. The two methods were compared in both patients prior to RT and mechanically ventilated sheep subjects. In addition, they wereassessed for the correlation with Xe-CT derived ventilation in sheep subjects. Annotated lung landmarks were used to evaluate the accuracy of original and composed deformation field. Results: After registration, the landmark distance for composed deformation field was always higher than that for direct deformation field (0IN to 100IN average in human: 1.03 vs 1.53, p=0.001, and in sheep: 0.80 vs0.94, p=0.009), and both increased with longer phase interval. Direct and composed ventilation maps were similar in both sheep (gamma pass rate 87.6) and human subjects (gamma pass rate 71.9),and showed consistent pattern from ventral to dorsal when compared to Xe-CT derived ventilation. Correlation coefficient between Xe-CT and composed ventilation was slightly better than the direct method but not significant (average 0.89 vs 0.85, p=0.135). Conclusion: More strict breathing control in sheep subjects may explain higher similarity between direct and composed

  10. Airway pressure release ventilation: what do we know?

    PubMed

    Daoud, Ehab G; Farag, Hany L; Chatburn, Robert L

    2012-02-01

    Airway pressure release ventilation (APRV) is inverse ratio, pressure controlled, intermittent mandatory ventilation with unrestricted spontaneous breathing. It is based on the principle of open lung approach. It has many purported advantages over conventional ventilation, including alveolar recruitment, improved oxygenation, preservation of spontaneous breathing, improved hemodynamics, and potential lung-protective effects. It has many claimed disadvantages related to risks of volutrauma, increased work of breathing, and increased energy expenditure related to spontaneous breathing. APRV is used mainly as a rescue therapy for the difficult to oxygenate patients with acute respiratory distress syndrome (ARDS). There is confusion regarding this mode of ventilation, due to the different terminology used in the literature. APRV settings include the "P high," "T high," "P low," and "T low". Physicians and respiratory therapists should be aware of the different ways and the rationales for setting these variables on the ventilators. Also, they should be familiar with the differences between APRV, biphasic positive airway pressure (BIPAP), and other conventional and nonconventional modes of ventilation. There is no solid proof that APRV improves mortality; however, there are ongoing studies that may reveal further information about this mode of ventilation. This paper reviews the different methods proposed for APRV settings, and summarizes the different studies comparing APRV and BIPAP, and the potential benefits and pitfalls for APRV.

  11. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, themore » ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  12. Pleural liquid and kinetic friction coefficient of mesothelium after mechanical ventilation.

    PubMed

    Bodega, Francesca; Sironi, Chiara; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio

    2015-01-15

    Volume and protein concentration of pleural liquid in anesthetized rabbits after 1 or 3h of mechanical ventilation, with alveolar pressure equal to atmospheric at end expiration, were compared to those occurring after spontaneous breathing. Moreover, coefficient of kinetic friction between samples of visceral and parietal pleura, obtained after spontaneous or mechanical ventilation, sliding in vitro at physiological velocity under physiological load, was determined. Volume of pleural liquid after mechanical ventilation was similar to that previously found during spontaneous ventilation. This finding is contrary to expectation of Moriondo et al. (2005), based on measurement of lymphatic and interstitial pressure. Protein concentration of pleural liquid after mechanical ventilation was also similar to that occurring after spontaneous ventilation. Coefficient of kinetic friction after mechanical ventilation was 0.023±0.001, similar to that obtained after spontaneous breathing. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Comparative transduction mechanisms of hair cells in the bullfrog uticulus. 2: Sensitivity and response dynamics to hair bundle displacement

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    1994-01-01

    voltage responses of individual hair cells were compared to both hair bundle displacement and intracellular current.

  14. Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry, and Ventilation Mapping using Fast Helical CT Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Hsiang-Tai

    The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan

  15. The use of a displacement device negatively affects the performance of dogs (Canis familiaris) in visible object displacement tasks

    PubMed Central

    Müller, Corsin A.; Riemer, Stefanie; Range, Friederike; Huber, Ludwig

    2014-01-01

    Visible and invisible displacement tasks have been used widely for comparative studies of animals’ understanding of object permanence, with evidence accumulating that some species can solve invisible displacement tasks and thus reach Piagetian stage 6 of object permanence. In contrast, dogs appear to rely on associative cues, such as the location of the displacement device, during invisible displacement tasks. It remains unclear, however, whether dogs, and other species that failed in invisible displacement tasks, do so due to their inability to form a mental representation of the target object, or simply due to the involvement of a more salient but potentially misleading associative cue, the displacement device. Here we show that the use of a displacement device impairs the performance of dogs also in visible displacement tasks: their search accuracy was significantly lower when a visible displacement was performed with a displacement device, and only two of initially 42 dogs passed the sham-baiting control conditions. The negative influence of the displacement device in visible displacement tasks may be explained by strong associative cues overriding explicit information about the target object’s location, reminiscent of an overshadowing effect, and/or object individuation errors as the target object is placed within the displacement device and moves along a spatiotemporally identical trajectory. Our data suggest that a comprehensive appraisal of a species’ performance in object permanence tasks should include visible displacement tasks with the same displacement device used in invisible displacements, which typically has not been done in the past. PMID:24611641

  16. Effects of types of ventilation system on indoor particle concentrations in residential buildings.

    PubMed

    Park, J S; Jee, N-Y; Jeong, J-W

    2014-12-01

    The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single-family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2 , were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings. Results of this study confirm that mechanical ventilation with filtration can significantly reduce indoor particle levels compared with natural ventilation. The I/O ratios of particles substantially varied at the naturally ventilated apartments because of the influence of variable window opening conditions and unsteadiness of wind flow on the penetration of outdoor air particles. For better prediction of the exposure to outdoor particles in naturally ventilated residential buildings, it is important to understand the penetration of outdoor particles with variable window opening conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Synthesis of finite displacements and displacements in continental margins

    NASA Technical Reports Server (NTRS)

    Speed, R. C.; Elison, M. W.; Heck, F. R.; Russo, R. M.

    1988-01-01

    The scope of the project is the analysis of displacement-rate fields in the transitional regions between cratonal and oceanic lithospheres over Phanerozoic time (last 700 ma). Associated goals are an improved understanding of range of widths of major displacement zones; the partition of displacement gradients and rotations with position and depth in such zones; the temporal characteristics of such zones-the steadiness, episodicity, and duration of uniform versus nonunifrom fields; and the mechanisms and controls of the establishment and kinematics of displacement zones. The objective is to provide a context of time-averaged kinematics of displacement zones. The initial phase is divided topically among the methodology of measurement and reduction of displacements in the lithosphere and the preliminary analysis from geologic and other data of actual displacement histories from the Cordillera, Appalachians, and southern North America.

  18. Minimally displaced clavicle fracture after high-energy injury: are they likely to displace?

    PubMed

    Riehl, John T; Athans, Bill J; Munro, Mark W; Langford, Joshua R; Kupiszewski, Stanley J; Haidukewych, George J; Koval, Kenneth J

    2014-06-01

    Nondisplaced or minimally displaced clavicle fractures are often considered to be benign injuries. These fractures in the trauma patient population, however, may deserve closer follow-up than their low-energy counterparts. We sought to determine the initial assessment performed on these patients and the rate of subsequent fracture displacement in patients sustaining high-energy trauma when a supine chest radiograph on initial trauma survey revealed a well-aligned clavicle fracture. We retrospectively reviewed the cases of trauma alert patients who sustained a midshaft clavicle fracture (AO/OTA type 15-B) with less than 100% displacement treated at a single level 1 trauma centre between 2005 and 2010. We compared fracture displacement on initial supine chest radiographs and follow-up radiographs. Orthopedic consultation and the type of imaging studies obtained were also recorded. Ninety-five patients with clavicle fractures met the inclusion criteria. On follow-up, 57 (60.0%) had displacement of 100% or more of the shaft width. Most patients (63.2%) in our study had an orthopedic consultation during their hospital admission, and 27.4% had clavicle radiographs taken on the day of admission. Clavicle fractures in patients with a high-energy mechanism of injury are prone to fracture displacement, even when initial supine chest radiographs show nondisplacement. We recommend clavicle films as part of the initial evaluation for all patients with clavicle fractures and early follow-up within the first 2 weeks of injury.

  19. Minimally displaced clavicle fracture after high-energy injury: Are they likely to displace?

    PubMed Central

    Riehl, John T.; Athans, Bill J.; Munro, Mark W.; Langford, Joshua R.; Kupiszewski, Stanley J.; Haidukewych, George J.; Koval, Kenneth J.

    2014-01-01

    Background Nondisplaced or minimally displaced clavicle fractures are often considered to be benign injuries. These fractures in the trauma patient population, however, may deserve closer follow-up than their low-energy counterparts. We sought to determine the initial assessment performed on these patients and the rate of subsequent fracture displacement in patients sustaining high-energy trauma when a supine chest radiograph on initial trauma survey revealed a well-aligned clavicle fracture. Methods We retrospectively reviewed the cases of trauma alert patients who sustained a midshaft clavicle fracture (AO/OTA type 15-B) with less than 100% displacement treated at a single level 1 trauma centre between 2005 and 2010. We compared fracture displacement on initial supine chest radiographs and follow-up radiographs. Orthopedic consultation and the type of imaging studies obtained were also recorded. Results Ninety-five patients with clavicle fractures met the inclusion criteria. On follow-up, 57 (60.0%) had displacement of 100% or more of the shaft width. Most patients (63.2%) in our study had an orthopedic consultation during their hospital admission, and 27.4% had clavicle radiographs taken on the day of admission. Conclusion Clavicle fractures in patients with a high-energy mechanism of injury are prone to fracture displacement, even when initial supine chest radiographs show nondisplacement. We recommend clavicle films as part of the initial evaluation for all patients with clavicle fractures and early follow-up within the first 2 weeks of injury. PMID:24869608

  20. [Percutaneous tracheostomy in the ventilated patient].

    PubMed

    Añón, J M; Araujo, J B; Escuela, M P; González-Higueras, E

    2014-04-01

    The medical indications of tracheostomy comprise the alleviation of upper airway obstruction; the prevention of laryngeal and upper airway damage due to prolonged translaryngeal intubation in patients subjected to prolonged mechanical ventilation; and the facilitation of airway access for the removal of secretions. Since 1985, percutaneous tracheostomy (PT) has gained widespread acceptance as a method for creating a surgical airway in patients requiring long-term mechanical ventilation. Since then, several comparative trials of PT and surgical tracheostomy have been conducted, and new techniques for PT have been developed. The use of percutaneous dilatation techniques under bronchoscopic control are now increasingly popular throughout the world. Tracheostomy should be performed as soon as the need for prolonged intubation is identified. However a validated model for the prediction of prolonged mechanical ventilation is not available, and the timing of tracheostomy should be individualized. The present review analyzes the state of the art of PT in mechanically ventilated patients--this being regarded by many as the technique of choice in performing tracheostomy in critically ill patients. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  1. Low tidal volume and high positive end-expiratory pressure mechanical ventilation results in increased inflammation and ventilator-associated lung injury in normal lungs.

    PubMed

    Hong, Caron M; Xu, Da-Zhong; Lu, Qi; Cheng, Yunhui; Pisarenko, Vadim; Doucet, Danielle; Brown, Margaret; Aisner, Seena; Zhang, Chunxiang; Deitch, Edwin A; Delphin, Ellise

    2010-06-01

    Protective mechanical ventilation with low tidal volume (Vt) and low plateau pressure reduces mortality and decreases the length of mechanical ventilation in patients with acute respiratory distress syndrome. Mechanical ventilation that will protect normal lungs during major surgical procedures of long duration may improve postoperative outcomes. We performed an animal study comparing 3 ventilation strategies used in the operating room in normal lungs. We compared the effects on pulmonary mechanics, inflammatory mediators, and lung tissue injury. Female pigs were randomized into 3 groups. Group H-Vt/3 (n = 6) was ventilated with a Vt of 15 mL/kg predicted body weight (PBW)/positive end-expiratory pressure (PEEP) of 3 cm H(2)O, group L-Vt/3 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 3 cm H(2)O, and group L-Vt/10 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 10 cm H(2)O, for 8 hours. Hemodynamics, airway mechanics, arterial blood gases, and inflammatory markers were monitored. Bronchoalveolar lavage (BAL) was analyzed for inflammatory markers and protein concentration. The right lower lobe was assayed for mRNA of specific cytokines. The right lower lobe and right upper lobe were evaluated histologically. In contrast to groups H-Vt/3 and L-Vt/3, group L-Vt/10 exhibited a 6-fold increase in inflammatory mediators in BAL (P < 0.001). Cytokines in BAL were similar in groups H-Vt/3 and L-Vt/3. Group H-Vt/3 had a significantly lower lung injury score than groups L-Vt/3 and L-Vt/10. Comparing intraoperative strategies, ventilation with high PEEP resulted in increased production of inflammatory markers. Low PEEP resulted in lower levels of inflammatory markers. High Vt/low PEEP resulted in less histologic lung injury.

  2. The growing role of noninvasive ventilation in patients requiring prolonged mechanical ventilation.

    PubMed

    Hess, Dean R

    2012-06-01

    For many patients with chronic respiratory failure requiring ventilator support, noninvasive ventilation (NIV) is preferable to invasive support by tracheostomy. Currently available evidence does not support the use of nocturnal NIV in unselected patients with stable COPD. Several European studies have reported benefit for high intensity NIV, in which setting of inspiratory pressure and respiratory rate are selected to achieve normocapnia. There have also been studies reporting benefit for the use of NIV as an adjunct to exercise training. NIV may be useful as an adjunct to airway clearance techniques in patients with cystic fibrosis. Accumulating evidence supports the use of NIV in patients with obesity hypoventilation syndrome. There is considerable observational evidence supporting the use of NIV in patients with chronic respiratory failure related to neuromuscular disease, and one randomized controlled trial reported that the use of NIV was life-prolonging in patients with amyotrophic lateral sclerosis. A variety of interfaces can be used to provide NIV in patients with stable chronic respiratory failure. The mouthpiece is an interface that is unique in this patient population, and has been used with success in patients with neuromuscular disease. Bi-level pressure ventilators are commonly used for NIV, although there are now a new generation of intermediate ventilators that are portable, have a long battery life, and can be used for NIV and invasive applications. Pressure support ventilation, pressure controlled ventilation, and volume controlled ventilation have been used successfully for chronic applications of NIV. New modes have recently become available, but their benefits await evidence to support their widespread use. The success of NIV in a given patient population depends on selection of an appropriate patient, selection of an appropriate interface, selection of an appropriate ventilator and ventilator settings, the skills of the clinician, the

  3. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    EPA Science Inventory

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  4. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the sourcemore » of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  5. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, William; Walker, Iain

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met.more » ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM 2.5, formaldehyde and NO 2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.« less

  6. Prolonged displacement may compromise resilience in Eritrean mothers.

    PubMed

    Almedom, Astier; Tesfamichael, Berhe; Mohammed, Zein; Mascie-Taylor, Nick; Muller, Jocelyn; Alemu, Zemui

    2005-12-01

    to assess the impact of prolonged displacement on the resilience of Eritrean mothers. an adapted SOC scale (short form) was administered. Complementary qualitative data were gathered from study participants' spontaneous reactions to and commentaries on the SOC scale. Displaced women's SOC scores were significantly less than those of the non-displaced: Mean = 54.84; SD = 6.48 in internally displaced person (IDP) camps, compared to non-displaced urban and rural/pastoralist: Mean = 48. 94, SD = 11.99; t = 3.831, p < .001. Post hoc tests revealed that the main difference is between IDP camp dwellers and urban (non-displaced). Rural but traditionally mobile (pastoralist or transhumant) communities scored more or less the same as the urban non-displaced--i.e., significantly higher than those in IDP camps (p < 0.05). Analysis of variance confirmed that gender is critical: displacement has significantly negative effects on women compared to men: RR = .262, p < .001. SOC scores of urban and pastoralist/transhumant groups were similar, while women in IDP camps were lower scoring--RR = .268, p < .001. The implications of these findings for health policy are critical. It is incumbent on the international health institutions including the World Health Organization and regional as well as local players to address the plight of internally displaced women, their families and communities in Eritrea and other places of dire conditions such as, for example Darfur in the Sudan.

  7. Spontaneous Effort During Mechanical Ventilation: Maximal Injury With Less Positive End-Expiratory Pressure.

    PubMed

    Yoshida, Takeshi; Roldan, Rollin; Beraldo, Marcelo A; Torsani, Vinicius; Gomes, Susimeire; De Santis, Roberta R; Costa, Eduardo L V; Tucci, Mauro R; Lima, Raul G; Kavanagh, Brian P; Amato, Marcelo B P

    2016-08-01

    We recently described how spontaneous effort during mechanical ventilation can cause "pendelluft," that is, displacement of gas from nondependent (more recruited) lung to dependent (less recruited) lung during early inspiration. Such transfer depends on the coexistence of more recruited (source) liquid-like lung regions together with less recruited (target) solid-like lung regions. Pendelluft may improve gas exchange, but because of tidal recruitment, it may also contribute to injury. We hypothesize that higher positive end-expiratory pressure levels decrease the propensity to pendelluft and that with lower positive end-expiratory pressure levels, pendelluft is associated with improved gas exchange but increased tidal recruitment. Crossover design. University animal research laboratory. Anesthetized landrace pigs. Surfactant depletion was achieved by saline lavage in anesthetized pigs, and ventilator-induced lung injury was produced by ventilation with high tidal volume and low positive end-expiratory pressure. Ventilation was continued in each of four conditions: positive end-expiratory pressure (low or optimized positive end-expiratory pressure after recruitment) and spontaneous breathing (present or absent). Tidal recruitment was assessed using dynamic CT and regional ventilation/perfusion using electric impedance tomography. Esophageal pressure was measured using an esophageal balloon manometer. Among the four conditions, spontaneous breathing at low positive end-expiratory pressure not only caused the largest degree of pendelluft, which was associated with improved ventilation/perfusion matching and oxygenation, but also generated the greatest tidal recruitment. At low positive end-expiratory pressure, paralysis worsened oxygenation but reduced tidal recruitment. Optimized positive end-expiratory pressure decreased the magnitude of spontaneous efforts (measured by esophageal pressure) despite using less sedation, from -5.6 ± 1.3 to -2.0 ± 0.7 cm H2

  8. Tunnel Ventilation Control Using Reinforcement Learning Methodology

    NASA Astrophysics Data System (ADS)

    Chu, Baeksuk; Kim, Dongnam; Hong, Daehie; Park, Jooyoung; Chung, Jin Taek; Kim, Tae-Hyung

    The main purpose of tunnel ventilation system is to maintain CO pollutant concentration and VI (visibility index) under an adequate level to provide drivers with comfortable and safe driving environment. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement learning (RL) method. RL is a goal-directed learning of a mapping from situations to actions without relying on exemplary supervision or complete models of the environment. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. In the process of constructing the reward of the tunnel ventilation system, two objectives listed above are included, that is, maintaining an adequate level of pollutants and minimizing power consumption. RL algorithm based on actor-critic architecture and gradient-following algorithm is adopted to the tunnel ventilation system. The simulations results performed with real data collected from existing tunnel ventilation system and real experimental verification are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  9. Analysis of hybrid interface cooling system using air ventilation and nanofluid

    NASA Astrophysics Data System (ADS)

    Rani, M. F. H.; Razlan, Z. M.; Bakar, S. A.; Desa, H.; Wan, W. K.; Ibrahim, I.; Kamarrudin, N. S.; Bin-Abdun, Nazih A.

    2017-09-01

    The hybrid interface cooling system needs to be designed for maintaining the electric vehicle's battery cell temperature at 25°C. The hybrid interface cooling system is a combination of two individual systems, where the primary cooling system (R-134a) and the secondary cooling system (CuO + Water) will be used to absorb the heat generated by the battery cells. The ventilation system is designed using air as the medium to transfer the heat from the batteries to the refrigeration system (R-134a). Research will focus on determining the suitable compressor displacement, the heat exchanger volume and the expansion valve resistance value. The analysis for the secondary cooling system is focused on the cooling coil where low temperature nanofluid is passing through each interval of the battery cells. For analysing purposes, the thermal properties of the mixture of 50 grams, Copper (II) Oxide and the base fluid have been determined. The hybrid interface cooling system are able to achieve 57.82% increments in term of rate of heat transfer as compared to the individual refrigeration system.

  10. Clinical Validation of 4-Dimensional Computed Tomography Ventilation With Pulmonary Function Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Douglas; Schubert, Leah; Diot, Quentin

    Purpose: A new form of functional imaging has been proposed in the form of 4-dimensional computed tomography (4DCT) ventilation. Because 4DCTs are acquired as part of routine care for lung cancer patients, calculating ventilation maps from 4DCTs provides spatial lung function information without added dosimetric or monetary cost to the patient. Before 4DCT-ventilation is implemented it needs to be clinically validated. Pulmonary function tests (PFTs) provide a clinically established way of evaluating lung function. The purpose of our work was to perform a clinical validation by comparing 4DCT-ventilation metrics with PFT data. Methods and Materials: Ninety-eight lung cancer patients withmore » pretreatment 4DCT and PFT data were included in the study. Pulmonary function test metrics used to diagnose obstructive lung disease were recorded: forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity. Four-dimensional CT data sets and spatial registration were used to compute 4DCT-ventilation images using a density change–based and a Jacobian-based model. The ventilation maps were reduced to single metrics intended to reflect the degree of ventilation obstruction. Specifically, we computed the coefficient of variation (SD/mean), ventilation V20 (volume of lung ≤20% ventilation), and correlated the ventilation metrics with PFT data. Regression analysis was used to determine whether 4DCT ventilation data could predict for normal versus abnormal lung function using PFT thresholds. Results: Correlation coefficients comparing 4DCT-ventilation with PFT data ranged from 0.63 to 0.72, with the best agreement between FEV1 and coefficient of variation. Four-dimensional CT ventilation metrics were able to significantly delineate between clinically normal versus abnormal PFT results. Conclusions: Validation of 4DCT ventilation with clinically relevant metrics is essential. We demonstrate good global agreement between PFTs and 4DCT-ventilation, indicating

  11. Characteristics of rain penetration through a gravity ventilator used for natural ventilation.

    PubMed

    Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon

    2008-01-01

    Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.

  12. A comparative analysis of carbon dioxide displacement rates for euthanasia of the ferret.

    PubMed

    Fitzhugh, Dawn C; Parmer, Amanda; Shelton, Larry J; Sheets, James T

    2008-02-01

    Though carbon dioxide asphyxiation is a common method of euthanasia for laboratory animals, species-specific guidelines have not been established for this procedure in the domestic ferret (Mustela putorius furo). The authors investigated the efficacy and stress effects of carbon dioxide euthanasia in 24 ferrets that had participated in previous experimental protocols. They euthanized ferrets by placing them in cages that were either prefilled with carbon dioxide or gradually filled at a displacement rate of 10%, 20% or 50% of the cage volume per min. Blinded observers subjectively evaluated ferret distress. Prefilling the cage or filling it at a rate of 50% volume per min resulted in less time to recumbency and to last breath than did filling the cage at a slower displacement rate. Slower carbon dioxide displacement rates also caused an increase in ferret blood glucose concentrations, which may indicate distress. Overall, observers found that prefilling the euthanasia cage caused the least stress to ferrets.

  13. WE-AB-202-05: Validation of Lung Stress Maps for CT-Ventilation Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cazoulat, G; Jolly, S; Matuszak, M

    Purpose: To date, lung CT-ventilation imaging has been based on quantification of local breathing-induced changes in Hounsfield Units (HU) or volume. This work investigates the use of a stress map resulting from a biomechanical deformable image registration (DIR) algorithm as a metric of the ventilation function. Method: Eight lung cancer patients presenting different kinds of ventilation defects were retrospectively analyzed. Additionally, to the 4DCT acquired for radiotherapy planning, five of them had PET and three had SPECT imaging following inhalation of Ga-68 and Tc-99m, respectively. For each patient, the inhale phase of the 4DCT was registered to the exhale phasemore » using Morfeus, a biomechanical DIR algorithm based on the determination of boundary conditions on the lung surfaces and vessel tree. To take into account the heterogeneity of the tissue stiffness in the stress map estimation, each tetrahedral element of the finite-element model was assigned a Young’s modulus ranging from 60kPa to 12MPa, as a function of the HU in the inhale CT. The node displacements and element stresses resulting from the numerical simulation were used to generate three CT-ventilation maps based on: (i) volume changes (Jacobian determinant), (ii) changes in HU, (iii) the maximum principal stress. The voxel-wise correlation between each CT-ventilation map and the PET or SPECT V image was computed in a lung mask. Results: For patients with PET, the mean (min-max) Spearman correlation coefficients r were: 0.33 (0.19–0.45), 0.36 (0.16–0.51) and 0.42 (0.21–0.59) considering the Jacobian, changes in HU and maximum principal stress, respectively. For patients with SPECT V, the mean r were: 0.12 (−0.12–0.43), 0.29 (0.22–0.45) and 0.33 (0.25–0.39). Conclusion: The maximum principal stress maps showed a stronger correlation with the ventilation images than the previously proposed Jacobian or change in HU maps. This metric thus appears promising for CT-ventilation

  14. Resistive pressure of a condenser humidifier in mechanically ventilated patients.

    PubMed

    Manthous, C A; Schmidt, G A

    1994-11-01

    Heat and moisture exchangers (or "nose" humidifiers) are commonly used to aid in the humidification of inspired gases of mechanically ventilated patients. These devices add resistance to the ventilator circuit that has heretofore not been quantified in critically ill patients. Accordingly, we determined the resistive pressures associated with new and old (but < 24 hrs in the circuit) humidifiers in 23 critically ill, mechanically ventilated patients. Prospective study. Adult medical and surgical intensive care units at a university center. Twenty-three critically ill, mechanically ventilated patients using a condenser humidifier between the wye and the endotracheal tube. Peak and plateau airway pressures were determined with the humidifier in place. These measurements were repeated without the humidifier, then after insertion of a fresh humidifier into the circuit. In five patients, measurements were repeated after humidifiers had remained in place for a full 24 hrs. The new humidifiers increased the resistive pressure of the ventilator circuit by 4.8 +/- 2.6 cm H2O compared with no humidifier (p < .01) and had a mean resistance of 4.2 +/- 1.5 cm H2O/L/sec. Old humidifiers increased resistive pressure by 6.3 +/- 3.6 cm H2O compared with no humidifier (p < .01) and had a mean resistance of 5.1 +/- 1.8 cm H2O/L/sec. The resistive pressure doubled from 3.4 +/- 1.2 to 7.0 +/- 1.8 cm H2O (p < .01) in five patients in whom the humidifiers were left in the ventilator circuit for a full 24 hrs. The humidifier adds a significant resistance to the ventilator circuit which may lead to incorrect assessment of respiratory system mechanics, to inappropriate therapy (e.g., bronchodilators), or to difficulty in weaning from mechanical ventilation.

  15. Noninvasive Ventilation in Premature Neonates.

    PubMed

    Flanagan, Keri Ann

    2016-04-01

    The use of noninvasive ventilation is a constantly evolving treatment option for respiratory disease in the premature infant. The goals of these noninvasive ventilation techniques are to improve gas exchange in the premature infant's lungs and to minimize the need for intubation and invasive mechanical ventilation. The goals of this article are to consider various uses of nasal interfaces, discuss skin care and developmental positioning concerns faced by the bedside nurse, and discuss the medical management aimed to reduce morbidity and mortality. This article explores the nursing role, the advances in medical strategies for noninvasive ventilation, and the team approach to noninvasive ventilation use in this population. Search strategy included a literature review on medical databases, such as EBSCOhost, CINAHL, PubMed, and NeoReviews. Innovative products, nursing research on developmental positioning and skin care, and advanced medical management have led to better and safer outcomes for premature infants requiring noninvasive ventilation. The medical focus of avoiding long-term mechanical ventilation would not be possible without the technology to provide noninvasive ventilation to these premature infants and the watchful eye of the nurse in terms of careful positioning, preventing skin breakdown and facial scarring, and a proper seal to maximize ventilation accuracy. This article encourages nursing-based research to quantify some of the knowledge about skin care and positioning as well as research into most appropriate uses for noninvasive ventilation devices.

  16. Potential Role of Lung Ventilation Scintigraphy in the Assessment of COPD

    PubMed Central

    Cukic, Vesna; Begic, Amela

    2014-01-01

    Objective: To highlight the importance of the lung ventilation scintigraphy (LVS) to study the regional distribution of lung ventilation and to describe most frequent abnormal patterns of lung ventilation distribution obtained by this technique in COPD and to compare the information obtained by LVS with the that obtained by traditional lung function tests. Material and methods: The research was done in 20 patients with previously diagnosed COPD who were treated in Intensive care unit of Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Center, University of Sarajevo in exacerbation of COPD during first three months of 2014. Each patient was undergone to testing of pulmonary function by body plethysmography and ventilation/perfusion lung scintigraphy with radio pharmaceutics Technegas, 111 MBq Tc -99m-MAA. We compared the results obtained by these two methods. Results: All patients with COPD have a damaged lung function tests examined by body plethysmography implying airflow obstruction, but LVS indicates not only airflow obstruction and reduced ventilation, but also indicates the disorders in distribution in lung ventilation. Conclusion: LVS may add further information to the functional evaluation of COPD to that provided by traditional lung function tests and may contribute to characterizing the different phenotypes of COPD. PMID:25132709

  17. Risk factors associated with development of ventilator associated pneumonia.

    PubMed

    Noor, Ahmed; Hussain, Syed Fayyaz

    2005-02-01

    To assess the risk factors associated with development of ventilator associated pneumonia (VAP). A case control study. Intensive Care Unit (ICU) at the Aga Khan University Hospital, Karachi, between January 1999 and June 2000. All patients with assisted mechanical ventilation were assessed for the development of VAP. Risk factors associated with development of VAP were determined. Adult patients who developed pneumonia, 48 hours after ventilation, were called cases while those who did not develop pneumonia were called controls. Seventy (28%) out of 250 mechanically ventilated patients developed VAP (rate of VAP was 26 cases per 1000 ventilator days). Shock during first 48 hours of ventilation (odds ratio (OR), 5.95; 95% confidence interval (CI), 2.83-12.52), transport out of ICU during mechanical ventilation (OR, 6.0; 95% CI, 2.92-12.37), re-intubation (OR, 4.23; 95% CI, 2.53-9.85), prior episode of aspiration of gastric content (OR, 3.07; 95% CI, 1.35-7.01), and use of antibiotics prior to intubation (OR,2.55; 95% CI, 1.20-5.41) were found to be independently associated with a higher risk of developing VAP. Gram negative organisms and Staphylococcus aureus were responsible for over 90% of cases. Patients with VAP had higher crude mortality rate (57.1%) compared with controls (32.2%). Ventilator associated pneumonia is associated with a high mortality. This study has identified risk factors associated with VAP.

  18. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome.

    PubMed

    Zhou, Yongfang; Jin, Xiaodong; Lv, Yinxia; Wang, Peng; Yang, Yunqing; Liang, Guopeng; Wang, Bo; Kang, Yan

    2017-11-01

    Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (P high ) set at the last plateau airway pressure (P plat ), not to exceed 30 cmH 2 O) and low airway pressure ( P low ) set at 5 cmH 2 O; the release phase (T low ) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; P plat not exceeding 30 cmH 2 O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO 2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P plat , respiratory system compliance, and patient outcomes. Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the

  19. Mechanical ventilator - infants

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007240.htm Mechanical ventilator - infants To use the sharing features on this page, please enable JavaScript. A mechanical ventilator is a machine that assists with breathing. ...

  20. Comparing mode-crosstalk and mode-dependent loss of laterally displaced orbital angular momentum and Hermite-Gaussian modes for free-space optical communication.

    PubMed

    Ndagano, Bienvenu; Mphuthi, Nokwazi; Milione, Giovanni; Forbes, Andrew

    2017-10-15

    There is interest in using orbital angular momentum (OAM) modes to increase the data speed of free-space optical communication. A prevalent challenge is the mitigation of mode-crosstalk and mode-dependent loss that is caused by the modes' lateral displacement at the data receiver. Here, the mode-crosstalk and mode-dependent loss of laterally displaced OAM modes (LG 0,+1 , LG 0,-1 ) are experimentally compared to that of a Hermite-Gaussian (HG) mode subset (HG 0,1 , HG 1,0 ). It is shown, for an aperture larger than the modes' waist sizes, some of the HG modes can experience less mode-crosstalk and mode-dependent loss when laterally displaced along a symmetry axis. It is also shown, over a normal distribution of lateral displacements whose standard deviation is 2× the modes' waist sizes, on average, the HG modes experience 66% less mode-crosstalk and 17% less mode-dependent loss.

  1. [Comparing different treatments for femoral neck fracture of displacement type in the elderly:a meta analysis].

    PubMed

    Zhao, Wenbo; Tu, Chongqi; Zhang, Hui; Fang, Yue; Wang, Guanglin; Liu, Lei

    2014-04-01

    To compare the effects and security between internal fixation and total hip arthroplasty for the patients in elderly with femoral neck fracture of displacement type through a meta analysis. Studies on comparison between internal fixation and total hip arthroplasty for the patients in the elderly with femoral neck fracture of displacement type were identified from PubMed database,EMBase database, COCHRANE library, CMB database, CNKI database and MEDLINE database. Data analysis were performed using Revman 5.2.6(the Cochrane Collaboration). Six published randomized controlled trials including 627 patients were suitable for the review, 286 cases in internal fixation group and 341 cases in total hip arthroplasty group. The results of meta analysis indicated that statistically significant difference were observed between the two groups in the quality of life which was reflected by the Harris scale (RR = 0.82, 95%CI:0.72-0.93, P < 0.05) , the reoperation rate (RR = 5.81, 95%CI:3.09-10.95, P < 0.05) and the major complications rate (RR = 3.60, 95%CI:2.29-5.67, P < 0.05) postoperatively. There were no difference in the mortality at 1 year and 5 years postoperatively(P > 0.05). For the patients with femoral neck fracture of displacement type in the elderly, there is no statistical difference between two groups in the mortality postoperatively. The quality of life and the security of operation in internal fixation group is worse than the total hip arthroplasty group.

  2. Liquid ventilation.

    PubMed

    Sarkar, Suman; Paswan, Anil; Prakas, S

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported.

  3. CFD and ventilation research.

    PubMed

    Li, Y; Nielsen, P V

    2011-12-01

    There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000-10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize the growing need for CFD verification and validation, suggest ongoing needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical analysis in ventilation research, rather it has become an increasingly important partner. We believe that an effective scientific approach for ventilation studies is still to combine experiments, theory, and CFD. We argue that CFD verification and validation are becoming more crucial than ever as more complex ventilation problems are solved. It is anticipated that ventilation problems at the city scale will be tackled by CFD in the next 10 years. © 2011 John Wiley & Sons A/S.

  4. Changes in Regional Ventilation During Treatment and Dosimetric Advantages of CT Ventilation Image Guided Radiation Therapy for Locally Advanced Lung Cancer.

    PubMed

    Yamamoto, Tokihiro; Kabus, Sven; Bal, Matthieu; Bzdusek, Karl; Keall, Paul J; Wright, Cari; Benedict, Stanley H; Daly, Megan E

    2018-05-04

    Lung functional image guided radiation therapy (RT) that avoids irradiating highly functional regions has potential to reduce pulmonary toxicity following RT. Tumor regression during RT is common, leading to recovery of lung function. We hypothesized that computed tomography (CT) ventilation image-guided treatment planning reduces the functional lung dose compared to standard anatomic image-guided planning in 2 different scenarios with or without plan adaptation. CT scans were acquired before RT and during RT at 2 time points (16-20 Gy and 30-34 Gy) for 14 patients with locally advanced lung cancer. Ventilation images were calculated by deformable image registration of four-dimensional CT image data sets and image analysis. We created 4 treatment plans at each time point for each patient: functional adapted, anatomic adapted, functional unadapted, and anatomic unadapted plans. Adaptation was performed at 2 time points. Deformable image registration was used for accumulating dose and calculating a composite of dose-weighted ventilation used to quantify the lung accumulated dose-function metrics. The functional plans were compared with the anatomic plans for each scenario separately to investigate the hypothesis at a significance level of 0.05. Tumor volume was significantly reduced by 20% after 16 to 20 Gy (P = .02) and by 32% after 30 to 34 Gy (P < .01) on average. In both scenarios, the lung accumulated dose-function metrics were significantly lower in the functional plans than in the anatomic plans without compromising target volume coverage and adherence to constraints to critical structures. For example, functional planning significantly reduced the functional mean lung dose by 5.0% (P < .01) compared to anatomic planning in the adapted scenario and by 3.6% (P = .03) in the unadapted scenario. This study demonstrated significant reductions in the accumulated dose to the functional lung with CT ventilation image-guided planning compared to anatomic

  5. Impact of Fire Ventilation on General Ventilation in the Building

    NASA Astrophysics Data System (ADS)

    Zender-Świercz, Ewa; Telejko, Marek

    2017-10-01

    The fire of building is a threat to its users. The biggest threat is generation, during lifetime of fire, hot gases and smoke. The purpose of quick and efficient evacuation from the area covered by the fire, at first step the escape routes have to be secured from smokiness. The smoke ventilation systems are used for this purpose. The proper design and execution of smoke ventilation is important not only because of the safety, but also of the maintenance of comfort in the building at a time when there is no fire. The manuscript presents the effect of incorrectly realized smoke ventilation in the stairwell of the medium building. The analysis shows that the flaps of smoke ventilation located in the stairwell may have a significant impact on the proper functioning of mechanical ventilation in the period when there is no fire. The improperly installed or incorrect insulated components cause perturbation of air flow and they change pressure distribution in the building. The conclusion of the analysis is the need to include the entire technical equipment of the building during the design and realization of its individual elements. The impact of various installations at each other is very important, and the omission of any of them can cause disturbances in the proper work of another.

  6. Trends in mechanical ventilation: are we ventilating our patients in the best possible way?

    PubMed Central

    Veneroni, Chiara; Farre’, Ramon

    2017-01-01

    This review addresses how the combination of physiology, medicine and engineering principles contributed to the development and advancement of mechanical ventilation, emphasising the most urgent needs for improvement and the most promising directions of future development. Several aspects of mechanical ventilation are introduced, highlighting on one side the importance of interdisciplinary research for further development and, on the other, the importance of training physicians sufficiently on the technological aspects of modern devices to exploit properly the great complexity and potentials of this treatment. Educational aims To learn how mechanical ventilation developed in recent decades and to provide a better understanding of the actual technology and practice. To learn how and why interdisciplinary research and competences are necessary for providing the best ventilation treatment to patients. To understand which are the most relevant technical limitations in modern mechanical ventilators that can affect their performance in delivery of the treatment. To better understand and classify ventilation modes. To learn the classification, benefits, drawbacks and future perspectives of automatic ventilation tailoring algorithms. PMID:28620428

  7. Trends in mechanical ventilation: are we ventilating our patients in the best possible way?

    PubMed

    Dellaca', Raffaele L; Veneroni, Chiara; Farre', Ramon

    2017-06-01

    This review addresses how the combination of physiology, medicine and engineering principles contributed to the development and advancement of mechanical ventilation, emphasising the most urgent needs for improvement and the most promising directions of future development. Several aspects of mechanical ventilation are introduced, highlighting on one side the importance of interdisciplinary research for further development and, on the other, the importance of training physicians sufficiently on the technological aspects of modern devices to exploit properly the great complexity and potentials of this treatment. To learn how mechanical ventilation developed in recent decades and to provide a better understanding of the actual technology and practice.To learn how and why interdisciplinary research and competences are necessary for providing the best ventilation treatment to patients.To understand which are the most relevant technical limitations in modern mechanical ventilators that can affect their performance in delivery of the treatment.To better understand and classify ventilation modes.To learn the classification, benefits, drawbacks and future perspectives of automatic ventilation tailoring algorithms.

  8. Limiting ventilator-induced lung injury through individual electronic medical record surveillance.

    PubMed

    Herasevich, Vitaly; Tsapenko, Mykola; Kojicic, Marija; Ahmed, Adil; Kashyap, Rachul; Venkata, Chakradhar; Shahjehan, Khurram; Thakur, Sweta J; Pickering, Brian W; Zhang, Jiajie; Hubmayr, Rolf D; Gajic, Ognjen

    2011-01-01

    To improve the safety of ventilator care and decrease the risk of ventilator-induced lung injury, we designed and tested an electronic algorithm that incorporates patient characteristics and ventilator settings, allowing near-real-time notification of bedside providers about potentially injurious ventilator settings. Electronic medical records of consecutive patients who received invasive ventilation were screened in three Mayo Clinic Rochester intensive care units. The computer system alerted bedside providers via the text paging notification about potentially injurious ventilator settings. Alert criteria included a Pao2/Fio2 ratio of <300 mm Hg, free text search for the words "edema" or "bilateral + infiltrates" on the chest radiograph report, a tidal volume of >8 mL/kg predicted body weight (based on patient gender and height), a plateau pressure of >30 cm H2O, and a peak airway pressure of >35 cm H2O. Respiratory therapists answered a brief online satisfaction survey. Ventilator-induced lung injury risk was compared before and after the introduction of ventilator-induced lung injury alert. The prevalence of acute lung injury was 42% (n = 490) among 1,159 patients receiving >24 hrs of invasive ventilation. The system sent 111 alerts for 80 patients, with a positive predictive value of 59%. The exposure to potentially injurious ventilation decreased after the intervention from 40.6 ± 74.6 hrs to 26.9 ± 77.3 hrs (p = .004). Electronic medical record surveillance of mechanically ventilated patients accurately detects potentially injurious ventilator settings and is able to influence bedside practice at moderate costs. Its implementation is associated with decreased patient exposure to potentially injurious mechanical ventilation settings.

  9. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation.

    PubMed

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen). A fixed protective ventilation protocol (6 mL/kg) was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P < 0.017. Results. During heliox ventilation, respiratory rate decreased (25 ± 4 versus 23 ± 5 breaths min(-1), P = 0.010). Minute volume ventilation showed a trend to decrease compared to baseline (11.1 ± 1.9 versus 9.9 ± 2.1 L min(-1), P = 0.026), while reducing PaCO2 levels (5.0 ± 0.6 versus 4.5 ± 0.6 kPa, P = 0.011) and peak pressures (21.1 ± 3.3 versus 19.8 ± 3.2 cm H2O, P = 0.024). Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  10. Study on the Evaluation Method for Fault Displacement: Probabilistic Approach Based on Japanese Earthquake Rupture Data - Principal fault displacements -

    NASA Astrophysics Data System (ADS)

    Kitada, N.; Inoue, N.; Tonagi, M.

    2016-12-01

    The purpose of Probabilistic Fault Displacement Hazard Analysis (PFDHA) is estimate fault displacement values and its extent of the impact. There are two types of fault displacement related to the earthquake fault: principal fault displacement and distributed fault displacement. Distributed fault displacement should be evaluated in important facilities, such as Nuclear Installations. PFDHA estimates principal fault and distributed fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. We constructed slip distance relation of principal fault displacement based on Japanese strike and reverse slip earthquakes in order to apply to Japan area that of subduction field. However, observed displacement data are sparse, especially reverse faults. Takao et al. (2013) tried to estimate the relation using all type fault systems (reverse fault and strike slip fault). After Takao et al. (2013), several inland earthquakes were occurred in Japan, so in this time, we try to estimate distance-displacement functions each strike slip fault type and reverse fault type especially add new fault displacement data set. To normalized slip function data, several criteria were provided by several researchers. We normalized principal fault displacement data based on several methods and compared slip-distance functions. The normalized by total length of Japanese reverse fault data did not show particular trend slip distance relation. In the case of segmented data, the slip-distance relationship indicated similar trend as strike slip faults. We will also discuss the relation between principal fault displacement distributions with source fault character. According to slip distribution function (Petersen et al., 2011), strike slip fault type shows the ratio of normalized displacement are decreased toward to the edge of fault. However, the data set of Japanese strike slip fault data not so decrease in the end of the fault

  11. Gas transfer model to design a ventilator for neonatal total liquid ventilation.

    PubMed

    Bonfanti, Mirko; Cammi, Antonio; Bagnoli, Paola

    2015-12-01

    The study was aimed to optimize the gas transfer in an innovative ventilator for neonatal Total Liquid Ventilation (TLV) that integrates the pumping and oxygenation functions in a non-volumetric pulsatile device made of parallel flat silicone membranes. A computational approach was adopted to evaluate oxygen (O2) and carbon dioxide (CO2) exchanges between the liquid perfluorocarbon (PFC) and the oxygenating gas, as a function of the geometrical parameter of the device. A 2D semi-empirical model was implemented to this purpose using Comsol Multiphysics to study both the fluid dynamics and the gas exchange in the ventilator. Experimental gas exchanges measured with a preliminary prototype were compared to the simulation outcomes to prove the model reliability. Different device configurations were modeled to identify the optimal design able to guarantee the desired gas transfer. Good agreement between experimental and simulation outcomes was obtained, validating the model. The optimal configuration, able to achieve the desired gas exchange (ΔpCO2 = 16.5 mmHg and ΔpO2 = 69 mmHg), is a device comprising 40 modules, 300 mm in length (total exchange area = 2.28 m(2)). With this configuration gas transfer performance is satisfactory for all the simulated settings, proving good adaptability of the device. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. A description of intraoperative ventilator management in patients with acute lung injury and the use of lung protective ventilation strategies.

    PubMed

    Blum, James M; Maile, Michael; Park, Pauline K; Morris, Michelle; Jewell, Elizabeth; Dechert, Ronald; Rosenberg, Andrew L

    2011-07-01

    The incidence of acute lung injury (ALI) in hypoxic patients undergoing surgery is currently unknown. Previous studies have identified lung protective ventilation strategies that are beneficial in the treatment of ALI. The authors sought to determine the incidence and examine the use of lung protective ventilation strategies in patients receiving anesthetics with a known history of ALI. The ventilation parameters that were used in all patients were reviewed, with an average preoperative PaO₂/Fio₂ [corrected] ratio of ≤ 300 between January 1, 2005 and July 1, 2009. This dataset was then merged with a dataset of patients screened for ALI. The median tidal volume, positive end-expiratory pressure, peak inspiratory pressures, fraction inhaled oxygen, oxygen saturation, and tidal volumes were compared between groups. A total of 1,286 patients met criteria for inclusion; 242 had a diagnosis of ALI preoperatively. Comparison of patients with ALI versus those without ALI found statistically yet clinically insignificant differences between the ventilation strategies between the groups in peak inspiratory pressures and positive end-expiratory pressure but no other category. The tidal volumes in cc/kg predicted body weight were approximately 8.7 in both groups. Peak inspiratory pressures were found to be 27.87 cm H₂O on average in the non-ALI group and 29.2 in the ALI group. Similar ventilation strategies are used between patients with ALI and those without ALI. These findings suggest that anesthesiologists are not using lung protective ventilation strategies when ventilating patients with low PaO₂/Fio₂ [corrected] ratios and ALI, and instead are treating hypoxia and ALI with higher concentrations of oxygen and peak pressures.

  13. Association Between Noninvasive Ventilation and Mortality Among Older Patients With Pneumonia

    PubMed Central

    Valley, Thomas S.; Walkey, Allan J.; Lindenauer, Peter K.; Wiener, Renda Soylemez; Cooke, Colin R.

    2016-01-01

    Objective Despite increasing use, evidence is mixed as to the appropriate use of noninvasive ventilation in patients with pneumonia. We aimed to determine the relationship between receipt of noninvasive ventilation and outcomes for patients with pneumonia in a real-world setting. Design, Setting, Patients We performed a retrospective cohort study of Medicare beneficiaries (aged > 64 yr) admitted to 2,757 acute-care hospitals in the United States with pneumonia, who received mechanical ventilation from 2010 to 2011. Exposures Noninvasive ventilation versus invasive mechanical ventilation. Measurement and Main Results The primary outcome was 30-day mortality with Medicare reimbursement as a secondary outcome. To account for unmeasured confounding associated with noninvasive ventilation use, an instrumental variable was used—the differential distance to a high noninvasive ventilation use hospital. All models were adjusted for patient and hospital characteristics to account for measured differences between groups. Among 65,747 Medicare beneficiaries with pneumonia who required mechanical ventilation, 12,480 (19%) received noninvasive ventilation. Patients receiving noninvasive ventilation were more likely to be older, male, white, rural-dwelling, have fewer comorbidities, and were less likely to be acutely ill as measured by organ failures. Results of the instrumental variable analysis suggested that, among marginal patients, receipt of noninvasive ventilation was not significantly associated with differences in 30-day mortality when compared with invasive mechanical ventilation (54% vs 55%; p = 0.92; 95% CI of absolute difference, –13.8 to 12.4) but was associated with significantly lower Medicare spending ($18,433 vs $27,051; p = 0.02). Conclusions Among Medicare beneficiaries hospitalized with pneumonia who received mechanical ventilation, noninvasive ventilation use was not associated with a real-world mortality benefit. Given the wide CIs, however, substantial

  14. Daily Goals Formulation and Enhanced Visualization of Mechanical Ventilation Variance Improves Mechanical Ventilation Score.

    PubMed

    Walsh, Brian K; Smallwood, Craig; Rettig, Jordan; Kacmarek, Robert M; Thompson, John; Arnold, John H

    2017-03-01

    The systematic implementation of evidence-based practice through the use of guidelines, checklists, and protocols mitigates the risks associated with mechanical ventilation, yet variation in practice remains prevalent. Recent advances in software and hardware have allowed for the development and deployment of an enhanced visualization tool that identifies mechanical ventilation goal variance. Our aim was to assess the utility of daily goal establishment and a computer-aided visualization of variance. This study was composed of 3 phases: a retrospective observational phase (baseline) followed by 2 prospective sequential interventions. Phase I intervention comprised daily goal establishment of mechanical ventilation. Phase II intervention was the setting and monitoring of daily goals of mechanical ventilation with a web-based data visualization system (T3). A single score of mechanical ventilation was developed to evaluate the outcome. The baseline phase evaluated 130 subjects, phase I enrolled 31 subjects, and phase II enrolled 36 subjects. There were no differences in demographic characteristics between cohorts. A total of 171 verbalizations of goals of mechanical ventilation were completed in phase I. The use of T3 increased by 87% from phase I. Mechanical ventilation score improved by 8.4% in phase I and 11.3% in phase II from baseline ( P = .032). The largest effect was in the low risk V T category, with a 40.3% improvement from baseline in phase I, which was maintained at 39% improvement from baseline in phase II ( P = .01). mechanical ventilation score was 9% higher on average in those who survived. Daily goal formation and computer-enhanced visualization of mechanical ventilation variance were associated with an improvement in goal attainment by evidence of an improved mechanical ventilation score. Further research is needed to determine whether improvements in mechanical ventilation score through a targeted, process-oriented intervention will lead to

  15. High-Frequency Percussive Ventilation Revisited

    DTIC Science & Technology

    2010-01-01

    be implemented. ‡ Follow the reverse of the ventilation sequence if respiratory alkalosis develops—however, start at ventilation goal sequence 1 not at...High-frequency percussive ventilation (HFPV) has demonstrated a potential role as a rescue option for refractory acute respiratory distress syndrome...frequency percussive ventilation (HFPV) has demon- strated a potential role as a salvage option for refrac- tory acute respiratory distress syndrome

  16. Efficacy of continuous versus intermittent subglottic secretion drainage in preventing ventilator-associated pneumonia in patients requiring mechanical ventilation: A single-center randomized controlled trial.

    PubMed

    Fujimoto, Hiroko; Yamaguchi, Osamu; Hayami, Hajime; Shimosaka, Mika; Tsuboi, Sayaka; Sato, Mitsunori; Takebayashi, Shigeo; Morita, Satoshi; Saito, Mari; Goto, Takahisa; Kurahashi, Kiyoyasu

    2018-03-23

    Aspiration of subglottic secretion is a widely used intervention to prevent ventilator-associated pneumonia (VAP). This study aimed to compare the efficacy of continuous and intermittent subglottic secretion drainage (SSD) in preventing VAP. A single-center randomized controlled trial was conducted on adult postoperative patients who were expected to undergo mechanical ventilation for more than 48 hours. Primary outcome measure was incidence of VAP and secondary outcome measures were length of mechanical ventilation and intensive-care unit (ICU) stay. Fifty-nine patients received continuous SSD, while 60 patients received intermittent SSD. Of these 119 patients, 88 (74%) were excluded and 15 and 16 patients were allocated to receive continuous and intermittent SSD, respectively. VAP was detected in 4 (26.7%) and 7 (43.8%) patients in the continuous and intermittent groups, respectively, (p=0.320). The length of mechanical ventilation was significantly shorter (p=0.034) in the continuous group (99.5±47.1 h) than in the intermittent group (159.9±94.5 h). The length of ICU stay was also shorter (p=0.0097) in the continuous group (6.3±2.1 days) than the intermittent group (9.8±4.8 days). Although continuous SSD did not reduce the incidence of VAP, it reduced the length of mechanical ventilation and ICU stay when compared to intermittent SSD.

  17. Hemodynamic differences between continual positive and two types of negative pressure ventilation.

    PubMed

    Lockhat, D; Langleben, D; Zidulka, A

    1992-09-01

    In seven anesthetized dogs, ventilated with matching lung volumes, tidal volumes, and respiratory rates, we compared the effects on cardiac output (CO), arterial venous oxygen saturation difference (SaO2 - SVO2), and femoral and inferior vena cava pressure (1) intermittent positive pressure ventilation with positive end-expiratory pressure (CPPV); (2) iron-lung ventilation with negative end-expiratory pressure (ILV-NEEP); (3) grid and wrap ventilation with NEEP applied to the thorax and upper abdomen (G&W-NEEP). The values of CO and SaO2 - SVO2 with ILV-NEEP were similar to those with CPPV. However, with G&W-NEEP as compared with ILV-NEEP, mean CO was greater (2.9 versus 2.6 L/min, p = 0.02) and mean (SaO2 - SVO2) was lower (26.6% versus 28.3%, p = NS). Mean PFEM-IVC was higher with G&W-NEEP than with the other types of ventilation. We conclude that (1) ILV-NEEP is hemodynamically equivalent to CPPV and (2) G&W-NEEP has less adverse hemodynamic consequences. has less adverse hemodynamic consequences.

  18. Winter ventilation rates at primary schools: comparison between Portugal and Finland.

    PubMed

    Canha, N; Almeida, S M; Freitas, M C; Täubel, M; Hänninen, O

    2013-01-01

    This study focused on examination of ventilation rates in classrooms with two different types of ventilation systems: natural and mechanical. Carbon dioxide (CO2) measurements were conducted in primary schools of Portugal characterized by natural ventilation and compared to Finland where mechanical ventilation is the norm. The winter period was selected since this season exerts a great influence in naturally ventilated classrooms, where opening of windows and doors occurs due to outdoor atmospheric conditions. The ventilation rates were calculated by monitoring CO2 concentrations generated by the occupants (used as a tracer gas) and application of the buildup phase method. A comparison between both countries' results was conducted with respect to ventilation rates and how these levels corresponded to national regulatory standards. Finnish primary schools (n = 2) registered a mean ventilation rate of 13.3 L/s per person, which is higher than the recommended ventilation standards. However, the Finnish classroom that presented the lowest ventilation rate (7.2 L/s per person) displayed short-term CO2 levels above 1200 ppm, which is the threshold limit value (TLV) recommended by national guidelines. The Portuguese classrooms (n = 2) showed low ventilation rates with mean values of 2.4 L/s per person, which is markedly lower than the minimum recommended value of 7 L/s per person as defined by ASHRAE and 20% less than the REHVA minimum of 3 L/s per person. Carbon dioxide levels of 1000 ppm, close to the TLV of 1200 ppm, were also reached in both Portuguese classrooms studied. The situation in Portugal indicates a potentially serious indoor air quality problem and strengthens the need for intervention to improve ventilation rates in naturally ventilated classrooms.

  19. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    NASA Astrophysics Data System (ADS)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  20. Time of non-invasive ventilation.

    PubMed

    Nava, Stefano; Navalesi, Paolo; Conti, Giorgio

    2006-03-01

    Non-invasive ventilation (NIV) is a safe, versatile and effective technique that can avert side effects and complications associated with endotracheal intubation. The success of NIV relies on several factors, including the type and severity of acute respiratory failure, the underlying disease, the location of treatment, and the experience of the team. The time factor is also important. NIV is primarily used to avert the need for endotracheal intubation in patients with early-stage acute respiratory failure and post-extubation respiratory failure. It can also be used as an alternative to invasive ventilation at a more advanced stage of acute respiratory failure or to facilitate the process of weaning from mechanical ventilation. NIV has been used to prevent development of acute respiratory failure or post-extubation respiratory failure. The number of days of NIV and hours of daily use differ, depending on the severity and course of the acute respiratory failure and the timing of application. In this review article, we analyse, compare and discuss the results of studies in which NIV was applied at various times during the evolution of acute respiratory failure.

  1. Temperature of gas delivered from ventilators.

    PubMed

    Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2013-01-01

    Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.

  2. The comfort of breathing: a study with volunteers assessing the influence of various modes of assisted ventilation.

    PubMed

    Russell, W C; Greer, J R

    2000-11-01

    To assess the subjective feeling of comfort of healthy volunteers breathing on various modes of ventilation used in intensive care. A randomized, prospective, double-blinded, crossover trial using volunteers. An intensive care unit (ICU) in a teaching hospital. We compared, by using healthy volunteers, the subjective feeling of comfort of three modes of ventilation used during the weaning phase of critical illness. We used healthy volunteers to avoid other distracting influences of intensive care that may confound the primary feeling of comfort. The modes we compared were synchronized intermittent mandatory ventilation, assisted spontaneous breathing, and biphasic positive airway pressure. The imposed ventilation was comparable with 50% of the volunteers' normal respiratory effort. The volunteers breathed via a mouthpiece through a ventilator circuit, and the modes of ventilation were introduced in a randomized manner. We measured visual analog scores for comfort for the three modes of ventilation and collected a ranking order and open-ended comments. We demonstrated that at the level of support we imposed, assisted spontaneous breathing was the most comfortable mode of ventilation and that synchronized intermittent mandatory ventilation was the most uncomfortable. These results were strongly supported by both the ranking scale and comments of the volunteers. Assisted spontaneous breathing was the most comfortable mode of ventilation because the pattern was primarily determined by the volunteer. Synchronized intermittent mandatory ventilation was the most uncomfortable because the ventilatory pattern was imposed on the volunteers, leading to ventilator-volunteer dyssynchrony. We also conclude there is wide individual variation in the subjective feeling of comfort. Whereas the mode of ventilation in ICUs is based primarily on the physiologic needs of the patient, the feeling of comfort may be considered when choosing an appropriate mode of ventilation during the

  3. Comparison of invasive and noninvasive positive pressure ventilation delivered by means of a helmet for weaning of patients from mechanical ventilation.

    PubMed

    Carron, Michele; Rossi, Sandra; Carollo, Cristiana; Ori, Carlo

    2014-08-01

    The effectiveness of noninvasive positive pressure ventilation delivered by helmet (H-NPPV) as a weaning approach in patients with acute respiratory failure is unclear. We randomly and evenly assigned 64 patients intubated for acute respiratory failure to conventional weaning with invasive mechanical ventilation (IMV) or H-NPPV. The primary end point was a reduction in IMV duration by 6 days between the 2 groups. Secondary end points were the occurrence of ventilator-associated pneumonia and major complications, duration of mechanical ventilation and weaning, intensive care unit and hospital length of stay, and survival. The mean duration of IMV was significantly reduced in the H-NPPV group compared with the IMV group (P<.0001), without significant difference in duration of weaning (P=.26) and total ventilatory support (P=.45). In the H-NPPV group, the incidence of major complications was less than the IMV group (P=.032). Compared with the H-NPPV group, the IMV group was associated with a greater incidence of VAP (P=.018) and an increased risk of nosocomial pneumonia (P=.049). The mortality rate was similar between the groups, with no significant difference in overall intensive care unit (P=.47) or hospital length of stay (P=.37). H-NPPV was well tolerated and effective in patients who were difficult to wean. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Study on the Evaluation Method for Fault Displacement: Probabilistic Approach Based on Japanese Earthquake Rupture Data - Distributed fault displacements -

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Tonagi, M.

    2016-12-01

    Distributed fault displacements in Probabilistic Fault Displace- ment Analysis (PFDHA) have an important rule in evaluation of important facilities such as Nuclear Installations. In Japan, the Nu- clear Installations should be constructed where there is no possibility that the displacement by the earthquake on the active faults occurs. Youngs et al. (2003) defined the distributed fault as displacement on other faults or shears, or fractures in the vicinity of the principal rup- ture in response to the principal faulting. Other researchers treated the data of distribution fault around principal fault and modeled according to their definitions (e.g. Petersen et al., 2011; Takao et al., 2013 ). We organized Japanese fault displacements data and constructed the slip-distance relationship depending on fault types. In the case of reverse fault, slip-distance relationship on the foot-wall indicated difference trend compared with that on hanging-wall. The process zone or damaged zone have been studied as weak structure around principal faults. The density or number is rapidly decrease away from the principal faults. We contrasted the trend of these zones with that of distributed slip-distance distributions. The subsurface FEM simulation have been carried out to inves- tigate the distribution of stress around principal faults. The results indicated similar trend compared with the distribution of field obser- vations. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (S/NRA), Japan.

  5. Bacterial burden in the operating room: impact of airflow systems.

    PubMed

    Hirsch, Tobias; Hubert, Helmine; Fischer, Sebastian; Lahmer, Armin; Lehnhardt, Marcus; Steinau, Hans-Ulrich; Steinstraesser, Lars; Seipp, Hans-Martin

    2012-09-01

    Wound infections present one of the most prevalent and frequent complications associated with surgical procedures. This study analyzes the impact of currently used ventilation systems in the operating room to reduce bacterial contamination during surgical procedures. Four ventilation systems (window-based ventilation, supported air nozzle canopy, low-turbulence displacement airflow, and low-turbulence displacement airflow with flow stabilizer) were analyzed. Two hundred seventy-seven surgical procedures in 6 operating rooms of 5 different hospitals were analyzed for this study. Window-based ventilation showed the highest intraoperative contamination (13.3 colony-forming units [CFU]/h) followed by supported air nozzle canopy (6.4 CFU/h; P = .001 vs window-based ventilation) and low-turbulence displacement airflow (3.4 and 0.8 CFU/h; P < .001 vs window-based ventilation and supported air nozzle canopy). The highest protection was provided by the low-turbulence displacement airflow with flow stabilizer (0.7 CFU/h), which showed a highly significant difference compared with the best supported air nozzle canopy theatre (3.9 CFU/h; P < .001). Furthermore, this system showed no increase of contamination in prolonged durations of surgical procedures. This study shows that intraoperative contamination can be significantly reduced by the use of adequate ventilation systems. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  6. 14 CFR 125.117 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ventilation. 125.117 Section 125.117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS....117 Ventilation. Each passenger or crew compartment must be suitably ventilated. Carbon monoxide...

  7. Pretest Predictions for Ventilation Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Sun; H. Yang; H.N. Kalia

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that canmore » be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only.« less

  8. 30 CFR 75.333 - Ventilation controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Ventilation controls. 75.333 Section 75.333... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.333 Ventilation controls. (a) For... ventilation control devices constructed after November 15, 1992, shall be built and maintained— (1) Between...

  9. 30 CFR 75.333 - Ventilation controls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Ventilation controls. 75.333 Section 75.333... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.333 Ventilation controls. (a) For... ventilation control devices constructed after November 15, 1992, shall be built and maintained— (1) Between...

  10. A coupled airflow and source/sink model for simulating indoor VOC exposures.

    PubMed

    Yang, X; Chen, Q

    2001-12-01

    In this paper, a numerical model is presented to study the indoor air quality (IAQ) in a room with different emission sources, sinks, and ventilation methods. A computer program, ACCESS-IAQ, is developed to simulate the airflow pattern, the time history of the contaminant concentrations in the occupied zone, and the inhalation exposures. The program developed may be useful for IAQ professional to design healthy and comfortable indoor environments. A numerical study has been carried out to predict the effectiveness of a displacement ventilation and a mixing ventilation on volatile organic compound (VOC) removal in a model office. Results from the numerical predictions show that when a "wet" emission source (a freshly painted wood stain) is distributed uniformly across the floor area with sinks (gypsum board) from the four vertical walls, displacement ventilation has consistently lower exposure at the breathing level of the occupant in the room. Such an effect is mainly due to the higher ventilation efficiency of displacement ventilation compared to the mixing ventilation. The simulation results also show that the walls adsorb significant amounts of VOCs during the first hour and act as secondary sources thereafter.

  11. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Rudd and D. Bergey

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.« less

  12. Peroneal tendon displacement accompanying intra-articular calcaneal fractures.

    PubMed

    Toussaint, Rull James; Lin, Darius; Ehrlichman, Lauren K; Ellington, J Kent; Strasser, Nicholas; Kwon, John Y

    2014-02-19

    Peroneal tendon displacement (subluxation or dislocation) accompanying an intra-articular calcaneal fracture is often undetected and under-treated. The goals of this study were to determine (1) the prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures, (2) the association of tendon displacement with fracture classifications, (3) the association of tendon displacement with heel width, and (4) the rate of missed diagnosis of the tendon displacement on radiographs and computed tomography (CT) scans and the resulting treatment rate. A retrospective radiographic review of all calcaneal fractures presenting at three institutions from June 30, 2006, to June 30, 2011, was performed. CT imaging of 421 intra-articular calcaneal fractures involving the posterior facet was available for review. The prevalence of peroneal tendon displacement was noted and its associations with fracture classification and heel width were evaluated. Peroneal tendon displacement was identified in 118 (28.0%) of the 421 calcaneal fracture cases. The presence of tendon displacement was significantly associated with joint-depression fractures compared with tongue-type fractures (p < 0.001). Only twelve (10.2%) of the 118 cases of peroneal tendon displacement had been identified in the radiology reports. Although sixty-five (55.1%) of the fractures with tendon displacement had been treated with internal fixation, the tendon displacement was treated surgically in only seven (10.8%) of these cases. Analysis of CT images showed a 28% prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures. Surgeons and radiologists are encouraged to consider this association.

  13. Installation of ventilated facades without scaffolding in high-rise buildings

    NASA Astrophysics Data System (ADS)

    Gnedina, Lyubov; Muchkina, Arina; Labutin, Alexander

    2018-03-01

    This article consider the use of polystyrene concrete blocks during assembling enclosing structure of ventilated facades in high-rise monolithic housing construction. Comparing with traditional technology devices hinged ventilated facade the main advantage of the proposed design is an exception of using scaffold, that leads to a cheapening of the enclosing structure. Proposed solutions are confirmed by patents of the Russian Federation.

  14. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negahdar, M; Yamamoto, T; Shultz, D

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patientsmore » treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.« less

  15. Ventilation practices in subarachnoid hemorrhage: a cohort study exploring the use of lung protective ventilation.

    PubMed

    Marhong, Jonathan D; Ferguson, Niall D; Singh, Jeffrey M

    2014-10-01

    Acute respiratory distress syndrome (ARDS) is common following aneurysmal subarachnoid hemorrhage (SAH), but the influence of mechanical ventilator settings on its development is unclear. We sought to determine adherence to lung protective thresholds in ventilated patients with SAH and describe the association between ventilator settings and subsequent development of ARDS. We conducted a retrospective cohort study of consecutive patients receiving mechanical ventilation within 72 h of SAH at a single academic center. Ventilator settings and blood gas data were collected twice daily for the first 7 days of ventilation along with ICU and hospital outcomes. Lung protective ventilation was defined as follows: tidal volume ≤8 mL/kg of predicted body weight, positive end-expiratory pressure (PEEP) ≥5 cm H(2)O, and peak or plateau pressure ≤30 cm H(2)O. The development of ARDS was ascertained retrospectively by PaO(2)/FiO(2) ≤300 with new bilateral lung opacities on chest X-ray within one day of hypoxemia. We identified 62 patients who underwent early mechanical ventilation following SAH. PS and Continuous Positive Airway Pressure were common ventilator modes with a median tidal volume of 7.8 mL/kg [interquartile range 6.8-8.8], median peak pressure of 14 cm H(2)O [IQR 12-17], and median PEEP of 5 cm H(2)O [IQR 5-6]. Adherence to tidal volumes ≤8 mL/kg was seen in 64 % of all observations and peak pressures <30 cm H(2)O were 94 % of all observations. All three lung protective criteria were seen in 58 % of all observations. Thirty-one patients (50 %) were determined to have ARDS. ARDS patients were more frequently ventilated with a peak pressure >30 cm H(2)O (11.3 % of ARDS ventilation days vs. 0 % of non-ARDS ventilation days; p < 0.01). Initial tidal volume was not associated with subsequent development of ARDS in univariate (p = 0.6) or multivariate analysis (p = 0.49). Only the number of ARDS risk factors was independently associated with the development of

  16. Home Mechanical Ventilation: A 12-Year Population-Based Retrospective Cohort Study.

    PubMed

    Povitz, Marcus; Rose, Louise; Shariff, Salimah Z; Leonard, Sean; Welk, Blayne; Jenkyn, Krista Bray; Leasa, David J; Gershon, Andrea S

    2018-04-01

    Increasing numbers of individuals are being initiated on home mechanical ventilation, including noninvasive (bi-level) and invasive mechanical ventilation delivered via tracheostomy due to chronic respiratory failure to enable symptom management and promote quality of life. Given the high care needs of these individuals, a better understanding of the indications for home mechanical ventilation, and health-care utilization is needed. We performed a retrospective cohort study using provincial health administrative data from Ontario, Canada (population ∼13,000,000). Home mechanical ventilation users were characterized using health administrative data to determine the indications for home mechanical ventilation, the need for acute care at the time of ventilation approval, and their health service use and mortality rates following approval. The annual incidence of home mechanical ventilation approval rose from 1.8/100,000 in 2000 to 5.0/100,000 in 2012, or an annual increase of approximately 0.3/100,000 persons/y. The leading indications were neuromuscular disease, thoracic restriction, and COPD. The indication for the remainder could not be determined due to limitations of the administrative databases. Of the 4,670 individuals, 23.0% commenced home mechanical ventilation following an acute care hospitalization. Among individuals who survived at least 1 y, fewer required hospitalization in the year that followed home mechanical ventilation approval (29.9% vs 39.8%) as compared with the year prior. Utilization of home mechanical ventilation is increasing in Ontario, Canada, and further study is needed to clarify the factors contributing to this and to further optimize utilization of health-care resources. Copyright © 2018 by Daedalus Enterprises.

  17. Summary of human responses to ventilation.

    PubMed

    Seppänen, O A; Fisk, W J

    2004-01-01

    It is known that ventilation is necessary to remove indoor-generated pollutants from indoor air or dilute their concentration to acceptable levels. But as the limit values of all pollutants are not known the exact determination of required ventilation rates based on pollutant concentrations is seldom possible. The selection of ventilation rates has to be based also on epidemiological research, laboratory and field experiments and experience. The existing literature indicates that ventilation has a significant impact on several important human outcomes including: (1) communicable respiratory illnesses; (2) sick building syndrome symptoms; (3) task performance and productivity, and (4) perceived air quality (PAQ) among occupants or sensory panels (5) respiratory allergies and asthma. In many studies, prevalence of sick building syndrome symptoms has also been associated with characteristics of HVAC-systems. Often the prevalence of SBS symptoms is higher in air-conditioned buildings than in naturally ventilated buildings. The evidence suggests that better hygiene, commissioning, operation and maintenance of air handling systems may be particularly important for reducing the negative effects of HVAC systems. Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated. Ventilation may bring indoors harmful substances or deteriorate indoor environment. Ventilation interacts also with the building envelope and may deteriorate the structures of the building. Ventilation changes the pressure differences across the structures of building and may cause or prevent infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. The paper summarises the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus is on office-type working environment and

  18. 21 CFR 868.5975 - Ventilator tubing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ventilator tubing. 868.5975 Section 868.5975 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5975 Ventilator tubing. (a) Identification. Ventilator tubing is a device intended for use as a conduit for gases between a ventilator and a patient...

  19. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  20. Susceptibility to ventilator induced lung injury is increased in senescent rats

    PubMed Central

    2013-01-01

    Introduction The principal mechanisms of ventilator induced lung injury (VILI) have been investigated in numerous animal studies. However, prospective data on the effect of old age on VILI are limited. Under the hypothesis that susceptibility to VILI is increased in old age, we investigated the pulmonary and extrapulmonary effects of mechanical ventilation with high tidal volume (VT) in old compared to young adult animals. Interventions Old (19.1 ± 3.0 months) and young adult (4.4 ± 1.3 months) male Wistar rats were anesthetized and mechanically ventilated (positive end-expiratory pressure 5 cmH2O, fraction of inspired oxygen 0.4, respiratory rate 40/minute) with a tidal volume (VT) of either 8, 16 or 24 ml/kg for four hours. Respiratory and hemodynamic variables, including cardiac output, and markers of systemic inflammation were recorded throughout the ventilation period. Lung histology and wet-to-dry weight ratio, injury markers in lung lavage and respiratory system pressure-volume curves were assessed post mortem. Basic pulmonary characteristics were assessed in non-ventilated animals. Results Compared to young adult animals, high VT (24 ml/kg body weight) caused more lung injury in old animals as indicated by decreased oxygenation (arterial oxygen tension (PaO2): 208 ± 3 vs. 131 ± 20 mmHg; P <0.05), increased lung wet-to-dry-weight ratio (5.61 ± 0.29 vs. 7.52 ± 0.27; P <0.05), lung lavage protein (206 ± 52 mg/l vs. 1,432 ± 101; P <0.05) and cytokine (IL-6: 856 ± 448 vs. 3,283 ± 943 pg/ml; P <0.05) concentration. In addition, old animals ventilated with high VT had more systemic inflammation than young animals (IL-1β: 149 ± 44 vs. 272 ± 36 pg/ml; P <0.05 - young vs. old, respectively). Conclusions Ventilation with unphysiologically large tidal volumes is associated with more lung injury in old compared to young rats. Aggravated pulmonary and systemic inflammation is a key finding in old animals developing VILI. PMID:23710684

  1. Efficacy of ventilator waveform observation for detection of patient-ventilator asynchrony during NIV: a multicentre study.

    PubMed

    Longhini, Federico; Colombo, Davide; Pisani, Lara; Idone, Francesco; Chun, Pan; Doorduin, Jonne; Ling, Liu; Alemani, Moreno; Bruni, Andrea; Zhaochen, Jin; Tao, Yu; Lu, Weihua; Garofalo, Eugenio; Carenzo, Luca; Maggiore, Salvatore Maurizio; Qiu, Haibo; Heunks, Leo; Antonelli, Massimo; Nava, Stefano; Navalesi, Paolo

    2017-10-01

    The objective of this study was to assess ability to identify asynchronies during noninvasive ventilation (NIV) through ventilator waveforms according to experience and interface, and to ascertain the influence of breathing pattern and respiratory drive on sensitivity and prevalence of asynchronies. 35 expert and 35 nonexpert physicians evaluated 40 5-min NIV reports displaying flow-time and airway pressure-time tracings; identified asynchronies were compared with those ascertained by three examiners who evaluated the same reports displaying, additionally, tracings of diaphragm electrical activity. We determined: 1) sensitivity, specificity, and positive and negative predictive values; 2) the correlation between the double true index (DTI) of each report ( i.e., the ratio between the sum of true positives and true negatives, and the overall breath count) and the corresponding asynchrony index (AI); and 3) the influence of breathing pattern and respiratory drive on both AI and sensitivity. Sensitivities to detect asynchronies were low either according to experience (0.20 (95% CI 0.14-0.29) for expert versus 0.21 (95% CI 0.12-0.30) for nonexpert, p=0.837) or interface (0.28 (95% CI 0.17-0.37) for mask versus 0.10 (95% CI 0.05-0.16) for helmet, p<0.0001). DTI inversely correlated with the AI (r 2 =0.67, p<0.0001). Breathing pattern and respiratory drive did not affect prevalence of asynchronies and sensitivity. Patient-ventilator asynchrony during NIV is difficult to recognise solely by visual inspection of ventilator waveforms.

  2. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    PubMed

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  3. Application of mid-frequency ventilation in an animal model of lung injury: a pilot study.

    PubMed

    Mireles-Cabodevila, Eduardo; Chatburn, Robert L; Thurman, Tracy L; Zabala, Luis M; Holt, Shirley J; Swearingen, Christopher J; Heulitt, Mark J

    2014-11-01

    Mid-frequency ventilation (MFV) is a mode of pressure control ventilation based on an optimal targeting scheme that maximizes alveolar ventilation and minimizes tidal volume (VT). This study was designed to compare the effects of conventional mechanical ventilation using a lung-protective strategy with MFV in a porcine model of lung injury. Our hypothesis was that MFV can maximize ventilation at higher frequencies without adverse consequences. We compared ventilation and hemodynamic outcomes between conventional ventilation and MFV. This was a prospective study of 6 live Yorkshire pigs (10 ± 0.5 kg). The animals were subjected to lung injury induced by saline lavage and injurious conventional mechanical ventilation. Baseline conventional pressure control continuous mandatory ventilation was applied with V(T) = 6 mL/kg and PEEP determined using a decremental PEEP trial. A manual decision support algorithm was used to implement MFV using the same conventional ventilator. We measured P(aCO2), P(aO2), end-tidal carbon dioxide, cardiac output, arterial and venous blood oxygen saturation, pulmonary and systemic vascular pressures, and lactic acid. The MFV algorithm produced the same minute ventilation as conventional ventilation but with lower V(T) (-1 ± 0.7 mL/kg) and higher frequency (32.1 ± 6.8 vs 55.7 ± 15.8 breaths/min, P < .002). There were no differences between conventional ventilation and MFV for mean airway pressures (16.1 ± 1.3 vs 16.4 ± 2 cm H2O, P = .75) even when auto-PEEP was higher (0.6 ± 0.9 vs 2.4 ± 1.1 cm H2O, P = .02). There were no significant differences in any hemodynamic measurements, although heart rate was higher during MFV. In this pilot study, we demonstrate that MFV allows the use of higher breathing frequencies and lower V(T) than conventional ventilation to maximize alveolar ventilation. We describe the ventilatory or hemodynamic effects of MFV. We also demonstrate that the application of a decision support algorithm to manage MFV

  4. Protective garment ventilation system

    NASA Technical Reports Server (NTRS)

    Lang, R. (Inventor)

    1970-01-01

    A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.

  5. Evidence-based practice: use of the ventilator bundle to prevent ventilator-associated pneumonia.

    PubMed

    Tolentino-DelosReyes, Arlene F; Ruppert, Susan D; Shiao, Shyang-Yun Pamela K

    2007-01-01

    To examine critical care nurses' knowledge about the use of the ventilator bundle to prevent ventilator-associated pneumonia. Published reports were reviewed for current evidence on the use of the ventilator bundle to prevent ventilator-associated pneumonia, and education sessions were held to present the findings to 61 nurses in coronary care and surgical intensive care units. Changes in the nurses' knowledge were evaluated by using a 10-item test, given both before and after the sessions. Changes in the nurses' practices related to ventilator-associated pneumonia, including elevation of the head of the bed to 30 degrees to 45 degrees , were observed in 99 intubated patients. After the education sessions, the nurses performed better on 8 of the 10 items tested (P from .03 to <.001). The areas of most significant improvement were elevation of the head of the bed (P < .001), charting of the elevation of the head of the bed (P= .009), oral care (P= .009), checking of the nasogastric tube for residual volume (P = .008), washing of hands before contact with patients (P < .001), and limiting the wearing of rings (P < .001) and nail polish (P = .04). Even after the education sessions, the nurses' compliance with hand-washing recommendations before contact with patients was low, though statistically some improvement was apparent. Contraindications to elevation of the head of the bed did not appear to affect the nurses' practices (P= .38). Education sessions designed to inform nurses about the ventilator bundle and its use to prevent ventilator-associated pneumonia have a significant effect on participants' knowledge and subsequent clinical practice.

  6. Improved oxygenation 24 hours after transition to airway pressure release ventilation or high-frequency oscillatory ventilation accurately discriminates survival in immunocompromised pediatric patients with acute respiratory distress syndrome*.

    PubMed

    Yehya, Nadir; Topjian, Alexis A; Thomas, Neal J; Friess, Stuart H

    2014-05-01

    % increase in PaO(2)/FIO(2) (80% sensitive, 94% specific) 24 hours after transition to airway pressure release ventilation were the optimal cutoffs to identify nonsurvivors. The comparable values 24 hours after transition to high-frequency oscillatory ventilation were less than 5% reduction in oxygenation index (100% sensitive, 83% specific) or less than 80% increase in PaO(2)/FIO(2) (91% sensitive, 89% specific) to identify nonsurvivors. In this single-center retrospective study of pediatric patients with an immunocompromised condition and acute respiratory distress syndrome failing conventional ventilation transitioned to either airway pressure release ventilation or high-frequency oscillatory ventilation, improved oxygenation at 24 hours expressed as PaO(2)/FIO(224)/PaO(2)/FIO(2pre) or oxygenation index(24)/oxygenation indexpre reliably discriminates nonsurvivors from survivors. These findings should be prospectively verified.

  7. Constant-flow ventilation in canine experimental pulmonary emphysema.

    PubMed

    Hachenberg, T; Wendt, M; Meyer, J; Struckmeier, O; Lawin, P

    1989-07-01

    The efficacy of constant-flow ventilation (CFV) was investigated in eight mongrel dogs before (control-phase) and after development of papain-induced panlobular emphysema (PLE-phase). For CFV, heated, humidified and oxygen-enriched air was continuously delivered via two catheters positioned within each mainstem bronchus at flow rates (V) of 0.33, 0.5 and 0.66 l/s. Data obtained during intermittent positive pressure ventilation (IPPV) served as reference. In the control-phase, Pao2 was lower (P less than or equal to 0.05) and alveolo-arterial O2 difference (P(A-a)O2) was higher (P less than or equal to 0.01) during CFV at all flow rates when compared with IPPV. This may be due to inhomogeneities of intrapulmonary gas distribution and increased ventilation-perfusion (VA/Q) mismatching. Paco2 and V showed a hyperbolic relationship; constant normocapnia (5.3 kPa) was achieved at 0.48 +/- 0.21 l/s (V53). Development of PLE resulted in an increase of functional residual capacity (FRC), residual volume (RV) and static compliance (Cstat) (P less than or equal to 0.05). PaO2 had decreased and P(A-a)O2 had increased (P less than or equal to 0.05), indicating moderate pulmonary dysfunction. Oxygenation during CFV was not significantly different in the PLE-phase when compared with the control-phase. Paco2 and V showed a hyperbolic relationship and V5.3 was even lower than in the control-group (0.42 +/- 0.13 l/s). In dogs with emphysematous lungs CFV maintains sufficient gas exchange. This may be due to preferential ventilation of basal lung units, thereby counterbalancing the effects of impaired lung morphometry and increased airtrapping. Conventional mechanical ventilation is more effective in terms of oxygenation and CO2-elimination.

  8. Measurement of changes in respiratory mechanics during partial liquid ventilation using jet pulses.

    PubMed

    Schmalisch, Gerd; Schmidt, Mario; Proquitté, Hans; Foitzik, Bertram; Rüdiger, Mario; Wauer, Roland R

    2003-05-01

    To compare the changes in respiratory mechanics within the breathing cycle in healthy lungs between gas ventilation and partial liquid ventilation using a special forced-oscillation technique. Prospective animal trial. Animal laboratory in a university setting. A total of 12 newborn piglets (age, <12 hrs; mean weight, 725 g). After intubation and instrumentation, lung mechanics of the anesthetized piglets were measured by forced-oscillation technique at the end of inspiration and the end of expiration. The measurements were performed during gas ventilation and 80 mins after instillation of 30 mL/kg perfluorocarbon PF 5080. Brief flow pulses (width, 10 msec; peak flow, 16 L/min) were generated by a jet generator to measure the end-inspiratory and the end-expiratory respiratory input impedance in the frequency range of 4-32 Hz. The mechanical variables resistance, inertance, and compliance were determined by model fitting, using the method of least squares. At least in the lower frequency range, respiratory mechanics could be described adequately by an RIC single-compartment model in all piglets. During gas ventilation, the respiratory variables resistance and inertance did not differ significantly between end-inspiratory and end-expiratory measurements (mean [sd]: 4.2 [0.7] vs. 4.1 [0.6] kPa x L(-1) x sec, 30.0 [3.2] vs. 30.7 [3.1] Pa x L(-1) x sec2, respectively), whereas compliance decreased during inspiration from 14.8 (2.0) to 10.2 (2.4) mL x kPa(-1) x kg(-1) due to a slight lung overdistension. During partial liquid ventilation, the end-inspiratory respiratory mechanics was not different from the end-inspiratory respiratory mechanics measured during gas ventilation. However, in contrast to gas ventilation during partial liquid ventilation, compliance rose from 8.2 (1.0) to 13.0 (3.0) mL x kPa(-1) x kg(-1) during inspiration. During expiration, when perfluorocarbon came into the upper airways, both resistance and inertance increased considerably (mean with 95

  9. Modeling ventilation time in forage tower silos.

    PubMed

    Bahloul, A; Chavez, M; Reggio, M; Roberge, B; Goyer, N

    2012-10-01

    The fermentation process in forage tower silos produces a significant amount of gases, which can easily reach dangerous concentrations and constitute a hazard for silo operators. To maintain a non-toxic environment, silo ventilation is applied. Literature reviews show that the fermentation gases reach high concentrations in the headspace of a silo and flow down the silo from the chute door to the feed room. In this article, a detailed parametric analysis of forced ventilation scenarios built via numerical simulation was performed. The methodology is based on the solution of the Navier-Stokes equations, coupled with transport equations for the gas concentrations. Validation was achieved by comparing the numerical results with experimental data obtained from a scale model silo using the tracer gas testing method for O2 and CO2 concentrations. Good agreement was found between the experimental and numerical results. The set of numerical simulations made it possible to establish a simple analytical model to predict the minimum time required to ventilate a silo to make it safe to enter. This ventilation time takes into account the headspace above the forage, the airflow rate, and the initial concentrations of O2 and CO2. The final analytical model was validated with available results from the literature.

  10. Comparison of ventilator-associated pneumonia (VAP) rates between different ICUs: Implications of a zero VAP rate.

    PubMed

    Sundar, Krishna M; Nielsen, David; Sperry, Paul

    2012-02-01

    Ventilator-associated pneumonia (VAP) is associated with significant morbidity and mortality. Measures to reduce the incidence of VAP have resulted in institutions reporting a zero or near-zero VAP rates. The implications of zero VAP rates are unclear. This study was done to compare outcomes between two intensive care units (ICU) with one of them reporting a zero VAP rate. This study retrospectively compared VAP rates between two ICUs: Utah Valley Regional Medical Center (UVRMC) with 25 ICU beds and American Fork Hospital (AFH) with 9 ICU beds. Both facilities are under the same management and attended by a single group of intensivists. Both ICUs have similar nursing and respiratory staffing patterns. Both ICUs use the same intensive care program for reduction of VAP rates. ICU outcomes between AFH (reporting zero VAP rate) and UVRMC (VAP rate of 2.41/1000 ventilator days) were compared for the years 2007-2008. UVRMC VAP rates during 2007 and 2008 were 2.31/1000 ventilator days and 2.5/1000 ventilator days respectively compared to a zero VAP rate at AFH. The total days of ventilation, mean days of ventilation per patient and mean duration of ICU stay per patient was higher in the UVRMC group as compared to AFH ICU group. There was no significant difference in mean age and APACHE II score between ICU patients at UVRMC and AFH. There was no statistical difference in rates of VAP and mortality between UVRMC and AFH. During comparisons of VAP rate between institutions, a zero VAP rate needs to be considered in the context of overall ventilator days, mean durations of ventilator stay and ICU mortality. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. The Clavicle Trial: A Multicenter Randomized Controlled Trial Comparing Operative with Nonoperative Treatment of Displaced Midshaft Clavicle Fractures.

    PubMed

    Ahrens, Philip M; Garlick, Nicholas I; Barber, Julie; Tims, Emily M

    2017-08-16

    The treatment of displaced midshaft clavicle fractures remains controversial. We undertook a multicenter randomized controlled trial to compare effectiveness and safety between nonoperative management and ORIF (open reduction and internal fixation) for displaced midshaft clavicle fractures in adults. Three hundred and one eligible adult patients were randomized to 1 of the 2 treatment groups and followed at 6 weeks, 3 months, and 9 months after recruitment. The primary outcome was the rate of radiographically evident nonunion at 3 months following treatment. Secondary outcomes were the rate of radiographically evident nonunion at 9 months, limb function measured using the Constant-Murley Score and DASH (Disabilities of the Arm, Shoulder and Hand) score, and patient satisfaction. There was no difference in the proportion of patients with radiographic evidence of nonunion at 3 months between the operative (28%) and nonoperative (27%) groups, whereas at 9 months the proportion with nonunion was significantly lower (p < 0.001) in the operative group (0.8%) than in the nonoperative group (11%). The DASH and Constant-Murley scores and patient satisfaction were all significantly better in the operative group than in the nonoperative group at 6 weeks and 3 months. Although at 3 months there was no evidence that surgery had reduced the rate of nonunion of displaced midshaft clavicle fractures, at 9 months nonoperative treatment had led to a significantly higher nonunion rate (11% compared with <1%). The rate of secondary surgical intervention during the trial period was 12 (11%) of the 147 patients in the nonoperative group. ORIF is a safe and reliable intervention with superior early functional outcomes and should be considered for patients who sustain this common injury. Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.

  12. WE-AB-BRA-06: 4DCT-Ventilation: A Novel Imaging Modality for Thoracic Surgical Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradskiy, Y; Jackson, M; Schubert, L

    Purpose: The current standard-of-care imaging used to evaluate lung cancer patients for surgical resection is nuclear-medicine ventilation. Surgeons use nuclear-medicine images along with pulmonary function tests (PFT) to calculate percent predicted postoperative (%PPO) PFT values by estimating the amount of functioning lung that would be lost with surgery. 4DCT-ventilation is an emerging imaging modality developed in radiation oncology that uses 4DCT data to calculate lung ventilation maps. We perform the first retrospective study to assess the use of 4DCT-ventilation for pre-operative surgical evaluation. The purpose of this work was to compare %PPO-PFT values calculated with 4DCT-ventilation and nuclear-medicine imaging. Methods:more » 16 lung cancer patients retrospectively reviewed had undergone 4DCTs, nuclear-medicine imaging, and had Forced Expiratory Volume in 1 second (FEV1) acquired as part of a standard PFT. For each patient, 4DCT data sets, spatial registration, and a density-change based model were used to compute 4DCT-ventilation maps. Both 4DCT and nuclear-medicine images were used to calculate %PPO-FEV1 using %PPO-FEV1=pre-operative FEV1*(1-fraction of total ventilation of resected lung). Fraction of ventilation resected was calculated assuming lobectomy and pneumonectomy. The %PPO-FEV1 values were compared between the 4DCT-ventilation-based calculations and the nuclear-medicine-based calculations using correlation coefficients and average differences. Results: The correlation between %PPO-FEV1 values calculated with 4DCT-ventilation and nuclear-medicine were 0.81 (p<0.01) and 0.99 (p<0.01) for pneumonectomy and lobectomy respectively. The average difference between the 4DCT-ventilation based and the nuclear-medicine-based %PPO-FEV1 values were small, 4.1±8.5% and 2.9±3.0% for pneumonectomy and lobectomy respectively. Conclusion: The high correlation results provide a strong rationale for a clinical trial translating 4DCT-ventilation to the

  13. Randomized prospective crossover study of biphasic intermittent positive airway pressure ventilation (BIPAP) versus pressure support ventilation (PSV) in surgical intensive care patients.

    PubMed

    Elrazek, E Abd

    2004-10-01

    The aim of this prospective, randomized and crossover study was to assess the role of a relatively new mode of mechanical ventilation, biphasic intermittent positive airway pressure (BIPAP) in comparison to another well established one, pressure-support ventilation (PSV) in surgical intensive care patients. 24 generally stable patients, breathing on their own after short-term (< 24 hours) postoperative controlled mechanical ventilation (CMV) were randomized to start on either PSV or BIPAP, and indirect calorimetry measurements were performed after 1 hour adaptation period at two time intervals; immediately after the investigated ventilatory mode was started and 1 hour later. Statistics included a two-tailed paired t-test to compare the two sets of different data, p < 0.5 was considered significant. Oxygen consumption (VO2), energy expenditure (EE), Carbon dioxide production (VCO2), and respiratory quotient (RQ) did not differ significantly between the two groups. There were also no significant differences regarding respiratory rate (RR), minute volume (MV) and arterial blood gas analysis (ABGs). Both modes of ventilation were well tolerated by all patients. PSV and BIPAP can be used for weaning patients comfortably in surgical intensive care after short-term postoperative ventilation. BIPAP may have the credit of being smoother than PSV where no patient effort is required.

  14. Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique.

    PubMed

    Park, Eun-Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Hyun Ju; Lee, Chang Hyun; Park, Chang Min; Yoo, Chul-Gyu; Kim, Jong Hyo

    2010-09-01

    To evaluate the potential of xenon ventilation computed tomography (CT) in the quantitative and visual analysis of chronic obstructive pulmonary disease (COPD). This study was approved by the institutional review board. After informed consent was obtained, 32 patients with COPD underwent CT performed before the administration of xenon, two-phase xenon ventilation CT with wash-in (WI) and wash-out (WO) periods, and pulmonary function testing (PFT). For quantitative analysis, results of PFT were compared with attenuation parameters from prexenon images and xenon parameters from xenon-enhanced images in the following three areas at each phase: whole lung, lung with normal attenuation, and low-attenuating lung (LAL). For visual analysis, ventilation patterns were categorized according to the pattern of xenon attenuation in the area of structural abnormalities compared with that in the normal-looking background on a per-lobe basis: pattern A consisted of isoattenuation or high attenuation in the WI period and isoattenuation in the WO period; pattern B, isoattenuation or high attenuation in the WI period and high attenuation in the WO period; pattern C, low attenuation in both the WI and WO periods; and pattern D, low attenuation in the WI period and isoattenuation or high attenuation in the WO period. Among various attenuation and xenon parameters, xenon parameters of the LAL in the WO period showed the best inverse correlation with results of PFT (P < .0001). At visual analysis, while emphysema (which affected 99 lobes) commonly showed pattern A or B, airway diseases such as obstructive bronchiolitis (n = 5) and bronchiectasis (n = 2) and areas with a mucus plug (n = 1) or centrilobular nodules (n = 5) showed pattern D or C. WI and WO xenon ventilation CT is feasible for the simultaneous regional evaluation of structural and ventilation abnormalities both quantitatively and qualitatively in patients with COPD. (c) RSNA, 2010.

  15. Fungal volatiles associated with moldy grain in ventilated and non-ventilated bin-stored wheat.

    PubMed

    Sinha, R N; Tuma, D; Abramson, D; Muir, W E

    1988-01-01

    The fungal odor compounds 3-methyl-1-butanol, 1-octen-3-ol and 3-octanone were monitored in nine experimental bins in Winnipeg, Manitoba containing a hard red spring wheat during the autumn, winter and summer seasons of 1984-85. Quality changes were associated with seed-borne microflora and moisture content in both ventilated and non-ventilated bins containing wheat of 15.6 and 18.2% initial moisture content. All three odor compounds occurred in considerably greater amounts in bulk wheat in non-ventilated than in ventilated bins, particularly in those with wheat having 18.2% moisture content. The presence of these compounds usually coincided with infection of the seeds by the fungi Alternaria alternata (Fr.) Keissler, Aspergillus repens DeBarry, A. versicolor (Vuill.) Tiraboschi, Penicillium crustosum Thom, P. oxalicum Currie and Thom, P. aurantiogriesum Dierckx, and P. citrinum Thom. High production of all three odor compounds in damp wheat stored in non-ventilated bins was associated with heavy fungal infection of the seeds and reduction in seed germinability. High initial moisture content of the harvested grain accelerated the production of all three fungal volatiles in non-ventilated bins.

  16. Significant Improvements in Pyranometer Nighttime Offsets Using High-Flow DC Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutchenreiter, Mark; Michalski, J.J.; Long, C.N.

    2017-05-22

    Accurate solar radiation measurements using pyranometers are required to understand radiative impacts on the Earth's energy budget, solar energy production, and to validate radiative transfer models. Ventilators of pyranometers, which are used to keep the domes clean and dry, also affect instrument thermal offset accuracy. This poster presents a high-level overview of the ventilators for single-black-detector pyranometers and black-and-white pyranometers. For single-black-detector pyranometers with ventilators, high-flow-rate (50-CFM and higher), 12-V DC fans lower the offsets, lower the scatter, and improve the predictability of nighttime offsets compared to lower-flow-rate (35-CFM), 120-V AC fans operated in the same type of environmental setup.more » Black-and-white pyranometers, which are used to measure diffuse horizontal irradiance, sometimes show minor improvement with DC fan ventilation, but their offsets are always small, usually no more than 1 W/m2, whether AC- or DC-ventilated.« less

  17. Axial linear patellar displacement: a new measurement of patellofemoral congruence.

    PubMed

    Urch, Scott E; Tritle, Benjamin A; Shelbourne, K Donald; Gray, Tinker

    2009-05-01

    The tools for measuring the congruence angle with digital radiography software can be difficult to use; therefore, the authors sought to develop a new, easy, and reliable method for measuring patellofemoral congruence. The abstract goes here and covers two columns. The abstract goes The linear displacement measurement will correlate well with the congruence angle measurement. here and covers two columns. Cohort study (diagnosis); Level of evidence, 2. On Merchant view radiographs obtained digitally, the authors measured the congruence angle and a new linear displacement measurement on preoperative and postoperative radiographs of 31 patients who suffered unilateral patellar dislocations and 100 uninjured subjects. The linear displacement measurement was obtained by drawing a reference line across the medial and lateral trochlear facets. Perpendicular lines were drawn from the depth of the sulcus through the reference line and from the apex of the posterior tip of the patella through the reference line. The distance between the perpendicular lines was the linear displacement measurement. The measurements were obtained twice at different sittings. The observer was blinded as to the previous measurements to establish reliability. Measurements were compared to determine whether the linear displacement measurement correlated with congruence angle. Intraobserver reliability was above r(2) = .90 for all measurements. In patients with patellar dislocations, the mean congruence angle preoperatively was 33.5 degrees , compared with 12.1 mm for linear displacement (r(2) = .92). The mean congruence angle postoperatively was 11.2 degrees, compared with 4.0 mm for linear displacement (r(2) = .89). For normal subjects, the mean congruence angle was -3 degrees and the mean linear displacement was 0.2 mm. The linear displacement measurement was found to correlate with congruence angle measurements and may be an easy and useful tool for clinicians to evaluate patellofemoral

  18. Miscible phase displacement, a survey. Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, C.D.

    1965-03-01

    J. G. Fitzgerald displaced a heavy hydrocarbon and water with a light hydrocarbon. C. Gatlin displaced oil and water with IPA slugs and a variety of combination alcohol slugs. S. H. Raza found that the alcohol process was more efficient at the lower rates of injection as compared to the higher rates. J. J. Taber, et al. displaced Soltrol and brine with isopropyl alcohol and tertiary butyl alcohol. R. L. Boyers, from his experimental data, deduced that molecular diffusion contributed very little toward the growth of the mixing zone. Not all the investigators are in agreement concerning the role ofmore » the injection rate in miscible displacement. Some of them have concluded that the displacement is sensitive to rate at high rates. Some have found that there is relationship between rate and recovery and that higher rates are more efficient. A literature review reveals that there is a definite rate sensitivity at all rates, especially at low rates of flow. From this information it is concluded that low rates are superior to high rates from the displacement efficiency viewpoint. (18 refs.)« less

  19. High-Frequency Oscillatory Ventilation Use and Severe Pediatric ARDS in the Pediatric Hematopoietic Cell Transplant Recipient.

    PubMed

    Rowan, Courtney M; Loomis, Ashley; McArthur, Jennifer; Smith, Lincoln S; Gertz, Shira J; Fitzgerald, Julie C; Nitu, Mara E; Moser, Elizabeth As; Hsing, Deyin D; Duncan, Christine N; Mahadeo, Kris M; Moffet, Jerelyn; Hall, Mark W; Pinos, Emily L; Tamburro, Robert F; Cheifetz, Ira M

    2018-04-01

    The effectiveness of high-frequency oscillatory ventilation (HFOV) in the pediatric hematopoietic cell transplant patient has not been established. We sought to identify current practice patterns of HFOV, investigate parameters during HFOV and their association with mortality, and compare the use of HFOV to conventional mechanical ventilation in severe pediatric ARDS. This is a retrospective analysis of a multi-center database of pediatric and young adult allogeneic hematopoietic cell transplant subjects requiring invasive mechanical ventilation for critical illness from 2009 through 2014. Twelve United States pediatric centers contributed data. Continuous variables were compared using a Wilcoxon rank-sum test or a Kruskal-Wallis analysis. For categorical variables, univariate analysis with logistic regression was performed. The database contains 222 patients, of which 85 subjects were managed with HFOV. Of this HFOV cohort, the overall pediatric ICU survival was 23.5% ( n = 20). HFOV survivors were transitioned to HFOV at a lower oxygenation index than nonsurvivors (25.6, interquartile range 21.1-36.8, vs 37.2, interquartile range 26.5-52.2, P = .046). Survivors were transitioned to HFOV earlier in the course of mechanical ventilation, (day 0 vs day 2, P = .002). No subject survived who was transitioned to HFOV after 1 week of invasive mechanical ventilation. We compared subjects with severe pediatric ARDS treated only with conventional mechanical ventilation versus early HFOV (within 2 d of invasive mechanical ventilation) versus late HFOV. There was a trend toward difference in survival (conventional mechanical ventilation 24%, early HFOV 30%, and late HFOV 9%, P = .08). In this large database of pediatric allogeneic hematopoietic cell transplant subjects who had acute respiratory failure requiring invasive mechanical ventilation for critical illness with severe pediatric ARDS, early use of HFOV was associated with improved survival compared to late

  20. Mechanical ventilation for severe asthma.

    PubMed

    Leatherman, James

    2015-06-01

    Acute exacerbations of asthma can lead to respiratory failure requiring ventilatory assistance. Noninvasive ventilation may prevent the need for endotracheal intubation in selected patients. For patients who are intubated and undergo mechanical ventilation, a strategy that prioritizes avoidance of ventilator-related complications over correction of hypercapnia was first proposed 30 years ago and has become the preferred approach. Excessive pulmonary hyperinflation is a major cause of hypotension and barotrauma. An appreciation of the key determinants of hyperinflation is essential to rational ventilator management. Standard therapy for patients with asthma undergoing mechanical ventilation consists of inhaled bronchodilators, corticosteroids, and drugs used to facilitate controlled hypoventilation. Nonconventional interventions such as heliox, general anesthesia, bronchoscopy, and extracorporeal life support have also been advocated for patients with fulminant asthma but are rarely necessary. Immediate mortality for patients who are mechanically ventilated for acute severe asthma is very low and is often associated with out-of-hospital cardiorespiratory arrest before intubation. However, patients who have been intubated for severe asthma are at increased risk for death from subsequent exacerbations and must be managed accordingly in the outpatient setting.

  1. Wind Extraction for Natural Ventilation

    NASA Astrophysics Data System (ADS)

    Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan

    2017-11-01

    Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.

  2. Optimal ventilation of the anesthetized pediatric patient.

    PubMed

    Feldman, Jeffrey M

    2015-01-01

    Mechanical ventilation of the pediatric patient is challenging because small changes in delivered volume can be a significant fraction of the intended tidal volume. Anesthesia ventilators have traditionally been poorly suited to delivering small tidal volumes accurately, and pressure-controlled ventilation has become used commonly when caring for pediatric patients. Modern anesthesia ventilators are designed to deliver small volumes accurately to the patient's airway by compensating for the compliance of the breathing system and delivering tidal volume independent of fresh gas flow. These technology advances provide the opportunity to implement a lung-protective ventilation strategy in the operating room based upon control of tidal volume. This review will describe the capabilities of the modern anesthesia ventilator and the current understanding of lung-protective ventilation. An optimal approach to mechanical ventilation for the pediatric patient is described, emphasizing the importance of using bedside monitors to optimize the ventilation strategy for the individual patient.

  3. A Chemical-Biological-Radio-Nuclear (CBRN) Filter can be Added to the Air-Outflow Port of a Ventilator to Protect a Home Ventilated Patient From Inhalation of Toxic Industrial Compounds.

    PubMed

    Be'eri, Eliezer; Owen, Simon; Beeri, Maurit; Millis, Scott R; Eisenkraft, Arik

    2018-02-21

    Chemical-biological-radio-nuclear (CBRN) gas masks are the standard means for protecting the general population from inhalation of toxic industrial compounds (TICs), for example after industrial accidents or terrorist attacks. However, such gas masks would not protect patients on home mechanical ventilation, as ventilator airflow would bypass the CBRN filter. We therefore evaluated in vivo the safety of adding a standard-issue CBRN filter to the air-outflow port of a home ventilator, as a method for providing TIC protection to such patients. Eight adult patients were included in the study. All had been on stable, chronic ventilation via a tracheostomy for at least 3 months before the study. Each patient was ventilated for a period of 1 hour with a standard-issue CBRN filter canister attached to the air-outflow port of their ventilator. Physiological and airflow measurements were made before, during, and after using the filter, and the patients reported their subjective sensation of ventilation continuously during the trial. For all patients, and throughout the entire study, no deterioration in any of the measured physiological parameters and no changes in measured airflow parameters were detected. All patients felt no subjective difference in the sensation of ventilation with the CBRN filter canister in situ, as compared with ventilation without it. This was true even for those patients who were breathing spontaneously and thus activating the ventilator's trigger/sensitivity function. No technical malfunctions of the ventilators occurred after addition of the CBRN filter canister to the air-outflow ports of the ventilators. A CBRN filter canister can be added to the air-outflow port of chronically ventilated patients, without causing an objective or subjective deterioration in the quality of the patients' mechanical ventilation. (Disaster Med Public Health Preparedness. 2018;page 1 of 5).

  4. Mechanical ventilation in abdominal surgery.

    PubMed

    Futier, E; Godet, T; Millot, A; Constantin, J-M; Jaber, S

    2014-01-01

    One of the key challenges in perioperative care is to reduce postoperative morbidity and mortality. Patients who develop postoperative morbidity but survive to leave hospital have often reduced functional independence and long-term survival. Mechanical ventilation provides a specific example that may help us to shift thinking from treatment to prevention of postoperative complications. Mechanical ventilation in patients undergoing surgery has long been considered only as a modality to ensure gas exchange while allowing maintenance of anesthesia with delivery of inhaled anesthetics. Evidence is accumulating, however, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary function and clinical outcome in patients undergoing abdominal surgery. Non-protective ventilator settings, especially high tidal volume (VT) (>10-12mL/kg) and the use of very low level of positive end-expiratory pressure (PEEP) (PEEP<5cmH2O) or no PEEP, may cause alveolar overdistension and repetitive tidal recruitment leading to ventilator-associated lung injury in patients with healthy lungs. Stimulated by previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung protective mechanical ventilation. In this review, we aimed at providing the most recent and relevant clinical evidence regarding the use of mechanical ventilation in patients undergoing abdominal surgery. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  5. A Southern Ocean trigger for Northwest Pacific ventilation during the Holocene?

    NASA Astrophysics Data System (ADS)

    Rella, S. F.; Uchida, M.

    2014-02-01

    Holocene ocean circulation is poorly understood due to sparsity of dateable marine archives with submillennial-scale resolution. Here we present a record of mid-depth water radiocarbon contents in the Northwest (NW) Pacific Ocean over the last 12.000 years, which shows remarkable millennial-scale variations relative to changes in atmospheric radiocarbon inventory. Apparent decoupling of these variations from regional ventilation and mixing processes leads us to the suggestion that the mid-depth NW Pacific may have responded to changes in Southern Ocean overturning forced by latitudinal displacements of the southern westerly winds. By inference, a tendency of in-phase related North Atlantic and Southern Ocean overturning would argue against the development of a steady bipolar seesaw regime during the Holocene.

  6. A Southern Ocean trigger for Northwest Pacific ventilation during the Holocene?

    PubMed

    Rella, S F; Uchida, M

    2014-02-17

    Holocene ocean circulation is poorly understood due to sparsity of dateable marine archives with submillennial-scale resolution. Here we present a record of mid-depth water radiocarbon contents in the Northwest (NW) Pacific Ocean over the last 12.000 years, which shows remarkable millennial-scale variations relative to changes in atmospheric radiocarbon inventory. Apparent decoupling of these variations from regional ventilation and mixing processes leads us to the suggestion that the mid-depth NW Pacific may have responded to changes in Southern Ocean overturning forced by latitudinal displacements of the southern westerly winds. By inference, a tendency of in-phase related North Atlantic and Southern Ocean overturning would argue against the development of a steady bipolar seesaw regime during the Holocene.

  7. A Southern Ocean trigger for Northwest Pacific ventilation during the Holocene?

    PubMed Central

    Rella, S. F.; Uchida, M.

    2014-01-01

    Holocene ocean circulation is poorly understood due to sparsity of dateable marine archives with submillennial-scale resolution. Here we present a record of mid-depth water radiocarbon contents in the Northwest (NW) Pacific Ocean over the last 12.000 years, which shows remarkable millennial-scale variations relative to changes in atmospheric radiocarbon inventory. Apparent decoupling of these variations from regional ventilation and mixing processes leads us to the suggestion that the mid-depth NW Pacific may have responded to changes in Southern Ocean overturning forced by latitudinal displacements of the southern westerly winds. By inference, a tendency of in-phase related North Atlantic and Southern Ocean overturning would argue against the development of a steady bipolar seesaw regime during the Holocene. PMID:24509792

  8. How do different brands of size 1 laryngeal mask airway compare with face mask ventilation in a dedicated laryngeal mask airway teaching manikin?

    PubMed

    Tracy, Mark Brian; Priyadarshi, Archana; Goel, Dimple; Lowe, Krista; Huvanandana, Jacqueline; Hinder, Murray

    2018-05-01

    International neonatal resuscitation guidelines recommend the use of laryngeal mask airway (LMA) with newborn infants (≥34 weeks' gestation or >2 kg weight) when bag-mask ventilation (BMV) or tracheal intubation is unsuccessful. Previous publications do not allow broad LMA device comparison. To compare delivered ventilation of seven brands of size 1 LMA devices with two brands of face mask using self-inflating bag (SIB). 40 experienced neonatal staff provided inflation cycles using SIB with positive end expiratory pressure (PEEP) (5 cmH 2 O) to a specialised newborn/infant training manikin randomised for each LMA and face mask. All subjects received prior education in LMA insertion and BMV. 12 415 recorded inflations for LMAs and face masks were analysed. Leak detected was lowest with i-gel brand, with a mean of 5.7% compared with face mask (triangular 42.7, round 35.7) and other LMAs (45.5-65.4) (p<0.001). Peak inspiratory pressure was higher with i-gel, with a mean of 28.9 cmH 2 O compared with face mask (triangular 22.8, round 25.8) and other LMAs (14.3-22.0) (p<0.001). PEEP was higher with i-gel, with a mean of 5.1 cmH 2 O compared with face mask (triangular 3.0, round 3.6) and other LMAs (0.6-2.6) (p<0.001). In contrast to other LMAs examined, i-gel had no insertion failures and all users found i-gel easy to use. This study has shown dramatic performance differences in delivered ventilation, mask leak and ease of use among seven different brands of LMA tested in a manikin model. This coupled with no partial or complete insertion failures and ease of use suggests i-gel LMA may have an expanded role with newborn resuscitation as a primary resuscitation device. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Tracheostomy and invasive mechanical ventilation in amyotrophic lateral sclerosis: decision-making factors and survival analysis.

    PubMed

    Kimura, Fumiharu

    2016-04-28

    Invasive and/or non-invasive mechanical ventilation are most important options of respiratory management in amyotrophic lateral sclerosis. We evaluated the frequency, clinical characteristics, decision-making factors about ventilation and survival analysis of 190 people with amyotrophic lateral sclerosis patients from 1990 until 2013. Thirty-one percentage of patients underwent tracheostomy invasive ventilation with the rate increasing more than the past 20 years. The ratio of tracheostomy invasive ventilation in patients >65 years old was significantly increased after 2000 (25%) as compared to before (10%). After 2010, the standard use of non-invasive ventilation showed a tendency to reduce the frequency of tracheostomy invasive ventilation. Mechanical ventilation prolonged median survival (75 months in tracheostomy invasive ventilation, 43 months in non-invasive ventilation vs natural course, 32 months). The life-extending effects by tracheostomy invasive ventilation were longer in younger patients ≤65 years old at the time of ventilation support than in older patients. Presence of partners and care at home were associated with better survival. Following factors related to the decision to perform tracheostomy invasive ventilation: patients ≤65 years old: greater use of non-invasive ventilation: presence of a spouse: faster tracheostomy: higher progression rate; and preserved motor functions. No patients who underwent tracheostomy invasive ventilation died from a decision to withdraw mechanical ventilation. The present study provides factors related to decision-making process and survival after tracheostomy and help clinicians and family members to expand the knowledge about ventilation.

  10. Incidence of Ventilator-Associated Pneumonia in Critically Ill Children Undergoing Mechanical Ventilation in Pediatric Intensive Care Unit

    PubMed Central

    Amanati, Ali; Karimi, Abdollah; Fahimzad, Alireza; Shamshiri, Ahmad Reza; Fallah, Fatemeh; Mahdavi, Alireza; Talebian, Mahshid

    2017-01-01

    Background: Among hospital-acquired infections (HAIs) in children, ventilator-associated pneumonia (VAP) is the most common after blood stream infection (BSI). VAP can prolong length of ventilation and hospitalization, increase mortality rate, and directly change a patient’s outcome in Pediatric Intensive Care Units (PICU). Objectives: The research on VAP in children is limited, especially in Iran; therefore, the identification of VAP incidence and mortality rate will be important for both clinical and epidemiological implications. Materials and Methods: Mechanically ventilated pediatric patients were assessed for development of VAP during hospital course on the basis of clinical, laboratory and imaging criteria. We matched VAP group with control group for assessment of VAP related mortality in the critically ill ventilated children. Results: VAP developed in 22.9% of critically ill children undergoing mechanical ventilation. Early VAP and late VAP were found in 19.3% and 8.4% of VAP cases, respectively. Among the known VAP risk factors that were investigated, immunodeficiency was significantly greater in the VAP group (p = 0.014). No significant differences were found between the two groups regarding use of corticosteroids, antibiotics, PH (potential of hydrogen) modifying agents (such as ranitidine or pantoprazole), presence of nasogastric tube and total or partial parenteral nutrition administration. A substantial number of patients in the VAP group had more than four risk factors for development of VAP, compared to those without VAP (p = 0.087). Mortality rate was not statistically different between the VAP and control groups (p = 0.477). Conclusion: VAP is still one of the major causes of mortality in PICUs. It is found that altered immune status is a significant risk factor for acquiring VAP. Also, occurrence of VAP was high in the first week after admission in PICU. PMID:28671616

  11. Radiography versus computed tomography for displacement assessment in calcaneal fractures.

    PubMed

    Ogawa, Brent K; Charlton, Timothy P; Thordarson, David B

    2009-10-01

    Coronal computed tomography (CT) scans are commonly used in fracture classification systems for calcaneus fractures. However, they may not accurately reflect the amount of fracture displacement. The purpose of this paper was to determine whether lateral radiographs provide superior assessment of the displacement of the posterior facet compared to coronal CT scans. Lateral radiographs of calcaneus fractures were compared with CT coronal images of the posterior facet in 30 displaced intra-articular calcaneus fractures. The average patient age was 39 years old. Using a Picture Archiving and Communication System (PACS), measurements were obtained to quantify the amount of displacement on the lateral radiograph and compared with the amount of depression on corresponding coronal CT scans. On lateral radiographs, the angle of the depressed portion of the posterior facet relative to the undersurface of the calcaneus averaged 28.2 degrees; Bohler's angle averaged 12.7 degrees. These numbers were poorly correlated (r = 0.25). In corresponding CT images from posterior to anterior, the difference in the amount of displacement of the lateral portion of the displaced articular facet versus the nondisplaced medial, constant fragment, was minimal and consistently underestimated the amount of displacement. Underestimation of the amount of depression and rotation of the posterior facet fragment was seen on the coronal CT scan. We attribute this finding to the combined rotation and depression of the posterior facet which may not be measured accurately with the typical semicoronal CT orientation. While sagittal reconstructed images would show this depression better, if they are unavailable we recommend using lateral radiographs to better gauge the amount of fracture displacement.

  12. Budesonide ameliorates lung injury induced by large volume ventilation.

    PubMed

    Ju, Ying-Nan; Yu, Kai-Jiang; Wang, Guo-Nian

    2016-06-04

    Ventilation-induced lung injury (VILI) is a health problem for patients with acute respiratory dysfunction syndrome. The aim of this study was to investigate the effectiveness of budesonide in treating VILI. Twenty-four rats were randomized to three groups: a ventilation group, ventilation/budesonide group, and sham group were ventilated with 30 ml/kg tidal volume or only anesthesia for 4 hor saline or budesonide airway instillation immediately after ventilation. The PaO2/FiO2and wet-to-dry weight ratios, protein concentration, neutrophil count, and neutrophil elastase levels in bronchoalveolar lavage fluid (BALF) and the levels of inflammation-related factors were examined. Histological evaluation of and apoptosis measurement inthe lung were conducted. Compared with that in the ventilation group, the PaO2/FiO2 ratio was significantly increased by treatment with budesonide. The lung wet-to-dry weight ratio, total protein, neutrophil elastase level, and neutrophilcount in BALF were decreased in the budesonide group. The BALF and plasma tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, intercellular adhesion molecule (ICAM)-1, and macrophage inflammatory protein (MIP)-2 levels were decreased, whereas the IL-10 level was increased in the budesonide group. The phosphorylated nuclear factor (NF)-kBlevels in lung tissue were inhibited by budesonide. The histological changes in the lung and apoptosis were reduced by budesonide treatment. Bax, caspase-3, and cleaved caspase-3 were down-regulated, and Bcl-2 was up-regulated by budesonide. Budesonide ameliorated lung injury induced by large volume ventilation, likely by improving epithelial permeability, decreasing edema, inhibiting local and systemic inflammation, and reducing apoptosis in VILI.

  13. Effects of assisted and variable mechanical ventilation on cardiorespiratory interactions in anesthetized pigs.

    PubMed

    Beda, Alessandro; Güldner, Andreas; Simpson, David M; Carvalho, Nadja C; Franke, Susanne; Uhlig, Christopher; Koch, Thea; Pelosi, Paolo; de Abreu, Marcelo Gama

    2012-03-01

    The physiological importance of respiratory sinus arrhythmia (RSA) and cardioventilatory coupling (CVC) has not yet been fully elucidated, but these phenomena might contribute to improve ventilation/perfusion matching, with beneficial effects on gas exchange. Furthermore, decreased RSA amplitude has been suggested as an indicator of impaired autonomic control and poor clinical outcome, also during positive-pressure mechanical ventilation (MV). However, it is currently unknown how different modes of MV, including variable tidal volumes (V(T)), affect RSA and CVC during anesthesia. We compared the effects of pressure controlled (PCV) versus pressure assisted (PSV) ventilation, and of random variable versus constant V(T), on RSA and CVC in eight anesthetized pigs. At comparable depth of anesthesia, global hemodynamics, and ventilation, RSA amplitude increased from 20 ms in PCV to 50 ms in PSV (p < 0.05). CVC was detected (using proportional Shannon entropy of the interval between each inspiration onset and the previous R-peak in ECG) in two animals in PCV and seven animals in PSV. Variable V(T) did not significantly influence these phenomena. Furthermore, heart period and systolic arterial pressure oscillations were in phase during PCV but in counter-phase during PSV. At the same depth of anesthesia in pigs, PSV increases RSA amplitude and CVC compared to PCV. Our data suggest that the central respiratory drive, but not the baroreflex or the mechano-electric feedback in the heart, is the main mechanism behind the RSA increase. Hence, differences in RSA and CVC between mechanically ventilated patients might reflect the difference in ventilation mode rather than autonomic impairment. Also, since gas exchange did not increase from PCV to PSV, it is questionable whether RSA has any significance in improving ventilation/perfusion matching during MV.

  14. Gingival displacement: Survey results of dentists' practice procedures.

    PubMed

    Ahmed, Sumitha N; Donovan, Terry E

    2015-07-01

    A high percentage of fixed prosthodontic restorations require a subgingival margin placement, which requires the practice of gingival displacement or a deflection procedure to replicate the margins in impression. The purpose of this study was to learn the different gingival displacement techniques that are currently used by dentists in their practice and to compare the current concepts of gingival displacement with previously published articles. A survey of questions pertaining to gingival deflection methods was distributed as part of continuing education (CE) course material to dentists attending CE meetings in 7 states in the U.S. and 1 Canadian province. Question topics included initial patient assessment procedures, gingival displacement methods, dentist's knowledge and assessment of systemic manifestations, and brand names of materials used. Ninety-four percent of the participants were general practitioners with 24.11 ± 12.5 years of experience. Ninety-two percent used gingival displacement cords, while 20.2% used a soft tissue laser and 32% used electrosurgery as an adjunct. Sixty percent of the dentists used displacement cords impregnated with a medicament. Of the preimpregnated cords, 29% were impregnated with epinephrine, 13% with aluminum chloride, and 18% with aluminum potassium sulfate. The study showed a steady decrease compared with results of previously published articles in the use of epinephrine as a gingival deflection medicament. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. A Randomized Trial Comparing Efficacy of Bubble and Ventilator Derived Nasal CPAP in Very Low Birth Weight Neonates with Respiratory Distress.

    PubMed

    Agarwal, Sheetal; Maria, Arti; Roy, Mahesh K; Verma, Ankit

    2016-09-01

    Continuous Positive Airway Pressure (CPAP) has an established role in the care of Very Low Birth Weight (VLBW) babies with respiratory distress. Bubble CPAP (BCPAP) is a cheap alternative for countries where resources are limited. However, data comparing efficacy of BCPAP with conventional ventilator derived (VCPAP) is limited. To compare CPAP failure rates between BCPAP and VCPAP among VLBW, with moderate respiratory distress. Secondary objectives were to compare the rates of Intraventricular Haemorrhage (IVH), pulmonary air leaks and deaths between the two groups and determine the predictors of CPAP failure. VLBW babies with moderate respiratory distress (Silverman Anderson score 4-7), born or admitted in Neonatal Intensive Care Unit (NICU) within 28 days of life were randomized to receive either BCPAP (n=34) or VCPAP (n=34). CPAP failure rate in both the groups was compared. The baseline characteristics were similar in both the groups. Five out of 34 (14.70%) babies in BCPAP group and 11 out of 34 (32.35%) in VCPAP failed CPAP (p=0.08). IVH (BCPAP group 24% and VCPAP group 9%, p= 0.10) and mortality (BCPAP group 6% and VCPAP group 9%, p=0.642) were comparable in both the groups. Factors such as gestational age <30 weeks, weight <1000 grams, Respiratory Distress Syndrome (RDS), shock, pulmonary haemorrhage, Disseminated Intravascular Coagulation (DIC) and multi-organ dysfunction were significantly associated with CPAP failure in our study. The CPAP failure rates in VLBW babies with moderate respiratory distress were found to be similar whether bubble CPAP or ventilator CPAP was used. There was no difference in complication rates of IVH or mortality with either method of CPAP.

  16. Night ventilation control strategies in office buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaojun; Yi, Lingli; Gao, Fusheng

    2009-10-15

    In moderate climates night ventilation is an effective and energy-efficient approach to improve the indoor thermal environment for office buildings during the summer months, especially for heavyweight construction. However, is night ventilation a suitable strategy for office buildings with lightweight construction located in cold climates? In order to answer this question, the whole energy-consumption analysis software EnergyPlus was used to simulate the indoor thermal environment and energy consumption in typical office buildings with night mechanical ventilation in three cities in northern China. The summer outdoor climate data was analyzed, and three typical design days were chosen. The most important factorsmore » influencing night ventilation performance such as ventilation rates, ventilation duration, building mass and climatic conditions were evaluated. When night ventilation operation time is closer to active cooling time, the efficiency of night ventilation is higher. With night ventilation rate of 10 ach, the mean radiant temperature of the indoor surface decreased by up to 3.9 C. The longer the duration of operation, the more efficient the night ventilation strategy becomes. The control strategies for three locations are given in the paper. Based on the optimized strategies, the operation consumption and fees are calculated. The results show that more energy is saved in office buildings cooled by a night ventilation system in northern China than ones that do not employ this strategy. (author)« less

  17. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation.

    PubMed

    Schranz, C; Becher, T; Schädler, D; Weiler, N; Möller, K

    2014-03-01

    Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (pI), inspiration and expiration time (tI, tE) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal pI and adequate tE can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's 'optimized' settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end-expiratory pressure.

  18. Open lung approach vs acute respiratory distress syndrome network ventilation in experimental acute lung injury.

    PubMed

    Spieth, P M; Güldner, A; Carvalho, A R; Kasper, M; Pelosi, P; Uhlig, S; Koch, T; Gama de Abreu, M

    2011-09-01

    Setting and strategies of mechanical ventilation with positive end-expiratory pressure (PEEP) in acute lung injury (ALI) remains controversial. This study compares the effects between lung-protective mechanical ventilation according to the Acute Respiratory Distress Syndrome Network recommendations (ARDSnet) and the open lung approach (OLA) on pulmonary function and inflammatory response. Eighteen juvenile pigs were anaesthetized, mechanically ventilated, and instrumented. ALI was induced by surfactant washout. Animals were randomly assigned to mechanical ventilation according to the ARDSnet protocol or the OLA (n=9 per group). Gas exchange, haemodynamics, pulmonary blood flow (PBF) distribution, and respiratory mechanics were measured at intervals and the lungs were removed after 6 h of mechanical ventilation for further analysis. PEEP and mean airway pressure were higher in the OLA than in the ARDSnet group [15 cmH(2)O, range 14-18 cmH(2)O, compared with 12 cmH(2)O; 20.5 (sd 2.3) compared with 18 (1.4) cmH(2)O by the end of the experiment, respectively], and OLA was associated with improved oxygenation compared with the ARDSnet group after 6 h. OLA showed more alveolar overdistension, especially in gravitationally non-dependent regions, while the ARDSnet group was associated with more intra-alveolar haemorrhage. Inflammatory mediators and markers of lung parenchymal stress did not differ significantly between groups. The PBF shifted from ventral to dorsal during OLA compared with ARDSnet protocol [-0.02 (-0.09 to -0.01) compared with -0.08 (-0.12 to -0.06), dorsal-ventral gradients after 6 h, respectively]. According to the OLA, mechanical ventilation improved oxygenation and redistributed pulmonary perfusion when compared with the ARDSnet protocol, without differences in lung inflammatory response.

  19. MULTI-FREQUENCY OSCILLATORY VENTILATION IN THE PREMATURE LUNG: EFFECTS ON GAS EXCHANGE, MECHANICS, AND VENTILATION DISTRIBUTION

    PubMed Central

    Kaczka, David W.; Herrmann, Jacob; Zonneveld, C. Elroy; Tingay, David G.; Lavizzari, Anna; Noble, Peter B.; Pillow, J. Jane

    2015-01-01

    Background Despite the theoretical benefits of high-frequency oscillatory ventilation (HFOV) in preterm infants, systematic reviews of randomized clinical trials do not confirm improved outcomes. We hypothesized that oscillating a premature lung with multiple frequencies simultaneously would improve gas exchange compared to traditional single-frequency oscillatory ventilation (SFOV). The goal of this study was to develop a novel method for HFOV, termed ‘multi-frequency oscillatory ventilation’ (MFOV), which relies on a broadband flow waveform more suitable for the heterogeneous mechanics of the immature lung. Methods Thirteen intubated preterm lambs were randomized to either SFOV or MFOV for 1 hour, followed by crossover to the alternative regimen for 1 hour. The SFOV waveform consisted of a pure sinusoidal flow at 5 Hz, while the customized MFOV waveform consisted of a 5 Hz fundamental with additional energy at 10 and 15 Hz. Per standardized protocol, mean pressure at airway opening (P̅ao) and inspired O2 fraction were adjusted as needed, and root mean square of the delivered oscillatory volume waveform (Vrms) was adjusted 15-minute intervals. A ventilatory cost function for SFOV and MFOV was defined as VC=(Vrms2PaCO2)Wt−1, where Wt denotes body weight. Results Averaged over all time points, MFOV resulted in significantly lower VC (246.9±6.0 vs. 363.5±15.9 mL2 mmHg kg−1) and P̅ao (12.8±0.3 vs. 14.1±0.5 cmH2O) compared to SFOV, suggesting more efficient gas exchange and enhanced lung recruitment at lower mean airway pressures. Conclusions Oscillation with simultaneous multiple frequencies may be a more efficient ventilator modality in premature lungs compared to traditional single-frequency HFOV. PMID:26495977

  20. Mechanical ventilation during extracorporeal membrane oxygenation.

    PubMed

    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol

    2014-01-21

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.

  1. Mechanical ventilation during extracorporeal membrane oxygenation

    PubMed Central

    2014-01-01

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes. PMID:24447458

  2. Lung-protective ventilation in abdominal surgery.

    PubMed

    Futier, Emmanuel; Jaber, Samir

    2014-08-01

    To provide the most recent and relevant clinical evidence regarding the use of prophylactic lung-protective mechanical ventilation in abdominal surgery. Evidence is accumulating, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary complications in patients undergoing abdominal surgery. Nonprotective ventilator settings, especially high tidal volume (>10-12 ml/kg), very low level of positive end-expiratory pressure (PEEP, <5 cm H2O), or no PEEP, may cause alveolar overdistension and repetitive tidal recruitment leading to ventilator-associated lung injury in patients with healthy lungs. Stimulated by the previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung-protective mechanical ventilation. Recent data provide compelling evidence that prophylactic lung-protective mechanical ventilation using lower tidal volume (6-8 ml/kg of predicted body weight), moderate PEEP (6-8 cm H2O), and recruitment maneuvers is associated with improved functional or physiological and clinical postoperative outcome in patients undergoing abdominal surgery. The use of prophylactic lung-protective ventilation can help in improving the postoperative outcome.

  3. [Mechanical ventilation in acute asthma crisis].

    PubMed

    Barbas, Carmen Sílvia Valente; Pinheiro, Bruno do Valle; Vianna, Arthur; Magaldi, Ricardo; Casati, Ana; José, Anderson; Okamoto, Valdelis Novis

    2007-06-01

    The II Brazilian Consensus Conference on Mechanical Ventilation was published in 2000. Knowledge on the field of mechanical ventilation evolved rapidly since then, with the publication of numerous clinical studies with potential impact on the ventilatory management of critically ill patients. Moreover, the evolving concept of evidence - based medicine determined the grading of clinical recommendations according to the methodological value of the studies on which they are based. This explicit approach has broadened the understanding and adoption of clinical recommendations. For these reasons, AMIB - Associação de Medicina Intensiva Brasileira and SBPT - Sociedade Brasileira de Pneumologia e Tisiologia - decided to update the recommendations of the II Brazilian Consensus. Mechanical ventilation in the asthma attack has been one of the updated topics. Describe the most important topics on the mechanical ventilation during the asthma attack and suggest the main therapeutic approaches. Systematic review of the published literature and gradation of the studies in levels of evidence, using the key words "mechanical ventilation" and "asthma". We present recommendations on the ventilatory modes and settings to be adopted when ventilating a patient during an asthma attack, as well as the recommended monitoring. Alternative ventilation techniques are also presented. Protective ventilatory strategies are recommended when ventilating a patient during a severe asthma attack.

  4. Inhalation therapy in mechanical ventilation

    PubMed Central

    Maccari, Juçara Gasparetto; Teixeira, Cassiano; Gazzana, Marcelo Basso; Savi, Augusto; Dexheimer-Neto, Felippe Leopoldo; Knorst, Marli Maria

    2015-01-01

    Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients. PMID:26578139

  5. 6. VIEW LOOKING SOUTHEAST AT VENTILATION EQUIPMENT IN SOUTH VENTILATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW LOOKING SOUTHEAST AT VENTILATION EQUIPMENT IN SOUTH VENTILATION HOUSE. THIS AIR CONDITIONING SYSTEM WAS INSTALLED BY PARKS-CRAMER COMPANY OF FITCHBURG, MASSACHUSETTS WHEN THE MILL WAS CONSTRUCTED IN 1923-24. ONE AIR WASHER AND FAN ROOM EXTERIOR IS VISIBLE ON THE RIGHT. THE DUCTS FROM BOTH FAN ROOMS (CURVED METAL STRUCTURES AT CENTER AND LEFT OF PHOTO) ARE CONNECTED TO A COMMON AIR SHAFT. - Stark Mill, 117 Corinth Road, Hogansville, Troup County, GA

  6. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  7. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  8. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  9. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  10. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...

  11. A regulator for pressure-controlled total-liquid ventilation.

    PubMed

    Robert, Raymond; Micheau, Philippe; Avoine, Olivier; Beaudry, Benoit; Beaulieu, Alexandre; Walti, Hervé

    2010-09-01

    Total-liquid ventilation (TLV) is an innovative experimental method of mechanical-assisted ventilation in which lungs are totally filled and then ventilated with a tidal volume of perfluorochemical liquid by using a dedicated liquid ventilator. Such a novel medical device must resemble other conventional ventilators: it must be able to conduct controlled-pressure ventilation. The objective was to design a robust controller to perform pressure-regulated expiratory flow and to implement it on our latest liquid-ventilator prototype (Inolivent-4). Numerical simulations, in vitro experiments, and in vivo experiments in five healthy term newborn lambs have demonstrated that it was efficient to generate expiratory flows while avoiding collapses. Moreover, the in vivo results have demonstrated that our liquid ventilator can maintain adequate gas exchange, normal acid-base equilibrium, and achieve greater minute ventilation, better oxygenation and CO2 extraction, while nearing flow limits. Hence, it is our suggestion to perform pressure-controlled ventilation during expiration with minute ventilation equal or superior to 140 mL x min(-1) x kg(-1) in order to ensure PaCO2 below 55 mmHg. From a clinician's point of view, pressure-controlled ventilation greatly simplifies the use of the liquid ventilator, which will certainly facilitate its introduction in intensive care units for clinical applications.

  12. 33 CFR 183.620 - Natural ventilation system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets the...

  13. 33 CFR 183.620 - Natural ventilation system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets the...

  14. A polyurethane cuffed endotracheal tube is associated with decreased rates of ventilator-associated pneumonia.

    PubMed

    Miller, Melissa A; Arndt, Jennifer L; Konkle, Mark A; Chenoweth, Carol E; Iwashyna, Theodore J; Flaherty, Kevin R; Hyzy, Robert C

    2011-06-01

    The aim of this study was to determine whether the use of a polyurethane-cuffed endotracheal tube would result in a decrease in ventilator-associated pneumonia rate. We replaced conventional endotracheal tube with a polyurethane-cuff endotracheal tube (Microcuff, Kimberly-Clark Corporation, Rosewell, Ga) in all adult mechanically ventilated patients throughout our large academic hospital from July 2007 to June 2008. We retrospectively compared the rates of ventilator-associated pneumonia before, during, and after the intervention year by interrupted time-series analysis. Ventilator-associated pneumonia rates decreased from 5.3 per 1000 ventilator days before the use of the polyurethane-cuffed endotracheal tube to 2.8 per 1000 ventilator days during the intervention year (P = .0138). During the first 3 months after return to conventional tubes, the rate of ventilator-associated pneumonia was 3.5/1000 ventilator days. Use of the polyurethane-cuffed endotracheal tube was associated with an incidence risk ratio of ventilator-associated pneumonia of 0.572 (95% confidence interval, 0.340-0.963). In statistical regression analysis controlling for other possible alterations in the hospital environment, as measured by rate of tracheostomy-ventilator-associated pneumonia, the incidence risk ratio of ventilator-associated pneumonia in patients intubated with polyurethane-cuffed endotracheal tube was 0.565 (P = .032; 95% confidence interval, 0.335-0.953). Use of a polyurethane-cuffed endotracheal tube was associated with a significant decrease in the rate of ventilator-associated pneumonia in our study. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Intraoperative mechanical ventilation for the pediatric patient.

    PubMed

    Kneyber, Martin C J

    2015-09-01

    Invasive mechanical ventilation is required when children undergo general anesthesia for any procedure. It is remarkable that one of the most practiced interventions such as pediatric mechanical ventilation is hardly supported by any scientific evidence but rather based on personal experience and data from adults, especially as ventilation itself is increasingly recognized as a harmful intervention that causes ventilator-induced lung injury. The use of low tidal volume and higher levels of positive end-expiratory pressure became an integral part of lung-protective ventilation following the outcomes of clinical trials in critically ill adults. This approach has been readily adopted in pediatric ventilation. However, a clear association between tidal volume and mortality has not been ascertained in pediatrics. In fact, experimental studies have suggested that young children might be less susceptible to ventilator-induced lung injury. As such, no recommendations on optimal lung-protective ventilation strategy in children with or without lung injury can be made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Overtreatment of displaced midshaft clavicle fractures.

    PubMed

    Ban, Ilija; Nowak, Jan; Virtanen, Kaisa; Troelsen, Anders

    2016-12-01

    Background and purpose - The best treatment for displaced clavicle fractures has been debated for decades. Operative treatment has become more common. However, several randomized trials comparing non-operative and operative treatment have not shown any compelling evidence in favor of surgery. We identified the preferred treatment of displaced midshaft clavicle fractures at public hospitals in 3 countries in Scandinavia. Patients and methods - A purpose-made multiple-choice questionnaire in English was sent to all public hospitals in Denmark, Sweden, and Finland. This was addressed to the orthopedic surgeon responsible for treatment of clavicle fractures, and completed questionnaires were obtained from 85 of 118 hospitals. Results - In the 3 countries, 69 of the 85 hospitals that responded would treat displaced clavicle fractures operatively. Clear criteria for treatment allocation were used at 58 of the hospitals, with the remaining 27 using individual assessment in collaboration with the patient. Precontoured locking plates were mostly used, placed either superiorly (64/85) or anteriorly (10/85). Interpretation - Displaced midshaft clavicle fractures are mainly treated operatively in Sweden, Denmark, and Finland. This treatment is not supported by compelling evidence.

  17. Mechanical breath profile of airway pressure release ventilation: the effect on alveolar recruitment and microstrain in acute lung injury.

    PubMed

    Kollisch-Singule, Michaela; Emr, Bryanna; Smith, Bradford; Roy, Shreyas; Jain, Sumeet; Satalin, Joshua; Snyder, Kathy; Andrews, Penny; Habashi, Nader; Bates, Jason; Marx, William; Nieman, Gary; Gatto, Louis A

    2014-11-01

    displacement. Higher PEEP (16-24 cm H2O) and a brief T(low) (APRV T-PEFR to PEFR ratio of 75%) reduced microstrain. Microstrain was minimized with an APRV T-PEFR to PEFR ratio of 75% (mean [SEM], 0.05 [0.03]) and PEEP of 16 cm H2O (mean [SEM], 0.09 [0.08]), but an APRV T-PEFR to PEFR ratio of 75% also promoted alveolar recruitment compared with PEEP of 16 cm H2O (mean [SEM] total inspiratory area, 52.0% [2.9%] vs 29.4% [4.3%], respectively; P < .05). Whole-lung strain was correlated with alveolar microstrain in tested settings (P < .05) except PEEP of 16 cm H2O (P > .05). Increased positive-end expiratory pressure and reduced time at low pressure (decreased T(low)) reduced alveolar microstrain. Reduced microstrain and improved alveolar recruitment using an APRV T-PEFR to PEFR ratio of 75% may be the mechanism of lung protection seen in previous clinical and animal studies.

  18. Capnography and chest wall impedance algorithms for ventilation detection during cardiopulmonary resuscitation

    PubMed Central

    Edelson, Dana P.; Eilevstjønn, Joar; Weidman, Elizabeth K.; Retzer, Elizabeth; Vanden Hoek, Terry L.; Abella, Benjamin S.

    2009-01-01

    Objective Hyperventilation is both common and detrimental during cardiopulmonary resuscitation (CPR). Chest wall impedance algorithms have been developed to detect ventilations during CPR. However, impedance signals are challenged by noise artifact from multiple sources, including chest compressions. Capnography has been proposed as an alternate method to measure ventilations. We sought to assess and compare the adequacy of these two approaches. Methods Continuous chest wall impedance and capnography were recorded during consecutive in-hospital cardiac arrests. Algorithms utilizing each of these data sources were compared to a manually determined “gold standard” reference ventilation rate. In addition, a combination algorithm, which utilized the highest of the impedance or capnography values in any given minute, was similarly evaluated. Results Data were collected from 37 cardiac arrests, yielding 438 min of data with continuous chest compressions and concurrent recording of impedance and capnography. The manually calculated mean ventilation rate was 13.3±4.3/min. In comparison, the defibrillator’s impedance-based algorithm yielded an average rate of 11.3±4.4/min (p=0.0001) while the capnography rate was 11.7±3.7/min (p=0.0009). There was no significant difference in sensitivity and positive predictive value between the two methods. The combination algorithm rate was 12.4±3.5/min (p=0.02), which yielded the highest fraction of minutes with respiratory rates within 2/min of the reference. The impedance signal was uninterpretable 19.5% of the time, compared with 9.7% for capnography. However, the signals were only simultaneously non-interpretable 0.8% of the time. Conclusions Both the impedance and capnography-based algorithms underestimated the ventilation rate. Reliable ventilation rate determination may require a novel combination of multiple algorithms during resuscitation. PMID:20036047

  19. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC).

    PubMed

    Kneyber, Martin C J; de Luca, Daniele; Calderini, Edoardo; Jarreau, Pierre-Henri; Javouhey, Etienne; Lopez-Herce, Jesus; Hammer, Jürg; Macrae, Duncan; Markhorst, Dick G; Medina, Alberto; Pons-Odena, Marti; Racca, Fabrizio; Wolf, Gerhard; Biban, Paolo; Brierley, Joe; Rimensberger, Peter C

    2017-12-01

    Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific and targeted interventions. We aim to establish a European consensus guideline on mechanical ventilation of critically children. The European Society for Paediatric and Neonatal Intensive Care initiated a consensus conference of international European experts in paediatric mechanical ventilation to provide recommendations using the Research and Development/University of California, Los Angeles, appropriateness method. An electronic literature search in PubMed and EMBASE was performed using a combination of medical subject heading terms and text words related to mechanical ventilation and disease-specific terms. The Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) consisted of a panel of 15 experts who developed and voted on 152 recommendations related to the following topics: (1) general recommendations, (2) monitoring, (3) targets of oxygenation and ventilation, (4) supportive measures, (5) weaning and extubation readiness, (6) normal lungs, (7) obstructive diseases, (8) restrictive diseases, (9) mixed diseases, (10) chronically ventilated patients, (11) cardiac patients and (12) lung hypoplasia syndromes. There were 142 (93.4%) recommendations with "strong agreement". The final iteration of the recommendations had none with equipoise or disagreement. These recommendations should help to harmonise the approach to paediatric mechanical ventilation and can be proposed as a standard-of-care applicable in daily clinical practice and clinical research.

  20. A Case-Control Study on the Impact of Ventilator-Associated Tracheobronchitis in the PICU.

    PubMed

    Wheeler, Derek S; Whitt, John D; Lake, Michael; Butcher, John; Schulte, Marion; Stalets, Erika

    2015-07-01

    Hospital-acquired infections increase morbidity, mortality, and charges in the PICU. We implemented a quality improvement bundle directed at ventilator-associated pneumonia in our PICU in 2005. We observed an increase in ventilator-associated tracheobronchitis coincident with the near-elimination of ventilator-associated pneumonia. The impact of ventilator-associated tracheobronchitis on critically ill children has not been previously described. Accordingly, we hypothesized that ventilator-associated tracheobronchitisis associated with increased length of stay, mortality, and hospital charge. Retrospective case-control study. Critically ill children admitted to a quaternary PICU at a free-standing academic children's hospital in the United States. None. We conducted a retrospective case control study, with institutional review board approval, of 77 consecutive cases of ventilator-associated tracheobronchitis admitted to our PICU from 2004-2010. We matched each case with a control based on the following criteria (in rank order): age range (< 30 d, 30 d to 24 mo, 24 mo to 12 yr, > 12 yr), admission Pediatric Risk of Mortality III score ± 10, number of ventilator days of control group (> 75% of days until development of ventilator-associated tracheobronchitis), primary diagnosis, underlying organ system dysfunction, surgical procedure, and gender. The primary outcome measured was PICU length of stay. Secondary outcomes included ventilator days, hospital length of stay, mortality, and PICU and hospital charges. Data was analyzed using chi square analysis and p less than 0.05 was considered significant. We successfully matched 45 of 77 ventilator-associated tracheobronchitis patients with controls. There were no significant differences in age, gender, diagnosis, or Pediatric Risk of Mortality III score between groups. Ventilator-associated tracheobronchitis patients had a longer PICU length of stay (median, 21.5 d, interquartile range, 24 d) compared to controls

  1. 46 CFR 194.20-5 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND... Ventilation. (a) Chemical storerooms shall be equipped with a power ventilation system of exhaust type. The... based upon the volume of the compartment. (1) Power ventilation units shall have nonsparking impellers...

  2. [Ventilator associated pneumonia].

    PubMed

    Bellani, S; Nesci, M; Celotto, S; Lampati, L; Lucchini, A

    2003-04-01

    Ventilator associated pneumonia (VAP) is a nosocomial lower respiratory tract infection that ensues in critically ill patients undergoing mechanical ventilation. The reported incidence of VAP varies between 9% and 68% with a mortality ranging between 33% and 71%. Two key factors are implicated in the pathogenesis of VAP: bacterial colonization of the upper digestive-respiratory tract and aspiration of oral secretions into the trachea. Preventive measurements are advocated to reduce the incidence of VAP, such as selective decontamination of the digestive tract (SDD), supraglottic aspiration and positioning. Prompt recognition and treatment of established VAP has also been demostrated to affect outcome. Therefore, the knowledge of risk factors associated with the development of VAP and the implementation of strategies to prevent, diagnose and treat VAP are mainstems in the nursing of mechanically ventilated patients.

  3. Comparative evaluation of hemodynamic and respiratory parameters during mechanical ventilation with two tidal volumes calculated by demi-span based height and measured height in normal lungs

    PubMed Central

    Seresht, L. Mousavi; Golparvar, Mohammad; Yaraghi, Ahmad

    2014-01-01

    Background: Appropriate determination of tidal volume (VT) is important for preventing ventilation induced lung injury. We compared hemodynamic and respiratory parameters in two conditions of receiving VTs calculated by using body weight (BW), which was estimated by measured height (HBW) or demi-span based body weight (DBW). Materials and Methods: This controlled-trial was conducted in St. Alzahra Hospital in 2009 on American Society of Anesthesiologists (ASA) I and II, 18-65-years-old patients. Standing height and weight were measured and then height was calculated using demi-span method. BW and VT were calculated with acute respiratory distress syndrome-net formula. Patients were randomized and then crossed to receive ventilation with both calculated VTs for 20 min. Hemodynamic and respiratory parameters were analyzed with SPSS version 20.0 using univariate and multivariate analyses. Results: Forty nine patients were studied. Demi-span based body weight and thus VT (DTV) were lower than Height based body weight and VT (HTV) (P = 0.028), in male patients (P = 0.005). Difference was observed in peak airway pressure (PAP) and airway resistance (AR) changes with higher PAP and AR at 20 min after receiving HTV compared with DTV. Conclusions: Estimated VT based on measured height is higher than that based on demi-span and this difference exists only in females, and this higher VT results higher airway pressures during mechanical ventilation. PMID:24627845

  4. Comparative evaluation of hemodynamic and respiratory parameters during mechanical ventilation with two tidal volumes calculated by demi-span based height and measured height in normal lungs.

    PubMed

    Seresht, L Mousavi; Golparvar, Mohammad; Yaraghi, Ahmad

    2014-01-01

    Appropriate determination of tidal volume (VT) is important for preventing ventilation induced lung injury. We compared hemodynamic and respiratory parameters in two conditions of receiving VTs calculated by using body weight (BW), which was estimated by measured height (HBW) or demi-span based body weight (DBW). This controlled-trial was conducted in St. Alzahra Hospital in 2009 on American Society of Anesthesiologists (ASA) I and II, 18-65-years-old patients. Standing height and weight were measured and then height was calculated using demi-span method. BW and VT were calculated with acute respiratory distress syndrome-net formula. Patients were randomized and then crossed to receive ventilation with both calculated VTs for 20 min. Hemodynamic and respiratory parameters were analyzed with SPSS version 20.0 using univariate and multivariate analyses. Forty nine patients were studied. Demi-span based body weight and thus VT (DTV) were lower than Height based body weight and VT (HTV) (P = 0.028), in male patients (P = 0.005). Difference was observed in peak airway pressure (PAP) and airway resistance (AR) changes with higher PAP and AR at 20 min after receiving HTV compared with DTV. Estimated VT based on measured height is higher than that based on demi-span and this difference exists only in females, and this higher VT results higher airway pressures during mechanical ventilation.

  5. Volume-controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort.

    PubMed

    Yoshida, Takeshi; Nakahashi, Susumu; Nakamura, Maria Aparecida Miyuki; Koyama, Yukiko; Roldan, Rollin; Torsani, Vinicius; De Santis, Roberta R; Gomes, Susimeire; Uchiyama, Akinori; Amato, Marcelo B P; Kavanagh, Brian P; Fujino, Yuji

    2017-09-01

    Spontaneous breathing during mechanical ventilation increases transpulmonary pressure and Vt, and worsens lung injury. Intuitively, controlling Vt and transpulmonary pressure might limit injury caused by added spontaneous effort. To test the hypothesis that, during spontaneous effort in injured lungs, limitation of Vt and transpulmonary pressure by volume-controlled ventilation results in less injurious patterns of inflation. Dynamic computed tomography was used to determine patterns of regional inflation in rabbits with injured lungs during volume-controlled or pressure-controlled ventilation. Transpulmonary pressure was estimated by using esophageal balloon manometry [Pl(es)] with and without spontaneous effort. Local dependent lung stress was estimated as the swing (inspiratory change) in transpulmonary pressure measured by intrapleural manometry in dependent lung and was compared with the swing in Pl(es). Electrical impedance tomography was performed to evaluate the inflation pattern in a larger animal (pig) and in a patient with acute respiratory distress syndrome. Spontaneous breathing in injured lungs increased Pl(es) during pressure-controlled (but not volume-controlled) ventilation, but the pattern of dependent lung inflation was the same in both modes. In volume-controlled ventilation, spontaneous effort caused greater inflation and tidal recruitment of dorsal regions (greater than twofold) compared with during muscle paralysis, despite the same Vt and Pl(es). This was caused by higher local dependent lung stress (measured by intrapleural manometry). In injured lungs, esophageal manometry underestimated local dependent pleural pressure changes during spontaneous effort. Limitation of Vt and Pl(es) by volume-controlled ventilation could not eliminate harm caused by spontaneous breathing unless the level of spontaneous effort was lowered and local dependent lung stress was reduced.

  6. The performances of standard and ResMed masks during bag-valve-mask ventilation.

    PubMed

    Lee, Hyoung Youn; Jeung, Kyung Woon; Lee, Byung Kook; Lee, Seung Joon; Jung, Yong Hun; Lee, Geo Sung; Min, Yong Il; Heo, Tag

    2013-01-01

    A tight mask seal is frequently difficult to obtain and maintain during single-rescuer bag-valve-mask (BVM) ventilation. The ResMed mask (Bella Vista, NSW, Australia) is a continuous-positive-airway-pressure mask (CM) designed for noninvasive ventilation. In this study, we compared the ventilation performances of a standard mask (SM) and a ResMed CM using a simulation manikin in an out-of-hospital single-rescuer BVM ventilation scenario. Thirty emergency medical technicians (EMTs) performed two 2-minute attempts to ventilate a simulation manikin using BVM ventilation, alternatively, with the SM or the ResMed CM in a randomized order. Ventilation parameters including tidal volume and peak airway pressure were measured using computer analysis software connected to the simulation manikin. Successful volume delivery was defined as delivery of 440-540 mL of tidal volume in accord with present cardiopulmonary resuscitation guidelines. BVM ventilation using the ResMed CM produced higher mean (± standard deviation) tidal volumes (452 ± 50 mL vs. 394 ± 113 mL, p = 0.014) and had a higher proportion of successful volume deliveries (65.3% vs. 26.7%, p < 0.001) than that using the SM. Peak airway pressure was higher in BVM ventilation using the ResMed CM (p = 0.035). Stomach insufflation did not occur during either method. Twenty-nine of the participants (96.7%) preferred BVM ventilation using the ResMed CM. BVM ventilations using ResMed CM resulted in a significantly higher proportion of successful volume deliveries meeting the currently recommended range of tidal volume. Clinical studies are needed to determine the value of the ResMed CM for BVM ventilation.

  7. Using domiciliary non-invasive ventilator data downloads to inform clinical decision-making to optimise ventilation delivery and patient compliance

    PubMed Central

    Mansell, Stephanie K; Cutts, Steven; Hackney, Isobel; Wood, Martin J; Hawksworth, Kevin; Creer, Dean D; Kilbride, Cherry; Mandal, Swapna

    2018-01-01

    Introduction Ventilation parameter data from patients receiving home mechanical ventilation can be collected via secure data cards and modem technology. This can then be reviewed by clinicians and ventilator prescriptions adjusted. Typically available measures include tidal volume (VT), leak, respiratory rate, minute ventilation, patient triggered breaths, achieved pressures and patient compliance. This study aimed to assess the potential impact of ventilator data downloads on management of patients requiring home non-invasive ventilation (NIV). Methods A longitudinal within-group design with repeated measurements was used. Baseline ventilator data were downloaded, reviewed and adjustments made to optimise ventilation. Leak, VT and compliance data were collected for comparison at the first review and 3–7 weeks later. Ventilator data were monitored and amended remotely via a modem by a consultant physiotherapist between the first review and second appointment. Results Analysis of data from 52 patients showed increased patient compliance (% days used >4 hours) from 90% to 96% (p=0.007), increased usage from 6.53 to 6.94 hours (p=0.211) and a change in VT(9.4 vs 8.7 mL/kg/ideal body weight, p=0.022). There was no change in leak following review of NIV prescriptions (mean (SD): 43 (23.4) L/min vs 45 (19.9)L/min, p=0.272). Conclusion Ventilator data downloads, via early remote assessment, can help optimise patient ventilation through identification of modifiable factors, in particular interface leak and ventilator prescriptions. However, a prospective study is required to assess whether using ventilator data downloads provides value in terms of patient outcomes and cost-effectiveness. The presented data will help to inform the design of such a study. PMID:29531743

  8. High tidal volume ventilation in infant mice.

    PubMed

    Cannizzaro, Vincenzo; Zosky, Graeme R; Hantos, Zoltán; Turner, Debra J; Sly, Peter D

    2008-06-30

    Infant mice were ventilated with either high tidal volume (V(T)) with zero end-expiratory pressure (HVZ), high V(T) with positive end-expiratory pressure (PEEP) (HVP), or low V(T) with PEEP. Thoracic gas volume (TGV) was determined plethysmographically and low-frequency forced oscillations were used to measure the input impedance of the respiratory system. Inflammatory cells, total protein, and cytokines in bronchoalveolar lavage fluid (BALF) and interleukin-6 (IL-6) in serum were measured as markers of pulmonary and systemic inflammatory response, respectively. Coefficients of tissue damping and tissue elastance increased in all ventilated mice, with the largest rise seen in the HVZ group where TGV rapidly decreased. BALF protein levels increased in the HVP group, whereas serum IL-6 rose in the HVZ group. PEEP keeps the lungs open, but provides high volumes to the entire lungs and induces lung injury. Compared to studies in adult and non-neonatal rodents, infant mice demonstrate a different response to similar ventilation strategies underscoring the need for age-specific animal models.

  9. Evaluation of a turbine flow meter (Ventilometer Mark 2) in the measurement of ventilation.

    PubMed

    Cooper, C B; Harris, N D; Howard, P

    1990-01-01

    We have evaluated a turbine flow meter (Ventilometer Mark 2, PK Morgan, Kent, UK) at low flow rates and levels of ventilation which are likely to be encountered during exercise in patients with chronic respiratory disease. Pulsatile flows were generated from a volume-cycled mechanical ventilator, the flow wave-form was modified by damping to simulate a human breathing pattern. Comparative measurements of ventilation were made whilst varying tidal volume (VT) from 0.22 to 1.131 and respiratory rate (fR) from 10 to 35 min-1. At lower levels of ventilation the instrument tended to underread especially with increasing fR. The calibration factor must be adjusted to match the level of ventilation if the measurement errors are to be within 5%.

  10. The oil displacement effect evaluation of Different Displacing systems

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Zhang, Bowen; Li, Gen

    2018-02-01

    During the chemical flooding, the surfactant and the alkali play an emulsifying role. The emulsification can not only improve the displacement efficiency, but also expand the swept volume by the mechanism of emulsifying trapping. We select some chemical flooding systems including different kinds of surfactants, alkali/alkali-free and different emulsion degrees to make the comparative experiment and draw the conclusion that it is an effective way to enhance the recovery by increasing the emulsion stability without having to pursue the ultra-low interfacial tension.

  11. TU-G-BRA-03: Predicting Radiation Therapy Induced Ventilation Changes Using 4DCT Jacobian Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, T; Du, K; Bayouth, J

    2015-06-15

    Purpose: Longitudinal changes in lung ventilation following radiation therapy can be mapped using four-dimensional computed tomography(4DCT) and image registration. This study aimed to predict ventilation changes caused by radiation therapy(RT) as a function of pre-RT ventilation and delivered dose. Methods: 4DCT images were acquired before and 3 months after radiation therapy for 13 subjects. Jacobian ventilation maps were calculated from the 4DCT images, warped to a common coordinate system, and a Jacobian ratio map was computed voxel-by-voxel as the ratio of post-RT to pre-RT Jacobian calculations. A leave-one-out method was used to build a response model for each subject: post-RTmore » to pre-RT Jacobian ratio data and dose distributions of 12 subjects were applied to the subject’s pre-RT Jacobian map to predict the post-RT Jacobian. The predicted Jacobian map was compared to the actual post-RT Jacobian map to evaluate efficacy. Within this cohort, 8 subjects had repeat pre-RT scans that were compared as a reference for no ventilation change. Maps were compared using gamma pass rate criteria of 2mm distance-to-agreement and 6% ventilation difference. Gamma pass rates were compared using paired t-tests to determine significant differences. Further analysis masked non-radiation induced changes by excluding voxels below specified dose thresholds. Results: Visual inspection demonstrates the predicted post-RT ventilation map is similar to the actual map in magnitude and distribution. Quantitatively, the percentage of voxels in agreement when excluding voxels receiving below specified doses are: 74%/20Gy, 73%/10Gy, 73%/5Gy, and 71%/0Gy. By comparison, repeat scans produced 73% of voxels within the 6%/2mm criteria. The agreement of the actual post-RT maps with the predicted maps was significantly better than agreement with pre-RT maps (p<0.02). Conclusion: This work validates that significant changes to ventilation post-RT can be predicted. The differences between

  12. Computational Study of Ventilation and Disease Spread in Poultry Houses

    NASA Astrophysics Data System (ADS)

    Cimbala, John; Pawar, Sourabh; Wheeler, Eileen; Lindberg, Darla

    2006-11-01

    The air flow in and around poultry houses has been studied numerically with the goal of determining disease spread characteristics and comparing ventilation schemes. A typical manure-belt layer egg production facility is considered. The continuity, momentum, and energy equations are solved for flow both inside and outside poultry houses using the commercial computational fluid dynamics (CFD) code FLUENT. Both simplified two-dimensional and fully three-dimensional geometries are modeled. The spread of virus particles is considered to be analogous to diffusion of a tracer contaminant gas, in this case ammonia. The effect of thermal plumes produced by the hens in the poultry house is also considered. Two ventilation schemes with opposite flow directions are compared. Contours of temperature and ammonia mass fraction for both cases are obtained and compared. The analysis shows that ventilation and air quality characteristics are much better for the case in which the air flow is from bottom to top (enhancing the thermal plume) instead of from top to bottom (fighting the thermal plume) as in most poultry houses. This has implications in air quality control in the event of epidemic outbreaks of avian flu or other infectious diseases.

  13. Performance of ICU ventilators during noninvasive ventilation with large leaks in a total face mask: a bench study.

    PubMed

    Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto

    2014-01-01

    Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM.

  14. Performance of ICU ventilators during noninvasive ventilation with large leaks in a total face mask: a bench study* **

    PubMed Central

    Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto

    2014-01-01

    Objective: Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. Methods: This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Results: Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. Conclusions: The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM. PMID:25029653

  15. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  16. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  17. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  18. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  19. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  20. A comprehensive evaluation of the toxicology resulting from laser-generated ventilation holes in cigarette filters.

    PubMed

    Coggins, Christopher R E; Merski, Jerome A; Oldham, Michael J

    2013-01-01

    Recent technological advances allow ventilation holes in (or adjacent to) cigarette filters to be produced using lasers instead of using the mechanical procedures of earlier techniques. Analytical chemistry can be used to compare the composition of mainstream smoke from experimental cigarettes having filters with mechanically produced ventilation holes to that of cigarettes with ventilation holes that were produced using laser technology. Established procedures were used to analyze the smoke composition of 38 constituents of mainstream smoke generated using standard conditions. There were no differences between the smoke composition of cigarettes with filter ventilation holes that were produced mechanically or through use of laser technology. The two methods for producing ventilation holes in cigarette filters are equivalent in terms of resulting mainstream smoke chemistry, at two quite different filter ventilation percentages.

  1. Simvastatin attenuates neutrophil recruitment in one-lung ventilation model in rats.

    PubMed

    Leite, Camila Ferreira; Marangoni, Fábio André; Camargo, Enilton Aparecido; Braga, Angélica de Fátima de Assunção; Toro, Ivan Felizardo Contrera; Antunes, Edson; Landucci, Elen Cristina Tiezem; Mussi, Ricardo Kalaf

    2013-04-01

    To investigate the anti-inflammatory effects of simvastatin in rats undergoing one-lung ventilation (OLV) followed by lung re-expansion. Male Wistar rats (n=30) were submitted to 1-h OLV followed by 1-h lung re-expansion. Treated group received simvastatin (40 mg/kg for 21 days) previous to OLV protocol. Control group received no treatment or surgical/ventilation interventions. Measurements of pulmonary myeloperoxidase (MPO) activity, pulmonary protein extravasation, and serum levels of cytokines and C-reactive protein (CRP) were performed. OLV significantly increased the MPO activity in the collapsed and continuously ventilated lungs (31% and 52% increase, respectively) compared with control (p<0.05). Treatment with simvastatin significantly reduced the MPO activity in the continuously ventilated lung but had no effect on lung edema after OLV. The serum IL-6 and CRP levels were markedly higher in OLV group, but simvastatin treatment failed to affect the production of these inflammatory markers. Serum levels of IL-1β, TNF-α and IL-10 remained below the detection limit in all groups. In an experimental one-lung ventilation model pre-operative treatment with simvastatin reduces remote neutrophil infiltration in the continuously ventilated lung. Our findings suggest that simvastatin may be of therapeutic value in OLV-induced pulmonary inflammation deserving clinical investigations.

  2. Nocturnal mechanical ventilation for chronic hypoventilation in patients with neuromuscular and chest wall disorders.

    PubMed

    Annane, Djillali; Orlikowski, David; Chevret, Sylvie

    2014-12-13

    Chronic alveolar hypoventilation is a common complication of many neuromuscular and chest wall disorders. Long-term nocturnal mechanical ventilation is commonly used to treat it. This is a 2014 update of a review first published in 2000 and previously updated in 2007. To examine the effects on mortality of nocturnal mechanical ventilation in people with neuromuscular or chest wall disorders. Subsidiary endpoints were to examine the effects of respiratory assistance on improvement of chronic hypoventilation, sleep quality, hospital admissions and quality of life. We searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE and EMBASE on 10 June 2014. We contacted authors of identified trials and other experts in the field. We searched for quasi-randomised or randomised controlled trials of participants of all ages with neuromuscular or chest wall disorder-related stable chronic hypoventilation of all degrees of severity, receiving any type and any mode of long-term nocturnal mechanical ventilation. The primary outcome measure was one-year mortality and secondary outcomes were unplanned hospital admission, short-term and long-term reversal of hypoventilation-related clinical symptoms and daytime hypercapnia, improvement of lung function and sleep breathing disorders. We used standard Cochrane methodology to select studies, extract data and assess the risk of bias in included studies. The 10 eligible trials included a total of 173 participants. Roughly half of the trials were at low risk of selection, attrition or reporting bias, and almost all were at high risk of performance and detection bias. Four trials reported mortality data in the long term. The pooled risk ratio (RR) of dying was 0.62 (95% confidence interval (CI) 0.42 to 0.91, P value = 0.01) in favour of nocturnal mechanical ventilation compared to spontaneous breathing. There was considerable and significant heterogeneity between the trials, possibly related to differences

  3. Mechanical Ventilation and Bronchopulmonary Dysplasia.

    PubMed

    Keszler, Martin; Sant'Anna, Guilherme

    2015-12-01

    Mechanical ventilation is an important potentially modifiable risk factor for the development of bronchopulmonary dysplasia. Effective use of noninvasive respiratory support reduces the risk of lung injury. Lung volume recruitment and avoidance of excessive tidal volume are key elements of lung-protective ventilation strategies. Avoidance of oxidative stress, less invasive methods of surfactant administration, and high-frequency ventilation are also important factors in lung injury prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France.

    PubMed

    Canha, N; Mandin, C; Ramalho, O; Wyart, G; Ribéron, J; Dassonville, C; Hänninen, O; Almeida, S M; Derbez, M

    2016-06-01

    The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2 ), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non-heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Ventilation of carbon monoxide from a biomass pellet storage tank--a study of the effects of variation of temperature and cross-ventilation on the efficiency of natural ventilation.

    PubMed

    Emhofer, Waltraud; Lichtenegger, Klaus; Haslinger, Walter; Hofbauer, Hermann; Schmutzer-Roseneder, Irene; Aigenbauer, Stefan; Lienhard, Martin

    2015-01-01

    Wood pellets have been reported to emit toxic gaseous emissions during transport and storage. Carbon monoxide (CO) emission, due to the high toxicity of the gas and the possibility of it being present at high levels, is the most imminent threat to be considered before entering a pellet storage facility. For small-scale (<30 tons storage capacity) residential pellet storage facilities, ventilation, preferably natural ventilation utilizing already existing openings, has become the most favored solution to overcome the problem of high CO concentrations. However, there is little knowledge on the ventilation rates that can be reached and thus on the effectiveness of such measures. The aim of the study was to investigate ventilation rates for a specific small-scale pellet storage system depending on characteristic temperature differences. Furthermore, the influence of the implementation of a chimney and the influence of cross-ventilation on the ventilation rates were investigated. The air exchange rates observed in the experiments ranged between close to zero and up to 8 m(3) h(-1), depending largely on the existing temperature differences and the existence of cross-ventilation. The results demonstrate that implementing natural ventilation is a possible measure to enhance safety from CO emissions, but not one without limitations. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. Displacement Cascade Damage Production in Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai

    Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as wellmore » as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less

  7. A Randomized Trial Comparing Efficacy of Bubble and Ventilator Derived Nasal CPAP in Very Low Birth Weight Neonates with Respiratory Distress

    PubMed Central

    Agarwal, Sheetal; Roy, Mahesh K.; Verma, Ankit

    2016-01-01

    Introduction Continuous Positive Airway Pressure (CPAP) has an established role in the care of Very Low Birth Weight (VLBW) babies with respiratory distress. Bubble CPAP (BCPAP) is a cheap alternative for countries where resources are limited. However, data comparing efficacy of BCPAP with conventional ventilator derived (VCPAP) is limited. Aim To compare CPAP failure rates between BCPAP and VCPAP among VLBW, with moderate respiratory distress. Secondary objectives were to compare the rates of Intraventricular Haemorrhage (IVH), pulmonary air leaks and deaths between the two groups and determine the predictors of CPAP failure. Materials and Methods VLBW babies with moderate respiratory distress (Silverman Anderson score 4-7), born or admitted in Neonatal Intensive Care Unit (NICU) within 28 days of life were randomized to receive either BCPAP (n=34) or VCPAP (n=34). CPAP failure rate in both the groups was compared. Results The baseline characteristics were similar in both the groups. Five out of 34 (14.70%) babies in BCPAP group and 11 out of 34 (32.35%) in VCPAP failed CPAP (p=0.08). IVH (BCPAP group 24% and VCPAP group 9%, p= 0.10) and mortality (BCPAP group 6% and VCPAP group 9%, p=0.642) were comparable in both the groups. Factors such as gestational age <30 weeks, weight <1000 grams, Respiratory Distress Syndrome (RDS), shock, pulmonary haemorrhage, Disseminated Intravascular Coagulation (DIC) and multi-organ dysfunction were significantly associated with CPAP failure in our study. Conclusion The CPAP failure rates in VLBW babies with moderate respiratory distress were found to be similar whether bubble CPAP or ventilator CPAP was used. There was no difference in complication rates of IVH or mortality with either method of CPAP. PMID:27790540

  8. Mechanical ventilation strategies.

    PubMed

    Keszler, Martin

    2017-08-01

    Although only a small proportion of full term and late preterm infants require invasive respiratory support, they are not immune from ventilator-associated lung injury. The process of lung damage from mechanical ventilation is multifactorial and cannot be linked to any single variable. Atelectrauma and volutrauma have been identified as the most important and potentially preventable elements of lung injury. Respiratory support strategies for full term and late preterm infants have not been as thoroughly studied as those for preterm infants; consequently, a strong evidence base on which to make recommendations is lacking. The choice of modalities of support and ventilation strategies should be guided by the specific underlying pathophysiologic considerations and the ventilatory approach must be individualized for each patient based on the predominant pathophysiology at the time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Displaced women's opinion of the impact of forced displacement on their health].

    PubMed

    Mogollón Pérez, Amparo Susana; Vázquez Navarrete, María Luisa

    2006-01-01

    To analyze the adaptation process of women internally displaced to the city and the relationship between displacement and their self-perceived main health problems. A qualitative, exploratory, descriptive study was carried out by means of semi-structured individual interviews with a maximum variation sample of 25 internally displaced women. A narrative content analysis was conducted with mixed generation of categories and data segmentation by age and themes. The area under study consisted of five localities in the city of Bogotá (Colombia). According to the interviewed women's discourses, their adaptation to city life depended on the new socioeconomic and environmental conditions and the psychosocial impact of displacement on the family. Precarious economic conditions forced them to live in an unhealthy environment and, occasionally, to adopt the role of head of household. In this role, many of these women, particularly young women, faced great difficulties in ensuring that the family's needs were met. Young women and teenagers reported behavioral changes due to displacement, including reproduction of violence in the home. The main self-perceived health problems among displaced women were mental health, access to food, infections and gynecological alterations. Displaced women identified the main factors hindering their access to health services as their economic situation and home responsibilities. Displaced women face new environmental and family challenges that negatively affect their health and access to healthcare. Specific interventions aimed at displaced women are required to foster better health through access to work and long -term socioeconomic stability.

  10. Circuit compliance compensation in lung protective ventilation.

    PubMed

    Masselli, Grazia Maria Pia; Silvestri, Sergio; Sciuto, Salvatore Andrea; Cappa, Paolo

    2006-01-01

    Lung protective ventilation utilizes low tidal volumes to ventilate patients with severe lung pathologies. The compensation of breathing circuit effects, i.e. those induced by compressible volume of the circuit, results particularly critical in the calculation of the actual tidal volume delivered to patient's respiratory system which in turns is responsible of the level of permissive hypercapnia. The present work analyzes the applicability of the equation for circuit compressible volume compensation in the case of pressure and volume controlled lung protective ventilation. Experimental tests conducted in-vitro show that the actual tidal volume can be reliably estimated if the compliance of the breathing circuit is measured with the same parameters and ventilation technique that will be utilized in lung protective ventilation. Differences between volume and pressure controlled ventilation are also quantitatively assessed showing that pressure controlled ventilation allows a more reliable compensation of breathing circuit compressible volume.

  11. Evaluating the effects of protective ventilation on organ-specific cytokine production in porcine experimental postoperative sepsis.

    PubMed

    Sperber, Jesper; Lipcsey, Miklós; Larsson, Anders; Larsson, Anders; Sjölin, Jan; Castegren, Markus

    2015-05-10

    Protective ventilation with lower tidal volume (VT) and higher positive end-expiratory pressure (PEEP) reduces the negative additive effects of mechanical ventilation during systemic inflammatory response syndrome. We hypothesised that protective ventilation during surgery would affect the organ-specific immune response in an experimental animal model of endotoxin-induced sepsis-like syndrome. 30 pigs were laparotomised for 2 hours (h), after which a continuous endotoxin infusion was started at 0.25 micrograms × kg(-1) × h(-1) for 5 h. Catheters were placed in the carotid artery, hepatic vein, portal vein and jugular bulb. Animals were randomised to two protective ventilation groups (n = 10 each): one group was ventilated with VT 6 mL × kg(-1) during the whole experiment while the other group was ventilated during the surgical phase with VT of 10 mL × kg(-1). In both groups PEEP was 5 cmH2O during surgery and increased to 10 cmH2O at the start of endotoxin infusion. A control group (n = 10) was ventilated with VT of 10 mL × kg(-1) and PEEP 5 cm H20 throughout the experiment. In four sample locations we a) simultaneously compared cytokine levels, b) studied the effect of protective ventilation initiated before and during endotoxemia and c) evaluated protective ventilation on organ-specific cytokine levels. TNF-alpha levels were highest in the hepatic vein, IL-6 levels highest in the artery and jugular bulb and IL-10 levels lowest in the artery. Protective ventilation initiated before and during endotoxemia did not differ in organ-specific cytokine levels. Protective ventilation led to lower levels of TNF-alpha in the hepatic vein compared with the control group, whereas no significant differences were seen in the artery, portal vein or jugular bulb. Variation between organs in cytokine output was observed during experimental sepsis. We see no implication from cytokine levels for initiating protective ventilation before endotoxemia. However, during endotoxemia

  12. A comparative study of behaviors of ventilated supercavities between experimental models with different mounting configurations

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Kawakami, Ellison; Karn, Ashish; Arndt, Roger E. A.

    2016-08-01

    Small-scale water tunnel experiments of the phenomenon of supercavitation can be carried out broadly using two different kinds of experimental models-in the first model (forward facing model, or FFM), the incoming flow first interacts with the cavitator at front, which is connected to the strut through a ventilation pipe. The second model could have the strut and the ventilation pipe preceding the cavitator (backward facing model, or BFM). This is the continuation of a water tunnel study of the effects of unsteady flows on axisymmetric supercavities. In this study, the unwanted effect of test model configuration on supercavity shape in periodic flows was explored through a comparison of FFM and BFM models. In our experiments, it was found that periodic gust flows have only a minimal effect on the maximum diameter and the cavity length can be shortened above a certain vertical velocity of periodic flows. These findings appear to be robust regardless of the model configuration.

  13. Inadequate face mask ventilation--clinical applications.

    PubMed

    Goranović, Tatjana; Milić, Morena; Holjevac, Jadranka Katancić; Maldini, Branka; Sakić, Katarina

    2010-09-01

    Face mask ventilation is a life saving technique. This article will review aetiology and patophysiological consequences of inadequate mask ventilation. The main focus will be on circulatory changes during induction of anesthesia, before and in a short period after intubation that could be attributed to inadequate mask ventilation in humans.

  14. Automatic control of pressure support for ventilator weaning in surgical intensive care patients.

    PubMed

    Schädler, Dirk; Engel, Christoph; Elke, Gunnar; Pulletz, Sven; Haake, Nils; Frerichs, Inéz; Zick, Günther; Scholz, Jens; Weiler, Norbert

    2012-03-15

    Despite its ability to reduce overall ventilation time, protocol-guided weaning from mechanical ventilation is not routinely used in daily clinical practice. Clinical implementation of weaning protocols could be facilitated by integration of knowledge-based, closed-loop controlled protocols into respirators. To determine whether automated weaning decreases overall ventilation time compared with weaning based on a standardized written protocol in an unselected surgical patient population. In this prospective controlled trial patients ventilated for longer than 9 hours were randomly allocated to receive either weaning with automatic control of pressure support ventilation (automated-weaning group) or weaning based on a standardized written protocol (control group) using the same ventilation mode. The primary end point of the study was overall ventilation time. Overall ventilation time (median [25th and 75th percentile]) did not significantly differ between the automated-weaning (31 [19-101] h; n = 150) and control groups (39 [20-118] h; n = 150; P = 0.178). Patients who underwent cardiac surgery (n = 132) exhibited significantly shorter overall ventilation times in the automated-weaning (24 [18-57] h) than in the control group (35 [20-93] h; P = 0.035). The automated-weaning group exhibited shorter ventilation times until the first spontaneous breathing trial (1 [0-15] vs. 9 [1-51] h; P = 0.001) and a trend toward fewer tracheostomies (17 vs. 28; P = 0.075). Overall ventilation times did not significantly differ between weaning using automatic control of pressure support ventilation and weaning based on a standardized written protocol. Patients after cardiac surgery may benefit from automated weaning. Implementation of additional control variables besides the level of pressure support may further improve automated-weaning systems. Clinical trial registered with www.clinicaltrials.gov (NCT 00445289).

  15. Feasibility of Protective Ventilation During Elective Supratentorial Neurosurgery: A Randomized, Crossover, Clinical Trial.

    PubMed

    Ruggieri, Francesco; Beretta, Luigi; Corno, Laura; Testa, Valentina; Martino, Enrico A; Gemma, Marco

    2017-06-30

    Traditional ventilation approaches, providing high tidal volumes (Vt), produce excessive alveolar distention and lung injury. Protective ventilation, employing lower Vt and positive end-expiratory pressure (PEEP), is an attractive alternative also for neuroanesthesia, when prolonged mechanical ventilation is needed. Nevertheless, protective ventilation during intracranial surgery may exert dangerous effects on intracranial pressure (ICP). We tested the feasibility of a protective ventilation strategy in neurosurgery. Our monocentric, double-blind, 1:1 randomized, 2×2 crossover study aimed at studying the effect size and variability of ICP in patients undergoing elective supratentorial brain tumor removal and alternatively ventilated with Vt 9 mL/kg-PEEP 0 mm Hg and Vt 7 mL/kg-PEEP 5 mm Hg. Respiratory rate was adjusted to maintain comparable end-tidal carbon dioxide between ventilation modes. ICP was measured through a subdural catheter inserted before dural opening. Forty patients were enrolled; 8 (15%) were excluded after enrollment. ICP did not differ between traditional and protective ventilation (11.28±5.37, 11 [7 to 14.5] vs. 11.90±5.86, 11 [8 to 15] mm Hg; P=0.541). End-tidal carbon dioxide (28.91±2.28, 29 [28 to 30] vs. 28.00±2.17, 28 [27 to 29] mm Hg; P<0.001). Peak airway pressure (17.25±1.97, 17 [16 to 18.5] vs. 15.81±2.87, 15.5 [14 to 17] mm Hg; P<0.001) and plateau airway pressure (16.06±2.30, 16 [14.5 to 17] vs. 14.19±2.82, 14 [12.5 to 16] mm Hg; P<0.001) were higher during protective ventilation. Blood pressure, heart rate, and body temperature did not differ between ventilation modes. Dural tension was "acceptable for surgery" in all cases. ICP differences between ventilation modes were not affected by ICP values under traditional ventilation (coefficient=0.067; 95% confidence interval, -0.278 to 0.144; P=0.523). Protective ventilation is a feasible alternative to traditional ventilation during elective neurosurgery.

  16. Non-invasive ventilation with intelligent volume-assured pressure support versus pressure-controlled ventilation: effects on the respiratory event rate and sleep quality in COPD with chronic hypercapnia.

    PubMed

    Nilius, Georg; Katamadze, Nato; Domanski, Ulrike; Schroeder, Maik; Franke, Karl-Josef

    2017-01-01

    COPD patients who develop chronic hypercapnic respiratory failure have a poor prognosis. Treatment of choice, especially the best form of ventilation, is not well known. This study compared the effects of pressure-controlled (spontaneous timed [ST]) non-invasive ventilation (NIV) and NIV with intelligent volume-assured pressure support (IVAPS) in chronic hypercapnic COPD patients regarding the effects on alveolar ventilation, adverse patient/ventilator interactions and sleep quality. This prospective, single-center, crossover study randomized patients to one night of NIV using ST then one night with the IVAPS function activated, or vice versa. Patients were monitored using polysomnography (PSG) and transcutaneous carbon dioxide pressure (PtcCO 2 ) measurement. Patients rated their subjective experience (total score, 0-45; lower scores indicate better acceptability). Fourteen patients were included (4 females, age 59.4±8.9 years). The total number of respiratory events was low, and similar under pressure-controlled (5.4±6.7) and IVAPS (8.3±10.2) conditions ( P =0.064). There were also no clinically relevant differences in PtcCO 2 between pressure-controlled and IVAPS NIV (52.9±6.2 versus 49.1±6.4 mmHg). Respiratory rate was lower under IVAPS overall; between-group differences reached statistical significance during wakefulness and non-rapid eye movement sleep. Ventilation pressures were 2.6 cmH 2 O higher under IVAPS versus pressure-controlled ventilation, resulting in a 20.1 mL increase in breathing volume. Sleep efficiency was slightly higher under pressure-controlled ventilation versus IVAPS. Respiratory arousals were uncommon (24.4/h [pressure-controlled] versus 25.4/h [IVAPS]). Overall patient assessment scores were similar, although there was a trend toward less discomfort during IVAPS. Our results show that IVAPS NIV allows application of higher nocturnal ventilation pressures versus ST without affecting sleep quality or inducing ventilation- associated

  17. Invasive Mechanical Ventilation and Mortality in Pediatric Hematopoietic Stem Cell Transplantation: A Multicenter Study.

    PubMed

    Rowan, Courtney M; Gertz, Shira J; McArthur, Jennifer; Fitzgerald, Julie C; Nitu, Mara E; Loomis, Ashley; Hsing, Deyin D; Duncan, Christine N; Mahadeo, Kris M; Smith, Lincoln S; Moffet, Jerelyn; Hall, Mark W; Pinos, Emily L; Cheifetz, Ira M; Tamburro, Robert F

    2016-04-01

    To establish the current respiratory practice patterns in pediatric hematopoietic stem cell transplant patients and investigate their associations with mortality across multiple centers. Retrospective cohort between 2009 and 2014. Twelve children's hospitals in the United States. Two hundred twenty-two pediatric allogeneic hematopoietic stem cell transplant recipients with acute respiratory failure using invasive mechanical ventilation. None. PICU mortality of our cohort was 60.4%. Mortality at 180 days post PICU discharge was 74%. Length of PICU stay prior to initiation of invasive mechanical ventilation was significantly lower in survivors, and the odds of mortality increased for longer length of PICU stay prior to intubation. A total of 91 patients (41%) received noninvasive ventilation at some point during their PICU stay prior to intubation. Noninvasive ventilation use preintubation was associated with increased mortality (odds ratio, 2.1; 95% CI, 1.2-3.6; p = 0.010). Patients ventilated longer than 15 days had higher odds of death (odds ratio, 2.4; 95% CI, 1.3-4.2; p = 0.004). Almost 40% of patients (n = 85) were placed on high-frequency oscillatory ventilation with a mortality of 76.5% (odds ratio, 3.3; 95% CI, 1.7-6.5; p = 0.0004). Of the 20 patients who survived high-frequency oscillatory ventilation, 18 were placed on high-frequency oscillatory ventilation no later than the third day of invasive mechanical ventilation. In this subset of 85 patients, transition to high-frequency oscillatory ventilation within 2 days of the start of invasive mechanical ventilation resulted in a 76% decrease in the odds of death compared with those who transitioned to high-frequency oscillatory ventilation later in the invasive mechanical ventilation course. This study suggests that perhaps earlier more aggressive critical care interventions in the pediatric hematopoietic stem cell transplant patient with respiratory failure requiring invasive mechanical ventilation may

  18. Sedation during mechanical ventilation: a trial of benzodiazepine and opiate in combination.

    PubMed

    Richman, Paul S; Baram, Daniel; Varela, Marie; Glass, Peter S

    2006-05-01

    To compare the efficacy of continuous intravenous sedation with midazolam alone vs. midazolam plus fentanyl ("co-sedation") during mechanical ventilation. A randomized, prospective, controlled trial. A ten-bed medical intensive care unit at a university hospital. Thirty patients with respiratory failure who were expected to require >48 hrs of mechanical ventilation and who were receiving a sedative regimen that did not include opiate pain control. An intravenous infusion of either midazolam alone or co-sedation was administered by a nurse-implemented protocol to achieve a target Ramsay Sedation Score set by the patient's physician. Study duration was 3 days, with a brief daily "wake-up." We recorded the number of hours/day that patients were "off-target" with their Ramsay Sedation Scores, the number of dose titrations per day, the incidence of patient-ventilator asynchrony, and the time required to achieve adequate sedation as measures of sedative efficacy. We also recorded sedative cost in U.S. dollars and adverse events including hypotension, hypoventilation, ileus, and coma. Compared with the midazolam-only group, the co-sedation group had fewer hours per day with an "off-target" Ramsay Score (4.2 +/- 2.4 and 9.1 +/- 4.9, respectively, p < .002). Fewer episodes per day of patient-ventilator asynchrony were noted in the co-sedation group compared with midazolam-only (0.4 +/- 0.1 and 1.0 +/- 0.2, respectively, p < .05). Co-sedation also showed nonsignificant trends toward a shorter time to achieve sedation, a need for fewer dose titrations per day, and a lower total sedative drug cost. There was a trend toward more episodes of ileus with co-sedation compared with midazolam-only (2 vs. 0). In mechanically ventilated patients, co-sedation with midazolam and fentanyl by constant infusion provides more reliable sedation and is easier to titrate than midazolam alone, without significant difference in the rate of adverse events.

  19. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    PubMed Central

    Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois

    2012-01-01

    Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges. PMID:22536499

  20. Infiltration as Ventilation: Weather-Induced Dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.; Turner, William J.N.; Walker, Iain S.

    The purpose of outdoor air ventilation is to dilute or remove indoor contaminants to which occupants are exposed. It can be provided by mechanical or natural means. In most homes, especially older homes, weather-driven infiltration provides the dominant fraction of the total ventilation. As we seek to provide good indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to evaluate correctly the contribution infiltration makes to the total outdoor air ventilation rate. Because weather-driven infiltration is dependent on building air leakage and weather-induced pressure differences, a given amount ofmore » air leakage will provide different amounts of infiltration. Varying rates of infiltration will provide different levels of contaminant dilution and hence effective ventilation. This paper derives these interactions and then calculates the impact of weather-driven infiltration for different climates. A new “N-factor” is introduced to provide a convenient method for calculating the ventilation contribution of infiltration for over 1,000 locations across North America. The results of this work could be used in indoor air quality standards (specifically ASHRAE 62.2) to account for the contribution of weather-driven infiltration towards the dilution of indoor pollutants.« less

  1. Proton Irradiation as a Screen for Displacement-Damage Sensitivity in Bipolar Junction Transistors

    NASA Astrophysics Data System (ADS)

    Arutt, Charles N.; Warren, Kevin M.; Schrimpf, Ronald D.; Weller, Robert A.; Kauppila, Jeffrey S.; Rowe, Jason D.; Sternberg, Andrew L.; Reed, Robert A.; Ball, Dennis R.; Fleetwood, Daniel M.

    2015-12-01

    NPN and PNP bipolar junction transistors of varying sizes are irradiated with 4-MeV protons and 10-keV X-rays to determine the amount of ionization-related degradation caused by protons and calculate an improved estimate of displacement-related degradation due to protons. While different ratios of degradation produced by displacement damage and ionization effects will occur for different device technologies, this general approach, with suitable margin, can be used as a screen for sensitivity to neutron-induced displacement damage. Further calculations are performed to estimate the amount of degradation produced by 1-MeV equivalent neutron displacement damage compared to that produced by the displacement damage due to protons. The results are compared to previous work.

  2. Antibiotic therapy in ventilator-associated tracheobronchitis: a literature review.

    PubMed

    Alves, Abel Eduardo; Pereira, José Manuel

    2018-03-01

    The concept of ventilator-associated tracheobronchitis is controversial; its definition is not unanimously accepted and often overlaps with ventilator-associated pneumonia. Ventilator-associated tracheobronchitis has an incidence similar to that of ventilator-associated pneumonia, with a high prevalence of isolated multiresistant agents, resulting in an increase in the time of mechanical ventilation and hospitalization but without an impact on mortality. The performance of quantitative cultures may allow better diagnostic definition of tracheobronchitis associated with mechanical ventilation, possibly avoiding the overdiagnosis of this condition. One of the major difficulties in differentiating between ventilator-associated tracheobronchitis and ventilator-associated pneumonia is the exclusion of a pulmonary infiltrate by chest radiography; thoracic computed tomography, thoracic ultrasonography, or invasive specimen collection may also be required. The institution of systemic antibiotic therapy does not improve the clinical impact of ventilator-associated tracheobronchitis, particularly in reducing time of mechanical ventilation, hospitalization or mortality, despite the possible reduced progression to ventilator-associated pneumonia. However, there are doubts regarding the methodology used. Thus, considering the high prevalence of tracheobronchitis associated with mechanical ventilation, routine treatment of this condition would result in high antibiotic usage without clear benefits. However, we suggest the institution of antibiotic therapy in patients with tracheobronchitis associated with mechanical ventilation and septic shock and/or worsening of oxygenation, and other auxiliary diagnostic tests should be simultaneously performed to exclude ventilator-associated pneumonia. This review provides a better understanding of the differentiation between tracheobronchitis associated with mechanical ventilation and pneumonia associated with mechanical ventilation, which

  3. Comparing performance of three oscillating positive expiratory pressure devices at similar amplitude and frequencies of oscillations on displacement of mucus inside trachea during cough.

    PubMed

    Ragavan, Anpalaki J

    2012-03-13

    Performance of Flutter® (Axcan Scandipharm Inc, Birmingham, AL), Acapella® (Smiths Medicals Inc, Rockland, MA) and Quake® (Thayer Medical, Tucson, AZ) were compared at similar frequencies and amplitudes of oscillations at nine angles of the device in clearing simulated mucus inside a tracheal model (trachea) oriented at three angles with or without simulated constrictions in airway upstream of trachea. Displacement of 0.4mL of simulated mucus prepared with viscoelastic properties similar to healthy individuals (syrup-like) or patients with COPD (gel-like) using locust bean gum(LBG) solution (0.38g LBG in 100mL water) cross-linked with 3mL or 12mL borax solution (0.02 molar), respectively were measured inside trachea during coughs of 300ms at low cough velocity (15±0.5m/s) generated using a computer controlled solenoid valve. Oscillations were superimposed on cough by connecting the oscillator device to the outlet of the trachea. Frequency and amplitude of oscillations generated by Quake and Acapella and resulting mucus displacement were independent of angle of oscillator, while amplitude of oscillations and resulting mucus displacement generated by Flutter, increased up to 30o upward and 20o downward angles of Flutter from horizontal but decreased significantly thereafter. Displacement with Quake increased significantly with frequencies of oscillations up to 25 Hz and decreased thereafter but increased with amplitudes of oscillations up to 22±4.7 m/s. Quake showed significantly larger displacements than Flutter and Acapella at equal frequencies and amplitudes (p<0.05). Displacements were significantly larger with trachea positioned 30o upwards than horizontal or 20o downwards (p<0.0001). Displacement was the greatest for gel-like mucus than syrup-like (p<0.0001). Airway constrictions upstream resulted in enhanced displacement of mucus (p<0.0001). Mucus clearance can be significantly enhanced by coughing through oscillating positive expiratory devices that

  4. Metabolic Requirement of Septic Shock Patients Before and After Liberation From Mechanical Ventilation.

    PubMed

    Lee, Peggy Siu-Pik; Lee, Kar Lung; Betts, James A; Law, Kin Ip

    2017-08-01

    This study identified the difference in energy expenditure and substrate utilization of patients during and upon liberation from mechanical ventilation. Patients under intensive care who were diagnosed with septic shock and dependent on mechanical ventilation were recruited. Indirect calorimetry measurements were performed during and upon liberation from mechanical ventilation. Thirty-five patients were recruited (20 men and 15 women; mean age, 69 ± 10 years). Measured energy expenditures during ventilation and upon liberation were 2090 ± 489 kcal·d -1 and 1910 ± 579 kcal·d -1 , respectively ( P < .05). Energy intake was provided at 1148 ± 495 kcal·d -1 and differed significantly from all measured energy expenditures ( P < .05). Mean carbohydrate utilization was 0.19 ± 0.1 g·min -1 when patients were on mechanical ventilation compared with 0.15 ± 0.09 g·min -1 upon liberation ( P < .05). Mean lipid oxidation was 0.08 ± 0.05 g·min -1 during and 0.09 ± 0.07 g·min -1 upon liberation from mechanical ventilation ( P > .05). Measured energy expenditure was higher during than upon liberation from mechanical ventilation. This could be the increase in work of breathing from the continuous positive pressure support, repeated weaning cycles from mechanical ventilation, and/or the asynchronization between patients' respiration and ventilator support. Future studies should examine whether more appropriately matching energy expenditure with energy intake would promote positive health outcomes.

  5. Noninvasive versus conventional ventilation to treat hypercapnic encephalopathy in chronic obstructive pulmonary disease.

    PubMed

    Scala, Raffaele; Nava, Stefano; Conti, Giorgio; Antonelli, Massimo; Naldi, Mario; Archinucci, Ivano; Coniglio, Giovanni; Hill, Nicholas S

    2007-12-01

    We recently reported a high success rate using noninvasive positive pressure ventilation (NPPV) to treat COPD exacerbations with hypercapnic encephalopathy. This study compared the hospital outcomes of NPPV vs. conventional mechanical ventilation (CMV) in COPD exacerbations with moderate to severe hypercapnic encephalopathy, defined by a Kelly score of 3 or higher. A 3-year prospective matched case-control study in a respiratory semi-intensive care unit (RSICU) and intensive care unit (ICU). From 103 consecutive patients the study included 20 undergoing NPPV and 20 CMV, matched for age, simplified acute physiology score II, and baseline arterial blood gases. ABG significantly improved in both groups after 2 h. The rate of complications was lower in the NPPV group than in the CMV group due to fewer cases of nosocomial pneumonia and sepsis. In-hospital mortality, 1-year mortality, and tracheostomy rates were similar in the two groups. Fewer patients remained on ventilation after 30 days in NPPV group. The NPPV group showed a shorter duration of ventilation. In COPD exacerbations with moderate to severe hypercapnic encephalopathy, the use of NPPV performed by an experienced team compared to CMV leads to similar short and long-term survivals with a reduced nosocomial infection rate and duration of ventilation.

  6. Basic life support with four different compression/ventilation ratios in a pig model: the need for ventilation.

    PubMed

    Kill, Clemens; Torossian, Alexander; Freisburger, Christian; Dworok, Sebastian; Massmann, Martin; Nohl, Thorsten; Henning, Ronald; Wallot, Pascal; Gockel, Andreas; Steinfeldt, Thorsten; Graf, Jürgen; Eberhart, Leopold; Wulf, Hinnerk

    2009-09-01

    During cardiac arrest the paramount goal of basic life support (BLS) is the oxygenation of vital organs. Current recommendations are to combine chest compressions with ventilation in a fixed ratio of 30:2; however the optimum compression/ventilation ratio is still debatable. In our study we compared four different compression/ventilation ratios and documented their effects on the return of spontaneous circulation (ROSC), gas exchange, cerebral tissue oxygenation and haemodynamics in a pig model. Study was performed on 32 pigs under general anaesthesia with endotracheal intubation. Arterial and central venous lines were inserted. For continuous cerebral tissue oxygenation a Licox PtiO(2) probe was implanted. After 3 min of cardiac arrest (ventricular fibrillation) animals were randomized to a compression/ventilation-ratio 30:2, 100:5, 100:2 or compressions-only. Subsequently 10 min BLS, Advanced Life Support (ALS) was performed (100%O(2), 3 defibrillations, 1mg adrenaline i.v.). Data were analyzed with 2-factorial ANOVA. ROSC was achieved in 4/8 (30:2), 5/8 (100:5), 2/8 (100:2) and 0/8 (compr-only) pigs. During BLS, PaCO(2) increased to 55 mm Hg (30:2), 68 mm Hg (100:5; p=0.0001), 66 mm Hg (100:2; p=0.002) and 72 mm Hg (compr-only; p<0.0001). PaO(2) decreased to 58 mmg (30:2), 40 mm Hg (100:5; p=0.15), 43 mm Hg (100:2; p=0.04) and 26 mm Hg (compr-only; p<0.0001). PtiO(2) baseline values were 12.7, 12.0, 11.1 and 10.0 mm Hg and decreased to 8.1 mm Hg (30:2), 4.1 mm Hg (100:5; p=0.08), 4.3 mm Hg (100:2; p=0.04), and 4.5 mm Hg (compr-only; p=0.69). During BLS, a compression/ventilation-ratio of 100:5 seems to be equivalent to 30:2, while ratios of 100:2 or compressions-only detoriate peripheral arterial oxygenation and reduce the chance for ROSC.

  7. Fiber-optic couplers as displacement sensors

    NASA Astrophysics Data System (ADS)

    Baruch, Martin C.; Gerdt, David W.; Adkins, Charles M.

    2003-04-01

    We introduce the novel concept of using a fiber-optic coupler as a versatile displacement sensor. Comparatively long fiber-optic couplers, with a coupling region of approximately 10 mm, are manufactured using standard communication SM fiber and placed in a looped-back configuration. The result is a displacement sensor, which is robust and highly sensitive over a wide dynamic range. This displacement sensor resolves 1-2 μm over distances of 1-1.5 mm and is characterized by the essential absence of a 'spring constant' plaguing other strain gauge-type sensors. Consequently, it is possible to couple to extremely weak vibrations, such as the skin displacement affected by arterial heart beat pulsations. Used as a wrist-worn heartbeat monitor, the fidelity of the arterial pulse signal has been shown to be so high that it is possible to not only determine heartbeat and breathing rates, but to implement a new single-point blood pressure measurement scheme which does not squeeze the arm. In an application as a floor vibration sensor for the non-intrusive monitoring of independently living elderly, the sensor has been shown to resolve the distinct vibration spectra of different persons and different events.

  8. Overtreatment of displaced midshaft clavicle fractures

    PubMed Central

    Ban, Ilija; Nowak, Jan; Virtanen, Kaisa; Troelsen, Anders

    2016-01-01

    Background and purpose The best treatment for displaced clavicle fractures has been debated for decades. Operative treatment has become more common. However, several randomized trials comparing non-operative and operative treatment have not shown any compelling evidence in favor of surgery. We identified the preferred treatment of displaced midshaft clavicle fractures at public hospitals in 3 countries in Scandinavia. Patients and methods A purpose-made multiple-choice questionnaire in English was sent to all public hospitals in Denmark, Sweden, and Finland. This was addressed to the orthopedic surgeon responsible for treatment of clavicle fractures, and completed questionnaires were obtained from 85 of 118 hospitals. Results In the 3 countries, 69 of the 85 hospitals that responded would treat displaced clavicle fractures operatively. Clear criteria for treatment allocation were used at 58 of the hospitals, with the remaining 27 using individual assessment in collaboration with the patient. Precontoured locking plates were mostly used, placed either superiorly (64/85) or anteriorly (10/85). Interpretation Displaced midshaft clavicle fractures are mainly treated operatively in Sweden, Denmark, and Finland. This treatment is not supported by compelling evidence. PMID:27225678

  9. Academic Emergency Medicine Physicians' Knowledge of Mechanical Ventilation.

    PubMed

    Wilcox, Susan R; Strout, Tania D; Schneider, Jeffrey I; Mitchell, Patricia M; Smith, Jessica; Lutfy-Clayton, Lucienne; Marcolini, Evie G; Aydin, Ani; Seigel, Todd A; Richards, Jeremy B

    2016-05-01

    Although emergency physicians frequently intubate patients, management of mechanical ventilation has not been emphasized in emergency medicine (EM) education or clinical practice. The objective of this study was to quantify EM attendings' education, experience, and knowledge regarding mechanical ventilation in the emergency department. We developed a survey of academic EM attendings' educational experiences with ventilators and a knowledge assessment tool with nine clinical questions. EM attendings at key teaching hospitals for seven EM residency training programs in the northeastern United States were invited to participate in this survey study. We performed correlation and regression analyses to evaluate the relationship between attendings' scores on the assessment instrument and their training, education, and comfort with ventilation. Of 394 EM attendings surveyed, 211 responded (53.6%). Of respondents, 74.5% reported receiving three or fewer hours of ventilation-related education from EM sources over the past year and 98 (46%) reported receiving between 0-1 hour of education. The overall correct response rate for the assessment tool was 73.4%, with a standard deviation of 19.9. The factors associated with a higher score were completion of an EM residency, prior emphasis on mechanical ventilation during one's own residency, working in a setting where an emergency physician bears primary responsibility for ventilator management, and level of comfort with managing ventilated patients. Physicians' comfort was associated with the frequency of ventilator changes and EM management of ventilation, as well as hours of education. EM attendings report caring for mechanically ventilated patients frequently, but most receive fewer than three educational hours a year on mechanical ventilation, and nearly half receive 0-1 hour. Physicians' performance on an assessment tool for mechanical ventilation is most strongly correlated with their self-reported comfort with mechanical

  10. [The incidence and risk factors of ventilator-associated pneumonia in patients with severe traumatic brain injury].

    PubMed

    Marjanović, Vesna; Novak, Vesna; Velicković, Ljubinka; Marjanović, Goran

    2011-01-01

    Patients with severe traumatic brain injury are at a risk of developing ventilator-associated pneumonia. The aim of this study was to describe the incidence, etiology, risk factors for development of ventilator-associated pneumonia and outcome in patients with severe traumatic brain injury. A retrospective study was done in 72 patients with severe traumatic brain injury, who required mechanical ventilation for more than 48 hours. Ventilator-associated pneumonia was found in 31 of 72 (43.06%) patients with severe traumatic brain injury. The risk factors for ventilator-associated pneumonia were: prolonged mechanical ventilation (12.42 vs 4.34 days, p < 0.001), longer stay at intensive care unit (17 vs 5 days, p < 0.001) and chest injury (51.61 vs 19.51%, p < 0.009) compared to patients without ventilator-associated pneumonia. The mortality rate in the patients with ventilator-associated pneumonia was higher (38.71 vs 21.95%, p = 0.12). The development of ventilator-associated pneumonia in patients with severe traumatic brain injury led to the increased morbidity due to the prolonged mechanical ventilation, longer stay at intensive care unit and chest injury, but had no effect on mortality.

  11. Airway Humidification Reduces the Inflammatory Response During Mechanical Ventilation.

    PubMed

    Jiang, Min; Song, Jun-Jie; Guo, Xiao-Li; Tang, Yong-Lin; Li, Hai-Bo

    2015-12-01

    Currently, no clinical or animal studies have been performed to establish the relationship between airway humidification and mechanical ventilation-induced lung inflammatory responses. Therefore, an animal model was established to better define this relationship. Rabbits (n = 40) were randomly divided into 6 groups: control animals, sacrificed immediately after anesthesia (n = 2); dry gas group animals, subjected to mechanical ventilation for 8 h without humidification (n = 6); and experimental animals, subjected to mechanical ventilation for 8 h under humidification at 30, 35, 40, and 45°C, respectively (n = 8). Inflammatory cytokines in the bronchi alveolar lavage fluid (BALF) were measured. The integrity of the airway cilia and the tracheal epithelium was examined by scanning and transmission electron microscopy, respectively. Peripheral blood white blood cell counts and the wet to dry ratio and lung pathology were determined. Dry gas group animals showed increased tumor necrosis factor alpha levels in BALF compared with control animals (P < .05). The tumor necrosis factor alpha and interleukin-8 levels in the BALF reached baseline levels when the humidification temperature was increased to 40°C. Scanning and transmission electron microscopy analysis revealed that cilia integrity was maintained in the 40°C groups. Peripheral white blood cell counts were not different among those groups. Compared with control animals, the wet to dry ratio was significantly elevated in the dry gas group (P < .05). Moreover, humidification at 40°C resulted in reduced pathologic injury compared with the other groups based on the histologic score. Pathology and reduced inflammation observed in animals treated at 40°C was similar to that observed in the control animals, suggesting that appropriate humidification reduced inflammatory responses elicited as a consequence of mechanical ventilation, in addition to reducing damage to the cilia and reducing water loss in the airway

  12. Radiation exposure of ventilated trauma patients in intensive care: a retrospective study comparing two time periods.

    PubMed

    Yee, Micaela V; Barron, Rochelle A; Knobloch, Tom A; Pandey, Umesh; Twyford, Catherine; Freebairn, Ross C

    2012-08-01

    To describe the cumulative effective dose of radiation that was received during the initial Emergency Department assessment and ICU stay of patients admitted with trauma, who required mechanical ventilation, during two time periods. A retrospective analysis of radiological and clinical data, set in a regional nonurban ICU. Two cohorts (starting 1 January 2004 and 1 January 2009), each comprising 45 adult patients admitted with trauma who were mechanically ventilated in intensive care, were studied. Frequency and type of radiological examinations, demographic information, and clinical data were collated from the radiological database, hospital admission record and Australian Outcomes Research Tool for Intensive Care database. Cumulative effective doses were calculated and expressed as a total dose and average daily dose for each cohort. The median cumulative effective dose per patient (in milliSieverts) increased from 34.59 [interquartile range (IQR) 9.08-43.91] in 2004 to 40.51 (IQR 22.01-48.87) in 2009, P=0.045. An increased number of computed tomography examinations per patient was also observed over the same interval from an average of 2.11 (median 2, IQR 1-3) in 2004 to an average of 2.62 (2, 2-4) in 2009, P=0.046. The radiation exposure of mechanically ventilated trauma patients in intensive care has increased over time. Radiation exposure should be prospectively monitored and staff should be aware of the increased risk resulting from this change in practice.

  13. Physiologic effects of alveolar recruitment and inspiratory pauses during moderately-high-frequency ventilation delivered by a conventional ventilator in a severe lung injury model

    PubMed Central

    Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes; Gomes, Susimeire; Amato, Marcelo Britto Passos; Park, Marcelo

    2017-01-01

    Background and aims To investigate whether performing alveolar recruitment or adding inspiratory pauses could promote physiologic benefits (VT) during moderately-high-frequency positive pressure ventilation (MHFPPV) delivered by a conventional ventilator in a porcine model of severe acute respiratory distress syndrome (ARDS). Methods Prospective experimental laboratory study with eight pigs. Induction of acute lung injury with sequential pulmonary lavages and injurious ventilation was initially performed. Then, animals were ventilated on a conventional mechanical ventilator with a respiratory rate (RR) = 60 breaths/minute and PEEP titrated according to ARDS Network table. The first two steps consisted of a randomized order of inspiratory pauses of 10 and 30% of inspiratory time. In final step, we removed the inspiratory pause and titrated PEEP, after lung recruitment, with the aid of electrical impedance tomography. At each step, PaCO2 was allowed to stabilize between 57–63 mmHg for 30 minutes. Results The step with RR of 60 after lung recruitment had the highest PEEP when compared with all other steps (17 [16,19] vs 14 [10, 17]cmH2O), but had lower driving pressures (13 [13,11] vs 16 [14, 17]cmH2O), higher P/F ratios (212 [191,243] vs 141 [105, 184] mmHg), lower shunt (23 [20, 23] vs 32 [27, 49]%), lower dead space ventilation (10 [0, 15] vs 30 [20, 37]%), and a more homogeneous alveolar ventilation distribution. There were no detrimental effects in terms of lung mechanics, hemodynamics, or gas exchange. Neither the addition of inspiratory pauses or the alveolar recruitment maneuver followed by decremental PEEP titration resulted in further reductions in VT. Conclusions During MHFPPV set with RR of 60 bpm delivered by a conventional ventilator in severe ARDS swine model, neither the inspiratory pauses or PEEP titration after recruitment maneuver allowed reduction of VT significantly, however the last strategy decreased driving pressures and improved both shunt

  14. Iatrogenic pneumothorax related to mechanical ventilation

    PubMed Central

    Hsu, Chien-Wei; Sun, Shu-Fen

    2014-01-01

    Pneumothorax is a potentially lethal complication associated with mechanical ventilation. Most of the patients with pneumothorax from mechanical ventilation have underlying lung diseases; pneumothorax is rare in intubated patients with normal lungs. Tension pneumothorax is more common in ventilated patients with prompt recognition and treatment of pneumothorax being important to minimize morbidity and mortality. Underlying lung diseases are associated with ventilator-related pneumothorax with pneumothoraces occurring most commonly during the early phase of mechanical ventilation. The diagnosis of pneumothorax in critical illness is established from the patients’ history, physical examination and radiological investigation, although the appearances of a pneumothorax on a supine radiograph may be different from the classic appearance on an erect radiograph. For this reason, ultrasonography is beneficial for excluding the diagnosis of pneumothorax. Respiration-dependent movement of the visceral pleura and lung surface with respect to the parietal pleura and chest wall can be easily visualized with transthoracic sonography given that the presence of air in the pleural space prevents sonographic visualization of visceral pleura movements. Mechanically ventilated patients with a pneumothorax require tube thoracostomy placement because of the high risk of tension pneumothorax. Small-bore catheters are now preferred in the majority of ventilated patients. Furthermore, if there are clinical signs of a tension pneumothorax, emergency needle decompression followed by tube thoracostomy is widely advocated. Patients with pneumothorax related to mechanical ventilation who have tension pneumothorax, a higher acute physiology and chronic health evaluation II score or PaO2/FiO2 < 200 mmHg were found to have higher mortality. PMID:24834397

  15. Using a 2D displacement sensor to derive 3D displacement information

    NASA Technical Reports Server (NTRS)

    Soares, Schubert F. (Inventor)

    2002-01-01

    A 2D displacement sensor is used to measure displacement in three dimensions. For example, the sensor can be used in conjunction with a pulse-modulated or frequency-modulated laser beam to measure displacement caused by deformation of an antenna on which the sensor is mounted.

  16. Determining the ventilation and aerosol deposition rates from routine indoor-air measurements.

    PubMed

    Halios, Christos H; Helmis, Costas G; Deligianni, Katerina; Vratolis, Sterios; Eleftheriadis, Konstantinos

    2014-01-01

    Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h(-1). The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors' concentrations were found to be compared well with the experimentally measured values.

  17. Music interventions for mechanically ventilated patients.

    PubMed

    Bradt, Joke; Dileo, Cheryl; Grocke, Denise

    2010-12-08

    Mechanical ventilation often causes major distress and anxiety in patients. Music interventions have been used to reduce anxiety and distress and improve physiological functioning in medical patients; however its efficacy for mechanically ventilated patients needs to be evaluated. To examine the effects of music interventions with standard care versus standard care alone on anxiety and physiological responses in mechanically ventilated patients. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2010, Issue 1), MEDLINE, CINAHL, AMED, EMBASE, PsycINFO, LILACS, Science Citation Index, www.musictherapyworld.net, CAIRSS for Music, Proquest Digital Dissertations, ClinicalTrials.gov, Current Controlled Trials, the National Research Register, and NIH CRISP (all to January 2010). We handsearched music therapy journals and reference lists and contacted relevant experts to identify unpublished manuscripts. There was no language restriction. We included all randomized and quasi-randomized controlled trials that compared music interventions and standard care with standard care alone for mechanically ventilated patients. Two authors independently extracted the data and assessed the methodological quality. Additional information was sought from the trial researchers, when necessary. Results were presented using mean differences for outcomes measured by the same scale and standardized mean differences for outcomes measured by different scales. Post-test scores were used. In cases of significant baseline difference, we used change scores. We included eight trials (213 participants). Music listening was the main intervention used, and seven of the studies did not include a trained music therapist. Results indicated that music listening may be beneficial for anxiety reduction in mechanically ventilated patients; however, these results need to be interpreted with caution due to the small sample size. Findings indicated that listening to

  18. Music interventions for mechanically ventilated patients.

    PubMed

    Bradt, Joke; Dileo, Cheryl

    2014-01-01

    Mechanical ventilation often causes major distress and anxiety in patients. The sensation of breathlessness, frequent suctioning, inability to talk, uncertainty regarding surroundings or condition, discomfort, isolation from others, and fear contribute to high levels of anxiety. Side effects of analgesia and sedation may lead to the prolongation of mechanical ventilation and, subsequently, to a longer length of hospitalization and increased cost. Therefore, non-pharmacological interventions should be considered for anxiety and stress management. Music interventions have been used to reduce anxiety and distress and improve physiological functioning in medical patients; however, their efficacy for mechanically ventilated patients needs to be evaluated. This review was originally published in 2010 and was updated in 2014. To update the previously published review that examined the effects of music therapy or music medicine interventions (as defined by the authors) on anxiety and other outcomes in mechanically ventilated patients. Specifically, the following objectives are addressed in this review.1. To conduct a meta-analysis to compare the effects of participation in standard care combined with music therapy or music medicine interventions with standard care alone.2. To compare the effects of patient-selected music with researcher-selected music.3. To compare the effects of different types of music interventions (e.g., music therapy versus music medicine). We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2014, Issue 2), MEDLINE (1950 to March 2014), CINAHL (1980 to March 2014), EMBASE (1980 to March 2014), PsycINFO (1967 to March 2014), LILACS (1982 to March 2014), Science Citation Index (1980 to March 2014), www.musictherapyworld.net (1 March 2008) (database is no longer functional), CAIRSS for Music (to March 2014), Proquest Digital Dissertations (1980 to March 2014), ClinicalTrials.gov (2000 to March 2014), Current

  19. Mechanical Ventilation: State of the Art.

    PubMed

    Pham, Tài; Brochard, Laurent J; Slutsky, Arthur S

    2017-09-01

    Mechanical ventilation is the most used short-term life support technique worldwide and is applied daily for a diverse spectrum of indications, from scheduled surgical procedures to acute organ failure. This state-of-the-art review provides an update on the basic physiology of respiratory mechanics, the working principles, and the main ventilatory settings, as well as the potential complications of mechanical ventilation. Specific ventilatory approaches in particular situations such as acute respiratory distress syndrome and chronic obstructive pulmonary disease are detailed along with protective ventilation in patients with normal lungs. We also highlight recent data on patient-ventilator dyssynchrony, humidified high-flow oxygen through nasal cannula, extracorporeal life support, and the weaning phase. Finally, we discuss the future of mechanical ventilation, addressing avenues for improvement. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  20. Pandemic ventilator rationing and appeals processes.

    PubMed

    Patrone, Daniel; Resnik, David

    2011-06-01

    In a severe influenza pandemic, hospitals will likely experience serious and widespread shortages of patient pulmonary ventilators and of staff qualified to operate them. Deciding who will receive access to mechanical ventilation will often determine who lives and who dies. This prospect raises an important question whether pandemic preparedness plans should include some process by which individuals affected by ventilator rationing would have the opportunity to appeal adverse decisions. However, the issue of appeals processes to ventilator rationing decisions has been largely neglected in state pandemic planning efforts. If we are to devise just and effective plans for coping with a severe influenza pandemic, more attention to the issue of appeals processes for pandemic ventilator rationing decisions is needed. Arguments for and against appeals processes are considered, and some suggestions are offered to help efforts at devising more rational pandemic preparedness plans.

  1. Outcome-based ventilation: A framework for assessing performance, health, and energy impacts to inform office building ventilation decisions.

    PubMed

    Rackes, A; Ben-David, T; Waring, M S

    2018-07-01

    This article presents an outcome-based ventilation (OBV) framework, which combines competing ventilation impacts into a monetized loss function ($/occ/h) used to inform ventilation rate decisions. The OBV framework, developed for U.S. offices, considers six outcomes of increasing ventilation: profitable outcomes realized from improvements in occupant work performance and sick leave absenteeism; health outcomes from occupant exposure to outdoor fine particles and ozone; and energy outcomes from electricity and natural gas usage. We used the literature to set low, medium, and high reference values for OBV loss function parameters, and evaluated the framework and outcome-based ventilation rates using a simulated U.S. office stock dataset and a case study in New York City. With parameters for all outcomes set at medium values derived from literature-based central estimates, higher ventilation rates' profitable benefits dominated negative health and energy impacts, and the OBV framework suggested ventilation should be ≥45 L/s/occ, much higher than the baseline ~8.5 L/s/occ rate prescribed by ASHRAE 62.1. Only when combining very low parameter estimates for profitable impacts with very high ones for health and energy impacts were all outcomes on the same order. Even then, however, outcome-based ventilation rates were often twice the baseline rate or more. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Adaptive support ventilation: State of the art review

    PubMed Central

    Fernández, Jaime; Miguelena, Dayra; Mulett, Hernando; Godoy, Javier; Martinón-Torres, Federico

    2013-01-01

    Mechanical ventilation is one of the most commonly applied interventions in intensive care units. Despite its life-saving role, it can be a risky procedure for the patient if not applied appropriately. To decrease risks, new ventilator modes continue to be developed in an attempt to improve patient outcomes. Advances in ventilator modes include closed-loop systems that facilitate ventilator manipulation of variables based on measured respiratory parameters. Adaptive support ventilation (ASV) is a positive pressure mode of mechanical ventilation that is closed-loop controlled, and automatically adjust based on the patient's requirements. In order to deliver safe and appropriate patient care, clinicians need to achieve a thorough understanding of this mode, including its effects on underlying respiratory mechanics. This article will discuss ASV while emphasizing appropriate ventilator settings, their advantages and disadvantages, their particular effects on oxygenation and ventilation, and the monitoring priorities for clinicians. PMID:23833471

  3. SU-C-BRA-06: Developing Clinical and Quantitative Guidelines for a 4DCT-Ventilation Functional Avoidance Clinical Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradskiy, Y; Waxweiler, T; Diot, Q

    Purpose: 4DCT-ventilation is an exciting new imaging modality that uses 4DCTs to calculate lung ventilation. Because 4DCTs are acquired as part of routine care, calculating 4DCT-ventilation allows for lung function evaluation without additional cost or inconvenience to the patient. Development of a clinical trial is underway at our institution to use 4DCT-ventilation for thoracic functional avoidance with the idea that preferential sparing of functional lung regions can decrease pulmonary toxicity. The purpose of our work was to develop the practical aspects of a 4DCT-ventilation functional avoidance clinical trial including: 1.assessing patient eligibility 2.developing trial inclusion criteria and 3.developing treatment planningmore » and dose-function evaluation strategies. Methods: 96 stage III lung cancer patients from 2 institutions were retrospectively reviewed. 4DCT-ventilation maps were calculated using the patient’s 4DCTs, deformable image registrations, and a density-change-based algorithm. To assess patient eligibility and develop trial inclusion criteria we used an observer-based binary end point noting the presence or absence of a ventilation defect and developed an algorithm based on the percent ventilation in each lung third. Functional avoidance planning integrating 4DCT-ventilation was performed using rapid-arc and compared to the patient’s clinically used plan. Results: Investigator-determined clinical ventilation defects were present in 69% of patients. Our regional/lung-thirds ventilation algorithm identified that 59% of patients have lung functional profiles suitable for functional avoidance. Compared to the clinical plan, functional avoidance planning was able to reduce the mean dose to functional lung by 2 Gy while delivering comparable target coverage and cord/heart doses. Conclusions: 4DCT-ventilation functional avoidance clinical trials have great potential to reduce toxicity, and our data suggest that 59% of lung cancer patients

  4. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery: study protocol for a randomized controlled trial.

    PubMed

    Spieth, Peter M; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J; Pelosi, Paolo; Koch, Thea; Gama de Abreu, Marcelo

    2014-05-02

    General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventilation. The PROtective VARiable ventilation trial ('PROVAR') is a single center, randomized controlled trial enrolling 50 patients who are planning for open abdominal surgery expected to last longer than 3 hours. PROVAR compares conventional (non-variable) lung protective ventilation (CV) with variable lung protective ventilation (VV) regarding pulmonary function and inflammatory response. The primary endpoint of the study is the forced vital capacity on the first postoperative day. Secondary endpoints include further lung function tests, plasma cytokine levels, spatial distribution of ventilation assessed by means of electrical impedance tomography and postoperative pulmonary complications. We hypothesize that VV improves lung function and reduces systemic inflammatory response compared to CV in patients receiving mechanical ventilation during general anesthesia for open abdominal surgery longer than 3 hours. PROVAR is the first randomized controlled trial aiming at intra- and postoperative effects of VV on lung function. This study may help to define the role of VV during general anesthesia requiring mechanical ventilation. Clinicaltrials.gov NCT01683578 (registered on September 3 3012).

  5. Efficacy of an expanded ventilator bundle for the reduction of ventilator-associated pneumonia in the medical intensive care unit.

    PubMed

    Blamoun, John; Alfakir, Maria; Rella, Marie E; Wojcik, Janice M; Solis, Roberto A; Anees Khan, M; DeBari, Vincent A

    2009-03-01

    The ventilator bundle (VB) includes a group of clinical maneuvers (head-of-bed elevation, "sedation vacation," deep vein thrombosis prophylaxis, and peptic ulcer disease prophylaxis) to improve outcomes in patients undergoing mechanical ventilation. We modified the standard VB in our medical intensive care unit to include a group of respiratory therapist-driven protocols and, postimplementation, observed a statistically significant (P = .0006) reduction in ventilator-associated pneumonia (VAP), from a median of 14.1 cases/10(3) ventilator-days (interquartile range [IQR] = 12.1 to 20.6) to 0 cases/10(3) ventilator-days (IQR = 0 to 1.1).

  6. Transtracheal ventilation with a novel ejector-based device (Ventrain) in open, partly obstructed, or totally closed upper airways in pigs.

    PubMed

    Paxian, M; Preussler, N P; Reinz, T; Schlueter, A; Gottschall, R

    2015-08-01

    Transtracheal access and subsequent jet ventilation are among the last options in a 'cannot intubate-cannot oxygenate' scenario. These interventions may lead to hypercapnia, barotrauma, and haemodynamic failure in the event of an obstructed upper airway. The aim of the present study was to evaluate the efficacy and the haemodynamic effects of the Ventrain, a manually operated ventilation device that provides expiratory ventilation assistance. Transtracheal ventilation was carried out with the Ventrain in different airway scenarios in live pigs, and its performance was compared with a conventional jet ventilator. Pigs with open, partly obstructed, or completely closed upper airways were transtracheally ventilated either with the Ventrain or by conventional jet ventilation. Airway pressures, haemodynamic parameters, and blood gases obtained in the different settings were compared. Mean (SD) alveolar minute ventilation as reflected by arterial partial pressure of CO2 was superior with the Ventrain in partly obstructed airways after 6 min in comparison with traditional manual jet ventilation [4.7 (0.19) compared with 7.1 (0.37) kPa], and this was also the case in all simulated airway conditions. At the same time, peak airway pressures were significantly lower and haemodynamic parameters were altered to a lesser extent with the Ventrain. The results of this study suggest that the Ventrain device can ensure sufficient oxygenation and ventilation through a small-bore transtracheal catheter when the airway is open, partly obstructed, or completely closed. Minute ventilation and avoidance of high airway pressures were superior in comparison with traditional hand-triggered jet ventilation, particularly in the event of complete upper airway obstruction. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning.

    PubMed

    Kunst, P W; Vonk Noordegraaf, A; Hoekstra, O S; Postmus, P E; de Vries, P M

    1998-11-01

    Electrical impedance tomography (EIT) is a technique that makes it possible to measure ventilation and pulmonary perfusion in a volume that approximates to a 2D plane. The possibility of using EIT for measuring the left-right division of ventilation and perfusion was compared with that of radionuclide imaging. Following routine ventilation (81mKr) and perfusion scanning (99mTc-MAA), EIT measurements were performed at the third and the sixth intercostal level in 14 patients with lung cancer. A correlation (r = 0.98, p < 0.005) between the left-right division for the ventilation measured with EIT and that with 81mKr was found. For the left-right division of pulmonary perfusion a correlation of 0.95 (p < 0.005) was found between the two methods. The reliability coefficient (RC) was calculated for estimating the left-right division with EIT. The RC for the ventilation measurements was 94% and 96% for the perfusion measurements. The correlation analysis for reproducibility of the EIT measurements was 0.95 (p < 0.001) for the ventilation and 0.93 (p < 0.001) for the perfusion measurements. In conclusion, EIT can be regarded as a promising technique to estimate the left-right division of pulmonary perfusion and ventilation.

  8. Design and Construction of a Microcontroller-Based Ventilator Synchronized with Pulse Oximeter.

    PubMed

    Gölcük, Adem; Işık, Hakan; Güler, İnan

    2016-07-01

    This study aims to introduce a novel device with which mechanical ventilator and pulse oximeter work in synchronization. Serial communication technique was used to enable communication between the pulse oximeter and the ventilator. The SpO2 value and the pulse rate read on the pulse oximeter were transmitted to the mechanical ventilator through transmitter (Tx) and receiver (Rx) lines. The fuzzy-logic-based software developed for the mechanical ventilator interprets these values and calculates the percentage of oxygen (FiO2) and Positive End-Expiratory Pressure (PEEP) to be delivered to the patient. The fuzzy-logic-based software was developed to check the changing medical states of patients and to produce new results (FiO2 ve PEEP) according to each new state. FiO2 and PEEP values delivered from the ventilator to the patient can be calculated in this way without requiring any arterial blood gas analysis. Our experiments and the feedbacks from physicians show that this device makes it possible to obtain more successful results when compared to the current practices.

  9. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b) The...

  10. Comparative analysis of respiratory systems compliance in three different positioning (lateral, dorsal and sitting) in patients in prolonged invasive mechanical ventilation.

    PubMed

    Porto, Elias Ferreira; Castro, Antonio Adolfo Matos de; Leite, José Renato de Oliveira; Miranda, Saul Vitoriano; Lancauth, Auristela; Kumpel, Claudia

    2008-09-01

    This study is justified by the fact that in clinical practice, changes occur in patient's positioning in the bed during hospitalization in intensive care unity, it's necessary better understanding about possible adverse effects that such changes might cause mainly on the respiratory system condition. The objective this study was to evaluate if the patients positioning in bed can to alter the pulmonary complacency. All included patients were submitted to mechanical ventilation and were sedated and curarized respiratory system compliance was assessed in three different positioning: lateral, dorsal and sitting. After an alveolar recruitment maneuver, patients were placed to a position throughout two hours, and in the last five minutes the data was collected from the mechanical ventilator display. twenty eight patients were prospectively assessed. Values of respiratory system compliance in the lateral position were 37,07 ± 12,9 in the dorsal were 39,2 ± 10,5 and in the sitting 43,4 ± 9,6 mL/cmH2O. There were a statistical difference when we compared to the sitting and dorsal with lateral positioning for respiratory system compliance (p = 0.0052) and tidal volume (p < 0.001). There was a negative correlation between mean values of positive end expiratory pressure a respiratory system compliance (r = 0.59, p = 0.002). The FIO2 administered was 0.6 for the lateral positioning and 0.5 for the dorsal and sitting positioning (p = 0.049). That body positioning in patients restrained to a bed and submitted to invasive mechanical ventilation leads to pulmonary compliance, tidal volume and SpO2 oscillations. In the sitting position the pulmonary compliance is higher than in others positions.

  11. Force transmissibility versus displacement transmissibility

    NASA Astrophysics Data System (ADS)

    Lage, Y. E.; Neves, M. M.; Maia, N. M. M.; Tcherniak, D.

    2014-10-01

    It is well-known that when a single-degree-of-freedom (sdof) system is excited by a continuous motion of the foundation, the force transmissibility, relating the force transmitted to the foundation to the applied force, equals the displacement transmissibility. Recent developments in the generalization of the transmissibility to multiple-degree-of-freedom (mdof) systems have shown that similar simple and direct relations between both types of transmissibility do not appear naturally from the definitions, as happens in the sdof case. In this paper, the authors present their studies on the conditions under which it is possible to establish a relation between force transmissibility and displacement transmissibility for mdof systems. As far as the authors are aware, such a relation is not currently found in the literature, which is justified by being based on recent developments in the transmissibility concept for mdof systems. Indeed, it does not appear naturally, but the authors observed that the needed link is present when the displacement transmissibility is obtained between the same coordinates where the applied and reaction forces are considered in the force transmissibility case; this implies that the boundary conditions are not exactly the same and instead follow some rules. This work presents a formal derivation of the explicit relation between the force and displacement transmissibilities for mdof systems, and discusses its potential and limitations. The authors show that it is possible to obtain the displacement transmissibility from measured forces, and the force transmissibility from measured displacements, opening new perspectives, for example, in the identification of applied or transmitted forces. With this novel relation, it becomes possible, for example, to estimate the force transmissibility matrix with the structure off its supports, in free boundary conditions, and without measuring the forces. As far as force identification is concerned, this

  12. Influences of Duration of Inspiratory Effort, Respiratory Mechanics, and Ventilator Type on Asynchrony With Pressure Support and Proportional Assist Ventilation.

    PubMed

    Vasconcelos, Renata S; Sales, Raquel P; Melo, Luíz H de P; Marinho, Liégina S; Bastos, Vasco Pd; Nogueira, Andréa da Nc; Ferreira, Juliana C; Holanda, Marcelo A

    2017-05-01

    Pressure support ventilation (PSV) is often associated with patient-ventilator asynchrony. Proportional assist ventilation (PAV) offers inspiratory assistance proportional to patient effort, minimizing patient-ventilator asynchrony. The objective of this study was to evaluate the influence of respiratory mechanics and patient effort on patient-ventilator asynchrony during PSV and PAV plus (PAV+). We used a mechanical lung simulator and studied 3 respiratory mechanics profiles (normal, obstructive, and restrictive), with variations in the duration of inspiratory effort: 0.5, 1.0, 1.5, and 2.0 s. The Auto-Trak system was studied in ventilators when available. Outcome measures included inspiratory trigger delay, expiratory trigger asynchrony, and tidal volume (V T ). Inspiratory trigger delay was greater in the obstructive respiratory mechanics profile and greatest with a effort of 2.0 s (160 ms); cycling asynchrony, particularly delayed cycling, was common in the obstructive profile, whereas the restrictive profile was associated with premature cycling. In comparison with PSV, PAV+ improved patient-ventilator synchrony, with a shorter triggering delay (28 ms vs 116 ms) and no cycling asynchrony in the restrictive profile. V T was lower with PAV+ than with PSV (630 mL vs 837 mL), as it was with the single-limb circuit ventilator (570 mL vs 837 mL). PAV+ mode was associated with longer cycling delays than were the other ventilation modes, especially for the obstructive profile and higher effort values. Auto-Trak eliminated automatic triggering. Mechanical ventilation asynchrony was influenced by effort, respiratory mechanics, ventilator type, and ventilation mode. In PSV mode, delayed cycling was associated with shorter effort in obstructive respiratory mechanics profiles, whereas premature cycling was more common with longer effort and a restrictive profile. PAV+ prevented premature cycling but not delayed cycling, especially in obstructive respiratory mechanics

  13. Duration of Mechanical Ventilation in the Emergency Department.

    PubMed

    Angotti, Lauren B; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey D; Seigel, Todd A; Al Ashry, Haitham S; Wilcox, Susan R

    2017-08-01

    Due to hospital crowding, mechanically ventilated patients are increasingly spending hours boarding in emergency departments (ED) before intensive care unit (ICU) admission. This study aims to evaluate the association between time ventilated in the ED and in-hospital mortality, duration of mechanical ventilation, ICU and hospital length of stay (LOS). This was a multi-center, prospective, observational study of patients ventilated in the ED, conducted at three academic Level I Trauma Centers from July 2011 to March 2013. All consecutive adult patients on invasive mechanical ventilation were eligible for enrollment. We performed a Cox regression to assess for a mortality effect for mechanically ventilated patients with each hour of increasing LOS in the ED and multivariable regression analyses to assess for independently significant contributors to in-hospital mortality. Our primary outcome was in-hospital mortality, with secondary outcomes of ventilator days, ICU LOS and hospital LOS. We further commented on use of lung protective ventilation and frequency of ventilator changes made in this cohort. We enrolled 535 patients, of whom 525 met all inclusion criteria. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Using iterated Cox regression, a mortality effect occurred at ED time of mechanical ventilation > 7 hours, and the longer ED stay was also associated with a longer total duration of intubation. However, adjusted multivariable regression analysis demonstrated only older age and admission to the neurosciences ICU as independently associated with increased mortality. Of interest, only 23.8% of patients ventilated in the ED for over seven hours had changes made to their ventilator. In a prospective observational study of patients mechanically ventilated in the ED, there was a significant mortality benefit to expedited transfer of patients into an appropriate ICU setting.

  14. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: Standards. 154.1205... Equipment Cargo Area: Mechanical Ventilation System § 154.1205 Mechanical ventilation system: Standards. (a) Each exhaust type mechanical ventilation system required under § 154.1200 (a) must have ducts for...

  15. Artificial humidification for the mechanically ventilated patient.

    PubMed

    Selvaraj, N

    Caring for patients who are mechanically ventilated poses many challenges for critical care nurses. It is important to humidify the patient's airways artificially to prevent complications such as ventilator-associated pneumonia. There is no gold standard to determine which type of humidification is best for patients who are artificially ventilated. This article provides an overview of commonly used artificial humidification for mechanically ventilated patients and discusses nurses' responsibilities in caring for patients receiving artificial humidification.

  16. One-Lung Ventilation with Additional Ipsilateral Ventilation of Low Tidal Volume and High Frequency in Lung Lobectomy

    PubMed Central

    Feng, Yong; Wang, Jianyue; Zhang, Yang; Wang, Shiduan

    2016-01-01

    Background To investigate the protective effects of additional ipsilateral ventilation of low tidal volume and high frequency on lung functions in the patients receiving lobectomy. Material/Methods Sixty patients receiving lung lobectomy were randomized into the conventional one-lung ventilation (CV) group (n=30) and the ipsilateral low tidal volume high frequency ventilation (LV) group (n=30). In the CV group, patients received only contralateral OLV. In the LV group, patients received contralateral ventilation and additional ipsilateral ventilation of low tidal volume of 1–2 ml/kg and high frequency of 40 times/min. Normal lung tissues were biopsied for the analysis of lung injury. Lung injury was scored by evaluating interstitial edema, alveolar edema, neutrophil infiltration, and alveolar congestion. Results At 30 min and 60 min after the initiation of one-lung ventilation and after surgery, patients in the LV group showed significantly higher ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen than those in the CV group (P<0.001). Lung injury was significantly less severe (2.7±0.7) in the LV group than in the CV group (3.1±0.7) (P=0.006). Conclusions Additional ipsilateral ventilation of low tidal volume and high frequency can decrease the risk of hypoxemia and alleviate lung injury in patients receiving lobectomy. PMID:27166086

  17. [Displaced people's healthcare use in Bucaramanga, Colombia].

    PubMed

    Ruiz-Rodríguez, Myriam; López-Moreno, Sergio; Avila-Burgos, Leticia; Acosta-Ramírez, Naydú

    2006-01-01

    Analysing the factors and barriers associated with the population displaced by armed conflict using medical services in Bucaramanga, Colombia. Data from the "Diagnosing the health of both displaced and non-displaced populations in Bucaramanga and its metropolitan area" study, designed and executed by the Industrial University of Santander and financed by the Pan-American Health Organisation, analysed medical service use in individuals aged over 15 years. This agreed with Andersen and Newman's model and evaluated the effect of associated factors by means of multiple logistical regression. One out of each five people who became ill during the fifteen days prior to the survey had used the medical services. This percentage was smaller than that found in the Colombian population as a whole. The type of social security regime (contributory health insurance), previous service use and being from the region were associated with greater service use. Displaced people having subsidised health insurance did not present differences in service use compared to those who had no access to such insurance. The distance from dwelling to institution was another barrier against using health services (RM = 0.64; IC 0.42-0.97). There was differential medical service use amongst the displaced population, determined by their health insurance coverage and economic position.

  18. A Contemporary Assessment of Acute Mechanical Ventilation in Beijing: Description, Costs, and Outcomes.

    PubMed

    Ye, Yanping; Zhu, Bo; Jiang, Li; Jiang, Qi; Wang, Meiping; Hua, Lin; Xi, Xiuming

    2017-07-01

    To evaluate the contemporary practice, outcomes, and costs related to mechanical ventilation among ICUs in China. A prospective observational cohort study. Fourteen ICUs among 13 hospitals in Beijing, China. Seven hundred ninety-three patients who received at least 24 hours of mechanical ventilation within the first 48 hours of ICU stay. None. The mean age was 64 years. Sixty-three percent were male. New acute respiratory failure accounted for 85.5% of mechanical ventilation cases. Only 4.7% of the patients received mechanical ventilation for acute exacerbation of chronic obstructive pulmonary disease. The most widely used ventilation mode was the combination of synchronized intermittent mandatory ventilation and pressure support (43.6%). Use of lung-protective ventilation is widespread with tidal volumes of 7.1 mL/kg (2.1 mL/kg). The ICU/hospital mortality was 27.6%/29.3%, respectively (8.5%/9.7% for surgical patients and 41.3%/43.2% for medical patients, respectively). The mean level of ICU/hospital cost per patient was $15,271 (18,940)/$22,946 (25,575), respectively. The mean daily ICU cost per patient was $1,212. For the first time, we obtained a preliminary epidemiology data of mechanical ventilation in Beijing, China, through the study. Compared with the other nations, our patients are older, predominantly male, and treated according to prevailing international guidelines yet at a relatively high cost and high mortality. The expanding elderly population predicts increase demand for mechanical ventilation that must be met by continuous improvement in quality and efficiency of critical care services.

  19. [Treatment of acute respiratory distress syndrome using pressure and volume controlled ventilation with lung protective strategy].

    PubMed

    Ge, Ying; Wan, Yong; Wang, Da-qing; Su, Xiao-lin; Li, Jun-ying; Chen, Jing

    2004-07-01

    To investigate the significance and effect of pressure controlled ventilation (PCV) as well as volume controlled ventilation (VCV) by lung protective strategy on respiratory mechanics, blood gas analysis and hemodynamics in patients with acute respiratory distress syndrome (ARDS). Fifty patients with ARDS were randomly divided into PCV and VCV groups with permissive hypercapnia and open lung strategy. Changes in respiratory mechanics, blood gas analysis and hemodynamics were compared between two groups. Peak inspiration pressure (PIP) in PCV group was significantly lower than that in VCV group, while mean pressure of airway (MPaw) was significantly higher than that in VCV after 24 hours mechanical ventilation. After 24 hours mechanical ventilation, there were higher central venous pressure (CVP) and slower heart rate (HR) in two groups, CVP was significantly higher in VCV compared with PCV, and PCV group had slower HR than VCV group, the two groups had no differences in mean blood pressure (MBP) at various intervals. All patients showed no ventilator-induced lung injury. Arterial blood oxygenations were obviously improved in two groups after 24 hours mechanical ventilation, PCV group had better partial pressure of oxygen in artery (PaO2) than VCV group. Both PCV and VCV can improve arterial blood oxygenations, prevent ventilator-induced lung injury, and have less disturbance in hemodynamic parameters. PCV with lung protective ventilatory strategy should be early use for patients with ARDS.

  20. Clinical review: Long-term noninvasive ventilation

    PubMed Central

    Robert, Dominique; Argaud, Laurent

    2007-01-01

    Noninvasive positive ventilation has undergone a remarkable evolution over the past decades and is assuming an important role in the management of both acute and chronic respiratory failure. Long-term ventilatory support should be considered a standard of care to treat selected patients following an intensive care unit (ICU) stay. In this setting, appropriate use of noninvasive ventilation can be expected to improve patient outcomes, reduce ICU admission, enhance patient comfort, and increase the efficiency of health care resource utilization. Current literature indicates that noninvasive ventilation improves and stabilizes the clinical course of many patients with chronic ventilatory failure. Noninvasive ventilation also permits long-term mechanical ventilation to be an acceptable option for patients who otherwise would not have been treated if tracheostomy were the only alternative. Nevertheless, these results appear to be better in patients with neuromuscular/-parietal disorders than in chronic obstructive pulmonary disease. This clinical review will address the use of noninvasive ventilation (not including continuous positive airway pressure) mainly in diseases responsible for chronic hypoventilation (that is, restrictive disorders, including neuromuscular disease and lung disease) and incidentally in others such as obstructive sleep apnea or problems of central drive. PMID:17419882

  1. Pandemic Ventilator Rationing and Appeals Processes

    PubMed Central

    Patrone, Daniel; Resnik, David

    2014-01-01

    In a severe influenza pandemic, hospitals will likely experience serious and widespread shortages of patient pulmonary ventilators and of staff qualified to operate them. Deciding who will receive access to mechanical ventilation will often determine who lives and who dies. This prospect raises an important question whether pandemic preparedness plans should include some process by which individuals affected by ventilator rationing would have the opportunity to appeal adverse decisions. However, the issue of appeals processes to ventilator rationing decisions has been largely neglected in state pandemic planning efforts. If we are to devise just and effective plans for coping with a severe influenza pandemic, more attention to the issue of appeals processes for pandemic ventilator rationing decisions is needed. Arguments for and against appeals processes are considered, and some suggestions are offered to help efforts at devising more rational pandemic preparedness plans. PMID:20354793

  2. [Lung protective ventilation - pathophysiology and diagnostics].

    PubMed

    Uhlig, Stefan; Frerichs, Inéz

    2008-06-01

    Mechanical ventilation may lead to lung injury depending on the ventilatory settings (e.g. pressure amplitudes, endexpiratory pressures, frequency) and the length of mechanical ventilation. Particularly in the inhomogeneously injured lungs of ARDS patients, alveolar overextension results in volutrauma, cyclic opening and closure of alveolar units in atelectrauma. Particularly important appears to be the fact that these processes may also cause biotrauma, i.e. the ventilator-induced hyperactivation of inflammatory responses in the lung. These side effects are reduced, but not eliminated with the currently recommended ventilation strategy with a tidal volume of 6 ml/kg idealized body weight. It is our hope that in the future optimization of ventilator settings will be facilated by bedside monitoring of novel indices of respiratory mechanics such as the stress index or the Slice technique, and by innovative real-time imaging technologies such as electrical impedance tomography.

  3. Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation.

    PubMed

    Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M

    2017-09-29

    Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.

  4. Effect of one-lung ventilation on end-tidal carbon dioxide during cardiopulmonary resuscitation in a pig model of cardiac arrest.

    PubMed

    Ryu, Dong Hyun; Jung, Yong Hun; Jeung, Kyung Woon; Lee, Byung Kook; Jeong, Young Won; Yun, Jong Geun; Lee, Dong Hun; Lee, Sung Min; Heo, Tag; Min, Yong Il

    2018-01-01

    Unrecognized endobronchial intubation frequently occurs after emergency intubation. However, no study has evaluated the effect of one-lung ventilation on end-tidal carbon dioxide (ETCO2) during cardiopulmonary resuscitation (CPR). We compared the hemodynamic parameters, blood gases, and ETCO2 during one-lung ventilation with those during conventional two-lung ventilation in a pig model of CPR, to determine the effect of the former on ETCO2. A randomized crossover study was conducted in 12 pigs intubated with double-lumen endobronchial tube to achieve lung separation. During CPR, the animals underwent three 5-min ventilation trials based on a randomized crossover design: left-lung, right-lung, or two-lung ventilation. Arterial blood gases were measured at the end of each ventilation trial. Ventilation was provided using the same tidal volume throughout the ventilation trials. Comparison using generalized linear mixed model revealed no significant group effects with respect to aortic pressure, coronary perfusion pressure, and carotid blood flow; however, significant group effect in terms of ETCO2 was found (P < 0.001). In the post hoc analyses, ETCO2 was lower during the right-lung ventilation than during the two-lung (P = 0.006) or left-lung ventilation (P < 0.001). However, no difference in ETCO2 was detected between the left-lung and two-lung ventilations. The partial pressure of arterial carbon dioxide (PaCO2), partial pressure of arterial oxygen (PaO2), and oxygen saturation (SaO2) differed among the three types of ventilation (P = 0.003, P = 0.001, and P = 0.001, respectively). The post hoc analyses revealed a higher PaCO2, lower PaO2, and lower SaO2 during right-lung ventilation than during two-lung or left-lung ventilation. However, the levels of these blood gases did not differ between the left-lung and two-lung ventilations. In a pig model of CPR, ETCO2 was significantly lower during right-lung ventilation than during two-lung ventilation. However

  5. The use of tracheostomy speaking valves in mechanically ventilated patients results in improved communication and does not prolong ventilation time in cardiothoracic intensive care unit patients.

    PubMed

    Sutt, Anna-Liisa; Cornwell, Petrea; Mullany, Daniel; Kinneally, Toni; Fraser, John F

    2015-06-01

    The aim of this study was to assess the effect of the introduction of in-line tracheostomy speaking valves (SVs) on duration of mechanical ventilation and time to verbal communication in patients requiring tracheostomy for prolonged mechanical ventilation in a predominantly cardiothoracic intensive care unit (ICU). We performed a retrospective preobservational-postobservational study using data from the ICU clinical information system and medical record. Extracted data included demographics, diagnoses and disease severity, mechanical ventilation requirements, and details on verbal communication and oral intake. Data were collected on 129 patients. Mean age was 59 ± 16 years, with 75% male. Demographics, case mix, and median time from intubation to tracheostomy (6 days preimplementation-postimplementation) were unchanged between timepoints. A significant decrease in time from tracheostomy to establishing verbal communication was observed (18 days preimplementation and 9 days postimplementation, P <.05). There was no difference in length of mechanical ventilation (20 days preimplementation-post) or time to decannulation (14 days preimplementation-postimplementation). No adverse events were documented in relation to the introduction of in-line SVs. In-line SVs were successfully implemented in mechanically ventilated tracheostomized patient population. This resulted in earlier verbal communication, no detrimental effect on ventilator weaning times, and no change in decannulation times. The purpose of the study was to compare tracheostomy outcomes in mechanically ventilated patients in a cardiothoracic ICU preintroduction and postintroduction of in-line SVs. It was hypothesized that in-line SVs would improve communication and swallowing specific outcomes with no increase in average time to decannulation or the number of adverse events. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Performance of Portable Ventilators at Altitude

    DTIC Science & Technology

    2015-03-30

    collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT...Deploying ventilators that can maintain a consistent tidal volume (VT) delivery at various altitudes is imperative for lung protection when...performance of mechanical ventilators calibrated for operation at sea level. Deploying ventilators that can maintain a consistent tidal volume (VT) delivery

  7. Physiological Effects of Positive Pressure Ventilation.

    DTIC Science & Technology

    1992-05-01

    function in the patient with respiratory failure . In R. R. Kirby, M. J. Banner, & J. B. Downs (Eds.), Clinical Applications of Ventilatory Su2Rort (pp. 301...G., Blehschmidt, N. G., & Linder, W. J. (1990). Positive-pressure ventilation with positive end-expiratory pressure and atrial natriuretic peptide ...Acute Resniratorv Failure . New York: Churchill Livingstone. Ventilation 1 Physiological Effects of Positive Pressure Ventilation Dennis L. Oakes, RN, BSN

  8. Are tidal volume measurements in neonatal pressure-controlled ventilation accurate?

    PubMed

    Chow, Lily C; Vanderhal, Andre; Raber, Jorge; Sola, Augusto

    2002-09-01

    Bedside pulmonary mechanics monitors (PMM) have become useful in ventilatory management in neonates. These monitors are used more frequently due to recent improvements in data-processing capabilities. PMM devices are often part of the ventilator or are separate units. The accuracy and reliability of these systems have not been carefully evaluated. We compared a single ventilatory parameter, tidal volume (V(t)), as measured by several systems. We looked at two freestanding PMMs: the Ventrak Respiratory Monitoring System (Novametrix, Wallingford, CT) and the Bicore CP-100 Neonatal Pulmonary Monitor (Allied Health Care Products, Riverside, CA), and three ventilators with built-in PMM: the VIP Bird Ventilator (Bird Products Corp., Palm Springs, CA), Siemens Servo 300A (Siemens-Elema AB, Solna, Sweden), and Drager Babylog 8000 (Drager, Inc., Chantilly, VA). A calibrated syringe (Hans Rudolph, Inc., Kansas City, MO) was used to deliver tidal volumes of 4, 10, and 20 mL to each ventilator system coupled with a freestanding PMM. After achieving steady state, six consecutive V(t) readings were taken simultaneously from the freestanding PMM and each ventilator. In a second portion of the bench study, we used pressure-control ventilation and measured exhaled tidal volume (V(te)) while ventilating a Bear Test Lung with the same three ventilators. We adjusted peak inspiratory pressure (PIP) under controlled conditions to achieve the three different targeted tidal volumes on the paired freestanding PMM. Again, six V(te) measurements were recorded for each tidal volume. Means and standard deviations were calculated.The percentage difference in measurement of V(t) delivered by calibrated syringe varied greatly, with the greatest discrepancy seen in the smallest tidal volumes, by up to 28%. In pressure control mode, V(te) as measured by the Siemens was significantly overestimated by 20-95%, with the biggest discrepancy at the smallest V(te), particularly when paired with the Bicore

  9. Cardiopulmonary resuscitation by chest compression alone or with mouth-to-mouth ventilation.

    PubMed

    Hallstrom, A; Cobb, L; Johnson, E; Copass, M

    2000-05-25

    Despite extensive training of citizens of Seattle in cardiopulmonary resuscitation (CPR), bystanders do not perform CPR in almost half of witnessed cardiac arrests. Instructions in chest compression plus mouth-to-mouth ventilation given by dispatchers over the telephone can require 2.4 minutes. In experimental studies, chest compression alone is associated with survival rates similar to those with chest compression plus mouth-to-mouth ventilation. We conducted a randomized study to compare CPR by chest compression alone with CPR by chest compression plus mouth-to-mouth ventilation. The setting of the trial was an urban, fire-department-based, emergency-medical-care system with central dispatching. In a randomized manner, telephone dispatchers gave bystanders at the scene of apparent cardiac arrest instructions in either chest compression alone or chest compression plus mouth-to-mouth ventilation. The primary end point was survival to hospital discharge. Data were analyzed for 241 patients randomly assigned to receive chest compression alone and 279 assigned to chest compression plus mouth-to-mouth ventilation. Complete instructions were delivered in 62 percent of episodes for the group receiving chest compression plus mouth-to-mouth ventilation and 81 percent of episodes for the group receiving chest compression alone (P=0.005). Instructions for compression required 1.4 minutes less to complete than instructions for compression plus mouth-to-mouth ventilation. Survival to hospital discharge was better among patients assigned to chest compression alone than among those assigned to chest compression plus mouth-to-mouth ventilation (14.6 percent vs. 10.4 percent), but the difference was not statistically significant (P=0.18). The outcome after CPR with chest compression alone is similar to that after chest compression with mouth-to-mouth ventilation, and chest compression alone may be the preferred approach for bystanders inexperienced in CPR.

  10. A Comprehensive Approach for the Ergonomic Evaluation of 13 Emergency and Transport Ventilators.

    PubMed

    Marjanovic, Nicolas; L'Her, Erwan

    2016-05-01

    Mechanical ventilation is an important part of emergency medicine and is frequently used for transportation. Human errors during ventilator settings are frequent and may be associated with high morbidity/mortality. The aim of the study was to provide a complete ergonomic evaluation of emergency and transport ventilators, taking into account objective and subjective human-machine interface assessments and individual mental work load. We performed a prospective bench ergonomic evaluation of 13 emergency and transport ventilators, using standardized conditions and a global methodological approach. The study was performed in an evaluation laboratory dedicated to respiratory care, and 12 emergency physicians unfamiliar with the tested devices were included in the evaluation. The ventilators were classified into 3 categories (simple, sophisticated, and ICU-like). Objective chronometric evaluations were conducted considering 9 tasks, and subjective evaluations were performed (ease of use, willingness to use, and user-friendliness of monitoring) using Likert scales. Mental work load evaluation was performed using the NASA Task Load Index scale. Overall task failure rate represented 4% of all attempts. Setting modifications, ventilation mode changes, and powering down durations were different between simple and other emergency and transport ventilator categories (P < .005). There was no difference between ventilator categories for the ease of use and user-friendliness of the monitoring. In contrast, the willingness to use was lower for simple devices, compared with sophisticated and ICU-like emergency and transport ventilators (2.9 ± 1.4 vs 3.9 ± 1.2, P = .002 and 4.3 ± 1, P < .001). No differences were observed between devices regarding the mental work load, except for several specific devices in the sophisticated category. A comprehensive ergonomic evaluation provides valuable information while investigating operational friendliness in emergency and transport

  11. The ventilation problem in schools: literature review

    DOE PAGES

    Fisk, W. J.

    2017-07-06

    Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less

  12. The ventilation problem in schools: literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, W. J.

    Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less

  13. Tactile suppression of displacement.

    PubMed

    Ziat, Mounia; Hayward, Vincent; Chapman, C Elaine; Ernst, Marc O; Lenay, Charles

    2010-10-01

    In vision, the discovery of the phenomenon of saccadic suppression of displacement has made important contributions to the understanding of the stable world problem. Here, we report a similar phenomenon in the tactile modality. When scanning a single Braille dot with two fingers of the same hand, participants were asked to decide whether the dot was stationary or whether it was displaced from one location to another. The stimulus was produced by refreshable Braille devices that have dots that can be swiftly raised and recessed. In some conditions, the dot was stationary. In others, a displacement was created by monitoring the participant's finger position and by switching the dot activation when it was not touched by either finger. The dot displacement was of either 2.5 mm or 5 mm. We found that in certain cases, displaced dots were felt to be stationary. If the displacement was orthogonal to the finger movements, tactile suppression occurred effectively when it was of 2.5 mm, but when the displacement was of 5 mm, the participants easily detected it. If the displacement was medial-lateral, the suppression effect occurred as well, but less often when the apparent movement of the dot opposed the movement of the finger. In such cases, the stimulus appeared sooner than when the brain could predict it from finger movement, supporting a predictive rather than a postdictive differential processing hypothesis.

  14. Ventilation requirements in buildings—I. Control of occupancy odor and tobacco smoke odor

    NASA Astrophysics Data System (ADS)

    Cain, William S.; Leaderer, Brian P.; Isseroff, Ruth; Berglund, Larry G.; Huey, Raymond J.; Lipsitt, Eric D.; Perlman, Dan

    Psychophysical measurements of odor, supplemented with certain physical measurements, were taken to examine ventilation requirements during smoking and nonsmoking occupancy in an environmental chamber. The facility provided the means to compare impressions of visitors (persons who inhaled air from the chamber only briefly) with impressions of occupants. For nonsmoking occupancy, 47 combinations of temperature, humidity, ventilation rate and occupancy density were examined. Odor level depended entirely on ventilation rate per person irrespective of the number of persons in the chamber. The ventilation necessary to satisfy 75 % of visitors equalled only about 4 ℓ s -1 per person. Occupants, however, were satisfied with far less. In an array of 38 conditions of smoking occupancy, the ventilation deemed necessary to satisfy 75 % of visitors under customary conditions of occupancy equalled 17.5 ℓ s -1 per person. For both smoking and nonsmoking conditions, a combination of high temperature (25.5°C) and humidity (r.h. > 70 %) exacerbated the odor problem. During smoking, carbon monoxide rarely reached dangerous levels, but suspended particulate matter often reached levels considered unacceptable outdoors. The results highlight the energy penalty incurred in ventilation for smoking occupancy.

  15. Bias flow rate and ventilation efficiency during adult high-frequency oscillatory ventilation: a lung model study.

    PubMed

    Nagano, Osamu; Yumoto, Tetsuya; Nishimatsu, Atsunori; Kanazawa, Shunsuke; Fujita, Takahisa; Asaba, Sunao; Yamanouchi, Hideo

    2018-04-19

    Bias flow (BF) is essential to maintain mean airway pressure (MAP) and to washout carbon dioxide (CO 2 ) from the oscillator circuit during high-frequency oscillatory ventilation (HFOV). If the BF rate is inadequate, substantial CO 2 rebreathing could occur and ventilation efficiency could worsen. With lower ventilation efficiency, the required stroke volume (SV) would increase in order to obtain the same alveolar ventilation with constant frequency. The aim of this study was to assess the effect of BF rate on ventilation efficiency during adult HFOV. The R100 oscillator (Metran, Japan) was connected to an original lung model internally equipped with a simulated bronchial tree. The actual SV was measured with a flow sensor placed at the Y-piece. Carbon dioxide (CO 2 ) was continuously insufflated into the lung model ([Formula: see text]CO 2 ), and the partial pressure of CO 2 (PCO 2 ) in the lung model was monitored. Alveolar ventilation ([Formula: see text]A) was estimated as [Formula: see text]CO 2 divided by the stabilized value of PCO 2 . [Formula: see text]A was evaluated by setting SV from 80 to 180 mL (10 mL increments, n = 5) at a frequency of 8 Hz, a MAP of 25 cmH 2 O, and a BF of 10, 20, 30, and 40 L/min (study 1). Ventilation efficiency was calculated as [Formula: see text]A divided by the actual minute volume. The experiment was also performed with an actual SV of 80, 100, and 120 mL and a BF from 10 to 60 L/min (10 L/min increments: study 2). Study 1: With the same setting SV, the [Formula: see text]A with a BF of 20 L/min or more was significantly higher than that with a BF of 10 L/min. Study 2: With the same actual SV, the [Formula: see text]A and the ventilation efficiency with a BF of 30 L/min or more were significantly higher than those with a BF of 10 or 20 L/min. Increasing BF up to 30 L/min or more improved ventilation efficiency in the R100 oscillator.

  16. Impact of Prolonged Mechanical Ventilation in Very Low Birth Weight Infants: Results From a National Cohort Study.

    PubMed

    Choi, Young-Bin; Lee, Juyoung; Park, Jisun; Jun, Yong Hoon

    2018-03-01

    To evaluate the in-hospital consequences of prolonged respiratory support with invasive mechanical ventilation in very low birth weight infants. A cohort study was performed using prospectively collected data from 69 neonatal intensive care units participating in the Korean national registry. In total, 3508 very low birth weight infants born between January 1, 2013 and December 31, 2014 were reviewed. The adjusted hazard ratio for death increased significantly for infants who received mechanical ventilation for more than 2 weeks compared with those were mechanically ventilated for 7 days or less. The individual mortality rate increased after 8 weeks, reaching 50% and 60% at 14 and 16 weeks of cumulative mechanical ventilation, respectively. After adjusting for potential confounders, the cumulative duration of mechanical ventilation was associated with a clinically significant increase in the odds of bronchopulmonary dysplasia and pulmonary hypertension. Mechanical ventilation exposure for longer than 2 weeks, compared with 7 days or less, was associated with retinopathy of prematurity requiring laser coagulation and periventricular leukomalacia. The odds of abnormal auditory screening test results were significantly increased in infants who needed mechanical ventilation for more than 4 weeks. A longer cumulative duration of mechanical ventilation was associated with increased lengths of hospitalization and parenteral nutrition and a higher probability of discharge with poor achievement of physical growth. Although mechanical ventilation is a life-saving intervention for premature infants, these results indicate that it is associated with negative consequences when applied for prolonged periods. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Ventilation of the Subtropical North Atlantic: Locations and Times of Last Ventilation Estimated Using Tracer Constraints From GEOTRACES Section GA03

    NASA Astrophysics Data System (ADS)

    Holzer, Mark; Smethie, William M.; Ting, Yu-Heng

    2018-04-01

    The ventilation of the subtropical North Atlantic along GEOTRACES section GA03 is quantified in terms of where and how long ago water was last in the mixed layer. Measurements of T, S, PO4∗, CFC-11, CFC-12, SF6, and estimates of prebomb 14C are deconvolved for the boundary propagator G using a maximum-entropy approach. From G, we calculate the fractions of water last ventilated in specified surface regions Ωw. We estimate that (56 ± 13)% of the water deeper than 1,000 m was ventilated in northern high latitudes, (15 ± 5)% in the Mediterranean, and (27 ± 12)% in the Southern Ocean. Below the thermocline and outside the deep western boundary current, mean ages of Ωw-ventilated water exceed a century. Consequently, memory of where last ventilation occurred tends to get lost and the deep mean-age patterns of Ωw-ventilated water are broadly similar for all Ωw. The mean ventilation ages, averaged over the section with Ωw-fraction weights, are roughly 200 years for all deep water masses except for water last ventilated south of the Antarctic divergence, which is about twice as old. The uncertainties in the section-mean profiles of the Ωw fractions and their mean ages are ˜50% and ˜20%, respectively. The Ωw fractions have vertically diffuse overlapping patterns suggesting significant diapycnal mixing, consistent with century-scale mean ages. We quantify the seasonal cycle of ventilation and find that in both hemispheres peak ventilation occurs during late winter and early spring, but Northern Hemisphere ventilated deep waters have a more pronounced seasonal cycle with nearly zero summertime ventilation.

  18. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  19. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  20. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  1. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  2. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  3. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  4. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  5. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  6. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...

  7. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  8. Optimal Delivery of Aerosols to Infants During Mechanical Ventilation

    PubMed Central

    Azimi, Mandana; Hindle, Michael

    2014-01-01

    Abstract Purpose: The objective of this study was to determine optimal aerosol delivery conditions for a full-term (3.6 kg) infant receiving invasive mechanical ventilation by evaluating the effects of aerosol particle size, a new wye connector, and timing of aerosol delivery. Methods: In vitro experiments used a vibrating mesh nebulizer and evaluated drug deposition fraction and emitted dose through ventilation circuits containing either a commercial (CM) or new streamlined (SL) wye connector and 3-mm endotracheal tube (ETT) for aerosols with mass median aerodynamic diameters of 880 nm, 1.78 μm, and 4.9 μm. The aerosol was released into the circuit either over the full inhalation cycle (T1 delivery) or over the first half of inhalation (T2 delivery). Validated computational fluid dynamics (CFD) simulations and whole-lung model predictions were used to assess lung deposition and exhaled dose during cyclic ventilation. Results: In vitro experiments at a steady-state tracheal flow rate of 5 L/min resulted in 80–90% transmission of the 880-nm and 1.78-μm aerosols from the ETT. Based on CFD simulations with cyclic ventilation, the SL wye design reduced depositional losses in the wye by a factor of approximately 2–4 and improved lung delivery efficiencies by a factor of approximately 2 compared with the CM device. Delivery of the aerosol over the first half of the inspiratory cycle (T2) reduced exhaled dose from the ventilation circuit by a factor of 4 compared with T1 delivery. Optimal lung deposition was achieved with the SL wye connector and T2 delivery, resulting in 45% and 60% lung deposition for optimal polydisperse (∼1.78 μm) and monodisperse (∼2.5 μm) particle sizes, respectively. Conclusions: Optimization of selected factors and use of a new SL wye connector can substantially increase the lung delivery efficiency of medical aerosols to infants from current values of <1–10% to a range of 45–60%. PMID:24299500

  9. A computer vision-based approach for structural displacement measurement

    NASA Astrophysics Data System (ADS)

    Ji, Yunfeng

    2010-04-01

    Along with the incessant advancement in optics, electronics and computer technologies during the last three decades, commercial digital video cameras have experienced a remarkable evolution, and can now be employed to measure complex motions of objects with sufficient accuracy, which render great assistance to structural displacement measurement in civil engineering. This paper proposes a computer vision-based approach for dynamic measurement of structures. One digital camera is used to capture image sequences of planar targets mounted on vibrating structures. The mathematical relationship between image plane and real space is established based on computer vision theory. Then, the structural dynamic displacement at the target locations can be quantified using point reconstruction rules. Compared with other tradition displacement measurement methods using sensors, such as accelerometers, linear-variable-differential-transducers (LVDTs) and global position system (GPS), the proposed approach gives the main advantages of great flexibility, a non-contact working mode and ease of increasing measurement points. To validate, four tests of sinusoidal motion of a point, free vibration of a cantilever beam, wind tunnel test of a cross-section bridge model, and field test of bridge displacement measurement, are performed. Results show that the proposed approach can attain excellent accuracy compared with the analytical ones or the measurements using conventional transducers, and proves to deliver an innovative and low cost solution to structural displacement measurement.

  10. Dedicated ultrasound speckle tracking to study tendon displacement

    NASA Astrophysics Data System (ADS)

    Korstanje, Jan-Wiebe H.; Selles, Ruud W.; Stam, Henk J.; Hovius, Steven E. R.; Bosch, Johan G.

    2009-02-01

    Ultrasound can be used to study tendon and muscle movement. However, quantization is mostly based on manual tracking of anatomical landmarks such as the musculotendinous junction, limiting the applicability to a small number of muscle-tendon units. The aim of this study is to quantify tendon displacement without employing anatomical landmarks, using dedicated speckle tracking in long B-mode image sequences. We devised a dedicated two-dimensional multikernel block-matching scheme with subpixel accuracy to handle large displacements over long sequences. Images were acquired with a Philips iE33 with a 7 MHz linear array and a VisualSonics Vevo 770 using a 40 MHz mechanical probe. We displaced the flexor digitorum superficialis of two pig cadaver forelegs with three different velocities (4,10 and 16 mm/s) over 3 distances (5, 10, 15 mm). As a reference, we manually determined the total displacement of an injected hyperechogenic bullet in the tendons. We automatically tracked tendon parts with and without markers and compared results to the true displacement. Using the iE33, mean tissue displacement underestimations for the three different velocities were 2.5 +/- 1.0%, 1.7 +/- 1.1% and 0.7 +/- 0.4%. Using the Vevo770, mean tissue displacement underestimations were 0.8 +/- 1.3%, 0.6 +/- 0.3% and 0.6 +/- 0.3%. Marker tracking displacement underestimations were only slightly smaller, showing limited tracking drift for non-marker tendon tissue as well as for markers. This study showed that our dedicated speckle tracking can quantify extensive tendon displacement with physiological velocities without anatomical landmarks with good accuracy for different types of ultrasound configurations. This technique allows tracking of a much larger range of muscle-tendon units than by using anatomical landmarks.

  11. Displacement Damage in Bipolar Linear Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Rax, B. G.; Johnston, A. H.; Miyahira, T.

    2000-01-01

    Although many different processes can be used to manufacture linear integrated circuits, the process that is used for most circuits is optimized for high voltage -- a total power supply voltage of about 40 V -- and low cost. This process, which has changed little during the last twenty years, uses lateral and substrate p-n-p transistors. These p-n-p transistors have very wide base regions, increasing their sensitivity to displacement damage from electrons and protons. Although displacement damage effects can be easily treated for individual transistors, the net effect on linear circuits can be far more complex because circuit operation often depends on the interaction of several internal transistors. Note also that some circuits are made with more advanced processes with much narrower base widths. Devices fabricated with these newer processes are not expected to be significantly affected by displacement damage for proton fluences below 1 x 10(exp 12) p/sq cm. This paper discusses displacement damage in linear integrated circuits with more complex failure modes than those exhibited by simpler devices, such as the LM111 comparator, where the dominant response mode is gain degradation of the input transistor. Some circuits fail catastrophically at much lower equivalent total dose levels compared to tests with gamma rays. The device works satisfactorily up to nearly 1 Mrad(Si) when it is irradiated with gamma rays, but fails catastrophically between 50 and 70 krad(Si) when it is irradiated with protons.

  12. Omnidirectional ventilated acoustic barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2017-11-01

    As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states which induces a Fano-like asymmetric transmission profile. Benefitting from the binary-structured design of the coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non-resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously.

  13. Propellant Handler's Ensemble (PHE) Aka Self-Contained Atmospheric Protective Ensemble (SCAPE), Ventilator Improvement Study Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The overall objective for this project is to evaluate two candidate alternatives for the existing Propellant Handler's Ensemble (PHE) escape ventilator. The new candidate ventilators use newer technology with similar quantities of air at approximately half the weight of the current ventilator. Ventilators are typically used to ingress/egress a hazardous work area when hard line air is provided at the work area but the hose is not long enough to get the operator to and from the staging area to the work area. The intent of this test is to verify that the new ventilators perform as well as or better than the current ventilators in maintaining proper oxygen (O2) and carbon dioxide (CO2) levels in the PHE during a typical use for the rated time period (10 minutes). We will evaluate two new units comparing them to the existing unit. Subjects will wear the Category I version of the Propellant Handler's Ensemble with the rear suit pouch snapped.

  14. Helium vs. Proton Induced Displacement Damage in Electronic Materials

    NASA Technical Reports Server (NTRS)

    Ringo, Sawnese; Barghouty, A. F.

    2010-01-01

    In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.

  15. On the reach of perturbative descriptions for dark matter displacement fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldauf, Tobias; Zaldarriaga, Matias; Schaan, Emmanuel, E-mail: baldauf@ias.edu, E-mail: eschaan@astro.princeton.edu, E-mail: matiasz@ias.edu

    We study Lagrangian Perturbation Theory (LPT) and its regularization in the Effective Field Theory (EFT) approach. We evaluate the LPT displacement with the same phases as a corresponding N-body simulation, which allows us to compare perturbation theory to the non-linear simulation with significantly reduced cosmic variance, and provides a more stringent test than simply comparing power spectra. We reliably detect a non-vanishing leading order EFT coefficient and a stochastic displacement term, uncorrelated with the LPT terms. This stochastic term is expected in the EFT framework, and, to the best of our understanding, is not an artifact of numerical errors ormore » transients in our simulations. This term constitutes a limit to the accuracy of perturbative descriptions of the displacement field and its phases, corresponding to a 1% error on the non-linear power spectrum at k = 0.2 h{sup −1}Mpc at z = 0. Predicting the displacement power spectrum to higher accuracy or larger wavenumbers thus requires a model for the stochastic displacement.« less

  16. Adapting to variable prismatic displacement

    NASA Technical Reports Server (NTRS)

    Welch, Robert B.; Cohen, Malcolm M.

    1989-01-01

    In each of two studies, subjects were exposed to a continuously changing prismatic displacement with a mean value of 19 prism diopters (variable displacement) and to a fixed 19-diopter displacement (fixed displacement). In Experiment 1, significant adaptation (post-pre shifts in hand-eye coordination) was found for fixed, but not for variable, displacement. Experiment 2 demonstrated that adaptation was obtained for variable displacement, but it was very fragile and is lost if the measures of adaptation are preceded by even a very brief exposure of the hand to normal or near-normal vision. Contrary to the results of some previous studies, an increase in within-S dispersion was not found of target pointing responses as a result of exposure to variable displacement.

  17. Pleural tissue hyaluronan produced by postmortem ventilation in rabbits.

    PubMed

    Wang, P M; Lai-Fook, S J

    2000-01-01

    We developed a method that used Alcian blue bound to hyaluronan to measure pleural hyaluronan in rabbits postmortem. Rabbits were killed, then ventilated with 21% O2--5% CO2--74% N2 for 3 h. The pleural liquid was removed by suction and 5 ml Alcian blue stock solution (0.33 mg/ml, 3.3 pH) was injected into each chest cavity. After 10 min, the Alcian blue solution was removed and the unbound Alcian blue solution (supernatant) separated by centrifugation and filtration. The supernatant transmissibility (T) was measured spectrophotometrically at 613 nm. Supernatant Alcian blue concentration (Cab) was obtained from a calibration curve of T versus dilutions of stock solution Cab. Alcian blue bound to pleural tissue hyaluronan was obtained by subtracting supernatant Cab from stock solution Cab. Pleural tissue hyaluronan was obtained from a calibration curve of hyaluronan versus Alcian blue bound to hyaluronan. Compared with control rabbits, pleural tissue hyaluronan (0.21 +/- 0.04 mg/kg) increased twofold, whereas pleural liquid volume decreased by 30% after 3 h of ventilation. Pleural effusions present 3 h postmortem without ventilation did not change pleural tissue hyaluronan from control values. Thus ventilation-induced pleural liquid shear stress, not increased filtration, was the stimulus for the increased hyaluronan produced from pleural mesothelial cells.

  18. Alternating versus synchronous ventilation of left and right lungs in piglets.

    PubMed

    Versprille, A; Hrachovina, V; Jansen, J R

    1995-12-01

    We tested whether alternating ventilation (AV) of each lung (i.e. with a phase difference of half a ventilatory cycle) would decrease central venous pressure and so increase cardiac output when compared with simultaneous ventilation (SV) of both lungs. If, during AV, the inflated lung expands partly via compression of the opposite lung, mean lung volume will be smaller during AV than SV. As a consequence, mean intrathoracic pressure (as cited in the literature), and therefore, central venous pressure will be smaller. The experiments were performed in seven anaesthetized and paralyzed piglets using a double-piston ventilator. Minute ventilation was the same during AV and SV. Starting at SV, we alternated three times between AV and SV for periods of 10 min. During AV, central venous pressure was decreased by 0.7 mmHg and cardiac output was increased by 10 +/- 4.4% (mean, +/-SD) compared with SV. AV also resulted in increased arterial pressure. During one-sided inflation with closed outlet of the opposite lung, a pressure rise occurred in the opposite lung, indicating compression. The higher cardiac output during AV than SV can be explained by the fact that central venous pressure is lower during AV. This lower central venous pressure is very probably due to the lower mean intrathoracic pressure caused by compression of the opposite lung during unilateral inflation.

  19. The displaced aggression questionnaire.

    PubMed

    Denson, Thomas F; Pedersen, William C; Miller, Norman

    2006-06-01

    Previous measures of aggressive personality have focused on direct aggression (i.e., retaliation toward the provoking agent). An original self-report measure of trait displaced aggression is presented. Exploratory and confirmatory factor analyses provided support for a 3-factor conceptualization of the construct. These analyses identified an affective dimension (angry rumination), a cognitive dimension (revenge planning), and a behavioral dimension (general tendency to engage in displaced aggression). The trait measure demonstrated good internal consistency and test-retest reliability as well as convergent and discriminant construct validity. Unlike other related personality measures, trait displaced aggression significantly predicted indirect indicators of real-world displaced aggression (i.e., self-reported domestic abuse and road rage) as well as laboratory displaced aggression in 2 experiments. Copyright 2006 APA, all rights reserved.

  20. 14 CFR 121.219 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ventilation. 121.219 Section 121.219 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... passenger or crew compartment must be suitably ventilated. Carbon monoxide concentration may not be more...

  1. Accuracy of Prediction Equations to Assess Percentage of Body Fat in Children and Adolescents with Down Syndrome Compared to Air Displacement Plethysmography

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, A.; Vicente-Rodriguez, G.; Ara, I.; Moreno, L. A.; Casajus, J. A.

    2011-01-01

    To determine the accuracy of the published percentage body fat (%BF) prediction equations (Durnin et al., Johnston et al., Brook and Slaughter et al.) from skinfold thickness compared to air displacement plethysmography (ADP) in children and adolescents with Down syndrome (DS). Twenty-eight children and adolescents with DS (10-20 years old; 12…

  2. 46 CFR 127.260 - Ventilation for accommodations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for accommodations. 127.260 Section 127.260... ARRANGEMENTS Particular Construction and Arrangements § 127.260 Ventilation for accommodations. (a) Each... vessel of 100 or more gross tons must be provided with a mechanical ventilation system unless the...

  3. Ventilator-associated pneumonia and ICU mortality in severe ARDS patients ventilated according to a lung-protective strategy

    PubMed Central

    2012-01-01

    Introduction Ventilator-associated pneumonia (VAP) may contribute to the mortality associated with acute respiratory distress syndrome (ARDS). We aimed to determine the incidence, outcome, and risk factors of bacterial VAP complicating severe ARDS in patients ventilated by using a strictly standardized lung-protective strategy. Methods This prospective epidemiologic study was done in all the 339 patients with severe ARDS included in a multicenter randomized, placebo-controlled double-blind trial of cisatracurium besylate in severe ARDS patients. Patients with suspected VAP underwent bronchoalveolar lavage to confirm the diagnosis. Results Ninety-eight (28.9%) patients had at least one episode of microbiologically documented bacterial VAP, including 41 (41.8%) who died in the ICU, compared with 74 (30.7%) of the 241 patients without VAP (P = 0.05). After adjustment, age and severity at baseline, but not VAP, were associated with ICU death. Cisatracurium besylate therapy within 2 days of ARDS onset decreased the risk of ICU death. Factors independently associated with an increased risk to develop a VAP were male sex and worse admission Glasgow Coma Scale score. Tracheostomy, enteral nutrition, and the use of a subglottic secretion-drainage device were protective. Conclusions In patients with severe ARDS receiving lung-protective ventilation, VAP was associated with an increased crude ICU mortality which did not remain significant after adjustment. PMID:22524447

  4. Characteristics of coal mine ventilation air flows.

    PubMed

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  5. Comparative transduction mechanisms of hair cells in the bullfrog utriculus. II. Sensitivity and response dynamics to hair bundle displacement

    NASA Technical Reports Server (NTRS)

    Baird, R. A.

    1994-01-01

    1. Hair cells in whole-mount in vitro preparations of the utricular macula of the bullfrog (Rana catesbeiana) were selected according to their macular location and hair bundle morphology. The sensitivity and response dynamics of selected hair cells to natural stimulation were examined by recording their voltage responses to step and sinusoidal hair bundle displacements applied to their longest stereocilia. 2. The voltage responses of 31 hair cells to sinusoidal hair bundle displacements were characterized by their gains and phases, taken with respect to peak hair bundle displacement. The gains of Type B and Type C cells at both 0.5 and 5.0 Hz were markedly lower than those of Type F and Type E cells. Phases, with the exception of Type C cells, lagged hair bundle displacement at 0.5 Hz. Type C cells had phase leads of 25-40 degrees. At 5.0 Hz, response phases in all cells were phase lagged with respect to those at 0.5 Hz. Type C cells had larger gains and smaller phase leads at 5.0 Hz than at 0.5 Hz, suggesting the presence of low-frequency adaptation. 3. Displacement-response curves, derived from the voltage responses to 5.0-Hz sinusoids, were sigmoidal in shape and asymmetrical, with the depolarizing response having a greater magnitude and saturating less abruptly than the hyperpolarizing response. When normalized to their largest displacement the linear ranges of these curves varied from < 0.5 to 1.25 microns and were largest in Type B and smallest in Type F and Type E cells. Sensitivity, defined as the slope of the normalized displacement-response curve, was inversely correlated with linear range. 4. The contribution of geometric factors associated with the hair bundle to linear range and sensitivity were predicted from realistic models of utricular hair bundles created using morphological data obtained from light and electron microscopy. Three factors, including 1) the inverse ratio of the lengths of the kinocilium and longest stereocilia, representing the

  6. Object form discontinuity facilitates displacement discrimination across saccades.

    PubMed

    Demeyer, Maarten; De Graef, Peter; Wagemans, Johan; Verfaillie, Karl

    2010-06-01

    Stimulus displacements coinciding with a saccadic eye movement are poorly detected by human observers. In recent years, converging evidence has shown that this phenomenon does not result from poor transsaccadic retention of presaccadic stimulus position information, but from the visual system's efforts to spatially align presaccadic and postsaccadic perception on the basis of visual landmarks. It is known that this process can be disrupted, and transsaccadic displacement detection performance can be improved, by briefly blanking the stimulus display during and immediately after the saccade. In the present study, we investigated whether this improvement could also follow from a discontinuity in the task-irrelevant form of the displaced stimulus. We observed this to be the case: Subjects more accurately identified the direction of intrasaccadic displacements when the displaced stimulus simultaneously changed form, compared to conditions without a form change. However, larger improvements were still observed under blanking conditions. In a second experiment, we show that facilitation induced by form changes and blanks can combine. We conclude that a strong assumption of visual stability underlies the suppression of transsaccadic change detection performance, the rejection of which generalizes from stimulus form to stimulus position.

  7. Displaced aggression predicts switching deficits in people with temporal lobe epilepsy.

    PubMed

    Gul, Amara; Ahmad, Hira

    2014-12-01

    This study examined the relationship between task-switching abilities and displaced aggression in people with temporal lobe epilepsy (PWE). Participants (35 PWE and 35 healthy controls) performed emotion and gender classification switching tasks. People with temporal lobe epilepsy showed larger switch costs than controls. This result reflected task-switching deficits in PWE. People with temporal lobe epilepsy reported higher anger rumination, revenge planning, and behavioral displaced aggression compared with controls. Displaced aggression was a significant predictor of the task switch costs. It is suggested that displaced aggression is a significant marker of task-switching deficits. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Mechanical ventilation for amyotrophic lateral sclerosis/motor neuron disease.

    PubMed

    Radunovic, Aleksandar; Annane, Djillali; Rafiq, Muhammad K; Mustfa, Naveed

    2013-03-28

    were no new randomised or quasi-randomised controlled trials at this first update.Incomplete data were published for one study and we contacted the trial authors who were not able to provide the missing data. Therefore, the results of the review were based on a single study of 41 participants that compared non-invasive ventilation with standard care. It was a well conducted study with low risk of bias.The study showed that the overall median survival was significantly different between the group treated with non-invasive ventilation and the standard care group. The median survival in the non-invasive ventilation group was 48 days longer (219 days compared to 171 days for the standard care group (estimated 95% CI 12 to 91 days, P = 0.0062)). This survival benefit was accompanied by an enhanced quality of life. On subgroup analysis, the survival and quality of life benefit was much more in the subgroup with normal to moderately impaired bulbar function (20 participants); median survival was 205 days longer (216 days in NIV group versus 11 days in the standard care group, P = 0.0059). Non-invasive ventilation did not prolong survival in participants with poor bulbar function (21 participants), although it showed significant improvement in the mean symptoms domain of the Sleep Apnoea Quality of Life Index but not in the Short Form-36 Health Survey Mental Component Summary score. Neither trial reported clinical data on intervention related adverse effects. Evidence from a single randomised trial of non-invasive ventilation in 41 participants suggests that it significantly prolongs survival and improves or maintains quality of life in people with ALS. Survival and some measures of quality of life were significantly improved in the subgroup of people with better bulbar function, but not in those with severe bulbar impairment. Future studies should examine the health economics of NIV and factors influencing access to NIV. We need to understand the factors, personal and

  9. 20 CFR 627.230 - Displacement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Displacement. 627.230 Section 627.230... PROGRAMS UNDER TITLES I, II, AND III OF THE ACT Program Requirements § 627.230 Displacement. (a) No currently employed worker shall be displaced by any participant (including partial displacement such as a...

  10. 20 CFR 627.230 - Displacement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Displacement. 627.230 Section 627.230... PROGRAMS UNDER TITLES I, II, AND III OF THE ACT Program Requirements § 627.230 Displacement. (a) No currently employed worker shall be displaced by any participant (including partial displacement such as a...

  11. 20 CFR 627.230 - Displacement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Displacement. 627.230 Section 627.230... PROGRAMS UNDER TITLES I, II, AND III OF THE ACT Program Requirements § 627.230 Displacement. (a) No currently employed worker shall be displaced by any participant (including partial displacement such as a...

  12. [Pediatric home ventilation--practical approach].

    PubMed

    Rath-Wacenovsky, Regina

    2015-09-01

    Out-of-hospital ventilation represents only a marginal area of paediatric therapeutic concepts. In Austria, the proportion of children to be supplied with invasive and non-invasive ventilation increases significantly, together with the challenges of caring for their long-term demands. Neuromuscular diseases accounted for almost the sole indication group. Premature and newborn infants with persistent respiratory failures are an increasing group, needing more extensive care due to additional comorbidities. Children with congenital disorder have often been tracheotomised in order to secure their airway, and non-invasive ventilation as a bridge- or long-term therapy gains in importance more and more. Usually, infants with primary or secondary CNS disorders suffer from respiratory complications and eventually from chronic respiratory insufficiencies during adolescence or young adulthood. Here, invasive or non-invasive ventilation can contribute both to a significant stabilisation of health status and also quality of life. Spirit of research, experience, appropriate support structures, and appropriate networking constitute the most relevant quality- and success criteria for home care.

  13. A study of the effect of nasal modes of ventilation on the incidence of gastro-oesophageal reflux in preterm neonates.

    PubMed

    Mathai, Ss; Datta, Karuna; Adhikari, Km

    2012-01-01

    Nasal modes of respiratory support cause variable amounts of gastric dilatation which may increase gastro-oesophageal reflux (GER) in preterms. To compare the incidence of GER in nasally ventilated, preterm babies with controls (babies not on ventilation). A prospective, observational comparative study. Twenty-three preterm babies of gestational age 28-36 weeks and weight ranging between 1,000 g and < 2,500 g on either nasal continuous positive airway pressure (nCPAP) or nasal intermittent positive pressure venti-lation (nIPPV) were assessed for GER. They were compared with controls not on ventilation some of who were test babies when off ventilation (subgroup A) and some were unrelated babies not on ventilator but matched for gestational age and weight with test babies (subgroup B). All babies were subjected to continuous, oesophageal pH monitoring with dual sensor (upper and lower oesophageal) catheters. Reflux index (RI) was calculated as the percentage of study time the lower oesophageal pH was < 4. Primary outcome was the RI in the test and controls groups. Secondary outcome was the temporal relation of the reflux with symptoms if any. Numerical data were shown as mean with standard deviation and statistical comparisons were done using the χ(2)-test, Fischer test, and t-test wherever applicable. The RI was higher in ventilated babies as compared to the control group, particularly in the subgroup A, where test babies formed their own controls. Grade IV reflux (7 cases) was seen only in the ventilated babies. There was no difference in the incidence of GER in babies on nCPAP as compared with nIPPV. Grade IV reflux could not be reliably predicted by RI alone. No definite temporal relation between episodes of reflux and symptoms could be determined in this study. There is an increase in GER in preterms on nasal modes of ventilation. A combination of upper (pharyngeal) and lower oesophageal sensors are preferred to a single lower oesophageal sensor when assessing

  14. Metabolically Derived Human Ventilation Rates: A Revised ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report, Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates. This report provides a revised approach for calculating an individual's ventilation rate directly from their oxygen consumption rate. This approach will be used to update the ventilation rate information in the Exposure Factors Handbook, which serve as a resources for exposure assessors for calculating inhalation and other exposures. In this report, EPA presents a revised approach in which ventilation rate is calculated directly from an individual's oxygen consumption rate.

  15. 46 CFR 194.15-5 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....15-5 Ventilation. (a) Operations, reactions or experiments which produce toxic, noxious or corrosive...) Ventilation of air conditioning systems serving the chemical laboratory shall be designed so that air cannot...

  16. Implementation of a Goal-Directed Mechanical Ventilation Order Set Driven by Respiratory Therapists Improves Compliance With Best Practices for Mechanical Ventilation.

    PubMed

    Radosevich, Misty A; Wanta, Brendan T; Meyer, Todd J; Weber, Verlin W; Brown, Daniel R; Smischney, Nathan J; Diedrich, Daniel A

    2017-01-01

    Data regarding best practices for ventilator management strategies that improve outcomes in acute respiratory distress syndrome (ARDS) are readily available. However, little is known regarding processes to ensure compliance with these strategies. We developed a goal-directed mechanical ventilation order set that included physician-specified lung-protective ventilation and oxygenation goals to be implemented by respiratory therapists (RTs). We sought as a primary outcome to determine whether an RT-driven order set with predefined oxygenation and ventilation goals could be implemented and associated with improved adherence with best practice. We evaluated 1302 patients undergoing invasive mechanical ventilation (1693 separate episodes of invasive mechanical ventilation) prior to and after institution of a standardized, goal-directed mechanical ventilation order set using a controlled before-and-after study design. Patient-specific goals for oxygenation partial pressure of oxygen in arterial blood (Pao 2 ), ARDS Network [Net] positive end-expiratory pressure [PEEP]/fraction of inspired oxygen [Fio 2 ] table use) and ventilation (pH, partial pressure of carbon dioxide) were selected by prescribers and implemented by RTs. Compliance with the new mechanical ventilation order set was high: 88.2% compliance versus 3.8% before implementation of the order set ( P < .001). Adherence to the PEEP/Fio 2 table after implementation of the order set was significantly greater (86.0% after vs 82.9% before, P = .02). There was no difference in duration of mechanical ventilation, intensive care unit (ICU) length of stay, and in-hospital or ICU mortality. A standardized best practice mechanical ventilation order set can be implemented by a multidisciplinary team and is associated with improved compliance to written orders and adherence to the ARDSNet PEEP/Fio 2 table.

  17. Internal displacement in Burma.

    PubMed

    Lanjouw, S; Mortimer, G; Bamforth, V

    2000-09-01

    The internal displacement of populations in Burma is not a new phenomenon. Displacement is caused by numerous factors. Not all of it is due to outright violence, but much is a consequence of misguided social and economic development initiatives. Efforts to consolidate the state by assimilating populations in government-controlled areas by military authorities on the one hand, while brokering cease-fires with non-state actors on the other, has uprooted civilian populations throughout the country. Very few areas in which internally displaced persons (IDPs) are found are not facing social turmoil within a climate of impunity. Humanitarian access to IDP populations remains extremely problematic. While relatively little information has been collected, assistance has been focused on targeting accessible groups. International concern within Burma has couched the problems of displacement within general development modalities, while international attention along its borders has sought to contain displacement. With the exception of several recent initiatives, few approaches have gone beyond assistance and engaged in the prevention or protection of the displaced.

  18. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  19. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted into...

  20. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted into...

  1. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted into...

  2. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted into...

  3. 21 CFR 888.4230 - Cement ventilation tube.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted into...

  4. Association of Ipsilateral Rib Fractures With Displacement of Midshaft Clavicle Fractures.

    PubMed

    Stahl, Daniel; Ellington, Matthew; Brennan, Kindyle; Brennan, Michael

    2017-04-01

    To determine whether the presence of ipsilateral rib fractures affects the rate of a clavicle fracture being unstable (>100% displacement). A retrospective review from 2002-2013 performed at a single level 1 trauma center evaluated 243 midshaft clavicle fractures. Single Level 1 trauma center. These fractures were subdivided into those with ipsilateral rib fractures (CIR; n = 149) and those without ipsilateral rib fractures (CnIR; n = 94). The amount of displacement was measured on the initial injury radiograph and subsequent follow-up radiographs. Fractures were classified into either <100% displacement or >100% displacement, based on anteroposterior radiographs. Ipsilateral rib fractures were recorded based on which number rib was fractured and the total number of fractured ribs. One hundred sixteen (78%) of the CIR group and 51 (54%) of the CnIR group were found to have >100% displacement at follow-up (P = 0.0047). Seventy-two percent of the CIR group demonstrated progression from <100% to >100% displacement of the fracture compared with only 54% of the CnIR group (P < 0.05). The odds ratio for progression of the clavicle fracture to >100% was 4.08 (P = 0.000194) when ribs 1-4 were fractured and not significant for rib fractures 5-8 or 9-12. The presence of concomitant ipsilateral rib fractures significantly increases the rate of midshaft clavicle fractures being >100% displaced. In addition, a fracture involving the upper one-third of the ribs significantly increases the rate of the clavicle fracture being >100% displaced on early follow-up. Clavicle fractures with associated ipsilateral rib fractures tend to demonstrate an increased amount of displacement on follow-up radiographs compared with those without ipsilateral rib fractures. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.

  5. Effects of ventilation behaviour on indoor heat load based on test reference years.

    PubMed

    Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas

    2016-02-01

    Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.

  6. Effects of ventilation behaviour on indoor heat load based on test reference years

    NASA Astrophysics Data System (ADS)

    Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas

    2016-02-01

    Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.

  7. Implications of Natural Occlusion of Ventilated Racks on Ammonia and Sanitation Practices

    PubMed Central

    Creamer, Michelle A; Petty, Joann; Martin, Tara; Bergdall, Valerie; Hickman-Davis, Judy M

    2014-01-01

    Examination of ventilated rat racks prior to semiannual sanitation revealed silicone nozzles and ventilation ports that were partially or completely occluded with granular debris. We subsequently sought to document performance standards for rack sanitation and investigate the effect of ventilation port occlusion on rack function and animal husbandry practices. We hypothesized that individually ventilated cages with occluded airflow would require more frequent cage changes, comparable to those for static cages (that is, every 3 to 4 d). Sprague–Dawley rats were housed under one of 4 conditions: no airflow occlusion, occluded air-supply inlet, occluded air-exhaust outlet, and occlusion of both inlet and outlet. Cages were changed when daily ammonia concentration exceeded 20 ppm or after 14 d had elapsed. Most cages with unoccluded or partial airflow occlusion remained below the 20 ppm limit until day 12 or 13. Cages with occlusion of both inlet and outlet exceeded 20 ppm ammonia by as early as day 5. Airflow was significantly lower in cages with occlusion of both inlet and outlet airflow. Weekly inspection revealed that occlusion of ventilation ports was detectable by 3 mo after semiannual sanitation. This study demonstrates that silicone nozzles should be removed prior to rack sanitation to improve the effectiveness of cleaning ventilation ports and nozzles. While the rack is in use, silicone nozzles and ventilation ports should be inspected regularly to identify occlusion that is likely to diminish environmental quality in the cage. Intracage ammonia levels are significantly higher when both inlet and outlet airflow are occluded. PMID:24602544

  8. Implications of natural occlusion of ventilated racks on ammonia and sanitation practices.

    PubMed

    Creamer, Michelle A; Petty, Joann; Martin, Tara; Bergdall, Valerie; Hickman-Davis, Judy M

    2014-03-01

    Examination of ventilated rat racks prior to semiannual sanitation revealed silicone nozzles and ventilation ports that were partially or completely occluded with granular debris. We subsequently sought to document performance standards for rack sanitation and investigate the effect of ventilation port occlusion on rack function and animal husbandry practices. We hypothesized that individually ventilated cages with occluded airflow would require more frequent cage changes, comparable to those for static cages (that is, every 3 to 4 d). Sprague-Dawley rats were housed under one of 4 conditions: no airflow occlusion, occluded air-supply inlet, occluded air-exhaust outlet, and occlusion of both inlet and outlet. Cages were changed when daily ammonia concentration exceeded 20 ppm or after 14 d had elapsed. Most cages with unoccluded or partial airflow occlusion remained below the 20 ppm limit until day 12 or 13. Cages with occlusion of both inlet and outlet exceeded 20 ppm ammonia by as early as day 5. Airflow was significantly lower in cages with occlusion of both inlet and outlet airflow. Weekly inspection revealed that occlusion of ventilation ports was detectable by 3 mo after semiannual sanitation. This study demonstrates that silicone nozzles should be removed prior to rack sanitation to improve the effectiveness of cleaning ventilation ports and nozzles. While the rack is in use, silicone nozzles and ventilation ports should be inspected regularly to identify occlusion that is likely to diminish environmental quality in the cage. Intracage ammonia levels are significantly higher when both inlet and outlet airflow are occluded.

  9. Analysis of a Pediatric Home Mechanical Ventilator Population.

    PubMed

    Amirnovin, Rambod; Aghamohammadi, Sara; Riley, Carley; Woo, Marlyn S; Del Castillo, Sylvia

    2018-05-01

    The population of children requiring home mechanical ventilation has evolved over the years and has grown to include a variety of diagnoses and needs that have led to changes in the care of this unique population. The purpose of this study was to provide a descriptive analysis of pediatric patients requiring home mechanical ventilation after hospitalization and how the evolution of this technology has impacted their care. A retrospective, observational, longitudinal analysis of 164 children enrolled in a university-affiliated home mechanical ventilation program over 26 years was performed. Data included each child's primary diagnosis, date of tracheostomy placement, duration of mechanical ventilation during hospitalization that consisted of home mechanical ventilator initiation, total length of pediatric ICU stay, ventilator settings at time of discharge from pediatric ICU, and disposition (home, facility, or died). Univariate, bivariate, and regression analysis was used as appropriate. The most common diagnosis requiring the use of home mechanical ventilation was neuromuscular disease (53%), followed by chronic pulmonary disease (29%). The median length of stay in the pediatric ICU decreased significantly after the implementation of a ventilator ward (70 d [30-142] vs 36 d [18-67], P = .02). The distribution of subjects upon discharge was home (71%), skilled nursing facility (24%), and died (4%), with an increase in the proportion of subjects discharged on PEEP and those going to nursing facilities over time ( P = 0.02). The evolution of home mechanical ventilation has allowed earlier transition out of the pediatric ICU and with increasing disposition to skilled nursing facilities over time. There has also been a change in ventilator management, including increased use of PEEP upon discharge, possibly driven by changes in ventilators and in-patient practice patterns. Copyright © 2018 by Daedalus Enterprises.

  10. Sustained Reduction of Ventilator-Associated Pneumonia Rates Using Real-Time Course Correction With a Ventilator Bundle Compliance Dashboard.

    PubMed

    Talbot, Thomas R; Carr, Devin; Parmley, C Lee; Martin, Barbara J; Gray, Barbara; Ambrose, Anna; Starmer, Jack

    2015-11-01

    The effectiveness of practice bundles on reducing ventilator-associated pneumonia (VAP) has been questioned. To implement a comprehensive program that included a real-time bundle compliance dashboard to improve compliance and reduce ventilator-associated complications. DESIGN Before-and-after quasi-experimental study with interrupted time-series analysis. SETTING Academic medical center. In 2007 a comprehensive institutional ventilator bundle program was developed. To assess bundle compliance and stimulate instant course correction of noncompliant parameters, a real-time computerized dashboard was developed. Program impact in 6 adult intensive care units (ICUs) was assessed. Bundle compliance was noted as an overall cumulative bundle adherence assessment, reflecting the percentage of time all elements were concurrently in compliance for all patients. The VAP rate in all ICUs combined decreased from 19.5 to 9.2 VAPs per 1,000 ventilator-days following program implementation (P<.001). Bundle compliance significantly increased (Z100 score of 23% in August 2007 to 83% in June 2011 [P<.001]). The implementation resulted in a significant monthly decrease in the overall ICU VAP rate of 3.28/1,000 ventilator-days (95% CI, 2.64-3.92/1,000 ventilator-days). Following the intervention, the VAP rate decreased significantly at a rate of 0.20/1,000 ventilator-days per month (95% CI, 0.14-0.30/1,000 ventilator-days per month). Among all adult ICUs combined, improved bundle compliance was moderately correlated with monthly VAP rate reductions (Pearson correlation coefficient, -0.32). A prevention program using a real-time bundle adherence dashboard was associated with significant sustained decreases in VAP rates and an increase in bundle compliance among adult ICU patients.

  11. Implementation of a real-time compliance dashboard to help reduce SICU ventilator-associated pneumonia with the ventilator bundle.

    PubMed

    Zaydfudim, Victor; Dossett, Lesly A; Starmer, John M; Arbogast, Patrick G; Feurer, Irene D; Ray, Wayne A; May, Addison K; Pinson, C Wright

    2009-07-01

    Ventilator-associated pneumonia (VAP) causes significant morbidity and mortality in critically ill surgical patients. Recent studies suggest that the success of preventive measures is dependent on compliance with ventilator bundle parameters. Implementation of an electronic dashboard will improve compliance with the bundle parameters and reduce rates of VAP in our surgical intensive care unit (SICU). Time series analysis of VAP rates between January 2005 and July 2008, with dashboard implementation in July 2007. Multidisciplinary SICU at a tertiary-care referral center with a stable case mix during the study period. Patients admitted to the SICU between January 2005 and July 2008. Infection control data were used to establish rates of VAP and total ventilator days. For the time series analysis, VAP rates were calculated as quarterly VAP events per 1000 ventilator days. Ventilator bundle compliance was analyzed after dashboard implementation. Differences between expected and observed VAP rates based on time series analysis were used to estimate the effect of intervention. Average compliance with the ventilator bundle improved from 39% in August 2007 to 89% in July 2008 (P < .001). Rates of VAP decreased from a mean (SD) of 15.2 (7.0) to 9.3 (4.9) events per 1000 ventilator days after introduction of the dashboard (P = .01). Quarterly VAP rates were significantly reduced in the November 2007 through January 2008 and February through April 2008 periods (P < .05). For the August through October 2007 and May through July 2008 quarters, the observed rate reduction was not statistically significant. Implementation of an electronic dashboard improved compliance with ventilator bundle measures and is associated with reduced rates of VAP in our SICU.

  12. Modes of mechanical ventilation for the operating room.

    PubMed

    Ball, Lorenzo; Dameri, Maddalena; Pelosi, Paolo

    2015-09-01

    Most patients undergoing surgical procedures need to be mechanically ventilated, because of the impact of several drugs administered at induction and during maintenance of general anaesthesia on respiratory function. Optimization of intraoperative mechanical ventilation can reduce the incidence of post-operative pulmonary complications and improve the patient's outcome. Preoxygenation at induction of general anaesthesia prolongs the time window for safe intubation, reducing the risk of hypoxia and overweighs the potential risk of reabsorption atelectasis. Non-invasive positive pressure ventilation delivered through different interfaces should be considered at the induction of anaesthesia morbidly obese patients. Anaesthesia ventilators are becoming increasingly sophisticated, integrating many functions that were once exclusive to intensive care. Modern anaesthesia machines provide high performances in delivering the desired volumes and pressures accurately and precisely, including assisted ventilation modes. Therefore, the physicians should be familiar with the potential and pitfalls of the most commonly used intraoperative ventilation modes: volume-controlled, pressure-controlled, dual-controlled and assisted ventilation. Although there is no clear evidence to support the advantage of any one of these ventilation modes over the others, protective mechanical ventilation with low tidal volume and low levels of positive end-expiratory pressure (PEEP) should be considered in patients undergoing surgery. The target tidal volume should be calculated based on the predicted or ideal body weight rather than on the actual body weight. To optimize ventilation monitoring, anaesthesia machines should include end-inspiratory and end-expiratory pause as well as flow-volume loop curves. The routine administration of high PEEP levels should be avoided, as this may lead to haemodynamic impairment and fluid overload. Higher PEEP might be considered during surgery longer than 3 h

  13. Influence of Mechanical Ventilation on the Incidence of Pneumothorax During Infraclavicular Subclavian Vein Catheterization: A Prospective Randomized Noninferiority Trial.

    PubMed

    Kim, Eugene; Kim, Hyun Joo; Hong, Deok Man; Park, Hee-Pyoung; Bahk, Jae-Hyon

    2016-09-01

    It remains unclear whether we have to interrupt mechanical ventilation during infraclavicular subclavian venous catheterization. In practice, the clinicians' choice about lung deflation depends on their own discretion. The purpose of this study was to assess the influence of mechanical ventilation on the incidence of pneumothorax during infraclavicular subclavian venous catheterization. A total of 332 patients, who needed subclavian venous catheterization, were randomly assigned to 1 of the 2 groups: catheterizations were performed with the patients' lungs under mechanical ventilation (ventilation group, n = 165) or without mechanical ventilation (deflation group, n = 167). The incidences of pneumothorax and other complications such as arterial puncture, hemothorax, or catheter misplacements and the success rate of catheterization were compared. The incidences of pneumothorax were 0% (0/165) in the ventilation group and 0.6% (1/167) in the deflation group. The incidence of pneumothorax in the deflation group was 0.6% higher than that in the ventilation group and the 2-sided 90% confidence interval for the difference was (-1.29% to 3.44%). Because the lower bound for the 2-sided 90% confidence interval, -1.29%, was higher than the predefined noninferiority margin of -3%, the inferiority of the ventilation group over the deflation group was rejected at the .05 level of significance. Other complication rates and success rates of catheterization were comparable between 2 groups. The oxygen saturation dropped below 95% in 9 patients in the deflation group, while none in the ventilation group (P = .007). The success and complication rates were similar regardless of mechanical ventilation. During infraclavicular subclavian venous catheterization, interruption of mechanical ventilation does not seem to be necessary for the prevention of pneumothorax.

  14. Laryngeal mask airway versus bag-mask ventilation or endotracheal intubation for neonatal resuscitation.

    PubMed

    Qureshi, Mosarrat J; Kumar, Manoj

    2018-03-15

    Providing effective positive pressure ventilation is considered to be the single most important component of successful neonatal resuscitation. Ventilation is frequently initiated manually with bag and face mask (BMV) followed by endotracheal intubation if respiratory depression continues. These techniques may be difficult to perform successfully resulting in prolonged resuscitation or neonatal asphyxia. The laryngeal mask airway (LMA) may achieve initial ventilation and successful resuscitation faster than a bag-mask device or endotracheal intubation. Among newborns requiring positive pressure ventilation for cardio-pulmonary resuscitation, is LMA more effective than BMV or endotracheal intubation for successful resuscitation? When BMV is either insufficient or ineffective, is effective positive pressure ventilation and successful resuscitation achieved faster with the LMA compared to endotracheal intubation? We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL 2017, Issue 1), MEDLINE via PubMed (1966 to 15 February 2017), Embase (1980 to 15 February 2017), and CINAHL (1982 to 15 February 2017). We also searched clinical trials registers, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. We included randomised and quasi-randomised controlled trials that compared LMA for neonatal resuscitation with either BMV or endotracheal intubation and reported on any outcomes related to neonatal resuscitation specified in this review. Two review authors independently evaluated studies for risk of bias assessments, and extracted data using Cochrane Neonatal criteria. Categorical treatment effects were described as relative risks and continuous treatment effects were described as the mean difference, with 95% confidence intervals (95% CI) of estimates. We included seven trials that involved a total of 794 infants. Five

  15. Transpleural ventilation of explanted human lungs

    PubMed Central

    Choong, Cliff K; Macklem, Peter T; Pierce, John A; Lefrak, Stephen S; Woods, Jason C; Conradi, Mark S; Yablonskiy, Dimitry A; Hogg, James C; Chino, Kimiaki; Cooper, Joel D

    2007-01-01

    Background The hypothesis that ventilation of emphysematous lungs would be enhanced by communication with the parenchyma through holes in the pleural surface was tested. Methods Fresh human lungs were obtained from patients with emphysema undergoing lung transplantation. Control human lungs were obtained from organ donors whose lungs, for technical reasons, were not considered suitable for implantation. Lungs were ventilated through the bronchial tree or transpleurally via a small hole communicating with the underlying parenchyma over which a flanged silicone tube had been cemented to the surface of the lung (spiracle). Measurements included flow‐volume‐time curves during passive deflation via each pathway; volume of trapped gas recovered from lungs via spiracles when no additional gas was obtainable passively from the airways; and magnetic resonance imaging assessment of spatial distribution of hyperpolarised helium (3He) administered through either the airways or spiracles. Results In emphysematous lungs, passively expelled volumes at 20 s were 94% greater through spiracles than via the airways. Following passive deflation from the airways, an average of 1.07 litres of trapped gas volume was recoverable via spiracles. Regions were ventilated by spiracles that were less well ventilated via bronchi. Conclusions Because of the extensive collateral ventilation present in emphysematous lungs, direct communication with the lung parenchyma through non‐anatomical pathways has the potential to improve the mechanics of breathing and hence ventilation. PMID:17412776

  16. Ventilator-associated pneumonia, like real estate: location really matters.

    PubMed

    Eckert, Matthew J; Davis, Kimberly A; Reed, R Lawrence; Esposito, Thomas J; Santaniello, John M; Poulakidas, Stathis; Gamelli, Richard L; Luchette, Fred A

    2006-01-01

    Previous work has demonstrated an increased risk of ventilator-associated pneumonia (VAP) in trauma patients after prehospital (field) intubation as compared with emergency department (ED) intubations. However, this population was not compared with patients intubated as inpatients, making data interpretation difficult. We sought to further examine predictors for the development of VAP after trauma. A 10-year retrospective review of all patients mechanically ventilated greater than 24 hours after injury was performed. In all, 1,628 patients were identified, of which 1,213 (75%) were intubated as inpatients and 415 were emergently intubated (353 ED, 62 field). Overall, those intubated emergently were younger (p = 0.03) and less injured as seen by higher Glasgow Coma Scale scores (p = 0.0002), lower Injury Severity Scores (p = 0.01) and higher Revised Trauma Scores (p < 0.0001). Despite a lower injury severity, those patients emergently intubated were more likely to develop pneumonia as 22% of ED intubations and 15% of field intubations developed pneumonia, as compared with the inpatient rate of 6.5%. Pneumonia after field intubation was more likely to be community-acquired (p < 0.0001) with a significantly lower percentage of infecting enteric gram-negative rods (p < 0.0001) as compared with the inpatient and ED groups. Forward logistic regression analysis (with VAP = 1) identified inpatient intubation as protective against VAP (odds ratio 0.28, 95% CI = 0.2-0.4). Backwards logistic regression analysis further identified both field airway (odds ratio 2.29, 95% CI = 1.1-4.9) and ED airway (odds ratio 3.61, 95% CI = 2.5-5.2) as predictive of VAP. Compared with a population of trauma patients as inpatients, and excluding those patients mechanically ventilated less than 24 hours, patients intubated in the ED or field have a higher incidence of pneumonia, despite equivalent or lower injury severity.

  17. Intraoperative mechanical ventilation: state of the art.

    PubMed

    Ball, Lorenzo; Costantino, Federico; Orefice, Giulia; Chandrapatham, Karthikka; Pelosi, Paolo

    2017-10-01

    Mechanical ventilation is a cornerstone of the intraoperative management of the surgical patient and is still mandatory in several surgical procedures. In the last decades, research focused on preventing postoperative pulmonary complications (PPCs), both improving risk stratification through the use of predictive scores and protecting the lung adopting so-called protective ventilation strategies. The aim of this review was to give an up-to-date overview of the currently suggested intraoperative ventilation strategies, along with their pathophysiologic rationale, with a focus on challenging conditions, such as obesity, one-lung ventilation and cardiopulmonary bypass. While anesthesia and mechanical ventilation are becoming increasingly safe practices, the contribution to surgical mortality attributable to postoperative lung injury is not negligible: for these reasons, the prevention of PPCs, including the use of protective mechanical ventilation is mandatory. Mechanical ventilation should be optimized providing an adequate respiratory support while minimizing unwanted negative effects. Due to the high number of surgical procedures performed daily, the impact on patients' health and healthcare costs can be relevant, even when new strategies result in an apparently small improvement of outcome. A protective intraoperative ventilation should include a low tidal volume of 6-8 mL/kg of predicted body weight, plateau pressures ideally below 16 cmH2O, the lowest possible driving pressure, moderate-low PEEP levels except in obese patients, laparoscopy and long surgical procedures that might benefit of a slightly higher PEEP. The work of the anesthesiologist should start with a careful preoperative visit to assess the risk, and a close postoperative monitoring.

  18. Perioperative lung protective ventilation in obese patients.

    PubMed

    Fernandez-Bustamante, Ana; Hashimoto, Soshi; Serpa Neto, Ary; Moine, Pierre; Vidal Melo, Marcos F; Repine, John E

    2015-05-06

    The perioperative use and relevance of protective ventilation in surgical patients is being increasingly recognized. Obesity poses particular challenges to adequate mechanical ventilation in addition to surgical constraints, primarily by restricted lung mechanics due to excessive adiposity, frequent respiratory comorbidities (i.e. sleep apnea, asthma), and concerns of postoperative respiratory depression and other pulmonary complications. The number of surgical patients with obesity is increasing, and facing these challenges is common in the operating rooms and critical care units worldwide. In this review we summarize the existing literature which supports the following recommendations for the perioperative ventilation in obese patients: (1) the use of protective ventilation with low tidal volumes (approximately 8 mL/kg, calculated based on predicted -not actual- body weight) to avoid volutrauma; (2) a focus on lung recruitment by utilizing PEEP (8-15 cmH2O) in addition to recruitment maneuvers during the intraoperative period, as well as incentivized deep breathing and noninvasive ventilation early in the postoperative period, to avoid atelectasis, hypoxemia and atelectrauma; and (3) a judicious oxygen use (ideally less than 0.8) to avoid hypoxemia but also possible reabsorption atelectasis. Obesity poses an additional challenge for achieving adequate protective ventilation during one-lung ventilation, but different lung isolation techniques have been adequately performed in obese patients by experienced providers. Postoperative efforts should be directed to avoid hypoventilation, atelectasis and hypoxemia. Further studies are needed to better define optimum protective ventilation strategies and analyze their impact on the perioperative outcomes of surgical patients with obesity.

  19. A historical perspective on ventilator management.

    PubMed

    Shapiro, B A

    1994-02-01

    Paralysis via neuromuscular blockade in ICU patients requires mechanical ventilation. This review historically addresses the technological advances and scientific information upon which ventilatory management concepts are based, with special emphasis on the influence such concepts have had on the use of neuromuscular blocking agents. Specific reference is made to the scientific information and technological advances leading to the newer concepts of ventilatory management. Information from > 100 major studies in the peer-reviewed medical literature, along with the author's 25 yrs of clinical experience and academic involvement in acute respiratory care is presented. Nomenclature related to ventilatory management is specifically defined and consistently utilized to present and interpret the data. Pre-1970 ventilatory management is traced from the clinically unacceptable pressure-limited devices to the reliable performance of volume-limited ventilators. The scientific data and rationale that led to the concept of relatively large tidal volume delivery are reviewed in the light of today's concerns regarding alveolar overdistention, control-mode dyssynchrony, and auto-positive end-expiratory pressure. Also presented are the post-1970 scientific rationales for continuous positive airway pressure/positive end-expiratory pressure therapy, avoidance of alveolar hyperxia, and partial ventilatory support techniques (intermittent mandatory ventilation/synchronized intermittent mandatory ventilation). The development of pressure-support devices is discussed and the capability of pressure-control techniques is presented. The rationale for more recent concepts of total ventilatory support to avoid ventilator-induced lung injury is presented. The traditional techniques utilizing volume-preset ventilators with relatively large tidal volumes remain valid and desirable for the vast majority of patients requiring mechanical ventilation. Neuromuscular blockade is best avoided in these

  20. Comparing on-road real-time simultaneous in-cabin and outdoor particulate and gaseous concentrations for a range of ventilation scenarios

    PubMed Central

    Leavey, Anna; Reed, Nathan; Patel, Sameer; Bradley, Kevin; Kulkarni, Pramod; Biswas, Pratim

    2017-01-01

    Advanced automobile technology, developed infrastructure, and changing economic markets have resulted in increasing commute times. Traffic is a major source of harmful pollutants and consequently daily peak exposures tend to occur near roadways or while traveling on them. The objective of this study was to measure simultaneous real-time particulate matter (particle numbers, lung-deposited surface area, PM2.5, particle number size distributions) and CO concentrations outside and in-cabin of an on-road car during regular commutes to and from work. Data was collected for different ventilation parameters (windows open or closed, fan on, AC on), whilst traveling along different road-types with varying traffic densities. Multiple predictor variables were examined using linear mixed-effects models. Ambient pollutants (NOx, PM2.5, CO) and meteorological variables (wind speed, temperature, relative humidity, dew point) explained 5–44% of outdoor pollutant variability, while the time spent travelling behind a bus was statistically significant for PM2.5, lung-deposited SA, and CO (adj-R2 values = 0.12, 0.10, 0.13). The geometric mean diameter (GMD) for outdoor aerosol was 34 nm. Larger cabin GMDs were observed when windows were closed compared to open (b = 4.3, p-value = <0.01). When windows were open, cabin total aerosol concentrations tracked those outdoors. With windows closed, the pollutants took longer to enter the vehicle cabin, but also longer to exit it. Concentrations of pollutants in cabin were influenced by outdoor concentrations, ambient temperature, and the window/ventilation parameters. As expected, particle number concentrations were impacted the most by changes to window position / ventilation, and PM2.5 the least. Car drivers can expect their highest exposures when driving with windows open or the fan on, and their lowest exposures during windows closed or the AC on. Final linear mixed-effects models could explain between 88–97% of cabin pollutant

  1. Comparing on-road real-time simultaneous in-cabin and outdoor particulate and gaseous concentrations for a range of ventilation scenarios

    NASA Astrophysics Data System (ADS)

    Leavey, Anna; Reed, Nathan; Patel, Sameer; Bradley, Kevin; Kulkarni, Pramod; Biswas, Pratim

    2017-10-01

    Advanced automobile technology, developed infrastructure, and changing economic markets have resulted in increasing commute times. Traffic is a major source of harmful pollutants and consequently daily peak exposures tend to occur near roadways or while travelling on them. The objective of this study was to measure simultaneous real-time particulate matter (particle numbers, lung-deposited surface area, PM2.5, particle number size distributions) and CO concentrations outside and in-cabin of an on-road car during regular commutes to and from work. Data was collected for different ventilation parameters (windows open or closed, fan on, AC on), whilst travelling along different road-types with varying traffic densities. Multiple predictor variables were examined using linear mixed-effects models. Ambient pollutants (NOx, PM2.5, CO) and meteorological variables (wind speed, temperature, relative humidity, dew point) explained 5-44% of outdoor pollutant variability, while the time spent travelling behind a bus was statistically significant for PM2.5, lung-deposited SA, and CO (adj-R2 values = 0.12, 0.10, 0.13). The geometric mean diameter (GMD) for outdoor aerosol was 34 nm. Larger cabin GMDs were observed when windows were closed compared to open (b = 4.3, p-value = <0.01). When windows were open, cabin total aerosol concentrations tracked those outdoors. With windows closed, the pollutants took longer to enter the vehicle cabin, but also longer to exit it. Concentrations of pollutants in cabin were influenced by outdoor concentrations, ambient temperature, and the window/ventilation parameters. As expected, particle number concentrations were impacted the most by changes to window position/ventilation, and PM2.5 the least. Car drivers can expect their highest exposures when driving with windows open or the fan on, and their lowest exposures during windows closed or the AC on. Final linear mixed-effects models could explain between 88 and 97% of cabin pollutant

  2. Comparing on-road real-time simultaneous in-cabin and outdoor particulate and gaseous concentrations for a range of ventilation scenarios.

    PubMed

    Leavey, Anna; Reed, Nathan; Patel, Sameer; Bradley, Kevin; Kulkarni, Pramod; Biswas, Pratim

    2017-10-01

    Advanced automobile technology, developed infrastructure, and changing economic markets have resulted in increasing commute times. Traffic is a major source of harmful pollutants and consequently daily peak exposures tend to occur near roadways or while traveling on them. The objective of this study was to measure simultaneous real-time particulate matter (particle numbers, lung-deposited surface area, PM 2.5 , particle number size distributions) and CO concentrations outside and in-cabin of an on-road car during regular commutes to and from work. Data was collected for different ventilation parameters (windows open or closed, fan on, AC on), whilst traveling along different road-types with varying traffic densities. Multiple predictor variables were examined using linear mixed-effects models. Ambient pollutants (NO x , PM 2.5 , CO) and meteorological variables (wind speed, temperature, relative humidity, dew point) explained 5-44% of outdoor pollutant variability, while the time spent travelling behind a bus was statistically significant for PM 2.5, lung-deposited SA, and CO (adj-R 2 values = 0.12, 0.10, 0.13). The geometric mean diameter (GMD) for outdoor aerosol was 34 nm. Larger cabin GMDs were observed when windows were closed compared to open (b = 4.3, p-value = <0.01). When windows were open, cabin total aerosol concentrations tracked those outdoors. With windows closed, the pollutants took longer to enter the vehicle cabin, but also longer to exit it. Concentrations of pollutants in cabin were influenced by outdoor concentrations, ambient temperature, and the window/ventilation parameters. As expected, particle number concentrations were impacted the most by changes to window position / ventilation, and PM 2.5 the least. Car drivers can expect their highest exposures when driving with windows open or the fan on, and their lowest exposures during windows closed or the AC on. Final linear mixed-effects models could explain between 88-97% of cabin pollutant

  3. Cost of ventilation and effect of digestive state on the ventilatory response of the tegu lizard.

    PubMed

    Skovgaard, Nini; Wang, Tobias

    2004-07-12

    We performed simultaneous measurements of ventilation, oxygen uptake and carbon dioxide production in the South American lizard, Tupinambis merianae, equipped with a mask and maintained at 25 degrees C. Ventilation of resting animals was stimulated by progressive exposure to hypercapnia (2, 4 and 6%) or hypoxia (15, 10, 8 and 6%) in inspired gas mixture. This was carried out in both fasting and digesting animals. The ventilatory response to hypercapnia and hypoxia were affected by digestive state, with a more vigorous ventilatory response in digesting animals compared to fasting animals. Hypoxia doubled total ventilation while hypercapnia led to a four-fold increase in total ventilation both accomplished through an increase in tidal volume. Oxygen uptake remained constant during all hypercapnic exposures while there was an increase during hypoxia. Cost of ventilation was estimated to be 17% during hypoxia but less than 1% during hypercapnia. Our data indicate that ventilation can be greatly elevated at a small energetic cost.

  4. Four-dimensional optical coherence tomography imaging of total liquid ventilated rats

    NASA Astrophysics Data System (ADS)

    Kirsten, Lars; Schnabel, Christian; Gaertner, Maria; Koch, Edmund

    2013-06-01

    Optical coherence tomography (OCT) can be utilized for the spatially and temporally resolved visualization of alveolar tissue and its dynamics in rodent models, which allows the investigation of lung dynamics on the microscopic scale of single alveoli. The findings could provide experimental input data for numerical simulations of lung tissue mechanics and could support the development of protective ventilation strategies. Real four-dimensional OCT imaging permits the acquisition of several OCT stacks within one single ventilation cycle. Thus, the entire four-dimensional information is directly obtained. Compared to conventional virtual four-dimensional OCT imaging, where the image acquisition is extended over many ventilation cycles and is triggered on pressure levels, real four-dimensional OCT is less vulnerable against motion artifacts and non-reproducible movement of the lung tissue over subsequent ventilation cycles, which widely reduces image artifacts. However, OCT imaging of alveolar tissue is affected by refraction and total internal reflection at air-tissue interfaces. Thus, only the first alveolar layer beneath the pleura is visible. To circumvent this effect, total liquid ventilation can be carried out to match the refractive indices of lung tissue and the breathing medium, which improves the visibility of the alveolar structure, the image quality and the penetration depth and provides the real structure of the alveolar tissue. In this study, a combination of four-dimensional OCT imaging with total liquid ventilation allowed the visualization of the alveolar structure in rat lung tissue benefiting from the improved depth range beneath the pleura and from the high spatial and temporal resolution.

  5. High-Frequency Percussive Ventilation and Low Tidal Volume Ventilation in Burns: A Randomized Controlled Trial

    DTIC Science & Technology

    2010-01-01

    incidence of ventilator-associated pneumonia ( VAP ) in patients with inha- lation injury when supported with HFPV compared with conventional modes of...mean ratio of PaO2 to FIO2 was 58 6 with a mean positive end- expiratory pressure of 22 2 cm H2O before rescue. Two of these patients were...a sample size of 110 patients in each arm would have been required to detect a difference in VAP with 80% power. A multicentered study would be

  6. Ventilation during cardiopulmonary bypass: impact on heat shock protein release.

    PubMed

    Beer, L; Szerafin, T; Mitterbauer, A; Kasiri, M M; Debreceni T Palotás, L; Dworschak, M; Roth, G A; Ankersmit, H J

    2014-12-01

    Cardiopulmonary bypass (CPB), utilized in on-pump coronary artery bypass graft procedures (CABG) induces generalized immune suppression, release of heat shock proteins (HSP), inflammatory markers and apoptosis-specific proteins. We hypothesized that continued mechanical ventilation during cardiopulmonary bypass attenuates immune response and HSP liberation. Thirty patients undergoing conventional coronary artery bypass graft (CABG) operation were randomized into a ventilated on CPB (VG; N.=15) and a non-ventilated CPB group (NVG; N.=15). Blood samples were drawn at the beginning and end of surgery, as well as on the five consecutive postoperative days (POD). Molecular markers were measured by ELISA. Data are given as mean ± (SD). Mann-Whitney-U-test was used for statistical analysis. Serum concentrations of HSP70 were significantly lower in VG compared to NVG on POD-1 (VG: 1629±608 vs. NVG: 5203±2128.6 pg/mL, P<0.001). HSP27 and HSP60 depicted a minor increase in both study groups at the end of surgery without any intergroup differences (HSP27: VG 6207.9±1252.5 vs. NVG 7424.1±2632.5; HSP60: VG 1046.2±478.8 vs. NVG 1223.5±510.1). IL-8 and CK-18 M30 evidenced the highest serum concentrations at the end of surgery (IL-8: VG 119.5±77.9 vs. NVG 148.0±184.55; CK-18 M30: VG 62.1±39.2 vs. NVG 67.5±33.9) with no differences between groups. Decreased ICAM-1 serum concentrations were detected postoperatively, however ICAM-1 concentrations on POD-1 to POD-5 showed slightly elevated concentrations in both study groups with no intergroup differences. Significantly less HSP70 was detectable in patients receiving uninterrupted mechanical lung ventilation on CPB, indicating either different inflammatory response, cellular stress or cell damage between the ventilated and non-ventilated group. These data suggest that continued mechanical ventilation has a modulatory effect on the immune response in patients after CABG surgery.

  7. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.« less

  8. WE-AB-202-03: Quantifying Ventilation Change Due to Radiation Therapy Using 4DCT Jacobian Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, T; Du, K; Bayouth, J

    Purpose: Four-dimensional computed tomography (4DCT) and image registration can be used to determine regional lung ventilation changes after radiation therapy (RT). This study aimed to determine if lung ventilation change following radiation therapy was affected by the pre-RT ventilation of the lung. Methods: 13 subjects had three 4DCT scans: two repeat scans acquired before RT and one three months after RT. Regional ventilation was computed using Jacobian determinant calculations on the registered 4DCT images. The post-RT ventilation map was divided by the pre-RT ventilation map to get a voxel-by-voxel Jacobian ratio map depicting ventilation change over the course of RT.more » Jacobian ratio change was compared over the range of delivered doses. The first pre-RT ventilation image was divided by the second to establish a control for Jacobian ratio change without radiation delivered. The functional change between scans was assessed using histograms of the Jacobian ratios. Results: There were significantly (p < 0.05) more voxels that had a large decrease in Jacobian ratio in the post-RT divided by pre-RT map (15.6%) than the control (13.2%). There were also significantly (p < .01) more voxels that had a large increase in Jacobian ratio (16.2%) when compared to control (13.3%). Lung regions with low function (<10% expansion by Jacobian) showed a slight linear reduction in expansion (0.2%/10 Gy delivered), while high function regions (>10% expansion) showed a greater response (1.2% reduction/10 Gy). Contiguous high function regions > 1 liter occurred in 11 of 13 subjects. Conclusion: There is a significant change in regional ventilation following a course of radiation therapy. The change in Jacobian following RT is dependent both on the delivered dose and the initial ventilation of the lung tissue: high functioning lung has greater ventilation loss for equivalent radiation doses. Substantial regions of high function lung tissue are prevalent. Research support from

  9. Humidification during invasive and noninvasive mechanical ventilation: 2012.

    PubMed

    Restrepo, Ruben D; Walsh, Brian K

    2012-05-01

    We searched the MEDLINE, CINAHL, and Cochrane Library databases for articles published between January 1990 and December 2011. The update of this clinical practice guideline is based on 184 clinical trials and systematic reviews, and 10 articles investigating humidification during invasive and noninvasive mechanical ventilation. The following recommendations are made following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) scoring system: 1. Humidification is recommended on every patient receiving invasive mechanical ventilation. 2. Active humidification is suggested for noninvasive mechanical ventilation, as it may improve adherence and comfort. 3. When providing active humidification to patients who are invasively ventilated, it is suggested that the device provide a humidity level between 33 mg H(2)O/L and 44 mg H(2)O/L and gas temperature between 34°C and 41°C at the circuit Y-piece, with a relative humidity of 100%. 4. When providing passive humidification to patients undergoing invasive mechanical ventilation, it is suggested that the HME provide a minimum of 30 mg H(2)O/L. 5. Passive humidification is not recommended for noninvasive mechanical ventilation. 6. When providing humidification to patients with low tidal volumes, such as when lung-protective ventilation strategies are used, HMEs are not recommended because they contribute additional dead space, which can increase the ventilation requirement and P(aCO(2)). 7. It is suggested that HMEs are not used as a prevention strategy for ventilator-associated pneumonia.

  10. Effectiveness of a personalized ventilation system in reducing personal exposure against directly released simulated cough droplets.

    PubMed

    Pantelic, J; Tham, K W; Licina, D

    2015-12-01

    The inhalation intake fraction was used as an indicator to compare effects of desktop personalized ventilation and mixing ventilation on personal exposure to directly released simulated cough droplets. A cough machine was used to simulate cough release from the front, back, and side of a thermal manikin at distances between 1 and 4 m. Cough droplet concentration was measured with an aerosol spectrometer in the breathing zone of a thermal manikin. Particle image velocimetry was used to characterize the velocity field in the breathing zone. Desktop personalized ventilation substantially reduced the inhalation intake fraction compared to mixing ventilation for all investigated distances and orientations of the cough release. The results point out that the orientation between the cough source and the breathing zone of the exposed occupant is an important factor that substantially influences exposure. Exposure to cough droplets was reduced with increasing distance between cough source and exposed occupant. The results from this study show that an advanced air distribution system such as personalized ventilation reduces exposure to cough-released droplets better than commonly applied overhead mixing ventilation. This work can inform HVAC engineers about different aspects of air distribution systems’ performance and can serve as an aid in making critical design decisions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Respiratory muscle activity and patient-ventilator asynchrony during different settings of noninvasive ventilation in stable hypercapnic COPD: does high inspiratory pressure lead to respiratory muscle unloading?

    PubMed

    Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J

    2017-01-01

    High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient-ventilator asynchrony (PVA). Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings ( P =0.017). High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA.

  12. Mechanical ventilation during extracorporeal membrane oxygenation. An international survey.

    PubMed

    Marhong, Jonathan D; Telesnicki, Teagan; Munshi, Laveena; Del Sorbo, Lorenzo; Detsky, Michael; Fan, Eddy

    2014-07-01

    In patients with severe, acute respiratory failure undergoing venovenous extracorporeal membrane oxygenation (VV-ECMO), the optimal strategy for mechanical ventilation is unclear. Our objective was to describe ventilation practices used in centers registered with the Extracorporeal Life Support Organization (ELSO). We conducted an international cross-sectional survey of medical directors and ECMO program coordinators from all ELSO-registered centers. The survey was distributed using a commercial website that collected information on center characteristics, the presence of a mechanical ventilator protocol, ventilator settings, and weaning practices. E-mails were sent out to medical directors or coordinators at each ELSO center and their responses were pooled for analysis. We analyzed 141 (50%) individual responses from the 283 centers contacted across 28 countries. Only 27% of centers reported having an explicit mechanical ventilation protocol for ECMO patients. The majority of these centers (77%) reported "lung rest" to be the primary goal of mechanical ventilation, whereas 9% reported "lung recruitment" to be their ventilation strategy. A tidal volume of 6 ml/kg or less was targeted by 76% of respondents, and 58% targeted a positive end-expiratory pressure of 6-10 cm H2O while ventilating patients on VV-ECMO. Centers prioritized weaning VV-ECMO before mechanical ventilation. Although ventilation practices in patients supported by VV-ECMO vary across ELSO centers internationally, the majority of centers used a strategy that targeted lung-protective thresholds and prioritized weaning VV-ECMO over mechanical ventilation.

  13. Conservative fluid management prevents age-associated ventilator induced mortality.

    PubMed

    Herbert, Joseph A; Valentine, Michael S; Saravanan, Nivi; Schneck, Matthew B; Pidaparti, Ramana; Fowler, Alpha A; Reynolds, Angela M; Heise, Rebecca L

    2016-08-01

    Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in

  14. Conservative Fluid Management Prevents Age-Associated Ventilator Induced Mortality

    PubMed Central

    Herbert, Joseph A.; Valentine, Michael S.; Saravanan, Nivi; Schneck, Matthew B.; Pidaparti, Ramana; Fowler, Alpha A.; Reynolds, Angela M.; Heise, Rebecca L.

    2017-01-01

    Background Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hosptial mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. Methods 2 month old and 20 month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4 hours with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. Results At 4hrs, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1hr in advanced age HVT subjects. In 4hr ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in

  15. Patient positioning and ventilator-associated pneumonia.

    PubMed

    Hess, Dean R

    2005-07-01

    Rotational beds, prone position, and semi-recumbent position have been proposed as procedures to prevent ventilator-associated pneumonia (VAP). Rotational therapy uses a special bed designed to turn continuously, or nearly continuously, the patient from side to side; specific designs include kinetic therapy and continuous lateral rotation therapy. A meta-analysis of studies evaluating the effect of rotational bed therapy shows a decrease in the risk of pneumonia but no effect on mortality. Two studies reported a lower risk of VAP in patients placed in a prone position, with no effect on mortality. Studies using radiolabeled enteral feeding solutions in mechanically ventilated patients have reported that aspiration of gastric contents occurs to a greater degree when patients are in the supine position, compared with the semirecumbent position. One study reported a lower rate of VAP in patients randomized to semi-recumbent compared to supine position. Although each of the techniques discussed in this paper has been shown to reduce the risk of VAP, none has been shown to affect mortality. The available evidence suggests that semi-recumbent position should be used routinely, rotational therapy should be considered in selected patients, and prone position should not be used as a technique to reduce the risk of VAP.

  16. Optimizing care of ventilated infants by improving weighing accuracy on incubator scales.

    PubMed

    El-Kafrawy, Ula; Taylor, R J

    2016-01-01

    To determine the accuracy of weighing ventilated infants on incubator scales and whether the accuracy can be improved by the addition of a ventilator tube compensator (VTC) device to counterbalance the force exerted by the ventilator tubing. Body weights on integral incubator scales were compared in ventilated infants (with and without a VTC), with body weights on standalone electronic scales (true weight). Individual and series of trend weights were obtained on the infants. The method of Bland and Altman was used to assess the introduced bias. The study included 60 ventilated infants; 66% of them weighed <1000 g. A total of 102 paired-weight datasets for 30 infants undergoing conventional ventilation and 30 undergoing high frequency oscillator ventilation (HFOV) supported by a SensorMedics oscillator, (with and without a VTC) were obtained. The mean differences and (95% CI for the bias) between the integral and true scale weighing methods was 60.8 g (49.1 g to 72.5 g) without and -2.8 g (-8.9 g to 3.3 g) with a VTC in HFOV infants; 41.0 g (32.1 g to 50.0 g) without and -5.1 g (-9.3 g to -0.8 g) with a VTC for conventionally ventilated infants. Differences of greater than 2% were considered clinically relevant and occurred in 93.8% without and 20.8% with a VTC in HFOV infants and 81.5% without and 27.8% with VTC in conventionally ventilated infants. The use of the VTC device represents a substantial improvement on the current practice for weighing ventilated infants, particularly in the extreme preterm infants where an over- or underestimated weight can have important clinical implications for treatment. A large-scale clinical trial to validate these findings is needed.

  17. Intra-operative protective mechanical ventilation in lung transplantation: a randomised, controlled trial.

    PubMed

    Verbeek, G L; Myles, P S; Westall, G P; Lin, E; Hastings, S L; Marasco, S F; Jaffar, J; Meehan, A C

    2017-08-01

    Primary graft dysfunction occurs in up to 25% of patients after lung transplantation. Contributing factors include ventilator-induced lung injury, cardiopulmonary bypass, ischaemia-reperfusion injury and excessive fluid administration. We evaluated the feasibility, safety and efficacy of an open-lung protective ventilation strategy aimed at reducing ventilator-induced lung injury. We enrolled adult patients scheduled to undergo bilateral sequential lung transplantation, and randomly assigned them to either a control group (volume-controlled ventilation with 5 cmH 2 O, positive end-expiratory pressure, low tidal volumes (two-lung ventilation 6 ml.kg -1 , one-lung ventilation 4 ml.kg -1 )) or an alveolar recruitment group (regular step-wise positive end-expiratory pressure-based alveolar recruitment manoeuvres, pressure-controlled ventilation set at 16 cmH 2 O with 10 cmH 2 O positive end-expiratory pressure). Ventilation strategies were commenced from reperfusion of the first lung allograft and continued for the duration of surgery. Regular PaO 2 /F I O 2 ratios were calculated and venous blood samples collected for inflammatory marker evaluation during the procedure and for the first 24 h of intensive care stay. The primary end-point was the PaO 2 /F I O 2 ratio at 24 h after first lung reperfusion. Thirty adult patients were studied. The primary outcome was not different between groups (mean (SD) PaO 2 /F I O 2 ratio control group 340 (111) vs. alveolar recruitment group 404 (153); adjusted p = 0.26). Patients in the control group had poorer mean (SD) PaO 2 /F I O 2 ratios at the end of the surgical procedure and a longer median (IQR [range]) time to tracheal extubation compared with the alveolar recruitment group (308 (144) vs. 402 (154) (p = 0.03) and 18 (10-27 [5-468]) h vs. 15 (11-36 [5-115]) h (p = 0.01), respectively). An open-lung protective ventilation strategy during surgery for lung transplantation is feasible, safe and achieves favourable

  18. Is competition needed for ecological character displacement? Does displacement decrease competition?

    PubMed Central

    Abrams, Peter A.; Cortez, Michael H.

    2015-01-01

    Interspecific competition for resources is generally considered to be the selective force driving ecological character displacement, and displacement is assumed to reduce competition. Skeptics of the prevalence of character displacement often cite lack of evidence of competition. The present article uses a simple model to examine whether competition is needed for character displacement and whether displacement reduces competition. It treats systems with competing resources, and considers cases when only one consumer evolves. It quantifies competition using several different measures. The analysis shows that selection for divergence of consumers occurs regardless of the level of between‐resource competition or whether the indirect interaction between the consumers is competition (−,−), mutualism (+,+), or contramensalism (+,−). Also, divergent evolution always decreases the equilibrium population size of the evolving consumer. Whether divergence of one consumer reduces or increases the impact of a subsequent perturbation of the other consumer depends on the parameters and the method chosen for measuring competition. Divergence in mutualistic interactions may reduce beneficial effects of subsequent increases in the other consumer's population. The evolutionary response is driven by an increase in the relative abundance of the resource the consumer catches more rapidly. Such an increase can occur under several types of interaction. PMID:26548922

  19. Noninvasive ventilation for acute exacerbations of asthma: A systematic review of the literature.

    PubMed

    Green, Elyce; Jain, Paras; Bernoth, Maree

    2017-11-01

    Asthma is a chronic disease characterised by reversible airway obstruction caused by bronchospasm, mucous and oedema. People with asthma commonly experience acute exacerbations of their disease requiring hospitalisation and subsequent utilisation of economic and healthcare resources. Noninvasive ventilation has been suggested as a treatment for acute exacerbations of asthma due to its ability to provide airway stenting, optimal oxygen delivery and decreased work of breathing. This paper is a systematic review of the available published research focused on the use of noninvasive ventilation for the treatment of acute exacerbations of asthma to determine if this treatment provides better outcomes for patients compared to standard medical therapy. Database searches were conducted using EBSCOhost, MEDLINE and PubMed. Search terms used were combinations of 'noninvasive ventilation', 'BiPAP', 'CPAP', 'wheez*' and 'asthma'. Articles were included if they were research papers focused on adult patients with asthma and a treatment of noninvasive ventilation, and were published in full text in English. Included articles were reviewed using the National Health and Medical Research Council (Australia) evidence hierarchy and quality appraisal tools. There were 492 articles identified from the database searches. After application of inclusion/exclusion criteria 13 articles were included in the systematic review. Studies varied significantly in design, endpoints and outcomes. There was a trend in better outcomes for patients with acute asthma who were treated with noninvasive ventilation compared to standard medical therapy, however, the variability of the studies meant that no conclusive recommendations could be made. More research is required before noninvasive ventilation can be conclusively recommended for the treatment of acute exacerbations of asthma. Copyright © 2017 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.

  20. An intelligent FFR with a self-adjustable ventilation fan.

    PubMed

    Zhou, Song; Li, Hui; Shen, Shengnan; Li, Siyu; Wang, Wei; Zhang, Xiaotie; Yang, James

    2017-11-01

    This article presents an intelligent Filtering Facepiece Respirator (FFR) with a self-adjustable ventilation fan for improved comfort. The ventilation fan with an intelligent control aims to reduce temperature, relative humidity, and CO 2 concentrations inside the facepiece. Compared with a previous version of the FFR, the advantage of this new FFR is the intelligent control of the fan's rotation speed based on the change in temperature and relative humidity in the FFR dead space. The design of the control system utilizes an 8-bit, ultra-low power STC15W404AS microcontroller (HongJin technology, Shenzhen, China), and adopts a high-precision AM2320 device (AoSong electronic, Guangzhou, China) as temperature and relative humidity sensor so that control of temperature and relative humidity is realized in real time within the FFR dead space. The ventilation fan is intelligently driven and runs on a rechargeable lithium battery with a power-save mode that provides a correspondingly longer operational time. Meanwhile, the design is simplistic. Two experiments were performed to determine the best location to place the fan.

  1. Parametric instabilities of rotor-support systems with application to industrial ventilators

    NASA Technical Reports Server (NTRS)

    Parszewski, Z.; Krodkiemski, T.; Marynowski, K.

    1980-01-01

    Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.

  2. Electron-Induced Displacement Damage Effects in CCDs

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Elliott, Tom; Alexander, James W.

    2006-01-01

    We compare differences in parametric degradation for CCDs irradiated to the same displacement damage dose with 10-MeV and 50-MeV electrons. Charge transfer efficiency degradation was observed to not scale with NIEL for small signals.

  3. Displacement and deformation measurement for large structures by camera network

    NASA Astrophysics Data System (ADS)

    Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu

    2014-03-01

    A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.

  4. Ventilator-associated pneumonia management in critical illness.

    PubMed

    Albertos, Raquel; Caralt, Berta; Rello, Jordi

    2011-03-01

    Ventilator-associated pneumonia (VAP) is a frequent adverse event in the intensive care unit.We review recent publications about the management and prevention of VAP. The latest care bundles introduced standard interventions to facilitate implementation of evidence-based clinical guidelines and to improve the outcome of patients. Recent studies find that prevention management of ventilated patients decreases the risk of VAP. Enteral feeding, considered a risk factor for VAP, currently has been recommended, with appropriate administration, for all critical ill patients if no contraindications exist. In view of the recently available data, it can be concluded that the implementation of care bundles on the general management of ventilated patients in daily practice has reduced the VAP rates. The main pharmacological measures to prevent VAP are proper hands hygiene, high nurse-to-patient ratio, avoid unnecessary transfer of ventilated patients, use of noninvasive mechanical ventilation, shortening weaning period, avoid the use of nasal intubation, prevent bio-film deposition in endotracheal tube, aspiration of subglottic secretions, maintenance of adequate pressure of endotracheal cuffs, avoid manipulation of ventilator circuits, semi-recumbent position and adequate enteral feeding.In addition, updated guidelines incorporate more comprehensive diagnostic protocols to the evidence-based management of VAP.

  5. Protective mechanical ventilation, why use it?

    PubMed

    Seiberlich, Emerson; Santana, Jonas Alves; Chaves, Renata de Andrade; Seiberlich, Raquel Carvalho

    2011-01-01

    Mechanical ventilation (MV) strategies have been modified over the last decades with a tendency for increasingly lower tidal volumes (VT). However, in patients without acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) the use of high VTs is still very common. Retrospective studies suggest that this practice can be related to mechanical ventilation-associated ALI. The objective of this review is to search for evidence to guide protective MV in patients with healthy lungs and to suggest strategies to properly ventilate lungs with ALI/ARDS. A review based on the main articles that focus on the use of strategies of mechanical ventilation was performed. Consistent studies to determine which would be the best way to ventilate a patient with healthy lungs are lacking. Expert recommendations and current evidence presented in this article indicate that the use of a VT lower than 10 mL.kg(-1), associated with positive end-expiratory pressure (PEEP) ≥ 5 cmH(2)O without exceeding a pressure plateau of 15 to 20 cmH(2)O could minimize alveolar stretching at the end of inspiration and avoid possible inflammation or alveolar collapse. Copyright © 2011 Elsevier Editora Ltda. All rights reserved.

  6. A study of the displacement of a Wankel rotary engine

    NASA Astrophysics Data System (ADS)

    Beard, J. E.; Pennock, G. R.

    1993-03-01

    The volumetric displacement of a Wankel rotary engine is a function of the trochoid ratio and the pin size ratio, assuming the engine has a unit depth and the number of lobes is specified. The mathematical expression which defines the displacement contains a function which can be evaluated directly and a normal elliptic integral of the second type which does not have an explicit solution. This paper focuses on the contribution of the elliptic integral to the total displacement of the engine. The influence of the elliptic integral is shown to account for as much as 20 percent of the total displacement, depending on the trochoid ratio and the pin size ratio. Two numerical integration techniques are compared in the paper, namely, the trapezoidal rule and Simpson's 1/3 rule. The bounds on the error, associated with each numerical method, are analyzed. The results indicate that the numerical method has a minimal effect on the accuracy of the calculated displacement for a practical number of integration steps. The paper also evaluates the influence of manufacturing tolerances on the calculated displacement and the actual displacement. Finally. a numerical example of the common three-lobed Wankel rotary engine is included for illustrative purposes.

  7. Internal displacement in Colombia

    PubMed Central

    Shultz, James M; Ceballos, Ángela Milena Gómez; Espinel, Zelde; Oliveros, Sofia Rios; Fonseca, Maria Fernanda; Florez, Luis Jorge Hernandez

    2014-01-01

    This commentary aims to delineate the distinguishing features of conflict-induced internal displacement in the nation of Colombia, South America. Even as Colombia is currently implementing a spectrum of legal, social, economic, and health programs for “victims of armed conflict,” with particular focus on internally displaced persons (IDPs), the dynamics of forced migration on a mass scale within this country are little known beyond national borders.   The authors of this commentary are embarking on a global mental health research program in Bogota, Colombia to define best practices for reaching the displaced population and implementing sustainable, evidence-based screening and intervention for common mental disorders. Presenting the defining characteristics of internal displacement in Colombia provides the context for our work and, more importantly, conveys the compelling and complex nature of this humanitarian crisis. We attempt to demonstrate Colombia’s unique position within the global patterning of internal displacement. PMID:28228997

  8. [Nasal CPAP versus mechanical ventilation in 28 to 32-week preterm infants with early surfactant administration].

    PubMed

    Pérez, Luis Alfonso; González, Diana Marcela; Álvarez, Karen Margarita de Jesús; Díaz-Martínez, Luis Alfonso

    2014-01-01

    Continuous positive airway pressure (CPAP) is useful in low birth weight infants with respiratory distress, but it is not known if it is a better alternative to mechanical ventilation after early pulmonary surfactant administration. To compare the incidence of adverse events in 28 to 32-week newborns with respiratory distress managed with mechanical ventilation or CPAP after early surfactant administration. In total, 176 newborns were treated with CPAP and 147 with mechanical ventilation, all with Apgar scores >3 at five minutes and without apnea. The incidence of CPAP failure was 6.5% (95% CI: 11.3-22.8%); 29 patients died: 7 with CPAP (4.0%) and 22 with mechanical ventilation (15.0%, p<0.001). The relative risk of dying with CPAP versus mechanical ventilation was 0.27 (95% CI: 0.12-0.61), but after adjusting for confounding factors, CPAP use did not imply a higher risk of dying (RR=0.60; 95% CI: 0.29-1.24). Mechanical ventilation fatality rate was 5.70 (95% CI: 3.75-8.66) deaths/1,000 days-patient, while with CPAP it was 1.37 (95% CI: 0.65-2.88, p<0.001). Chronic lung disease incidence was lower with CPAP than with mechanical ventilation (RR=0.71; 95% CI: 0.54-0.96), as were intracranial hemorrhage (RR=0.28, 95% CI: 0.09-0.84) and sepsis (RR=0.67; 95%CI: 0.52-0.86), and it was similar for air leaks (RR=2.51; 95% CI: 0.83-7.61) and necrotizing enterocolitis (RR=1.68, 95% CI: 0.59-4.81). CPAP exposure of premature infants with respiratory distress syndrome is protective against chronic lung disease, intraventricular hemorrhage and sepsis compared to mechanical ventilation. No differences were observed regarding air leak syndrome or death.

  9. Comparative study of displacement cascades simulated with 'magnetic' potentials and Mendelev-type potential in α-Fe

    NASA Astrophysics Data System (ADS)

    Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi

    2017-04-01

    Different interatomic potentials produce displacement cascades with different features, and hence they significantly influence the results obtained from the displacement cascade simulations. The displacement cascade simulations in α-Fe have been carried out by molecular dynamics with three 'magnetic' potentials (MP) and Mendelev-type potential in this paper. Prior to the cascade simulations, the 'magnetic' potentials are hardened to suit for cascade simulations. We find that the peak time, maximum of defects, cascade volume and cascade density with 'magnetic' potentials are smaller than those with Mendelev-type potential. There is no significant difference within statistical uncertainty in the defect production efficiency with Mendelev-type potential and the second 'magnetic' potential at the same cascade energy, but remarkably smaller than those with the first and third 'magnetic' potential. Self interstitial atom (SIA) clustered fractions with 'magnetic' potentials are smaller than that with Mendelev-type potential, especially at the higher energy, due to the larger interstitial formation energies which result from the 'magnetic' potentials. The defect clustered fractions, which are input data for radiation damage accumulation models, may influence the prediction of microstructural evolution under radiation.

  10. Iraqi Population Displacement Analysis

    DTIC Science & Technology

    2016-11-01

    CENTER FOR ARMY ANALYSIS 6001 GOETHALS ROAD FORT BELVOIR, VA 22060-5230 CAA-2015098 IRAQI POPULATION DISPLACEMENT ANALYSIS NOVEMBER 2016...CONTRACT NUMBER Iraqi Population Displacement Analysis PDMC 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Ms...NOTES 14. ABSTRACT The purpose of this study was to inform CJ34 Civil Military Operations decisions on placement of internally displaced person (IDP

  11. Interplay between interstitial displacement and displacive lattice transformations

    NASA Astrophysics Data System (ADS)

    Zhang, Xie; Hickel, Tilmann; Rogal, Jutta; Neugebauer, Jörg

    2016-09-01

    Diffusionless displacive lattice rearrangements, which include martensitic transformations, are in real materials often accompanied by a displacive drag of interstitials. The interplay of both processes leads to a particular atomistic arrangement of the interstitials in the product phase, which is decisive for its performance. An archetype example is the martensitic transformation in Fe-C alloys. One of the puzzles for this system is that the deviation from the cubic symmetry (i.e., the tetragonality) in the martensite resulting from this interplay is lower than what thermodynamics dictates. In our ab initio approach, the relative motion of C in the transforming lattice is studied with the nudged elastic band method. We prove that an atomic shearlike shuffle mechanism of adjacent (11 2 ¯) Fe layers along the ±[111] bcc directions is essential to achieve a redistribution of C atoms during the fcc → bcc transition, which fully explains the abnormal behavior. Furthermore, the good agreement with experiment validates our method to treat a diffusionless redistribution of interstitials and a displacive rearrangement of the host lattice simultaneously.

  12. Ventilation rate in adults with a tracheal tube during cardiopulmonary resuscitation: A systematic review.

    PubMed

    Vissers, Gino; Soar, Jasmeet; Monsieurs, Koenraad G

    2017-10-01

    The optimal ventilation rate during cardiopulmonary resuscitation (CPR) with a tracheal tube is unknown. We evaluated whether in adults with cardiac arrest and a secure airway (tracheal tube), a ventilation rate of 10min -1 , compared to any other rate during CPR, improves outcomes. A systematic review up to 14 July 2016. We included both adult human and animal studies. A GRADE (Grades of Recommendation, Assessment, Development and Evaluation) approach was used to evaluate the quality of evidence for each outcome. We identified one human observational study with 67 patients and ten animal studies (234 pigs and 30 dogs). All studies carried a high risk of bias. All studies evaluated for return of spontaneous circulation (ROSC). Studies showed no improvement in ROSC with a ventilation rate of 10 min-1 compared to any other rate. The evidence for longer-term outcomes such as survival to discharge and survival with favourable neurological outcome was very limited. A ventilation rate recommendation of 10 min-1 during adult CPR with a tracheal tube and no pauses for chest compression is a very weak recommendation based on very low quality evidence. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A case-control study on the clinical impact of ventilator associated tracheobronchitis in adult patients who did not develop ventilator associated pneumonia.

    PubMed

    Cantón-Bulnes, María Luisa; González-García, María Ascensión; García-Sánchez, Manuela; Arenzana-Seisdedos, Ángel; Garnacho-Montero, José

    2018-02-05

    The main objective was to determine whether ventilator-associated tracheobronchitis (VAT) is related to increased length of ICU stay. Secondary endpoints included prolongation of hospital stay, as well as, ICU and hospital mortality. A retrospective matched case-control study. Each case was matched with a control for duration of ventilation (± 2 days until development of ventilator-associated tracheobronchitis), disease severity (Acute Physiology and Chronic Health Evaluation II) at admission ± 3, diagnostic category and age ±10 years. Critically ill adults admitted to a polyvalent 30-beds ICU with the diagnosis of VAT in the period 2013-2016. We identified 76 cases of VAT admitted to our ICU during the study period. No adequate controls were found for 3 patients with VAT. There were no significant differences in demographic characteristics, reasons for admission and comorbidities. Patients with VAT had a longer ICU length of stay, median 22 days (14-35), compared to controls, median 15 days (8-27), p=.02. Ventilator days were also significantly increased in VAT patients, median 18 (9-28) versus 9 days (5-16), p=.03. There was no significant difference in total hospital length of stay 40 (28-61) vs. 35days (23-54), p=.32; ICU mortality (20.5 vs. 31.5% p=.13) and hospital mortality (30.1 vs. 43.8% p=.09). We performed a subanalysis of patients with microbiologically proven VAT receiving adequate antimicrobial treatment and did not observe significant differences between cases and the corresponding controls. VAT is associated with increased length of intensive care unit stay and longer duration of mechanical ventilation. This effect disappears when patients receive appropriate empirical treatment. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  14. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study.

    PubMed

    Needham, Dale M; Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Dinglas, Victor D; Sevransky, Jonathan E; Dennison Himmelfarb, Cheryl R; Desai, Sanjay V; Shanholtz, Carl; Brower, Roy G; Pronovost, Peter J

    2012-04-05

    To evaluate the association of volume limited and pressure limited (lung protective) mechanical ventilation with two year survival in patients with acute lung injury. Prospective cohort study. 13 intensive care units at four hospitals in Baltimore, Maryland, USA. 485 consecutive mechanically ventilated patients with acute lung injury. Two year survival after onset of acute lung injury. 485 patients contributed data for 6240 eligible ventilator settings, as measured twice daily (median of eight eligible ventilator settings per patient; 41% of which adhered to lung protective ventilation). Of these patients, 311 (64%) died within two years. After adjusting for the total duration of ventilation and other relevant covariates, each additional ventilator setting adherent to lung protective ventilation was associated with a 3% decrease in the risk of mortality over two years (hazard ratio 0.97, 95% confidence interval 0.95 to 0.99, P=0.002). Compared with no adherence, the estimated absolute risk reduction in two year mortality for a prototypical patient with 50% adherence to lung protective ventilation was 4.0% (0.8% to 7.2%, P=0.012) and with 100% adherence was 7.8% (1.6% to 14.0%, P=0.011). Lung protective mechanical ventilation was associated with a substantial long term survival benefit for patients with acute lung injury. Greater use of lung protective ventilation in routine clinical practice could reduce long term mortality in patients with acute lung injury. Clinicaltrials.gov NCT00300248.

  15. Effects of heat and moisture exchangers on minute ventilation, ventilatory drive, and work of breathing during pressure-support ventilation in acute respiratory failure.

    PubMed

    Pelosi, P; Solca, M; Ravagnan, I; Tubiolo, D; Ferrario, L; Gattinoni, L

    1996-07-01

    To evaluate the effect of two commonly used heat and moisture exchangers on respiratory function and gas exchange in patients with acute respiratory failure during pressure-support ventilation. Prospective, randomized trial. Intensive care unit of a university hospital. Fourteen patients with moderate acute respiratory failure, receiving pressure-support ventilation. Patients were assigned randomly to two treatment groups, in which two different heat and moisture exchangers were used: Hygroster (DAR S.p.A., Mirandola, Italy) with higher deadspace and lower resistance (group 1, n = 7), and Hygrobac-S (DAR S.p.A.) with lower deadspace and higher resistance (group 2, n = 7). Patients were assessed at three pressure-support levels: a) baseline (10.3 +/- 2.4 cm H2O for group 1, 9.3 +/- 1.3 cm H2O for group 2); b) 5 cm H2O above baseline; and c) 5 cm H2O below baseline. Measurements obtained with the heat and moisture exchangers were compared with those values obtained using the standard heated hot water humidifier. At baseline pressure-support ventilation, the insertion of both heat and moisture exchangers induced in all patients a significant increase in the following parameters: minute ventilation (12.4 +/- 3.2 to 15.0 +/- 2.6 L/min for group 1, and 11.8 +/- 3.6 to 14.2 +/- 3.5 L/min for group 2); static intrinsic positive end-expiratory pressure (2.9 +/- 2.0 to 5.1 +/- 3.2 cm H2O for group 1, and 2.9 +/- 1.7 to 5.5 +/- 3.0 cm H2O for group 2); ventilatory drive, expressed as P41 (2.7 +/- 2.0 to 5.2 +/- 4.0 cm H2O for group 1, and 3.3 +/- 2.0 to 5.3 +/- 3.0 cm H2O for group 2); and work of breathing, expressed as either power (8.8 +/- 9.4 to 14.5 +/- 10.3 joule/ min for group 1, and 10.5 +/- 7.4 to 16.6 +/- 11.0 joule/min for group 2) or work per liter of ventilation (0.6 +/- 0.6 to 1.0 +/- 0.7 joule/L for group 1, and 0.8 +/- 0.4 to 1.1 +/- 0.5 joule/L. for group 2). These increases also occurred when pressure-support ventilation was both above and below the baseline

  16. Special Considerations in Neonatal Mechanical Ventilation.

    PubMed

    Dalgleish, Stacey; Kostecky, Linda; Charania, Irina

    2016-12-01

    Care of infants supported with mechanical ventilation is complex, time intensive, and requires constant vigilance by an expertly prepared health care team. Current evidence must guide nursing practice regarding ventilated neonates. This article highlights the importance of common language to establish a shared mental model and enhance clear communication among the interprofessional team. Knowledge regarding the underpinnings of an open lung strategy and the interplay between the pathophysiology and individual infant's response to a specific ventilator strategy is most likely to result in a positive clinical outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Prevalence and test characteristics of national health safety network ventilator-associated events.

    PubMed

    Lilly, Craig M; Landry, Karen E; Sood, Rahul N; Dunnington, Cheryl H; Ellison, Richard T; Bagley, Peter H; Baker, Stephen P; Cody, Shawn; Irwin, Richard S

    2014-09-01

    The primary aim of the study was to measure the test characteristics of the National Health Safety Network ventilator-associated event/ventilator-associated condition constructs for detecting ventilator-associated pneumonia. Its secondary aims were to report the clinical features of patients with National Health Safety Network ventilator-associated event/ventilator-associated condition, measure costs of surveillance, and its susceptibility to manipulation. Prospective cohort study. Two inpatient campuses of an academic medical center. Eight thousand four hundred eight mechanically ventilated adults discharged from an ICU. None. The National Health Safety Network ventilator-associated event/ventilator-associated condition constructs detected less than a third of ventilator-associated pneumonia cases with a sensitivity of 0.325 and a positive predictive value of 0.07. Most National Health Safety Network ventilator-associated event/ventilator-associated condition cases (93%) did not have ventilator-associated pneumonia or other hospital-acquired complications; 71% met the definition for acute respiratory distress syndrome. Similarly, most patients with National Health Safety Network probable ventilator-associated pneumonia did not have ventilator-associated pneumonia because radiographic criteria were not met. National Health Safety Network ventilator-associated event/ventilator-associated condition rates were reduced 93% by an unsophisticated manipulation of ventilator management protocols. The National Health Safety Network ventilator-associated event/ventilator-associated condition constructs failed to detect many patients who had ventilator-associated pneumonia, detected many cases that did not have a hospital complication, and were susceptible to manipulation. National Health Safety Network ventilator-associated event/ventilator-associated condition surveillance did not perform as well as ventilator-associated pneumonia surveillance and had several undesirable

  18. Variation in Definition of Prolonged Mechanical Ventilation.

    PubMed

    Rose, Louise; McGinlay, Michael; Amin, Reshma; Burns, Karen Ea; Connolly, Bronwen; Hart, Nicholas; Jouvet, Philippe; Katz, Sherri; Leasa, David; Mawdsley, Cathy; McAuley, Danny F; Schultz, Marcus J; Blackwood, Bronagh

    2017-10-01

    Consistency of definitional criteria for terminology applied to describe subject cohorts receiving mechanical ventilation within ICU and post-acute care settings is important for understanding prevalence, risk stratification, effectiveness of interventions, and projections for resource allocation. Our objective was to quantify the application and definition of terms for prolonged mechanical ventilation. We conducted a scoping review of studies (all designs except single-case study) reporting a study population (adult and pediatric) using the term prolonged mechanical ventilation or a synonym. We screened 5,331 references, reviewed 539 full-text references, and excluded 120. Of the 419 studies (representing 38 countries) meeting inclusion criteria, 297 (71%) reported data on a heterogeneous subject cohort, and 66 (16%) included surgical subjects only (46 of those 66, 70% cardiac surgery). Other studies described COPD (16, 4%), trauma (22, 5%), neuromuscular (17, 4%), and sepsis (1, 0.2%) cohorts. A total of 741 terms were used to refer to the 419 study cohorts. The most common terms were: prolonged mechanical ventilation (253, 60%), admission to specialized unit (107, 26%), and long-term mechanical ventilation (79, 19%). Some authors (282, 67%) defined their cohorts based on duration of mechanical ventilation, with 154 studies (55%) using this as the sole criterion. We identified 37 different durations of ventilation ranging from 5 h to 1 y, with > 21 d being the most common (28 of 282, 7%). For studies describing a surgical cohort, minimum ventilation duration required for inclusion was ≥ 24 h for 20 of 66 studies (30%). More than half of all studies (237, 57%) did not provide a reason/rationale for definitional criteria used, with only 28 studies (7%) referring to a consensus definition. We conclude that substantial variation exists in the terminology and definitional criteria for cohorts of subjects receiving prolonged mechanical ventilation. Standardization of

  19. Effect of leak and breathing pattern on the accuracy of tidal volume estimation by commercial home ventilators: a bench study.

    PubMed

    Luján, Manel; Sogo, Ana; Pomares, Xavier; Monsó, Eduard; Sales, Bernat; Blanch, Lluís

    2013-05-01

    New home ventilators are able to provide clinicians data of interest through built-in software. Monitoring of tidal volume (VT) is a key point in the assessment of the efficacy of home mechanical ventilation. To assess the reliability of the VT provided by 5 ventilators in a bench test. Five commercial ventilators from 4 different manufacturers were tested in pressure support mode with the help of a breathing simulator under different conditions of mechanical respiratory pattern, inflation pressure, and intentional leakage. Values provided by the built-in software of each ventilator were compared breath to breath with the VT monitored through an external pneumotachograph. Ten breaths for each condition were compared for every tested situation. All tested ventilators underestimated VT (ranges of -21.7 mL to -83.5 mL, which corresponded to -3.6% to -14.7% of the externally measured VT). A direct relationship between leak and underestimation was found in 4 ventilators, with higher underestimations of the VT when the leakage increased, ranging between -2.27% and -5.42% for each 10 L/min increase in the leakage. A ventilator that included an algorithm that computes the pressure loss through the tube as a function of the flow exiting the ventilator had the minimal effect of leaks on the estimation of VT (0.3%). In 3 ventilators the underestimation was also influenced by mechanical pattern (lower underestimation with restrictive, and higher with obstructive). The inclusion of algorithms that calculate the pressure loss as a function of the flow exiting the ventilator in commercial models may increase the reliability of VT estimation.

  20. Early High-Frequency Oscillatory Ventilation in Pediatric Acute Respiratory Failure. A Propensity Score Analysis.

    PubMed

    Bateman, Scot T; Borasino, Santiago; Asaro, Lisa A; Cheifetz, Ira M; Diane, Shelley; Wypij, David; Curley, Martha A Q

    2016-03-01

    The use of high-frequency oscillatory ventilation (HFOV) for acute respiratory failure in children is prevalent despite the lack of efficacy data. To compare the outcomes of patients with acute respiratory failure managed with HFOV within 24-48 hours of endotracheal intubation with those receiving conventional mechanical ventilation (CMV) and/or late HFOV. This is a secondary analysis of data from the RESTORE (Randomized Evaluation of Sedation Titration for Respiratory Failure) study, a prospective cluster randomized clinical trial conducted between 2009 and 2013 in 31 U.S. pediatric intensive care units. Propensity score analysis, including degree of hypoxia in the model, compared the duration of mechanical ventilation and mortality of patients treated with early HFOV matched with those treated with CMV/late HFOV. Among 2,449 subjects enrolled in RESTORE, 353 patients (14%) were ever supported on HFOV, of which 210 (59%) had HFOV initiated within 24-48 hours of intubation. The propensity score model predicting the probability of receiving early HFOV included 1,064 patients (181 early HFOV vs. 883 CMV/late HFOV) with significant hypoxia (oxygenation index ≥ 8). The degree of hypoxia was the most significant contributor to the propensity score model. After adjusting for risk category, early HFOV use was associated with a longer duration of mechanical ventilation (hazard ratio, 0.75; 95% confidence interval, 0.64-0.89; P = 0.001) but not with mortality (odds ratio, 1.28; 95% confidence interval, 0.92-1.79; P = 0.15) compared with CMV/late HFOV. In adjusted models including important oxygenation variables, early HFOV was associated with a longer duration of mechanical ventilation. These analyses make supporting the current approach to HFOV less convincing.