Science.gov

Sample records for compartment model pharmacokinetics

  1. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    ERIC Educational Resources Information Center

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  2. Pharmacokinetic calculator program for generation of initial parameter estimates from a three-compartment infusion model.

    PubMed

    Henderson, J D; Olson, R D; Ravis, W R

    1985-08-01

    A polyexponential curve-stripping program, KIN, is described for use on the HP-41CV programmable calculator. The program may be used in the analysis of plasma-concentration-time curves for a three-compartment intravenous bolus or infusion model with linear elimination processes. The coefficients and hybrid rate constants of the exponential function are then used to compute pharmacokinetic parameters (volume of the central compartment, intercompartmental rate transfer constants), which may be used as initial estimates of model parameters in non-linear regression curve-fitting procedures. PMID:3839870

  3. Simultaneous Characterization of Intravenous and Oral Pharmacokinetics of Lychnopholide in Rats by Transit Compartment Model.

    PubMed

    Lachi-Silva, Larissa; Sy, Sherwin K B; Voelkner, Alexander; de Sousa, João Paulo Barreto; Lopes, João Luis C; Silva, Denise B; Lopes, Norberto P; Kimura, Elza; Derendorf, Hartmut; Diniz, Andrea

    2015-08-01

    The pharmacokinetic properties of a new molecular entity are important aspects in evaluating the viability of the compound as a pharmacological agent. The sesquiterpene lactone lychnopholide exhibits important biological activities. The objective of this study was to characterize the pharmacokinetics of lychnopholide after intravenous administration of 1.65 mg/kg (n = 5) and oral administration of 3.3 mg/kg (n = 3) lychnopholide in rats (0.2 ± 0.02 kg in weight) through nonlinear mixed effects modeling and non-compartmental pharmacokinetic analysis. A highly sensitive analytical method was used to quantify the plasma lychnopholide concentrations in rats. Plasma protein binding of this compound was over 99 % as determined by a filtration method. A two-compartment body model plus three transit compartments to characterize the absorption process best described the disposition of lychnopholide after both routes of administration. The oral bioavailability was approximately 68 %. The clearance was 0.131 l/min and intercompartmental clearance was 0.171 l/min; steady-state volume of distribution was 4.83 l. The mean transit time for the absorption process was 9.15 minutes. No flip-flop phenomenon was observed after oral administration. The pharmacokinetic properties are favorable for further development of lychnopholide as a potential oral pharmacological agent. PMID:26218336

  4. A NOVEL PNYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR DIMETHYLARSINIC ACID (DMA): THE LUNG AS A STORAGE COMPARTMENT

    EPA Science Inventory

    A NOVEL PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODEL FOR DIMETHYLARSINIC ACID (DMA): THE LUNG AS A STORAGE COMPARTMENT. Evans, M.V., Hughes, M.F., and Kenyon, E.M. USEPA, ORD, NHEERL, RTP, NC 27711

    DMA is the major methylated metabolite of inorganic arsenic, a kno...

  5. A two-compartment population pharmacokinetic-pharmacodynamic model of digoxin in adults, with implications for dosage.

    PubMed

    Jelliffe, Roger W; Milman, Mark; Schumitzky, Alan; Bayard, David; Van Guilder, Michael

    2014-06-01

    A population pharmacokinetic/pharmacodynamic model of digoxin in adult subjects was originally developed by Reuning et al in 1973. They clearly described the 2-compartment behavior of digoxin, the lack of correlation of effect with serum concentrations, and the close correlation of the observed inotropic effect of digoxin with the calculated amount of drug present in the peripheral nonserum compartment. Their model seemed most attractive for clinical use. However, to make it more applicable for maximally precise dosage, its model parameter values (means and SD's) were converted into discrete model parameter distributions using a computer program developed especially for this purpose using the method of maximum entropy. In this way, the parameter distributions became discrete rather than continuous, suitable for use in developing maximally precise digoxin dosage regimens, individualized to an adult patient's age, gender, body weight, and renal function, to achieve desired specific target goals either in the central (serum) compartment or in the peripheral (effect) compartment using the method of multiple model dosage design. Some illustrative clinical applications of this model are presented and discussed. This model with a peripheral compartment reflecting clinical effect has contributed significantly to an improved understanding of the clinical behavior of digoxin in patients than is possible with models having only a single compartment, and to the improved management of digoxin therapy for more than 20 years. PMID:24492383

  6. Dual-input two-compartment pharmacokinetic model of dynamic contrast-enhanced magnetic resonance imaging in hepatocellular carcinoma

    PubMed Central

    Yang, Jian-Feng; Zhao, Zhen-Hua; Zhang, Yu; Zhao, Li; Yang, Li-Ming; Zhang, Min-Ming; Wang, Bo-Yin; Wang, Ting; Lu, Bao-Chun

    2016-01-01

    AIM: To investigate the feasibility of a dual-input two-compartment tracer kinetic model for evaluating tumorous microvascular properties in advanced hepatocellular carcinoma (HCC). METHODS: From January 2014 to April 2015, we prospectively measured and analyzed pharmacokinetic parameters [transfer constant (Ktrans), plasma flow (Fp), permeability surface area product (PS), efflux rate constant (kep), extravascular extracellular space volume ratio (ve), blood plasma volume ratio (vp), and hepatic perfusion index (HPI)] using dual-input two-compartment tracer kinetic models [a dual-input extended Tofts model and a dual-input 2-compartment exchange model (2CXM)] in 28 consecutive HCC patients. A well-known consensus that HCC is a hypervascular tumor supplied by the hepatic artery and the portal vein was used as a reference standard. A paired Student’s t-test and a nonparametric paired Wilcoxon rank sum test were used to compare the equivalent pharmacokinetic parameters derived from the two models, and Pearson correlation analysis was also applied to observe the correlations among all equivalent parameters. The tumor size and pharmacokinetic parameters were tested by Pearson correlation analysis, while correlations among stage, tumor size and all pharmacokinetic parameters were assessed by Spearman correlation analysis. RESULTS: The Fp value was greater than the PS value (FP = 1.07 mL/mL per minute, PS = 0.19 mL/mL per minute) in the dual-input 2CXM; HPI was 0.66 and 0.63 in the dual-input extended Tofts model and the dual-input 2CXM, respectively. There were no significant differences in the kep, vp, or HPI between the dual-input extended Tofts model and the dual-input 2CXM (P = 0.524, 0.569, and 0.622, respectively). All equivalent pharmacokinetic parameters, except for ve, were correlated in the two dual-input two-compartment pharmacokinetic models; both Fp and PS in the dual-input 2CXM were correlated with Ktrans derived from the dual-input extended Tofts model

  7. Development of a multi-compartment pharmacokinetic model to characterize the exposure to Hexamoll® DINCH®.

    PubMed

    Schütze, Andre; Lorber, Matthew; Gawrych, Katarzyna; Kolossa-Gehring, Marike; Apel, Petra; Brüning, Thomas; Koch, Holger M

    2015-06-01

    We developed and calibrated a multi compartment pharmacokinetic (PK) model to predict urinary concentrations after oral exposure of four specific DINCH metabolites: MINCH, OH-MINCH, cx-MINCH, and oxo-MINCH. This descriptive model has 4 compartments: a "stomach" (SC) compartment, a "holding" (HC) compartment, a "blood" (BC) compartment and a "bladder" (BLC) compartment. DINCH is assumed to first deposit into the SC, with transfer split between the HC and the BC. Unmetabolized DINCH from the HC then transfers to the BC. The DINCH metabolism is assumed to occur in the BC before excretion via the BLC. At each urination event, all the metabolite mass in the BLC is excreted. The model was calibrated using published urine metabolite data from 3 different male volunteers, each orally dosed with 50mg DINCH. Full urine voids were taken for 48 h after dosage. The predicted values showed a good agreement with the observed urinary DINCH metabolite concentrations, with a Spearman correlation coefficient exceeding 0.7 for all oxidized metabolites. We showed the importance of a holding reservoir. Without it, a good agreement could not be found. We applied the model to a set of 24-h general population samples measured for DINCH metabolites. The model was unable to duplicate the ratio of metabolites seen in the 24-h samples. Two possibilities were offered to explain the difference: the exposure pattern in the general population did not match the oral exposure in the dosing experiments, or the long-term toxicokinetics of DINCH was not captured in the 48-h controlled dosing experiments. PMID:25710321

  8. Modeling Pharmacokinetics.

    PubMed

    Bois, Frederic Y; Brochot, Céline

    2016-01-01

    Pharmacokinetics is the study of the fate of xenobiotics in a living organism. Physiologically based pharmacokinetic (PBPK) models provide realistic descriptions of xenobiotics' absorption, distribution, metabolism, and excretion processes. They model the body as a set of homogeneous compartments representing organs, and their parameters refer to anatomical, physiological, biochemical, and physicochemical entities. They offer a quantitative mechanistic framework to understand and simulate the time-course of the concentration of a substance in various organs and body fluids. These models are well suited for performing extrapolations inherent to toxicology and pharmacology (e.g., between species or doses) and for integrating data obtained from various sources (e.g., in vitro or in vivo experiments, structure-activity models). In this chapter, we describe the practical development and basic use of a PBPK model from model building to model simulations, through implementation with an easily accessible free software. PMID:27311461

  9. Failure of the three compartment model to describe the pharmacokinetics in brain of a high affinity substituted benzamide.

    PubMed

    Votaw, J R; Kessler, R M; de Paulis, T

    1993-11-01

    The applicability of using the standard 3-compartment model to describe the neuropharmacokinetics of a high affinity substituted benzamide was investigated. We performed the following experiments using the [18F]-5-(3-fluoropropyl) analog of epidepride ([18F]5-FPrEpid), a potent dopamine D2 receptor antagonist: constant left ventricular infusion, first-pass clearance, varying ligand specific activity, and displacing bound ligand with varying amounts of unlabelled ligand. Taken together, the information from these experiments rigorously tests the standard 3-compartment model. The obtained data and predictions from the model of the kinetic behavior of the ligand are inconsistent. The measured and model predicted dissociation rate (measured koff = 0.065 min-1, model prediction koff = 0.007 min-1) and the equilibrium dissociation constant (measured KD = 0.14 nM, model prediction KD = 2.2 nM) differ by an order of magnitude. Furthermore, the model cannot be used to accurately estimate the receptor density. We postulate that the synapse geometry and physical relationship between receptors are necessary components of a model that describes the pharmacokinetics of [18F]5-FPrEpid. PMID:8278896

  10. Use of three-compartment physiologically based pharmacokinetic modeling to predict hepatic blood levels of fluvoxamine relevant for drug-drug interactions.

    PubMed

    Iga, Katsumi

    2015-04-01

    Using a three-compartment physiologically based pharmacokinetic (PBPK) model and a tube model for hepatic extraction kinetics, equations for calculating blood drug levels (Cb s) and hepatic blood drug levels (Chb s, proportional to actual hepatic drug levels), were derived mathematically. Assuming the actual values for total body clearance (CLtot ), oral bioavailability (F), and steady-state distribution volume (Vdss ), Cb s, and Chb s after intravenous and oral administration of fluvoxamine (strong perpetrator in drug-drug interactions, DDIs), propranolol, imipramine, and tacrine were simulated. Values for Cb s corresponded to the actual values for all tested drugs, and mean Chb and maximal Chb -to-maximal Cb ratio predicted for oral fluvoxamine administration (50 mg twice-a-day administration) were nearly 100 nM and 2.3, respectively, which would be useful for the predictions of the DDIs caused by fluvoxamine. Fluvoxamine and tacrine are known to exhibit relatively large F values despite having CLtot similar to or larger than hepatic blood flow, which may be because of the high liver uptake (almost 0.6) upon intravenous administration. The present method is thus considered to be more predictive of the Chb for perpetrators of DDIs than other methods. PMID:25558834

  11. Estimation of pharmacokinetic model parameters.

    PubMed

    Timcenko, A; Reich, D L; Trunfio, G

    1995-01-01

    This paper addresses the problem of estimating the depth of anesthesia in clinical practice where many drugs are used in combination. The aim of the project is to use pharmacokinetically-derived data to predict episodes of light anesthesia. The weighted linear combination of anesthetic drug concentrations was computed using a stochastic pharmacokinetic model. The clinical definition of light anesthesia was based on the hemodynamic consequences of autonomic nervous system responses to surgical stimuli. A rule-based expert system was used to review anesthesia records to determine instances of light anesthesia using hemodynamic criteria. It was assumed that light anesthesia was a direct consequence of the weighted linear combination of drug concentrations in the patient's body that decreased below a certain threshold. We augmented traditional two-compartment models with a stochastic component of anesthetics' concentrations to compensate for interpatient pharmacokinetic and pharmacodynamic variability. A cohort of 532 clinical anesthesia cases was examined and parameters of two compartment pharmacokinetic models for 6 intravenously administered anesthetic drugs (fentanyl, thiopenthal, morphine, propofol, midazolam, ketamine) were estimated, as well as the parameters for 2 inhalational anesthetics (N2O and isoflurane). These parameters were then prospectively applied to 22 cases that were not used for parameter estimation, and the predictive ability of the pharmacokinetic model was determined. The goal of the study is the development of a pharmacokinetic model that will be useful in predicting light anesthesia in the clinically relevant circumstance where many drugs are used concurrently. PMID:8563327

  12. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    USGS Publications Warehouse

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  13. PET Pharmacokinetic Modelling

    NASA Astrophysics Data System (ADS)

    Müller-Schauenburg, Wolfgang; Reimold, Matthias

    Positron Emission Tomography is a well-established technique that allows imaging and quantification of tissue properties in-vivo. The goal of pharmacokinetic modelling is to estimate physiological parameters, e.g. perfusion or receptor density from the measured time course of a radiotracer. After a brief overview of clinical application of PET, we summarize the fundamentals of modelling: distribution volume, Fick's principle of local balancing, extraction and perfusion, and how to calculate equilibrium data from measurements after bolus injection. Three fundamental models are considered: (i) the 1-tissue compartment model, e.g. for regional cerebral blood flow (rCBF) with the short-lived tracer [15O]water, (ii) the 2-tissue compartment model accounting for trapping (one exponential + constant), e.g. for glucose metabolism with [18F]FDG, (iii) the reversible 2-tissue compartment model (two exponentials), e.g. for receptor binding. Arterial blood sampling is required for classical PET modelling, but can often be avoided by comparing regions with specific binding with so called reference regions with negligible specific uptake, e.g. in receptor imaging. To estimate the model parameters, non-linear least square fits are the standard. Various linearizations have been proposed for rapid parameter estimation, e.g. on a pixel-by-pixel basis, for the prize of a bias. Such linear approaches exist for all three models; e.g. the PATLAK-plot for trapping substances like FDG, and the LOGAN-plot to obtain distribution volumes for reversibly binding tracers. The description of receptor modelling is dedicated to the approaches of the subsequent lecture (chapter) of Millet, who works in the tradition of Delforge with multiple-injection investigations.

  14. Individual and population pharmacokinetic compartment analysis: a graphic procedure for quantification of predictive performance

    PubMed Central

    Eksborg, Staffan

    2013-01-01

    Objectives Pharmacokinetic studies are important for optimizing of drug dosing, but requires proper validation of the used pharmacokinetic procedures. However, simple and reliable statistical methods suitable for evaluation of the predictive performance of pharmacokinetic analysis are essentially lacking. The aim of the present study was to construct and evaluate a graphic procedure for quantification of predictive performance of individual and population pharmacokinetic compartment analysis. Methods Original data from previously published pharmacokinetic compartment analyses after intravenous, oral, and epidural administration, and digitized data, obtained from published scatter plots of observed vs predicted drug concentrations from population pharmacokinetic studies using the NPEM algorithm and NONMEM computer program and Bayesian forecasting procedures, were used for estimating the predictive performance according to the proposed graphical method and by the method of Sheiner and Beal. Results The graphical plot proposed in the present paper proved to be a useful tool for evaluation of predictive performance of both individual and population compartment pharmacokinetic analysis. Conclusion The proposed method is simple to use and gives valuable information concerning time- and concentration-dependent inaccuracies that might occur in individual and population pharmacokinetic compartment analysis. Predictive performance can be quantified by the fraction of concentration ratios within arbitrarily specified ranges, e.g. within the range 0.8–1.2.

  15. Comparing models for perfluorooctanoic acid pharmacokinetics using Bayesian analysis

    EPA Science Inventory

    Selecting the appropriate pharmacokinetic (PK) model given the available data is investigated for perfluorooctanoic acid (PFOA), which has been widely analyzed with an empirical, one-compartment model. This research examined the results of experiments [Kemper R. A., DuPont Haskel...

  16. Post-dialysis urea concentration: comparison between one- compartment model and two-compartment model

    NASA Astrophysics Data System (ADS)

    Tamrin, N. S. Ahmad; Ibrahim, N.

    2014-11-01

    The reduction of the urea concentration in blood can be numerically projected by using one-compartment model and two-compartment model with no variation in body fluid. This study aims to compare the simulated values of post-dialysis urea concentration for both models with the clinical data obtained from the hospital. The clinical assessment of adequacy of a treatment is based on the value of Kt/V. Further, direct calculation using clinical data and one-compartment model are presented in the form of ratio. It is found that the ratios of postdialysis urea concentration simulated using two-compartment model are higher compared to the ratios of post-dialysis urea concentration using one-compartment model. In addition, most values of post-dialysis urea concentration simulated using two-compartment model are much closer to the clinical data compared to values simulated using one-compartment model. Kt/V values calculated directly using clinical data are found to be higher than Kt/V values derived from one-compartment model.

  17. Pharmacokinetics of antiretroviral drugs in anatomical sanctuary sites: the fetal compartment (placenta and amniotic fluid).

    PubMed

    Else, Laura J; Taylor, Stephen; Back, David J; Khoo, Saye H

    2011-01-01

    HIV resides within anatomical 'sanctuary sites' where local drug exposure and viral dynamics may differ significantly from the systemic compartment. Widespread implementation of antiretroviral therapy has seen a significant decline in the incidence of mother-to-child transmission (MTCT) of HIV. In addition to suppression of maternal plasma/genital viral loads, antiretroviral agents that cross the placenta and achieve adequate concentrations in the fetal compartment may exert a greater prophylactic effect. Penetration of antiretrovirals in the fetal compartment is expressed by accumulation ratios derived from the measurement of drug concentrations in paired maternal plasma and umbilical cord samples. The nucleoside analogues and nevirapine accumulate extensively in cord blood and in the surrounding amniotic fluid, whereas the protease inhibitors (PIs) exhibit low-to-moderate placental accumulation. Early data suggest that high placental/neonatal concentrations are achieved with raltegravir, but to a lesser extent with etravirine and maraviroc (rank order of accumulation: raltegravir/nucleoside reverse transcriptase inhibitor [tenofovir > zidovudine/lamivudine/emtricitabine/stavudine/abacavir] > non-nucleoside reverse transcriptase inhibitor [nevirapine > etravirine] > PI > maraviroc/enfuvirtide). More comprehensive in vivo pharmacokinetic data are required to justify the potential use of these agents as safe and effective options during pregnancy. PMID:22155898

  18. Identifiability Results for Several Classes of Linear Compartment Models.

    PubMed

    Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa

    2015-08-01

    Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology. PMID:26337290

  19. Modeling of Corneal and Retinal Pharmacokinetics after Periocular Drug Administration

    PubMed Central

    Amrite, Aniruddha C.; Edelhauser, Henry F.; Kompella, Uday B.

    2012-01-01

    Purpose To develop pharmacokinetics models to describe the disposition of small lipophilic molecules in the cornea and retina after periocular (subconjunctival or posterior subconjunctival) administration. Methods Compartmental pharmacokinetics analysis was performed on the corneal and retinal data obtained after periocular administration of 3 mg of celecoxib (a selective COX-2 inhibitor) to Brown Norway (BN) rats. Berkeley Madonna, a differential and difference equation–based modeling software, was used for the pharmacokinetics modeling. The data were fit to different compartment models with first-order input and disposition, and the best fit was selected on the basis of coefficient of regression and Akaike information criteria (AIC). The models were validated by using the celecoxib data from a prior study in Sprague-Dawley (SD) rats. The corneal model was also fit to the corneal data for prednisolone at a dose of 2.61 mg in albino rabbits, and the model was validated at two other doses of prednisolone (0.261 and 26.1 mg) in these rabbits. Model simulations were performed with the finalized model to understand the effect of formulation on corneal and retinal pharmacokinetics after periocular administration. Results Celecoxib kinetics in the BN rat cornea can be described by a two-compartment (periocular space and cornea, with a dissolution step for periocular formulation) model, with parallel elimination from the cornea and the periocular space. The inclusion of a distribution compartment or a dissolution step for celecoxib suspension did not lead to an overall improvement in the corneal data fit compared with the two-compartment model. The more important parameter for enhanced fit and explaining the apparent lack of an increase phase in the corneal levels is the inclusion of the initial leak-back of the dose from the periocular space into the precorneal area. The predicted celecoxib concentrations from this model also showed very good correlation (r = 0

  20. Modeling the Pharmacokinetics of Perfluorooctanoic Acid (PFOA) During Gestation and Lactation in Mice

    EPA Science Inventory

    To address the pharmacokinetics of PFOA during gestation and lactation, a biologically supported dynamic model was developed. A two compartment system linked via placental blood flow described gestation, while milk production linked the dam to a pup litter compartment during lact...

  1. PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELING

    EPA Science Inventory

    Physiologically-based pharmacokinetic (PB-PK) models attempt to provide both a realistic anatomic description of the animal to which a drug or toxic chemical has been administered and a biologically accurate representation of the physiological pathways for chemical storage, metab...

  2. Applications of physiologic pharmacokinetic modeling in carcinogenic risk assessment.

    PubMed Central

    Krewski, D; Withey, J R; Ku, L F; Andersen, M E

    1994-01-01

    The use of physiologically based pharmacokinetic (PBPK) models has been proposed as a means of estimating the dose of the reactive metabolites of carcinogenic xenobiotics reaching target tissues, thereby affording an opportunity to base estimates of potential cancer risk on tissue dose rather than external levels of exposure. In this article, we demonstrate how a PBPK model can be constructed by specifying mass-balance equations for each physiological compartment included in the model. In general, this leads to a system of nonlinear partial differential equations with which to characterize the compartment system. These equations then can be solved numerically to determine the concentration of metabolites in each compartment as functions of time. In the special case of a linear pharmacokinetic system, we present simple closed-form expressions for the area under the concentration-time curves (AUC) in individual tissue compartments. A general relationship between the AUC in blood and other tissue compartments is also established. These results are of use in identifying those parameters in the models that characterize the integrated tissue dose, and which should therefore be the primary focus of sensitivity analyses. Applications of PBPK modeling for purposes of tissue dosimetry are reviewed, including models developed for methylene chloride, ethylene oxide, 1,4-dioxane, 1-nitropyrene, as well as polychlorinated biphenyls, dioxins, and furans. Special considerations in PBPK modeling related to aging, topical absorption, pregnancy, and mixed exposures are discussed. The linkage between pharmacokinetic models used for tissue dosimetry and pharmacodynamic models for neoplastic transformation of stem cells in the target tissue is explored. PMID:7737040

  3. Simulation of monoclonal antibody pharmacokinetics in humans using a minimal physiologically based model.

    PubMed

    Li, Linzhong; Gardner, Iain; Dostalek, Miroslav; Jamei, Masoud

    2014-09-01

    Compared to small chemical molecules, monoclonal antibodies and Fc-containing derivatives (mAbs) have unique pharmacokinetic behaviour characterised by relatively poor cellular permeability, minimal renal filtration, binding to FcRn, target-mediated drug disposition, and disposition via lymph. A minimal physiologically based pharmacokinetic (PBPK) model to describe the pharmacokinetics of mAbs in humans was developed. Within the model, the body is divided into three physiological compartments; plasma, a single tissue compartment and lymph. The tissue compartment is further sub-divided into vascular, endothelial and interstitial spaces. The model simultaneously describes the levels of endogenous IgG and exogenous mAbs in each compartment and sub-compartment and, in particular, considers the competition of these two species for FcRn binding in the endothelial space. A Monte-Carlo sampling approach is used to simulate the concentrations of endogenous IgG and mAb in a human population. Existing targeted-mediated drug disposition (TMDD) models are coupled with the minimal PBPK model to provide a general platform for simulating the pharmacokinetics of therapeutic antibodies using primarily pre-clinical data inputs. The feasibility of utilising pre-clinical data to parameterise the model and to simulate the pharmacokinetics of adalimumab and an anti-ALK1 antibody (PF-03446962) in a population of individuals was investigated and results were compared to published clinical data. PMID:25004823

  4. Telavancin Demonstrates Activity against Methicillin-Resistant Staphylococcus aureus Isolates with Reduced Susceptibility to Vancomycin, Daptomycin, and Linezolid in Broth Microdilution MIC and One-Compartment Pharmacokinetic/Pharmacodynamic Models

    PubMed Central

    Smith, Jordan R.; Barber, Katie E.; Hallesy, Jessica; Raut, Animesh

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) isolates have arisen with reduced susceptibility to several anti-MRSA agents. Telavancin (TLV), a novel anti-MRSA agent, retains low MICs against these organisms. Our objective was to determine the MICs for TLV, daptomycin (DAP), vancomycin (VAN), and linezolid (LZD) against daptomycin-nonsusceptible (DNS) S. aureus, vancomycin-intermediate S. aureus (VISA), heteroresistant VISA (hVISA), and linezolid-resistant (LZDr) S. aureus. We also evaluated these agents against each phenotype in pharmacokinetic/pharmacodynamic (PK/PD) models. Seventy DNS, 100 VISA, 180 hVISA, and 25 LZDr MRSA isolates were randomly selected from our library and tested to determine their MICs against TLV, DAP, VAN, and LZD via broth microdilution and a Trek panel. Four isolates were randomly selected for 168-h in vitro models to evaluate treatment with TLV at 10 mg/kg of body weight/day, DAP at 10 mg/kg/day, VAN at 1 g every 12 h (q12h), and LZD at 600 mg q12h. The MIC50/90 for TLV, DAP, VAN, and LZD against 70 DNS S. aureus isolates were 0.06/0.125 μg/ml, 2/4 μg/ml, 1/2 μg/ml, and 2/2 μg/ml, respectively. Against 100 VISA isolates, the MIC50/90 were 0.06/0.125 μg/ml, 1/1 μg/ml, 4/8 μg/ml, and 1/2 μg/ml, respectively. Against 170 hVISA isolates, the MIC50/90 were 0.06/0.125 μg/ml, 0.5/1 μg/ml, 1/2 μg/ml, and 1/2 μg/ml, respectively. Against 25 LZDr isolates, the MIC50/90 were 0.03/0.06 μg/ml, 1/1 μg/ml, 2/2 μg/ml, and 8/8 μg/ml, respectively. The TLV MIC was >0.125 μg/ml for 10/365 (2.7%) isolates. In PK/PD models, TLV was universally bactericidal at 168 h and statistically superior to all antibiotics against DNS S. aureus strain R2334. These data further establish the potency of TLV against resistant MRSA. The model data demonstrate in vitro bactericidal activity of TLV against hVISA, VISA, DNS S. aureus, and LZDr S. aureus strains. Further clinical research is warranted. PMID:26124162

  5. Telavancin demonstrates activity against methicillin-resistant Staphylococcus aureus isolates with reduced susceptibility to vancomycin, daptomycin, and linezolid in broth microdilution MIC and one-compartment pharmacokinetic/pharmacodynamic models.

    PubMed

    Smith, Jordan R; Barber, Katie E; Hallesy, Jessica; Raut, Animesh; Rybak, Michael J

    2015-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) isolates have arisen with reduced susceptibility to several anti-MRSA agents. Telavancin (TLV), a novel anti-MRSA agent, retains low MICs against these organisms. Our objective was to determine the MICs for TLV, daptomycin (DAP), vancomycin (VAN), and linezolid (LZD) against daptomycin-nonsusceptible (DNS) S. aureus, vancomycin-intermediate S. aureus (VISA), heteroresistant VISA (hVISA), and linezolid-resistant (LZD(r)) S. aureus. We also evaluated these agents against each phenotype in pharmacokinetic/pharmacodynamic (PK/PD) models. Seventy DNS, 100 VISA, 180 hVISA, and 25 LZD(r) MRSA isolates were randomly selected from our library and tested to determine their MICs against TLV, DAP, VAN, and LZD via broth microdilution and a Trek panel. Four isolates were randomly selected for 168-h in vitro models to evaluate treatment with TLV at 10 mg/kg of body weight/day, DAP at 10 mg/kg/day, VAN at 1 g every 12 h (q12h), and LZD at 600 mg q12h. The MIC50/90 for TLV, DAP, VAN, and LZD against 70 DNS S. aureus isolates were 0.06/0.125 μg/ml, 2/4 μg/ml, 1/2 μg/ml, and 2/2 μg/ml, respectively. Against 100 VISA isolates, the MIC50/90 were 0.06/0.125 μg/ml, 1/1 μg/ml, 4/8 μg/ml, and 1/2 μg/ml, respectively. Against 170 hVISA isolates, the MIC50/90 were 0.06/0.125 μg/ml, 0.5/1 μg/ml, 1/2 μg/ml, and 1/2 μg/ml, respectively. Against 25 LZD(r) isolates, the MIC50/90 were 0.03/0.06 μg/ml, 1/1 μg/ml, 2/2 μg/ml, and 8/8 μg/ml, respectively. The TLV MIC was >0.125 μg/ml for 10/365 (2.7%) isolates. In PK/PD models, TLV was universally bactericidal at 168 h and statistically superior to all antibiotics against DNS S. aureus strain R2334. These data further establish the potency of TLV against resistant MRSA. The model data demonstrate in vitro bactericidal activity of TLV against hVISA, VISA, DNS S. aureus, and LZD(r) S. aureus strains. Further clinical research is warranted. PMID:26124162

  6. UNCERTAINTIES IN TRICHLOROETHYLENE PHARMACOKINETIC MODELS

    EPA Science Inventory

    Understanding the pharmacokinetics of a chemical¯its absorption, distribution, metabolism, and excretion in humans and laboratory animals ¯ is critical to the assessment of its human health risks. For trichloroethylene (TCE), numerous physiologically-based pharmacokinetic (PBPK)...

  7. Use of a Simple Pharmacokinetic Model to Characterize Exposure to Perchlorate [ Journal Article

    EPA Science Inventory

    This article is about how a simple two-compartment first-order pharmacokinetic model that predicts concentrations of perchlorate in blood and urine was constructed and validated. The model was validated using data from a high-dose experiment in humans where doses and resulting co...

  8. Predicting neonatal pharmacokinetics from prior data using population pharmacokinetic modeling.

    PubMed

    Wang, Jian; Edginton, Andrea N; Avant, Debbie; Burckart, Gilbert J

    2015-10-01

    Selection of the first dose for neonates in clinical trials is very challenging. The objective of this analysis was to assess if a population pharmacokinetic (PK) model developed with data from infants to adults is predictive of neonatal clearance and to evaluate what age range of prior PK data is needed for informative modeling to predict neonate exposure. Two sources of pharmacokinetic data from 8 drugs were used to develop population models: (1) data from all patients > 2 years of age, and (2) data from all nonneonatal patients aged > 28 days. The prediction error based on the models using data from subjects > 2 years of age showed bias toward overprediction, with median average fold error (AFE) for CL predicted/CLobserved greater than 1.5. The bias for predicting neonatal PK was improved when using all prior PK data including infants as opposed to an assessment without infant PK data, with the median AFE 0.91. As an increased number of pediatric trials are conducted in neonates under the Food and Drug Administration Safety and Innovation Act, dose selection should be based on the best estimates of neonatal pharmacokinetics and pharmacodynamics prior to conducting efficacy and safety studies in neonates. PMID:25907280

  9. POPULATION PHARMACOKINETIC/DYNAMIC MODEL OF LYMPHOSUPPRESSION AFTER FLUDARABINE ADMINISTRATION

    PubMed Central

    McCune, Jeannine S.; Vicini, Paolo; Salinger, David H.; O’Donnell, Paul V.; Sandmaier, Brenda M.; Anasetti, Claudio; Mager, Donald E.

    2014-01-01

    Purpose Quantitative relationships between 9-β-D-arabinofuranosyl-2-fluoroadenine (F-ara-A) concentrations and lymphosuppression have not been reported, but would be useful for regimen design. A population pharmacokinetic/pharmacodynamic model was constructed in this study using data from 41 hematopoietic cell transplant (HCT) recipients conditioned with busulfan in combination with fludarabine (total dose 120 mg/m2, Protocol 1519) or with fludarabine (total dose 250 mg/m2) with rabbit antithymocyte globulin (rATG, Protocol 2041). Methods Individual pharmacokinetic parameters were fixed to post-hoc Bayesian estimates, and circulating absolute lymphocyte counts (ALC) were obtained during the three weeks prior to graft infusion. A semi-physiological cell kill model with three lymphocyte transit compartments was applied and aptly characterized the time-course of suppression of circulating ALC by fludarabine administration. Drug and system-specific parameters were estimated using a maximum likelihood expectation maximization algorithm, and the final model was qualified using an internal visual predictive check. Results The final model successfully characterized the time-course and variability in ALC. Pharmacodynamic parameters exhibited considerable between subject variability (38.9-211%). The HCT protocol was the only covariate associated with the pharmacodynamic parameters, specifically the lymphocyte kill rate, the transit rate between lymphocyte compartments, and the baseline ALC. Conclusions This model can be used to simulate the degree of lymphosuppression for design of future fludarabine-based conditioning regimens. PMID:25374408

  10. Determination of the pharmacokinetics of glycopyrronium in the lung using a population pharmacokinetic modelling approach

    PubMed Central

    Bartels, Christian; Looby, Michael; Sechaud, Romain; Kaiser, Guenther

    2013-01-01

    Aims Glycopyrronium bromide (NVA237) is a once-daily long-acting muscarinic antagonist recently approved for the treatment of chronic obstructive pulmonary disease. In this study, we used population pharmacokinetic (PK) modelling to provide insights into the impact of the lung PK of glycopyrronium on its systemic PK profile and, in turn, to understand the impact of lung bioavailability and residence time on the choice of dosage regimen. Methods We developed and validated a population PK model to characterize the lung absorption of glycopyrronium using plasma PK data derived from studies in which this drug was administered by different routes to healthy volunteers. The model was also used to carry out simulations of once-daily and twice-daily regimens and to characterize amounts of glycopyrronium in systemic compartments and lungs. Results The model-derived PK parameters were comparable to those obtained with noncompartmental analysis, confirming the usefulness of our model. The model suggested that the lung absorption of glycopyrronium was dominated by slow-phase absorption with a half-life of about 3.5 days, which accounted for 79% of drug absorbed through the lungs into the bloodstream, from where glycopyrronium was quickly eliminated. Simulations of once-daily and twice-daily administration generated similar PK profiles in the lung compartments. Conclusions The slow absorption from the lungs, together with the rapid elimination from the systemic circulation, could explain how once-daily glycopyrronium provides sustained bronchodilatation with a low incidence of adverse effects in patients with chronic obstructive pulmonary disease. Its extended intrapulmonary residence time also provides pharmacokinetic evidence that glycopyrronium has the profile of a once-daily drug. PMID:23506208

  11. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Tam, V.; Putcha, L.

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials for an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP. METHODS: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model discrimination was performed, by minimizing the Akaike Information Criteria (AIC), maximizing the coefficient of determination (r²) and by comparison of the quality of fit plots. RESULTS: The best structural model to describe scopolamine disposition after INSCOP administration (minimal AIC =907.2) consisted of one compartment for plasma, saliva and urine respectively that were inter-connected with different rate constants. The estimated values of PK parameters were compiled in Table 1. The model fitting exercises revealed a nonlinear PK for scopolamine between plasma and saliva compartments for K21, Vmax and Km. CONCLUSION: PK model for INSCOP was developed and for the first time it satisfactorily predicted the PK of scopolamine in plasma, saliva and urine after INSCOP administration. Using non-linear PK yielded the best structural model to describe scopolamine disposition between plasma and saliva compartments, and inclusion of non-linear PK resulted in a significant improved model fitting. The model can be utilized to predict scopolamine plasma concentration using saliva and/or urine data that

  12. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling

    PubMed Central

    Moss, Darren Michael; Siccardi, Marco

    2014-01-01

    The delivery of therapeutic agents is characterized by numerous challenges including poor absorption, low penetration in target tissues and non-specific dissemination in organs, leading to toxicity or poor drug exposure. Several nanomedicine strategies have emerged as an advanced approach to enhance drug delivery and improve the treatment of several diseases. Numerous processes mediate the pharmacokinetics of nanoformulations, with the absorption, distribution, metabolism and elimination (ADME) being poorly understood and often differing substantially from traditional formulations. Understanding how nanoformulation composition and physicochemical properties influence drug distribution in the human body is of central importance when developing future treatment strategies. A helpful pharmacological tool to simulate the distribution of nanoformulations is represented by physiologically based pharmacokinetics (PBPK) modelling, which integrates system data describing a population of interest with drug/nanoparticle in vitro data through a mathematical description of ADME. The application of PBPK models for nanomedicine is in its infancy and characterized by several challenges. The integration of property–distribution relationships in PBPK models may benefit nanomedicine research, giving opportunities for innovative development of nanotechnologies. PBPK modelling has the potential to improve our understanding of the mechanisms underpinning nanoformulation disposition and allow for more rapid and accurate determination of their kinetics. This review provides an overview of the current knowledge of nanomedicine distribution and the use of PBPK modelling in the characterization of nanoformulations with optimal pharmacokinetics. Linked Articles This article is part of a themed section on Nanomedicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-17 PMID:24467481

  13. Generalized pharmacokinetic modeling for drugs with nonlinear binding: I. Theoretical framework.

    PubMed

    Gillespie, W R

    1993-02-01

    The following integrodifferential equation is proposed as the basis for a generalized treatment of pharmacokinetic systems in which nonlinear binding occurs phi'(cu)c'u = -q(cu)+g * cu+f where cu identical to unbound plasma drug concentration, f identical to drug input rate, ' indicates the derivative of a function, and * indicates the convolution operation: (g * cu) (t) = integral of t0 g(t-u)cu(u) du. Possible physical interpretations of the functions q, g and f are: q(cu) identical to rate at which drug leaves the sampling compartment, g * cu identical to rate at which drug returns to the sampling compartment from the peripheral system (tissues that are kinetically distinct from the sampling compartment), and phi(cu) identical to amount of drug in the sampling compartment. The approach assumes that drug binding is sufficiently rapid that it may be treated as an equilibrium process. It may be applied to systems in which nonlinear binding occurs within the sampling compartment, i.e., in the systemic circulation or in tissues to which drug is rapidly distributed. The proposed relationship is a generalization of most existing models for drugs with nonlinear binding. It can serve as a general theoretical framework for such models or as the basis for "model-independent" methods for analyzing the pharmacokinetics of drugs with nonlinear binding. Computer programs for the numerical solution of the integrodifferential equation are presented. Methods for pharmacokinetic system characterization, prediction and bioavailability are presented and demonstrated. PMID:8410685

  14. Modeling the pharmacokinetics of extended release pharmaceutical systems

    NASA Astrophysics Data System (ADS)

    di Muria, Michela; Lamberti, Gaetano; Titomanlio, Giuseppe

    2009-03-01

    The pharmacokinetic (PK) models predict the hematic concentration of drugs after the administration. In compartment modeling, the body is described by a set of interconnected “vessels” or “compartments”; the modeling consisting of transient mass balances. Usually the orally administered drugs were considered as immediately available: this cannot describe the administration of extended-release systems. In this work we added to the traditional compartment models the ability to account for a delay in administration, relating this delay to in vitro data. Firstly, the method was validated, applying the model to the dosage of nicotine by chewing-gum; the model was tuned by in vitro/in vivo data of drugs (divalproex-sodium and diltiazem) with medium-rate release kinetics, then it was applied in describing in vivo evolutions due to the assumption of fast- and slow-release systems. The model reveals itself predictive, the same of a Level A in vitro/in vivo correlation, but being physically based, it is preferable to a purely statistical method.

  15. Assessing Predictive Performance of Published Population Pharmacokinetic Models of Intravenous Tobramycin in Pediatric Patients.

    PubMed

    Bloomfield, Celeste; Staatz, Christine E; Unwin, Sean; Hennig, Stefanie

    2016-06-01

    Several population pharmacokinetic models describe the dose-exposure relationship of tobramycin in pediatric patients. Before the implementation of these models in clinical practice for dosage adjustment, their predictive performance should be externally evaluated. This study tested the predictive performance of all published population pharmacokinetic models of tobramycin developed for pediatric patients with an independent patient cohort. A literature search was conducted to identify suitable models for testing. Demographic and pharmacokinetic data were collected retrospectively from the medical records of pediatric patients who had received intravenous tobramycin. Tobramycin exposure was predicted from each model. Predictive performance was assessed by visual comparison of predictions to observations, by calculation of bias and imprecision, and through the use of simulation-based diagnostics. Eight population pharmacokinetic models were identified. A total of 269 concentration-time points from 41 pediatric patients with cystic fibrosis were collected for external evaluation. Three models consistently performed best in all evaluations and had mean errors ranging from -0.4 to 1.8 mg/liter, relative mean errors ranging from 4.9 to 29.4%, and root mean square errors ranging from 47.8 to 66.9%. Simulation-based diagnostics supported these findings. Models that allowed a two-compartment disposition generally had better predictive performance than those that used a one-compartment disposition model. Several published models of the pharmacokinetics of tobramycin showed reasonable low levels of bias, although all models seemed to have some problems with imprecision. This suggests that knowledge of typical pharmacokinetic behavior and patient covariate values alone without feedback concentration measurements from individual patients is not sufficient to make precise predictions. PMID:27001806

  16. Multiscale analysis of compartment models with dispersal

    PubMed Central

    Kang, Yun; Castillo-Chavez, Carlos

    2014-01-01

    Dispersal, minimally defined as the movement or spatial displacement of organisms, links the dynamics of local population within and across regions. Landscape-population interactions responsible for driving co-evolutionary processes that on the long run shape communities of organisms, determine the outcomes of biological invasions, or alter the dynamics and evolution of infectious agents, are connected via dispersal. A generalized modeling framework is introduced derived from our interests in characterizing the dynamics of animal populations and trade in the presence of disease. We explore the impact of dispersal on systems that include disease, Allee effects, and host mobility. The emphasis is on disease, a selective force, that often plays a fundamental role on the life-history dynamics of a population. The models incorporate disease-driven effects on, often excluded, interactions like individual’s competitive ability to acquire resources. The framework makes use of deterministic and stochastic models that account for features often ignored or rarely included like (a) induced Allee effects; (b) disease dynamics; and (c) spatial heterogeneity. Preliminary results highlight the role of initial conditions, patch quality, and “topological” or connectivity landscape structure (the physical space where individuals move, reproduce, get sick, die, or compete for resources) on the dynamics of populations when disease is an important selective force. We dedicate this article to our grand mentor Simon Levin. PMID:22934939

  17. Determination of a suitable voriconazole pharmacokinetic model for personalised dosing.

    PubMed

    McDougall, David A J; Martin, Jennifer; Playford, E Geoffrey; Green, Bruce

    2016-04-01

    Model based personalised dosing (MBPD) is a sophisticated form of individualised therapy, where a population pharmacokinetic (PK) or pharmacodynamic model is utilised to estimate the dose required to reach a target exposure or effect. The choice of which model to implement in MBPD is a subjective decision. By choosing one model, information from the remaining models is ignored, as well as the rest of the literature base. This manuscript describes a methodology to develop a 'hybrid' model for voriconazole that incorporated information from prior models in a biologically plausible manner. Voriconazole is a triazole antifungal with difficult to predict PK, although it does have a defined exposure-response relationship. Nine population PK models of voriconazole were identified from the literature. The models differed significantly in structural components. The hybrid model contained a two-compartment disposition model with mixed linear and nonlinear time-dependent clearance. The parameters for the hybrid model were determined using simulation techniques. Validation of the hybrid model was assessed via visual predictive checks, which indicated the majority of the variability in the literature models was captured by the hybrid model. The predictive performance was assessed using four different sampling strategies of limited concentrations from ten richly PK sampled subjects to predict future concentrations. Overall, the hybrid model predicted future concentrations with good precision. Further prospective and retrospective validation of the hybrid model is required before it could be used in clinical practice. PMID:26676909

  18. Applications of minimal physiologically-based pharmacokinetic models

    PubMed Central

    Cao, Yanguang

    2012-01-01

    Conventional mammillary models are frequently used for pharmacokinetic (PK) analysis when only blood or plasma data are available. Such models depend on the quality of the drug disposition data and have vague biological features. An alternative minimal-physiologically-based PK (minimal-PBPK) modeling approach is proposed which inherits and lumps major physiologic attributes from whole-body PBPK models. The body and model are represented as actual blood and tissue usually total body weight) volumes, fractions (fd) of cardiac output with Fick’s Law of Perfusion, tissue/blood partitioning (Kp), and systemic or intrinsic clearance. Analyzing only blood or plasma concentrations versus time, the minimal-PBPK models parsimoniously generate physiologically-relevant PK parameters which are more easily interpreted than those from mam-millary models. The minimal-PBPK models were applied to four types of therapeutic agents and conditions. The models well captured the human PK profiles of 22 selected beta-lactam antibiotics allowing comparison of fitted and calculated Kp values. Adding a classical hepatic compartment with hepatic blood flow allowed joint fitting of oral and intravenous (IV) data for four hepatic elimination drugs (dihydrocodeine, verapamil, repaglinide, midazolam) providing separate estimates of hepatic intrinsic clearance, non-hepatic clearance, and pre-hepatic bioavailability. The basic model was integrated with allometric scaling principles to simultaneously describe moxifloxacin PK in five species with common Kp and fd values. A basic model assigning clearance to the tissue compartment well characterized plasma concentrations of six monoclonal antibodies in human subjects, providing good concordance of predictions with expected tissue kinetics. The proposed minimal-PBPK modeling approach offers an alternative and more rational basis for assessing PK than compartmental models. PMID:23179857

  19. Coastal Ecosystem Integrated Compartment Model (ICM): Modeling Framework

    NASA Astrophysics Data System (ADS)

    Meselhe, E. A.; White, E. D.; Reed, D.

    2015-12-01

    The Integrated Compartment Model (ICM) was developed as part of the 2017 Coastal Master Plan modeling effort. It is a comprehensive and numerical hydrodynamic model coupled to various geophysical process models. Simplifying assumptions related to some of the flow dynamics are applied to increase the computational efficiency of the model. The model can be used to provide insights about coastal ecosystems and evaluate restoration strategies. It builds on existing tools where possible and incorporates newly developed tools where necessary. It can perform decadal simulations (~ 50 years) across the entire Louisiana coast. It includes several improvements over the approach used to support the 2012 Master Plan, such as: additional processes in the hydrology, vegetation, wetland and barrier island morphology subroutines, increased spatial resolution, and integration of previously disparate models into a single modeling framework. The ICM includes habitat suitability indices (HSIs) to predict broad spatial patterns of habitat change, and it provides an additional integration to a dynamic fish and shellfish community model which quantitatively predicts potential changes in important fishery resources. It can be used to estimate the individual and cumulative effects of restoration and protection projects on the landscape, including a general estimate of water levels associated with flooding. The ICM is also used to examine possible impacts of climate change and future environmental scenarios (e.g. precipitation, Eustatic sea level rise, subsidence, tropical storms, etc.) on the landscape and on the effectiveness of restoration projects. The ICM code is publically accessible, and coastal restoration and protection groups interested in planning-level modeling are encouraged to explore its utility as a computationally efficient tool to examine ecosystem response to future physical or ecological changes, including the implementation of restoration and protection strategies.

  20. Population pharmacokinetic modeling and simulation of huperzine A in elderly Chinese subjects

    PubMed Central

    Sheng, Lei; Qu, Yi; Yan, Jing; Liu, Gang-yi; Wang, Wei-liang; Wang, Yi-jun; Wang, Hong-yi; Zhang, Meng-qi; Lu, Chuan; Liu, Yun; Jia, Jing-yin; Hu, Chao-ying; Li, Xue-ning; Yu, Chen; Xu, Hong-rong

    2016-01-01

    Aim: Our preliminary results show that huperzine A, an acetylcholinesterase inhibitor used to treat Alzheimer's disease (AD) patients in China, exhibits different pharmacokinetic features in elderly and young healthy subjects. However, its pharmacokinetic data in elderly subjects remains unavailable to date. Thus, we developed a population pharmacokinetic (PPK) model of huperzine A in elderly Chinese people, and identified the covariate affecting its pharmacokinetics for optimal individual administration. Methods: A total of 341 serum huperzine A concentration records was obtained from 2 completed clinical trials (14 elderly healthy subjects in a phase I pharmacokinetic study; 35 elderly AD patients in a phase II study). Population pharmacokinetic analysis was performed using the non-linear mixed-effect modeling software Phoenix NLME1.1.1. The effects of age, gender, body weight, height, creatinine, endogenous creatinine clearance rate as well as drugs administered concomitantly were analyzed. Bootstrap and visual predictive checks were used simultaneously to validate the final population pharmacokinetics models. Results: The plasma concentration-time profile of huperzine A was best described by a one-compartment model with first-order absorption and elimination. Age was identified as the covariate having significant influence on huperzine A clearance. The final PPK model of huperzine A was: CL (L/h)=2.4649*(age/86)(−3.3856), Ka=0.6750 h−1, V (L)=104.216. The final PPK model was demonstrated to be suitable and effective by the bootstrap and visual predictive checks. Conclusion: A PPK model of huperzine A in elderly Chinese subjects is established, which can be used to predict PPK parameters of huperzine A in the treatment of elderly AD patients. PMID:27180987

  1. Interspecies mixed-effect pharmacokinetic modeling of penicillin G in cattle and swine.

    PubMed

    Li, Mengjie; Gehring, Ronette; Tell, Lisa; Baynes, Ronald; Huang, Qingbiao; Riviere, Jim E

    2014-08-01

    Extralabel drug use of penicillin G in food-producing animals may cause an excess of residues in tissue which will have the potential to damage human health. Of all the antibiotics, penicillin G may have the greatest potential for producing allergic responses to the consumer of food animal products. There are, however, no population pharmacokinetic studies of penicillin G for food animals. The objective of this study was to develop a population pharmacokinetic model to describe the time-concentration data profile of penicillin G across two species. Data were collected from previously published pharmacokinetic studies in which several formulations of penicillin G were administered to diverse populations of cattle and swine. Liver, kidney, and muscle residue data were also used in this study. Compartmental models with first-order absorption and elimination were fit to plasma and tissue concentrations using a nonlinear mixed-effect modeling approach. A 3-compartment model with extra tissue compartments was selected to describe the pharmacokinetics of penicillin G. Typical population parameter estimates (interindividual variability) were central volumes of distribution of 3.45 liters (12%) and 3.05 liters (8.8%) and central clearance of 105 liters/h (32%) and 16.9 liters/h (14%) for cattle and swine, respectively, with peripheral clearance of 24.8 liters/h (13%) and 9.65 liters/h (23%) for cattle and 13.7 liters/h (85%) and 0.52 liters/h (40%) for swine. Body weight and age were the covariates in the final pharmacokinetic models. This study established a robust model of penicillin for a large and diverse population of food-producing animals which could be applied to other antibiotics and species in future analyses. PMID:24867969

  2. A PC-based graphical simulator for physiological pharmacokinetic models.

    PubMed

    Wada, D R; Stanski, D R; Ebling, W F

    1995-04-01

    Since many intravenous anesthetic drugs alter blood flows, physiologically-based pharmacokinetic models describing drug disposition may be time-varying. Using the commercially available programming software MATLAB, a platform to simulate time-varying physiological pharmacokinetic models was developed. The platform is based upon a library of pharmacokinetic blocks which mimic physiological structure. The blocks can be linked together flexibly to form models for different drugs. Because of MATLAB's additional numerical capabilities (e.g. non-linear optimization), the platform provides a complete graphical microcomputer-based tool for physiologic pharmacokinetic modeling. PMID:7656558

  3. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.

    2015-01-01

    An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS). The bioavailability and pharmacokinetics (PK) were evaluated under IND (Investigational New Drug) guidelines. The aim of the project was to develop a PK model that can predict the relationships among plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial protocol with INSCOP. Twelve healthy human subjects were administered at three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. PK compartmental models, using actual dosing and sampling time, were established using Phoenix (version 1.2). Model selection was based on a likelihood ratio test on the difference of criteria (-2LL (i.e. log-likelihood ratio test)) and comparison of the quality of fit plots. The results: Predictable correlations among scopolamine concentrations in compartments of plasma, saliva and urine were established, and for the first time the model satisfactorily predicted the population and individual PK of INSCOP in plasma, saliva and urine. The model can be utilized to predict the INSCOP plasma concentration by saliva and urine data, and it will be useful for monitoring the PK of scopolamine in space and other remote environments using non-invasive sampling of saliva and/or urine.

  4. Compartment calcium model of frog skeletal muscle during activation.

    PubMed

    Liu, Weifan; Olson, Sarah D

    2015-01-01

    Skeletal muscle contraction is triggered by a rise in calcium (Ca(2+)) concentration in the myofibrillar space. The objective of this study was to develop a voltage dependent compartment model of Ca(2+) dynamics in frog skeletal muscle fibers. The compartment model corresponds to the myofibrillar space (MS) and a calcium store, the sarcoplasmic reticulum (SR). Ca(2+) is released from the SR to the MS based on the voltage and is able to bind to several proteins in the MS. We use a detailed model to account for voltage dependent Ca(2+) release and inactivation. With this model, we are able to match previous experimental data for Ca(2+) release and binding to proteins for an applied (fixed) voltage. We explore the sensitivity of parameters in the model and illustrate the importance of inactivation of the SR; during a long depolarization, the SR must be inactivated in order to achieve realistic Ca(2+) concentrations in the MS. A Hodgkin Huxley type model was also developed to describe voltage at the surface membrane using electrophysiological data from previous experiments. This voltage model was then used as the time dependent voltage to determine Ca(2+) release from the SR. With this fully coupled model, we were able to match previous experimental results for Ca(2+) concentrations for a given applied current. Additionally, we examined simulated Ca(2+) concentrations in the case of twitch and tetanus, corresponding to different applied currents. The developed model is robust and reproduces many aspects of voltage dependent calcium signaling in frog skeletal muscle fibers. This modeling framework provides a platform for future studies of excitation contraction coupling in skeletal muscle fibers. PMID:25234233

  5. A physiologically based pharmacokinetic model for developmental exposure to BDE-47 in rats

    SciTech Connect

    Emond, Claude; Raymer, James H.; Studabaker, William B.; Garner, C. Edwin; Birnbaum, Linda S.

    2010-02-01

    Polybrominated diphenyl ethers (PBDEs) are used commercially as additive flame retardants and have been shown to transfer into environmental compartments, where they have the potential to bioaccumulate in wildlife and humans. Of the 209 possible PBDEs, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is usually the dominant congener found in human blood and milk samples. BDE-47 has been shown to have endocrine activity and produce developmental, reproductive, and neurotoxic effects. The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for BDE-47 in male and female (pregnant and non-pregnant) adult rats to facilitate investigations of developmental exposure. This model consists of eight compartments: liver, brain, adipose tissue, kidney, placenta, fetus, blood, and the rest of the body. Concentrations of BDE-47 from the literature and from maternal-fetal pharmacokinetic studies conducted at RTI International were used to parameterize and evaluate the model. The results showed that the model simulated BDE-47 tissue concentrations in adult male, maternal, and fetal compartments within the standard deviations of the experimental data. The model's ability to estimate BDE-47 concentrations in the fetus after maternal exposure will be useful to design in utero exposure/effect studies. This PBPK model is the first one designed for any PBDE pharmaco/toxicokinetic description. The next steps will be to expand this model to simulate BDE-47 pharmacokinetics and distributions across species (mice), and then extrapolate it to humans. After mouse and human model development, additional PBDE congeners will be incorporated into the model and simulated as a mixture.

  6. Development of a human physiologically based pharmacokinetic (PBPK) model for dermal permeability for lindane.

    PubMed

    Sawyer, Megan E; Evans, Marina V; Wilson, Charles A; Beesley, Lauren J; Leon, Lider S; Eklund, Chris R; Croom, Edward L; Pegram, Rex A

    2016-03-14

    Lindane is a neurotoxicant used for the treatment of lice and scabies present on human skin. Due to its pharmaceutical application, an extensive pharmacokinetic database exists in humans. Mathematical diffusion models allow for calculation of lindane skin permeability coefficients using human kinetic data obtained from in vitro and in vivo experimentation as well as a default compound-specific calculation based on physicochemical characteristics used in the absence of kinetic data. A dermal model was developed to describe lindane diffusion into the skin, where the skin compartment consisted of homogeneous dermal tissue. This study utilized Fick's law of diffusion along with chemical binding to protein and lipids to determine appropriate dermal absorption parameters which were then incorporated into a physiologically based pharmacokinetic (PBPK) model to describe in vivo kinetics. The estimation of permeability coefficients using chemical binding in combination with in vivo data demonstrates the advantages of combining physiochemical properties with a PBPK model to predict dermal absorption. PMID:26794662

  7. PHARMACOKINETIC MODELING FOR PERFLUORINATED CHEMICALS USED IN HOUSEHOLD CONSUMER PRODUCTS

    EPA Science Inventory

    PHARMACOKINETIC MODELING FOR PERFLUORONATED CHEMICALS USED IN HOUSEHOLD CONSUMER PRODUCTS
    Leona H. Clark and Hugh A. Barton
    US Environmental Protection Agency, ORD, NHEERL, ETD, Research Triangle Park, NC

    The physiologically-based pharmacokinetic model to be presente...

  8. Characterization of a Compartment Syndrome-like Injury Model

    PubMed Central

    Oyster, Nick; Witt, Michelle; Gharaibeh, Burhan; Poddar, Minakshi; Schneppendahl, Johannes; Huard, Johnny

    2015-01-01

    INTRODUCTION Acute compartment syndrome (CS) is caused by an elevation of pressure within a muscular compartment which can be caused by numerous factors, including blunt trauma. In this study, we characterized a rodent model of CS-like injury. METHODS Forty male athymic rats received a standardized injury of ischemia and compression to their hindlimbs, while the intracompartmental pressure (ICP) was measured using an implantable transmitter. Tetanic muscle function was evaluated, and histology was performed on the tibialis anterior (TA) muscle. RESULTS ICPs were held at 260.70±2.70mmHg during injury. Injured muscles recovered 59% of their total function 4 weeks after injury, and histology showed high levels of edema, inflammation (CD68+), angiogenesis (CD31+), and fibrosis within 72 hours following injury. DISCUSSION We describe a novel CS-like injury model and a novel method to measure ICP which could potentially be used to develop innovative therapies to manage CS injury in humans. PMID:25242666

  9. A simple pharmacokinetics subroutine for modeling double peak phenomenon.

    PubMed

    Mirfazaelian, Ahmad; Mahmoudian, Massoud

    2006-04-01

    Double peak absorption has been described with several orally administered drugs. Numerous reasons have been implicated in causing the double peak. DRUG-KNT--a pharmacokinetic software developed previously for fitting one and two compartment kinetics using the iterative curve stripping method--was modified and a revised subroutine was incorporated to solve double-peak models. This subroutine considers the double peak as two hypothetical doses administered with a time gap. The fitting capability of the presented model was verified using four sets of data showing double peak profiles extracted from the literature (piroxicam, ranitidine, phenazopyridine and talinolol). Visual inspection and statistical diagnostics showed that the present algorithm provided adequate curve fit disregarding the mechanism involved in the emergence of the secondary peaks. Statistical diagnostic parameters (RSS, AIC and R2) generally showed good fitness in the plasma profile prediction by this model. It was concluded that the algorithm presented herein provides adequate predicted curves in cases of the double peak phenomenon. PMID:16400712

  10. Semiphysiologically Based Pharmacokinetic Model of Leflunomide Disposition in Rheumatoid Arthritis Patients

    PubMed Central

    Hopkins, AM; Wiese, MD; Proudman, SM; O'Doherty, CE; Foster, DJR; Upton, RN

    2015-01-01

    A semiphysiologically based pharmacokinetic (semi-PBPK) population model was used to evaluate the influence of enterohepatic recycling and protein binding, as well as the effect of genetic variability in CYP1A2, CYP2C19, and ABCG2, on the large interindividual variability of teriflunomide (active metabolite) concentrations following leflunomide administration in rheumatoid arthritis (RA) patients. The model was developed with total and free teriflunomide concentrations determined in RA patients taking leflunomide, as well as mean teriflunomide concentrations following the administration of leflunomide or teriflunomide extracted from the literature. Once developed, the 15-compartment model was able to predict total and free teriflunomide concentrations and was used to screen demographic and genotypic covariates, of which only fat-free mass and liver function (ALT) improved prediction. This approach effectively evaluated the effects of multiple covariates on both total and free teriflunomide concentrations, which have only been explored previously through simplistic one-compartment models for total teriflunomide. PMID:26225264

  11. Semiphysiologically Based Pharmacokinetic Model of Leflunomide Disposition in Rheumatoid Arthritis Patients.

    PubMed

    Hopkins, A M; Wiese, M D; Proudman, S M; O'Doherty, C E; Foster, Djr; Upton, R N

    2015-06-01

    A semiphysiologically based pharmacokinetic (semi-PBPK) population model was used to evaluate the influence of enterohepatic recycling and protein binding, as well as the effect of genetic variability in CYP1A2, CYP2C19, and ABCG2, on the large interindividual variability of teriflunomide (active metabolite) concentrations following leflunomide administration in rheumatoid arthritis (RA) patients. The model was developed with total and free teriflunomide concentrations determined in RA patients taking leflunomide, as well as mean teriflunomide concentrations following the administration of leflunomide or teriflunomide extracted from the literature. Once developed, the 15-compartment model was able to predict total and free teriflunomide concentrations and was used to screen demographic and genotypic covariates, of which only fat-free mass and liver function (ALT) improved prediction. This approach effectively evaluated the effects of multiple covariates on both total and free teriflunomide concentrations, which have only been explored previously through simplistic one-compartment models for total teriflunomide. PMID:26225264

  12. Pharmacokinetic Modeling of Non-Linear Brain Distribution of Fluvoxamine in the Rat

    PubMed Central

    Geldof, Marian; Freijer, Jan; van Beijsterveldt, Ludy

    2007-01-01

    Introduction A pharmacokinetic (PK) model is proposed for estimation of total and free brain concentrations of fluvoxamine. Materials and methods Rats with arterial and venous cannulas and a microdialysis probe in the frontal cortex received intravenous infusions of 1, 3.7 or 7.3 mg.kg−1 of fluvoxamine. Analysis With increasing dose a disproportional increase in brain concentrations was observed. The kinetics of brain distribution was estimated by simultaneous analysis of plasma, free brain ECF and total brain tissue concentrations. The PK model consists of three compartments for fluvoxamine concentrations in plasma in combination with a catenary two compartment model for distribution into the brain. In this catenary model, the mass exchange between a shallow perfusion-limited and a deep brain compartment is described by a passive diffusion term and a saturable active efflux term. Results The model resulted in precise estimates of the parameters describing passive influx into (kin) of 0.16 min−1 and efflux from the shallow brain compartment (kout) of 0.019 min−1 and the fluvoxamine concentration at which 50% of the maximum active efflux (C50) is reached of 710 ng.ml−1. The proposed brain distribution model constitutes a basis for precise characterization of the PK–PD correlation of fluvoxamine by taking into account the non-linearity in brain distribution. PMID:17710515

  13. Permeability of iodide in multilamellar liposomes modeled by two compartments and a reservoir.

    PubMed

    Schullery, S E

    1977-07-14

    A previously published rate law for the diffusion of iodide from multilamellar egg phosphatidylcholine liposomes (Schullery, S.E. (1975) Chem. Phys. Lipids 14, 49-58) is fitted to the relatively simple mathematical model of two compartments in series with a reservoir. All of the inner liposome compartments are assumed to behave as effectively one compartment in series with the liposome's outermost compartment. Based on this model, reasonable values are calculated for the fraction of the total solution trapped by liposomes which is in the outermost liposome compartment, 17%, and the permeability coefficient of iodide against isotonic, mixed iodide-chloride solution, 2-10(-9) cm/s. PMID:884087

  14. Coupling volume-excluding compartment-based models of diffusion at different scales: Voronoi and pseudo-compartment approaches.

    PubMed

    Taylor, P R; Baker, R E; Simpson, M J; Yates, C A

    2016-07-01

    Numerous processes across both the physical and biological sciences are driven by diffusion. Partial differential equations are a popular tool for modelling such phenomena deterministically, but it is often necessary to use stochastic models to accurately capture the behaviour of a system, especially when the number of diffusing particles is low. The stochastic models we consider in this paper are 'compartment-based': the domain is discretized into compartments, and particles can jump between these compartments. Volume-excluding effects (crowding) can be incorporated by blocking movement with some probability. Recent work has established the connection between fine- and coarse-grained models incorporating volume exclusion, but only for uniform lattices. In this paper, we consider non-uniform, hybrid lattices that incorporate both fine- and coarse-grained regions, and present two different approaches to describe the interface of the regions. We test both techniques in a range of scenarios to establish their accuracy, benchmarking against fine-grained models, and show that the hybrid models developed in this paper can be significantly faster to simulate than the fine-grained models in certain situations and are at least as fast otherwise. PMID:27383421

  15. PHARMACOKINETIC/PHARMACODYNAMIC MODELING OF PERMETHRIN IN THE RAT

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model was used to describe pharmacokinetics of permethrin and calibrated using experimental data on the concentration time-course of cis- and trans-permethrin in rat blood and brain tissues following oral administration...

  16. Oseltamivir Population Pharmacokinetics in the Ferret: Model Application for Pharmacokinetic/Pharmacodynamic Study Design.

    PubMed

    Reddy, Micaela B; Yang, Kuo-Hsiung; Rao, Gauri; Rayner, Craig R; Nie, Jing; Pamulapati, Chandrasena; Marathe, Bindumadhav M; Forrest, Alan; Govorkova, Elena A

    2015-01-01

    The ferret is a suitable small animal model for preclinical evaluation of efficacy of antiviral drugs against various influenza strains, including highly pathogenic H5N1 viruses. Rigorous pharmacokinetics/pharmacodynamics (PK/PD) assessment of ferret data has not been conducted, perhaps due to insufficient information on oseltamivir PK. Here, based on PK data from several studies on both uninfected and influenza-infected groups (i.e., with influenza A viruses of H5N1 and H3N2 subtypes and an influenza B virus) and several types of anesthesia we developed a population PK model for the active compound oseltamivir carboxylate (OC) in the ferret. The ferret OC population PK model incorporated delayed first-order input, two-compartment distribution, and first-order elimination to successfully describe OC PK. Influenza infection did not affect model parameters, but anesthesia did. The conclusion that OC PK was not influenced by influenza infection must be viewed with caution because the influenza infections in the studies included here resulted in mild clinical symptoms in terms of temperature, body weight, and activity scores. Monte Carlo simulations were used to determine that administration of a 5.08 mg/kg dose of oseltamivir phosphate to ferret every 12 h for 5 days results in the same median OC area under the plasma concentration-time curve 0-12 h (i.e., 3220 mg h/mL) as that observed in humans during steady state at the approved dose of 75 mg twice daily for 5 days. Modeling indicated that PK variability for OC in the ferret model is high, and can be affected by anesthesia. Therefore, for proper interpretation of PK/PD data, sparse PK sampling to allow the OC PK determination in individual animals is important. Another consideration in appropriate design of PK/PD studies is achieving an influenza infection with pronounced clinical symptoms and efficient virus replication, which will allow adequate evaluation of drug effects. PMID:26460484

  17. Oseltamivir Population Pharmacokinetics in the Ferret: Model Application for Pharmacokinetic/Pharmacodynamic Study Design

    PubMed Central

    Reddy, Micaela B.; Yang, Kuo-Hsiung; Rao, Gauri; Rayner, Craig R.; Nie, Jing; Pamulapati, Chandrasena; Marathe, Bindumadhav M.; Forrest, Alan; Govorkova, Elena A.

    2015-01-01

    The ferret is a suitable small animal model for preclinical evaluation of efficacy of antiviral drugs against various influenza strains, including highly pathogenic H5N1 viruses. Rigorous pharmacokinetics/pharmacodynamics (PK/PD) assessment of ferret data has not been conducted, perhaps due to insufficient information on oseltamivir PK. Here, based on PK data from several studies on both uninfected and influenza-infected groups (i.e., with influenza A viruses of H5N1 and H3N2 subtypes and an influenza B virus) and several types of anesthesia we developed a population PK model for the active compound oseltamivir carboxylate (OC) in the ferret. The ferret OC population PK model incorporated delayed first-order input, two-compartment distribution, and first-order elimination to successfully describe OC PK. Influenza infection did not affect model parameters, but anesthesia did. The conclusion that OC PK was not influenced by influenza infection must be viewed with caution because the influenza infections in the studies included here resulted in mild clinical symptoms in terms of temperature, body weight, and activity scores. Monte Carlo simulations were used to determine that administration of a 5.08 mg/kg dose of oseltamivir phosphate to ferret every 12 h for 5 days results in the same median OC area under the plasma concentration-time curve 0–12 h (i.e., 3220 mg h/mL) as that observed in humans during steady state at the approved dose of 75 mg twice daily for 5 days. Modeling indicated that PK variability for OC in the ferret model is high, and can be affected by anesthesia. Therefore, for proper interpretation of PK/PD data, sparse PK sampling to allow the OC PK determination in individual animals is important. Another consideration in appropriate design of PK/PD studies is achieving an influenza infection with pronounced clinical symptoms and efficient virus replication, which will allow adequate evaluation of drug effects. PMID:26460484

  18. Pharmacokinetic evaluation of avicularin using a model-based development approach.

    PubMed

    Buqui, Gabriela Amaral; Gouvea, Dayana Rubio; Sy, Sherwin K B; Voelkner, Alexander; Singh, Ravi S P; da Silva, Denise Brentan; Kimura, Elza; Derendorf, Hartmut; Lopes, Norberto Peporine; Diniz, Andrea

    2015-03-01

    The aim of this study was to use the pharmacokinetic information of avicularin in rats to project a dose for humans using allometric scaling. A highly sensitive and specific bioanalytical assay to determine avicularin concentrations in the plasma was developed and validated for UPLC-MS/MS. The plasma protein binding of avicularin in rat plasma determined by the ultrafiltration method was 64%. The pharmacokinetics of avicularin in nine rats was studied following an intravenous bolus administration of 1 mg/kg and was found to be best described by a two-compartment model using a nonlinear mixed effects modeling approach. The pharmacokinetic parameters were allometrically scaled by body weight and centered to the median rat weight of 0.23 kg, with the power coefficient fixed at 0.75 for clearance and 1 for volume parameters. Avicularin was rapidly eliminated from the systemic circulation within 1 h post-dose, and the avicularin pharmacokinetic was linear up to 5 mg/kg based on exposure comparison to literature data for a 5-mg/kg single dose in rats. Using allometric scaling and Monte Carlo simulation approaches, the rat doses of 1 and 5 mg/kg correspond to the human equivalent doses of 30 and 150 mg, respectively, to achieve comparable plasma avicularin concentrations in humans. PMID:25782034

  19. Explicit Pharmacokinetic Modeling: Tools for Documentation, Verification, and Portability

    EPA Science Inventory

    Quantitative estimates of tissue dosimetry of environmental chemicals due to multiple exposure pathways require the use of complex mathematical models, such as physiologically-based pharmacokinetic (PBPK) models. The process of translating the abstract mathematics of a PBPK mode...

  20. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion

    PubMed Central

    Yates, Christian A.; Flegg, Mark B.

    2015-01-01

    Spatial reaction–diffusion models have been employed to describe many emergent phenomena in biological systems. The modelling technique most commonly adopted in the literature implements systems of partial differential equations (PDEs), which assumes there are sufficient densities of particles that a continuum approximation is valid. However, owing to recent advances in computational power, the simulation and therefore postulation, of computationally intensive individual-based models has become a popular way to investigate the effects of noise in reaction–diffusion systems in which regions of low copy numbers exist. The specific stochastic models with which we shall be concerned in this manuscript are referred to as ‘compartment-based’ or ‘on-lattice’. These models are characterized by a discretization of the computational domain into a grid/lattice of ‘compartments’. Within each compartment, particles are assumed to be well mixed and are permitted to react with other particles within their compartment or to transfer between neighbouring compartments. Stochastic models provide accuracy, but at the cost of significant computational resources. For models that have regions of both low and high concentrations, it is often desirable, for reasons of efficiency, to employ coupled multi-scale modelling paradigms. In this work, we develop two hybrid algorithms in which a PDE in one region of the domain is coupled to a compartment-based model in the other. Rather than attempting to balance average fluxes, our algorithms answer a more fundamental question: ‘how are individual particles transported between the vastly different model descriptions?’ First, we present an algorithm derived by carefully redefining the continuous PDE concentration as a probability distribution. While this first algorithm shows very strong convergence to analytical solutions of test problems, it can be cumbersome to simulate. Our second algorithm is a simplified and more efficient

  1. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction

    EPA Science Inventory

    Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-v...

  2. Exploring Population Pharmacokinetic Modeling with Resampling Visualization

    PubMed Central

    Zuo, Fenghua

    2014-01-01

    Background. In the last decade, population pharmacokinetic (PopPK) modeling has spread its influence in the whole process of drug research and development. While targeting the construction of the dose-concentration of a drug based on a population of patients, it shows great flexibility in dealing with sparse samplings and unbalanced designs. The resampling approach has been considered an important statistical tool to assist in PopPK model validation by measuring the uncertainty of parameter estimates and evaluating the influence of individuals. Methods. The current work describes a graphical diagnostic approach for PopPK models by visualizing resampling statistics, such as case deletion and bootstrap. To examine resampling statistics, we adapted visual methods from multivariate analysis, parallel coordinate plots, and multidimensional scaling. Results. Multiple models were fitted, the information of parameter estimates and diagnostics were extracted, and the results were visualized. With careful scaling, the dependencies between different statistics are revealed. Using typical examples, the approach proved to have great capacity to identify influential outliers from the statistical perspective, which deserves special attention in a dosing regimen. Discussion. By combining static graphics with interactive graphics, we are able to explore the multidimensional data from an integrated and systematic perspective. Complementary to current approaches, our proposed method provides a new way for PopPK modeling analysis. PMID:24877118

  3. Physiologically based modeling of the pharmacokinetics of acetaminophen and its major metabolites in humans using a Bayesian population approach.

    PubMed

    Zurlinden, Todd J; Reisfeld, Brad

    2016-06-01

    The principal aim of this study was to develop, validate, and demonstrate a physiologically based pharmacokinetic (PBPK) model to predict and characterize the absorption, distribution, metabolism, and excretion of acetaminophen (APAP) in humans. A PBPK model was created that included pharmacologically and toxicologically relevant tissue compartments and incorporated mechanistic descriptions of the absorption and metabolism of APAP, such as gastric emptying time, cofactor kinetics, and transporter-mediated movement of conjugated metabolites in the liver. Through the use of a hierarchical Bayesian framework, unknown model parameters were estimated using a large training set of data from human pharmacokinetic studies, resulting in parameter distributions that account for data uncertainty and inter-study variability. Predictions from the model showed good agreement to a diverse test set of data across several measures, including plasma concentrations over time, renal clearance, APAP absorption, and pharmacokinetic and exposure metrics. The utility of the model was then demonstrated through predictions of cofactor depletion, dose response of several pharmacokinetic endpoints, and the relationship between APAP biomarker levels in the plasma and those in the liver. The model addressed several limitations in previous PBPK models for APAP, and it is anticipated that it will be useful in predicting the pharmacokinetics of APAP in a number of contexts, such as extrapolating across doses, estimating internal concentrations, quantifying population variability, assessing possible impacts of drug coadministration, and, when coupled with a suitable pharmacodynamic model, predicting toxicity. PMID:25636597

  4. A nonlinear mixed effects modelling analysis of topiramate pharmacokinetics in patients with epilepsy.

    PubMed

    Vovk, Tomaz; Jakovljević, Mihajlo B; Kos, Mojca Kerec; Janković, Slobodan M; Mrhar, Ales; Grabnar, Iztok

    2010-01-01

    Topiramate pharmacokinetics is influenced by individual factors such as patient age, renal function and co-treatment. The aim of this study was to develop a population pharmacokinetic model of topiramate to assist dosage adjustments in individual patients. Steady-state topiramate plasma concentrations in patients with epilepsy were determined by HPLC using fluorescent labelling. Demographic, biochemical data and dosing history including concomitant drug therapy were collected from patients' charts. Nonlinear mixed effects modelling was used to fit a one-compartment pharmacokinetic model. The influence of patient weight and gender, body surface area, age, creatinine clearance, serum transaminases, topiramate daily dose and co-treatment with carbamazepine, valproic acid, benzodiazepines, and risperidone on topiramate pharmacokinetics was evaluated. Additionally, the relationship between topiramate plasma concentration and clinical response was investigated. Volume of distribution of topiramate was 0.518 l/kg. For a typical patient oral clearance was estimated at 1.47 l/h, with interindividual variability of 39.2%. Clearance was 70% higher in patients co-treated with carbamazepine and was found to increase with patient age. Somnolence was the most frequently observed adverse event. Incidence of headache was associated with topiramate plasma concentration. Somnolence, ataxia, tremor, speech disorders and fatigue were associated with adjunctive therapy with carbamazepine, valproic acid, benzodiazepines, risperidone, and clozapine. No association of topiramate plasma concentration with frequency of seizures or patient quality of life was observed. The developed model can be used for Bayesian estimation of pharmacokinetic parameters based on sparse plasma samples and for selection of optimum dosing in routine patient care. PMID:20606310

  5. A Human Life-Stage Physiologically Based Pharmacokinetic and Pharmacodynamic Model for Chlorpyrifos: Development and Validation

    SciTech Connect

    Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles; Bartels, M. J.; Poet, Torka S.

    2014-08-01

    Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Blood flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ≥ 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.

  6. Pirbenicillin: Pharmacokinetic Parameters in Mice

    PubMed Central

    English, Arthur R.; Girard, Dennis; Retsema, James A.

    1976-01-01

    The rapid intravenous administration to mice of pirbenicillin, carbenicillin, and ampicillin produced biexponential blood concentration-time curves when assessed by frequent blood samplings at short intervals. The pharmacokinetic behavior of pirbenicillin and the other penicillins was analyzed by the two-compartment open model. This is thought to be the first study giving detailed pharmacokinetic values of penicillins in mice. Some significant differences were noted between the pharmacokinetic values of pirbenicillin, ampicillin, and carbenicillin. These values suggest that the interchange of pirbenicillin between the central and peripheral body compartments of the mouse was slower than that of either carbenicillin or ampicillin and indicated that a greater fraction of the pirbenicillin than the ampicillin dose reached the peripheral compartment. PMID:984791

  7. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    PubMed Central

    Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I.

    2014-01-01

    Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways. PMID:24647103

  8. A physiologically based pharmacokinetic (PBPK) model for methyl mercury (MeHg) in monkey and human

    SciTech Connect

    Gearhart, J.M.; Clewall, H.J. III; Shipp, A.M.

    1995-12-31

    A PBPK model for MeHg was developed which coherently describes MeHg pharmacokinetics in the adult rat, monkey and man, and predicts fetal levels of MeHg from in utero exposure. The model includes a description of enterohepatic recirculation of MeHg, conversion to inorganic mercury in tissues and intestinal flora, slowly reversible incorporation of mercury in tissues, and excretion of both organic and inorganic mercury into urine, feces, and hair. The adult submodel includes compartments representing the red blood tells (RBC), plasma, brain, liver, kidney, gut intestinal lumen, gut tissue, hair, richly and slowly perfused tissues, and placenta. The fetal submodel includes compartments representing RBC`s, plasma, brain, and remaining body mass. Two features of the model structure which are critical to prediction of the kinetics of MeHg in different species is the use of separate RBC and plasma compartments, allowing the use of species specific RBC/plasma ratios, and biliary excretion with enterohepatic recirculation. Published tissue and blood MeHg concentrations were used to derive the partition coefficients and RBC/plasma ratios to adjust for species differences in MeHg distribution. Validation involved comparing the model simulations with data from repeated dosing studies in animals and humans, and from accidental human exposures. The model will be used to investigate maternal MeHg intake as it relates to measured blood and hair MeHg concentrations, and to fetal exposure.

  9. Pharmacokinetic Modeling of Perfluoroalkyl Acids in Rodents

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) has pharmacokinetic properties that appear consistent with a number of processes that are currently not well understood. Studies in mice exposed orally at lower doses (1 and 10 mg/kg) demonstrated blood, liver, and kidney concentration time courses ...

  10. Determination of phenazopyridine in human plasma via LC-MS and subsequent development of a pharmacokinetic model.

    PubMed

    Shang, Erxin; Xiang, Bingren; Liu, Guangyu; Xie, Shaofei; Wei, Wenyan; Lu, Jun

    2005-05-01

    This paper describes a new LC-MS method for the determination of phenazopyridine and the subsequent development of a pharmacokinetic model for phenazopyridine in vivo. Phenazopyridine hydrochloride is a strong analgesic used in the treatment of urinary tract infections. Although it has been used as a clinical treatment for a very long time, pharmacokinetic data and suitable methods for its determination in plasma are currently lacking. The study described in this paper used high performance liquid chromatography-mass spectrometry, HPLC-MS, to determine the plasma concentrations of phenazopyridine in human subjects after oral administration. After liquid-liquid extraction, the phenazopyridine in the plasma was analyzed on a C18 column under SIM mode. A double-peak phenomenon was observed in most of the concentration-time profiles of the subjects. Although some drugs are known to cause this phenomenon, phenazopyridine has not been reported to do so. Several possible causes were analyzed in order to obtain an explanation. We proposed a two-site absorption compartment model to fit the concentration data in vivo, which has one more absorption site than the classical one-compartment model. The model describes the concentration profiles in different dose groups well and could provide an explanation for the double-peak phenomenon. The three dose groups exhibited similar model parameters and a linear pharmacokinetic process over the dose range used. PMID:15900475

  11. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies.

    PubMed

    Glassman, Patrick M; Balthasar, Joseph P

    2016-08-01

    Accurate prediction of the clinical pharmacokinetics of new therapeutic entities facilitates decision making during drug discovery, and increases the probability of success for early clinical trials. Standard strategies employed for predicting the pharmacokinetics of small-molecule drugs (e.g., allometric scaling) are often not useful for predicting the disposition monoclonal antibodies (mAbs), as mAbs frequently demonstrate species-specific non-linear pharmacokinetics that is related to mAb-target binding (i.e., target-mediated drug disposition, TMDD). The saturable kinetics of TMDD are known to be influenced by a variety of factors, including the sites of target expression (which determines the accessibility of target to mAb), the extent of target expression, the rate of target turnover, and the fate of mAb-target complexes. In most cases, quantitative information on the determinants of TMDD is not available during early phases of drug discovery, and this has complicated attempts to employ mechanistic mathematical models to predict the clinical pharmacokinetics of mAbs. In this report, we introduce a simple strategy, employing physiologically-based modeling, to predict mAb disposition in humans. The approach employs estimates of inter-antibody variability in rate processes of extravasation in tissues and fluid-phase endocytosis, estimates for target concentrations in tissues derived through use of categorical immunohistochemical scores, and in vitro measures of the turnover of target and target-mAb complexes. Monte Carlo simulations were performed for four mAbs (cetuximab, figitumumab, dalotuzumab, trastuzumab) directed against three targets (epidermal growth factor receptor, insulin-like growth factor receptor 1, human epidermal growth factor receptor 2). The proposed modeling strategy was able to predict well the pharmacokinetics of cetuximab, dalotuzumab, and trastuzumab at a range of doses, but trended towards underprediction of figitumumab concentrations

  12. A pharmacokinetic analysis of posaconazole oral suspension in the serum and alveolar compartment of lung transplant recipients.

    PubMed

    Thakuria, L; Packwood, K; Firouzi, A; Rogers, P; Soresi, S; Habibi-Parker, K; Lyster, H; Zych, B; Garcia-Saez, D; Mohite, P; Patil, N; Sabashnikov, A; Capoccia, M; Chibvuri, M; Lamba, H; Tate, H; Carby, M; Simon, A; Leaver, N; Reed, A

    2016-01-01

    Invasive fungal infections cause significant morbidity and mortality after lung transplantation. Fungal prophylaxis following lung transplantation is not standardised, with transplant centres utilising a variety of regimens. Posaconazole is a broad-spectrum antifungal triazole that requires further investigation within the setting of lung transplantation. This prospective, single-centre, observational study explored the pharmacokinetics of posaconazole oral suspension (POS) in the early perioperative period following lung transplantation in 26 patients. Organ recipients were scheduled to receive 400mg POS twice daily for 6 weeks as primary antifungal prophylaxis. Therapeutic drug monitoring (TDM) of serum posaconazole levels was performed in accordance with local clinical protocols. Bronchoalveolar lavage fluid (BALF) was sampled during routine bronchoscopies. Posaconazole levels were measured both in serum and BALF using mass spectrometry. Posaconazole levels were highly variable within lung transplant recipients during the perioperative period and did not achieve 'steady-state'. Serum posaconazole concentrations positively correlated with levels within the BALF (r=0.5527; P=0.0105). Of the 26 patients, 10 failed to complete the study for multiple reasons and so the trial was terminated early. Unlike study findings in stable recipients, serum posaconazole levels rarely achieved steady-state in the perioperative period; however, they do reflect the concentrations within the airways of newly transplanted lungs. The role of POS as primary prophylaxis in the perioperative period is uncertain, but if used TDM may be helpful for determining attainment of therapeutic levels. PMID:26607341

  13. Gender based Dosing of Metoprolol in the Elderly using Population Pharmacokinetic Modeling and Simulations

    PubMed Central

    Eugene, Andy R.

    2016-01-01

    Introduction This article seeks to clarify if gender-based differences occur in the pharmacokinetics of metoprolol in the elderly patients. There are a series of physiologic changes that occur in the elderly ranging from decreased hepatic blood flow to increased adiposity causing higher plasma concentrations at therapeutic doses as compared to the healthy young population. Methods Population pharmacokinetic modeling were performed using MONOLIX and Monte-Carlo simulations were conducted using MATLAB. The data was based from a previously published dataset where elderly patients, having multiple comorbidities, were administered a 50mg dose of metoprolol. Results Metoprolol was modeled using a one-compartment model and resulted in the following population pharmacokinetic parameters: volume of distribution, V=38L (CV=155%), clearance rates, CL-Men=105L/hour and CL-Women=59.1L/hour (38%), time lag, Tlag=0.469 hour (CV=17%), and the absorption rate constant, Ka=0.235 hr-1 (CV=23%). Conclusion Gender stratified doses resulting in an equivalent systemic metoprolol exposure in geriatric patients have been identified. Metoprolol doses resulting a similar AUC in a healthy young male administered 50mg tablet were 15mg for geriatric women and 25mg for geriatric men. Further, Metoprolol doses of 25mg for geriatric women and 50mg for geriatric men resulted in an equivalent AUC to a healthy young males dosed with a 100mg tablet. A 15mg Metoprolol tablet may need to be compounded to account for the gender differences in Metoprolol pharmacokinetics.

  14. Pharmacokinetic Modeling to Simulate the Concentration-Time Profiles After Dermal Application of Rivastigmine Patch.

    PubMed

    Nozaki, Sachiko; Yamaguchi, Masayuki; Lefèvre, Gilbert

    2016-07-01

    Rivastigmine is an inhibitor of acetylcholinesterases and butyrylcholinesterases for symptomatic treatment of Alzheimer disease and is available as oral and transdermal patch formulations. A dermal absorption pharmacokinetic (PK) model was developed to simulate the plasma concentration-time profile of rivastigmine to answer questions relative to the efficacy and safety risks after misuse of the patch (e.g., longer application than 24 h, multiple patches applied at the same time, and so forth). The model comprised 2 compartments which was a combination of mechanistic dermal absorption model and a basic 1-compartment model. The initial values for the model were determined based on the physicochemical characteristics of rivastigmine and PK parameters after intravenous administration. The model was fitted to the clinical PK profiles after single application of rivastigmine patch to obtain model parameters. The final model was validated by confirming that the simulated concentration-time curves and PK parameters (Cmax and area under the drug plasma concentration-time curve) conformed to the observed values and then was used to simulate the PK profiles of rivastigmine. This work demonstrated that the mechanistic dermal PK model fitted the clinical data well and was able to simulate the PK profile after patch misuse. PMID:27212635

  15. Some Comments and Suggestions concerning Population Pharmacokinetic Modeling, especially of Digoxin, and its Relation to Clinical Therapy

    PubMed Central

    Jelliffe, Roger W.

    2013-01-01

    Population pharmacokinetic and dynamic (PK/PD) modeling is often employed to analyze data of steady state trough serum digoxin concentrations in the course of what is frequently regarded as routine therapeutic drug monitoring (TDM). Such a monitoring protocol is extremely uninformative. It permits only estimation of a single parameter of a one- compartment model, such as clearance. Use of D-optimal design strategies permit much more information to be obtained, employing models having really meaningful structure. Strategies and protocols for routine TDM policies greatly need to be improved, incorporating these principles of optimal design. PMID:22735674

  16. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.

    2016-02-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  17. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    PubMed Central

    Zhang, Jeff L; Morey, A Michael; Kadrmas, Dan J

    2016-01-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. PMID:26788888

  18. The Modelling Pharmacokinetic Profile of Freeze-Dried Cyclosporine A-Eudragit S100 Nanoparticle Formulation in Dogs

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Fang, Zhi-gang; You, Ben-Gang; Ding, Xin-yuan; Zhang, Xue-nong

    The modelling pharmacokinetic profile of freeze-dried cyclosporine A-Eudragit S100 nanoparticles (CyA-S100-NP) was studied with a random two-way crossover study in dogs. The drug blood concentration was determined by internal standard HPLC method after oral administration of CyA-S100-NP and Neoral. Pharmacokinetics modellng parameters were calculated by 3P97modelling program. The concentration-time data were fitted as a two-compartment open model. The AUC of CyA-S100-NP was higher than that of Neoral (P<0.05), while the CL significantly decreased (P<0.05). The relative bioavailability of CyA-S100-NP were 135.9% compared with Neoral. The bioavailability of CyA was significantly improved. CyA-S100-NP was a potential drug for developing a new CyA nanoparticles solid formulation.

  19. An interface model for dosage adjustment connects hematotoxicity to pharmacokinetics.

    PubMed

    Meille, C; Iliadis, A; Barbolosi, D; Frances, N; Freyer, G

    2008-12-01

    When modeling is required to describe pharmacokinetics and pharmacodynamics simultaneously, it is difficult to link time-concentration profiles and drug effects. When patients are under chemotherapy, despite the huge amount of blood monitoring numerations, there is a lack of exposure variables to describe hematotoxicity linked with the circulating drug blood levels. We developed an interface model that transforms circulating pharmacokinetic concentrations to adequate exposures, destined to be inputs of the pharmacodynamic process. The model is materialized by a nonlinear differential equation involving three parameters. The relevance of the interface model for dosage adjustment is illustrated by numerous simulations. In particular, the interface model is incorporated into a complex system including pharmacokinetics and neutropenia induced by docetaxel and by cisplatin. Emphasis is placed on the sensitivity of neutropenia with respect to the variations of the drug amount. This complex system including pharmacokinetic, interface, and pharmacodynamic hematotoxicity models is an interesting tool for analysis of hematotoxicity induced by anticancer agents. The model could be a new basis for further improvements aimed at incorporating new experimental features. PMID:19107581

  20. Sensitivity Analysis of a Pharmacokinetic Model of Vaginal Anti-HIV Microbicide Drug Delivery.

    PubMed

    Jarrett, Angela M; Gao, Yajing; Hussaini, M Yousuff; Cogan, Nicholas G; Katz, David F

    2016-05-01

    Uncertainties in parameter values in microbicide pharmacokinetics (PK) models confound the models' use in understanding the determinants of drug delivery and in designing and interpreting dosing and sampling in PK studies. A global sensitivity analysis (Sobol' indices) was performed for a compartmental model of the pharmacokinetics of gel delivery of tenofovir to the vaginal mucosa. The model's parameter space was explored to quantify model output sensitivities to parameters characterizing properties for the gel-drug product (volume, drug transport, initial loading) and host environment (thicknesses of the mucosal epithelium and stroma and the role of ambient vaginal fluid in diluting gel). Greatest sensitivities overall were to the initial drug concentration in gel, gel-epithelium partition coefficient for drug, and rate constant for gel dilution by vaginal fluid. Sensitivities for 3 PK measures of drug concentration values were somewhat different than those for the kinetic PK measure. Sensitivities in the stromal compartment (where tenofovir acts against host cells) and a simulated biopsy also depended on thicknesses of epithelium and stroma. This methodology and results here contribute an approach to help interpret uncertainties in measures of vaginal microbicide gel properties and their host environment. In turn, this will inform rational gel design and optimization. PMID:27012224

  1. A physiologically based pharmacokinetic model for lactational transfer of Na-131I

    NASA Astrophysics Data System (ADS)

    Turner, Anita Loretta

    The excretion of radionuclides in human breast milk after administration of radiopharmaceuticals is a concern as a radiation risk to nursing infants. It is not uncommon to administer radiopharmaceuticals to lactating patients due to emergency nuclear medicine investigations such as thyroid complications, kidney failure, and pulmonary embolism. There is a need to quantify the amount of radioactivity translocated into breast milk in cases of ingestion by a breast-fed infant. A physiologically based pharmacokinetic model (PBPK) and a modified International Commission on Radiological Protection (ICRP) model have been developed to predict iodine concentrations in breast milk after ingestion of radioiodine by the mother. In the PBPK model, all compartments are interconnected by blood flow and represent real anatomic tissue regions in the body. All parameters involved are measurable values with physiological or physiochemical meaning such as tissue masses, blood flow rates, partition coefficients and cardiac output. However, some of the parameters such as the partition coefficients and metabolic constants are not available for iodine and had to be inferred from other information. The structure of the PBPK model for the mother consists of the following tissue compartments: gastrointestinal tract, blood, kidney, thyroid, milk, and other tissues. With the exception of the milk compartment, the model for the nursing infant is structured similarly to the mother. The ICRP model describing iodine metabolism in a standard 70-kg man was modified to represent iodine metabolism in a lactating woman and nursing infant. The parameters involved in this model are transfer rates and biological half-lives which are based on experimental observations. The results of the PBPK model and the modified ICRP model describing the lactational transfer of iodine were compared. When administering 1 mCi of Na131I to the lactating mother, the concentration reaches a maximum of 0.1 mCi/liter in 24

  2. Physiologically Based Pharmacokinetic Modeling of Fluorescently Labeled Block Copolymer Nanoparticles for Controlled Drug Delivery in Leukemia Therapy.

    PubMed

    Gilkey, M J; Krishnan, V; Scheetz, L; Jia, X; Rajasekaran, A K; Dhurjati, P S

    2015-03-01

    A physiologically based pharmacokinetic (PBPK) model was developed that describes the concentration and biodistribution of fluorescently labeled nanoparticles in mice used for the controlled delivery of dexamethasone in acute lymphoblastic leukemia (ALL) therapy. The simulated data showed initial spikes in nanoparticle concentration in the liver, spleen, and kidneys, whereas concentration in plasma decreased rapidly. These simulation results were consistent with previously published in vivo data. At shorter time scales, the simulated data predicted decrease of nanoparticles from plasma with concomitant increase in the liver, spleen, and kidneys before decaying at longer timepoints. Interestingly, the simulated data predicted an unaccounted accumulation of about 50% of the injected dose of nanoparticles. Incorporation of an additional compartment into the model justified the presence of unaccounted nanoparticles in this compartment. Our results suggest that the proposed PBPK model can be an excellent tool for prediction of optimal dose of nanoparticle-encapsulated drugs for cancer treatment. PMID:26225236

  3. Physiologically Based Pharmacokinetic Modeling of Fluorescently Labeled Block Copolymer Nanoparticles for Controlled Drug Delivery in Leukemia Therapy

    PubMed Central

    Gilkey, MJ; Krishnan, V; Scheetz, L; Jia, X; Rajasekaran, AK; Dhurjati, PS

    2015-01-01

    A physiologically based pharmacokinetic (PBPK) model was developed that describes the concentration and biodistribution of fluorescently labeled nanoparticles in mice used for the controlled delivery of dexamethasone in acute lymphoblastic leukemia (ALL) therapy. The simulated data showed initial spikes in nanoparticle concentration in the liver, spleen, and kidneys, whereas concentration in plasma decreased rapidly. These simulation results were consistent with previously published in vivo data. At shorter time scales, the simulated data predicted decrease of nanoparticles from plasma with concomitant increase in the liver, spleen, and kidneys before decaying at longer timepoints. Interestingly, the simulated data predicted an unaccounted accumulation of about 50% of the injected dose of nanoparticles. Incorporation of an additional compartment into the model justified the presence of unaccounted nanoparticles in this compartment. Our results suggest that the proposed PBPK model can be an excellent tool for prediction of optimal dose of nanoparticle-encapsulated drugs for cancer treatment. PMID:26225236

  4. Population pharmacokinetic modeling of oxcarbazepine active metabolite in Chinese patients with epilepsy.

    PubMed

    Yu, Yunli; Zhang, Quanying; Xu, Wenjun; Lv, Chengzhe; Hao, Gang

    2016-08-01

    The aim of the study was to develop a population pharmacokinetic (PPK) model of oxcarbazepine and optimize the treatment of oxcarbazepine in Chinese patients with epilepsy. A total of 108 oxcarbazepine therapeutic drug monitoring samples from 78 patients with epilepsy were collected in this study. The pharmacologically active metabolite 10,11-dihydro-10-hydrocarbamazepine (MHD) was used as the analytical target for monitoring therapy of oxcarbazepine. Patients' clinical data were retrospectively collected. The PPK model for MHD was developed using Phoenix NLME 1.2 with a non-linear mixed-effect model. MHD pharmacokinetics obeys a one-compartment model with first-order absorption and elimination. The effect of age, gender, red blood cell count, red blood cell specific volume, hemoglobin (HGB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatine were analyzed. Bootstrap and data splitting were used simultaneously to validate the final PPK models. The mean values of volume of distribution and clearance of MHD in the patients were 14.2 L and 2.38 L h(-1), respectively. BUN and HGB influenced the MHD volume of distribution according to the following equation: V = tvV × (BUN/4.76)(-0.007) × (HGB/140)(-0.001) × e (ηV) . The MHD clearance was dependent on ALT and gender as follows: CL = tvCL × (ALT/30)(0.181) × (gender) × 1.083 × e (ηCL). The final PPK model was demonstrated to be suitable and effective and it can be used to evaluate the pharmacokinetic parameters of MHD in Chinese patients with epilepsy and to choose an optimal dosage regimen of oxcarbazepine on the basis of these parameters. PMID:25700977

  5. Selection between Michaelis-Menten and target-mediated drug disposition pharmacokinetic models.

    PubMed

    Yan, Xiaoyu; Mager, Donald E; Krzyzanski, Wojciech

    2010-02-01

    Target-mediated drug disposition (TMDD) models have been applied to describe the pharmacokinetics of drugs whose distribution and/or clearance are affected by its target due to high binding affinity and limited capacity. The Michaelis-Menten (M-M) model has also been frequently used to describe the pharmacokinetics of such drugs. The purpose of this study is to investigate conditions for equivalence between M-M and TMDD pharmacokinetic models and provide guidelines for selection between these two approaches. Theoretical derivations were used to determine conditions under which M-M and TMDD pharmacokinetic models are equivalent. Computer simulations and model fitting were conducted to demonstrate these conditions. Typical M-M and TMDD profiles were simulated based on literature data for an anti-CD4 monoclonal antibody (TRX1) and phenytoin administered intravenously. Both models were fitted to data and goodness of fit criteria were evaluated for model selection. A case study of recombinant human erythropoietin was conducted to qualify results. A rapid binding TMDD model is equivalent to the M-M model if total target density R ( tot ) is constant, and R ( tot ) K ( D ) /(K ( D ) + C) ( 2 ) < 1 where K ( D ) represents the dissociation constant and C is the free drug concentration. Under these conditions, M-M parameters are defined as: V ( max ) = k ( int ) R ( tot ) V ( c ) and K ( m ) = K ( D ) where k ( int ) represents an internalization rate constant, and V ( c ) is the volume of the central compartment. R ( tot ) is constant if and only if k ( int ) = k ( deg,) where k ( deg ) is a degradation rate constant. If the TMDD model predictions are not sensitive to k ( int ) or k ( deg ) parameters, the condition of R ( tot ) K ( D ) /(K ( D ) + C) ( 2 ) < 1 alone can preserve the equivalence between rapid binding TMDD and M-M models. The model selection process for drugs that exhibit TMDD should involve a full mechanistic model as well as reduced models. The best model

  6. Bioconcentration of 5,5',6-trichlorobiphenyl and pentachlorophenol in the midge, Chironomus riparius, as measured by a pharmacokinetic model

    USGS Publications Warehouse

    Lydy, M.J.; Hayton, W.L.; Staubus, A.E.; Fisher, S.W.

    1994-01-01

    A two compartment pharmacokinetic model was developed which describes the uptake and elimination of 5,5',6-trichlorobiphenyl (TCB) and pentachlorophenol (PCP) in the midge, Chironomus riparius. C. riparius were exposed to nominal TCB (2 ??g L-1) and PCP (9 ??g L-1) concentrations during a 16 h static uptake phase. Depuration was determined over approximately 45 h using a flowthrough system without feeding. The uptake clearance (P) was 330 ?? 61 ml g-1 midge h-1 for TCB and 55 ?? 4 ml g-1 midge h-1 for PCP, while measured bioconcentration factors (BCF) were 35,900 and 458 for TCB and PCP, respectively. Overall, the clearance-volume- based pharmacokinetic model predicted BCF values that were consistent with published values as well as with BCF values obtained from the octanol-water partition coefficient (K(ow)).

  7. Semi-Mechanism-Based Population Pharmacokinetic Modeling of the Hedgehog Pathway Inhibitor Vismodegib.

    PubMed

    Lu, T; Wang, B; Gao, Y; Dresser, M; Graham, R A; Jin, J Y

    2015-11-01

    Vismodegib, approved for the treatment of advanced basal cell carcinoma, has shown unique pharmacokinetic (PK) nonlinearity and binding to α1-acid glycoprotein (AAG) in humans. A semi-mechanism-based population pharmacokinetic (PopPK) model was developed from a meta-dataset of 225 subjects enrolled in five clinical studies to quantitatively describe the clinical PK of vismodegib and identify sources of interindividual variability. Total and unbound vismodegib were analyzed simultaneously, together with time-varying AAG data. The PK of vismodegib was adequately described by a one-compartment model with first-order absorption, first-order elimination of unbound drug, and saturable binding to AAG with fast-equilibrium. The variability of total vismodegib concentration at steady-state was predominantly explained by the range of AAG level. The impact of AAG on unbound concentration was clinically insignificant. Various approaches were evaluated for model validation. The semi-mechanism-based PopPK model described herein provided insightful information on the nonlinear PK and has been utilized for various clinical applications. PMID:26783504

  8. Saturable human neopterin response to interferon-α assessed by a pharmacokinetic-pharmacodynamic model

    PubMed Central

    2013-01-01

    Background In this study, we developed a pharmacokinetic (PK)- pharmacodynamic (PD) model of a new sustained release formulation of interferon-α-2a (SR-IFN-α) using the blood concentration of IFN-α and neopterin in order to quantify the magnitude and saturation of neopterin production over time in healthy volunteers. The SR-IFN-α in this study is a solid microparticular formulation manufactured by spray drying of a feeding solution containing IFN-α, a biocompatible polymer (polyethylene glycol) and sodium hyaluronate. Methods The full PK and PD (neopterin concentration) datasets from 24 healthy subjects obtained after single doses of 9, 18, 27 and 36 MIU of subcutaneous SR-IFN-α were used to build the mixed-effect model using NONMEM (version 7.2) with the GFORTRAN compiler. Results A one-compartment model with first-order elimination and a mixture of zero- and first-order absorption was chosen to describe the PK of SR-IFN-α. The time-concentration profile of neopterin, the PD marker, was described by a turnover model combined with a single transit compartment. The saturable pattern of the neopterin response blurring the dose–response relationship of SR-IFN-α was addressed by introducing the concept of the EC50 increasing over time. Conclusions The PK-PD model of SR-IFN-α developed in this study has presented a quantitative tool to assess the time-course of a saturable neopterin response in humans. PMID:24088361

  9. A physiologically-based pharmacokinetic (PBPK) model of squalene-containing adjuvant in human vaccines.

    PubMed

    Tegenge, Million A; Mitkus, Robert J

    2013-10-01

    Squalene is used in the oil phase of certain emulsion vaccine adjuvants, but its fate as a vaccine component following intramuscular (IM) injection in humans is unknown. In this study, we constructed a physiologically-based pharmacokinetic (PBPK) model for intramuscularly injected squalene-in-water (SQ/W) emulsion, in order to make a quantitative estimation of the tissue distribution of squalene following a single IM injection in humans. The PBPK model incorporates relevant physicochemical properties of squalene; estimates of the time course of cracking of a SQ/W emulsion; anatomical and physiological parameters at the injection site and beyond; and local, preferential lymphatic transport. The model predicts that a single dose of SQ/W emulsion will be removed from human deltoid muscle within six days following IM injection. The major proportion of the injected squalene will be distributed to draining lymph nodes and adipose tissues. The model indicates slow decay from the latter compartment most likely due to partitioning into neutral lipids and a low rate of squalene biotransformation there. Parallel pharmacokinetic modeling for mouse muscle suggests that the kinetics of SQ/W emulsion correspond to the immunodynamic time course of a commercial squalene-containing adjuvant reported in that species. In conclusion, this study makes important pharmacokinetic predictions of the fate of a squalene-containing emulsion in humans. The results of this study may be relevant for understanding the immunodynamics of this new class of vaccine adjuvants and may be useful in future quantitative risk analyses that incorporate mode-of-action data. PMID:23912214

  10. Pharmacodynamic evaluation of biapenem in peritoneal fluid using population pharmacokinetic modelling and Monte Carlo simulation.

    PubMed

    Ikawa, Kazuro; Morikawa, Norifumi; Ikeda, Kayo; Ohge, Hiroki; Sueda, Taijiro

    2008-10-01

    This study evaluated the pharmacodynamics of biapenem in peritoneal fluid (PF). Biapenem (300 or 600mg) was administered via a 0.5-h infusion to 19 patients before abdominal surgery. Venous blood and PF samples were obtained after 0.5, 1, 2, 3, 4, 5 and 6h. Drug concentration data (108 plasma samples and 105 PF samples) were analysed using population pharmacokinetic modelling. A three-compartment model fits the data, with creatinine clearance (CL(Cr)) as the most significant covariate: CL (L/h)=0.036 x CL(Cr)+4.88, V1 (L)=6.95, Q2 (L/h)=2.05, V2 (L)=3.47, Q3 (L/h)=13.7 and V3 (L)=5.91, where CL is the clearance, Q2 and Q3 are the intercompartmental clearances, and V1, V2 and V3 are the volumes of distribution of the central, peripheral and peritoneal compartments, respectively. A Monte Carlo simulation using the pharmacokinetic model showed the probabilities of attaining the bactericidal exposure target (30% of the time above the minimum inhibitory concentration (T>MIC)) in PF were greater than or equal to those in plasma. In the cases of CL(Cr)=90 and 60mL/min, the site-specific pharmacodynamic-derived breakpoints (the highest MIC values at which the probabilities of target attainment in PF were >or=90%) were 2microg/mL for 300mg every 12h, 4microg/mL for biapenem 300mg every 8h (q8h) and 8microg/mL for 600mg q8h. Thus, these results should support the clinical use of biapenem as a treatment for intra-abdominal infections and facilitate the design of the dosing regimen. PMID:18602798

  11. Reduction of a Whole-Body Physiologically Based Pharmacokinetic Model to Stabilise the Bayesian Analysis of Clinical Data.

    PubMed

    Wendling, Thierry; Tsamandouras, Nikolaos; Dumitras, Swati; Pigeolet, Etienne; Ogungbenro, Kayode; Aarons, Leon

    2016-01-01

    Whole-body physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development for their ability to predict drug concentrations in clinically relevant tissues and to extrapolate across species, experimental conditions and sub-populations. A whole-body PBPK model can be fitted to clinical data using a Bayesian population approach. However, the analysis might be time consuming and numerically unstable if prior information on the model parameters is too vague given the complexity of the system. We suggest an approach where (i) a whole-body PBPK model is formally reduced using a Bayesian proper lumping method to retain the mechanistic interpretation of the system and account for parameter uncertainty, (ii) the simplified model is fitted to clinical data using Markov Chain Monte Carlo techniques and (iii) the optimised reduced PBPK model is used for extrapolation. A previously developed 16-compartment whole-body PBPK model for mavoglurant was reduced to 7 compartments while preserving plasma concentration-time profiles (median and variance) and giving emphasis to the brain (target site) and the liver (elimination site). The reduced model was numerically more stable than the whole-body model for the Bayesian analysis of mavoglurant pharmacokinetic data in healthy adult volunteers. Finally, the reduced yet mechanistic model could easily be scaled from adults to children and predict mavoglurant pharmacokinetics in children aged from 3 to 11 years with similar performance compared with the whole-body model. This study is a first example of the practicality of formal reduction of complex mechanistic models for Bayesian inference in drug development. PMID:26538125

  12. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction - poster

    EPA Science Inventory

    Building new physiologically based pharmacokinetic (PBPK) models requires a lot data, such as the chemical-specific parameters and in vivo pharmacokinetic data. Previously-developed, well-parameterized, and thoroughly-vetted models can be great resource for supporting the constr...

  13. Prediction of Nanoparticle Prodrug Metabolism by Pharmacokinetic Modeling of Biliary Excretion

    PubMed Central

    Stern, Stephan T.; Zou, Peng; Skoczen, Sarah; Xie, Sherwin; Liboiron, Barry; Harasym, Troy; Tardi, Paul; Mayer, LawrenceD.; McNeil, Scott E.

    2013-01-01

    Pharmacokinetic modeling and simulation is a powerful tool for the prediction of drug concentrations in the absence of analytical techniques that allow for direct quantification. The present study applied this modeling approach to determine active drug release from a nanoparticle prodrug formulation. A comparative pharmacokinetic study of a nanoscale micellar docetaxel (DTX) prodrug, Procet 8, and commercial DTX formulation, Taxotere, was conducted in bile duct cannulated rats. The nanoscale (~40 nm) size of the Procet 8 formulation resulted in confinement within the plasma space and high prodrug plasma concentrations. Ex vivo prodrug hydrolysis during plasma sample preparation resulted in unacceptable error that precluded direct measurement of DTX concentrations. Pharmacokinetic modeling of Taxotere and Procet 8 plasma concentrations, and their associated biliary metabolites, allowed for prediction of the DTX concentration profile and DTX bioavailability, and thereby evaluation of Procet 8 metabolism. Procet 8 plasma decay and in vitro plasma hydrolytic rates were identical, suggesting systemic clearance of the prodrug was primarily metabolic. The Procet 8 and Taxotere plasma profiles, and associated docetaxel hydroxy-tert-butyl carbamate (HDTX) metabolite biliary excretion, were best fit by a two compartment model, with both linear and non-linear DTX clearance, and first order Procet 8 hydrolysis. The model estimated HDTX clearance rate agreed with in vitro literature values, supporting the predictability of the proposed model. Model simulation at the 10 mg DTX equivalent/kg dose level predicted DTX formation rate-limited kinetics and a peak plasma DTX concentration of 39 ng/mL at 4h for Procet 8, in comparison to 2826 ng/mL for Taxotere. As a result of nonlinear DTX clearance, the DTX AUCinf for the Procet 8 formulation was predicted to be 2.6 times lower than Taxotere (775 vs. 2017 h x ng/mL, respectively), resulting in an absolute bioavailability estimate of

  14. Pharmacokinetic modeling and Monte Carlo simulation of ondansetron following oral administration in dogs.

    PubMed

    Baek, I-H; Lee, B-Y; Kang, J; Kwon, K-I

    2015-04-01

    Ondansetron is a potent antiemetic drug that has been commonly used to treat acute and chemotherapy-induced nausea and vomiting (CINV) in dogs. The aim of this study was to perform a pharmacokinetic analysis of ondansetron in dogs following oral administration of a single dose. A single 8-mg oral dose of ondansetron (Zofran(®) ) was administered to beagles (n = 18), and the plasma concentrations of ondansetron were measured by liquid chromatography-tandem mass spectrometry. The data were analyzed by modeling approaches using ADAPT5, and model discrimination was determined by the likelihood-ratio test. The peak plasma concentration (Cmax ) was 11.5 ± 10.0 ng/mL at 1.1 ± 0.8 h. The area under the plasma concentration vs. time curve from time zero to the last measurable concentration was 15.9 ± 14.7 ng·h/mL, and the half-life calculated from the terminal phase was 1.3 ± 0.7 h. The interindividual variability of the pharmacokinetic parameters was high (coefficient of variation > 44.1%), and the one-compartment model described the pharmacokinetics of ondansetron well. The estimated plasma concentration range of the usual empirical dose from the Monte Carlo simulation was 0.1-13.2 ng/mL. These findings will facilitate determination of the optimal dose regimen for dogs with CINV. PMID:25131428

  15. A model to resolve organochlorine pharmacokinetics in migrating humpback whales.

    PubMed

    Cropp, Roger; Nash, Susan Bengtson; Hawker, Darryl

    2014-07-01

    Humpback whales are iconic mammals at the top of the Antarctic food chain. Their large reserves of lipid-rich tissues such as blubber predispose them to accumulation of lipophilic contaminants throughout their lifetime. Changes in the volume and distribution of lipids in humpback whales, particularly during migration, could play an important role in the pharmacokinetics of lipophilic contaminants such as the organochlorine pesticide hexachlorobenzene (HCB). Previous models have examined constant feeding and nonmigratory scenarios. In the present study, the authors develop a novel heuristic model to investigate HCB dynamics in a humpback whale and its environment by coupling an ecosystem nutrient-phytoplankton-zooplankton-detritus (NPZD) model, a dynamic energy budget (DEB) model, and a physiologically based pharmacokinetic (PBPK) model. The model takes into account the seasonal feeding pattern of whales, their energy requirements, and fluctuating contaminant burdens in the supporting plankton food chain. It is applied to a male whale from weaning to maturity, spanning 20 migration and feeding cycles. The model is initialized with environmental HCB burdens similar to those measured in the Southern Ocean and predicts blubber HCB concentrations consistent with empirical concentrations observed in a southern hemisphere population of male, migrating humpback whales. Results show for the first time some important details of the relationship between energy budgets and organochlorine pharmacokinetics. PMID:24733631

  16. Three-compartment modeling of C-11 N-Methyl spiperone kinetics in the human brain

    SciTech Connect

    Brooks, R.A.; Wong, D.F.; Di Chiro, G.; Wayner, R.T.; Douglass, K.H.; Frost, J.J.; Larson, S.M.; Wagner, H.N. Jr.

    1984-01-01

    N-Methyl spiperone, as well as spiperone, has been used to study the dopamine receptor system in the brain. The authors have applied a 3-compartment model consisting of vascular, extravascular unbound, and receptor-bound activity to two normal volunteers and one patient with Parkinson's disease. The model differs from that proposed by another study, in that, as in the Sokoloff model for deoxyglucose, there is no explicit term for blood flow. Furthermore, the authors used a 3-compartment model for the cerebellum as well as the caudate/putamen. Serial scans were obtained by PET for up to 2 hrs after injection of the tracer. Time-activity curves were generated over the caudate, putamen and cerebellum. The results indicate a close fit of the observed data to the 3-compatment model. In the model, K1 represents the rate constant of delivery of the tracer in the tissue from the vascular compartment. K2 is the reverse rate constant. K1 was approximately equal to K2 for the cerebellum. In the basal ganglia, K2 was less than K1 due to nonspecific binding in compartment 2. K3 represents the rate constant of binding of the tracer to the receptor binding sites in the cerebral cortex and basal ganglia and to nonspecific binding sites in the cerebellum which contains essentially no dopamine receptors. K4 represents the rate constant for dissociation of the tracer from the receptors. For N-methyl spiperone K4 is very low in the caudate/putamen. The 3-compartment model seemed to fit the data better than the 2-compartment model for both the caudate/putamen and cerebellar activity.

  17. Compartments within a compartment

    PubMed Central

    Blacque, Oliver E; Sanders, Anna AWM

    2014-01-01

    The primary cilium has emerged as a hotbed of sensory and developmental signaling, serving as a privileged domain to concentrate the functions of a wide number of channels, receptors and downstream signal transducers. This realization has provided important insight into the pathophysiological mechanisms underlying the ciliopathies, an ever expanding spectrum of multi-symptomatic disorders affecting the development and maintenance of multiple tissues and organs. One emerging research focus is the subcompartmentalised nature of the organelle, consisting of discrete structural and functional subdomains such as the periciliary membrane/basal body compartment, the transition zone, the Inv compartment and the distal segment/ciliary tip region. Numerous ciliopathy, transport-related and signaling molecules localize at these compartments, indicating specific roles at these subciliary sites. Here, by focusing predominantly on research from the genetically tractable nematode C. elegans, we review ciliary subcompartments in terms of their structure, function, composition, biogenesis and relationship to human disease. PMID:24732235

  18. The pharmacokinetics of glycyrrhizic acid evaluated by physiologically based pharmacokinetic modeling.

    PubMed

    Ploeger, B; Mensinga, T; Sips, A; Seinen, W; Meulenbelt, J; DeJongh, J

    2001-05-01

    Glycyrrhizic acid is widely applied as a sweetener in food products and chewing tobacco. In addition, it is of clinical interest for possible treatment of chronic hepatitis C. In some highly exposed subjects, side effects such as hypertension and symptoms associated with electrolyte disturbances have been reported. To analyze the relationship between the pharmacokinetics of glycyrrhizic acid in its toxicity, the kinetics of glycyrrhizic acid and its biologically active metabolite glycyrrhetic acid were evaluated. Glycyrrhizic acid is mainly absorbed after presystemic hydrolysis as glycyrrhetic acid. Because glycyrrhetic acid is a 200-1000 times more potent inhibitor of 11-beta-hydroxysteroid dehydrogenase compared to glycyrrhizic acid, the kinetics of glycyrrhetic acid are relevant in a toxicological perspective. Once absorbed, glycyrrhetic acid is transported, mainly taken up into the liver by capacity-limited carriers, where it is metabolized into glucuronide and sulfate conjugates. These conjugates are transported efficiently into the bile. After outflow of the bile into the duodenum, the conjugates are hydrolyzed to glycyrrhetic acid by commensal bacteria; glycyrrhetic acid is subsequently reabsorbed, causing a pronounced delay in the terminal plasma clearance. Physiologically based pharmacokinetic modeling indicated that, in humans, the transit rate of gastrointestinal contents through the small and large intestines predominantly determines to what extent glycyrrhetic acid conjugates will be reabsorbed. This parameter, which can be estimated noninvasively, may serve as a useful risk estimator for glycyrrhizic-acid-induced adverse effects, because in subjects with prolonged gastrointestinal transit times, glycyrrhetic acid might accumulate after repeated intake. PMID:11495500

  19. A Population Pharmacokinetic Model for Disposition in Plasma, Saliva and Urine of Scopolamine after Intranasal Administration to Healthy Human Subjects

    NASA Technical Reports Server (NTRS)

    Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials with an Investigative New Drug (IND) protocol. The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trials with INSCOP. Methods: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min and 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model selection was based on the likelihood ratio test on the difference of criteria (-2LL) and comparison of the quality of fit plots. Results: The best structural model for INSCOP (minimal -2LL= 502.8) was established. It consisted of one compartment each for plasma, saliva and urine, respectively, which were connected with linear transport processes except the nonlinear PK process from plasma to saliva compartment. The best-fit estimates of PK parameters from individual PK compartmental analysis and Population PK model analysis were shown in Tables 1 and 2, respectively. Conclusion: A population PK model that could predict population and individual PK of scopolamine in plasma, saliva and urine after dosing was developed and validated. Incorporating a non-linear transfer from plasma to saliva compartments resulted in a significantly improved model fitting. The model could be used to predict scopolamine plasma concentrations from salivary and urinary drug levels, allowing non-invasive therapeutic monitoring of scopolamine in space and other remote environments.

  20. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Tam, V.; Chow, Diana S. L.; Putcha, Lakshmi

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials with an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP.

  1. Physiologically based pharmacokinetic modeling of deltamethrin: Development of a rat and human diffusion-limited model

    EPA Science Inventory

    Mirfazaelian et al. (2006) developed a physiologically based pharmacokinetic (PBPK) model for the pyrethroid pesticide deltamethrin in the rat. This model describes gastrointestinal tract absorption as a saturable process mediated by phase III efflux transporters which pump delta...

  2. Vitamin D3 supplementation scheme in HIV-infected patients based upon pharmacokinetic modelling of 25-hydroxycholecalciferol

    PubMed Central

    Foissac, Frantz; Tréluyer, Jean-Marc; Souberbielle, Jean-Claude; Rostane, Hafeda; Urien, Saïk; Viard, Jean-Paul

    2013-01-01

    Aims Vitamin D deficiency is prevalent in HIV-infected patients and has been associated with osteopenia and HIV disease progression. Our aims were to investigate the pharmacokinetics of 25-hydroxycholecalciferol [25(OH)D], the effect of antiretroviral treatment (ARV) and others factors that may influence the pharmacokinetics, and to determine a vitamin D3 dosing scheme to reach the 30 ng ml−1 threshold (defined as 25(OH)D sufficiency). Methods This monocentric retrospective study included 422 HIV-infected patients aged 16 to 85 years. A total of 723 25(OH)D concentrations were available for pharmacokinetic evaluation and a population pharmacokinetic model was developed with MONOLIX 3.2. Results Median 25(OH)D at baseline was 16 ng ml−1 (interquartile range 11–23 ng ml−1) for the total population, 17% of patient had concentrations below 10 ng ml−1, 68% between 10 and 30 ng ml−1 and 15% above 30 ng ml−1. 25(OH)D pharmacokinetics were best described by a one compartment model with an additional endogenous production. The effects of season and skin phototype were significant on production rate. The endogenous production was 20% lower in non-white skin phototype patients and was decreased by 16% during autumn, winter and spring. No significant differences in 25(OH)D concentrations were related to antiretroviral drugs (ARV). To obtain concentrations between 30 and 80 ng ml−1, the dosing recommendation was 100 000 IU every month. Conclusions Season and skin phototype had an influence on the endogenous production of 25(OH)D. However no effect of ARV was found. A dosing scheme to reach sufficient 25(OH)D concentrations is proposed. PMID:23072545

  3. Evaluating a physiologically based pharmacokinetic model for predicting the pharmacokinetics of midazolam in Chinese after oral administration

    PubMed Central

    Wang, Hong-yun; Chen, Xia; Jiang, Ji; Shi, Jun; Hu, Pei

    2016-01-01

    Aim: To evaluate the SimCYP simulator ethnicity-specific population model for predicting the pharmacokinetics of midazolam, a typical CYP3A4/5 substrate, in Chinese after oral administration. Methods: The physiologically based pharmacokinetic (PBPK) model for midazolam was developed using a SimCYP population-based simulator incorporating Chinese population demographic, physiological and enzyme data. A clinical trial was conducted in 40 Chinese subjects (the half was females) receiving a single oral dose of 15 mg midazolam. The subjects were separated into 4 groups based on age (20–50, 51–65, 66–75, and above 76 years), and the pharmacokinetics profiles of each age- and gender-group were determined, and the results were used to verify the PBPK model. Results: Following oral administration, the simulated profiles of midazolam plasma concentrations over time in virtual Chinese were in good agreement with the observed profiles, as were AUC and Cmax. Moreover, for subjects of varying ages (20–80 years), the ratios of predicted to observed clearances were between 0.86 and 1.12. Conclusion: The SimCYP PBPK model accurately predicted the pharmacokinetics of midazolam in Chinese from youth to old age. This study may provide novel insight into the prediction of CYP3A4/5-mediated pharmacokinetics in the Chinese population relative to Caucasians and other ethnic groups, which can support the rational design of bridging clinical trials. PMID:26592516

  4. Development of a complex parent-metabolite joint population pharmacokinetic model.

    PubMed

    Bertrand, Julie; Laffont, Céline M; Mentré, France; Chenel, Marylore; Comets, Emmanuelle

    2011-09-01

    This study aimed to develop a joint population pharmacokinetic model for an antipsychotic agent in development (S33138) and its active metabolite (S35424) produced by reversible metabolism. Because such a model leads to identifiability problems and numerical difficulties, the model building was performed using the FOCE-I and the Stochastic Approximation Expectation Maximization (SAEM) estimation algorithms in NONMEM and MONOLIX, respectively. Four different structural models were compared based on Bayesian information criteria. Models were first written as ordinary differential equations systems and then in closed form (CF) to facilitate further analyses. The impact of polymorphisms on genes coding for the CYP2C19 and CYP2D6 enzymes, respectively involved in the parent drug and the metabolite elimination were investigated using permutation Wald test. The parent drug and metabolite plasma concentrations of 101 patients were analyzed on two occasions after 4 and 8 weeks of treatment at 1, 3, 6, and 24 h following daily oral administration. All configurations led to a two compartment model with back-transformation of the metabolite into the parent drug and a first-pass effect. The elimination clearance of the metabolite through other processes than back-transformation was decreased by 35% [9-53%] in CYP2D6 poor metabolizer. Permutation tests were performed to ensure the robustness of the analysis, using SAEM and CF. In conclusion, we developed a complex joint pharmacokinetic model adequately predicting the impact of CYP2D6 polymorphisms on the parent drug and its metabolite concentrations through the back-transformation mechanism. PMID:21618059

  5. What Is the Most Realistic Single-Compartment Model of Spike Initiation?

    PubMed Central

    Brette, Romain

    2015-01-01

    A large variety of neuron models are used in theoretical and computational neuroscience, and among these, single-compartment models are a popular kind. These models do not explicitly include the dendrites or the axon, and range from the Hodgkin-Huxley (HH) model to various flavors of integrate-and-fire (IF) models. The main classes of models differ in the way spikes are initiated. Which one is the most realistic? Starting with some general epistemological considerations, I show that the notion of realism comes in two dimensions: empirical content (the sort of predictions that a model can produce) and empirical accuracy (whether these predictions are correct). I then examine the realism of the main classes of single-compartment models along these two dimensions, in light of recent experimental evidence. PMID:25856629

  6. A Three-Pulse Release Tablet for Amoxicillin: Preparation, Pharmacokinetic Study and Physiologically Based Pharmacokinetic Modeling

    PubMed Central

    Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang

    2016-01-01

    Background Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients’ compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. Methods The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box–Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Results and Discussion Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box–Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry

  7. Development of a physiologically based pharmacokinetic model for flunixin in cattle (Bos taurus).

    PubMed

    Leavens, Teresa L; Tell, Lisa A; Kissell, Lindsey W; Smith, Geoffrey W; Smith, David J; Wagner, Sarah A; Shelver, Weilin L; Wu, Huali; Baynes, Ronald E; Riviere, Jim E

    2014-01-01

    Frequent violation of flunixin residues in tissues from cattle has been attributed to non-compliance with the USFDA-approved route of administration and withdrawal time. However, the effect of administration route and physiological differences among animals on tissue depletion has not been determined. The objective of this work was to develop a physiologically based pharmacokinetic (PBPK) model to predict plasma, liver and milk concentrations of flunixin in cattle following intravenous (i.v.), intramuscular (i.m.) or subcutaneous (s.c.) administration for use as a tool to determine factors that may affect the withdrawal time. The PBPK model included blood flow-limited distribution in all tissues and elimination in the liver, kidney and milk. Regeneration of parent flunixin due to enterohepatic recirculation and hydrolysis of conjugated metabolites was incorporated in the liver compartment. Values for physiological parameters were obtained from the literature, and partition coefficients for all tissues but liver and kidney were derived empirically. Liver and kidney partition coefficients and elimination parameters were estimated for 14 pharmacokinetic studies (including five crossover studies) from the literature or government sources in which flunixin was administered i.v., i.m. or s.c. Model simulations compared well with data for the matrices following all routes of administration. Influential model parameters included those that may be age or disease-dependent, such as clearance and rate of milk production. Based on the model, route of administration would not affect the estimated days to reach the tolerance concentration (0.125 mg kg(-1)) in the liver of treated cattle. The majority of USDA-reported violative residues in liver were below the upper uncertainty predictions based on estimated parameters, which suggests the need to consider variability due to disease and age in establishing withdrawal intervals for drugs used in food animals. The model predicted

  8. Implementation of dose superimposition to introduce multiple doses for a mathematical absorption model (transit compartment model).

    PubMed

    Shen, Jun; Boeckmann, Alison; Vick, Andrew

    2012-06-01

    A mathematical absorption model (e.g. transit compartment model) is useful to describe complex absorption process. However, in such a model, an assumption has to be made to introduce multiple doses that a prior dose has been absorbed nearly completely when the next dose is administered. This is because the drug input cannot be determined from drug depot compartment through integration of the differential equation system and has to be analytically calculated. We propose a method of dose superimposition to introduce multiple doses; thereby eliminating the assumption. The code for implementing the dose superimposition in WinNonlin and NONMEM was provided. For implementation in NONMEM, we discussed a special case (SC) and a general case (GC). In a SC, dose superimposition was implemented solely using NM-TRAN abbreviated code and the maximum number of the doses that can be administered for any subject must be pre-defined. In a GC, a user-supplied function (FUNCA) in FORTRAN code was defined to perform dose superimposition to remove the restriction that the maximum number of doses must be pre-defined. PMID:22555854

  9. Compartment model for long-term contamination prediction in deciduous fruit trees after a nuclear accident

    SciTech Connect

    Antonopoulos-Domis, M.; Clouvas, A.; Gagianas, A. )

    1990-06-01

    Radiocesium contamination from the Chernobyl accident of different parts (fruits, leaves, and shoots) of selected apricot trees in North Greece was systematically measured in 1987 and 1988. The results are presented and discussed in the framework of a simple compartment model describing the long-term contamination uptake mechanism of deciduous fruit trees after a nuclear accident.

  10. A distributed multi-compartment hydrological model with dynamic vegetation and nutrient turnover

    NASA Astrophysics Data System (ADS)

    Delfs, Jens-Olaf; Gayler, Sebastian; Streck, Thilo; Selle, Benny; Klein, Christian; Priesack, Eckart; Singh, Ashok; Kalbacher, Thomas; Wang, Wenqing; Kolditz, Olaf

    2013-04-01

    Agricultural practices impact soils and the wider environment (groundwater, receiving water courses and ponds, etc.) with various feedback loops. For instance, groundwater extraction may increase infiltration rates and nitrate leaching from the plant root zone. To assess such inter-compartment feedbacks with a numerical model, the object-oriented modeling platform OpenGeoSys (OGS), which is designed for Thermo-Hydro-Mechanical-Chemical processes in porous and fractured media (open to the public via www.opengeosys.org), is coupled with the soil-plant-atmosphere model system Expert-N. Latter consists of interchangeable sub-modules for thermo-hydro-chemical processes at land surfaces subject to agricultural production and forestry. In the resulting model, OGS solves partial differential equations through a Galerkin finite element approach to transfer water, air, heat and nitrogen compounds in the overland, soil and aquifer compartments, while Expert-N provides source / sink terms for evapotranspiration, plant growth, and nutrient turnover (mineralization, denitrification, etc.). General criteria are determined to guarantee stability when coupling hydrological compartments by iterating and to ensure that inter-compartment water and solute fluxes are insensitive to variations in leakage. Test cases include a synthetic surface-subsurface flow benchmark with evapotranspiration (Panday & Huyakorn problem) and a cross section of the Ammer catchment in South-West Germany, where precipitation water flows to groundwater wells, which are used for the supply of potable water.

  11. URINARY BIOMARKER INTERPRETATION USING PHARMACOKINETIC MODELS

    EPA Science Inventory

    The issues involved with applying PBPK models in urinary biomarker interpretation were presented. Example scenarios were modeled, and absorbed doses were estimated for selected participants from a field study to illustrate the applicability and limitations of the methods.

  12. Toxicokinetics and Pharmacokinetic Modeling of Arsenic

    EPA Science Inventory

    This chapter provides an overview of arsenic toxicokinetics and physiologically-basedpharmacokinetic (PBPK) modeling with particular emphasis on key 'actors needed fordevelopment of a model useful for dose-response analysis, applications of arsenicmodels, as well research needs.U...

  13. Physiologically Based Pharmacokinetic (PBPK) Model for Biodistribution of Radiolabeled Peptides in Patients with Neuroendocrine Tumours

    PubMed Central

    Gospavic, Radovan; Knoll, Peter; Mirzaei, Siroos; Popov, Viktor

    2016-01-01

    Objective(s): The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK) models in patients with different neuroendocrine tumours (NET) who were treated with Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs) obtained by whole body scintigraphy (WBS) of the patients. Methods: The blood flow restricted (perfusion rate limited) type of the PBPK model for biodistribution of radiolabeled peptides (RLPs) in individual human organs is based on the multi-compartment approach, which takes into account the main physiological processes in the organism: absorption, distribution, metabolism and excretion (ADME). The approach calibrates the PBPK model for each patient in order to increase the accuracy of the dose estimation. Datasets obtained using WBS in four patients have been used to obtain the unknown model parameters. The scintigraphic data were acquired using a double head gamma camera in patients with different neuroendocrine tumours who were treated with Lu-177 DOTATATE. The activity administered to each patient was 7400 MBq. Results: Satisfactory agreement of the model predictions with the data obtained from the WBS for each patient has been achieved. Conclusion: The study indicates that the PBPK model can be used for more accurate calculation of biodistribution and absorbed doses in patients. This approach is the first attempt of utilizing scintigraphic data in PBPK models, which was obtained during Lu-177 peptide therapy of patients with NET. PMID:27408897

  14. Pharmacokinetics and Pulmonary Disposition of Tedizolid and Linezolid in a Murine Pneumonia Model under Variable Conditions

    PubMed Central

    Keel, Rebecca A.; Crandon, Jared L.

    2012-01-01

    In vivo pharmacokinetics are often evaluated in only one variation of an infection model, and the resulting exposures are assumed to be similar in each model. We evaluated and compared the effect of lung infection and immune status on the murine pharmacokinetics and pulmonary disposition of tedizolid and linezolid. Both factors resulted in differing blood and pulmonary exposure profiles, with similar trends for tedizolid and linezolid. These data highlight the importance of pharmacokinetic confirmation in each model. PMID:22430966

  15. Population Modeling and Simulation Study of the Pharmacokinetics and Antituberculosis Pharmacodynamics of Isoniazid in Lungs

    PubMed Central

    Bourguignon, L.; Bihari, S.; Maire, P.; Neely, M.; Jelliffe, R.

    2015-01-01

    Among first-line antituberculosis drugs, isoniazid (INH) displays the greatest early bactericidal activity (EBA) and is key to reducing contagiousness in treated patients. The pulmonary pharmacokinetics and pharmacodynamics of INH have not been fully characterized with modeling and simulation approaches. INH concentrations measured in plasma, epithelial lining fluid, and alveolar cells for 89 patients, including fast acetylators (FAs) and slow acetylators (SAs), were modeled by use of population pharmacokinetic modeling. Then the model was used to simulate the EBA of INH in lungs and to investigate the influences of INH dose, acetylator status, and M. tuberculosis MIC on this effect. A three-compartment model adequately described INH concentrations in plasma and lungs. With an MIC of 0.0625 mg/liter, simulations showed that the mean bactericidal effect of a standard 300-mg daily dose of INH was only 11% lower for FA subjects than for SA subjects and that dose increases had little influence on the effects in either FA or SA subjects. With an MIC value of 1 mg/liter, the mean bactericidal effect associated with a 300-mg daily dose of INH in SA subjects was 41% greater than that in FA subjects. With the same MIC, increasing the daily INH dose from 300 mg to 450 mg resulted in a 22% increase in FA subjects. These results suggest that patients infected with M. tuberculosis with low-level resistance, especially FA patients, may benefit from higher INH doses, while dose adjustment for acetylator status has no significant impact on the EBA in patients with low-MIC strains. PMID:26077251

  16. Simultaneous modeling of the pharmacokinetics and methemoglobin pharmacodynamics of an 8-aminoquinoline candidate antimalarial (WR 238605).

    PubMed

    Brueckner, R P; Fleckenstein, L

    1991-12-01

    Methemoglobin (MHb) formation can be a clinically significant and dose-limiting side effect of 8-aminoquinoline antimalarials. MHb may also protect against cyanide poisoning. A two-compartment pharmacokinetic model, linked to a sigmoid Emax pharmacodynamic model, was developed to predict the MHb levels after administration of 8-[(4-amino-1-methylbutyl)amino]-2,6-dimethoxy-4-methyl-5-[(3- trifluoromethyl)phenoxy] quinoline succinate (WR 238605 succinate), a primaquine analogue. Six healthy male beagle dogs received four daily doses of 6.0 mg/kg (base) orally. Forty plasma drug concentrations and 19 MHb levels (effect) were determined over 7 weeks on each dog. Compartmental and noncompartmental pharmacokinetic and parametric and nonparametric pharmacodynamic analyses were performed. Model parameters (mean +/- SD) included a Vss/f of 18.5 +/- 2.8 L/kg, CL/f of 83 +/- 24 ml/hr/kg, terminal elimination t1/2 of 169.7 +/- 52.0 hr, t1/2keo of 123.0 +/- 22.4 hr, an Emax of 31.3 +/- 15.9% MHb, an EC50 of 596 +/- 128 ng/ml, and a sigmoidicity coefficient (n) of 1.94 +/- 0.47. The model was then validated in three additional dogs given three different dosing regimens. It predicted the peak plasma concentrations and MHb levels and the times of their occurrence well. This model could be useful for dose and sampling time selection in further animal studies and initial human phase I clinical testing. PMID:1808614

  17. A model for simulation of crowd behaviour in the evacuation from a smoke-filled compartment

    NASA Astrophysics Data System (ADS)

    Yuan, Weifeng; Tan, Kang Hai

    2011-11-01

    The modelling of crowd evacuation from a building has been studied over the past decades. In this study, a numerical model based on cellular automaton is proposed to simulate the human behaviour termed “flow with the stream” in emergency evacuation from a large smoke-filled compartment. In the model, the smoke effect in the context of visibility is considered since visibility range can affect the human behaviour significantly. To simulate the reality that the smoke concentration in a fire compartment is not constant, the proposed model is developed to deal with the scenario in which the visibility range varies in the course of time. An empirical formula is incorporated into the proposed model to estimate the visibility range. The results of numerical tests show that the proposed model can also be used to investigate the effect of the number of guiders through case study.

  18. Pharmacokinetic-Pharmacodynamic Modeling of Unboosted Atazanavir in a Cohort of Stable HIV-Infected Patients

    PubMed Central

    Baudry, Thomas; Gagnieu, Marie-Claude; Boibieux, André; Livrozet, Jean-Michel; Peyramond, Dominique; Tod, Michel; Ferry, Tristan

    2013-01-01

    Limited data on the pharmacokinetics and pharmacodynamics (PK/PD) of unboosted atazanavir (uATV) in treatment-experienced patients are available. The aim of this work was to study the PK/PD of unboosted atazanavir in a cohort of HIV-infected patients. Data were available for 58 HIV-infected patients (69 uATV-based regimens). Atazanavir concentrations were analyzed by using a population approach, and the relationship between atazanavir PK and clinical outcome was examined using logistic regression. The final PK model was a linear one-compartment model with a mixture absorption model to account for two subgroups of absorbers. The mean (interindividual variability) of population PK parameters were as follows: clearance, 13.4 liters/h (40.7%), volume of distribution, 71.1 liters (29.7%), and fraction of regular absorbers, 0.49. Seven subjects experienced virological failure after switch to uATV. All of them were identified as low absorbers in the PK modeling. The absorption rate constant (0.38 ± 0.20 versus 0.75 ± 0.28 h−1; P = 0.002) and ATV exposure (area under the concentration-time curve from 0 to 24 h [AUC0–24], 10.3 ± 2.1 versus 22.4 ± 11.2 mg · h · liter−1; P = 0.001) were significantly lower in patients with virological failure than in patients without failure. In the logistic regression analysis, both the absorption rate constant and ATV trough concentration significantly influenced the probability of virological failure. A significant relationship between ATV pharmacokinetics and virological response was observed in a cohort of HIV patients who were administered unboosted atazanavir. This study also suggests that twice-daily administration of uATV may optimize drug therapy. PMID:23147727

  19. Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects.

    PubMed

    Zheng, Songmao; Matzneller, Peter; Zeitlinger, Markus; Schmidt, Stephan

    2014-11-01

    Recent clinical trials indicate that the use of azithromycin is associated with the emergence of macrolide resistance. The objective of our study was to simultaneously characterize free target site concentrations and correlate them with the MIC90s of clinically relevant pathogens. Azithromycin (500 mg once daily [QD]) was administered orally to 6 healthy male volunteers for 3 days. The free concentrations in the interstitial space fluid (ISF) of muscle and subcutaneous fat tissue as well as the total concentrations in plasma and polymorphonuclear leukocytes (PMLs) were determined on days 1, 3, 5, and 10. All concentrations were modeled simultaneously in NONMEM 7.2 using a tissue distribution model that accounts for nonlinear protein binding and ionization state at physiological pH. The model performance and parameter estimates were evaluated via goodness-of-fit plots and nonparametric bootstrap analysis. The model we developed described the concentrations at all sampling sites reasonably well and showed that the overall pharmacokinetics of azithromycin is driven by the release of the drug from acidic cell/tissue compartments. The model-predicted unionized azithromycin (AZM) concentrations in the cytosol of PMLs (6.0 ± 1.2 ng/ml) were comparable to the measured ISF concentrations in the muscle (8.7 ± 2.9 ng/ml) and subcutis (4.1 ± 2.4 ng/ml) on day 10, whereas the total PML concentrations were >1,000-fold higher (14,217 ± 2,810 ng/ml). The total plasma and free ISF concentrations were insufficient to exceed the MIC90s of the skin pathogens at all times. Our results indicate that the slow release of azithromycin from low pH tissue/cell compartments is responsible for the long terminal half-life of the drug and thus the extended period of time during which free concentrations reside at subinhibitory concentrations. PMID:25155592

  20. A pharmacokinetic/viral kinetic model to evaluate the treatment effectiveness of danoprevir against chronic HCV

    DOE PAGESBeta

    Canini, Laetitia; Chatterjee, Anushree; Guedj, Jeremie; Lemenuel-Diot, Annabelle; Brennan, Barbara; Smith, Patrick F.; Perelson, Alan S.

    2014-10-16

    Background—Viral kinetic models have proven useful to characterize treatment effectiveness during HCV therapy with interferon (IFN) or with direct acting antivirals (DAAs). Methods—We use a pharmacokinetic/viral kinetic (PK/VK) model to describe HCV RNA kinetics during treatment with danoprevir, a protease inhibitor. In a phase 1 study, danoprevir monotherapy was administered for 14 days in ascending doses ranging from 200 to 600 mg per day to 40 patients of whom 32 were treatment-naïve and 8 were non-responders to prior PEG-IFN-α/ribavirin treatment. Results—In most patients, a biphasic decline of HCV RNA during therapy was observed. A two-compartment PK model and a VKmore » model that considered treatment effectiveness to vary with the predicted danoprevir concentration inside the second compartment provided a good fit to the viral load data. A time-varying effectiveness model was also used to fit the viral load data. We found the antiviral effectiveness increased in a dose-dependent manner, with a 14-day time-averaged effectiveness of 0.95 at the lowest dose (100 mg bid) and 0.99 at the highest dose (200 mg tid). Prior IFN non-responders exhibited a 14-day time-averaged effectiveness of 0.98 (300 mg bid). Finally, the second phase decline showed two different behaviors, with 30% of patients exhibiting a rapid decline of HCV RNA, comparable to that seen with other protease inhibitors (>0.3 d-1), whereas the viral decline was slower in the other patients. Conclusions—Our results are consistent with the modest SVR rates from the INFORM-SVR study where patients were treated with a combination of mericitabine and ritonavir-boosted danoprevir.« less

  1. A pharmacokinetic/viral kinetic model to evaluate the treatment effectiveness of danoprevir against chronic HCV

    SciTech Connect

    Canini, Laetitia; Chatterjee, Anushree; Guedj, Jeremie; Lemenuel-Diot, Annabelle; Brennan, Barbara; Smith, Patrick F.; Perelson, Alan S.

    2014-10-16

    Background—Viral kinetic models have proven useful to characterize treatment effectiveness during HCV therapy with interferon (IFN) or with direct acting antivirals (DAAs). Methods—We use a pharmacokinetic/viral kinetic (PK/VK) model to describe HCV RNA kinetics during treatment with danoprevir, a protease inhibitor. In a phase 1 study, danoprevir monotherapy was administered for 14 days in ascending doses ranging from 200 to 600 mg per day to 40 patients of whom 32 were treatment-naïve and 8 were non-responders to prior PEG-IFN-α/ribavirin treatment. Results—In most patients, a biphasic decline of HCV RNA during therapy was observed. A two-compartment PK model and a VK model that considered treatment effectiveness to vary with the predicted danoprevir concentration inside the second compartment provided a good fit to the viral load data. A time-varying effectiveness model was also used to fit the viral load data. We found the antiviral effectiveness increased in a dose-dependent manner, with a 14-day time-averaged effectiveness of 0.95 at the lowest dose (100 mg bid) and 0.99 at the highest dose (200 mg tid). Prior IFN non-responders exhibited a 14-day time-averaged effectiveness of 0.98 (300 mg bid). Finally, the second phase decline showed two different behaviors, with 30% of patients exhibiting a rapid decline of HCV RNA, comparable to that seen with other protease inhibitors (>0.3 d-1), whereas the viral decline was slower in the other patients. Conclusions—Our results are consistent with the modest SVR rates from the INFORM-SVR study where patients were treated with a combination of mericitabine and ritonavir-boosted danoprevir.

  2. Application of Physiologically Based Pharmacokinetic Modeling to Predict Acetaminophen Metabolism and Pharmacokinetics in Children

    PubMed Central

    Jiang, X-L; Zhao, P; Barrett, J S; Lesko, L J; Schmidt, S

    2013-01-01

    Acetaminophen (APAP) is a widely used analgesic and antipyretic drug that undergoes extensive phase I and II metabolism. To better understand the kinetics of this process and to characterize the dynamic changes in metabolism and pharmacokinetics (PK) between children and adults, we developed a physiologically based PK (PBPK) model for APAP integrating in silico, in vitro, and in vivo PK data into a single model. The model was developed and qualified for adults and subsequently expanded for application in children by accounting for maturational changes from birth. Once developed and qualified, it was able to predict clinical PK data in neonates (0–28 days), infants (29 days to <2 years), children (2 to <12 years), and adolescents (12–17 years) following intravenous and orally administered APAP. This approach represents a general strategy for projecting drug exposure in children, in the absence of pediatric PK information, using previous drug- and system-specific information of adults and children through PBPK modeling. PMID:24132164

  3. An earthquake instability model based on faults containing high fluid-pressure compartments

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    It has been proposed that large strike-slip faults such as the San Andreas contain water in seal-bounded compartments. Arguments based on heat flow and stress orientation suggest that in most of the compartments, the water pressure is so high that the average shear strength of the fault is less than 20 MPa. We propose a variation of this basic model in which most of the shear stress on the fault is supported by a small number of compartments where the pore pressure is relatively low. As a result, the fault gouge in these compartments is compacted and lithified and has a high undisturbed strength. When one of these locked regions fails, the system made up of the neighboring high and low pressure compartments can become unstable. Material in the high fluid pressure compartments is initially underconsolidated since the low effective confining pressure has retarded compaction. As these compartments are deformed, fluid pressure remains nearly unchanged so that they offer little resistance to shear. The low pore pressure compartments, however, are overconsolidated and dilate as they are sheared. Decompression of the pore fluid in these compartments lowers fluid pressure, increasing effective normal stress and shear strength. While this effect tends to stabilize the fault, it can be shown that this dilatancy hardening can be more than offset by displacement weakening of the fault (i.e., the drop from peak to residual strength). If the surrounding rock mass is sufficiently compliant to produce an instability, slip will propagate along the fault until the shear fracture runs into a low-stress region. Frictional heating and the accompanying increase in fluid pressure that are suggested to occur during shearing of the fault zone will act as additional destabilizers. However, significant heating occurs only after a finite amount of slip and therefore is more likely to contribute to the energetics of rupture propagation than to the initiation of the instability. We present

  4. Dynamic nuclear renography kinetic analysis: Four-compartment model for assessing kidney function

    SciTech Connect

    Raswan, T. R. Haryanto, F.

    2014-09-30

    Dynamic nuclear renography method produces TACs of kidneys and bladder. Multiple TACs data can be further analyzed to obtain the overview of urinary system's condition. Tracer kinetic analysis was performed using four-compartment models. The system's model consist of four irreversible compartment with four transport constants (k1, k2, k3 and k4). The mathematical expressions of tracer's distributions is fitted to experimental data (TACs) resulting in model constants. This transport constants represent the urinary system behavior, and later can be used for analyzing system's condition. Different intervals of kinetics parameter are clearly shown by abnormal system with respect to the normal one. Furthermore, the system with delayed uptake has 82% lower uptake parameters (k1 and k2) than normal one. Meanwhile, the system with prolonged clearance time has its kinetics parameters k3 or k4 lower than the others. This model is promising for quantitatively describe urinary system's function especially if supplied with more data.

  5. Dynamic nuclear renography kinetic analysis: Four-compartment model for assessing kidney function

    NASA Astrophysics Data System (ADS)

    Raswan, T. R.; Haryanto, F.

    2014-09-01

    Dynamic nuclear renography method produces TACs of kidneys and bladder. Multiple TACs data can be further analyzed to obtain the overview of urinary system's condition. Tracer kinetic analysis was performed using four-compartment models. The system's model consist of four irreversible compartment with four transport constants (k1, k2, k3 and k4). The mathematical expressions of tracer's distributions is fitted to experimental data (TACs) resulting in model constants. This transport constants represent the urinary system behavior, and later can be used for analyzing system's condition. Different intervals of kinetics parameter are clearly shown by abnormal system with respect to the normal one. Furthermore, the system with delayed uptake has 82% lower uptake parameters (k1 and k2) than normal one. Meanwhile, the system with prolonged clearance time has its kinetics parameters k3 or k4 lower than the others. This model is promising for quantitatively describe urinary system's function especially if supplied with more data.

  6. Population pharmacokinetic modeling of glibenclamide in poorly controlled South African type 2 diabetic subjects

    PubMed Central

    Rambiritch, Virendra; Naidoo, Poobalan; Maharaj, Breminand; Pillai, Goonaseelan

    2016-01-01

    Aim The aim of this study was to describe the pharmacokinetics (PK) of glibenclamide in poorly controlled South African type 2 diabetic subjects using noncompartmental and model-based methods. Methods A total of 24 subjects with type 2 diabetes were administered increasing doses (0 mg/d, 2.5 mg/d, 5 mg/d, 10 mg/d, and 20 mg/d) of glibenclamide daily at 2-week intervals. Plasma glibenclamide, glucose, and insulin determinations were performed. Blood sampling times were 0 minute, 30 minutes, 60 minutes, 90 minutes, and 120 minutes (post breakfast sampling) and 240 minutes, 270 minutes, 300 minutes, 330 minutes, 360 minutes, and 420 minutes (post lunch sampling) on days 14, 28, 42, 56, and 70 for doses of 0 mg, 2.5 mg, 5.0 mg, 10 mg, and 20 mg, respectively. Blood sampling was performed after the steady state was reached. A total of 24 individuals in the data set contributed to a total of 841 observation records. The PK was analyzed using noncompartmental analysis methods, which were implemented in WinNonLin®, and population PK analysis using NONMEM®. Glibenclamide concentration data were log transformed prior to fitting. Results A two-compartmental disposition model was selected after evaluating one-, two-, and three-compartmental models to describe the time course of glibenclamide plasma concentration data. The one-compartment model adequately described the data; however, the two-compartment model provided a better fit. The three-compartment model failed to achieve successful convergence. A more complex model, to account for enterohepatic recirculation that was observed in the data, was unsuccessful. Conclusion In South African diabetic subjects, glibenclamide demonstrates linear PK and was best described by a two-compartmental model. Except for the absorption rate constant, the other PK parameters reported in this study are comparable to those reported in the scientific literature. The study is limited by the small study sample size and inclusion of poorly

  7. Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukaemia

    NASA Astrophysics Data System (ADS)

    Popović, Jovan K.; Spasić, Dragan T.; Tošić, Jela; Kolarović, Jovanka L.; Malti, Rachid; Mitić, Igor M.; Pilipović, Stevan; Atanacković, Teodor M.

    2015-05-01

    The aim of this study is to promote a model based on the fractional differential calculus related to the pharmacokinetic individualization of high dose methotrexate treatment in children with acute lymphoblastic leukaemia, especially in high risk patients. We applied two-compartment fractional model on 8 selected cases with the largest number (4-19) of measured concentrations, among 43 pediatric patients received 24-h methotrexate 2-5 g/m2 infusions. The plasma concentrations were determined by fluorescence polarization immunoassay. Our mathematical procedure, designed by combining Post's and Newton's method, was coded in Mathematica 8.0 and performed on Fujicu Celsius M470-2 PC. Experimental data show that most of the measured values of methotrexate were in decreasing order. However, in certain treatments local maximums were detected. On the other hand, integer order compartmental models do not give values which fit well with the observed data. By the use of our model, we obtained better results, since it gives more accurate behavior of the transmission, as well as the local maximums which were recognized in methotrexate monitoring. It follows from our method that an additional test with a small methotrexate dose can be suggested for the fractional system parameter identification and the prediction of a possible pattern with a full dose in the case of high risk patients. A special feature of the fractional model is that it can also recognize and better fit an observed non-monotonic behavior. A new parameter determination procedure can be successfully used.

  8. Simultaneous pharmacokinetic model for rolofylline and both M1-trans and M1-cis metabolites.

    PubMed

    Stroh, Mark; Hutmacher, Matthew M; Pang, Jianmei; Lutz, Ryan; Magara, Hiroshi; Stone, Julie

    2013-04-01

    Rolofylline is a potent, selective adenosine A1 receptor antagonist that was under development for the treatment of patients with acute congestive heart failure and renal impairment. Rolofylline is metabolized primarily to the pharmacologically active M1-trans and M1-cis metabolites (metabolites) by cytochrome P450 (CYP) 3A4. The aim of this investigation was to provide a pharmacokinetic (PK) model for rolofylline and metabolites following intravenous administration to healthy volunteers. Data included for this investigation came from a randomized, double-blind, dose-escalation trial in four groups of healthy volunteers (N=36) where single doses of rolofylline, spanning 1 to 60 mg ,were infused over 1-2 h. The rolofylline and metabolite data were analyzed simultaneously using NONMEM. The simultaneous PK model comprised, in part, a two-compartment linear PK model for rolofylline, with estimates of clearance and volume of distribution at steady-state of 24.4 L/h and 239 L, respectively. In addition, the final PK model contained provisions for both conversion of rolofylline to metabolites and stereochemical conversion of M1-trans to M1-cis. Accordingly, the final model captured known aspects of rolofylline metabolism and was capable of simultaneously describing the PK of rolofylline and metabolites in healthy volunteers. PMID:23355301

  9. Computer assisted modeling of ethyl sulfate pharmacokinetics.

    PubMed

    Schmitt, Georg; Halter, Claudia C; Aderjan, Rolf; Auwaerter, Volker; Weinmann, Wolfgang

    2010-01-30

    For 12 volunteers of a drinking experiment the concentration-time-courses of ethyl sulfate (EtS) and ethanol were simulated and fitted to the experimental data. The concentration-time-courses were described with the same mathematical model as previously used for ethyl glucuronide (EtG). The kinetic model based on the following assumptions and simplifications: a velocity constant k(form) for the first order formation of ethyl sulfate from ethanol and an exponential elimination constant k(el). The mean values (and standard deviations) obtained for k(form) and k(el) were 0.00052 h(-1) (0.00014) and 0.561 h(-1) (0.131), respectively. Using the ranges of these parameters it is possible to calculate minimum and maximum serum concentrations of EtS based on stated ethanol doses and drinking times. The comparison of calculated and measured concentrations can prove the plausibility of alleged ethanol consumption and add evidence to the retrospective calculation of ethanol concentrations based on EtG concentrations. PMID:19913378

  10. Population pharmacokinetic/pharmacodynamic modeling of histamine response measured by histamine iontophoresis laser Doppler.

    PubMed

    Liu, Xiaoxi; Jones, Bridgette L; Roberts, Jessica K; Sherwin, Catherine M

    2016-08-01

    The epicutaneous histamine (EH) test is the current gold standard method for the clinical evaluation of allergic conditions. However, the EH method is limited in providing an objective and qualitative assessment of histamine pharmacodynamic response. The histamine iontophoresis with laser Doppler (HILD) monitoring method, an alternative method, allows a fixed dose of histamine to be delivered and provides an objective, continuous, and dynamic measurement of histamine epicutaneous response in children and adults. However, due to the high sampling frequency (up to 40 Hz), the output files are usually too cumbersome to be directly used for further analysis. In this study, we developed an averaging algorithm that efficiently reduces the HILD data in size. The reduced data was further analyzed and a population linked effect pharmacokinetic/pharmacodynamic (PK/PD) model was developed to describe the local histamine response. The model consisted of a one-compartment PK model and a direct-response fractional maximum effect (Emax) model. The parameter estimates were obtained as follows: absorption rate constant (ka), 0.094/min; absorption lag time (Tlag), 2.72 min; partitioning clearance from local depot to systemic circulation (CLpar), 0.0006 L/min; baseline effect (E0), 13.1 flux unit; Emax, 13.4; concentration at half maximum effect (EC50) 31.1 mg/L. Covariate analysis indicated that age and race had significant influence on Tlag and EC50, respectively. PMID:27307292

  11. SU-C-BRE-03: Dual Compartment Mathematical Modeling of Glioblastoma Multiforme (GBM)

    SciTech Connect

    Yu, V; Nguyen, D; Kupelian, P; Kaprealian, T; Selch, M; Low, D; Pajonk, F; Sheng, K

    2014-06-15

    Purpose: To explore the aggressive recurrence and radioresistence of GBM with a dual compartment tumor survival mathematical model based on intrinsic tumor heterogeneity, cancer stem cells (CSC) and differentiated cancer cells (DCC). Methods: The repopulation and differentiation responses to radiotherapy of a solid tumor were simulated using an Ordinary Differential Equation (ODE). To obtain the tumor radiobiological parameters, we assumed that a tumor consists of two subpopulations, each with its distinctive linear quadratic parameters. The dual compartment cell survival model was constructed as SF(D)=F × exp(-α{sub 1} D-β{sub 1}D{sup 2}) + (1-F) × exp(-α{sub 2}D-β{sub 2}D{sup 2}) for a single fraction of treatment, with F as the fraction of CSC, and α and β describing the radiological properties of each population. Robust least square fitting was performed on clonogenic survival data from one GBM (U373MG) and one NSCLC (H460) cell line. The fit parameters were then used in the ODE model to predict treatment outcome of various treatment schemes. Results: The fit parameters from GBM cell survival data were (F, α{sub 1}, β{sub 1}, α{sub 2}, β{sub 2})=(0.0396, 0.0801, 0.0006, 0.1363, 0.0279), exhibiting two populations with distinctive radiological properties, CSC more radioresistant than DCC. The GBM cell line exhibited significantly poorer tumor control than its single compartment model prediction and NSCLC, which responded well to hypofrationation. The increased radioresistance was due to rapid regrowth of the DCC compartment triggered by its depletion while maintaining a viable CSC population. The rapid regrowth can be reduced by treating dose fractions ≤ 2 Gy with a prolonged treatment period. Conclusion: The interaction between a radioresistant CSC compartment and DCC compartment can explain the poor clinical outcome of GBM after radiotherapy despite dose escalation and hypofractionation attempts. Lower dose fractions result in better treatment

  12. Stability and mixing conditions for HIV/AIDS models with regional compartments

    NASA Astrophysics Data System (ADS)

    Thomas, Richard

    Compartmental models have been adapted to derive temporal epidemic forecasting systems for imitating the transfer of HIV infection between those with different behaviours or rates of risk activity. Alternatively, models with regional compartments, which forecast disease incidence in both space and time, have emerged as a response to the challenge of anticipating the pandemic pathways of this infection. This paper combines these frameworks to obtain properties for a multiregion model that also contains demographic compartments. Section 2 begins by showing how the stability conditions (starting thresholds) for a purely regional model are a special case of the existing conditions that have been derived for the general compartmental framework. Then, these results are extended to encompass a regions with compartments design. Section 3 presents an analysis of the population mixing relationships that are embedded in all these specifications. Here, the topics include the maintenance of contact symmetry, the representation of alternative partner selection behaviours, and the identification of core populations for the diffusion of HIV infection. The discussion considers how these theoretical findings might be applied to disease prevention.

  13. 76 FR 63823 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane Pilot-Compartment View...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ...-SC for the GALP Model G280 airplane was published in the Federal Register on May 25, 2011 (76 FR... G280 Airplane Pilot-Compartment View--Hydrophobic Coatings in Lieu of Windshield Wipers AGENCY: Federal... unusual design feature associated with the pilot-compartment view through a hydrophobic windshield...

  14. Population pharmacokinetic modeling of itraconazole and hydroxyitraconazole for oral SUBA-itraconazole and sporanox capsule formulations in healthy subjects in fed and fasted states.

    PubMed

    Abuhelwa, Ahmad Y; Foster, David J R; Mudge, Stuart; Hayes, David; Upton, Richard N

    2015-09-01

    Itraconazole is an orally active antifungal agent that has complex and highly variable absorption kinetics that is highly affected by food. This study aimed to develop a population pharmacokinetic model for itraconazole and the active metabolite hydroxyitraconazole, in particular, quantifying the effects of food and formulation on oral absorption. Plasma pharmacokinetic data were collected from seven phase I crossover trials comparing the SUBA-itraconazole and Sporanox formulations of itraconazole. First, a model of single-dose itraconazole data was developed, which was then extended to the multidose data. Covariate effects on itraconazole were then examined before extending the model to describe hydroxyitraconazole. The final itraconazole model was a 2-compartment model with oral absorption described by 4-transit compartments. Multidose kinetics was described by total effective daily dose- and time-dependent changes in clearance and bioavailability. Hydroxyitraconazole was best described by a 1-compartment model with mixed first-order and Michaelis-Menten elimination for the single-dose data and a time-dependent clearance for the multidose data. The relative bioavailability of SUBA-itraconazole compared to that of Sporanox was 173% and was 21% less variable between subjects. Food resulted in a 27% reduction in bioavailability and 58% reduction in the transit absorption rate constant compared to that with the fasted state, irrespective of the formulation. This analysis presents the most extensive population pharmacokinetic model of itraconazole and hydroxyitraconazole in the literature performed in healthy subjects. The presented model can be used for simulating food effects on itraconazole exposure and for performing prestudy power analysis and sample size estimation, which are important aspects of clinical trial design of bioequivalence studies. PMID:26149987

  15. Population Pharmacokinetic Modeling of Itraconazole and Hydroxyitraconazole for Oral SUBA-Itraconazole and Sporanox Capsule Formulations in Healthy Subjects in Fed and Fasted States

    PubMed Central

    Foster, David J. R.; Mudge, Stuart; Hayes, David

    2015-01-01

    Itraconazole is an orally active antifungal agent that has complex and highly variable absorption kinetics that is highly affected by food. This study aimed to develop a population pharmacokinetic model for itraconazole and the active metabolite hydroxyitraconazole, in particular, quantifying the effects of food and formulation on oral absorption. Plasma pharmacokinetic data were collected from seven phase I crossover trials comparing the SUBA-itraconazole and Sporanox formulations of itraconazole. First, a model of single-dose itraconazole data was developed, which was then extended to the multidose data. Covariate effects on itraconazole were then examined before extending the model to describe hydroxyitraconazole. The final itraconazole model was a 2-compartment model with oral absorption described by 4-transit compartments. Multidose kinetics was described by total effective daily dose- and time-dependent changes in clearance and bioavailability. Hydroxyitraconazole was best described by a 1-compartment model with mixed first-order and Michaelis-Menten elimination for the single-dose data and a time-dependent clearance for the multidose data. The relative bioavailability of SUBA-itraconazole compared to that of Sporanox was 173% and was 21% less variable between subjects. Food resulted in a 27% reduction in bioavailability and 58% reduction in the transit absorption rate constant compared to that with the fasted state, irrespective of the formulation. This analysis presents the most extensive population pharmacokinetic model of itraconazole and hydroxyitraconazole in the literature performed in healthy subjects. The presented model can be used for simulating food effects on itraconazole exposure and for performing prestudy power analysis and sample size estimation, which are important aspects of clinical trial design of bioequivalence studies. PMID:26149987

  16. Model-based pharmacokinetic analysis of elotuzumab in patients with relapsed/refractory multiple myeloma.

    PubMed

    Gibiansky, Leonid; Passey, Chaitali; Roy, Amit; Bello, Akintunde; Gupta, Manish

    2016-06-01

    Elotuzumab is a humanized immunoglobulin G1 monoclonal antibody in development for the treatment of patients with multiple myeloma who have received one or more prior therapies. In this work, 6958 elotuzumab serum concentrations from 375 patients enrolled in four Phase 1 to 3 clinical trials were used to analyze the pharmacokinetics (PK) of elotuzumab. A population PK model with parallel linear and Michaelis-Menten elimination from the central compartment and limited-capacity target-mediated elimination from the peripheral compartment described the elotuzumab concentration-time course. Clearance of elotuzumab increased with increasing body weight and weight-based dosing generated uniform exposures across a range of body weights. Coadministration of lenalidomide/dexamethasone background therapy decreased elotuzumab nonspecific clearance by 35 %. Target-mediated elimination of elotuzumab increased with increasing baseline serum M-protein, resulting in lower exposure in patients with high baseline serum M-protein concentration. Age, race, sex, renal and hepatic function, Eastern Cooperative Oncology Group performance status, lactate dehydrogenase, albumin and β2-microglobulin had less than 20 % effect on model parameters and are unlikely to have clinically meaningful effects. Impact of anti-drug antibodies (ADAs) on the PK of elotuzumab was assessed as an ad hoc analysis. In the majority of ADA-positive patients, immunogenicity started early, was transient and resolved by 2-4 months. Since the majority of patients had ADAs detected early, this resulted in a corresponding transient increase in nonspecific clearance at these time points. Nonspecific clearance appeared to return to baseline at later time points when ADAs were no longer detected. PMID:26993283

  17. EVALUATING A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR USE IN RISK ASSESSMENT

    EPA Science Inventory

    EVALUATING A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR USE IN RISK ASSESSMENT. L H Clark1, H A Barton1, and R W Setzer1. 1US EPA, ORD, NHEERL, ETD, Research Triangle Park, NC, USA.

    Physiologically-based pharmacokinetic (PBPK) models are increasingly being used in eva...

  18. Near-Infrared Monitoring of Model Chronic Compartment Syndrome In Exercising Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Breit, G. A.; Gross, J. H.; Watenpaugh, D. E.; Chance, B.

    1995-01-01

    Chronic compartment syndrome (CCS) is characterized by muscle ischemia, usually in the anterior oompartment of the leg, caused by high intramuscular pressure during exercise. Dual-wave near-infrared (NIR) spectroscopy is an optical technique that allows noninvasive tracking of variations in muscle tissue oxygenation (Chance et al., 1988). We hypothesized that with a model CCS, muscle tissue oxygenation will show a greater decline during exercise and a slower recovery post-exercise than under normal conditions.

  19. Bioenergetic and pharmacokinetic model for exposure of common loon (Gavia immer) chicks to methylmercury

    USGS Publications Warehouse

    Karasov, W.H.; Kenow, K.P.; Meyer, M.W.; Fournier, F.

    2007-01-01

    A bioenergetics model was used to predict food intake of common loon (Gavia immer) chicks as a function of body mass during development, and a pharmacokinetics model, based on first-order kinetics in a single compartment, was used to predict blood Hg level as a function of food intake rate, food Hg content, body mass, and Hg absorption and elimination. Predictions were tested in captive growing chicks fed trout (Salmo gairdneri) with average MeHg concentrations of 0.02 (control), 0.4, and 1.2 ??g/g wet mass (delivered as CH3HgCl). Predicted food intake matched observed intake through 50 d of age but then exceeded observed intake by an amount that grew progressively larger with age, reaching a significant overestimate of 28% by the end of the trial. Respiration in older, nongrowing birds probably was overestimated by using rates measured in younger, growing birds. Close agreement was found between simulations and measured blood Hg, which varied significantly with dietary Hg and age. Although chicks may hatch with different blood Hg levels, their blood level is determined mainly by dietary Hg level beyond approximately two weeks of age. The model also may be useful for predicting Hg levels in adults and in the eggs that they lay, but its accuracy in both chicks and adults needs to be tested in free-living birds. ?? 2007 SETAC.

  20. Pharmacokinetic modelling of multi-decadal luminescence time series in coral skeletons

    NASA Astrophysics Data System (ADS)

    Llewellyn, Lyndon E.; Everingham, Yvette L.; Lough, Janice M.

    2012-04-01

    As corals grow, they incorporate chemical indicators of seawater conditions into their aragonite skeleton after they have traversed an outer living tissue layer. Long-lived, massive coral skeletons can record decade- and century-long time series of seawater status. One such environmental clue is luminescence intensity which can correspond to river flow patterns and has been attributed to humic acid incorporation. Seawater humic acid levels are linked to river flow as rainfall extracts them from catchment soils to then flow into rivers and coastal seas. However, discrepancies exist when validating coral luminescence records against river flow data with intense luminescence sometimes occurring in the absence of increased flows. This contributes to uncertainty when reconstructing pre-instrumental river flows and rainfall from coral luminescence. Here we demonstrate that a major portion of coral core luminescence time series can be explained using a single-compartment, pharmacokinetic model that incorporates river flow measurements as the equivalent of drug dose. The model was robust for luminescence series in corals from near-shore reefs regularly influenced by river flow. The model implies that after floods, a proportion of subsequent luminescence peaks can be derived from the initial flood. This explains why some luminescence peaks after floods often do not correspond to additional significant river flows. This provides the first mechanism-based explanation for temporal changes in coral skeleton luminescence that incorporates a mathematical link between two independent time series making this proxy even more robust for reconstructing river flow and rainfall.

  1. The use of a physiologically based pharmacokinetic model to evaluate deconvolution measurements of systemic absorption

    PubMed Central

    Levitt, David G

    2003-01-01

    Background An unknown input function can be determined by deconvolution using the systemic bolus input function (r) determined using an experimental input of duration ranging from a few seconds to many minutes. The quantitative relation between the duration of the input and the accuracy of r is unknown. Although a large number of deconvolution procedures have been described, these routines are not available in a convenient software package. Methods Four deconvolution methods are implemented in a new, user-friendly software program (PKQuest, ). Three of these methods are characterized by input parameters that are adjusted by the user to provide the "best" fit. A new approach is used to determine these parameters, based on the assumption that the input can be approximated by a gamma distribution. Deconvolution methodologies are evaluated using data generated from a physiologically based pharmacokinetic model (PBPK). Results and Conclusions The 11-compartment PBPK model is accurately described by either a 2 or 3-exponential function, depending on whether or not there is significant tissue binding. For an accurate estimate of r the first venous sample should be at or before the end of the constant infusion and a long (10 minute) constant infusion is preferable to a bolus injection. For noisy data, a gamma distribution deconvolution provides the best result if the input has the form of a gamma distribution. For other input functions, good results are obtained using deconvolution methods based on modeling the input with either a B-spline or uniform dense set of time points. PMID:12659643

  2. Pharmacokinetic properties and in silico ADME modeling in drug discovery.

    PubMed

    Honório, Kathia M; Moda, Tiago L; Andricopulo, Adriano D

    2013-03-01

    The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME--absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry. PMID:23016542

  3. The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease.

    PubMed

    Sherwin, Catherine M T; Fukuda, Tsuyoshi; Brunner, Hermine I; Goebel, Jens; Vinks, Alexander A

    2011-01-01

    With the increasing use of mycophenolic acid (MPA) as an immunosuppressant in solid organ transplantation and in treating autoimmune diseases such as systemic lupus erythematosus, the need for strategies to optimize therapy with this agent has become increasingly apparent. This need is largely based on MPA's significant between-subject and between-occasion (within-subject) pharmacokinetic variability. While there is a strong relationship between MPA exposure and effect, the relationship between drug dose, plasma concentration and exposure (area under the concentration-time curve [AUC]) is very complex and remains to be completely defined. Population pharmacokinetic models using various approaches have been proposed over the past 10 years to further evaluate the pharmacokinetic and pharmacodynamic behaviour of MPA. These models have evolved from simple one-compartment linear iterations to complex multi-compartment versions that try to include various factors, which may influence MPA's pharmacokinetic variability, such as enterohepatic recycling and pharmacogenetic polymorphisms. There have been major advances in the understanding of the roles transport mechanisms, metabolizing and other enzymes, drug-drug interactions and pharmacogenetic polymorphisms play in MPA's pharmacokinetic variability. Given these advances, the usefulness of empirical-based models and the limitations of nonlinear mixed-effects modelling in developing mechanism-based models need to be considered and discussed. If the goal is to individualize MPA dosing, it needs to be determined whether factors which may contribute significantly to variability can be utilized in the population pharmacokinetic models. Some pharmacokinetic models developed to date show promise in being able to describe the impact of physiological processes such as enterohepatic recycling. Most studies have historically been based on retrospective data or poorly designed studies which do not take these factors into consideration

  4. Compartment syndrome

    MedlinePlus

    ... caused by repetitive activities, such as running. The pressure in a compartment only increases during that activity. Compartment syndrome is most common in the lower leg and forearm. It can also occur in the hand, foot, thigh, and upper arm.

  5. Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model

    PubMed Central

    Li, Yungui; Li, Qingqing; Chen, Baoliang

    2016-01-01

    The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants. PMID:27009902

  6. Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model

    NASA Astrophysics Data System (ADS)

    Li, Yungui; Li, Qingqing; Chen, Baoliang

    2016-03-01

    The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants.

  7. Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model.

    PubMed

    Li, Yungui; Li, Qingqing; Chen, Baoliang

    2016-01-01

    The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants. PMID:27009902

  8. In Vitro Measurements of Metabolism for Application in Pharmacokinetic Modeling

    SciTech Connect

    Lipscomb, John C.; Poet, Torka S.

    2008-04-01

    Abstract Human risk and exposure assessments require dosimetry information. Species-specific tissue dose response will be driven by physiological and biochemical processes. While metabolism and pharmacokinetic data are often not available in humans, they are much more available in laboratory animals; metabolic rate constants can be readily derived in vitro. The physiological differences between laboratory animals and humans are known. Biochemical processes, especially metabolism, can be measured in vitro and extrapolated to account for in vivo metabolism through clearance models or when linked to a physiologically based biological (PBPK) model to describe the physiological processes, such as drug delivery to the metabolic organ. This review focuses on the different organ, cellular, and subcellular systems that can be used to measure in vitro metabolic rate constants and how that data is extrapolated to be used in biokinetic modeling.

  9. Integrated semi-physiological pharmacokinetic model for both sunitinib and its active metabolite SU12662

    PubMed Central

    Yu, Huixin; Steeghs, Neeltje; Kloth, Jacqueline S L; de Wit, Djoeke; van Hasselt, J G Coen; van Erp, Nielka P; Beijnen, Jos H; Schellens, Jan H M; Mathijssen, Ron H J; Huitema, Alwin D R

    2015-01-01

    Aims Previously published pharmacokinetic (PK) models for sunitinib and its active metabolite SU12662 were based on a limited dataset or lacked important elements such as correlations between sunitinib and its metabolite. The current study aimed to develop an improved PK model that circumvented these limitations and to prove the utility of the PK model in treatment optimization in clinical practice. Methods One thousand two hundred and five plasma samples from 70 cancer patients were collected from three PK studies with sunitinib and SU12662. A semi-physiological PK model for sunitinib and SU12662 was developed incorporating pre-systemic metabolism using non-linear mixed effects modelling (nonmem). Allometric scaling based on body weight was applied. The final model was used for simulation of the PK of different treatment regimens. Results Sunitinib and SU12662 PK were best described by a one and two compartment model, respectively. Introduction of pre-systemic formation of SU12662 strongly improved model fit, compared with solely systemic metabolism. The clearance of sunitinib and SU12662 was estimated at 35.7 (relative standard error (RSE) 5.7%) l h−1 and 17.1 (RSE 7.4%) l h−1, respectively for 70 kg patients. Correlation coefficients were estimated between inter-individual variability of both clearances, both volumes of distribution and between clearance and volume of distribution of SU12662 as 0.53, 0.48 and 0.45, respectively. Simulation of the PK model predicted correctly the ratio of patients who did not reach proposed PK targets for efficacy. Conclusions A semi-physiological PK model for sunitinib and SU12662 in cancer patients was presented including pre-systemic metabolism. The model was superior to previous PK models in many aspects. PMID:25393890

  10. Model-Based Estimates of the Effects of Efavirenz on Bedaquiline Pharmacokinetics and Suggested Dose Adjustments for Patients Coinfected with HIV and Tuberculosis

    PubMed Central

    Svensson, Elin M.; Aweeka, Francesca; Park, Jeong-Gun; Marzan, Florence; Karlsson, Mats O.

    2013-01-01

    Safe, effective concomitant treatment regimens for tuberculosis (TB) and HIV infection are urgently needed. Bedaquiline (BDQ) is a promising new anti-TB drug, and efavirenz (EFV) is a commonly used antiretroviral. Due to EFV's induction of cytochrome P450 3A4, the metabolic enzyme responsible for BDQ biotransformation, the drugs are expected to interact. Based on data from a phase I, single-dose pharmacokinetic study, a nonlinear mixed-effects model characterizing BDQ pharmacokinetics and interaction with multiple-dose EFV was developed. BDQ pharmacokinetics were best described by a 3-compartment disposition model with absorption through a dynamic transit compartment model. Metabolites M2 and M3 were described by 2-compartment models with clearance of BDQ and M2, respectively, as input. Impact of induction was described as an instantaneous change in clearance 1 week after initialization of EFV treatment and estimated for all compounds. The model predicts average steady-state concentrations of BDQ and M2 to be reduced by 52% (relative standard error [RSE], 3.7%) with chronic coadministration. A range of models with alternative structural assumptions regarding onset of induction effect and fraction metabolized resulted in similar estimates of the typical reduction and did not offer a markedly better fit to data. Simulations to investigate alternative regimens mitigating the estimated interaction effect were performed. The results suggest that simple adjustments of the standard regimen during EFV coadministration can prevent reduced exposure to BDQ without increasing exposures to M2. However, exposure to M3 would increase. Evaluation in clinical trials of adjusted regimens is necessary to ensure appropriate dosing for HIV-infected TB patients on an EFV-based regimen. PMID:23571542

  11. Busulfan in infants to adult hematopoietic cell transplant recipients: A population pharmacokinetic model for initial and Bayesian dose personalization

    PubMed Central

    McCune, Jeannine S.; Bemer, Meagan J.; Barrett, Jeffrey S.; Baker, K. Scott; Gamis, Alan S.; Holford, Nicholas H.G.

    2014-01-01

    Purpose Personalizing intravenous (IV) busulfan doses to a target plasma concentration at steady state (Css) is an essential component of hematopoietic cell transplantation (HCT). We sought to develop a population pharmacokinetic model to predict IV busulfan doses over a wide age spectrum (0.1 – 66 years) that accounts for differences in age and body size. Experimental design A population pharmacokinetic model based on normal fat mass and maturation based on post-menstrual age was built from 12,380 busulfan concentration-time points obtained after IV busulfan administration in 1,610 HCT recipients. Subsequently, simulation results of the initial dose necessary to achieve a target Css with this model were compared with pediatric-only models. Results A two-compartment model with first-order elimination best fit the data. The population busulfan clearance was 12.4 L/h for an adult male with 62kg normal fat mass (equivalent to 70kg total body weight). Busulfan clearance, scaled to body size – specifically normal fat mass, is predicted to be 95% of the adult clearance at 2.5 years post-natal age. With a target Css of 770 ng/mL, a higher proportion of initial doses achieved the therapeutic window with this age- and size-dependent model (72%) compared to dosing recommended by the Food and Drug Administration (57%) or the European Medicines Agency (70%). Conclusion This is the first population pharmacokinetic model developed to predict initial IV busulfan doses and personalize to a target Css over a wide age spectrum, ranging from infants to adults. PMID:24218510

  12. Incorporation of ABCB1-mediated transport into a physiologically-based pharmacokinetic model of docetaxel in mice

    PubMed Central

    Hudachek, Susan F.

    2015-01-01

    Docetaxel is one of the most widely used anticancer agents. While this taxane has proven to be an effective chemotherapeutic drug, noteworthy challenges exist in relation to docetaxel administration due to the considerable interindividual variability in efficacy and toxicity associated with the use of this compound, largely attributable to differences between individuals in their ability to metabolize and eliminate docetaxel. Regarding the latter, the ATP-binding cassette transporter B1 (ABCB1, PGP, MDR1) is primarily responsible for docetaxel elimination. To further understand the role of ABCB1 in the biodistribution of docetaxel in mice, we utilized physiologically-based pharmacokinetic (PBPK) modeling that included ABCB1-mediated transport in relevant tissues. Transporter function was evaluated by studying docetaxel pharmacokinetics in wild-type FVB and Mdr1a/b constitutive knockout (KO) mice and incorporating this concentration–time data into a PBPK model comprised of eight tissue compartments (plasma, brain, heart, lung, kidney, intestine, liver and slowly perfused tissues) and, in addition to ABCB1-mediated transport, included intravenous drug administration, specific binding to intracellular tubulin, intestinal and hepatic metabolism, glomerular filtration and tubular reabsorption. For all tissues in both the FVB and KO cohorts, the PBPK model simulations closely mirrored the observed data. Furthermore, both models predicted AUC values that were with 15 % of the observed AUC values, indicating that our model-simulated drug exposures accurately reflected the observed tissue exposures. Overall, our PBPK model furthers the understanding of the role of ABCB1 in the biodistribution of docetaxel. Additionally, this exemplary model structure can be applied to investigate the pharmacokinetics of other ABCB1 transporter substrates. PMID:23616082

  13. Linear pharmacokinetic models for evaluating unusual work schedules, exposure limits and body burdens of pollutants.

    PubMed

    Saltzman, B E

    1988-05-01

    The adverse effects of workplace exposures to pollutants relate more accurately to the concentrations of pollutants in the body than in the environment. In many cases pharmacokinetic models may represent the external to internal concentration relationships with useful accuracy. Simplified equations are presented for stepwise calculations on a series of time-averaged, external concentrations to give a corresponding series of internal concentrations. Accurate results were obtained for averaging times not exceeding one-fourth of the biological half-life of the pollutant. A convenient measure of internal concentration is the external concentration that would be at in vivo equilibrium with it (termed biologically effective concentration). Three measures of damage burden are proposed, each appropriate for different toxic mechanisms. The calculations readily may be carried out on a programmable calculator or microcomputer. Illustrative examples show how unusual work schedules may be compared with an 8 hr/day, 5 days/week schedule and how appropriate short- and long-term exposure limits may be determined. Other examples, illustrated for lead, relate absorbed mass rates to body concentrations and body burdens in a two-compartment kinetic model. These calculations should provide a more accurate evaluation of fluctuating concentrations, which can be handled easily. PMID:3400585

  14. Preliminary physiologically based pharmacokinetic models for benzo[a]pyrene and dibenzo[def,p]chrysene in rodents

    SciTech Connect

    Crowell, Susan Ritger; Amin, Shantu G.; Anderson, Kim A.; Krishnegowda, Gowdahalli; Sharma, Arun K.; Soelberg, Jolen J.; Williams, David E.; Corley, Richard A.

    2011-12-15

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated as byproducts of natural and anthropogenic combustion processes. Despite significant public health concern, physiologically based pharmacokinetic (PBPK) modeling efforts for PAHs have so far been limited to naphthalene, plus simpler PK models for pyrene, nitropyrene, and benzo[a]pyrene (B[a]P). The dearth of published models is due in part to the high lipophilicity, low volatility, and myriad metabolic pathways for PAHs, all of which present analytical and experimental challenges. Our research efforts have focused upon experimental approaches and initial development of PBPK models for the prototypic PAH, B[a]P, and the more potent, albeit less studied transplacental carcinogen, dibenzo[def,p]chrysene (DBC). For both compounds, model compartments included arterial and venous blood, flow limited lung, liver, richly perfused and poorly perfused tissues, diffusion limited fat, and a two compartment theoretical gut (for oral exposures). Hepatic and pulmonary metabolism was described for both compounds, as were fractional binding in blood and fecal clearance. Partition coefficients for parent PAH along with their diol and tetraol metabolites were estimated using published algorithms and verified experimentally for the hydroxylated metabolites. The preliminary PBPK models were able to describe many, but not all, of the available data sets, comprising multiple routes of exposure (oral, intravenous) and nominal doses spanning several orders of magnitude. Supported by Award Number P42 ES016465 from the National Institute of Environmental Health Sciences. -- Highlights: Black-Right-Pointing-Pointer We present PBPK models for benzo[a]pyrene (B[a]P) and dibenzo[def,p]chrysene (DBC). Black-Right-Pointing-Pointer B[a]P model accurately predicts data from multiple sources over a wide dose range. Black-Right-Pointing-Pointer DBC model was based on the B[a]P model as less chemical specific

  15. Physiologically based pharmacokinetic models for everolimus and sorafenib in mice

    PubMed Central

    Pawaskar, Dipti K.; Straubinger, Robert M.; Fetterly, Gerald J.; Hylander, Bonnie H.; Repasky, Elizabeth A.; Ma, Wen W.

    2013-01-01

    Purpose Everolimus is a mammalian target of rapamycin (mTOR) inhibitor approved as an immunosuppressant and for second-line therapy of hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC). Sorafenib is a multikinase inhibitor used as first-line therapy in HCC and RCC. This study assessed the pharmacokinetics (PK) of everolimus and sorafenib alone and in combination in plasma and tissues, developed physiologically based pharmacokinetic (PBPK) models in mice, and assessed the possibility of PK drug interactions. Methods Single and multiple oral doses of everolimus and sorafenib were administered alone and in combination in immunocompetent male mice and to severe combined immune-deficient (SCID) mice bearing low-passage, patient-derived pancreatic adenocarcinoma in seven different studies. Plasma and tissue samples including tumor were collected over a 24-h period and analyzed by liquid chromatography-tandem mass spectrometry (LC–MS/MS). Distribution of everolimus and sorafenib to the brain, muscle, adipose, lungs, kidneys, pancreas, spleen, liver, GI, and tumor was modeled as perfusion rate-limited, and all data from the diverse studies were fitted simultaneously using a population approach. Results PBPK models were developed for everolimus and sorafenib. PBPK analysis showed that the two drugs in combination had the same PK as each drug given alone. A twofold increase in sorafenib dose increased tumor exposure tenfold, thus suggesting involvement of transporters in tumor deposition of sorafenib. Conclusions The developed PBPK models suggested the absence of PK interaction between the two drugs in mice. These studies provide the basis for pharmacodynamic evaluation of these drugs in patient-derived primary pancreatic adenocarcinomas explants. PMID:23455451

  16. Characterizing airway and alveolar nitric oxide exchange during tidal breathing using a three-compartment model.

    PubMed

    Condorelli, Peter; Shin, Hye-Won; George, Steven C

    2004-05-01

    Exhaled nitric oxide (NO) may be a useful marker of lung inflammation, but the concentration is highly dependent on exhalation flow rate due to a significant airway source. Current methods for partitioning pulmonary NO gas exchange into airway and alveolar regions utilize multiple exhalation flow rates or a single-breath maneuver with a preexpiratory breath hold, which is cumbersome for children and individuals with compromised lung function. Analysis of tidal breathing data has the potential to overcome these limitations, while still identifying region-specific parameters. In six healthy adults, we utilized a three-compartment model (two airway compartments and one alveolar compartment) to identify two potential flow-independent parameters that represent the average volumetric airway flux (pl/s) and the time-averaged alveolar concentration (parts/billion). Significant background noise and distortion of the signal from the sampling system were compensated for by using a Gaussian wavelet filter and a series of convolution integrals. Mean values for average volumetric airway flux and time-averaged alveolar concentration were 2,500 +/- 2,700 pl/s and 3.2 +/- 3.4 parts/billion, respectively, and were strongly correlated with analogous parameters determined from vital capacity breathing maneuvers. Analysis of multiple tidal breaths significantly reduced the standard error of the parameter estimates relative to the single-breath technique. Our initial assessment demonstrates the potential of utilizing tidal breathing for noninvasive characterization of pulmonary NO exchange dynamics. PMID:14729729

  17. A mechanism-based model for the population pharmacokinetics of free and bound aflibercept in healthy subjects

    PubMed Central

    Thai, Hoai-Thu; Veyrat-Follet, Christine; Vivier, Nicole; Dubruc, Catherine; Sanderink, Gerard; Mentré, France; Comets, Emmanuelle

    2011-01-01

    AIM Aflibercept (VEGF-Trap), a novel anti-angiogenic agent that binds to VEGF, has been investigated for the treatment of cancer. The aim of this study was to develop a mechanism-based pharmacokinetic (PK) model for aflibercept to characterize its binding to VEGF and its PK properties in healthy subjects. METHODS Data from two phase I clinical studies with aflibercept administered as a single intravenous infusion were included in the analysis. Free and bound aflibercept concentration−time data were analysed using a nonlinear mixed-effects modelling approach with MONOLIX 3.1. RESULTS The best structural model involved two compartments for free aflibercept and one for bound aflibercept, with a Michaelis–Menten type binding of free aflibercept to VEGF from the peripheral compartment. The typical estimated clearances for free and bound aflibercept were 0.88 l day−1 and 0.14 l day−1, respectively. The central volume of distribution of free aflibercept was 4.94 l. The maximum binding capacity was 0.99 mg day−1 and the concentration of aflibercept corresponding to half of maximum binding capacity was 2.91 µg ml−1. Interindividual variability of model parameters was moderate, ranging from 13.6% (Vmax) to 49.8% (Q). CONCLUSION The present PK model for aflibercept adequately characterizes the underlying mechanism of disposition of aflibercept and its nonlinear binding to VEGF. PMID:21575034

  18. Aztreonam pharmacokinetics in burn patients.

    PubMed Central

    Friedrich, L V; White, R L; Kays, M B; Brundage, D M; Yarbrough, D

    1991-01-01

    The pharmacokinetics of aztreonam in eight adult patients with severe burn injuries (total body surface area burn, 49% +/- 21% [mean +/- standard deviation]) were studied. The time of initiation of study following burn injury was 7.0 +/- 1.4 days. Four patients at first dose and at steady state were studied. Aztreonam concentrations were measured by high-performance liquid chromatography, and a two-compartment model was used to fit the data. No significant differences in any pharmacokinetic parameters between first dose and steady state were observed. Volume of distribution of the central compartment after first dose (0.14 liters/kg) and volume of distribution at steady state (0.31 liters/kg) were approximately 30% higher than those reported for other patient populations. Total drug clearance and renal drug clearance when normalized to creatinine clearance (CLCR) were similar to those previously reported for other critically ill patients. CLCR was strongly correlated with renal drug clearance (r = 0.94) and total drug clearance (r = 0.95). The extent and degree of burn (percent second or third degree burn) were poorly correlated with all pharmacokinetic parameters with the exception of the volume of distribution at steady state, which was correlated with both total body surface area burn (r = 0.95) and percent second degree burn (r = 0.83). Aztreonam pharmacokinetics are altered as a result of thermal injury; however, CLCR can be used to assess the clearance of aztreonam in burn patients. PMID:2014982

  19. USE OF A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL TO ESTIMATE ABSORBED CARBARYL DOSE IN CHILDREN AFTER TURF APPLICATION

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed to investigate exposure scenarios of children to carbaryl following turf application. Physiological, pharmacokinetic and pharmacodynamic parameters describing the fate and effects of carbaryl in rats were scaled ...

  20. Development of a Physiologically Based Pharmacokinetic Model for Triadimefon and its Metabolite Triandimenol in Rats and Humans

    EPA Science Inventory

    physiologically based pharmacokinetic (PBPK) model was developed for the conazole fungicide triadimefon and its primary metabolite, triadimenol. Rat tissue:blood partition coefficients and metabolic constants were measured in vitro for both compounds. Pharmacokinetic data for par...

  1. Physiologically based pharmacokinetic modeling using microsoft excel and visual basic for applications.

    PubMed

    Marino, Dale J

    2005-01-01

    Abstract Physiologically based pharmacokinetic (PBPK) models are mathematical descriptions depicting the relationship between external exposure and internal dose. These models have found great utility for interspecies extrapolation. However, specialized computer software packages, which are not widely distributed, have typically been used for model development and utilization. A few physiological models have been reported using more widely available software packages (e.g., Microsoft Excel), but these tend to include less complex processes and dose metrics. To ascertain the capability of Microsoft Excel and Visual Basis for Applications (VBA) for PBPK modeling, models for styrene, vinyl chloride, and methylene chloride were coded in Advanced Continuous Simulation Language (ACSL), Excel, and VBA, and simulation results were compared. For styrene, differences between ACSL and Excel or VBA compartment concentrations and rates of change were less than +/-7.5E-10 using the same numerical integration technique and time step. Differences using VBA fixed step or ACSL Gear's methods were generally <1.00E-03, although larger differences involving very small values were noted after exposure transitions. For vinyl chloride and methylene chloride, Excel and VBA PBPK model dose metrics differed by no more than -0.013% or -0.23%, respectively, from ACSL results. These differences are likely attributable to different step sizes rather than different numerical integration techniques. These results indicate that Microsoft Excel and VBA can be useful tools for utilizing PBPK models, and given the availability of these software programs, it is hoped that this effort will help facilitate the use and investigation of PBPK modeling. PMID:20021074

  2. Development of a physiologically based pharmacokinetic model for a domain antibody in mice using the two-pore theory.

    PubMed

    Sepp, Armin; Berges, Alienor; Sanderson, Andrew; Meno-Tetang, Guy

    2015-04-01

    Domain antibodies (dAbs) are the smallest antigen-binding fragments of immunoglobulins. To date, there is limited insight into the pharmacokinetics of dAbs, especially their distribution into tissues and elimination. The objective of this work was to develop a physiologically-based pharmacokinetic model to investigate the biodisposition of a non-specific dAb construct in mice. Following a single IV administration of 10 mg/kg dummy dAb protein to twenty four female mice, frequent blood samples were collected and whole body lateral sections were analyzed by quantitative whole-body autoradiography. The model is based on the two-pore hypothesis of extravasation where organ-specific isogravimetric flow rates (Jorg,ISO) and permeability-surface area products (PSorg) are expressed as linear functions of the lymph flow rate (Jorg) and the kidney compartment is modified to account for glomerular filtration of dAb. As a result, only Jorg, glomerular filtration coefficient and the combined volume of Bowman's capsule, proximal and distal renal tubules and loop of Henle were optimized by fitting simultaneously all blood and organ data to the model. Our model captures the pharmacokinetic profiles of dAb in blood and all organs and shows that extravasation into interstitial space is a predominantly diffusion-driven process. The parameter values were estimated with good precision (%RMSE ≈ 30) and low cross-correlation (R(2) < 0.2). We developed a flexible model with a limited parameter number that may be applied to other biotherapeutics after adapting for size-related effects on extravasation and renal elimination processes. PMID:25577033

  3. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles

    PubMed Central

    Bachler, Gerald; von Goetz, Natalie; Hungerbühler, Konrad

    2013-01-01

    Silver is a strong antibiotic that is increasingly incorporated into consumer products as a bulk, salt, or nanosilver, thus potentially causing side-effects related to human exposure. However, the fate and behavior of (nano)silver in the human body is presently not well understood. In order to aggregate the existing experimental information, a physiologically based pharmacokinetic model (PBPK) was developed in this study for ionic silver and nanosilver. The structure of the model was established on the basis of toxicokinetic data from intravenous studies. The number of calibrated parameters was minimized in order to enhance the predictive capability of the model. We validated the model structure for both silver forms by reproducing exposure conditions (dermal, oral, and inhalation) of in vivo experiments and comparing simulated and experimentally assessed organ concentrations. Therefore, the percutaneous, intestinal, or pulmonary absorption fraction was estimated based on the blood silver concentration of the respective experimental data set. In all of the cases examined, the model could successfully predict the biodistribution of ionic silver and 15–150 nm silver nanoparticles, which were not coated with substances designed to prolong the circulatory time (eg, polyethylene glycol). Furthermore, the results of our model indicate that: (1) within the application domain of our model, the particle size and coating had a minor influence on the biodistribution; (2) in vivo, it is more likely that silver nanoparticles are directly stored as insoluble salt particles than dissolve into Ag+; and (3) compartments of the mononuclear phagocytic system play a minor role in exposure levels that are relevant for human consumers. We also give an example of how the model can be used in exposure and risk assessments based on five different exposure scenarios, namely dietary intake, use of three separate consumer products, and occupational exposure. PMID:24039420

  4. A Multi-Compartment 3-D Finite Element Model of Rectocele and Its Interaction with Cystocele

    PubMed Central

    Luo, Jiajia; Chen, Luyun; Fenner, Dee E.; Ashton-Miller, James A.; DeLancey, John O. L.

    2015-01-01

    We developed a subject-specific 3-D finite element model to understand the mechanics underlying formation of female pelvic organ prolapse, specifically a rectocele and its interaction with a cystocele. The model was created from MRI 3-D geometry of a healthy 45 year-old multiparous woman. It included anterior and posterior vaginal walls, levator ani muscle, cardinal and uterosacral ligaments, anterior and posterior arcus tendineus fascia pelvis, arcus tendineus levator ani, perineal body, perineal membrane and anal sphincter. Material properties were mostly from the literature. Tissue impairment was modeled as decreased tissue stiffness based on previous clinical studies. Model equations were solved using Abaqus v 6.11. The sensitivity of anterior and posterior vaginal wall geometry was calculated for different combinations tissue impairments under increasing intraabdominal pressure. Prolapse size was reported as POP-Q point at point Bp for rectocele and point Ba for cystocele. Results show that a rectocele resulted from impairments of the levator ani and posterior compartment support. For 20% levator and 85% posterior support impairments, simulated rectocele size (at POP-Q point: Bp) increased 0.29 mm/cm H2O without apical impairment and 0.36 mm/cm H2O with 60% apical impairment, as intraabdominal pressures increased from 0 to 150 cm H2O. Apical support impairment could result in the development of either a cystocele or rectocele. Simulated repair of posterior compartment support decreased rectocele but increased a preexisting cystocele. We conclude that development of rectocele and cystocele depend on the presence of anterior, posterior, levator and/or or apical support impairments, as well as the interaction of the prolapse with the opposing compartment. PMID:25757664

  5. Two compartment model of diazepam biotransformation in an organotypical culture of primary human hepatocytes

    SciTech Connect

    Acikgoez, Ali; Karim, Najibulla; Giri, Shibashish; Schmidt-Heck, Wolfgang; Bader, Augustinus

    2009-01-15

    Drug biotransformation is one of the most important parameters of preclinical screening tests for the registration of new drug candidates. Conventional existing tests rely on nonhuman models which deliver an incomplete metabolic profile of drugs due to the lack of proper CYP450 expression as seen in human liver in vivo. In order to overcome this limitation, we used an organotypical model of human primary hepatocytes for the biotransformation of the drug diazepam with special reference to metabolites in both the cell matrix phase and supernatant and its interaction of three inducers (phenobarbital, dexamethasone, aroclor 1254) in different time responses (1, 2, 4, 8, 24 h). Phenobarbital showed the strongest inducing effect in generating desmethyldiazepam and induced up to a 150 fold increase in oxazepam-content which correlates with the increased availability of the precursor metabolites (temazepam and desmethyldiazepam). Aroclor 1254 and dexamethasone had the strongest inducing effect on temazepam and the second strongest on oxazepam. The strong and overlapping inductive role of phenobarbital strengthens the participation of CYP2B6 and CYP3A in diazepam N-demethylation and CYP3A in temazepam formation. Aroclor 1254 preferentially generated temazepam due to the interaction with CYP3A and potentially CYP2C19. In parallel we represented these data in the form of a mathematical model with two compartments explaining the dynamics of diazepam metabolism with the effect of these other inducers in human primary hepatocytes. The model consists of ten differential equations, with one for each concentration c{sub i,j} (i = diazepam, temazepam, desmethyldiazepam, oxazepam, other metabolites) and one for each compartment (j = cell matrix phase, supernatant), respectively. The parameters p{sub k} (k = 1, 2, 3, 4, 13) are rate constants describing the biotransformation of diazepam and its metabolites and the other parameters (k = 5, 6, 7, 8, 9, 10, 11, 12, 14, 15) explain the

  6. Reconstructing Exposures from Biomarkers using Exposure-Pharmacokinetic Modeling - A Case Study with Carbaryl

    EPA Science Inventory

    Sources of uncertainty involved in exposure reconstruction for a short half-life chemical, carbaryl, were characterized using the Cumulative and Aggregate Risk Evaluation System (CARES), an exposure model, and a human physiologically based pharmacokinetic (PBPK) model. CARES was...

  7. USE OF PHARMACOKINETIC MODELS TO ASSESS OCCUPATIONAL AND RESIDENTIAL PESTICIDE EXPOSURE

    EPA Science Inventory

    Urinary biomarker measurements were analyzed using a dynamic pharmacokinetic model. The dynamic model provided the structure to link spot urine samples with corresponding exposure and absorbed dose. Data from both occupational and residential studies were analyzed. In the Agri...

  8. Semi-mechanistic physiologically-based pharmacokinetic modeling of clinical glibenclamide pharmacokinetics and drug-drug-interactions.

    PubMed

    Greupink, Rick; Schreurs, Marieke; Benne, Marina S; Huisman, Maarten T; Russel, Frans G M

    2013-08-16

    We studied if the clinical pharmacokinetics and drug-drug interactions (DDIs) of the sulfonylurea-derivative glibenclamide can be simulated via a physiologically-based pharmacokinetic modeling approach. To this end, a glibenclamide PBPK-model was build in Simcyp using in vitro physicochemical and biotransformation data of the drug, and was subsequently optimized using plasma disappearance data observed after i.v. administration. The model was validated against data observed after glibenclamide oral dosing, including DDIs. We found that glibenclamide pharmacokinetics could be adequately modeled if next to CYP metabolism an active hepatic uptake process was assumed. This hepatic uptake process was subsequently included in the model in a non-mechanistic manner. After an oral dose of 0.875 mg predicted Cmax and AUC were 39.7 (95% CI:37.0-42.7)ng/mL and 108 (95% CI: 96.9-120)ng/mLh, respectively, which is in line with observed values of 43.6 (95% CI: 37.7-49.5)ng/mL and 133 (95% CI: 107-159)ng/mLh. For a 1.75 mg oral dose, the predicted and observed values were 82.5 (95% CI:76.6-88.9)ng/mL vs 91.1 (95% CI: 67.9-115.9) for Cmax and 224 (95% CI: 202-248) vs 324 (95% CI: 197-451)ng/mLh for AUC, respectively. The model correctly predicted a decrease in exposure after rifampicin pre-treatment. An increase in glibenclamide exposure after clarithromycin co-treatment was predicted, but the magnitude of the effect was underestimated because part of this DDI is the result of an interaction at the transporter level. Finally, the effects of glibenclamide and fluconazol co-administration were simulated. Our simulations indicated that co-administration of this potent CYP450 inhibitor will profoundly increase glibenclamide exposure, which is in line with clinical observations linking the glibenclamide-fluconazol combination to an increased risk of hypoglycemia. In conclusion, glibenclamide pharmacokinetics and its CYP-mediated DDIs can be simulated via PBPK-modeling. In addition, our

  9. Pharmacokinetic and Pharmacodynamic Modeling Analysis of Intravenous Esomeprazole in Healthy Volunteers.

    PubMed

    Liu, Dongyang; Yang, Hong; Jiang, Ji; Nagy, Péter; Shen, Kai; Qian, Jiaming; Hu, Pei

    2016-07-01

    Esomeprazole is one of the most commonly used drugs to treat gastroesophageal reflux disease and peptic ulcers, but the quantitative relationships among the pharmacokinetics (PK), pharmacodynamics (PD), and pharmacogenomics (PG) of the drug are not fully understood in special patient populations. A clinical PK/PD/PG study of intravenous (IV) esomeprazole in 5 dosing regimens was conducted in 20 healthy Chinese volunteers, who were categorized into Helicobacter pylori (HP)-negative and HP-positive subgroups. Plasma esomeprazole concentration and intragastric H(+) concentration were monitored for 24 hours postdosing. Population PK (PopPK) models were tested based on elimination characteristics and other data. For a single-dose IV esomeprazole regimen, a 2-compartment model with nonlinear elimination characteristics fitted the PK data well. The elimination of esomeprazole was found to be significantly linked to CYP2C19 genotype by 11% to 29%. A mechanism-based PD model was first tested to mimic the irreversible inhibition of H(+) /K(+) -ATPase by esomeprazole using a cell-killing mechanism and models of gastric H(+) secretion that included the effects of an asymmetric circadian rhythm and food effects. Results from this PD model showed that the turnover rate of H(+) /K(+) -ATPase was significantly different between HP-negative and HP-positive subgroups. In conclusion, the PopPK model quantitatively identified the effects of the CYP2C19 genotype on esomeprazole elimination in healthy subjects for the first time. In addition, the effects of HP status on drug effect, H(+) /K(+) -ATPase turnover, and circadian rhythm amplitude were preliminarily explored using a mechanism-based PD model. PMID:26970404

  10. 75 FR 75 - Special Conditions: Boeing Model 787-8 Airplane; Overhead Crew Rest Compartment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... OCR compartment. (4) Structural failure or deformation of components that could block access to the..., mechanical or structural failure, or persons standing below or against the crew rest compartment outlets....

  11. Application of Physiologically Based Pharmacokinetic Models in Chemical Risk Assessment

    PubMed Central

    Mumtaz, Moiz; Fisher, Jeffrey; Blount, Benjamin; Ruiz, Patricia

    2012-01-01

    Post-exposure risk assessment of chemical and environmental stressors is a public health challenge. Linking exposure to health outcomes is a 4-step process: exposure assessment, hazard identification, dose response assessment, and risk characterization. This process is increasingly adopting “in silico” tools such as physiologically based pharmacokinetic (PBPK) models to fine-tune exposure assessments and determine internal doses in target organs/tissues. Many excellent PBPK models have been developed. But most, because of their scientific sophistication, have found limited field application—health assessors rarely use them. Over the years, government agencies, stakeholders/partners, and the scientific community have attempted to use these models or their underlying principles in combination with other practical procedures. During the past two decades, through cooperative agreements and contracts at several research and higher education institutions, ATSDR funded translational research has encouraged the use of various types of models. Such collaborative efforts have led to the development and use of transparent and user-friendly models. The “human PBPK model toolkit” is one such project. While not necessarily state of the art, this toolkit is sufficiently accurate for screening purposes. Highlighted in this paper are some selected examples of environmental and occupational exposure assessments of chemicals and their mixtures. PMID:22523493

  12. Propofol Pharmacokinetics and Estimation of Fetal Propofol Exposure during Mid-Gestational Fetal Surgery: A Maternal-Fetal Sheep Model

    PubMed Central

    Niu, Jing; Venkatasubramanian, Raja; Vinks, Alexander A.; Sadhasivam, Senthilkumar

    2016-01-01

    Background Measuring fetal drug concentrations is extremely difficult in humans. We conducted a study in pregnant sheep to simultaneously describe maternal and fetal concentrations of propofol, a common intravenous anesthetic agent used in humans. Compared to inhalational anesthesia, propofol supplemented anesthesia lowered the dose of desflurane required to provide adequate uterine relaxation during open fetal surgery. This resulted in better intraoperative fetal cardiac outcome. This study describes maternal and fetal propofol pharmacokinetics (PK) using a chronically instrumented maternal-fetal sheep model. Methods Fetal and maternal blood samples were simultaneously collected from eight mid-gestational pregnant ewes during general anesthesia with propofol, remifentanil and desflurane. Nonlinear mixed-effects modeling was performed by using NONMEM software. Total body weight, gestational age and hemodynamic parameters were tested in the covariate analysis. The final model was validated by bootstrapping and visual predictive check. Results A total of 160 propofol samples were collected. A 2-compartment maternal PK model with a third fetal compartment appropriately described the data. Mean population parameter estimates for maternal propofol clearance and central volume of distribution were 4.17 L/min and 37.7 L, respectively, in a typical ewe with a median heart rate of 135 beats/min. Increase in maternal heart rate significantly correlated with increase in propofol clearance. The estimated population maternal-fetal inter-compartment clearance was 0.0138 L/min and the volume of distribution of propofol in the fetus was 0.144 L. Fetal propofol clearance was found to be almost negligible compared to maternal clearance and could not be robustly estimated. Conclusions For the first time, a maternal-fetal PK model of propofol in pregnant ewes was successfully developed. This study narrows the gap in our knowledge in maternal-fetal PK model in human. Our study confirms

  13. In Vitro Dissolution and In Vivo Bioavailability of Six Brands of Ciprofloxacin Tablets Administered in Rabbits and Their Pharmacokinetic Modeling

    PubMed Central

    Fahmy, Sahar

    2014-01-01

    This study was undertaken to assess the in vitro dissolution and in vivo bioavailability of six brands of ciprofloxacin oral tablets available in the UAE market using rabbits. The in vitro dissolution profiles of the six ciprofloxacin products were determined using the USP dissolution paddle method. Pharmacokinetic modeling using compartmental and noncompartmental analysis was done to determine the pharmacokinetic parameters of ciprofloxacin after single-dose oral administration. In vitro release study revealed that the amount of ciprofloxacin released in 20 minutes was not less than 80% of the labeled amount which is in accordance with the pharmacopoeial requirements. All tested products are considered to be very rapid dissolving except for formulae A and D. Ciprofloxacin plasma concentration in rabbits was best fitted to a two-compartment open model. The lowest bioavailability was determined to be for product A (93.24%) while the highest bioavailability was determined to be for product E (108.01%). Postmarketing surveillance is very crucial to ensure product quality and eliminating substandard products to be distributed and, consequently, ensure better patient clinical outcome. The tested ciprofloxacin generic products distributed in the UAE market were proven to be of good quality and could be used interchangeably with the branded ciprofloxacin product. PMID:24995312

  14. Pharmacokinetic modeling of saturable, renal resorption of perfluoroalkylacids in monkeys--probing the determinants of long plasma half-lives.

    PubMed

    Andersen, Melvin E; Clewell, Harvey J; Tan, Yu-Mei; Butenhoff, John L; Olsen, Geary W

    2006-10-01

    Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) compounds associated with surface protection product manufactures are distributed globally. The 3-5-year half-lives, reproductive and liver toxicity in animals, and lack of understanding of the factors regulating retention in the body have led to a world-wide public concern for use of these materials. Using a novel physiologically-motivated pharmacokinetic model for renal clearance, perfluoroalkylacid pharmacokinetics in monkeys was successfully described by renal resorption via high efficiency transporters for both intravenous and oral dosing. Intravenous dosing with both PFOA and PFOS in Cynomolgus monkeys produced time course curves consistent with a two-compartment distribution. Extending the PK model for intravenous dosing to examine blood and urine time course data for repeated oral dosing clearly identified the saturable renal resorption. Resorption depends on kinetic factors for transport (T(mC), transport maximum; K(T), transport affinity) and free fraction in plasma (f(plasma)). For PFOA, these parameters were estimated to be 5mg/(h kg) (T(mC)), 0.055 mg/L (K(T)), and 0.02 (f(plasma)). PFOS has longer half-life and had respective values of 13.6 mg/(h kg), 0.023 mg/L, and 0.025. PFOS appeared to have a higher transport capacity and lower affinity than PFOA. Human kinetics indicates even higher resorption efficiency. PMID:16978759

  15. In vitro dissolution and in vivo bioavailability of six brands of ciprofloxacin tablets administered in rabbits and their pharmacokinetic modeling.

    PubMed

    Fahmy, Sahar; Abu-Gharbieh, Eman

    2014-01-01

    This study was undertaken to assess the in vitro dissolution and in vivo bioavailability of six brands of ciprofloxacin oral tablets available in the UAE market using rabbits. The in vitro dissolution profiles of the six ciprofloxacin products were determined using the USP dissolution paddle method. Pharmacokinetic modeling using compartmental and noncompartmental analysis was done to determine the pharmacokinetic parameters of ciprofloxacin after single-dose oral administration. In vitro release study revealed that the amount of ciprofloxacin released in 20 minutes was not less than 80% of the labeled amount which is in accordance with the pharmacopoeial requirements. All tested products are considered to be very rapid dissolving except for formulae A and D. Ciprofloxacin plasma concentration in rabbits was best fitted to a two-compartment open model. The lowest bioavailability was determined to be for product A (93.24%) while the highest bioavailability was determined to be for product E (108.01%). Postmarketing surveillance is very crucial to ensure product quality and eliminating substandard products to be distributed and, consequently, ensure better patient clinical outcome. The tested ciprofloxacin generic products distributed in the UAE market were proven to be of good quality and could be used interchangeably with the branded ciprofloxacin product. PMID:24995312

  16. A Two-Compartment Model of VEGF Distribution in the Mouse

    PubMed Central

    Engel-Stefanini, Marianne O.; Popel, Aleksander S.

    2011-01-01

    Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis – the growth of new microvessels from existing microvasculature. Angiogenesis is a complex process involving numerous molecular species, and to better understand it, a systems biology approach is necessary. In vivo preclinical experiments in the area of angiogenesis are typically performed in mouse models; this includes drug development targeting VEGF. Thus, to quantitatively interpret such experimental results, a computational model of VEGF distribution in the mouse can be beneficial. In this paper, we present an in silico model of VEGF distribution in mice, determine model parameters from existing experimental data, conduct sensitivity analysis, and test the validity of the model. The multiscale model is comprised of two compartments: blood and tissue. The model accounts for interactions between two major VEGF isoforms (VEGF120 and VEGF164) and their endothelial cell receptors VEGFR-1, VEGFR-2, and co-receptor neuropilin-1. Neuropilin-1 is also expressed on the surface of parenchymal cells. The model includes transcapillary macromolecular permeability, lymphatic transport, and macromolecular plasma clearance. Simulations predict that the concentration of unbound VEGF in the tissue is approximately 50-fold greater than in the blood. These concentrations are highly dependent on the VEGF secretion rate. Parameter estimation was performed to fit the simulation results to available experimental data, and permitted the estimation of VEGF secretion rate in healthy tissue, which is difficult to measure experimentally. The model can provide quantitative interpretation of preclinical animal data and may be used in conjunction with experimental studies in the development of pro- and anti-angiogenic agents. The model approximates the normal tissue as skeletal muscle and includes endothelial cells to represent the vasculature. As the VEGF system becomes better characterized in other tissues and

  17. Investigation of an alternative generic model for predicting pharmacokinetic changes during physiological stress.

    PubMed

    Peng, Henry T; Edginton, Andrea N; Cheung, Bob

    2013-10-01

    Physiologically based pharmacokinetic models were developed using MATLAB Simulink® and PK-Sim®. We compared the capability and usefulness of these two models by simulating pharmacokinetic changes of midazolam under exercise and heat stress to verify the usefulness of MATLAB Simulink® as a generic PBPK modeling software. Although both models show good agreement with experimental data obtained under resting condition, their predictions of pharmacokinetics changes are less accurate in the stressful conditions. However, MATLAB Simulink® may be more flexible to include physiologically based processes such as oral absorption and simulate various stress parameters such as stress intensity, duration and timing of drug administration to improve model performance. Further work will be conducted to modify algorithms in our generic model developed using MATLAB Simulink® and to investigate pharmacokinetics under other physiological stress such as trauma. PMID:23852614

  18. Development of good modelling practice for phsiologically based pharmacokinetic models for use in risk assessment: The first steps

    EPA Science Inventory

    The increasing use of tissue dosimetry estimated using pharmacokinetic models in chemical risk assessments in multiple countries necessitates the need to develop internationally recognized good modelling practices. These practices would facilitate sharing of models and model eva...

  19. Physiologically-based pharmacokinetic (PBPK) models in human exposure assessment

    SciTech Connect

    Krishnan, K.

    1995-12-31

    The potential dose received by an individual during defined exposure situations can be determined using personal dosimeters or estimated by combining information on exposure scenarios with the environmental concentration (C.) of chemicals. With the latter approach, not only the potential dose but also the internal dose (i.e., amount of chemical that has been absorbed and available for interaction with receptors) and biologically-effective dose (i.e., amount of chemical that actually reaches the cellular sites where interaction with macromolecules occur) can be estimated if C. is provided as an input to PBPK models. These models are mathematical representations of the interrelationships among the critical determinants of the absorption, distribution, metabolism and excretion of chemicals in biota. Since the compartments in this model correspond to biologically relevant tissues or tissue groups, the amount of chemical reaching specific target organ(s) can be estimated. Further, the PBPK models permit the use of biological monitoring data such as urinary levels of metabolites, hemoglobin adduct levels, and alveolar air concentrations, to reconstruct the exposure levels and scenarios for specific subgroups of populations. These models are also useful in providing estimates of target tissue dose in humans simultaneously exposed to chemicals in various media (air, water, soil, food) by different routes (oral, dermal, inhalation). Several examples of exposure assessment for volatile organic chemicals using PBPK models for mammals will be presented, and the strategies for development of these models for other classes of chemicals highlighted.

  20. Modeling the covariance structure in pharmacokinetic crossover trials.

    PubMed

    Lindsey, J K; Wang, J; Byrom, W D; Jones, B

    1999-08-01

    Pharmacokinetic studies of drug and metabolite concentrations in the blood are usually conducted as crossover trials, especially in phases I and II. A longitudinal series of measurements is collected on each subject within each period. However, much of the dependence among such observations, within and between periods, is generally ignored in analyzing this type of data. Usually, only a random coefficient model is fitted for the parameters in the nonlinear mean function, along with allowing the variance to depend on the mean so that it changes over time. Here, we develop models to allow more fully for the structure of the crossover study. We introduce two levels of variance components, for the subjects and for the periods within subjects, and also an autocorrelation within periods. We also retain the time-varying variance, using a separate variance function for this, different from that for the mean. We apply this model to a phase I study of the drug flosequinan and its metabolite. This drug was developed for the treatment of heart failure. Because the metabolite also exhibits an active pharmacologic effect, study of both the parent drug and the metabolite is of interest. We find that the autocorrelation is the element in the covariance structure that most improves the fit of the model but that two levels of variance components can also be necessary. PMID:10473030

  1. Lifetime pharmacokinetic model for hydrophobic contaminants in marine mammals

    SciTech Connect

    Hickie, B.E.; Mackay, D.; Koning, J. de

    1999-11-01

    A physiologically based pharmacokinetic model is developed that describes the uptake and release of a hydrophobic organic chemical by a marine mammal over its entire lifetime, i.e., from birth to death. This model is applied to polychlorinated biphenyls (PCBs) in the beluga whale (Delphinapterus leucas). The processes treated are growth; uptake from food, milk, and air; disposition of the chemical among arterial and venous blood, liver, muscle, blubber, and rapidly perfused tissues; and losses by metabolism, release in exhaled air; and by egestion. A separate model is developed for females, which includes pregnancy, birth, and lactation. Food consumption is deduced from size, growth, and from activity-dependent bioenergetic data. The results obtained by simulating continuous PCB exposure over a 30-year period are in accordance with reported concentrations and show the importance of milk transfer to both mother and progeny and the tendency for continued accumulation over the animal's lifetime. Implications of the results are discussed, especially the need for improved data on diets, gut absorption characteristics, and various physiological parameters used in the model.

  2. A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse

    SciTech Connect

    Lin Zhoumeng; Fisher, Jeffrey W.; Ross, Matthew K.; Filipov, Nikolay M.

    2011-02-15

    Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR and DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5 mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.

  3. Development of a multicompartmental, multiple cell type bioreactor and corresponding pharmacokinetic model for naphthalene

    SciTech Connect

    Sweeney, L.M.

    1993-12-31

    The impracticality of large scale animal testing of compounds has spurred development of in vitro testing methods and the development of physiologically based pharmacokinetic (PBPK) models. A weakness of previous work in these areas is that tissue interactions occurring in vivo are not reproduced. Through computer modeling of reactive systems and development of a multicompartmental, multiple cell type bioreactor these limitations can be overcome. These approaches were used to study naphthalene toxicology. In the PBPK developed for naphthalene, tissue interactions result from a mathematical description of the biotransformation of naphthalene and naphthalene oxide in the lung and liver and circulation of the semi-stable naphthalene oxide throughout the body. This model is believed to be the first describing both parent compound and metabolite with complete PBPKs. The model successfully simulates the in vivo work done with naphthalene. A weakness of PBPKs is that a large number of parameters must be determined. To overcome this limitation, a cell culture analog (CCA) of a PBPK was developed. The CCA contains multiple chambers, each of which represents a tissue or group of similar tissues. Since the lung and liver are important in naphthalene toxicology, a prototype with cells derived from these tissues was constructed. The system was deemed suitable for measuring commonly used indicators of in vitro toxicity. The prototype system was modified to minimize naphthalene sorption by the materials of construction. This system was used in conjunction with cultured H4IIE rat hepatoma cells and L2 rat lung cells to study the importance of circulated naphthalene metabolites (naphthalene oxides) on lung cell toxicity in rodents. By increasing the number of cells and/or inducing cytochrome P450 activity in the liver compartment, lung cell mortality was increased. Glutathione depletion in the lung and liver cells was also observed.

  4. Modeling pharmacokinetic data using heavy-tailed multivariate distributions.

    PubMed

    Lindsey, J K; Jones, B

    2000-08-01

    Pharmacokinetic studies of drug and metabolite concentrations in the blood are usually conducted as crossover trials, especially in Phases I and II. A longitudinal series of measurements is collected on each subject within each period. Dependence among such observations, within and between periods, will generally be fairly complex, requiring two levels of variance components, for the subjects and for the periods within subjects, and an autocorrelation within periods as well as a time-varying variance. Until now, the standard way in which this has been modeled is using a multivariate normal distribution. Here, we introduce procedures for simultaneously handling these various types of dependence in a wider class of distributions called the multivariate power exponential and Student t families. They can have the heavy tails required for handling the extreme observations that may occur in such contexts. We also consider various forms of serial dependence among the observations and find that they provide more improvement to our models than do the variance components. An integrated Ornstein-Uhlenbeck (IOU) stochastic process fits much better to our data set than the conventional continuous first-order autoregression, CAR(1). We apply these models to a Phase I study of the drug, flosequinan, and its metabolite. PMID:10959917

  5. Development of a Human Physiologically Based Pharmacokinetics (PBPK) Model For Dermal Permeability for Lindane

    EPA Science Inventory

    Lindane is a neurotoxicant used for the treatment of lice and scabies present on human skin. Due to its pharmaceutical application, an extensive pharmacokinetic database exists in humans. Mathematical diffusion models allow for calculation of lindane skin permeability coefficient...

  6. High Throughput pharmacokinetic modeling using computationally predicted parameter values: dissociation constants (TDS)

    EPA Science Inventory

    Estimates of the ionization association and dissociation constant (pKa) are vital to modeling the pharmacokinetic behavior of chemicals in vivo. Methodologies for the prediction of compound sequestration in specific tissues using partition coefficients require a parameter that ch...

  7. PHYSIOLOCIGALLY BASED PHARMACOKINETIC (PBPK) MODELING AND MODE OF ACTION IN DOSE-RESPONSE ASSESSMENT

    EPA Science Inventory

    PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING AND MODE OF ACTION IN DOSE-RESPONSE ASSESSMENT. Barton HA. Experimental Toxicology Division, National Health and Environmental Effects Laboratory, ORD, U.S. EPA
    Dose-response analysis requires quantitatively linking infor...

  8. A Mechanistic Pharmacokinetic Model for Liver Transporter Substrates Under Liver Cirrhosis Conditions.

    PubMed

    Li, R; Barton, H A; Maurer, T S

    2015-06-01

    Liver cirrhosis is a disease characterized by the loss of functional liver mass. Physiologically based pharmacokinetic (PBPK) modeling was applied to interpret and predict how the interplay among physiological changes in cirrhosis affects pharmacokinetics. However, previous PBPK models under cirrhotic conditions were developed for permeable cytochrome P450 substrates and do not directly apply to substrates of liver transporters. This study characterizes a PBPK model for liver transporter substrates in relation to the severity of liver cirrhosis. A published PBPK model structure for liver transporter substrates under healthy conditions and the physiological changes for cirrhosis are combined to simulate pharmacokinetics of liver transporter substrates in patients with mild and moderate cirrhosis. The simulated pharmacokinetics under liver cirrhosis reasonably approximate observations. This analysis includes meta-analysis to obtain system-dependent parameters in cirrhosis patients and a top-down approach to improve understanding of the effect of cirrhosis on transporter-mediated drug disposition under cirrhotic conditions. PMID:26225262

  9. Development of a Physiologically Based Pharmacokinetic Model for Triadimefon and Triadimenol in Rats and Humans

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed for the conazole fungicide triadimefon and its primary metabolite, triadimenol. Rat tissue:blood partition coefficients and metabolic constants were measured in vitro for both compounds. Kinetic time course data...

  10. A Mechanistic Pharmacokinetic Model for Liver Transporter Substrates Under Liver Cirrhosis Conditions

    PubMed Central

    Li, R; Barton, HA; Maurer, TS

    2015-01-01

    Liver cirrhosis is a disease characterized by the loss of functional liver mass. Physiologically based pharmacokinetic (PBPK) modeling was applied to interpret and predict how the interplay among physiological changes in cirrhosis affects pharmacokinetics. However, previous PBPK models under cirrhotic conditions were developed for permeable cytochrome P450 substrates and do not directly apply to substrates of liver transporters. This study characterizes a PBPK model for liver transporter substrates in relation to the severity of liver cirrhosis. A published PBPK model structure for liver transporter substrates under healthy conditions and the physiological changes for cirrhosis are combined to simulate pharmacokinetics of liver transporter substrates in patients with mild and moderate cirrhosis. The simulated pharmacokinetics under liver cirrhosis reasonably approximate observations. This analysis includes meta-analysis to obtain system-dependent parameters in cirrhosis patients and a top-down approach to improve understanding of the effect of cirrhosis on transporter-mediated drug disposition under cirrhotic conditions. PMID:26225262

  11. Enhancing the Modeling of PFOA Pharmacokinetics with Bayesian Analysis

    EPA Science Inventory

    The detail sufficient to describe the pharmacokinetics (PK) for perfluorooctanoic acid (PFOA) and the methods necessary to combine information from multiple data sets are both subjects of ongoing investigation. Bayesian analysis provides tools to accommodate these goals. We exa...

  12. Are Physiologically Based Pharmacokinetic Models Reporting the Right C(max)? Central Venous Versus Peripheral Sampling Site.

    PubMed

    Musther, Helen; Gill, Katherine L; Chetty, Manoranjenni; Rostami-Hodjegan, Amin; Rowland, Malcolm; Jamei, Masoud

    2015-09-01

    Physiologically based pharmacokinetic (PBPK) models can over-predict maximum plasma concentrations (C(max)) following intravenous administration. A proposed explanation is that invariably PBPK models report the concentration in the central venous compartment, rather than the site where the samples are drawn. The purpose of this study was to identify and validate potential corrective models based on anatomy and physiology governing the blood supply at the site of sampling and incorporate them into a PBPK platform. Four models were developed and scrutinised for their corrective potential. All assumed the peripheral sampling site concentration could be described by contributions from surrounding tissues and utilised tissue-specific concentration-time profiles reported from the full-PBPK model within the Simcyp Simulator. Predicted concentrations for the peripheral site were compared to the observed C(max). The models results were compared to clinical data for 15 studies over seven compounds (alprazolam, imipramine, metoprolol, midazolam, omeprazole, rosiglitazone and theophylline). The final model utilised tissue concentrations from adipose, skin, muscle and a contribution from artery. Predicted C(max) values considering the central venous compartment can over-predict the observed values up to 10-fold whereas the new sampling site predictions were within 2-fold of observed values. The model was particularly relevant for studies where traditional PBPK models over-predict early time point concentrations. A successful corrective model for C(max) prediction has been developed, subject to further validation. These models can be enrolled as built-up modules into PBPK platforms and potentially account for factors that may affect the initial mixing of the blood at the site of sampling. PMID:26100012

  13. Pharmacokinetics of mitragynine in man

    PubMed Central

    Trakulsrichai, Satariya; Sathirakul, Korbtham; Auparakkitanon, Saranya; Krongvorakul, Jatupon; Sueajai, Jetjamnong; Noumjad, Nantida; Sukasem, Chonlaphat; Wananukul, Winai

    2015-01-01

    Background Kratom, known botanically as Mitragyna speciosa (Korth.), is an indigenous tree in Southeast Asia. Kratom is currently easily available worldwide via special shops and the Internet to use as a drug of abuse, opioid alternative, or pain killer. So far, the pharmacokinetics of this plant has been studied only in animals, and there is no such study in humans. The major abundant active alkaloid in Kratom, mitragynine, is one of the promising new chemical substances to be developed as a new drug. The aim of this study was to examine the pharmacokinetics of mitragynine and assess the linearity in pharmacokinetics in chronic users. Methods Since Kratom is illegal in Thailand, studies in healthy subjects would be unethical. We therefore conducted a prospective study by enrolling ten chronic, regular, healthy users. We adjusted the steady state in each subject by giving a known amount of Kratom tea for 7 days before commencement of the experiment. We admitted and gave different oral doses to subjects to confirm linearity in pharmacokinetics. The mitragynine blood concentrations at 17 times points and the urine concentrations during the 24-hour period were collected and measured by liquid chromatography-tandem mass spectrometry method. Results Ten male subjects completed the study without adverse reactions. The median duration of abuse was 1.75 years. We analyzed one subject separately due to the abnormal behavior of blood concentration. From data of nine subjects, the pharmacokinetic parameters established were time to reach the maximum plasma concentration (0.83±0.35 hour), terminal half-life (23.24±16.07 hours), and the apparent volume of distribution (38.04±24.32 L/kg). The urine excretion of unchanged form was 0.14%. The pharmacokinetics were observed to be oral two-compartment model. Conclusion This was the first pharmacokinetic study in humans, which demonstrated linearity and was consistent with the oral two-compartment model with a terminal half

  14. Physiologically Based Pharmacokinetic Modeling in Pediatric Oncology Drug Development.

    PubMed

    Rioux, Nathalie; Waters, Nigel J

    2016-07-01

    Childhood cancer represents more than 100 rare and ultra-rare diseases, with an estimated 12,400 new cases diagnosed each year in the United States. As such, this much smaller patient population has led to pediatric oncology drug development lagging behind that for adult cancers. Developing drugs for pediatric malignancies also brings with it a number of unique trial design considerations, including flexible enrollment approaches, age-appropriate formulation, acceptable sampling schedules, and balancing the need for age-stratified dosing regimens, given the smaller patient populations. The regulatory landscape for pediatric pharmacotherapy has evolved with U.S. Food and Drug Administration (FDA) legislation such as the 2012 FDA Safety and Innovation Act. In parallel, regulatory authorities have recommended the application of physiologically based pharmacokinetic (PBPK) modeling, for example, in the recently issued FDA Strategic Plan for Accelerating the Development of Therapies for Pediatric Rare Diseases. PBPK modeling provides a quantitative and systems-based framework that allows the effects of intrinsic and extrinsic factors on drug exposure to be modeled in a mechanistic fashion. The application of PBPK modeling in drug development for pediatric cancers is relatively nascent, with several retrospective analyses of cytotoxic therapies, and latterly for targeted agents such as obatoclax and imatinib. More recently, we have employed PBPK modeling in a prospective manner to inform the first pediatric trials of pinometostat and tazemetostat in genetically defined populations (mixed lineage leukemia-rearranged and integrase interactor-1-deficient sarcomas, respectively). In this review, we evaluate the application of PBPK modeling in pediatric cancer drug development and discuss the important challenges that lie ahead in this field. PMID:26936973

  15. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction

    PubMed Central

    Grulke, Christopher M.; Chang, Daniel T.; Brooks, Raina D.; Leonard, Jeremy A.; Phillips, Martin B.; Hypes, Ethan D.; Fair, Matthew J.; Tornero-Velez, Rogelio; Johnson, Jeffre; Dary, Curtis C.; Tan, Yu-Mei

    2016-01-01

    Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals. PMID:26871706

  16. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction.

    PubMed

    Lu, Jingtao; Goldsmith, Michael-Rock; Grulke, Christopher M; Chang, Daniel T; Brooks, Raina D; Leonard, Jeremy A; Phillips, Martin B; Hypes, Ethan D; Fair, Matthew J; Tornero-Velez, Rogelio; Johnson, Jeffre; Dary, Curtis C; Tan, Yu-Mei

    2016-02-01

    Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals. PMID:26871706

  17. Global stability of a multiple infected compartments model for waterborne diseases

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Cao, Jinde

    2014-10-01

    In this paper, mathematical analysis is carried out for a multiple infected compartments model for waterborne diseases, such as cholera, giardia, and rotavirus. The model accounts for both person-to-person and water-to-person transmission routes. Global stability of the equilibria is studied. In terms of the basic reproduction number R0, we prove that, if R0⩽1, then the disease-free equilibrium is globally asymptotically stable and the infection always disappears; whereas if R0>1, there exists a unique endemic equilibrium which is globally asymptotically stable for the corresponding fast-slow system. Numerical simulations verify our theoretical results and present that the decay rate of waterborne pathogens has a significant impact on the epidemic growth rate. Also, we observe numerically that the unique endemic equilibrium is globally asymptotically stable for the whole system. This statement indicates that the present method need to be improved by other techniques.

  18. Physiologically based pharmacokinetic (PBPK) models for lifetime exposure to PCB 153 in male and female harbor porpoises (Phocoena phocoena): model development and evaluation.

    PubMed

    Weijs, Liesbeth; Yang, Raymond S H; Covaci, Adrian; Das, Krishna; Blust, Ronny

    2010-09-15

    Physiologically based pharmacokinetic (PBPK) models were developed for the most persistent polychlorinated biphenyl (PCB 153) in male and female harbor porpoises (Phocoena phocoena) to elucidate processes such as uptake, distribution, and elimination. Due to its limited metabolic capacities, long life span, and top position in marine food chains, this species is highly sensitive to pollution. The models consist of 5 compartments, liver, blubber, kidney, brain, and a compartment which accounts for the rest of the body, all connected through blood. All physiological and biochemical parameters were extracted from the literature, except for the brain/blood partition coefficient and rate of excretion, which were both fitted to data sets used for validation of the models. These data sets were compiled from our own analyses performed with GC-MS on tissue samples of harbor porpoises. The intake of PCB 153 was from milk from birth to 4 months, and after weaning fish was the main food source. Overall, these models reveal that concentrations of PCB 153 in males increase with age but suggest that, as the animals grow older, metabolic transformation can be a possible pathway for elimination as well. In contrast, the model for females confirms that gestation and lactation are key processes for eliminating PCB 153 as body burdens decrease with age. These PBPK models are capable of simulating the bioaccumulation of PCB 153 during the entire life span of approximately 20 years of the harbor porpoises. PMID:20718467

  19. Compartment syndrome

    MedlinePlus

    ... Jobe MT. Compartment syndromes and Volkmann contracture. In: Canale ST, Beaty JH, eds. Campbell's Operative Orthopaedics . 12th ed. ... and Shoulder Service, UCSF Department of Orthopaedic Surgery, San Francisco, CA. Also reviewed by David Zieve, MD, MHA, ...

  20. Compartment syndromes

    NASA Technical Reports Server (NTRS)

    Mubarak, S. J.; Pedowitz, R. A.; Hargens, A. R.

    1989-01-01

    The compartment syndrome is defined as a condition in which high pressure within a closed fascial space (muscle compartment) reduces capillary blood perfusion below the level necessary for tissue viability'. This condition occurs in acute and chronic (exertional) forms, and may be secondary to a variety of causes. The end-result of an extended period of elevated intramuscular pressure may be the development of irreversible tissue injury and Volkmann's contracture. The goal of treatment of the compartment syndrome is the reduction of intracompartmental pressure thus facilitating reperfusion of ischaemic tissue and this goal may be achieved by decompressive fasciotomy. Controversy exists regarding the critical pressure-time thresholds for surgical decompression and the optimal diagnostic methods of measuring intracompartmental pressures. This paper will update and review some current knowledge regarding the pathophysiology, aetiology, diagnosis, and treatment of the acute compartment syndrome.

  1. Integration of Physiologically-Based Pharmacokinetic Modeling into Early Clinical Development: An Investigation of the Pharmacokinetic Nonlinearity

    PubMed Central

    Zhou, L; Gan, J; Yoshitsugu, H; Gu, X; Lutz, JD; Masson, E; Humphreys, WG

    2015-01-01

    BMS-911543, a promising anticancer agent, exhibited time-dependent and dose-dependent nonlinear pharmacokinetics (PKs) in its first-in-human (FIH) study. Initial physiologically based pharmacokinetic (PBPK) modeling efforts using CYP1A2-mediated clearance kinetics were unsuccessful; however, further model analysis revealed that CYP1A2 time-dependent inhibition (TDI) and perhaps other factors could be keys to the nonlinearity. Subsequent experiments in human liver microsomes showed that the compound was a time-dependent inhibitor of CYP1A2 and were used to determine the enzyme inactivation parameter values. In addition, a rat tissue distribution study was conducted and human plasma samples were profiled to support the refinement of the PBPK model. It was concluded that the interplay between four BMS-911543 properties, namely, low solubility, saturation of the metabolizing enzyme CYP1A2, CYP1A2 TDI, and CYP1A2 induction likely resulted in the time-dependent and dose-dependent nonlinear PKs. The methodology of PBPK model-guided unmasking of compound properties can serve as a general practice for mechanistic understanding of a new compound's disposition. PMID:26225254

  2. Semimechanistic cell-cycle type-based pharmacokinetic/pharmacodynamic model of chemotherapy-induced neutropenic effects of diflomotecan under different dosing schedules.

    PubMed

    Mangas-Sanjuan, Víctor; Buil-Bruna, Núria; Garrido, María J; Soto, Elena; Trocóniz, Iñaki F

    2015-07-01

    The current work integrates cell-cycle dynamics occurring in the bone marrow compartment as a key element in the structure of a semimechanistic pharmacokinetic/pharmacodynamic model for neutropenic effects, aiming to describe, with the same set of system- and drug-related parameters, longitudinal data of neutropenia gathered after the administration of the anticancer drug diflomotecan (9,10-difluoro-homocamptothecin) under different dosing schedules to patients (n = 111) with advanced solid tumors. To achieve such an objective, the general framework of the neutropenia models was expanded, including one additional physiologic process resembling cell cycle dynamics. The main assumptions of the proposed model are as follows: within the stem cell compartment, proliferative and quiescent cells coexist, and only cells in the proliferative condition are sensitive to drug effects and capable of following the maturation chain. Cell cycle dynamics were characterized by two new parameters, FProl (the fraction of proliferative [Prol] cells that enters into the maturation chain) and kcycle (first-order rate constant governing cell cycle dynamics within the stem cell compartment). Both model parameters were identifiable as indicated by the results from a bootstrap analysis, and their estimates were supported by date from the literature. The estimates of FProl and kcycle were 0.58 and 1.94 day(-1), respectively. The new model could properly describe the neutropenic effects of diflomotecan after very different dosing scenarios, and can be used to explore the potential impact of dosing schedule dependencies on neutropenia prediction. PMID:25948593

  3. [A nonlinear multi-compartment lung model for optimization of breathing airflow pattern].

    PubMed

    Cai, Yongming; Gu, Lingyan; Chen, Fuhua

    2015-02-01

    It is difficult to select the appropriate ventilation mode in clinical mechanical ventilation. This paper presents a nonlinear multi-compartment lung model to solve the difficulty. The purpose is to optimize respiratory airflow patterns and get the minimum of the work of inspiratory phrase and lung volume acceleration, minimum of the elastic potential energy and rapidity of airflow rate changes of expiratory phrase. Sigmoidal function is used to smooth the respiratory function of nonlinear equations. The equations are established to solve nonlinear boundary conditions BVP, and finally the problem was solved with gradient descent method. Experimental results showed that lung volume and the rate of airflow after optimization had good sensitivity and convergence speed. The results provide a theoretical basis for the development of multivariable controller monitoring critically ill mechanically ventilated patients. PMID:25997262

  4. Improving Predictive Modeling in Pediatric Drug Development: Pharmacokinetics, Pharmacodynamics, and Mechanistic Modeling

    SciTech Connect

    Slikker, William; Young, John F.; Corley, Rick A.; Dorman, David C.; Conolly, Rory B.; Knudsen, Thomas; Erstad, Brian L.; Luecke, Richard H.; Faustman, Elaine M.; Timchalk, Chuck; Mattison, Donald R.

    2005-07-26

    A workshop was conducted on November 18?19, 2004, to address the issue of improving predictive models for drug delivery to developing humans. Although considerable progress has been made for adult humans, large gaps remain for predicting pharmacokinetic/pharmacodynamic (PK/PD) outcome in children because most adult models have not been tested during development. The goals of the meeting included a description of when, during development, infants/children become adultlike in handling drugs. The issue of incorporating the most recent advances into the predictive models was also addressed: both the use of imaging approaches and genomic information were considered. Disease state, as exemplified by obesity, was addressed as a modifier of drug pharmacokinetics and pharmacodynamics during development. Issues addressed in this workshop should be considered in the development of new predictive and mechanistic models of drug kinetics and dynamics in the developing human.

  5. Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and Monte Carlo simulated scintillation camera imaging

    NASA Astrophysics Data System (ADS)

    Brolin, Gustav; Sjögreen Gleisner, Katarina; Ljungberg, Michael

    2013-05-01

    In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for 99mTc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.

  6. An on-chip small intestine-liver model for pharmacokinetic studies.

    PubMed

    Kimura, Hiroshi; Ikeda, Takashi; Nakayama, Hidenari; Sakai, Yasuyuki; Fujii, Teruo

    2015-06-01

    Testing of drug effects and cytotoxicity by using cultured cells has been widely performed as an alternative to animal testing. However, the estimation of pharmacokinetics by conventional cell-based assay methods is difficult because of the inability to evaluate multiorgan effects. An important challenge in the field is to mimic the organ-to-organ network in the human body by using a microfluidic network connecting small-scale tissues based on recently emerging MicroTAS (Micro Total Analysis Systems) technology for prediction of pharmacokinetics. Here, we describe an on-chip small intestine-liver coupled model for pharmacokinetic studies. To construct an in vitro pharmacokinetic model that appropriately models in vivo conditions, physiological parameters such as the structure of internal circulation, volume ratios of each organ, and blood flow ratio of the portal vein to the hepatic artery were mimicked using microfluidic networks. To demonstrate interactions between organs in vitro in pharmacokinetic studies, Caco-2, HepG2, and A549 cell cultures were used as organ models of the small intestine, liver, and lung, respectively, and connected to each other through a microporous membrane and microchannels to prepare a simple model of a physiological organ-to-organ network. The on-chip organ model assay using three types of substrate-epirubicine (EPI), irinotecan (CPT-11), and cyclophosphamide (CPA)-were conducted to model the effects of orally administered or biologically active anticancer drugs. The result suggested that the device can replicate physiological phenomena such as activity of the anticancer drugs on the target cells. This microfluidic device can thus be used as an in vitro organ model to predict the pharmacokinetics of drugs in the human body and may thus provide not only an alternative to animal testing but also a method of obtaining parameters for in silico models of physiologically based pharmacokinetics. PMID:25385717

  7. Three-compartment model for contaminant accumulation by semipermeable membrane devices

    USGS Publications Warehouse

    Gale, R.W.

    1998-01-01

    Passive sampling of dissolved hydrophobic contaminants with lipid (triolein)-containing semipermeable membrane devices (SPMDs) has been gaining acceptance for environmental monitoring. Understanding of the accumulation process has employed a simple polymer film-control model of uptake by the polymer-enclosed lipid, while aqueous film control has been only briefly discussed. A more complete three-compartment model incorporating both aqueous film (turbulent-diffusive) and polymer film (diffusive) mass transfer is developed here and is fit to data from accumulation studies conducted in constant-concentration, flow-through dilutors. This model predicts aqueous film control of the whole device for moderate to high K(ow) compounds, rather than polymer film control. Uptake rates for phenanthrene and 2,2',5,5'- tetrachlorobiphenyl were about 4.8 and 4.2 L/day/standard SPMD, respectively. Maximum 28 day SPMD concentration factors of 30 000 are predicted for solutes with log K(ow) values of >5.5. Effects of varying aqueous and polymer film thicknesses and solute diffusivities in the polymer film are modeled, and overall accumulation by the whole device is predicted to remain under aqueous film control, although accumulation in the triolein may be subject to polymer film control. The predicted half-life and integrative response of SPMDs to pulsed concentration events is proportional to log K(SPMD).Passive sampling of dissolved hydrophobic contaminants with lipid (triolein)-containing semipermeable membrane devices (SPMDs) has been gaining acceptance for environmental monitoring. Understanding of the accumulation process has employed a simple polymer film-control model of uptake by the polymer-enclosed lipid, while aqueous film control has been only briefly discussed. A more complete three-compartment model incorporating both aqueous film (turbulent-diffusive) and polymer film (diffusive) mass transfer is developed here and is fit to data from accumulation studies conducted in

  8. Exploration of the Pharmacokinetic-Pharmacodynamic Relationships for Fosfomycin Efficacy Using an In Vitro Infection Model

    PubMed Central

    VanScoy, Brian D.; McCauley, Jennifer; Ellis-Grosse, Evelyn J.; Okusanya, Olanrewaju O.; Bhavnani, Sujata M.; Forrest, Alan

    2015-01-01

    Fosfomycin, a phosphonic class antibiotic with a broad spectrum of antibacterial activity, has been used outside the United States since the early 1970s for the treatment of a variety of infections. In the United States, an oral (tromethamine salt) formulation is used for uncomplicated urinary tract infections. Recently, there has been interest in the use of an intravenous solution (ZTI-01) for the treatment of a broad range of infections associated with multidrug-resistant bacteria. In this era of multidrug-resistant bacteria with few treatment options, it is critical to understand the pharmacokinetic-pharmacodynamic (PK-PD) determinants for fosfomycin efficacy. Since such data are limited, a one-compartment in vitro infection model was used to determine the PK-PD index associated with efficacy and the magnitude of this measure necessary for various levels of effect. One challenge isolate (Escherichia coli ATCC 25922, for which the fosfomycin agar MIC is 0.5 mg/liter and the broth microdilution MIC is 1 mg/liter) was evaluated in the dose fractionation studies, and two additional clinical E. coli isolates were evaluated in the dose-ranging studies. Mutation frequency studies indicated the presence of an inherently fosfomycin resistant E. coli subpopulation (agar MIC = 32 to 64 mg/liter) within the standard starting inoculum of a susceptibility test. Due to the presence of this resistant subpopulation, we identified the percentage of the dosing interval that drug concentrations were above the inherent resistance inhibitory concentration found at baseline to be the PK-PD index associated with efficacy (r2 = 0.777). The magnitudes of this PK-PD index associated with net bacterial stasis and 1- and 2-log10 CFU/ml reductions from baseline at 24 h were 11.9, 20.9, and 32.8, respectively. These data provide useful information for modernizing and optimizing ZTI-01 dosing regimens for further study. PMID:26100706

  9. 75 FR 81 - Special Conditions: Boeing Model 787-8 Airplane; Overhead Flightcrew Rest Compartment Occupiable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... equipment within the OFCR compartment. (4) Structural failure or deformation of components that could block... applicable to this configuration. Hence, deformations resulting from required static and dynamic structural..., mechanical or structural failure, or persons standing below or against the crew rest compartment outlets....

  10. Compartment-based hydrodynamics and water quality modeling of a northern Everglades wetland, Florida, USA

    USGS Publications Warehouse

    Wang, Hongqing; Meselhe, Ehab A.; Waldon, Michael G.; Harwell, Matthew C.; Chen, Chunfang

    2012-01-01

    The last remaining large remnant of softwater wetlands in the US Florida Everglades lies within the Arthur R. Marshall Loxahatchee National Wildlife Refuge. However, Refuge water quality today is impacted by pumped stormwater inflows to the eutrophic and mineral-enriched 100-km canal, which circumscribes the wetland. Optimal management is a challenge and requires scientifically based predictive tools to assess and forecast the impacts of water management on Refuge water quality. In this research, we developed a compartment-based numerical model of hydrodynamics and water quality for the Refuge. Using the numerical model, we examined the dynamics in stage, water depth, discharge from hydraulic structures along the canal, and exchange flow among canal and marsh compartments. We also investigated the transport of chloride, sulfate and total phosphorus from the canal to the marsh interior driven by hydraulic gradients as well as biological removal of sulfate and total phosphorus. The model was calibrated and validated using long-term stage and water quality data (1995-2007). Statistical analysis indicates that the model is capable of capturing the spatial (from canal to interior marsh) gradients of constituents across the Refuge. Simulations demonstrate that flow from the eutrophic and mineral-enriched canal impacts chloride and sulfate in the interior marsh. In contrast, total phosphorus in the interior marsh shows low sensitivity to intrusion and dispersive transport. We conducted a rainfall-driven scenario test in which the pumped inflow concentrations of chloride, sulfate and total phosphorus were equal to rainfall concentrations (wet deposition). This test shows that pumped inflow is the dominant factor responsible for the substantially increased chloride and sulfate concentrations in the interior marsh. Therefore, the present day Refuge should not be classified as solely a rainfall-driven or ombrotrophic wetland. The model provides an effective screening tool for

  11. COMPARTMENT MODEL APPROACHES FOR ESTIMATING THE PARAMETERS OF A CHRONIC DISEASE PROCESS UNDER CHANGING RISK FACTOR EXPOSURES

    EPA Science Inventory

    Compartment model approaches have been proposed for the analysis of the age incidence of specific types of cancer. These models represented the age increase in incidence as the result of a compound hazard function where individual level risks were described by the Weibull hazard ...

  12. The true four-compartment model and the design of the C-O-H-N scanner

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The four compartment (4c) model is often used as the gold standard for body composition analysis. It is not possible, however, to utilize a true 4c model without assessing protein directly. The purpose of this study is to design a fast-neutron based instrument that can measure all four co...

  13. Use of a simulated annealing algorithm to fit compartmental models with an application to fractal pharmacokinetics.

    PubMed

    Marsh, Rebeccah E; Riauka, Terence A; McQuarrie, Steve A

    2007-01-01

    Increasingly, fractals are being incorporated into pharmacokinetic models to describe transport and chemical kinetic processes occurring in confined and heterogeneous spaces. However, fractal compartmental models lead to differential equations with power-law time-dependent kinetic rate coefficients that currently are not accommodated by common commercial software programs. This paper describes a parameter optimization method for fitting individual pharmacokinetic curves based on a simulated annealing (SA) algorithm, which always converged towards the global minimum and was independent of the initial parameter values and parameter bounds. In a comparison using a classical compartmental model, similar fits by the Gauss-Newton and Nelder-Mead simplex algorithms required stringent initial estimates and ranges for the model parameters. The SA algorithm is ideal for fitting a wide variety of pharmacokinetic models to clinical data, especially those for which there is weak prior knowledge of the parameter values, such as the fractal models. PMID:17706176

  14. Higher Plants in life support systems: design of a model and plant experimental compartment

    NASA Astrophysics Data System (ADS)

    Hezard, Pauline; Farges, Berangere; Sasidharan L, Swathy; Dussap, Claude-Gilles

    The development of closed ecological life support systems (CELSS) requires full control and efficient engineering for fulfilling the common objectives of water and oxygen regeneration, CO2 elimination and food production. Most of the proposed CELSS contain higher plants, for which a growth chamber and a control system are needed. Inside the compartment the development of higher plants must be understood and modeled in order to be able to design and control the compartment as a function of operating variables. The plant behavior must be analyzed at different sub-process scales : (i) architecture and morphology describe the plant shape and lead to calculate the morphological parameters (leaf area, stem length, number of meristems. . . ) characteristic of life cycle stages; (ii) physiology and metabolism of the different organs permit to assess the plant composition depending on the plant input and output rates (oxygen, carbon dioxide, water and nutrients); (iii) finally, the physical processes are light interception, gas exchange, sap conduction and root uptake: they control the available energy from photosynthesis and the input and output rates. These three different sub-processes are modeled as a system of equations using environmental and plant parameters such as light intensity, temperature, pressure, humidity, CO2 and oxygen partial pressures, nutrient solution composition, total leaf surface and leaf area index, chlorophyll content, stomatal conductance, water potential, organ biomass distribution and composition, etc. The most challenging issue is to develop a comprehensive and operative mathematical model that assembles these different sub-processes in a unique framework. In order to assess the parameters for testing a model, a polyvalent growth chamber is necessary. It should permit a controlled environment in order to test and understand the physiological response and determine the control strategy. The final aim of this model is to have an envi

  15. PREDICTIVE PHYSIOLOGICALLY BASED PHARMACOKINETICS MODELING (PBPK) OF PYRETHROID PESTICIDES

    EPA Science Inventory

    Pyrethroids are a class of neurotoxic pesticides that have many different applications in agriculture, horticulture, and homes, and medicinal uses for animals and humans. Differences in the toxicity of pyrethroids are the result of their pharmacokinetic and/or pharmacodynamic pr...

  16. A mechanism-based pharmacokinetic/pharmacodynamic model for CYP3A1/2 induction by dexamethasone in rats

    PubMed Central

    Li, Liang; Li, Zai-quan; Deng, Chen-hui; Ning, Miao-ran; Li, Han-qing; Bi, Shan-shan; Zhou, Tian-yan; Lu, Wei

    2012-01-01

    Aim: To develop a pharmacokinetic/pharmacodynamic (PK/PD) model describing the receptor/gene-mediated induction of CYP3A1/2 by dexamethasone (DEX) in rats. Methods: A group of male Sprague-Dawley rats receiving DEX (100 mg/kg, ip) were sacrificed at various time points up to 60 h post-treatment. Their blood sample and liver were collected. The plasma concentration of DEX was determined with a reverse phase HPLC method. CYP3A1/2 mRNA, protein levels and enzyme activity were measured using RT-PCR, ELISA and the testosterone substrate assay, respectively. Data analyses were performed using a first-order conditional estimate (FOCE) with INTERACTION method in NONMEM version 7.1.2. Results: A two-compartment model with zero-order absorption was applied to describe the pharmacokinetic characteristics of DEX. Systemic clearance, the apparent volume of distribution and the duration of zero-order absorption were calculated to be 172.7 mL·kg−1·h−1, 657.4 mL/kg and 10.47 h, respectively. An indirect response model with a series of transit compartments was developed to describe the induction of CYP3A1/2 via PXR transactivation by DEX. The maximum induction of CYP3A1 and CYP3A2 mRNA levels was achieved, showing nearly 21.29- and 8.67-fold increases relative to the basal levels, respectively. The CYP3A1 and CYP3A2 protein levels were increased by 8.02-fold and 2.49-fold, respectively. The total enzyme activities of CYP3A1/2 were shown to increase by up to 2.79-fold, with a lag time of 40 h from the Tmax of the DEX plasma concentration. The final PK/PD model was able to recapitulate the delayed induction of CYP3A1/2 mRNA, protein and enzyme activity by DEX. Conclusion: A mechanism-based PK/PD model was developed to characterize the complex concentration-induction response relationship between DEX and CYP3A1/2 and to resolve the drug- and system-specific PK/PD parameters for the course of induction. PMID:22212433

  17. In Vitro Multitissue Interface Model Supports Rapid Vasculogenesis and Mechanistic Study of Vascularization across Tissue Compartments.

    PubMed

    Buno, Kevin P; Chen, Xuemei; Weibel, Justin A; Thiede, Stephanie N; Garimella, Suresh V; Yoder, Mervin C; Voytik-Harbin, Sherry L

    2016-08-31

    A significant challenge facing tissue engineers is the design and development of complex multitissue systems, including vascularized tissue-tissue interfaces. While conventional in vitro models focus on either vasculogenesis (de novo formation of blood vessels) or angiogenesis (vessels sprouting from existing vessels or endothelial monolayers), successful therapeutic vascularization strategies will likely rely on coordinated integration of both processes. To address this challenge, we developed a novel in vitro multitissue interface model in which human endothelial colony forming cell (ECFC)-encapsulated tissue spheres are embedded within a surrounding tissue microenvironment. This highly reproducible approach exploits biphilic surfaces (nanostructured surfaces with distinct superhydrophobic and hydrophilic regions) to (i) support tissue compartments with user-specified matrix composition and physical properties as well as cell type and density and (ii) introduce boundary conditions that prevent the cell-mediated tissue contraction routinely observed with conventional three-dimensional monodispersion cultures. This multitissue interface model was applied to test the hypothesis that independent control of cell-extracellular matrix (ECM) and cell-cell interactions would affect vascularization within the tissue sphere as well as across the tissue-tissue interface. We found that high-cell-density tissue spheres containing 5 × 10(6) ECFCs/mL exhibit rapid and robust vasculogenesis, forming highly interconnected, stable (as indicated by type IV collagen deposition) vessel networks within only 3 days. Addition of adipose-derived stromal cells (ASCs) in the surrounding tissue further enhanced vasculogenesis within the sphere as well as angiogenic vessel elongation across the tissue-tissue boundary, with both effects being dependent on the ASC density. Overall, results show that the ECFC density and ECFC-ASC crosstalk, in terms of paracrine and mechanophysical signaling

  18. Pharmacokinetic analysis program based on tank-in-series model, MULTI(TIS), for evaluation of capacity-limited local disposition.

    PubMed

    Fukumura, K; Yamaoka, K; Higashimori, M; Nakagawa, T

    1998-12-01

    A pharmacokinetic analysis program based on a tank-in-series model, MULTI(TIS), was developed for the evaluation of dose-dependency in the local disposition of a drug. The program written in FORTRAN was constructed by expanding MULTI(RUNGE). The reliability of MULTI(TIS) was verified by analyzing the experimental data based on linear and nonlinear tank-in-series models. Linear one- and two-compartment tank-in-series models were adopted to analyze outflow time profiles in single-pass hepatic perfusion following a pulse input of 5'-deoxy-5-fluorouridine (DFUR). The estimated parameters agreed well with those by MULTI(FILT) which is widely used for linear kinetic analysis. The nonlinear models adopted were one-compartment model with Michaelis-Menten elimination and two-compartment models with Michaelis-Menten elimination from central and peripheral compartments. Oxacillin was used as a model drug, because time courses of oxacillin show a capacity-limited hepatic disposition following a pulse input in high doses to the liver (300, 1000, 3000 and 5000 microg). The hepatic recovery ratio (F(H)) of oxacillin increased with dose, whereas the mean transit time (tH) was almost constant. The maximum elimination rate constant (Vmax) and Michaelis constant (Km) of oxacillin were estimated to be 1980 microg/ml/min and 54.1 microg/ml, respectively. Thus, the reliability of MULTI(TIS) was demonstrated for the analysis of nonlinear local disposition, especially, capacity-limited elimination in the liver. PMID:9881650

  19. In vitro-in vivo Pharmacokinetic correlation model for quality assurance of antiretroviral drugs

    PubMed Central

    Restrepo Valencia, Piedad

    2015-01-01

    Introduction: The in vitro-in vivo pharmacokinetic correlation models (IVIVC) are a fundamental part of the drug discovery and development process. The ability to accurately predict the in vivo pharmacokinetic profile of a drug based on in vitro observations can have several applications during a successful development process. Objective: To develop a comprehensive model to predict the in vivo absorption of antiretroviral drugs based on permeability studies, in vitro and in vivo solubility and demonstrate its correlation with the pharmacokinetic profile in humans. Methods: Analytical tools to test the biopharmaceutical properties of stavudine, lamivudine y zidovudine were developed. The kinetics of dissolution, permeability in caco-2 cells and pharmacokinetics of absorption in rabbits and healthy volunteers were evaluated. Results: The cumulative areas under the curve (AUC) obtained in the permeability study with Caco-2 cells, the dissolution study and the pharmacokinetics in rabbits correlated with the cumulative AUC values in humans. These results demonstrated a direct relation between in vitro data and absorption, both in humans and in the in vivo model. Conclusions: The analytical methods and procedures applied to the development of an IVIVC model showed a strong correlation among themselves. These IVIVC models are proposed as alternative and cost/effective methods to evaluate the biopharmaceutical properties that determine the bioavailability of a drug and their application includes the development process, quality assurance, bioequivalence studies and pharmacosurveillance. PMID:26600625

  20. Development of a Population Pharmacokinetic Model To Describe Azithromycin Whole-Blood and Plasma Concentrations over Time in Healthy Subjects

    PubMed Central

    Anic-Milic, T.; Oreskovic, K.; Padovan, J.; Brouwer, K. L. R.; Zuo, P.; Schmith, V. D.

    2013-01-01

    Azithromycin (AZI), a broad-spectrum antibiotic, accumulates in polymorphonuclear cells and peripheral blood mononuclear cells. The distribution of AZI in proinflammatory cells may be important to the anti-inflammatory properties. Previous studies have described plasma AZI pharmacokinetics. The objective of this study was to describe the pharmacokinetics of AZI in whole blood (concentration in whole blood [Cb]) and plasma (concentration in plasma [Cp]) of healthy subjects. In this study, 12 subjects received AZI (500 mg once a day for 3 days). AZI Cb and Cp were quantified in serial samples collected up to 3 weeks after the last dose and analyzed using noncompartmental and compartmental methods. After the last dose, Cb was greater than Cp. Importantly, Cb, but not Cp, was quantifiable in all but one subject at 3 weeks. The blood area under the curve during a 24-h dosing interval (AUC24) was ∼2-fold greater than the plasma AUC24, but simulations suggested that Cb was not at steady state by day 3. Upon exploration of numerous models, an empirical 3-compartment model adequately described Cp and Cb, but Cp was somewhat underestimated. Intercompartmental clearance (CL; likely representing cells) was lower than apparent oral CL (18 versus 118 liters/h). Plasma, peripheral, and cell compartmental volumes were 439 liters, 2,980 liters, and 3,084 liters, respectively. Interindividual variability in CL was low (26.2%), while the volume of distribution variability was high (107%). This is the first report to describe AZI Cb in healthy subjects, the distribution parameters between Cp and Cb, and AZI retention in blood for up to 3 weeks following 3 daily doses. The model can be used to predict Cb from Cp for AZI under various dosing regimens. (This study has been registered at ClinicalTrials.gov under registration no. NCT01026064.) PMID:23629714

  1. AN EXAMPLE OF MODEL STRUCTURE DIFFERENCES USING SENSITIVITY ANALYSES IN PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELS OF TRICHLOROETHYLENE IN HUMANS

    EPA Science Inventory

    Abstract Trichloroethylene (TCE) is an industrial chemical and an environmental contaminant. TCE and its metabolites may be carcinogenic and affect human health. Physiologically based pharmacokinetic (PBPK) models that differ in compartmentalization are developed for TCE metabo...

  2. Validation of a two-compartment model of ventilation/perfusion distribution.

    PubMed

    Loeppky, Jack A; Caprihan, Arvind; Altobelli, Stephen A; Icenogle, Milton V; Scotto, Pietro; Vidal Melo, Marcos F

    2006-03-28

    Ventilation (V (A)) to perfusion (Q ) heterogeneity (V (A)/Q ) analyses by a two-compartment lung model (2C), utilizing routine gas exchange measurements and a computer solution to account for O(2) and CO(2) measurements, were compared with multiple inert gas elimination technique (MIGET) analyses and a multi-compartment (MC) model. The 2C and MC estimates of V (A)/Q mismatch were obtained in 10 healthy subjects, 43 patients having chronic obstructive pulmonary disease (COPD) and in 14 dog experiments where hemodynamics and acid-base status were manipulated with gas mixtures, fluid loading and tilt-table stressors. MIGET comparisons with 2C were made on 6 patients and 32 measurements in healthy subjects before and after exercise at normoxia and altitude hypoxia. Statistically significant correlations for logarithmic standard deviations of V (A)/Q distributions (SD(V (A)/Q )) were obtained for all 2C comparisons, with similar values between 2C and both other methods in the 1.1-1.5 range, compatible with mild to moderate COPD. 2C tended to overestimate MC and MIGET values at low and underestimate them at high SD(V (A)/Q ) values. SD(V (A)/Q ) weighted by Q agreed better with MC and MIGET estimates in the normal range, whereas SD(V (A)/Q ) weighted by V (A) was closer to MC at higher values because the V (A)-weighted SD(V (A)/Q ) is related to blood-to-gas PCO(2) differences that are elevated in disease, thereby allowing better discrimination. The 2C model accurately described functional V (A)/Q characteristics in 26 normal and bronchoconstricted dogs during non-steady state rebreathing and could be used to quantify the effect of reduced O(2) diffusing capacity in diseased lungs. These comparisons indicate that 2C adequately describes V (A)/Q mismatch and can be useful in clinical or experimental situations where other techniques are not feasible. PMID:16024300

  3. A pharmacokinetic/pharmacodynamic model for AMG 416, a novel calcimimetic peptide, following a single intravenous dose in healthy subjects.

    PubMed

    Shen, Jun; Xiao, Jim; Pickthorn, Karen; Huang, Saling; Bell, Gregory; Vick, Andrew; Chen, Ping

    2014-10-01

    AMG 416 is a novel peptide agonist of the calcium-sensing receptor. In support of the clinical development program, a pharmacokinetic (PK)/pharmacodynamic (PD) model was developed to describe the relationship between plasma AMG 416 levels and serum intact parathyroid hormone (iPTH) concentrations in healthy male subjects. AMG 416 plasma concentrations were characterized by a three-compartment linear PK model, while serum iPTH levels were described by an indirect response model with drug effect on the production of iPTH characterized with an inhibitory Emax model. The production of iPTH was modeled by a circadian rhythm function. The systemic clearance of plasma AMG 416 was estimated to be 6.94 L/h. Two sine functions best described iPTH circadian rhythm with an amplitude estimated to be 0.15 and 0.08, respectively. The maximum response Emax and the potency parameter EC50 were estimated to be 0.69 and 21.0 ng/mL, respectively. This work improved our understanding of the interaction between AMG 416 PK and iPTH concentrations in healthy adult male subjects. Data suggest additional PK/PD studies with AMG 416 are warranted in the hemodialysis population. PMID:24752908

  4. Pharmacokinetics of ricobendazole in calves.

    PubMed

    Formentini, E A; Mestorino, O N; Mariño, E L; Errecalde, J O

    2001-06-01

    The pharmacokinetics of ricobendazole (RBZ) and its major metabolite albendazole sulphone (ABZSO2) were studied in six calves, after administration of RBZ (7.5 mg/kg), using a 10% experimental solution by the intravenous (i.v.) route, a 10% commercial solution by the subcutaneous (s.c.) route, and a 10% experimental suspension by the intraruminal (i.r.) route. Blood samples were drawn during a 60-h period. Plasma drug and metabolite concentrations were determined by HPLC. The pharmacokinetic evaluation in each case was prepared by weighted least-squares nonlinear regression analysis. Ricobendazole i.v. data were best fitted by a two-compartment model. The best pharmacokinetic exponents and coefficients were estimated, and the pharmacokinetic variables for RBZ and ABZSO2 were calculated from them. Similar patterns of plasma disposition were found for RBZ after i.r. and s.c. administration, suggesting delayed release from the s.c. site resembling the slow release of the drug from the rumen. PMID:11442798

  5. Population pharmacokinetic models for cefuroxime and metronidazole used in combination as prophylactic agents in colorectal surgery: Model-based evaluation of standard dosing regimens.

    PubMed

    Asín-Prieto, Eduardo; Soraluce, Amaia; Trocóniz, Iñaki F; Campo Cimarras, Eugenia; Sáenz de Ugarte Sobrón, Jaione; Rodríguez-Gascón, Alicia; Isla, Arantxazu

    2015-05-01

    The antibiotics used for prophylaxis in colorectal surgery must maintain appropriate plasma concentrations during the entire surgery to avoid surgical site infections caused by aerobes and anaerobes; cefuroxime plus metronidazole is one of the combinations used. The aim of this study was to evaluate the adequacy of cefuroxime plus metronidazole administration as prophylaxis in colorectal surgery. In total, 63 patients electively undergoing rectal or colon surgery were administered 1500mg of cefuroxime and 1500mg of metronidazole in 15-min and 1-h infusions, respectively, prior to surgery. Blood samples were withdrawn during and after surgery for determination of plasma concentrations by high-performance liquid chromatography. Population pharmacokinetic models were developed using NONMEM 7.2.0. Pharmacokinetic/pharmacodynamic (PK/PD) simulations were performed to explore the ability of different dosage regimens to achieve the pharmacodynamic targets. Pharmacokinetics for both antibiotics were best described by a two-compartment model. Elimination of cefuroxime was conditioned by creatinine clearance (CLCr). The half-life of cefuroxime was 1.5h for patients with normal renal function and 4.9h in patients with renal impairment. Elimination and distribution of metronidazole were affected by patient body weight (BW). PK/PD analysis revealed that a single-dose protocol of 1500mg of cefuroxime and metronidazole is adequate in short surgeries (≤2h). However, for longer surgeries, recommendations are suggested depending on the patient's CLCr and BW. Additional doses of cefuroxime are needed for patients with moderate renal impairment or those presenting normal renal function. For metronidazole, an additional dose is needed for patients with a BW of 90kg. PMID:25758019

  6. Human plasma concentrations of five cytochrome P450 probes extrapolated from pharmacokinetics in dogs and minipigs using physiologically based pharmacokinetic modeling.

    PubMed

    Shida, Satomi; Yamazaki, Hiroshi

    2016-09-01

    The pharmacokinetics of cytochrome P450 probes in humans can be extrapolated from corresponding data in cynomolgus monkeys using simplified physiologically based pharmacokinetic (PBPK) modeling. In the current study, despite some species difference in drug clearances, this modeling methodology was adapted to estimate human plasma concentrations of P450 probes based on data from commonly used medium-sized experimental animals, namely dogs and minipigs. Using known species allometric scaling factors and in vitro metabolic clearance data, the observed plasma concentrations of slowly eliminated caffeine and warfarin and rapidly eliminated omeprazole, metoprolol and midazolam in two young dogs were scaled to human oral monitoring equivalents. Using the same approach, the previously reported pharmacokinetics of the five P450 probes in minipigs was also scaled to human monitoring equivalents. The human plasma concentration profiles of the five P450 probes estimated by the simplified human PBPK models based on observed/reported pharmacokinetics in dogs/minipigs were consistent with previously published pharmacokinetic data in humans. These results suggest that dogs and minipigs, in addition to monkeys, could be suitable models for humans during research into new drugs, especially when used in combination with simple PBPK models. PMID:26652678

  7. Calculation of probabilities of transfer, recurrence intervals, and positional indices for linear compartment models. Environmental Sciences Division Publication no. 1544

    SciTech Connect

    Carney, J.H.; DeAngelis, D.L.; Gardner, R.H.; Mankin, J.B.; Post, W.M.

    1981-02-01

    Six indices are presented for linear compartment systems that quantify the probable pathways of matter or energy transfer, the likelihood of recurrence if the model contains feedback loops, and the number of steps (transfers) through the system. General examples are used to illustrate how these indices can simplify the comparison of complex systems or organisms in unrelated systems.

  8. 77 FR 5990 - Special Conditions: Learjet Inc., Model LJ-200-1A10 Airplane, Pilot-Compartment View Through...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... Learjet Model LJ-200-1A10 airplane was published in the Federal Register on October 14, 2011 (76 FR 63851... Airplane, Pilot-Compartment View Through Hydrophobic Windshield Coatings in Lieu of Windshield Wipers... or unusual design feature associated with hydrophobic windshield coatings in lieu of...

  9. A PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR intravenous and ingested DIMETHYLARSINIC ACID (DMAV) IN MICE.

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model for the organoarsenical dimethylarsinic acid (DMA(V)) was developed in mice. The model was calibrated using tissue time course data from multiple tissues in mice administered DMA(V) intravenously. The final model structure was ...

  10. FRAMEWORK FOR EVALUATION OF PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELS FOR USE IN SAFETY OR RISK ASSESSMENT

    EPA Science Inventory

    ABSTRACT

    Proposed applications of increasingly sophisticated biologically-based computational models, such as physiologically-based pharmacokinetic (PBPK) models, raise the issue of how to evaluate whether the models are adequate for proposed uses including safety or risk ...

  11. Physiologically based pharmacokinetic modeling of POPs in Greenlanders.

    PubMed

    Sonne, Christian; Gustavson, Kim; Rigét, Frank F; Dietz, Rune; Krüger, Tanja; Bonefeld-Jørgensen, Eva C

    2014-03-01

    Human exposure to persistent organic pollutants (POPs) and the potential health impact in the Arctic far from the emission sources have been highlighted in numerous studies. As a supplement to human POP biomonitoring studies, a physiologically based pharmacokinetic (PBPK) model was set up to estimate the fate of POPs in Greenlandic Inuit's liver, blood, muscle and adipose tissue following long-term exposure to traditional Greenlandic diet. The PBPK model described metabolism, excretion and POP accumulation on the basis of their physicochemical properties and metabolic rates in the organisms. Basic correlations between chemically analyzed blood POP concentrations and calculated daily POP intake from food questionnaire of 118 middle age (18-35years) Greenlandic Inuits from four cities in West Greenland (Qaanaaq: n=40; Qeqertarsuaq: n=36; Nuuk: n=20; Narsaq: n=22) taken during 2003 to 2006 were analyzed. The dietary items included were polar bear, caribou, musk oxen, several marine species such as whales, seals, bird and fish as well as imported food. The contaminant concentrations of the dietary items as well as their chemical properties, uptake, biotransformation and excretion allowed us to estimate the POP concentration in liver, blood, muscle and adipose tissue following long-term exposure to the traditional Greenlandic diet using the PBPK model. Significant correlations were found between chemically analyzed POP blood concentrations and calculated daily intake of POPs for Qeqertarsuaq, Nuuk and Narsaq Inuit but not for the northernmost settlement Qaanaaq, probably because the highest blood POP level was found in this district which might mask the interview-based POP calculations. Despite the large variation in circulating blood POP concentrations, the PBPK model predicted blood concentrations of a factor 2-3 within the actual measured values. Moreover, the PBPK model showed that estimated blood POP concentration increased significantly after consumption of meals

  12. Compartment modeling of dynamic brain PET—The impact of scatter corrections on parameter errors

    SciTech Connect

    Häggström, Ida Karlsson, Mikael; Larsson, Anne; Schmidtlein, C. Ross

    2014-11-01

    Purpose: The aim of this study was to investigate the effect of scatter and its correction on kinetic parameters in dynamic brain positron emission tomography (PET) tumor imaging. The 2-tissue compartment model was used, and two different reconstruction methods and two scatter correction (SC) schemes were investigated. Methods: The GATE Monte Carlo (MC) software was used to perform 2 × 15 full PET scan simulations of a voxelized head phantom with inserted tumor regions. The two sets of kinetic parameters of all tissues were chosen to represent the 2-tissue compartment model for the tracer 3′-deoxy-3′-({sup 18}F)fluorothymidine (FLT), and were denoted FLT{sub 1} and FLT{sub 2}. PET data were reconstructed with both 3D filtered back-projection with reprojection (3DRP) and 3D ordered-subset expectation maximization (OSEM). Images including true coincidences with attenuation correction (AC) and true+scattered coincidences with AC and with and without one of two applied SC schemes were reconstructed. Kinetic parameters were estimated by weighted nonlinear least squares fitting of image derived time–activity curves. Calculated parameters were compared to the true input to the MC simulations. Results: The relative parameter biases for scatter-eliminated data were 15%, 16%, 4%, 30%, 9%, and 7% (FLT{sub 1}) and 13%, 6%, 1%, 46%, 12%, and 8% (FLT{sub 2}) for K{sub 1}, k{sub 2}, k{sub 3}, k{sub 4}, V{sub a}, and K{sub i}, respectively. As expected, SC was essential for most parameters since omitting it increased biases by 10 percentage points on average. SC was not found necessary for the estimation of K{sub i} and k{sub 3}, however. There was no significant difference in parameter biases between the two investigated SC schemes or from parameter biases from scatter-eliminated PET data. Furthermore, neither 3DRP nor OSEM yielded the smallest parameter biases consistently although there was a slight favor for 3DRP which produced less biased k{sub 3} and K{sub i

  13. Development of a physiologically based pharmacokinetic model for bisphenol A in pregnant mice

    SciTech Connect

    Kawamoto, Yuko; Matsuyama, Wakoto; Wada, Masahiro; Hishikawa, Junko; Chan, Melissa Pui Ling; Nakayama, Aki; Morisawa, Shinsuke

    2007-10-15

    Bisphenol A (BPA) is a weakly estrogenic monomer used to produce polymers for food contact and other applications, so there is potential for oral exposure of humans to trace amounts via ingestion. To date, no physiologically based pharmacokinetic (PBPK) model has been located for BPA in pregnant mice with or without fetuses. An estimate by a mathematical model is essential since information on humans is difficult to obtain experimentally. The PBPK model was constructed based on the pharmacokinetic data of our experiment following single oral administration of BPA to pregnant mice. The risk assessment of bisphenol A (BPA) on the development of human offspring is an important issue. There have been limited data on the exposure level of human fetuses to BPA (e.g. BPA concentration in cord blood) and no information is available on the pharmacokinetics of BPA in humans with or without fetuses. In the present study, we developed a physiologically based pharmacokinetic (PBPK) model describing the pharmacokinetics of BPA in a pregnant mouse with the prospect of future extrapolation to humans. The PBPK model was constructed based on the pharmacokinetic data of an experiment we executed on pregnant mice following single oral administration of BPA. The model could describe the rapid transfer of BPA through the placenta to the fetus and the slow disappearance from fetuses. The simulated time courses after three-time repeated oral administrations of BPA by the constructed model fitted well with the experimental data, and the simulation for the 10 times lower dose was also consistent with the experiment. This suggested that the PBPK model for BPA in pregnant mice was successfully verified and is highly promising for extrapolation to humans who are expected to be exposed more chronically to lower doses.

  14. Population pharmacokinetic modeling of plasma and intracellular ribavirin concentrations in patients with chronic hepatitis C virus infection.

    PubMed

    Wu, Liviawati S; Rower, Joseph E; Burton, James R; Anderson, Peter L; Hammond, Kyle P; Baouchi-Mokrane, Fafa; Everson, Gregory T; Urban, Thomas J; D'Argenio, David Z; Kiser, Jennifer J

    2015-04-01

    Ribavirin, a guanosine analog, is a broad-spectrum antiviral agent. Ribavirin has been a fundamental component of the treatment of hepatitis C virus (HCV) infection for decades, but there is a very limited understanding of the clinical pharmacology of this drug. Furthermore, it is associated with a major dose-limiting toxicity, hemolytic anemia. Ribavirin undergoes intracellular phosphorylation by host enzymes to ribavirin monophosphate (RMP), ribavirin diphosphate (RDP), and ribavirin triphosphate (RTP). The intracellular forms have been associated with antiviral and toxic effects in vitro, but the kinetics of these phosphorylated moieties have not been fully elucidated in vivo. We developed a model to characterize the plasma pharmacokinetics of ribavirin and the difference between intracellular phosphorylation kinetics in red cells (nonnucleated) and in peripheral blood mononuclear cells (nucleated). A time-independent two-compartment model with first-order absorption described the plasma data well. The cellular phosphorylation kinetics was described by a one-compartment model for RMP, with the formation rate driven by plasma concentrations and the first-order degradation rate. RDP and RTP rapidly reached equilibrium with RMP. Concomitant telaprevir use, inosine triphosphatase genetics, creatinine clearance, weight, and sex were significant covariates. The terminal ribavirin half-life in plasma and phosphorylated anabolites in cells was approximately 224 h. We found no evidence of time-dependent kinetics. These data provide a foundation for uncovering concentration-effect associations for ribavirin and determining the optimal dose and duration of this drug for use in combination with newer direct-acting HCV agents. (This study has been registered at ClinicalTrials.gov under registration no. NCT01097395.). PMID:25645847

  15. Development and validation of an in vitro pharmacokinetic/pharmacodynamic model to test the antibacterial efficacy of antibiotic polymer conjugates.

    PubMed

    Azzopardi, Ernest A; Ferguson, Elaine L; Thomas, David W

    2015-04-01

    This study describes the use of a novel, two-compartment, static dialysis bag model to study the release, diffusion, and antibacterial activity of a novel, bioresponsive dextrin-colistin polymer conjugate against multidrug resistant (MDR) wild-type Acinetobacter baumannii. In this model, colistin sulfate, at its MIC, produced a rapid and extensive drop in viable bacterial counts (<2 log10 CFU/ml at 4 h); however, a marked recovery was observed thereafter, with regrowth equivalent to that of control by 48 h. In contrast, dextrin-colistin conjugate, at its MIC, suppressed bacterial growth for up to 48 h, with 3 log10 CFU/ml lower bacterial counts after 48 h than those of controls. Doubling the concentration of dextrin-colistin conjugate (to 2× MIC) led to an initial bacterial killing of 3 log10 CFU/ml at 8 h, with a similar regrowth profile to 1× MIC treatment thereafter. The addition of colistin sulfate (1× MIC) to dextrin-colistin conjugate (1× MIC) resulted in undetectable bacterial counts after 4 h, followed by suppressed bacterial growth (3.5 log10 CFU/ml lower than that of control at 48 h). Incubation of dextrin-colistin conjugates with infected wound exudate from a series of burn patients (n = 6) revealed an increasing concentration of unmasked colistin in the outer compartment (OC) over time (up to 86.3% of the initial dose at 48 h), confirming that colistin would be liberated from the conjugate by endogenous α-amylase within the wound environment. These studies confirm the utility of this model system to simulate the pharmacokinetics of colistin formation in humans administered dextrin-colistin conjugates and further supports the development of antibiotic polymer conjugates in the treatment of MDR infections. PMID:25512401

  16. A physiologically based pharmacokinetic model for 2,4-toluenediamine leached from polyurethane foam-covered breast implants.

    PubMed Central

    Luu, H M; Hutter, J C; Bushar, H F

    1998-01-01

    Physiologically based pharmacokinetic (PBPK) modeling was used to assess the low-dose exposure of patients to the carcinogen 2, 4-toluenediamine (2,4-TDA) released from the degradation of the polyester urethane foam (PU) used in Meme silicone breast implants. The tissues are represented as five compartments: liver, kidney, gastrointestinal tract, slowly perfused tissues (e.g., fat), and richly perfused tissues (e.g., muscle). The PBPK model was fitted to the plasma and urine concentrations of 2,4-TDA and its metabolite 4-AAT (4-N-acetyl-2-amino toluene) in rats given low doses of 2, 4-TDA intravenously and subcutaneously. The rat model was extrapolated to simulate oral and implant routes in rats. After adjusting for human physiological parameters, the model was then used to predict the bioavailability of 2,4-TDA released from a typical 4.87-g polyester urethane foam implant found in a patient who weighed 58 kg with the Meme and had the breast implant for 10 years. A quantitative risk assessment for 2,4-TDA was performed and the polyester urethane foam did present an unreasonable risk to health for the patient. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9637796

  17. Use of Opportunistic Clinical Data and a Population Pharmacokinetic Model to Support Dosing of Clindamycin for Premature Infants to Adolescents

    PubMed Central

    Gonzalez, Daniel; Melloni, Chiara; Yogev, Ram; Poindexter, Brenda B.; Mendley, Susan R.; Delmore, Paula; Sullivan, Janice E.; Autmizguine, Julie; Lewandowski, Andrew; Harper, Barrie; Watt, Kevin M.; Lewis, Kenneth C.; Capparelli, Edmund V.; Benjamin, Daniel K.; Cohen-Wolkowiez, Michael

    2014-01-01

    Clindamycin is commonly prescribed to treat children with skin and skin structure infections (including those caused by community-acquired methicillin-resistant Staphylococcus aureus [CA-MRSA]), yet little is known about the pharmacokinetics (PK) across pediatric age groups. A population PK analysis was performed in NONMEM using samples collected in an opportunistic study from children receiving intravenous clindamycin per standard of care. The final model was used to optimize pediatric dosing to match adult exposure proven effective against CA-MRSA. A total of 194 plasma PK samples collected from 125 children were included in the analysis. Median age (range) was 3.3 years (0–20). Median dosing was 9.9 mg/kg/dose (3.8–15.1). A 1-compartment model described the data well. The final model included body weight and a sigmoidal maturation relationship between postmenstrual age (PMA) and clearance (CL): CL (L/h)=13.7*(weight/70)0.75*(PMA3.1/(43.63.1+PMA3.1)); V (L)=61.8*(weight/70). Maturation reached 50% adult CL values at ~44 weeks PMA. Our findings support age-based dosing. PMID:24949994

  18. DEVELOPMENT OF A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR PERCHLOROETHYLENE USING TISSUE CONCENTRATION-TIME DATA

    EPA Science Inventory

    The tissue disposition of perchloroethylene (PCE) was characterized experimentally in rats in order to: 1) btain input parameters from in vivo data for the development of a physiologically-based pharmacokinetic (PBPK) model; and 2) use the PBPK model to predict the deposition of ...

  19. SUITABILITY OF USING IN VITRO AND COMPUTATIONALLY ESTIMATED PARAMETERS IN SIMPLIFIED PHARMACOKINETIC MODELS

    EPA Science Inventory

    A challenge in PBPK model development is estimating the parameters for absorption, distribution, metabolism, and excretion of the parent compound and metabolites of interest. One approach to reduce the number of parameters has been to simplify pharmacokinetic models by lumping p...

  20. Physiologically-based pharmacokinetic (PBPK) modeling to explore potential metabolic pathways of bromochloromethane in rats.

    EPA Science Inventory

    Bromochloromethane (BCM) is a volatile organic compound and a by-product of disinfection of water by chlorination. Physiologically based pharmacokinetic (PBPK) models are used in risk assessment applications and a PBPK model for BCM, Updated with F-344 specific input parameters,...

  1. Ethnic and genetic factors in methadone pharmacokinetics: A population pharmacokinetic study☆

    PubMed Central

    Bart, Gavin; Lenz, Scott; Straka, Robert J.; Brundage, Richard C.

    2014-01-01

    Background Treatment of opiate use disorders with methadone is complicated by wide interindividual variability in pharmacokinetics. To identify potentially contributing covariates in methadone pharmacokinetics, we used population pharmacokinetic modeling to estimate clearance (CL/F) and volume of distribution (V/F) for each methadone enantiomer in an ethnically diverse methadone maintained population. Methods Plasma levels of the opiate-active R-methadone and opiate-inactive S-methadone were measured in 206 methadone maintained subjects approximately two and twenty-three hours after a daily oral dose of racmethadone. A linear one-compartment population pharmacokinetic model with first-order conditional estimation with interaction (FOCE-I) was used to evaluate methadone CL/F and V/F. The influence of covariates on parameter estimates was evaluated using stepwise covariate modeling. Covariates included ethnicity, gender, weight, BMI, age, methadone dose, and 21 single nucleotide polymorphisms in genes implicated in methadone pharmacokinetics. Results In the final model, for each enantiomer, Hmong ethnicity reduced CL/F by approximately 30% and the rs2032582 (ABCB1 2677G > T/A) GG genotype was associated with a 20% reduction in CL/F. The presence of the rs3745274 minor allele (CYP2B6 515G > T) reduced CL/F by up to 20% for S-methadone only. A smaller effect of age was noted on CL/F for R-methadone. Conclusion This is the first report showing the influence of the rs2032582 and rs3745274 variants on methadone pharmacokinetics rather than simply dose requirements or plasma levels. Population pharmacokinetics is a valuable method for identifying the influences on methadone pharmacokinetic variability. PMID:25456329

  2. Role of the animal model on the pharmacokinetics of equine-derived antivenoms.

    PubMed

    Rojas, Alicia; Vargas, Mariángela; Ramírez, Nils; Estrada, Ricardo; Segura, Alvaro; Herrera, María; Villalta, Mauren; Gómez, Aarón; Gutiérrez, José María; León, Guillermo

    2013-08-01

    Antivenom pharmacokinetics has been studied in heterologous models in which the animal species used as immunoglobulin source is different from that used as recipient. In these models, after intravenous administration of antivenom, the plasma concentration of immunoglobulins shows a rapid initial declining-phase followed by a slower terminal-phase, which has been associated with antivenom distribution and elimination, respectively. We have compared pharmacokinetic parameters for equine-derived antivenom in homologous (horse) and heterologous (cow) models. It was found that the maximum concentration is lower in cows than in horses. Additionally, the steady-state distribution volume is higher in cows as compared to horses. On the other hand, models were not different in the time required to reach the maximum concentration, the area under the concentration/time curve, the half-life of decay during the slowest phase, the systemic clearance and the mean residence time. Similar results were obtained in a rabbit model, in which the pharmacokinetics was also affected by passive immunization of rabbits with anti-equine IgG. We conclude that, in addition to other physiological differences (e.g. cardiac frequency, plasmatic volume, glomerular filtration rate, etc.) between animal models, the ability to remove foreign immunoglobulins might influence the way in which the plasma concentration of antivenom decreases over time, thereby distorting the pharmacokinetic predictions based on non-compartmental models. PMID:23557996

  3. Steady-state volume of distribution of two-compartment models with simultaneous linear and saturated elimination.

    PubMed

    Wu, Xiaotian; Nekka, Fahima; Li, Jun

    2016-08-01

    The model-independent estimation of physiological steady-state volume of distribution ([Formula: see text]), often referred to non-compartmental analysis (NCA), is historically based on the linear compartment model structure with central elimination. However the NCA-based steady-state volume of distribution ([Formula: see text]) cannot be generalized to more complex models. In the current paper, two-compartment models with simultaneous first-order and Michaelis-Menten elimination are considered. In particular, two indistinguishable models [Formula: see text] and [Formula: see text], both having central Michaelis-Menten elimination, while first-order elimination exclusively either from central or peripheral compartment, are studied. The model-based expressions of the steady-state volumes of distribution [Formula: see text] and their relationships to NCA-based [Formula: see text] are derived. The impact of non-linearity and peripheral elimination is explicitly delineated in the formulas. Being concerned with model identifiability and indistinguishability issues, an interval estimate of [Formula: see text] is suggested. PMID:27405818

  4. Artifacts in dilution pharmacokinetic models caused by adherent bacteria.

    PubMed Central

    Haag, R; Lexa, P; Werkhäuser, I

    1986-01-01

    Liquid cultures of a Pseudomonas aeruginosa strain in Mueller-Hinton broth diluted at rates higher than the bacterial growth rate showed the expected decrease in CFU only for 1 to 2 h. Later the CFU started to increase. This phenomenon can be explained by a hypothesis that assumes that the bacteria multiply in two different compartments. From the first compartment, which comprises bacteria homogeneously distributed in the broth, cells are eliminated at a rate that is dependent on the dilution and growth rates. Concomitantly, the second compartment is formed as a nondilutable adherent population on the surface of the culture vessel. Eventually, only cells stemming from that population appeared in the medium and were subsequently diluted. This hypothesis can be described mathematically by a linear combination of two exponential functions. The calculated values fit the experimental data well. Because similar CFU versus time curves were also found with other strains, care should be taken in interpreting results of experiments performed in liquid cultures and evaluated in terms of CFU. One should bear in mind that within a liquid culture an adherent population may exist, which differs in size according to selective influences (dilution, addition of antibiotics, etc.). This may give rise to artificial and unexpected results. PMID:3089140

  5. Population Pharmacokinetics of Intranasal Scopolamine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Putcha, L.

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.

  6. Pharmacokinetic/Pharmacodynamic Investigation of Colistin against Pseudomonas aeruginosa Using an In Vitro Model

    PubMed Central

    Bergen, Phillip J.; Bulitta, Jurgen B.; Forrest, Alan; Tsuji, Brian T.; Li, Jian; Nation, Roger L.

    2010-01-01

    Colistin plays a key role in treatment of serious infections by Pseudomonas aeruginosa. The aims of this study were to (i) identify the pharmacokinetic/pharmacodynamic (PK/PD) index (i.e., the area under the unbound concentration-time curve to MIC ratio [ƒAUC/MIC], the unbound maximal concentration to MIC ratio [ƒCmax/MIC], or the cumulative percentage of a 24-h period that unbound concentrations exceed the MIC [ƒT>MIC]) that best predicts colistin efficacy and (ii) determine the values for the predictive PK/PD index required to achieve various magnitudes of killing effect. Studies were conducted in a one-compartment in vitro PK/PD model for 24 h using P. aeruginosa ATCC 27853, PAO1, and the multidrug-resistant mucoid clinical isolate 19056 muc. Six intermittent dosing intervals, with a range of ƒCmax colistin concentrations, and two continuous infusion regimens were examined. PK/PD indices varied from 0.06 to 18 for targeted ƒCmax/MIC, 0.36 to 312 for ƒAUC/MIC, and 0 to 100% for ƒT>MIC. A Hill-type model was fit to killing effect data, which were expressed as the log10 ratio of the area under the CFU/ml curve for treated regimens versus control. With ƒCmax values equal to or above the MIC, rapid killing was observed following the first dose; substantial regrowth occurred by 24 h with most regimens. The overall killing effect was best correlated with ƒAUC/MIC (R2 = 0.931) compared to ƒCmax/MIC (R2 = 0.868) and ƒT>MIC (R2 = 0.785). The magnitudes of ƒAUC/MIC required for 1- and 2-log10 reductions in the area under the CFU/ml curve relative to growth control were 22.6 and 30.4, 27.1 and 35.7, and 5.04 and 6.81 for ATCC 27853, PAO1, and 19056 muc, respectively. The PK/PD targets identified will assist in designing optimal dosing strategies for colistin. PMID:20585118

  7. Application of a Bayesian approach to physiological modelling of mavoglurant population pharmacokinetics.

    PubMed

    Wendling, Thierry; Dumitras, Swati; Ogungbenro, Kayode; Aarons, Leon

    2015-12-01

    Mavoglurant (MVG) is an antagonist at the metabotropic glutamate receptor-5 currently under clinical development at Novartis Pharma AG for the treatment of central nervous system diseases. The aim of this study was to develop and optimise a population whole-body physiologically-based pharmacokinetic (WBPBPK) model for MVG, to predict the impact of drug-drug interaction (DDI) and age on its pharmacokinetics. In a first step, the model was fitted to intravenous (IV) data from a clinical study in adults using a Bayesian approach. In a second step, the optimised model was used together with a mechanistic absorption model for exploratory Monte Carlo simulations. The ability of the model to predict MVG pharmacokinetics when orally co-administered with ketoconazole in adults or administered alone in 3-11 year-old children was evaluated using data from three other clinical studies. The population model provided a good description of both the median trend and variability in MVG plasma pharmacokinetics following IV administration in adults. The Bayesian approach offered a continuous flow of information from pre-clinical to clinical studies. Prediction of the DDI with ketoconazole was consistent with the results of a non-compartmental analysis of the clinical data (threefold increase in systemic exposure). Scaling of the WBPBPK model allowed reasonable extrapolation of MVG pharmacokinetics from adults to children. The model can be used to predict plasma and brain (target site) concentration-time profiles following oral administration of various immediate-release formulations of MVG alone or when co-administered with other drugs, in adults as well as in children. PMID:26231433

  8. Pharmacokinetic Model of the Transport of Fast-Acting Insulin From the Subcutaneous and Intradermal Spaces to Blood

    PubMed Central

    Lv, Dayu; Kulkarni, Sandip D.; Chan, Alice; Keith, Stephen; Pettis, Ron; Kovatchev, Boris P.; Farhi, Leon S.; Breton, Marc D.

    2015-01-01

    Pharmacokinetic (PK) models describing the transport of insulin from the injection site to blood assist clinical decision making and are part of in silico platforms for developing and testing of insulin delivery strategies for treatment of patients with diabetes. The ability of these models to accurately describe all facets of the in vivo insulin transport is therefore critical for their application. Here, we propose a new model of fast-acting insulin analogs transport from the subcutaneous and intradermal spaces to blood that can accommodate clinically observed biphasic appearance and delayed clearance of injected insulin, 2 phenomena that are not captured by existing PK models. To develop the model we compare 9 insulin transport PK models which describe hypothetical insulin delivery pathways potentially capable of approximating biphasic appearance of exogenous insulin. The models are tested with respect to their ability to describe clinical data from 10 healthy volunteers which received 1 subcutaneous and 2 intradermal insulin injections on 3 different occasions. The optimal model, selected based on information and posterior identifiability criteria, assumes that insulin is delivered at the administrative site and is then transported to the bloodstream via 2 independent routes (1) diffusion-like process to the blood and (2) combination of diffusion-like processes followed by an additional compartment before entering the blood. This optimal model accounts for biphasic appearance and delayed clearance of exogenous insulin. It agrees better with the clinical data as compared to commonly used models and is expected to improve the in silico development and testing of insulin treatment strategies, including artificial pancreas systems. PMID:25759184

  9. Pharmacokinetic Model of the Transport of Fast-Acting Insulin From the Subcutaneous and Intradermal Spaces to Blood.

    PubMed

    Lv, Dayu; Kulkarni, Sandip D; Chan, Alice; Keith, Stephen; Pettis, Ron; Kovatchev, Boris P; Farhi, Leon S; Breton, Marc D

    2015-07-01

    Pharmacokinetic (PK) models describing the transport of insulin from the injection site to blood assist clinical decision making and are part of in silico platforms for developing and testing of insulin delivery strategies for treatment of patients with diabetes. The ability of these models to accurately describe all facets of the in vivo insulin transport is therefore critical for their application. Here, we propose a new model of fast-acting insulin analogs transport from the subcutaneous and intradermal spaces to blood that can accommodate clinically observed biphasic appearance and delayed clearance of injected insulin, 2 phenomena that are not captured by existing PK models. To develop the model we compare 9 insulin transport PK models which describe hypothetical insulin delivery pathways potentially capable of approximating biphasic appearance of exogenous insulin. The models are tested with respect to their ability to describe clinical data from 10 healthy volunteers which received 1 subcutaneous and 2 intradermal insulin injections on 3 different occasions. The optimal model, selected based on information and posterior identifiability criteria, assumes that insulin is delivered at the administrative site and is then transported to the bloodstream via 2 independent routes (1) diffusion-like process to the blood and (2) combination of diffusion-like processes followed by an additional compartment before entering the blood. This optimal model accounts for biphasic appearance and delayed clearance of exogenous insulin. It agrees better with the clinical data as compared to commonly used models and is expected to improve the in silico development and testing of insulin treatment strategies, including artificial pancreas systems. PMID:25759184

  10. Dixon sequence with superimposed model-based bone compartment provides highly accurate PET/MR attenuation correction of the brain

    PubMed Central

    Koesters, Thomas; Friedman, Kent P.; Fenchel, Matthias; Zhan, Yiqiang; Hermosillo, Gerardo; Babb, James; Jelescu, Ileana O.; Faul, David; Boada, Fernando E.; Shepherd, Timothy M.

    2016-01-01

    Simultaneous PET/MR of the brain is a promising new technology for characterizing patients with suspected cognitive impairment or epilepsy. Unlike CT though, MR signal intensities do not provide a direct correlate to PET photon attenuation correction (AC) and inaccurate radiotracer standard uptake value (SUV) estimation could limit future PET/MR clinical applications. We tested a novel AC method that supplements standard Dixon-based tissue segmentation with a superimposed model-based bone compartment. Methods We directly compared SUV estimation for MR-based AC methods to reference CT AC in 16 patients undergoing same-day, single 18FDG dose PET/CT and PET/MR for suspected neurodegeneration. Three Dixon-based MR AC methods were compared to CT – standard Dixon 4-compartment segmentation alone, Dixon with a superimposed model-based bone compartment, and Dixon with a superimposed bone compartment and linear attenuation correction optimized specifically for brain tissue. The brain was segmented using a 3D T1-weighted volumetric MR sequence and SUV estimations compared to CT AC for whole-image, whole-brain and 91 FreeSurfer-based regions-of-interest. Results Modifying the linear AC value specifically for brain and superimposing a model-based bone compartment reduced whole-brain SUV estimation bias of Dixon-based PET/MR AC by 95% compared to reference CT AC (P < 0.05) – this resulted in a residual −0.3% whole-brain mean SUV bias. Further, brain regional analysis demonstrated only 3 frontal lobe regions with SUV estimation bias of 5% or greater (P < 0.05). These biases appeared to correlate with high individual variability in the frontal bone thickness and pneumatization. Conclusion Bone compartment and linear AC modifications result in a highly accurate MR AC method in subjects with suspected neurodegeneration. This prototype MR AC solution appears equivalent than other recently proposed solutions, and does not require additional MR sequences and scan time. These