Science.gov

Sample records for compartment model pharmacokinetics

  1. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    ERIC Educational Resources Information Center

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  2. Pharmacokinetic calculator program for generation of initial parameter estimates from a three-compartment infusion model.

    PubMed

    Henderson, J D; Olson, R D; Ravis, W R

    1985-08-01

    A polyexponential curve-stripping program, KIN, is described for use on the HP-41CV programmable calculator. The program may be used in the analysis of plasma-concentration-time curves for a three-compartment intravenous bolus or infusion model with linear elimination processes. The coefficients and hybrid rate constants of the exponential function are then used to compute pharmacokinetic parameters (volume of the central compartment, intercompartmental rate transfer constants), which may be used as initial estimates of model parameters in non-linear regression curve-fitting procedures. PMID:3839870

  3. Simultaneous Characterization of Intravenous and Oral Pharmacokinetics of Lychnopholide in Rats by Transit Compartment Model.

    PubMed

    Lachi-Silva, Larissa; Sy, Sherwin K B; Voelkner, Alexander; de Sousa, João Paulo Barreto; Lopes, João Luis C; Silva, Denise B; Lopes, Norberto P; Kimura, Elza; Derendorf, Hartmut; Diniz, Andrea

    2015-08-01

    The pharmacokinetic properties of a new molecular entity are important aspects in evaluating the viability of the compound as a pharmacological agent. The sesquiterpene lactone lychnopholide exhibits important biological activities. The objective of this study was to characterize the pharmacokinetics of lychnopholide after intravenous administration of 1.65 mg/kg (n = 5) and oral administration of 3.3 mg/kg (n = 3) lychnopholide in rats (0.2 ± 0.02 kg in weight) through nonlinear mixed effects modeling and non-compartmental pharmacokinetic analysis. A highly sensitive analytical method was used to quantify the plasma lychnopholide concentrations in rats. Plasma protein binding of this compound was over 99 % as determined by a filtration method. A two-compartment body model plus three transit compartments to characterize the absorption process best described the disposition of lychnopholide after both routes of administration. The oral bioavailability was approximately 68 %. The clearance was 0.131 l/min and intercompartmental clearance was 0.171 l/min; steady-state volume of distribution was 4.83 l. The mean transit time for the absorption process was 9.15 minutes. No flip-flop phenomenon was observed after oral administration. The pharmacokinetic properties are favorable for further development of lychnopholide as a potential oral pharmacological agent. PMID:26218336

  4. A NOVEL PNYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR DIMETHYLARSINIC ACID (DMA): THE LUNG AS A STORAGE COMPARTMENT

    EPA Science Inventory

    A NOVEL PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODEL FOR DIMETHYLARSINIC ACID (DMA): THE LUNG AS A STORAGE COMPARTMENT. Evans, M.V., Hughes, M.F., and Kenyon, E.M. USEPA, ORD, NHEERL, RTP, NC 27711

    DMA is the major methylated metabolite of inorganic arsenic, a kno...

  5. A two-compartment population pharmacokinetic-pharmacodynamic model of digoxin in adults, with implications for dosage.

    PubMed

    Jelliffe, Roger W; Milman, Mark; Schumitzky, Alan; Bayard, David; Van Guilder, Michael

    2014-06-01

    A population pharmacokinetic/pharmacodynamic model of digoxin in adult subjects was originally developed by Reuning et al in 1973. They clearly described the 2-compartment behavior of digoxin, the lack of correlation of effect with serum concentrations, and the close correlation of the observed inotropic effect of digoxin with the calculated amount of drug present in the peripheral nonserum compartment. Their model seemed most attractive for clinical use. However, to make it more applicable for maximally precise dosage, its model parameter values (means and SD's) were converted into discrete model parameter distributions using a computer program developed especially for this purpose using the method of maximum entropy. In this way, the parameter distributions became discrete rather than continuous, suitable for use in developing maximally precise digoxin dosage regimens, individualized to an adult patient's age, gender, body weight, and renal function, to achieve desired specific target goals either in the central (serum) compartment or in the peripheral (effect) compartment using the method of multiple model dosage design. Some illustrative clinical applications of this model are presented and discussed. This model with a peripheral compartment reflecting clinical effect has contributed significantly to an improved understanding of the clinical behavior of digoxin in patients than is possible with models having only a single compartment, and to the improved management of digoxin therapy for more than 20 years. PMID:24492383

  6. Dual-input two-compartment pharmacokinetic model of dynamic contrast-enhanced magnetic resonance imaging in hepatocellular carcinoma

    PubMed Central

    Yang, Jian-Feng; Zhao, Zhen-Hua; Zhang, Yu; Zhao, Li; Yang, Li-Ming; Zhang, Min-Ming; Wang, Bo-Yin; Wang, Ting; Lu, Bao-Chun

    2016-01-01

    AIM: To investigate the feasibility of a dual-input two-compartment tracer kinetic model for evaluating tumorous microvascular properties in advanced hepatocellular carcinoma (HCC). METHODS: From January 2014 to April 2015, we prospectively measured and analyzed pharmacokinetic parameters [transfer constant (Ktrans), plasma flow (Fp), permeability surface area product (PS), efflux rate constant (kep), extravascular extracellular space volume ratio (ve), blood plasma volume ratio (vp), and hepatic perfusion index (HPI)] using dual-input two-compartment tracer kinetic models [a dual-input extended Tofts model and a dual-input 2-compartment exchange model (2CXM)] in 28 consecutive HCC patients. A well-known consensus that HCC is a hypervascular tumor supplied by the hepatic artery and the portal vein was used as a reference standard. A paired Student’s t-test and a nonparametric paired Wilcoxon rank sum test were used to compare the equivalent pharmacokinetic parameters derived from the two models, and Pearson correlation analysis was also applied to observe the correlations among all equivalent parameters. The tumor size and pharmacokinetic parameters were tested by Pearson correlation analysis, while correlations among stage, tumor size and all pharmacokinetic parameters were assessed by Spearman correlation analysis. RESULTS: The Fp value was greater than the PS value (FP = 1.07 mL/mL per minute, PS = 0.19 mL/mL per minute) in the dual-input 2CXM; HPI was 0.66 and 0.63 in the dual-input extended Tofts model and the dual-input 2CXM, respectively. There were no significant differences in the kep, vp, or HPI between the dual-input extended Tofts model and the dual-input 2CXM (P = 0.524, 0.569, and 0.622, respectively). All equivalent pharmacokinetic parameters, except for ve, were correlated in the two dual-input two-compartment pharmacokinetic models; both Fp and PS in the dual-input 2CXM were correlated with Ktrans derived from the dual-input extended Tofts model

  7. Development of a multi-compartment pharmacokinetic model to characterize the exposure to Hexamoll® DINCH®.

    PubMed

    Schütze, Andre; Lorber, Matthew; Gawrych, Katarzyna; Kolossa-Gehring, Marike; Apel, Petra; Brüning, Thomas; Koch, Holger M

    2015-06-01

    We developed and calibrated a multi compartment pharmacokinetic (PK) model to predict urinary concentrations after oral exposure of four specific DINCH metabolites: MINCH, OH-MINCH, cx-MINCH, and oxo-MINCH. This descriptive model has 4 compartments: a "stomach" (SC) compartment, a "holding" (HC) compartment, a "blood" (BC) compartment and a "bladder" (BLC) compartment. DINCH is assumed to first deposit into the SC, with transfer split between the HC and the BC. Unmetabolized DINCH from the HC then transfers to the BC. The DINCH metabolism is assumed to occur in the BC before excretion via the BLC. At each urination event, all the metabolite mass in the BLC is excreted. The model was calibrated using published urine metabolite data from 3 different male volunteers, each orally dosed with 50mg DINCH. Full urine voids were taken for 48 h after dosage. The predicted values showed a good agreement with the observed urinary DINCH metabolite concentrations, with a Spearman correlation coefficient exceeding 0.7 for all oxidized metabolites. We showed the importance of a holding reservoir. Without it, a good agreement could not be found. We applied the model to a set of 24-h general population samples measured for DINCH metabolites. The model was unable to duplicate the ratio of metabolites seen in the 24-h samples. Two possibilities were offered to explain the difference: the exposure pattern in the general population did not match the oral exposure in the dosing experiments, or the long-term toxicokinetics of DINCH was not captured in the 48-h controlled dosing experiments. PMID:25710321

  8. Modeling Pharmacokinetics.

    PubMed

    Bois, Frederic Y; Brochot, Céline

    2016-01-01

    Pharmacokinetics is the study of the fate of xenobiotics in a living organism. Physiologically based pharmacokinetic (PBPK) models provide realistic descriptions of xenobiotics' absorption, distribution, metabolism, and excretion processes. They model the body as a set of homogeneous compartments representing organs, and their parameters refer to anatomical, physiological, biochemical, and physicochemical entities. They offer a quantitative mechanistic framework to understand and simulate the time-course of the concentration of a substance in various organs and body fluids. These models are well suited for performing extrapolations inherent to toxicology and pharmacology (e.g., between species or doses) and for integrating data obtained from various sources (e.g., in vitro or in vivo experiments, structure-activity models). In this chapter, we describe the practical development and basic use of a PBPK model from model building to model simulations, through implementation with an easily accessible free software. PMID:27311461

  9. Failure of the three compartment model to describe the pharmacokinetics in brain of a high affinity substituted benzamide.

    PubMed

    Votaw, J R; Kessler, R M; de Paulis, T

    1993-11-01

    The applicability of using the standard 3-compartment model to describe the neuropharmacokinetics of a high affinity substituted benzamide was investigated. We performed the following experiments using the [18F]-5-(3-fluoropropyl) analog of epidepride ([18F]5-FPrEpid), a potent dopamine D2 receptor antagonist: constant left ventricular infusion, first-pass clearance, varying ligand specific activity, and displacing bound ligand with varying amounts of unlabelled ligand. Taken together, the information from these experiments rigorously tests the standard 3-compartment model. The obtained data and predictions from the model of the kinetic behavior of the ligand are inconsistent. The measured and model predicted dissociation rate (measured koff = 0.065 min-1, model prediction koff = 0.007 min-1) and the equilibrium dissociation constant (measured KD = 0.14 nM, model prediction KD = 2.2 nM) differ by an order of magnitude. Furthermore, the model cannot be used to accurately estimate the receptor density. We postulate that the synapse geometry and physical relationship between receptors are necessary components of a model that describes the pharmacokinetics of [18F]5-FPrEpid. PMID:8278896

  10. Use of three-compartment physiologically based pharmacokinetic modeling to predict hepatic blood levels of fluvoxamine relevant for drug-drug interactions.

    PubMed

    Iga, Katsumi

    2015-04-01

    Using a three-compartment physiologically based pharmacokinetic (PBPK) model and a tube model for hepatic extraction kinetics, equations for calculating blood drug levels (Cb s) and hepatic blood drug levels (Chb s, proportional to actual hepatic drug levels), were derived mathematically. Assuming the actual values for total body clearance (CLtot ), oral bioavailability (F), and steady-state distribution volume (Vdss ), Cb s, and Chb s after intravenous and oral administration of fluvoxamine (strong perpetrator in drug-drug interactions, DDIs), propranolol, imipramine, and tacrine were simulated. Values for Cb s corresponded to the actual values for all tested drugs, and mean Chb and maximal Chb -to-maximal Cb ratio predicted for oral fluvoxamine administration (50 mg twice-a-day administration) were nearly 100 nM and 2.3, respectively, which would be useful for the predictions of the DDIs caused by fluvoxamine. Fluvoxamine and tacrine are known to exhibit relatively large F values despite having CLtot similar to or larger than hepatic blood flow, which may be because of the high liver uptake (almost 0.6) upon intravenous administration. The present method is thus considered to be more predictive of the Chb for perpetrators of DDIs than other methods. PMID:25558834

  11. Estimation of pharmacokinetic model parameters.

    PubMed

    Timcenko, A; Reich, D L; Trunfio, G

    1995-01-01

    This paper addresses the problem of estimating the depth of anesthesia in clinical practice where many drugs are used in combination. The aim of the project is to use pharmacokinetically-derived data to predict episodes of light anesthesia. The weighted linear combination of anesthetic drug concentrations was computed using a stochastic pharmacokinetic model. The clinical definition of light anesthesia was based on the hemodynamic consequences of autonomic nervous system responses to surgical stimuli. A rule-based expert system was used to review anesthesia records to determine instances of light anesthesia using hemodynamic criteria. It was assumed that light anesthesia was a direct consequence of the weighted linear combination of drug concentrations in the patient's body that decreased below a certain threshold. We augmented traditional two-compartment models with a stochastic component of anesthetics' concentrations to compensate for interpatient pharmacokinetic and pharmacodynamic variability. A cohort of 532 clinical anesthesia cases was examined and parameters of two compartment pharmacokinetic models for 6 intravenously administered anesthetic drugs (fentanyl, thiopenthal, morphine, propofol, midazolam, ketamine) were estimated, as well as the parameters for 2 inhalational anesthetics (N2O and isoflurane). These parameters were then prospectively applied to 22 cases that were not used for parameter estimation, and the predictive ability of the pharmacokinetic model was determined. The goal of the study is the development of a pharmacokinetic model that will be useful in predicting light anesthesia in the clinically relevant circumstance where many drugs are used concurrently. PMID:8563327

  12. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    USGS Publications Warehouse

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  13. PET Pharmacokinetic Modelling

    NASA Astrophysics Data System (ADS)

    Müller-Schauenburg, Wolfgang; Reimold, Matthias

    Positron Emission Tomography is a well-established technique that allows imaging and quantification of tissue properties in-vivo. The goal of pharmacokinetic modelling is to estimate physiological parameters, e.g. perfusion or receptor density from the measured time course of a radiotracer. After a brief overview of clinical application of PET, we summarize the fundamentals of modelling: distribution volume, Fick's principle of local balancing, extraction and perfusion, and how to calculate equilibrium data from measurements after bolus injection. Three fundamental models are considered: (i) the 1-tissue compartment model, e.g. for regional cerebral blood flow (rCBF) with the short-lived tracer [15O]water, (ii) the 2-tissue compartment model accounting for trapping (one exponential + constant), e.g. for glucose metabolism with [18F]FDG, (iii) the reversible 2-tissue compartment model (two exponentials), e.g. for receptor binding. Arterial blood sampling is required for classical PET modelling, but can often be avoided by comparing regions with specific binding with so called reference regions with negligible specific uptake, e.g. in receptor imaging. To estimate the model parameters, non-linear least square fits are the standard. Various linearizations have been proposed for rapid parameter estimation, e.g. on a pixel-by-pixel basis, for the prize of a bias. Such linear approaches exist for all three models; e.g. the PATLAK-plot for trapping substances like FDG, and the LOGAN-plot to obtain distribution volumes for reversibly binding tracers. The description of receptor modelling is dedicated to the approaches of the subsequent lecture (chapter) of Millet, who works in the tradition of Delforge with multiple-injection investigations.

  14. Individual and population pharmacokinetic compartment analysis: a graphic procedure for quantification of predictive performance

    PubMed Central

    Eksborg, Staffan

    2013-01-01

    Objectives Pharmacokinetic studies are important for optimizing of drug dosing, but requires proper validation of the used pharmacokinetic procedures. However, simple and reliable statistical methods suitable for evaluation of the predictive performance of pharmacokinetic analysis are essentially lacking. The aim of the present study was to construct and evaluate a graphic procedure for quantification of predictive performance of individual and population pharmacokinetic compartment analysis. Methods Original data from previously published pharmacokinetic compartment analyses after intravenous, oral, and epidural administration, and digitized data, obtained from published scatter plots of observed vs predicted drug concentrations from population pharmacokinetic studies using the NPEM algorithm and NONMEM computer program and Bayesian forecasting procedures, were used for estimating the predictive performance according to the proposed graphical method and by the method of Sheiner and Beal. Results The graphical plot proposed in the present paper proved to be a useful tool for evaluation of predictive performance of both individual and population compartment pharmacokinetic analysis. Conclusion The proposed method is simple to use and gives valuable information concerning time- and concentration-dependent inaccuracies that might occur in individual and population pharmacokinetic compartment analysis. Predictive performance can be quantified by the fraction of concentration ratios within arbitrarily specified ranges, e.g. within the range 0.8–1.2.

  15. Comparing models for perfluorooctanoic acid pharmacokinetics using Bayesian analysis

    EPA Science Inventory

    Selecting the appropriate pharmacokinetic (PK) model given the available data is investigated for perfluorooctanoic acid (PFOA), which has been widely analyzed with an empirical, one-compartment model. This research examined the results of experiments [Kemper R. A., DuPont Haskel...

  16. Post-dialysis urea concentration: comparison between one- compartment model and two-compartment model

    NASA Astrophysics Data System (ADS)

    Tamrin, N. S. Ahmad; Ibrahim, N.

    2014-11-01

    The reduction of the urea concentration in blood can be numerically projected by using one-compartment model and two-compartment model with no variation in body fluid. This study aims to compare the simulated values of post-dialysis urea concentration for both models with the clinical data obtained from the hospital. The clinical assessment of adequacy of a treatment is based on the value of Kt/V. Further, direct calculation using clinical data and one-compartment model are presented in the form of ratio. It is found that the ratios of postdialysis urea concentration simulated using two-compartment model are higher compared to the ratios of post-dialysis urea concentration using one-compartment model. In addition, most values of post-dialysis urea concentration simulated using two-compartment model are much closer to the clinical data compared to values simulated using one-compartment model. Kt/V values calculated directly using clinical data are found to be higher than Kt/V values derived from one-compartment model.

  17. Pharmacokinetics of antiretroviral drugs in anatomical sanctuary sites: the fetal compartment (placenta and amniotic fluid).

    PubMed

    Else, Laura J; Taylor, Stephen; Back, David J; Khoo, Saye H

    2011-01-01

    HIV resides within anatomical 'sanctuary sites' where local drug exposure and viral dynamics may differ significantly from the systemic compartment. Widespread implementation of antiretroviral therapy has seen a significant decline in the incidence of mother-to-child transmission (MTCT) of HIV. In addition to suppression of maternal plasma/genital viral loads, antiretroviral agents that cross the placenta and achieve adequate concentrations in the fetal compartment may exert a greater prophylactic effect. Penetration of antiretrovirals in the fetal compartment is expressed by accumulation ratios derived from the measurement of drug concentrations in paired maternal plasma and umbilical cord samples. The nucleoside analogues and nevirapine accumulate extensively in cord blood and in the surrounding amniotic fluid, whereas the protease inhibitors (PIs) exhibit low-to-moderate placental accumulation. Early data suggest that high placental/neonatal concentrations are achieved with raltegravir, but to a lesser extent with etravirine and maraviroc (rank order of accumulation: raltegravir/nucleoside reverse transcriptase inhibitor [tenofovir > zidovudine/lamivudine/emtricitabine/stavudine/abacavir] > non-nucleoside reverse transcriptase inhibitor [nevirapine > etravirine] > PI > maraviroc/enfuvirtide). More comprehensive in vivo pharmacokinetic data are required to justify the potential use of these agents as safe and effective options during pregnancy. PMID:22155898

  18. Identifiability Results for Several Classes of Linear Compartment Models.

    PubMed

    Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa

    2015-08-01

    Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology. PMID:26337290

  19. Modeling of Corneal and Retinal Pharmacokinetics after Periocular Drug Administration

    PubMed Central

    Amrite, Aniruddha C.; Edelhauser, Henry F.; Kompella, Uday B.

    2012-01-01

    Purpose To develop pharmacokinetics models to describe the disposition of small lipophilic molecules in the cornea and retina after periocular (subconjunctival or posterior subconjunctival) administration. Methods Compartmental pharmacokinetics analysis was performed on the corneal and retinal data obtained after periocular administration of 3 mg of celecoxib (a selective COX-2 inhibitor) to Brown Norway (BN) rats. Berkeley Madonna, a differential and difference equation–based modeling software, was used for the pharmacokinetics modeling. The data were fit to different compartment models with first-order input and disposition, and the best fit was selected on the basis of coefficient of regression and Akaike information criteria (AIC). The models were validated by using the celecoxib data from a prior study in Sprague-Dawley (SD) rats. The corneal model was also fit to the corneal data for prednisolone at a dose of 2.61 mg in albino rabbits, and the model was validated at two other doses of prednisolone (0.261 and 26.1 mg) in these rabbits. Model simulations were performed with the finalized model to understand the effect of formulation on corneal and retinal pharmacokinetics after periocular administration. Results Celecoxib kinetics in the BN rat cornea can be described by a two-compartment (periocular space and cornea, with a dissolution step for periocular formulation) model, with parallel elimination from the cornea and the periocular space. The inclusion of a distribution compartment or a dissolution step for celecoxib suspension did not lead to an overall improvement in the corneal data fit compared with the two-compartment model. The more important parameter for enhanced fit and explaining the apparent lack of an increase phase in the corneal levels is the inclusion of the initial leak-back of the dose from the periocular space into the precorneal area. The predicted celecoxib concentrations from this model also showed very good correlation (r = 0

  20. Modeling the Pharmacokinetics of Perfluorooctanoic Acid (PFOA) During Gestation and Lactation in Mice

    EPA Science Inventory

    To address the pharmacokinetics of PFOA during gestation and lactation, a biologically supported dynamic model was developed. A two compartment system linked via placental blood flow described gestation, while milk production linked the dam to a pup litter compartment during lact...

  1. PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELING

    EPA Science Inventory

    Physiologically-based pharmacokinetic (PB-PK) models attempt to provide both a realistic anatomic description of the animal to which a drug or toxic chemical has been administered and a biologically accurate representation of the physiological pathways for chemical storage, metab...

  2. Applications of physiologic pharmacokinetic modeling in carcinogenic risk assessment.

    PubMed Central

    Krewski, D; Withey, J R; Ku, L F; Andersen, M E

    1994-01-01

    The use of physiologically based pharmacokinetic (PBPK) models has been proposed as a means of estimating the dose of the reactive metabolites of carcinogenic xenobiotics reaching target tissues, thereby affording an opportunity to base estimates of potential cancer risk on tissue dose rather than external levels of exposure. In this article, we demonstrate how a PBPK model can be constructed by specifying mass-balance equations for each physiological compartment included in the model. In general, this leads to a system of nonlinear partial differential equations with which to characterize the compartment system. These equations then can be solved numerically to determine the concentration of metabolites in each compartment as functions of time. In the special case of a linear pharmacokinetic system, we present simple closed-form expressions for the area under the concentration-time curves (AUC) in individual tissue compartments. A general relationship between the AUC in blood and other tissue compartments is also established. These results are of use in identifying those parameters in the models that characterize the integrated tissue dose, and which should therefore be the primary focus of sensitivity analyses. Applications of PBPK modeling for purposes of tissue dosimetry are reviewed, including models developed for methylene chloride, ethylene oxide, 1,4-dioxane, 1-nitropyrene, as well as polychlorinated biphenyls, dioxins, and furans. Special considerations in PBPK modeling related to aging, topical absorption, pregnancy, and mixed exposures are discussed. The linkage between pharmacokinetic models used for tissue dosimetry and pharmacodynamic models for neoplastic transformation of stem cells in the target tissue is explored. PMID:7737040

  3. Simulation of monoclonal antibody pharmacokinetics in humans using a minimal physiologically based model.

    PubMed

    Li, Linzhong; Gardner, Iain; Dostalek, Miroslav; Jamei, Masoud

    2014-09-01

    Compared to small chemical molecules, monoclonal antibodies and Fc-containing derivatives (mAbs) have unique pharmacokinetic behaviour characterised by relatively poor cellular permeability, minimal renal filtration, binding to FcRn, target-mediated drug disposition, and disposition via lymph. A minimal physiologically based pharmacokinetic (PBPK) model to describe the pharmacokinetics of mAbs in humans was developed. Within the model, the body is divided into three physiological compartments; plasma, a single tissue compartment and lymph. The tissue compartment is further sub-divided into vascular, endothelial and interstitial spaces. The model simultaneously describes the levels of endogenous IgG and exogenous mAbs in each compartment and sub-compartment and, in particular, considers the competition of these two species for FcRn binding in the endothelial space. A Monte-Carlo sampling approach is used to simulate the concentrations of endogenous IgG and mAb in a human population. Existing targeted-mediated drug disposition (TMDD) models are coupled with the minimal PBPK model to provide a general platform for simulating the pharmacokinetics of therapeutic antibodies using primarily pre-clinical data inputs. The feasibility of utilising pre-clinical data to parameterise the model and to simulate the pharmacokinetics of adalimumab and an anti-ALK1 antibody (PF-03446962) in a population of individuals was investigated and results were compared to published clinical data. PMID:25004823

  4. Telavancin Demonstrates Activity against Methicillin-Resistant Staphylococcus aureus Isolates with Reduced Susceptibility to Vancomycin, Daptomycin, and Linezolid in Broth Microdilution MIC and One-Compartment Pharmacokinetic/Pharmacodynamic Models

    PubMed Central

    Smith, Jordan R.; Barber, Katie E.; Hallesy, Jessica; Raut, Animesh

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) isolates have arisen with reduced susceptibility to several anti-MRSA agents. Telavancin (TLV), a novel anti-MRSA agent, retains low MICs against these organisms. Our objective was to determine the MICs for TLV, daptomycin (DAP), vancomycin (VAN), and linezolid (LZD) against daptomycin-nonsusceptible (DNS) S. aureus, vancomycin-intermediate S. aureus (VISA), heteroresistant VISA (hVISA), and linezolid-resistant (LZDr) S. aureus. We also evaluated these agents against each phenotype in pharmacokinetic/pharmacodynamic (PK/PD) models. Seventy DNS, 100 VISA, 180 hVISA, and 25 LZDr MRSA isolates were randomly selected from our library and tested to determine their MICs against TLV, DAP, VAN, and LZD via broth microdilution and a Trek panel. Four isolates were randomly selected for 168-h in vitro models to evaluate treatment with TLV at 10 mg/kg of body weight/day, DAP at 10 mg/kg/day, VAN at 1 g every 12 h (q12h), and LZD at 600 mg q12h. The MIC50/90 for TLV, DAP, VAN, and LZD against 70 DNS S. aureus isolates were 0.06/0.125 μg/ml, 2/4 μg/ml, 1/2 μg/ml, and 2/2 μg/ml, respectively. Against 100 VISA isolates, the MIC50/90 were 0.06/0.125 μg/ml, 1/1 μg/ml, 4/8 μg/ml, and 1/2 μg/ml, respectively. Against 170 hVISA isolates, the MIC50/90 were 0.06/0.125 μg/ml, 0.5/1 μg/ml, 1/2 μg/ml, and 1/2 μg/ml, respectively. Against 25 LZDr isolates, the MIC50/90 were 0.03/0.06 μg/ml, 1/1 μg/ml, 2/2 μg/ml, and 8/8 μg/ml, respectively. The TLV MIC was >0.125 μg/ml for 10/365 (2.7%) isolates. In PK/PD models, TLV was universally bactericidal at 168 h and statistically superior to all antibiotics against DNS S. aureus strain R2334. These data further establish the potency of TLV against resistant MRSA. The model data demonstrate in vitro bactericidal activity of TLV against hVISA, VISA, DNS S. aureus, and LZDr S. aureus strains. Further clinical research is warranted. PMID:26124162

  5. Telavancin demonstrates activity against methicillin-resistant Staphylococcus aureus isolates with reduced susceptibility to vancomycin, daptomycin, and linezolid in broth microdilution MIC and one-compartment pharmacokinetic/pharmacodynamic models.

    PubMed

    Smith, Jordan R; Barber, Katie E; Hallesy, Jessica; Raut, Animesh; Rybak, Michael J

    2015-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) isolates have arisen with reduced susceptibility to several anti-MRSA agents. Telavancin (TLV), a novel anti-MRSA agent, retains low MICs against these organisms. Our objective was to determine the MICs for TLV, daptomycin (DAP), vancomycin (VAN), and linezolid (LZD) against daptomycin-nonsusceptible (DNS) S. aureus, vancomycin-intermediate S. aureus (VISA), heteroresistant VISA (hVISA), and linezolid-resistant (LZD(r)) S. aureus. We also evaluated these agents against each phenotype in pharmacokinetic/pharmacodynamic (PK/PD) models. Seventy DNS, 100 VISA, 180 hVISA, and 25 LZD(r) MRSA isolates were randomly selected from our library and tested to determine their MICs against TLV, DAP, VAN, and LZD via broth microdilution and a Trek panel. Four isolates were randomly selected for 168-h in vitro models to evaluate treatment with TLV at 10 mg/kg of body weight/day, DAP at 10 mg/kg/day, VAN at 1 g every 12 h (q12h), and LZD at 600 mg q12h. The MIC50/90 for TLV, DAP, VAN, and LZD against 70 DNS S. aureus isolates were 0.06/0.125 μg/ml, 2/4 μg/ml, 1/2 μg/ml, and 2/2 μg/ml, respectively. Against 100 VISA isolates, the MIC50/90 were 0.06/0.125 μg/ml, 1/1 μg/ml, 4/8 μg/ml, and 1/2 μg/ml, respectively. Against 170 hVISA isolates, the MIC50/90 were 0.06/0.125 μg/ml, 0.5/1 μg/ml, 1/2 μg/ml, and 1/2 μg/ml, respectively. Against 25 LZD(r) isolates, the MIC50/90 were 0.03/0.06 μg/ml, 1/1 μg/ml, 2/2 μg/ml, and 8/8 μg/ml, respectively. The TLV MIC was >0.125 μg/ml for 10/365 (2.7%) isolates. In PK/PD models, TLV was universally bactericidal at 168 h and statistically superior to all antibiotics against DNS S. aureus strain R2334. These data further establish the potency of TLV against resistant MRSA. The model data demonstrate in vitro bactericidal activity of TLV against hVISA, VISA, DNS S. aureus, and LZD(r) S. aureus strains. Further clinical research is warranted. PMID:26124162

  6. UNCERTAINTIES IN TRICHLOROETHYLENE PHARMACOKINETIC MODELS

    EPA Science Inventory

    Understanding the pharmacokinetics of a chemical¯its absorption, distribution, metabolism, and excretion in humans and laboratory animals ¯ is critical to the assessment of its human health risks. For trichloroethylene (TCE), numerous physiologically-based pharmacokinetic (PBPK)...

  7. Use of a Simple Pharmacokinetic Model to Characterize Exposure to Perchlorate [ Journal Article

    EPA Science Inventory

    This article is about how a simple two-compartment first-order pharmacokinetic model that predicts concentrations of perchlorate in blood and urine was constructed and validated. The model was validated using data from a high-dose experiment in humans where doses and resulting co...

  8. Predicting neonatal pharmacokinetics from prior data using population pharmacokinetic modeling.

    PubMed

    Wang, Jian; Edginton, Andrea N; Avant, Debbie; Burckart, Gilbert J

    2015-10-01

    Selection of the first dose for neonates in clinical trials is very challenging. The objective of this analysis was to assess if a population pharmacokinetic (PK) model developed with data from infants to adults is predictive of neonatal clearance and to evaluate what age range of prior PK data is needed for informative modeling to predict neonate exposure. Two sources of pharmacokinetic data from 8 drugs were used to develop population models: (1) data from all patients > 2 years of age, and (2) data from all nonneonatal patients aged > 28 days. The prediction error based on the models using data from subjects > 2 years of age showed bias toward overprediction, with median average fold error (AFE) for CL predicted/CLobserved greater than 1.5. The bias for predicting neonatal PK was improved when using all prior PK data including infants as opposed to an assessment without infant PK data, with the median AFE 0.91. As an increased number of pediatric trials are conducted in neonates under the Food and Drug Administration Safety and Innovation Act, dose selection should be based on the best estimates of neonatal pharmacokinetics and pharmacodynamics prior to conducting efficacy and safety studies in neonates. PMID:25907280

  9. POPULATION PHARMACOKINETIC/DYNAMIC MODEL OF LYMPHOSUPPRESSION AFTER FLUDARABINE ADMINISTRATION

    PubMed Central

    McCune, Jeannine S.; Vicini, Paolo; Salinger, David H.; O’Donnell, Paul V.; Sandmaier, Brenda M.; Anasetti, Claudio; Mager, Donald E.

    2014-01-01

    Purpose Quantitative relationships between 9-β-D-arabinofuranosyl-2-fluoroadenine (F-ara-A) concentrations and lymphosuppression have not been reported, but would be useful for regimen design. A population pharmacokinetic/pharmacodynamic model was constructed in this study using data from 41 hematopoietic cell transplant (HCT) recipients conditioned with busulfan in combination with fludarabine (total dose 120 mg/m2, Protocol 1519) or with fludarabine (total dose 250 mg/m2) with rabbit antithymocyte globulin (rATG, Protocol 2041). Methods Individual pharmacokinetic parameters were fixed to post-hoc Bayesian estimates, and circulating absolute lymphocyte counts (ALC) were obtained during the three weeks prior to graft infusion. A semi-physiological cell kill model with three lymphocyte transit compartments was applied and aptly characterized the time-course of suppression of circulating ALC by fludarabine administration. Drug and system-specific parameters were estimated using a maximum likelihood expectation maximization algorithm, and the final model was qualified using an internal visual predictive check. Results The final model successfully characterized the time-course and variability in ALC. Pharmacodynamic parameters exhibited considerable between subject variability (38.9-211%). The HCT protocol was the only covariate associated with the pharmacodynamic parameters, specifically the lymphocyte kill rate, the transit rate between lymphocyte compartments, and the baseline ALC. Conclusions This model can be used to simulate the degree of lymphosuppression for design of future fludarabine-based conditioning regimens. PMID:25374408

  10. Determination of the pharmacokinetics of glycopyrronium in the lung using a population pharmacokinetic modelling approach

    PubMed Central

    Bartels, Christian; Looby, Michael; Sechaud, Romain; Kaiser, Guenther

    2013-01-01

    Aims Glycopyrronium bromide (NVA237) is a once-daily long-acting muscarinic antagonist recently approved for the treatment of chronic obstructive pulmonary disease. In this study, we used population pharmacokinetic (PK) modelling to provide insights into the impact of the lung PK of glycopyrronium on its systemic PK profile and, in turn, to understand the impact of lung bioavailability and residence time on the choice of dosage regimen. Methods We developed and validated a population PK model to characterize the lung absorption of glycopyrronium using plasma PK data derived from studies in which this drug was administered by different routes to healthy volunteers. The model was also used to carry out simulations of once-daily and twice-daily regimens and to characterize amounts of glycopyrronium in systemic compartments and lungs. Results The model-derived PK parameters were comparable to those obtained with noncompartmental analysis, confirming the usefulness of our model. The model suggested that the lung absorption of glycopyrronium was dominated by slow-phase absorption with a half-life of about 3.5 days, which accounted for 79% of drug absorbed through the lungs into the bloodstream, from where glycopyrronium was quickly eliminated. Simulations of once-daily and twice-daily administration generated similar PK profiles in the lung compartments. Conclusions The slow absorption from the lungs, together with the rapid elimination from the systemic circulation, could explain how once-daily glycopyrronium provides sustained bronchodilatation with a low incidence of adverse effects in patients with chronic obstructive pulmonary disease. Its extended intrapulmonary residence time also provides pharmacokinetic evidence that glycopyrronium has the profile of a once-daily drug. PMID:23506208

  11. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Tam, V.; Putcha, L.

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials for an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP. METHODS: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model discrimination was performed, by minimizing the Akaike Information Criteria (AIC), maximizing the coefficient of determination (r²) and by comparison of the quality of fit plots. RESULTS: The best structural model to describe scopolamine disposition after INSCOP administration (minimal AIC =907.2) consisted of one compartment for plasma, saliva and urine respectively that were inter-connected with different rate constants. The estimated values of PK parameters were compiled in Table 1. The model fitting exercises revealed a nonlinear PK for scopolamine between plasma and saliva compartments for K21, Vmax and Km. CONCLUSION: PK model for INSCOP was developed and for the first time it satisfactorily predicted the PK of scopolamine in plasma, saliva and urine after INSCOP administration. Using non-linear PK yielded the best structural model to describe scopolamine disposition between plasma and saliva compartments, and inclusion of non-linear PK resulted in a significant improved model fitting. The model can be utilized to predict scopolamine plasma concentration using saliva and/or urine data that

  12. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling

    PubMed Central

    Moss, Darren Michael; Siccardi, Marco

    2014-01-01

    The delivery of therapeutic agents is characterized by numerous challenges including poor absorption, low penetration in target tissues and non-specific dissemination in organs, leading to toxicity or poor drug exposure. Several nanomedicine strategies have emerged as an advanced approach to enhance drug delivery and improve the treatment of several diseases. Numerous processes mediate the pharmacokinetics of nanoformulations, with the absorption, distribution, metabolism and elimination (ADME) being poorly understood and often differing substantially from traditional formulations. Understanding how nanoformulation composition and physicochemical properties influence drug distribution in the human body is of central importance when developing future treatment strategies. A helpful pharmacological tool to simulate the distribution of nanoformulations is represented by physiologically based pharmacokinetics (PBPK) modelling, which integrates system data describing a population of interest with drug/nanoparticle in vitro data through a mathematical description of ADME. The application of PBPK models for nanomedicine is in its infancy and characterized by several challenges. The integration of property–distribution relationships in PBPK models may benefit nanomedicine research, giving opportunities for innovative development of nanotechnologies. PBPK modelling has the potential to improve our understanding of the mechanisms underpinning nanoformulation disposition and allow for more rapid and accurate determination of their kinetics. This review provides an overview of the current knowledge of nanomedicine distribution and the use of PBPK modelling in the characterization of nanoformulations with optimal pharmacokinetics. Linked Articles This article is part of a themed section on Nanomedicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-17 PMID:24467481

  13. Generalized pharmacokinetic modeling for drugs with nonlinear binding: I. Theoretical framework.

    PubMed

    Gillespie, W R

    1993-02-01

    The following integrodifferential equation is proposed as the basis for a generalized treatment of pharmacokinetic systems in which nonlinear binding occurs phi'(cu)c'u = -q(cu)+g * cu+f where cu identical to unbound plasma drug concentration, f identical to drug input rate, ' indicates the derivative of a function, and * indicates the convolution operation: (g * cu) (t) = integral of t0 g(t-u)cu(u) du. Possible physical interpretations of the functions q, g and f are: q(cu) identical to rate at which drug leaves the sampling compartment, g * cu identical to rate at which drug returns to the sampling compartment from the peripheral system (tissues that are kinetically distinct from the sampling compartment), and phi(cu) identical to amount of drug in the sampling compartment. The approach assumes that drug binding is sufficiently rapid that it may be treated as an equilibrium process. It may be applied to systems in which nonlinear binding occurs within the sampling compartment, i.e., in the systemic circulation or in tissues to which drug is rapidly distributed. The proposed relationship is a generalization of most existing models for drugs with nonlinear binding. It can serve as a general theoretical framework for such models or as the basis for "model-independent" methods for analyzing the pharmacokinetics of drugs with nonlinear binding. Computer programs for the numerical solution of the integrodifferential equation are presented. Methods for pharmacokinetic system characterization, prediction and bioavailability are presented and demonstrated. PMID:8410685

  14. Modeling the pharmacokinetics of extended release pharmaceutical systems

    NASA Astrophysics Data System (ADS)

    di Muria, Michela; Lamberti, Gaetano; Titomanlio, Giuseppe

    2009-03-01

    The pharmacokinetic (PK) models predict the hematic concentration of drugs after the administration. In compartment modeling, the body is described by a set of interconnected “vessels” or “compartments”; the modeling consisting of transient mass balances. Usually the orally administered drugs were considered as immediately available: this cannot describe the administration of extended-release systems. In this work we added to the traditional compartment models the ability to account for a delay in administration, relating this delay to in vitro data. Firstly, the method was validated, applying the model to the dosage of nicotine by chewing-gum; the model was tuned by in vitro/in vivo data of drugs (divalproex-sodium and diltiazem) with medium-rate release kinetics, then it was applied in describing in vivo evolutions due to the assumption of fast- and slow-release systems. The model reveals itself predictive, the same of a Level A in vitro/in vivo correlation, but being physically based, it is preferable to a purely statistical method.

  15. Assessing Predictive Performance of Published Population Pharmacokinetic Models of Intravenous Tobramycin in Pediatric Patients.

    PubMed

    Bloomfield, Celeste; Staatz, Christine E; Unwin, Sean; Hennig, Stefanie

    2016-06-01

    Several population pharmacokinetic models describe the dose-exposure relationship of tobramycin in pediatric patients. Before the implementation of these models in clinical practice for dosage adjustment, their predictive performance should be externally evaluated. This study tested the predictive performance of all published population pharmacokinetic models of tobramycin developed for pediatric patients with an independent patient cohort. A literature search was conducted to identify suitable models for testing. Demographic and pharmacokinetic data were collected retrospectively from the medical records of pediatric patients who had received intravenous tobramycin. Tobramycin exposure was predicted from each model. Predictive performance was assessed by visual comparison of predictions to observations, by calculation of bias and imprecision, and through the use of simulation-based diagnostics. Eight population pharmacokinetic models were identified. A total of 269 concentration-time points from 41 pediatric patients with cystic fibrosis were collected for external evaluation. Three models consistently performed best in all evaluations and had mean errors ranging from -0.4 to 1.8 mg/liter, relative mean errors ranging from 4.9 to 29.4%, and root mean square errors ranging from 47.8 to 66.9%. Simulation-based diagnostics supported these findings. Models that allowed a two-compartment disposition generally had better predictive performance than those that used a one-compartment disposition model. Several published models of the pharmacokinetics of tobramycin showed reasonable low levels of bias, although all models seemed to have some problems with imprecision. This suggests that knowledge of typical pharmacokinetic behavior and patient covariate values alone without feedback concentration measurements from individual patients is not sufficient to make precise predictions. PMID:27001806

  16. Multiscale analysis of compartment models with dispersal

    PubMed Central

    Kang, Yun; Castillo-Chavez, Carlos

    2014-01-01

    Dispersal, minimally defined as the movement or spatial displacement of organisms, links the dynamics of local population within and across regions. Landscape-population interactions responsible for driving co-evolutionary processes that on the long run shape communities of organisms, determine the outcomes of biological invasions, or alter the dynamics and evolution of infectious agents, are connected via dispersal. A generalized modeling framework is introduced derived from our interests in characterizing the dynamics of animal populations and trade in the presence of disease. We explore the impact of dispersal on systems that include disease, Allee effects, and host mobility. The emphasis is on disease, a selective force, that often plays a fundamental role on the life-history dynamics of a population. The models incorporate disease-driven effects on, often excluded, interactions like individual’s competitive ability to acquire resources. The framework makes use of deterministic and stochastic models that account for features often ignored or rarely included like (a) induced Allee effects; (b) disease dynamics; and (c) spatial heterogeneity. Preliminary results highlight the role of initial conditions, patch quality, and “topological” or connectivity landscape structure (the physical space where individuals move, reproduce, get sick, die, or compete for resources) on the dynamics of populations when disease is an important selective force. We dedicate this article to our grand mentor Simon Levin. PMID:22934939

  17. Determination of a suitable voriconazole pharmacokinetic model for personalised dosing.

    PubMed

    McDougall, David A J; Martin, Jennifer; Playford, E Geoffrey; Green, Bruce

    2016-04-01

    Model based personalised dosing (MBPD) is a sophisticated form of individualised therapy, where a population pharmacokinetic (PK) or pharmacodynamic model is utilised to estimate the dose required to reach a target exposure or effect. The choice of which model to implement in MBPD is a subjective decision. By choosing one model, information from the remaining models is ignored, as well as the rest of the literature base. This manuscript describes a methodology to develop a 'hybrid' model for voriconazole that incorporated information from prior models in a biologically plausible manner. Voriconazole is a triazole antifungal with difficult to predict PK, although it does have a defined exposure-response relationship. Nine population PK models of voriconazole were identified from the literature. The models differed significantly in structural components. The hybrid model contained a two-compartment disposition model with mixed linear and nonlinear time-dependent clearance. The parameters for the hybrid model were determined using simulation techniques. Validation of the hybrid model was assessed via visual predictive checks, which indicated the majority of the variability in the literature models was captured by the hybrid model. The predictive performance was assessed using four different sampling strategies of limited concentrations from ten richly PK sampled subjects to predict future concentrations. Overall, the hybrid model predicted future concentrations with good precision. Further prospective and retrospective validation of the hybrid model is required before it could be used in clinical practice. PMID:26676909

  18. Applications of minimal physiologically-based pharmacokinetic models

    PubMed Central

    Cao, Yanguang

    2012-01-01

    Conventional mammillary models are frequently used for pharmacokinetic (PK) analysis when only blood or plasma data are available. Such models depend on the quality of the drug disposition data and have vague biological features. An alternative minimal-physiologically-based PK (minimal-PBPK) modeling approach is proposed which inherits and lumps major physiologic attributes from whole-body PBPK models. The body and model are represented as actual blood and tissue usually total body weight) volumes, fractions (fd) of cardiac output with Fick’s Law of Perfusion, tissue/blood partitioning (Kp), and systemic or intrinsic clearance. Analyzing only blood or plasma concentrations versus time, the minimal-PBPK models parsimoniously generate physiologically-relevant PK parameters which are more easily interpreted than those from mam-millary models. The minimal-PBPK models were applied to four types of therapeutic agents and conditions. The models well captured the human PK profiles of 22 selected beta-lactam antibiotics allowing comparison of fitted and calculated Kp values. Adding a classical hepatic compartment with hepatic blood flow allowed joint fitting of oral and intravenous (IV) data for four hepatic elimination drugs (dihydrocodeine, verapamil, repaglinide, midazolam) providing separate estimates of hepatic intrinsic clearance, non-hepatic clearance, and pre-hepatic bioavailability. The basic model was integrated with allometric scaling principles to simultaneously describe moxifloxacin PK in five species with common Kp and fd values. A basic model assigning clearance to the tissue compartment well characterized plasma concentrations of six monoclonal antibodies in human subjects, providing good concordance of predictions with expected tissue kinetics. The proposed minimal-PBPK modeling approach offers an alternative and more rational basis for assessing PK than compartmental models. PMID:23179857

  19. Coastal Ecosystem Integrated Compartment Model (ICM): Modeling Framework

    NASA Astrophysics Data System (ADS)

    Meselhe, E. A.; White, E. D.; Reed, D.

    2015-12-01

    The Integrated Compartment Model (ICM) was developed as part of the 2017 Coastal Master Plan modeling effort. It is a comprehensive and numerical hydrodynamic model coupled to various geophysical process models. Simplifying assumptions related to some of the flow dynamics are applied to increase the computational efficiency of the model. The model can be used to provide insights about coastal ecosystems and evaluate restoration strategies. It builds on existing tools where possible and incorporates newly developed tools where necessary. It can perform decadal simulations (~ 50 years) across the entire Louisiana coast. It includes several improvements over the approach used to support the 2012 Master Plan, such as: additional processes in the hydrology, vegetation, wetland and barrier island morphology subroutines, increased spatial resolution, and integration of previously disparate models into a single modeling framework. The ICM includes habitat suitability indices (HSIs) to predict broad spatial patterns of habitat change, and it provides an additional integration to a dynamic fish and shellfish community model which quantitatively predicts potential changes in important fishery resources. It can be used to estimate the individual and cumulative effects of restoration and protection projects on the landscape, including a general estimate of water levels associated with flooding. The ICM is also used to examine possible impacts of climate change and future environmental scenarios (e.g. precipitation, Eustatic sea level rise, subsidence, tropical storms, etc.) on the landscape and on the effectiveness of restoration projects. The ICM code is publically accessible, and coastal restoration and protection groups interested in planning-level modeling are encouraged to explore its utility as a computationally efficient tool to examine ecosystem response to future physical or ecological changes, including the implementation of restoration and protection strategies.

  20. Population pharmacokinetic modeling and simulation of huperzine A in elderly Chinese subjects

    PubMed Central

    Sheng, Lei; Qu, Yi; Yan, Jing; Liu, Gang-yi; Wang, Wei-liang; Wang, Yi-jun; Wang, Hong-yi; Zhang, Meng-qi; Lu, Chuan; Liu, Yun; Jia, Jing-yin; Hu, Chao-ying; Li, Xue-ning; Yu, Chen; Xu, Hong-rong

    2016-01-01

    Aim: Our preliminary results show that huperzine A, an acetylcholinesterase inhibitor used to treat Alzheimer's disease (AD) patients in China, exhibits different pharmacokinetic features in elderly and young healthy subjects. However, its pharmacokinetic data in elderly subjects remains unavailable to date. Thus, we developed a population pharmacokinetic (PPK) model of huperzine A in elderly Chinese people, and identified the covariate affecting its pharmacokinetics for optimal individual administration. Methods: A total of 341 serum huperzine A concentration records was obtained from 2 completed clinical trials (14 elderly healthy subjects in a phase I pharmacokinetic study; 35 elderly AD patients in a phase II study). Population pharmacokinetic analysis was performed using the non-linear mixed-effect modeling software Phoenix NLME1.1.1. The effects of age, gender, body weight, height, creatinine, endogenous creatinine clearance rate as well as drugs administered concomitantly were analyzed. Bootstrap and visual predictive checks were used simultaneously to validate the final population pharmacokinetics models. Results: The plasma concentration-time profile of huperzine A was best described by a one-compartment model with first-order absorption and elimination. Age was identified as the covariate having significant influence on huperzine A clearance. The final PPK model of huperzine A was: CL (L/h)=2.4649*(age/86)(−3.3856), Ka=0.6750 h−1, V (L)=104.216. The final PPK model was demonstrated to be suitable and effective by the bootstrap and visual predictive checks. Conclusion: A PPK model of huperzine A in elderly Chinese subjects is established, which can be used to predict PPK parameters of huperzine A in the treatment of elderly AD patients. PMID:27180987

  1. Interspecies mixed-effect pharmacokinetic modeling of penicillin G in cattle and swine.

    PubMed

    Li, Mengjie; Gehring, Ronette; Tell, Lisa; Baynes, Ronald; Huang, Qingbiao; Riviere, Jim E

    2014-08-01

    Extralabel drug use of penicillin G in food-producing animals may cause an excess of residues in tissue which will have the potential to damage human health. Of all the antibiotics, penicillin G may have the greatest potential for producing allergic responses to the consumer of food animal products. There are, however, no population pharmacokinetic studies of penicillin G for food animals. The objective of this study was to develop a population pharmacokinetic model to describe the time-concentration data profile of penicillin G across two species. Data were collected from previously published pharmacokinetic studies in which several formulations of penicillin G were administered to diverse populations of cattle and swine. Liver, kidney, and muscle residue data were also used in this study. Compartmental models with first-order absorption and elimination were fit to plasma and tissue concentrations using a nonlinear mixed-effect modeling approach. A 3-compartment model with extra tissue compartments was selected to describe the pharmacokinetics of penicillin G. Typical population parameter estimates (interindividual variability) were central volumes of distribution of 3.45 liters (12%) and 3.05 liters (8.8%) and central clearance of 105 liters/h (32%) and 16.9 liters/h (14%) for cattle and swine, respectively, with peripheral clearance of 24.8 liters/h (13%) and 9.65 liters/h (23%) for cattle and 13.7 liters/h (85%) and 0.52 liters/h (40%) for swine. Body weight and age were the covariates in the final pharmacokinetic models. This study established a robust model of penicillin for a large and diverse population of food-producing animals which could be applied to other antibiotics and species in future analyses. PMID:24867969

  2. A PC-based graphical simulator for physiological pharmacokinetic models.

    PubMed

    Wada, D R; Stanski, D R; Ebling, W F

    1995-04-01

    Since many intravenous anesthetic drugs alter blood flows, physiologically-based pharmacokinetic models describing drug disposition may be time-varying. Using the commercially available programming software MATLAB, a platform to simulate time-varying physiological pharmacokinetic models was developed. The platform is based upon a library of pharmacokinetic blocks which mimic physiological structure. The blocks can be linked together flexibly to form models for different drugs. Because of MATLAB's additional numerical capabilities (e.g. non-linear optimization), the platform provides a complete graphical microcomputer-based tool for physiologic pharmacokinetic modeling. PMID:7656558

  3. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.

    2015-01-01

    An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS). The bioavailability and pharmacokinetics (PK) were evaluated under IND (Investigational New Drug) guidelines. The aim of the project was to develop a PK model that can predict the relationships among plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial protocol with INSCOP. Twelve healthy human subjects were administered at three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. PK compartmental models, using actual dosing and sampling time, were established using Phoenix (version 1.2). Model selection was based on a likelihood ratio test on the difference of criteria (-2LL (i.e. log-likelihood ratio test)) and comparison of the quality of fit plots. The results: Predictable correlations among scopolamine concentrations in compartments of plasma, saliva and urine were established, and for the first time the model satisfactorily predicted the population and individual PK of INSCOP in plasma, saliva and urine. The model can be utilized to predict the INSCOP plasma concentration by saliva and urine data, and it will be useful for monitoring the PK of scopolamine in space and other remote environments using non-invasive sampling of saliva and/or urine.

  4. Compartment calcium model of frog skeletal muscle during activation.

    PubMed

    Liu, Weifan; Olson, Sarah D

    2015-01-01

    Skeletal muscle contraction is triggered by a rise in calcium (Ca(2+)) concentration in the myofibrillar space. The objective of this study was to develop a voltage dependent compartment model of Ca(2+) dynamics in frog skeletal muscle fibers. The compartment model corresponds to the myofibrillar space (MS) and a calcium store, the sarcoplasmic reticulum (SR). Ca(2+) is released from the SR to the MS based on the voltage and is able to bind to several proteins in the MS. We use a detailed model to account for voltage dependent Ca(2+) release and inactivation. With this model, we are able to match previous experimental data for Ca(2+) release and binding to proteins for an applied (fixed) voltage. We explore the sensitivity of parameters in the model and illustrate the importance of inactivation of the SR; during a long depolarization, the SR must be inactivated in order to achieve realistic Ca(2+) concentrations in the MS. A Hodgkin Huxley type model was also developed to describe voltage at the surface membrane using electrophysiological data from previous experiments. This voltage model was then used as the time dependent voltage to determine Ca(2+) release from the SR. With this fully coupled model, we were able to match previous experimental results for Ca(2+) concentrations for a given applied current. Additionally, we examined simulated Ca(2+) concentrations in the case of twitch and tetanus, corresponding to different applied currents. The developed model is robust and reproduces many aspects of voltage dependent calcium signaling in frog skeletal muscle fibers. This modeling framework provides a platform for future studies of excitation contraction coupling in skeletal muscle fibers. PMID:25234233

  5. A physiologically based pharmacokinetic model for developmental exposure to BDE-47 in rats

    SciTech Connect

    Emond, Claude; Raymer, James H.; Studabaker, William B.; Garner, C. Edwin; Birnbaum, Linda S.

    2010-02-01

    Polybrominated diphenyl ethers (PBDEs) are used commercially as additive flame retardants and have been shown to transfer into environmental compartments, where they have the potential to bioaccumulate in wildlife and humans. Of the 209 possible PBDEs, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is usually the dominant congener found in human blood and milk samples. BDE-47 has been shown to have endocrine activity and produce developmental, reproductive, and neurotoxic effects. The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for BDE-47 in male and female (pregnant and non-pregnant) adult rats to facilitate investigations of developmental exposure. This model consists of eight compartments: liver, brain, adipose tissue, kidney, placenta, fetus, blood, and the rest of the body. Concentrations of BDE-47 from the literature and from maternal-fetal pharmacokinetic studies conducted at RTI International were used to parameterize and evaluate the model. The results showed that the model simulated BDE-47 tissue concentrations in adult male, maternal, and fetal compartments within the standard deviations of the experimental data. The model's ability to estimate BDE-47 concentrations in the fetus after maternal exposure will be useful to design in utero exposure/effect studies. This PBPK model is the first one designed for any PBDE pharmaco/toxicokinetic description. The next steps will be to expand this model to simulate BDE-47 pharmacokinetics and distributions across species (mice), and then extrapolate it to humans. After mouse and human model development, additional PBDE congeners will be incorporated into the model and simulated as a mixture.

  6. Development of a human physiologically based pharmacokinetic (PBPK) model for dermal permeability for lindane.

    PubMed

    Sawyer, Megan E; Evans, Marina V; Wilson, Charles A; Beesley, Lauren J; Leon, Lider S; Eklund, Chris R; Croom, Edward L; Pegram, Rex A

    2016-03-14

    Lindane is a neurotoxicant used for the treatment of lice and scabies present on human skin. Due to its pharmaceutical application, an extensive pharmacokinetic database exists in humans. Mathematical diffusion models allow for calculation of lindane skin permeability coefficients using human kinetic data obtained from in vitro and in vivo experimentation as well as a default compound-specific calculation based on physicochemical characteristics used in the absence of kinetic data. A dermal model was developed to describe lindane diffusion into the skin, where the skin compartment consisted of homogeneous dermal tissue. This study utilized Fick's law of diffusion along with chemical binding to protein and lipids to determine appropriate dermal absorption parameters which were then incorporated into a physiologically based pharmacokinetic (PBPK) model to describe in vivo kinetics. The estimation of permeability coefficients using chemical binding in combination with in vivo data demonstrates the advantages of combining physiochemical properties with a PBPK model to predict dermal absorption. PMID:26794662

  7. PHARMACOKINETIC MODELING FOR PERFLUORINATED CHEMICALS USED IN HOUSEHOLD CONSUMER PRODUCTS

    EPA Science Inventory

    PHARMACOKINETIC MODELING FOR PERFLUORONATED CHEMICALS USED IN HOUSEHOLD CONSUMER PRODUCTS
    Leona H. Clark and Hugh A. Barton
    US Environmental Protection Agency, ORD, NHEERL, ETD, Research Triangle Park, NC

    The physiologically-based pharmacokinetic model to be presente...

  8. Characterization of a Compartment Syndrome-like Injury Model

    PubMed Central

    Oyster, Nick; Witt, Michelle; Gharaibeh, Burhan; Poddar, Minakshi; Schneppendahl, Johannes; Huard, Johnny

    2015-01-01

    INTRODUCTION Acute compartment syndrome (CS) is caused by an elevation of pressure within a muscular compartment which can be caused by numerous factors, including blunt trauma. In this study, we characterized a rodent model of CS-like injury. METHODS Forty male athymic rats received a standardized injury of ischemia and compression to their hindlimbs, while the intracompartmental pressure (ICP) was measured using an implantable transmitter. Tetanic muscle function was evaluated, and histology was performed on the tibialis anterior (TA) muscle. RESULTS ICPs were held at 260.70±2.70mmHg during injury. Injured muscles recovered 59% of their total function 4 weeks after injury, and histology showed high levels of edema, inflammation (CD68+), angiogenesis (CD31+), and fibrosis within 72 hours following injury. DISCUSSION We describe a novel CS-like injury model and a novel method to measure ICP which could potentially be used to develop innovative therapies to manage CS injury in humans. PMID:25242666

  9. A simple pharmacokinetics subroutine for modeling double peak phenomenon.

    PubMed

    Mirfazaelian, Ahmad; Mahmoudian, Massoud

    2006-04-01

    Double peak absorption has been described with several orally administered drugs. Numerous reasons have been implicated in causing the double peak. DRUG-KNT--a pharmacokinetic software developed previously for fitting one and two compartment kinetics using the iterative curve stripping method--was modified and a revised subroutine was incorporated to solve double-peak models. This subroutine considers the double peak as two hypothetical doses administered with a time gap. The fitting capability of the presented model was verified using four sets of data showing double peak profiles extracted from the literature (piroxicam, ranitidine, phenazopyridine and talinolol). Visual inspection and statistical diagnostics showed that the present algorithm provided adequate curve fit disregarding the mechanism involved in the emergence of the secondary peaks. Statistical diagnostic parameters (RSS, AIC and R2) generally showed good fitness in the plasma profile prediction by this model. It was concluded that the algorithm presented herein provides adequate predicted curves in cases of the double peak phenomenon. PMID:16400712

  10. Semiphysiologically Based Pharmacokinetic Model of Leflunomide Disposition in Rheumatoid Arthritis Patients

    PubMed Central

    Hopkins, AM; Wiese, MD; Proudman, SM; O'Doherty, CE; Foster, DJR; Upton, RN

    2015-01-01

    A semiphysiologically based pharmacokinetic (semi-PBPK) population model was used to evaluate the influence of enterohepatic recycling and protein binding, as well as the effect of genetic variability in CYP1A2, CYP2C19, and ABCG2, on the large interindividual variability of teriflunomide (active metabolite) concentrations following leflunomide administration in rheumatoid arthritis (RA) patients. The model was developed with total and free teriflunomide concentrations determined in RA patients taking leflunomide, as well as mean teriflunomide concentrations following the administration of leflunomide or teriflunomide extracted from the literature. Once developed, the 15-compartment model was able to predict total and free teriflunomide concentrations and was used to screen demographic and genotypic covariates, of which only fat-free mass and liver function (ALT) improved prediction. This approach effectively evaluated the effects of multiple covariates on both total and free teriflunomide concentrations, which have only been explored previously through simplistic one-compartment models for total teriflunomide. PMID:26225264

  11. Semiphysiologically Based Pharmacokinetic Model of Leflunomide Disposition in Rheumatoid Arthritis Patients.

    PubMed

    Hopkins, A M; Wiese, M D; Proudman, S M; O'Doherty, C E; Foster, Djr; Upton, R N

    2015-06-01

    A semiphysiologically based pharmacokinetic (semi-PBPK) population model was used to evaluate the influence of enterohepatic recycling and protein binding, as well as the effect of genetic variability in CYP1A2, CYP2C19, and ABCG2, on the large interindividual variability of teriflunomide (active metabolite) concentrations following leflunomide administration in rheumatoid arthritis (RA) patients. The model was developed with total and free teriflunomide concentrations determined in RA patients taking leflunomide, as well as mean teriflunomide concentrations following the administration of leflunomide or teriflunomide extracted from the literature. Once developed, the 15-compartment model was able to predict total and free teriflunomide concentrations and was used to screen demographic and genotypic covariates, of which only fat-free mass and liver function (ALT) improved prediction. This approach effectively evaluated the effects of multiple covariates on both total and free teriflunomide concentrations, which have only been explored previously through simplistic one-compartment models for total teriflunomide. PMID:26225264

  12. Pharmacokinetic Modeling of Non-Linear Brain Distribution of Fluvoxamine in the Rat

    PubMed Central

    Geldof, Marian; Freijer, Jan; van Beijsterveldt, Ludy

    2007-01-01

    Introduction A pharmacokinetic (PK) model is proposed for estimation of total and free brain concentrations of fluvoxamine. Materials and methods Rats with arterial and venous cannulas and a microdialysis probe in the frontal cortex received intravenous infusions of 1, 3.7 or 7.3 mg.kg−1 of fluvoxamine. Analysis With increasing dose a disproportional increase in brain concentrations was observed. The kinetics of brain distribution was estimated by simultaneous analysis of plasma, free brain ECF and total brain tissue concentrations. The PK model consists of three compartments for fluvoxamine concentrations in plasma in combination with a catenary two compartment model for distribution into the brain. In this catenary model, the mass exchange between a shallow perfusion-limited and a deep brain compartment is described by a passive diffusion term and a saturable active efflux term. Results The model resulted in precise estimates of the parameters describing passive influx into (kin) of 0.16 min−1 and efflux from the shallow brain compartment (kout) of 0.019 min−1 and the fluvoxamine concentration at which 50% of the maximum active efflux (C50) is reached of 710 ng.ml−1. The proposed brain distribution model constitutes a basis for precise characterization of the PK–PD correlation of fluvoxamine by taking into account the non-linearity in brain distribution. PMID:17710515

  13. Permeability of iodide in multilamellar liposomes modeled by two compartments and a reservoir.

    PubMed

    Schullery, S E

    1977-07-14

    A previously published rate law for the diffusion of iodide from multilamellar egg phosphatidylcholine liposomes (Schullery, S.E. (1975) Chem. Phys. Lipids 14, 49-58) is fitted to the relatively simple mathematical model of two compartments in series with a reservoir. All of the inner liposome compartments are assumed to behave as effectively one compartment in series with the liposome's outermost compartment. Based on this model, reasonable values are calculated for the fraction of the total solution trapped by liposomes which is in the outermost liposome compartment, 17%, and the permeability coefficient of iodide against isotonic, mixed iodide-chloride solution, 2-10(-9) cm/s. PMID:884087

  14. Coupling volume-excluding compartment-based models of diffusion at different scales: Voronoi and pseudo-compartment approaches.

    PubMed

    Taylor, P R; Baker, R E; Simpson, M J; Yates, C A

    2016-07-01

    Numerous processes across both the physical and biological sciences are driven by diffusion. Partial differential equations are a popular tool for modelling such phenomena deterministically, but it is often necessary to use stochastic models to accurately capture the behaviour of a system, especially when the number of diffusing particles is low. The stochastic models we consider in this paper are 'compartment-based': the domain is discretized into compartments, and particles can jump between these compartments. Volume-excluding effects (crowding) can be incorporated by blocking movement with some probability. Recent work has established the connection between fine- and coarse-grained models incorporating volume exclusion, but only for uniform lattices. In this paper, we consider non-uniform, hybrid lattices that incorporate both fine- and coarse-grained regions, and present two different approaches to describe the interface of the regions. We test both techniques in a range of scenarios to establish their accuracy, benchmarking against fine-grained models, and show that the hybrid models developed in this paper can be significantly faster to simulate than the fine-grained models in certain situations and are at least as fast otherwise. PMID:27383421

  15. PHARMACOKINETIC/PHARMACODYNAMIC MODELING OF PERMETHRIN IN THE RAT

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model was used to describe pharmacokinetics of permethrin and calibrated using experimental data on the concentration time-course of cis- and trans-permethrin in rat blood and brain tissues following oral administration...

  16. Oseltamivir Population Pharmacokinetics in the Ferret: Model Application for Pharmacokinetic/Pharmacodynamic Study Design.

    PubMed

    Reddy, Micaela B; Yang, Kuo-Hsiung; Rao, Gauri; Rayner, Craig R; Nie, Jing; Pamulapati, Chandrasena; Marathe, Bindumadhav M; Forrest, Alan; Govorkova, Elena A

    2015-01-01

    The ferret is a suitable small animal model for preclinical evaluation of efficacy of antiviral drugs against various influenza strains, including highly pathogenic H5N1 viruses. Rigorous pharmacokinetics/pharmacodynamics (PK/PD) assessment of ferret data has not been conducted, perhaps due to insufficient information on oseltamivir PK. Here, based on PK data from several studies on both uninfected and influenza-infected groups (i.e., with influenza A viruses of H5N1 and H3N2 subtypes and an influenza B virus) and several types of anesthesia we developed a population PK model for the active compound oseltamivir carboxylate (OC) in the ferret. The ferret OC population PK model incorporated delayed first-order input, two-compartment distribution, and first-order elimination to successfully describe OC PK. Influenza infection did not affect model parameters, but anesthesia did. The conclusion that OC PK was not influenced by influenza infection must be viewed with caution because the influenza infections in the studies included here resulted in mild clinical symptoms in terms of temperature, body weight, and activity scores. Monte Carlo simulations were used to determine that administration of a 5.08 mg/kg dose of oseltamivir phosphate to ferret every 12 h for 5 days results in the same median OC area under the plasma concentration-time curve 0-12 h (i.e., 3220 mg h/mL) as that observed in humans during steady state at the approved dose of 75 mg twice daily for 5 days. Modeling indicated that PK variability for OC in the ferret model is high, and can be affected by anesthesia. Therefore, for proper interpretation of PK/PD data, sparse PK sampling to allow the OC PK determination in individual animals is important. Another consideration in appropriate design of PK/PD studies is achieving an influenza infection with pronounced clinical symptoms and efficient virus replication, which will allow adequate evaluation of drug effects. PMID:26460484

  17. Oseltamivir Population Pharmacokinetics in the Ferret: Model Application for Pharmacokinetic/Pharmacodynamic Study Design

    PubMed Central

    Reddy, Micaela B.; Yang, Kuo-Hsiung; Rao, Gauri; Rayner, Craig R.; Nie, Jing; Pamulapati, Chandrasena; Marathe, Bindumadhav M.; Forrest, Alan; Govorkova, Elena A.

    2015-01-01

    The ferret is a suitable small animal model for preclinical evaluation of efficacy of antiviral drugs against various influenza strains, including highly pathogenic H5N1 viruses. Rigorous pharmacokinetics/pharmacodynamics (PK/PD) assessment of ferret data has not been conducted, perhaps due to insufficient information on oseltamivir PK. Here, based on PK data from several studies on both uninfected and influenza-infected groups (i.e., with influenza A viruses of H5N1 and H3N2 subtypes and an influenza B virus) and several types of anesthesia we developed a population PK model for the active compound oseltamivir carboxylate (OC) in the ferret. The ferret OC population PK model incorporated delayed first-order input, two-compartment distribution, and first-order elimination to successfully describe OC PK. Influenza infection did not affect model parameters, but anesthesia did. The conclusion that OC PK was not influenced by influenza infection must be viewed with caution because the influenza infections in the studies included here resulted in mild clinical symptoms in terms of temperature, body weight, and activity scores. Monte Carlo simulations were used to determine that administration of a 5.08 mg/kg dose of oseltamivir phosphate to ferret every 12 h for 5 days results in the same median OC area under the plasma concentration-time curve 0–12 h (i.e., 3220 mg h/mL) as that observed in humans during steady state at the approved dose of 75 mg twice daily for 5 days. Modeling indicated that PK variability for OC in the ferret model is high, and can be affected by anesthesia. Therefore, for proper interpretation of PK/PD data, sparse PK sampling to allow the OC PK determination in individual animals is important. Another consideration in appropriate design of PK/PD studies is achieving an influenza infection with pronounced clinical symptoms and efficient virus replication, which will allow adequate evaluation of drug effects. PMID:26460484

  18. Pharmacokinetic evaluation of avicularin using a model-based development approach.

    PubMed

    Buqui, Gabriela Amaral; Gouvea, Dayana Rubio; Sy, Sherwin K B; Voelkner, Alexander; Singh, Ravi S P; da Silva, Denise Brentan; Kimura, Elza; Derendorf, Hartmut; Lopes, Norberto Peporine; Diniz, Andrea

    2015-03-01

    The aim of this study was to use the pharmacokinetic information of avicularin in rats to project a dose for humans using allometric scaling. A highly sensitive and specific bioanalytical assay to determine avicularin concentrations in the plasma was developed and validated for UPLC-MS/MS. The plasma protein binding of avicularin in rat plasma determined by the ultrafiltration method was 64%. The pharmacokinetics of avicularin in nine rats was studied following an intravenous bolus administration of 1 mg/kg and was found to be best described by a two-compartment model using a nonlinear mixed effects modeling approach. The pharmacokinetic parameters were allometrically scaled by body weight and centered to the median rat weight of 0.23 kg, with the power coefficient fixed at 0.75 for clearance and 1 for volume parameters. Avicularin was rapidly eliminated from the systemic circulation within 1 h post-dose, and the avicularin pharmacokinetic was linear up to 5 mg/kg based on exposure comparison to literature data for a 5-mg/kg single dose in rats. Using allometric scaling and Monte Carlo simulation approaches, the rat doses of 1 and 5 mg/kg correspond to the human equivalent doses of 30 and 150 mg, respectively, to achieve comparable plasma avicularin concentrations in humans. PMID:25782034

  19. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion

    PubMed Central

    Yates, Christian A.; Flegg, Mark B.

    2015-01-01

    Spatial reaction–diffusion models have been employed to describe many emergent phenomena in biological systems. The modelling technique most commonly adopted in the literature implements systems of partial differential equations (PDEs), which assumes there are sufficient densities of particles that a continuum approximation is valid. However, owing to recent advances in computational power, the simulation and therefore postulation, of computationally intensive individual-based models has become a popular way to investigate the effects of noise in reaction–diffusion systems in which regions of low copy numbers exist. The specific stochastic models with which we shall be concerned in this manuscript are referred to as ‘compartment-based’ or ‘on-lattice’. These models are characterized by a discretization of the computational domain into a grid/lattice of ‘compartments’. Within each compartment, particles are assumed to be well mixed and are permitted to react with other particles within their compartment or to transfer between neighbouring compartments. Stochastic models provide accuracy, but at the cost of significant computational resources. For models that have regions of both low and high concentrations, it is often desirable, for reasons of efficiency, to employ coupled multi-scale modelling paradigms. In this work, we develop two hybrid algorithms in which a PDE in one region of the domain is coupled to a compartment-based model in the other. Rather than attempting to balance average fluxes, our algorithms answer a more fundamental question: ‘how are individual particles transported between the vastly different model descriptions?’ First, we present an algorithm derived by carefully redefining the continuous PDE concentration as a probability distribution. While this first algorithm shows very strong convergence to analytical solutions of test problems, it can be cumbersome to simulate. Our second algorithm is a simplified and more efficient

  20. Explicit Pharmacokinetic Modeling: Tools for Documentation, Verification, and Portability

    EPA Science Inventory

    Quantitative estimates of tissue dosimetry of environmental chemicals due to multiple exposure pathways require the use of complex mathematical models, such as physiologically-based pharmacokinetic (PBPK) models. The process of translating the abstract mathematics of a PBPK mode...

  1. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction

    EPA Science Inventory

    Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-v...

  2. Exploring Population Pharmacokinetic Modeling with Resampling Visualization

    PubMed Central

    Zuo, Fenghua

    2014-01-01

    Background. In the last decade, population pharmacokinetic (PopPK) modeling has spread its influence in the whole process of drug research and development. While targeting the construction of the dose-concentration of a drug based on a population of patients, it shows great flexibility in dealing with sparse samplings and unbalanced designs. The resampling approach has been considered an important statistical tool to assist in PopPK model validation by measuring the uncertainty of parameter estimates and evaluating the influence of individuals. Methods. The current work describes a graphical diagnostic approach for PopPK models by visualizing resampling statistics, such as case deletion and bootstrap. To examine resampling statistics, we adapted visual methods from multivariate analysis, parallel coordinate plots, and multidimensional scaling. Results. Multiple models were fitted, the information of parameter estimates and diagnostics were extracted, and the results were visualized. With careful scaling, the dependencies between different statistics are revealed. Using typical examples, the approach proved to have great capacity to identify influential outliers from the statistical perspective, which deserves special attention in a dosing regimen. Discussion. By combining static graphics with interactive graphics, we are able to explore the multidimensional data from an integrated and systematic perspective. Complementary to current approaches, our proposed method provides a new way for PopPK modeling analysis. PMID:24877118

  3. Physiologically based modeling of the pharmacokinetics of acetaminophen and its major metabolites in humans using a Bayesian population approach.

    PubMed

    Zurlinden, Todd J; Reisfeld, Brad

    2016-06-01

    The principal aim of this study was to develop, validate, and demonstrate a physiologically based pharmacokinetic (PBPK) model to predict and characterize the absorption, distribution, metabolism, and excretion of acetaminophen (APAP) in humans. A PBPK model was created that included pharmacologically and toxicologically relevant tissue compartments and incorporated mechanistic descriptions of the absorption and metabolism of APAP, such as gastric emptying time, cofactor kinetics, and transporter-mediated movement of conjugated metabolites in the liver. Through the use of a hierarchical Bayesian framework, unknown model parameters were estimated using a large training set of data from human pharmacokinetic studies, resulting in parameter distributions that account for data uncertainty and inter-study variability. Predictions from the model showed good agreement to a diverse test set of data across several measures, including plasma concentrations over time, renal clearance, APAP absorption, and pharmacokinetic and exposure metrics. The utility of the model was then demonstrated through predictions of cofactor depletion, dose response of several pharmacokinetic endpoints, and the relationship between APAP biomarker levels in the plasma and those in the liver. The model addressed several limitations in previous PBPK models for APAP, and it is anticipated that it will be useful in predicting the pharmacokinetics of APAP in a number of contexts, such as extrapolating across doses, estimating internal concentrations, quantifying population variability, assessing possible impacts of drug coadministration, and, when coupled with a suitable pharmacodynamic model, predicting toxicity. PMID:25636597

  4. A nonlinear mixed effects modelling analysis of topiramate pharmacokinetics in patients with epilepsy.

    PubMed

    Vovk, Tomaz; Jakovljević, Mihajlo B; Kos, Mojca Kerec; Janković, Slobodan M; Mrhar, Ales; Grabnar, Iztok

    2010-01-01

    Topiramate pharmacokinetics is influenced by individual factors such as patient age, renal function and co-treatment. The aim of this study was to develop a population pharmacokinetic model of topiramate to assist dosage adjustments in individual patients. Steady-state topiramate plasma concentrations in patients with epilepsy were determined by HPLC using fluorescent labelling. Demographic, biochemical data and dosing history including concomitant drug therapy were collected from patients' charts. Nonlinear mixed effects modelling was used to fit a one-compartment pharmacokinetic model. The influence of patient weight and gender, body surface area, age, creatinine clearance, serum transaminases, topiramate daily dose and co-treatment with carbamazepine, valproic acid, benzodiazepines, and risperidone on topiramate pharmacokinetics was evaluated. Additionally, the relationship between topiramate plasma concentration and clinical response was investigated. Volume of distribution of topiramate was 0.518 l/kg. For a typical patient oral clearance was estimated at 1.47 l/h, with interindividual variability of 39.2%. Clearance was 70% higher in patients co-treated with carbamazepine and was found to increase with patient age. Somnolence was the most frequently observed adverse event. Incidence of headache was associated with topiramate plasma concentration. Somnolence, ataxia, tremor, speech disorders and fatigue were associated with adjunctive therapy with carbamazepine, valproic acid, benzodiazepines, risperidone, and clozapine. No association of topiramate plasma concentration with frequency of seizures or patient quality of life was observed. The developed model can be used for Bayesian estimation of pharmacokinetic parameters based on sparse plasma samples and for selection of optimum dosing in routine patient care. PMID:20606310

  5. A Human Life-Stage Physiologically Based Pharmacokinetic and Pharmacodynamic Model for Chlorpyrifos: Development and Validation

    SciTech Connect

    Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles; Bartels, M. J.; Poet, Torka S.

    2014-08-01

    Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Blood flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ≥ 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.

  6. Pirbenicillin: Pharmacokinetic Parameters in Mice

    PubMed Central

    English, Arthur R.; Girard, Dennis; Retsema, James A.

    1976-01-01

    The rapid intravenous administration to mice of pirbenicillin, carbenicillin, and ampicillin produced biexponential blood concentration-time curves when assessed by frequent blood samplings at short intervals. The pharmacokinetic behavior of pirbenicillin and the other penicillins was analyzed by the two-compartment open model. This is thought to be the first study giving detailed pharmacokinetic values of penicillins in mice. Some significant differences were noted between the pharmacokinetic values of pirbenicillin, ampicillin, and carbenicillin. These values suggest that the interchange of pirbenicillin between the central and peripheral body compartments of the mouse was slower than that of either carbenicillin or ampicillin and indicated that a greater fraction of the pirbenicillin than the ampicillin dose reached the peripheral compartment. PMID:984791

  7. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    PubMed Central

    Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I.

    2014-01-01

    Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways. PMID:24647103

  8. A physiologically based pharmacokinetic (PBPK) model for methyl mercury (MeHg) in monkey and human

    SciTech Connect

    Gearhart, J.M.; Clewall, H.J. III; Shipp, A.M.

    1995-12-31

    A PBPK model for MeHg was developed which coherently describes MeHg pharmacokinetics in the adult rat, monkey and man, and predicts fetal levels of MeHg from in utero exposure. The model includes a description of enterohepatic recirculation of MeHg, conversion to inorganic mercury in tissues and intestinal flora, slowly reversible incorporation of mercury in tissues, and excretion of both organic and inorganic mercury into urine, feces, and hair. The adult submodel includes compartments representing the red blood tells (RBC), plasma, brain, liver, kidney, gut intestinal lumen, gut tissue, hair, richly and slowly perfused tissues, and placenta. The fetal submodel includes compartments representing RBC`s, plasma, brain, and remaining body mass. Two features of the model structure which are critical to prediction of the kinetics of MeHg in different species is the use of separate RBC and plasma compartments, allowing the use of species specific RBC/plasma ratios, and biliary excretion with enterohepatic recirculation. Published tissue and blood MeHg concentrations were used to derive the partition coefficients and RBC/plasma ratios to adjust for species differences in MeHg distribution. Validation involved comparing the model simulations with data from repeated dosing studies in animals and humans, and from accidental human exposures. The model will be used to investigate maternal MeHg intake as it relates to measured blood and hair MeHg concentrations, and to fetal exposure.

  9. Pharmacokinetic Modeling of Perfluoroalkyl Acids in Rodents

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) has pharmacokinetic properties that appear consistent with a number of processes that are currently not well understood. Studies in mice exposed orally at lower doses (1 and 10 mg/kg) demonstrated blood, liver, and kidney concentration time courses ...

  10. Determination of phenazopyridine in human plasma via LC-MS and subsequent development of a pharmacokinetic model.

    PubMed

    Shang, Erxin; Xiang, Bingren; Liu, Guangyu; Xie, Shaofei; Wei, Wenyan; Lu, Jun

    2005-05-01

    This paper describes a new LC-MS method for the determination of phenazopyridine and the subsequent development of a pharmacokinetic model for phenazopyridine in vivo. Phenazopyridine hydrochloride is a strong analgesic used in the treatment of urinary tract infections. Although it has been used as a clinical treatment for a very long time, pharmacokinetic data and suitable methods for its determination in plasma are currently lacking. The study described in this paper used high performance liquid chromatography-mass spectrometry, HPLC-MS, to determine the plasma concentrations of phenazopyridine in human subjects after oral administration. After liquid-liquid extraction, the phenazopyridine in the plasma was analyzed on a C18 column under SIM mode. A double-peak phenomenon was observed in most of the concentration-time profiles of the subjects. Although some drugs are known to cause this phenomenon, phenazopyridine has not been reported to do so. Several possible causes were analyzed in order to obtain an explanation. We proposed a two-site absorption compartment model to fit the concentration data in vivo, which has one more absorption site than the classical one-compartment model. The model describes the concentration profiles in different dose groups well and could provide an explanation for the double-peak phenomenon. The three dose groups exhibited similar model parameters and a linear pharmacokinetic process over the dose range used. PMID:15900475

  11. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies.

    PubMed

    Glassman, Patrick M; Balthasar, Joseph P

    2016-08-01

    Accurate prediction of the clinical pharmacokinetics of new therapeutic entities facilitates decision making during drug discovery, and increases the probability of success for early clinical trials. Standard strategies employed for predicting the pharmacokinetics of small-molecule drugs (e.g., allometric scaling) are often not useful for predicting the disposition monoclonal antibodies (mAbs), as mAbs frequently demonstrate species-specific non-linear pharmacokinetics that is related to mAb-target binding (i.e., target-mediated drug disposition, TMDD). The saturable kinetics of TMDD are known to be influenced by a variety of factors, including the sites of target expression (which determines the accessibility of target to mAb), the extent of target expression, the rate of target turnover, and the fate of mAb-target complexes. In most cases, quantitative information on the determinants of TMDD is not available during early phases of drug discovery, and this has complicated attempts to employ mechanistic mathematical models to predict the clinical pharmacokinetics of mAbs. In this report, we introduce a simple strategy, employing physiologically-based modeling, to predict mAb disposition in humans. The approach employs estimates of inter-antibody variability in rate processes of extravasation in tissues and fluid-phase endocytosis, estimates for target concentrations in tissues derived through use of categorical immunohistochemical scores, and in vitro measures of the turnover of target and target-mAb complexes. Monte Carlo simulations were performed for four mAbs (cetuximab, figitumumab, dalotuzumab, trastuzumab) directed against three targets (epidermal growth factor receptor, insulin-like growth factor receptor 1, human epidermal growth factor receptor 2). The proposed modeling strategy was able to predict well the pharmacokinetics of cetuximab, dalotuzumab, and trastuzumab at a range of doses, but trended towards underprediction of figitumumab concentrations

  12. A pharmacokinetic analysis of posaconazole oral suspension in the serum and alveolar compartment of lung transplant recipients.

    PubMed

    Thakuria, L; Packwood, K; Firouzi, A; Rogers, P; Soresi, S; Habibi-Parker, K; Lyster, H; Zych, B; Garcia-Saez, D; Mohite, P; Patil, N; Sabashnikov, A; Capoccia, M; Chibvuri, M; Lamba, H; Tate, H; Carby, M; Simon, A; Leaver, N; Reed, A

    2016-01-01

    Invasive fungal infections cause significant morbidity and mortality after lung transplantation. Fungal prophylaxis following lung transplantation is not standardised, with transplant centres utilising a variety of regimens. Posaconazole is a broad-spectrum antifungal triazole that requires further investigation within the setting of lung transplantation. This prospective, single-centre, observational study explored the pharmacokinetics of posaconazole oral suspension (POS) in the early perioperative period following lung transplantation in 26 patients. Organ recipients were scheduled to receive 400mg POS twice daily for 6 weeks as primary antifungal prophylaxis. Therapeutic drug monitoring (TDM) of serum posaconazole levels was performed in accordance with local clinical protocols. Bronchoalveolar lavage fluid (BALF) was sampled during routine bronchoscopies. Posaconazole levels were measured both in serum and BALF using mass spectrometry. Posaconazole levels were highly variable within lung transplant recipients during the perioperative period and did not achieve 'steady-state'. Serum posaconazole concentrations positively correlated with levels within the BALF (r=0.5527; P=0.0105). Of the 26 patients, 10 failed to complete the study for multiple reasons and so the trial was terminated early. Unlike study findings in stable recipients, serum posaconazole levels rarely achieved steady-state in the perioperative period; however, they do reflect the concentrations within the airways of newly transplanted lungs. The role of POS as primary prophylaxis in the perioperative period is uncertain, but if used TDM may be helpful for determining attainment of therapeutic levels. PMID:26607341

  13. Gender based Dosing of Metoprolol in the Elderly using Population Pharmacokinetic Modeling and Simulations

    PubMed Central

    Eugene, Andy R.

    2016-01-01

    Introduction This article seeks to clarify if gender-based differences occur in the pharmacokinetics of metoprolol in the elderly patients. There are a series of physiologic changes that occur in the elderly ranging from decreased hepatic blood flow to increased adiposity causing higher plasma concentrations at therapeutic doses as compared to the healthy young population. Methods Population pharmacokinetic modeling were performed using MONOLIX and Monte-Carlo simulations were conducted using MATLAB. The data was based from a previously published dataset where elderly patients, having multiple comorbidities, were administered a 50mg dose of metoprolol. Results Metoprolol was modeled using a one-compartment model and resulted in the following population pharmacokinetic parameters: volume of distribution, V=38L (CV=155%), clearance rates, CL-Men=105L/hour and CL-Women=59.1L/hour (38%), time lag, Tlag=0.469 hour (CV=17%), and the absorption rate constant, Ka=0.235 hr-1 (CV=23%). Conclusion Gender stratified doses resulting in an equivalent systemic metoprolol exposure in geriatric patients have been identified. Metoprolol doses resulting a similar AUC in a healthy young male administered 50mg tablet were 15mg for geriatric women and 25mg for geriatric men. Further, Metoprolol doses of 25mg for geriatric women and 50mg for geriatric men resulted in an equivalent AUC to a healthy young males dosed with a 100mg tablet. A 15mg Metoprolol tablet may need to be compounded to account for the gender differences in Metoprolol pharmacokinetics.

  14. Pharmacokinetic Modeling to Simulate the Concentration-Time Profiles After Dermal Application of Rivastigmine Patch.

    PubMed

    Nozaki, Sachiko; Yamaguchi, Masayuki; Lefèvre, Gilbert

    2016-07-01

    Rivastigmine is an inhibitor of acetylcholinesterases and butyrylcholinesterases for symptomatic treatment of Alzheimer disease and is available as oral and transdermal patch formulations. A dermal absorption pharmacokinetic (PK) model was developed to simulate the plasma concentration-time profile of rivastigmine to answer questions relative to the efficacy and safety risks after misuse of the patch (e.g., longer application than 24 h, multiple patches applied at the same time, and so forth). The model comprised 2 compartments which was a combination of mechanistic dermal absorption model and a basic 1-compartment model. The initial values for the model were determined based on the physicochemical characteristics of rivastigmine and PK parameters after intravenous administration. The model was fitted to the clinical PK profiles after single application of rivastigmine patch to obtain model parameters. The final model was validated by confirming that the simulated concentration-time curves and PK parameters (Cmax and area under the drug plasma concentration-time curve) conformed to the observed values and then was used to simulate the PK profiles of rivastigmine. This work demonstrated that the mechanistic dermal PK model fitted the clinical data well and was able to simulate the PK profile after patch misuse. PMID:27212635

  15. Some Comments and Suggestions concerning Population Pharmacokinetic Modeling, especially of Digoxin, and its Relation to Clinical Therapy

    PubMed Central

    Jelliffe, Roger W.

    2013-01-01

    Population pharmacokinetic and dynamic (PK/PD) modeling is often employed to analyze data of steady state trough serum digoxin concentrations in the course of what is frequently regarded as routine therapeutic drug monitoring (TDM). Such a monitoring protocol is extremely uninformative. It permits only estimation of a single parameter of a one- compartment model, such as clearance. Use of D-optimal design strategies permit much more information to be obtained, employing models having really meaningful structure. Strategies and protocols for routine TDM policies greatly need to be improved, incorporating these principles of optimal design. PMID:22735674

  16. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    PubMed Central

    Zhang, Jeff L; Morey, A Michael; Kadrmas, Dan J

    2016-01-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. PMID:26788888

  17. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.

    2016-02-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  18. The Modelling Pharmacokinetic Profile of Freeze-Dried Cyclosporine A-Eudragit S100 Nanoparticle Formulation in Dogs

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Fang, Zhi-gang; You, Ben-Gang; Ding, Xin-yuan; Zhang, Xue-nong

    The modelling pharmacokinetic profile of freeze-dried cyclosporine A-Eudragit S100 nanoparticles (CyA-S100-NP) was studied with a random two-way crossover study in dogs. The drug blood concentration was determined by internal standard HPLC method after oral administration of CyA-S100-NP and Neoral. Pharmacokinetics modellng parameters were calculated by 3P97modelling program. The concentration-time data were fitted as a two-compartment open model. The AUC of CyA-S100-NP was higher than that of Neoral (P<0.05), while the CL significantly decreased (P<0.05). The relative bioavailability of CyA-S100-NP were 135.9% compared with Neoral. The bioavailability of CyA was significantly improved. CyA-S100-NP was a potential drug for developing a new CyA nanoparticles solid formulation.

  19. An interface model for dosage adjustment connects hematotoxicity to pharmacokinetics.

    PubMed

    Meille, C; Iliadis, A; Barbolosi, D; Frances, N; Freyer, G

    2008-12-01

    When modeling is required to describe pharmacokinetics and pharmacodynamics simultaneously, it is difficult to link time-concentration profiles and drug effects. When patients are under chemotherapy, despite the huge amount of blood monitoring numerations, there is a lack of exposure variables to describe hematotoxicity linked with the circulating drug blood levels. We developed an interface model that transforms circulating pharmacokinetic concentrations to adequate exposures, destined to be inputs of the pharmacodynamic process. The model is materialized by a nonlinear differential equation involving three parameters. The relevance of the interface model for dosage adjustment is illustrated by numerous simulations. In particular, the interface model is incorporated into a complex system including pharmacokinetics and neutropenia induced by docetaxel and by cisplatin. Emphasis is placed on the sensitivity of neutropenia with respect to the variations of the drug amount. This complex system including pharmacokinetic, interface, and pharmacodynamic hematotoxicity models is an interesting tool for analysis of hematotoxicity induced by anticancer agents. The model could be a new basis for further improvements aimed at incorporating new experimental features. PMID:19107581

  20. Sensitivity Analysis of a Pharmacokinetic Model of Vaginal Anti-HIV Microbicide Drug Delivery.

    PubMed

    Jarrett, Angela M; Gao, Yajing; Hussaini, M Yousuff; Cogan, Nicholas G; Katz, David F

    2016-05-01

    Uncertainties in parameter values in microbicide pharmacokinetics (PK) models confound the models' use in understanding the determinants of drug delivery and in designing and interpreting dosing and sampling in PK studies. A global sensitivity analysis (Sobol' indices) was performed for a compartmental model of the pharmacokinetics of gel delivery of tenofovir to the vaginal mucosa. The model's parameter space was explored to quantify model output sensitivities to parameters characterizing properties for the gel-drug product (volume, drug transport, initial loading) and host environment (thicknesses of the mucosal epithelium and stroma and the role of ambient vaginal fluid in diluting gel). Greatest sensitivities overall were to the initial drug concentration in gel, gel-epithelium partition coefficient for drug, and rate constant for gel dilution by vaginal fluid. Sensitivities for 3 PK measures of drug concentration values were somewhat different than those for the kinetic PK measure. Sensitivities in the stromal compartment (where tenofovir acts against host cells) and a simulated biopsy also depended on thicknesses of epithelium and stroma. This methodology and results here contribute an approach to help interpret uncertainties in measures of vaginal microbicide gel properties and their host environment. In turn, this will inform rational gel design and optimization. PMID:27012224

  1. A physiologically based pharmacokinetic model for lactational transfer of Na-131I

    NASA Astrophysics Data System (ADS)

    Turner, Anita Loretta

    The excretion of radionuclides in human breast milk after administration of radiopharmaceuticals is a concern as a radiation risk to nursing infants. It is not uncommon to administer radiopharmaceuticals to lactating patients due to emergency nuclear medicine investigations such as thyroid complications, kidney failure, and pulmonary embolism. There is a need to quantify the amount of radioactivity translocated into breast milk in cases of ingestion by a breast-fed infant. A physiologically based pharmacokinetic model (PBPK) and a modified International Commission on Radiological Protection (ICRP) model have been developed to predict iodine concentrations in breast milk after ingestion of radioiodine by the mother. In the PBPK model, all compartments are interconnected by blood flow and represent real anatomic tissue regions in the body. All parameters involved are measurable values with physiological or physiochemical meaning such as tissue masses, blood flow rates, partition coefficients and cardiac output. However, some of the parameters such as the partition coefficients and metabolic constants are not available for iodine and had to be inferred from other information. The structure of the PBPK model for the mother consists of the following tissue compartments: gastrointestinal tract, blood, kidney, thyroid, milk, and other tissues. With the exception of the milk compartment, the model for the nursing infant is structured similarly to the mother. The ICRP model describing iodine metabolism in a standard 70-kg man was modified to represent iodine metabolism in a lactating woman and nursing infant. The parameters involved in this model are transfer rates and biological half-lives which are based on experimental observations. The results of the PBPK model and the modified ICRP model describing the lactational transfer of iodine were compared. When administering 1 mCi of Na131I to the lactating mother, the concentration reaches a maximum of 0.1 mCi/liter in 24

  2. Physiologically Based Pharmacokinetic Modeling of Fluorescently Labeled Block Copolymer Nanoparticles for Controlled Drug Delivery in Leukemia Therapy.

    PubMed

    Gilkey, M J; Krishnan, V; Scheetz, L; Jia, X; Rajasekaran, A K; Dhurjati, P S

    2015-03-01

    A physiologically based pharmacokinetic (PBPK) model was developed that describes the concentration and biodistribution of fluorescently labeled nanoparticles in mice used for the controlled delivery of dexamethasone in acute lymphoblastic leukemia (ALL) therapy. The simulated data showed initial spikes in nanoparticle concentration in the liver, spleen, and kidneys, whereas concentration in plasma decreased rapidly. These simulation results were consistent with previously published in vivo data. At shorter time scales, the simulated data predicted decrease of nanoparticles from plasma with concomitant increase in the liver, spleen, and kidneys before decaying at longer timepoints. Interestingly, the simulated data predicted an unaccounted accumulation of about 50% of the injected dose of nanoparticles. Incorporation of an additional compartment into the model justified the presence of unaccounted nanoparticles in this compartment. Our results suggest that the proposed PBPK model can be an excellent tool for prediction of optimal dose of nanoparticle-encapsulated drugs for cancer treatment. PMID:26225236

  3. Physiologically Based Pharmacokinetic Modeling of Fluorescently Labeled Block Copolymer Nanoparticles for Controlled Drug Delivery in Leukemia Therapy

    PubMed Central

    Gilkey, MJ; Krishnan, V; Scheetz, L; Jia, X; Rajasekaran, AK; Dhurjati, PS

    2015-01-01

    A physiologically based pharmacokinetic (PBPK) model was developed that describes the concentration and biodistribution of fluorescently labeled nanoparticles in mice used for the controlled delivery of dexamethasone in acute lymphoblastic leukemia (ALL) therapy. The simulated data showed initial spikes in nanoparticle concentration in the liver, spleen, and kidneys, whereas concentration in plasma decreased rapidly. These simulation results were consistent with previously published in vivo data. At shorter time scales, the simulated data predicted decrease of nanoparticles from plasma with concomitant increase in the liver, spleen, and kidneys before decaying at longer timepoints. Interestingly, the simulated data predicted an unaccounted accumulation of about 50% of the injected dose of nanoparticles. Incorporation of an additional compartment into the model justified the presence of unaccounted nanoparticles in this compartment. Our results suggest that the proposed PBPK model can be an excellent tool for prediction of optimal dose of nanoparticle-encapsulated drugs for cancer treatment. PMID:26225236

  4. Population pharmacokinetic modeling of oxcarbazepine active metabolite in Chinese patients with epilepsy.

    PubMed

    Yu, Yunli; Zhang, Quanying; Xu, Wenjun; Lv, Chengzhe; Hao, Gang

    2016-08-01

    The aim of the study was to develop a population pharmacokinetic (PPK) model of oxcarbazepine and optimize the treatment of oxcarbazepine in Chinese patients with epilepsy. A total of 108 oxcarbazepine therapeutic drug monitoring samples from 78 patients with epilepsy were collected in this study. The pharmacologically active metabolite 10,11-dihydro-10-hydrocarbamazepine (MHD) was used as the analytical target for monitoring therapy of oxcarbazepine. Patients' clinical data were retrospectively collected. The PPK model for MHD was developed using Phoenix NLME 1.2 with a non-linear mixed-effect model. MHD pharmacokinetics obeys a one-compartment model with first-order absorption and elimination. The effect of age, gender, red blood cell count, red blood cell specific volume, hemoglobin (HGB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatine were analyzed. Bootstrap and data splitting were used simultaneously to validate the final PPK models. The mean values of volume of distribution and clearance of MHD in the patients were 14.2 L and 2.38 L h(-1), respectively. BUN and HGB influenced the MHD volume of distribution according to the following equation: V = tvV × (BUN/4.76)(-0.007) × (HGB/140)(-0.001) × e (ηV) . The MHD clearance was dependent on ALT and gender as follows: CL = tvCL × (ALT/30)(0.181) × (gender) × 1.083 × e (ηCL). The final PPK model was demonstrated to be suitable and effective and it can be used to evaluate the pharmacokinetic parameters of MHD in Chinese patients with epilepsy and to choose an optimal dosage regimen of oxcarbazepine on the basis of these parameters. PMID:25700977

  5. Selection between Michaelis-Menten and target-mediated drug disposition pharmacokinetic models.

    PubMed

    Yan, Xiaoyu; Mager, Donald E; Krzyzanski, Wojciech

    2010-02-01

    Target-mediated drug disposition (TMDD) models have been applied to describe the pharmacokinetics of drugs whose distribution and/or clearance are affected by its target due to high binding affinity and limited capacity. The Michaelis-Menten (M-M) model has also been frequently used to describe the pharmacokinetics of such drugs. The purpose of this study is to investigate conditions for equivalence between M-M and TMDD pharmacokinetic models and provide guidelines for selection between these two approaches. Theoretical derivations were used to determine conditions under which M-M and TMDD pharmacokinetic models are equivalent. Computer simulations and model fitting were conducted to demonstrate these conditions. Typical M-M and TMDD profiles were simulated based on literature data for an anti-CD4 monoclonal antibody (TRX1) and phenytoin administered intravenously. Both models were fitted to data and goodness of fit criteria were evaluated for model selection. A case study of recombinant human erythropoietin was conducted to qualify results. A rapid binding TMDD model is equivalent to the M-M model if total target density R ( tot ) is constant, and R ( tot ) K ( D ) /(K ( D ) + C) ( 2 ) < 1 where K ( D ) represents the dissociation constant and C is the free drug concentration. Under these conditions, M-M parameters are defined as: V ( max ) = k ( int ) R ( tot ) V ( c ) and K ( m ) = K ( D ) where k ( int ) represents an internalization rate constant, and V ( c ) is the volume of the central compartment. R ( tot ) is constant if and only if k ( int ) = k ( deg,) where k ( deg ) is a degradation rate constant. If the TMDD model predictions are not sensitive to k ( int ) or k ( deg ) parameters, the condition of R ( tot ) K ( D ) /(K ( D ) + C) ( 2 ) < 1 alone can preserve the equivalence between rapid binding TMDD and M-M models. The model selection process for drugs that exhibit TMDD should involve a full mechanistic model as well as reduced models. The best model

  6. Bioconcentration of 5,5',6-trichlorobiphenyl and pentachlorophenol in the midge, Chironomus riparius, as measured by a pharmacokinetic model

    USGS Publications Warehouse

    Lydy, M.J.; Hayton, W.L.; Staubus, A.E.; Fisher, S.W.

    1994-01-01

    A two compartment pharmacokinetic model was developed which describes the uptake and elimination of 5,5',6-trichlorobiphenyl (TCB) and pentachlorophenol (PCP) in the midge, Chironomus riparius. C. riparius were exposed to nominal TCB (2 ??g L-1) and PCP (9 ??g L-1) concentrations during a 16 h static uptake phase. Depuration was determined over approximately 45 h using a flowthrough system without feeding. The uptake clearance (P) was 330 ?? 61 ml g-1 midge h-1 for TCB and 55 ?? 4 ml g-1 midge h-1 for PCP, while measured bioconcentration factors (BCF) were 35,900 and 458 for TCB and PCP, respectively. Overall, the clearance-volume- based pharmacokinetic model predicted BCF values that were consistent with published values as well as with BCF values obtained from the octanol-water partition coefficient (K(ow)).

  7. Semi-Mechanism-Based Population Pharmacokinetic Modeling of the Hedgehog Pathway Inhibitor Vismodegib.

    PubMed

    Lu, T; Wang, B; Gao, Y; Dresser, M; Graham, R A; Jin, J Y

    2015-11-01

    Vismodegib, approved for the treatment of advanced basal cell carcinoma, has shown unique pharmacokinetic (PK) nonlinearity and binding to α1-acid glycoprotein (AAG) in humans. A semi-mechanism-based population pharmacokinetic (PopPK) model was developed from a meta-dataset of 225 subjects enrolled in five clinical studies to quantitatively describe the clinical PK of vismodegib and identify sources of interindividual variability. Total and unbound vismodegib were analyzed simultaneously, together with time-varying AAG data. The PK of vismodegib was adequately described by a one-compartment model with first-order absorption, first-order elimination of unbound drug, and saturable binding to AAG with fast-equilibrium. The variability of total vismodegib concentration at steady-state was predominantly explained by the range of AAG level. The impact of AAG on unbound concentration was clinically insignificant. Various approaches were evaluated for model validation. The semi-mechanism-based PopPK model described herein provided insightful information on the nonlinear PK and has been utilized for various clinical applications. PMID:26783504

  8. Saturable human neopterin response to interferon-α assessed by a pharmacokinetic-pharmacodynamic model

    PubMed Central

    2013-01-01

    Background In this study, we developed a pharmacokinetic (PK)- pharmacodynamic (PD) model of a new sustained release formulation of interferon-α-2a (SR-IFN-α) using the blood concentration of IFN-α and neopterin in order to quantify the magnitude and saturation of neopterin production over time in healthy volunteers. The SR-IFN-α in this study is a solid microparticular formulation manufactured by spray drying of a feeding solution containing IFN-α, a biocompatible polymer (polyethylene glycol) and sodium hyaluronate. Methods The full PK and PD (neopterin concentration) datasets from 24 healthy subjects obtained after single doses of 9, 18, 27 and 36 MIU of subcutaneous SR-IFN-α were used to build the mixed-effect model using NONMEM (version 7.2) with the GFORTRAN compiler. Results A one-compartment model with first-order elimination and a mixture of zero- and first-order absorption was chosen to describe the PK of SR-IFN-α. The time-concentration profile of neopterin, the PD marker, was described by a turnover model combined with a single transit compartment. The saturable pattern of the neopterin response blurring the dose–response relationship of SR-IFN-α was addressed by introducing the concept of the EC50 increasing over time. Conclusions The PK-PD model of SR-IFN-α developed in this study has presented a quantitative tool to assess the time-course of a saturable neopterin response in humans. PMID:24088361

  9. A physiologically-based pharmacokinetic (PBPK) model of squalene-containing adjuvant in human vaccines.

    PubMed

    Tegenge, Million A; Mitkus, Robert J

    2013-10-01

    Squalene is used in the oil phase of certain emulsion vaccine adjuvants, but its fate as a vaccine component following intramuscular (IM) injection in humans is unknown. In this study, we constructed a physiologically-based pharmacokinetic (PBPK) model for intramuscularly injected squalene-in-water (SQ/W) emulsion, in order to make a quantitative estimation of the tissue distribution of squalene following a single IM injection in humans. The PBPK model incorporates relevant physicochemical properties of squalene; estimates of the time course of cracking of a SQ/W emulsion; anatomical and physiological parameters at the injection site and beyond; and local, preferential lymphatic transport. The model predicts that a single dose of SQ/W emulsion will be removed from human deltoid muscle within six days following IM injection. The major proportion of the injected squalene will be distributed to draining lymph nodes and adipose tissues. The model indicates slow decay from the latter compartment most likely due to partitioning into neutral lipids and a low rate of squalene biotransformation there. Parallel pharmacokinetic modeling for mouse muscle suggests that the kinetics of SQ/W emulsion correspond to the immunodynamic time course of a commercial squalene-containing adjuvant reported in that species. In conclusion, this study makes important pharmacokinetic predictions of the fate of a squalene-containing emulsion in humans. The results of this study may be relevant for understanding the immunodynamics of this new class of vaccine adjuvants and may be useful in future quantitative risk analyses that incorporate mode-of-action data. PMID:23912214

  10. Pharmacodynamic evaluation of biapenem in peritoneal fluid using population pharmacokinetic modelling and Monte Carlo simulation.

    PubMed

    Ikawa, Kazuro; Morikawa, Norifumi; Ikeda, Kayo; Ohge, Hiroki; Sueda, Taijiro

    2008-10-01

    This study evaluated the pharmacodynamics of biapenem in peritoneal fluid (PF). Biapenem (300 or 600mg) was administered via a 0.5-h infusion to 19 patients before abdominal surgery. Venous blood and PF samples were obtained after 0.5, 1, 2, 3, 4, 5 and 6h. Drug concentration data (108 plasma samples and 105 PF samples) were analysed using population pharmacokinetic modelling. A three-compartment model fits the data, with creatinine clearance (CL(Cr)) as the most significant covariate: CL (L/h)=0.036 x CL(Cr)+4.88, V1 (L)=6.95, Q2 (L/h)=2.05, V2 (L)=3.47, Q3 (L/h)=13.7 and V3 (L)=5.91, where CL is the clearance, Q2 and Q3 are the intercompartmental clearances, and V1, V2 and V3 are the volumes of distribution of the central, peripheral and peritoneal compartments, respectively. A Monte Carlo simulation using the pharmacokinetic model showed the probabilities of attaining the bactericidal exposure target (30% of the time above the minimum inhibitory concentration (T>MIC)) in PF were greater than or equal to those in plasma. In the cases of CL(Cr)=90 and 60mL/min, the site-specific pharmacodynamic-derived breakpoints (the highest MIC values at which the probabilities of target attainment in PF were >or=90%) were 2microg/mL for 300mg every 12h, 4microg/mL for biapenem 300mg every 8h (q8h) and 8microg/mL for 600mg q8h. Thus, these results should support the clinical use of biapenem as a treatment for intra-abdominal infections and facilitate the design of the dosing regimen. PMID:18602798

  11. Reduction of a Whole-Body Physiologically Based Pharmacokinetic Model to Stabilise the Bayesian Analysis of Clinical Data.

    PubMed

    Wendling, Thierry; Tsamandouras, Nikolaos; Dumitras, Swati; Pigeolet, Etienne; Ogungbenro, Kayode; Aarons, Leon

    2016-01-01

    Whole-body physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development for their ability to predict drug concentrations in clinically relevant tissues and to extrapolate across species, experimental conditions and sub-populations. A whole-body PBPK model can be fitted to clinical data using a Bayesian population approach. However, the analysis might be time consuming and numerically unstable if prior information on the model parameters is too vague given the complexity of the system. We suggest an approach where (i) a whole-body PBPK model is formally reduced using a Bayesian proper lumping method to retain the mechanistic interpretation of the system and account for parameter uncertainty, (ii) the simplified model is fitted to clinical data using Markov Chain Monte Carlo techniques and (iii) the optimised reduced PBPK model is used for extrapolation. A previously developed 16-compartment whole-body PBPK model for mavoglurant was reduced to 7 compartments while preserving plasma concentration-time profiles (median and variance) and giving emphasis to the brain (target site) and the liver (elimination site). The reduced model was numerically more stable than the whole-body model for the Bayesian analysis of mavoglurant pharmacokinetic data in healthy adult volunteers. Finally, the reduced yet mechanistic model could easily be scaled from adults to children and predict mavoglurant pharmacokinetics in children aged from 3 to 11 years with similar performance compared with the whole-body model. This study is a first example of the practicality of formal reduction of complex mechanistic models for Bayesian inference in drug development. PMID:26538125

  12. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction - poster

    EPA Science Inventory

    Building new physiologically based pharmacokinetic (PBPK) models requires a lot data, such as the chemical-specific parameters and in vivo pharmacokinetic data. Previously-developed, well-parameterized, and thoroughly-vetted models can be great resource for supporting the constr...

  13. Prediction of Nanoparticle Prodrug Metabolism by Pharmacokinetic Modeling of Biliary Excretion

    PubMed Central

    Stern, Stephan T.; Zou, Peng; Skoczen, Sarah; Xie, Sherwin; Liboiron, Barry; Harasym, Troy; Tardi, Paul; Mayer, LawrenceD.; McNeil, Scott E.

    2013-01-01

    Pharmacokinetic modeling and simulation is a powerful tool for the prediction of drug concentrations in the absence of analytical techniques that allow for direct quantification. The present study applied this modeling approach to determine active drug release from a nanoparticle prodrug formulation. A comparative pharmacokinetic study of a nanoscale micellar docetaxel (DTX) prodrug, Procet 8, and commercial DTX formulation, Taxotere, was conducted in bile duct cannulated rats. The nanoscale (~40 nm) size of the Procet 8 formulation resulted in confinement within the plasma space and high prodrug plasma concentrations. Ex vivo prodrug hydrolysis during plasma sample preparation resulted in unacceptable error that precluded direct measurement of DTX concentrations. Pharmacokinetic modeling of Taxotere and Procet 8 plasma concentrations, and their associated biliary metabolites, allowed for prediction of the DTX concentration profile and DTX bioavailability, and thereby evaluation of Procet 8 metabolism. Procet 8 plasma decay and in vitro plasma hydrolytic rates were identical, suggesting systemic clearance of the prodrug was primarily metabolic. The Procet 8 and Taxotere plasma profiles, and associated docetaxel hydroxy-tert-butyl carbamate (HDTX) metabolite biliary excretion, were best fit by a two compartment model, with both linear and non-linear DTX clearance, and first order Procet 8 hydrolysis. The model estimated HDTX clearance rate agreed with in vitro literature values, supporting the predictability of the proposed model. Model simulation at the 10 mg DTX equivalent/kg dose level predicted DTX formation rate-limited kinetics and a peak plasma DTX concentration of 39 ng/mL at 4h for Procet 8, in comparison to 2826 ng/mL for Taxotere. As a result of nonlinear DTX clearance, the DTX AUCinf for the Procet 8 formulation was predicted to be 2.6 times lower than Taxotere (775 vs. 2017 h x ng/mL, respectively), resulting in an absolute bioavailability estimate of

  14. Pharmacokinetic modeling and Monte Carlo simulation of ondansetron following oral administration in dogs.

    PubMed

    Baek, I-H; Lee, B-Y; Kang, J; Kwon, K-I

    2015-04-01

    Ondansetron is a potent antiemetic drug that has been commonly used to treat acute and chemotherapy-induced nausea and vomiting (CINV) in dogs. The aim of this study was to perform a pharmacokinetic analysis of ondansetron in dogs following oral administration of a single dose. A single 8-mg oral dose of ondansetron (Zofran(®) ) was administered to beagles (n = 18), and the plasma concentrations of ondansetron were measured by liquid chromatography-tandem mass spectrometry. The data were analyzed by modeling approaches using ADAPT5, and model discrimination was determined by the likelihood-ratio test. The peak plasma concentration (Cmax ) was 11.5 ± 10.0 ng/mL at 1.1 ± 0.8 h. The area under the plasma concentration vs. time curve from time zero to the last measurable concentration was 15.9 ± 14.7 ng·h/mL, and the half-life calculated from the terminal phase was 1.3 ± 0.7 h. The interindividual variability of the pharmacokinetic parameters was high (coefficient of variation > 44.1%), and the one-compartment model described the pharmacokinetics of ondansetron well. The estimated plasma concentration range of the usual empirical dose from the Monte Carlo simulation was 0.1-13.2 ng/mL. These findings will facilitate determination of the optimal dose regimen for dogs with CINV. PMID:25131428

  15. A model to resolve organochlorine pharmacokinetics in migrating humpback whales.

    PubMed

    Cropp, Roger; Nash, Susan Bengtson; Hawker, Darryl

    2014-07-01

    Humpback whales are iconic mammals at the top of the Antarctic food chain. Their large reserves of lipid-rich tissues such as blubber predispose them to accumulation of lipophilic contaminants throughout their lifetime. Changes in the volume and distribution of lipids in humpback whales, particularly during migration, could play an important role in the pharmacokinetics of lipophilic contaminants such as the organochlorine pesticide hexachlorobenzene (HCB). Previous models have examined constant feeding and nonmigratory scenarios. In the present study, the authors develop a novel heuristic model to investigate HCB dynamics in a humpback whale and its environment by coupling an ecosystem nutrient-phytoplankton-zooplankton-detritus (NPZD) model, a dynamic energy budget (DEB) model, and a physiologically based pharmacokinetic (PBPK) model. The model takes into account the seasonal feeding pattern of whales, their energy requirements, and fluctuating contaminant burdens in the supporting plankton food chain. It is applied to a male whale from weaning to maturity, spanning 20 migration and feeding cycles. The model is initialized with environmental HCB burdens similar to those measured in the Southern Ocean and predicts blubber HCB concentrations consistent with empirical concentrations observed in a southern hemisphere population of male, migrating humpback whales. Results show for the first time some important details of the relationship between energy budgets and organochlorine pharmacokinetics. PMID:24733631

  16. Three-compartment modeling of C-11 N-Methyl spiperone kinetics in the human brain

    SciTech Connect

    Brooks, R.A.; Wong, D.F.; Di Chiro, G.; Wayner, R.T.; Douglass, K.H.; Frost, J.J.; Larson, S.M.; Wagner, H.N. Jr.

    1984-01-01

    N-Methyl spiperone, as well as spiperone, has been used to study the dopamine receptor system in the brain. The authors have applied a 3-compartment model consisting of vascular, extravascular unbound, and receptor-bound activity to two normal volunteers and one patient with Parkinson's disease. The model differs from that proposed by another study, in that, as in the Sokoloff model for deoxyglucose, there is no explicit term for blood flow. Furthermore, the authors used a 3-compartment model for the cerebellum as well as the caudate/putamen. Serial scans were obtained by PET for up to 2 hrs after injection of the tracer. Time-activity curves were generated over the caudate, putamen and cerebellum. The results indicate a close fit of the observed data to the 3-compatment model. In the model, K1 represents the rate constant of delivery of the tracer in the tissue from the vascular compartment. K2 is the reverse rate constant. K1 was approximately equal to K2 for the cerebellum. In the basal ganglia, K2 was less than K1 due to nonspecific binding in compartment 2. K3 represents the rate constant of binding of the tracer to the receptor binding sites in the cerebral cortex and basal ganglia and to nonspecific binding sites in the cerebellum which contains essentially no dopamine receptors. K4 represents the rate constant for dissociation of the tracer from the receptors. For N-methyl spiperone K4 is very low in the caudate/putamen. The 3-compartment model seemed to fit the data better than the 2-compartment model for both the caudate/putamen and cerebellar activity.

  17. Compartments within a compartment

    PubMed Central

    Blacque, Oliver E; Sanders, Anna AWM

    2014-01-01

    The primary cilium has emerged as a hotbed of sensory and developmental signaling, serving as a privileged domain to concentrate the functions of a wide number of channels, receptors and downstream signal transducers. This realization has provided important insight into the pathophysiological mechanisms underlying the ciliopathies, an ever expanding spectrum of multi-symptomatic disorders affecting the development and maintenance of multiple tissues and organs. One emerging research focus is the subcompartmentalised nature of the organelle, consisting of discrete structural and functional subdomains such as the periciliary membrane/basal body compartment, the transition zone, the Inv compartment and the distal segment/ciliary tip region. Numerous ciliopathy, transport-related and signaling molecules localize at these compartments, indicating specific roles at these subciliary sites. Here, by focusing predominantly on research from the genetically tractable nematode C. elegans, we review ciliary subcompartments in terms of their structure, function, composition, biogenesis and relationship to human disease. PMID:24732235

  18. The pharmacokinetics of glycyrrhizic acid evaluated by physiologically based pharmacokinetic modeling.

    PubMed

    Ploeger, B; Mensinga, T; Sips, A; Seinen, W; Meulenbelt, J; DeJongh, J

    2001-05-01

    Glycyrrhizic acid is widely applied as a sweetener in food products and chewing tobacco. In addition, it is of clinical interest for possible treatment of chronic hepatitis C. In some highly exposed subjects, side effects such as hypertension and symptoms associated with electrolyte disturbances have been reported. To analyze the relationship between the pharmacokinetics of glycyrrhizic acid in its toxicity, the kinetics of glycyrrhizic acid and its biologically active metabolite glycyrrhetic acid were evaluated. Glycyrrhizic acid is mainly absorbed after presystemic hydrolysis as glycyrrhetic acid. Because glycyrrhetic acid is a 200-1000 times more potent inhibitor of 11-beta-hydroxysteroid dehydrogenase compared to glycyrrhizic acid, the kinetics of glycyrrhetic acid are relevant in a toxicological perspective. Once absorbed, glycyrrhetic acid is transported, mainly taken up into the liver by capacity-limited carriers, where it is metabolized into glucuronide and sulfate conjugates. These conjugates are transported efficiently into the bile. After outflow of the bile into the duodenum, the conjugates are hydrolyzed to glycyrrhetic acid by commensal bacteria; glycyrrhetic acid is subsequently reabsorbed, causing a pronounced delay in the terminal plasma clearance. Physiologically based pharmacokinetic modeling indicated that, in humans, the transit rate of gastrointestinal contents through the small and large intestines predominantly determines to what extent glycyrrhetic acid conjugates will be reabsorbed. This parameter, which can be estimated noninvasively, may serve as a useful risk estimator for glycyrrhizic-acid-induced adverse effects, because in subjects with prolonged gastrointestinal transit times, glycyrrhetic acid might accumulate after repeated intake. PMID:11495500

  19. A Population Pharmacokinetic Model for Disposition in Plasma, Saliva and Urine of Scopolamine after Intranasal Administration to Healthy Human Subjects

    NASA Technical Reports Server (NTRS)

    Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials with an Investigative New Drug (IND) protocol. The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trials with INSCOP. Methods: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min and 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model selection was based on the likelihood ratio test on the difference of criteria (-2LL) and comparison of the quality of fit plots. Results: The best structural model for INSCOP (minimal -2LL= 502.8) was established. It consisted of one compartment each for plasma, saliva and urine, respectively, which were connected with linear transport processes except the nonlinear PK process from plasma to saliva compartment. The best-fit estimates of PK parameters from individual PK compartmental analysis and Population PK model analysis were shown in Tables 1 and 2, respectively. Conclusion: A population PK model that could predict population and individual PK of scopolamine in plasma, saliva and urine after dosing was developed and validated. Incorporating a non-linear transfer from plasma to saliva compartments resulted in a significantly improved model fitting. The model could be used to predict scopolamine plasma concentrations from salivary and urinary drug levels, allowing non-invasive therapeutic monitoring of scopolamine in space and other remote environments.

  20. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Tam, V.; Chow, Diana S. L.; Putcha, Lakshmi

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials with an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP.

  1. Physiologically based pharmacokinetic modeling of deltamethrin: Development of a rat and human diffusion-limited model

    EPA Science Inventory

    Mirfazaelian et al. (2006) developed a physiologically based pharmacokinetic (PBPK) model for the pyrethroid pesticide deltamethrin in the rat. This model describes gastrointestinal tract absorption as a saturable process mediated by phase III efflux transporters which pump delta...

  2. Vitamin D3 supplementation scheme in HIV-infected patients based upon pharmacokinetic modelling of 25-hydroxycholecalciferol

    PubMed Central

    Foissac, Frantz; Tréluyer, Jean-Marc; Souberbielle, Jean-Claude; Rostane, Hafeda; Urien, Saïk; Viard, Jean-Paul

    2013-01-01

    Aims Vitamin D deficiency is prevalent in HIV-infected patients and has been associated with osteopenia and HIV disease progression. Our aims were to investigate the pharmacokinetics of 25-hydroxycholecalciferol [25(OH)D], the effect of antiretroviral treatment (ARV) and others factors that may influence the pharmacokinetics, and to determine a vitamin D3 dosing scheme to reach the 30 ng ml−1 threshold (defined as 25(OH)D sufficiency). Methods This monocentric retrospective study included 422 HIV-infected patients aged 16 to 85 years. A total of 723 25(OH)D concentrations were available for pharmacokinetic evaluation and a population pharmacokinetic model was developed with MONOLIX 3.2. Results Median 25(OH)D at baseline was 16 ng ml−1 (interquartile range 11–23 ng ml−1) for the total population, 17% of patient had concentrations below 10 ng ml−1, 68% between 10 and 30 ng ml−1 and 15% above 30 ng ml−1. 25(OH)D pharmacokinetics were best described by a one compartment model with an additional endogenous production. The effects of season and skin phototype were significant on production rate. The endogenous production was 20% lower in non-white skin phototype patients and was decreased by 16% during autumn, winter and spring. No significant differences in 25(OH)D concentrations were related to antiretroviral drugs (ARV). To obtain concentrations between 30 and 80 ng ml−1, the dosing recommendation was 100 000 IU every month. Conclusions Season and skin phototype had an influence on the endogenous production of 25(OH)D. However no effect of ARV was found. A dosing scheme to reach sufficient 25(OH)D concentrations is proposed. PMID:23072545

  3. Evaluating a physiologically based pharmacokinetic model for predicting the pharmacokinetics of midazolam in Chinese after oral administration

    PubMed Central

    Wang, Hong-yun; Chen, Xia; Jiang, Ji; Shi, Jun; Hu, Pei

    2016-01-01

    Aim: To evaluate the SimCYP simulator ethnicity-specific population model for predicting the pharmacokinetics of midazolam, a typical CYP3A4/5 substrate, in Chinese after oral administration. Methods: The physiologically based pharmacokinetic (PBPK) model for midazolam was developed using a SimCYP population-based simulator incorporating Chinese population demographic, physiological and enzyme data. A clinical trial was conducted in 40 Chinese subjects (the half was females) receiving a single oral dose of 15 mg midazolam. The subjects were separated into 4 groups based on age (20–50, 51–65, 66–75, and above 76 years), and the pharmacokinetics profiles of each age- and gender-group were determined, and the results were used to verify the PBPK model. Results: Following oral administration, the simulated profiles of midazolam plasma concentrations over time in virtual Chinese were in good agreement with the observed profiles, as were AUC and Cmax. Moreover, for subjects of varying ages (20–80 years), the ratios of predicted to observed clearances were between 0.86 and 1.12. Conclusion: The SimCYP PBPK model accurately predicted the pharmacokinetics of midazolam in Chinese from youth to old age. This study may provide novel insight into the prediction of CYP3A4/5-mediated pharmacokinetics in the Chinese population relative to Caucasians and other ethnic groups, which can support the rational design of bridging clinical trials. PMID:26592516

  4. Development of a complex parent-metabolite joint population pharmacokinetic model.

    PubMed

    Bertrand, Julie; Laffont, Céline M; Mentré, France; Chenel, Marylore; Comets, Emmanuelle

    2011-09-01

    This study aimed to develop a joint population pharmacokinetic model for an antipsychotic agent in development (S33138) and its active metabolite (S35424) produced by reversible metabolism. Because such a model leads to identifiability problems and numerical difficulties, the model building was performed using the FOCE-I and the Stochastic Approximation Expectation Maximization (SAEM) estimation algorithms in NONMEM and MONOLIX, respectively. Four different structural models were compared based on Bayesian information criteria. Models were first written as ordinary differential equations systems and then in closed form (CF) to facilitate further analyses. The impact of polymorphisms on genes coding for the CYP2C19 and CYP2D6 enzymes, respectively involved in the parent drug and the metabolite elimination were investigated using permutation Wald test. The parent drug and metabolite plasma concentrations of 101 patients were analyzed on two occasions after 4 and 8 weeks of treatment at 1, 3, 6, and 24 h following daily oral administration. All configurations led to a two compartment model with back-transformation of the metabolite into the parent drug and a first-pass effect. The elimination clearance of the metabolite through other processes than back-transformation was decreased by 35% [9-53%] in CYP2D6 poor metabolizer. Permutation tests were performed to ensure the robustness of the analysis, using SAEM and CF. In conclusion, we developed a complex joint pharmacokinetic model adequately predicting the impact of CYP2D6 polymorphisms on the parent drug and its metabolite concentrations through the back-transformation mechanism. PMID:21618059

  5. What Is the Most Realistic Single-Compartment Model of Spike Initiation?

    PubMed Central

    Brette, Romain

    2015-01-01

    A large variety of neuron models are used in theoretical and computational neuroscience, and among these, single-compartment models are a popular kind. These models do not explicitly include the dendrites or the axon, and range from the Hodgkin-Huxley (HH) model to various flavors of integrate-and-fire (IF) models. The main classes of models differ in the way spikes are initiated. Which one is the most realistic? Starting with some general epistemological considerations, I show that the notion of realism comes in two dimensions: empirical content (the sort of predictions that a model can produce) and empirical accuracy (whether these predictions are correct). I then examine the realism of the main classes of single-compartment models along these two dimensions, in light of recent experimental evidence. PMID:25856629

  6. A Three-Pulse Release Tablet for Amoxicillin: Preparation, Pharmacokinetic Study and Physiologically Based Pharmacokinetic Modeling

    PubMed Central

    Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang

    2016-01-01

    Background Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients’ compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. Methods The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box–Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Results and Discussion Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box–Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry

  7. Development of a physiologically based pharmacokinetic model for flunixin in cattle (Bos taurus).

    PubMed

    Leavens, Teresa L; Tell, Lisa A; Kissell, Lindsey W; Smith, Geoffrey W; Smith, David J; Wagner, Sarah A; Shelver, Weilin L; Wu, Huali; Baynes, Ronald E; Riviere, Jim E

    2014-01-01

    Frequent violation of flunixin residues in tissues from cattle has been attributed to non-compliance with the USFDA-approved route of administration and withdrawal time. However, the effect of administration route and physiological differences among animals on tissue depletion has not been determined. The objective of this work was to develop a physiologically based pharmacokinetic (PBPK) model to predict plasma, liver and milk concentrations of flunixin in cattle following intravenous (i.v.), intramuscular (i.m.) or subcutaneous (s.c.) administration for use as a tool to determine factors that may affect the withdrawal time. The PBPK model included blood flow-limited distribution in all tissues and elimination in the liver, kidney and milk. Regeneration of parent flunixin due to enterohepatic recirculation and hydrolysis of conjugated metabolites was incorporated in the liver compartment. Values for physiological parameters were obtained from the literature, and partition coefficients for all tissues but liver and kidney were derived empirically. Liver and kidney partition coefficients and elimination parameters were estimated for 14 pharmacokinetic studies (including five crossover studies) from the literature or government sources in which flunixin was administered i.v., i.m. or s.c. Model simulations compared well with data for the matrices following all routes of administration. Influential model parameters included those that may be age or disease-dependent, such as clearance and rate of milk production. Based on the model, route of administration would not affect the estimated days to reach the tolerance concentration (0.125 mg kg(-1)) in the liver of treated cattle. The majority of USDA-reported violative residues in liver were below the upper uncertainty predictions based on estimated parameters, which suggests the need to consider variability due to disease and age in establishing withdrawal intervals for drugs used in food animals. The model predicted

  8. Implementation of dose superimposition to introduce multiple doses for a mathematical absorption model (transit compartment model).

    PubMed

    Shen, Jun; Boeckmann, Alison; Vick, Andrew

    2012-06-01

    A mathematical absorption model (e.g. transit compartment model) is useful to describe complex absorption process. However, in such a model, an assumption has to be made to introduce multiple doses that a prior dose has been absorbed nearly completely when the next dose is administered. This is because the drug input cannot be determined from drug depot compartment through integration of the differential equation system and has to be analytically calculated. We propose a method of dose superimposition to introduce multiple doses; thereby eliminating the assumption. The code for implementing the dose superimposition in WinNonlin and NONMEM was provided. For implementation in NONMEM, we discussed a special case (SC) and a general case (GC). In a SC, dose superimposition was implemented solely using NM-TRAN abbreviated code and the maximum number of the doses that can be administered for any subject must be pre-defined. In a GC, a user-supplied function (FUNCA) in FORTRAN code was defined to perform dose superimposition to remove the restriction that the maximum number of doses must be pre-defined. PMID:22555854

  9. A distributed multi-compartment hydrological model with dynamic vegetation and nutrient turnover

    NASA Astrophysics Data System (ADS)

    Delfs, Jens-Olaf; Gayler, Sebastian; Streck, Thilo; Selle, Benny; Klein, Christian; Priesack, Eckart; Singh, Ashok; Kalbacher, Thomas; Wang, Wenqing; Kolditz, Olaf

    2013-04-01

    Agricultural practices impact soils and the wider environment (groundwater, receiving water courses and ponds, etc.) with various feedback loops. For instance, groundwater extraction may increase infiltration rates and nitrate leaching from the plant root zone. To assess such inter-compartment feedbacks with a numerical model, the object-oriented modeling platform OpenGeoSys (OGS), which is designed for Thermo-Hydro-Mechanical-Chemical processes in porous and fractured media (open to the public via www.opengeosys.org), is coupled with the soil-plant-atmosphere model system Expert-N. Latter consists of interchangeable sub-modules for thermo-hydro-chemical processes at land surfaces subject to agricultural production and forestry. In the resulting model, OGS solves partial differential equations through a Galerkin finite element approach to transfer water, air, heat and nitrogen compounds in the overland, soil and aquifer compartments, while Expert-N provides source / sink terms for evapotranspiration, plant growth, and nutrient turnover (mineralization, denitrification, etc.). General criteria are determined to guarantee stability when coupling hydrological compartments by iterating and to ensure that inter-compartment water and solute fluxes are insensitive to variations in leakage. Test cases include a synthetic surface-subsurface flow benchmark with evapotranspiration (Panday & Huyakorn problem) and a cross section of the Ammer catchment in South-West Germany, where precipitation water flows to groundwater wells, which are used for the supply of potable water.

  10. Compartment model for long-term contamination prediction in deciduous fruit trees after a nuclear accident

    SciTech Connect

    Antonopoulos-Domis, M.; Clouvas, A.; Gagianas, A. )

    1990-06-01

    Radiocesium contamination from the Chernobyl accident of different parts (fruits, leaves, and shoots) of selected apricot trees in North Greece was systematically measured in 1987 and 1988. The results are presented and discussed in the framework of a simple compartment model describing the long-term contamination uptake mechanism of deciduous fruit trees after a nuclear accident.

  11. Toxicokinetics and Pharmacokinetic Modeling of Arsenic

    EPA Science Inventory

    This chapter provides an overview of arsenic toxicokinetics and physiologically-basedpharmacokinetic (PBPK) modeling with particular emphasis on key 'actors needed fordevelopment of a model useful for dose-response analysis, applications of arsenicmodels, as well research needs.U...

  12. URINARY BIOMARKER INTERPRETATION USING PHARMACOKINETIC MODELS

    EPA Science Inventory

    The issues involved with applying PBPK models in urinary biomarker interpretation were presented. Example scenarios were modeled, and absorbed doses were estimated for selected participants from a field study to illustrate the applicability and limitations of the methods.

  13. Physiologically Based Pharmacokinetic (PBPK) Model for Biodistribution of Radiolabeled Peptides in Patients with Neuroendocrine Tumours

    PubMed Central

    Gospavic, Radovan; Knoll, Peter; Mirzaei, Siroos; Popov, Viktor

    2016-01-01

    Objective(s): The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK) models in patients with different neuroendocrine tumours (NET) who were treated with Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs) obtained by whole body scintigraphy (WBS) of the patients. Methods: The blood flow restricted (perfusion rate limited) type of the PBPK model for biodistribution of radiolabeled peptides (RLPs) in individual human organs is based on the multi-compartment approach, which takes into account the main physiological processes in the organism: absorption, distribution, metabolism and excretion (ADME). The approach calibrates the PBPK model for each patient in order to increase the accuracy of the dose estimation. Datasets obtained using WBS in four patients have been used to obtain the unknown model parameters. The scintigraphic data were acquired using a double head gamma camera in patients with different neuroendocrine tumours who were treated with Lu-177 DOTATATE. The activity administered to each patient was 7400 MBq. Results: Satisfactory agreement of the model predictions with the data obtained from the WBS for each patient has been achieved. Conclusion: The study indicates that the PBPK model can be used for more accurate calculation of biodistribution and absorbed doses in patients. This approach is the first attempt of utilizing scintigraphic data in PBPK models, which was obtained during Lu-177 peptide therapy of patients with NET. PMID:27408897

  14. Pharmacokinetics and Pulmonary Disposition of Tedizolid and Linezolid in a Murine Pneumonia Model under Variable Conditions

    PubMed Central

    Keel, Rebecca A.; Crandon, Jared L.

    2012-01-01

    In vivo pharmacokinetics are often evaluated in only one variation of an infection model, and the resulting exposures are assumed to be similar in each model. We evaluated and compared the effect of lung infection and immune status on the murine pharmacokinetics and pulmonary disposition of tedizolid and linezolid. Both factors resulted in differing blood and pulmonary exposure profiles, with similar trends for tedizolid and linezolid. These data highlight the importance of pharmacokinetic confirmation in each model. PMID:22430966

  15. Population Modeling and Simulation Study of the Pharmacokinetics and Antituberculosis Pharmacodynamics of Isoniazid in Lungs

    PubMed Central

    Bourguignon, L.; Bihari, S.; Maire, P.; Neely, M.; Jelliffe, R.

    2015-01-01

    Among first-line antituberculosis drugs, isoniazid (INH) displays the greatest early bactericidal activity (EBA) and is key to reducing contagiousness in treated patients. The pulmonary pharmacokinetics and pharmacodynamics of INH have not been fully characterized with modeling and simulation approaches. INH concentrations measured in plasma, epithelial lining fluid, and alveolar cells for 89 patients, including fast acetylators (FAs) and slow acetylators (SAs), were modeled by use of population pharmacokinetic modeling. Then the model was used to simulate the EBA of INH in lungs and to investigate the influences of INH dose, acetylator status, and M. tuberculosis MIC on this effect. A three-compartment model adequately described INH concentrations in plasma and lungs. With an MIC of 0.0625 mg/liter, simulations showed that the mean bactericidal effect of a standard 300-mg daily dose of INH was only 11% lower for FA subjects than for SA subjects and that dose increases had little influence on the effects in either FA or SA subjects. With an MIC value of 1 mg/liter, the mean bactericidal effect associated with a 300-mg daily dose of INH in SA subjects was 41% greater than that in FA subjects. With the same MIC, increasing the daily INH dose from 300 mg to 450 mg resulted in a 22% increase in FA subjects. These results suggest that patients infected with M. tuberculosis with low-level resistance, especially FA patients, may benefit from higher INH doses, while dose adjustment for acetylator status has no significant impact on the EBA in patients with low-MIC strains. PMID:26077251

  16. Simultaneous modeling of the pharmacokinetics and methemoglobin pharmacodynamics of an 8-aminoquinoline candidate antimalarial (WR 238605).

    PubMed

    Brueckner, R P; Fleckenstein, L

    1991-12-01

    Methemoglobin (MHb) formation can be a clinically significant and dose-limiting side effect of 8-aminoquinoline antimalarials. MHb may also protect against cyanide poisoning. A two-compartment pharmacokinetic model, linked to a sigmoid Emax pharmacodynamic model, was developed to predict the MHb levels after administration of 8-[(4-amino-1-methylbutyl)amino]-2,6-dimethoxy-4-methyl-5-[(3- trifluoromethyl)phenoxy] quinoline succinate (WR 238605 succinate), a primaquine analogue. Six healthy male beagle dogs received four daily doses of 6.0 mg/kg (base) orally. Forty plasma drug concentrations and 19 MHb levels (effect) were determined over 7 weeks on each dog. Compartmental and noncompartmental pharmacokinetic and parametric and nonparametric pharmacodynamic analyses were performed. Model parameters (mean +/- SD) included a Vss/f of 18.5 +/- 2.8 L/kg, CL/f of 83 +/- 24 ml/hr/kg, terminal elimination t1/2 of 169.7 +/- 52.0 hr, t1/2keo of 123.0 +/- 22.4 hr, an Emax of 31.3 +/- 15.9% MHb, an EC50 of 596 +/- 128 ng/ml, and a sigmoidicity coefficient (n) of 1.94 +/- 0.47. The model was then validated in three additional dogs given three different dosing regimens. It predicted the peak plasma concentrations and MHb levels and the times of their occurrence well. This model could be useful for dose and sampling time selection in further animal studies and initial human phase I clinical testing. PMID:1808614

  17. A model for simulation of crowd behaviour in the evacuation from a smoke-filled compartment

    NASA Astrophysics Data System (ADS)

    Yuan, Weifeng; Tan, Kang Hai

    2011-11-01

    The modelling of crowd evacuation from a building has been studied over the past decades. In this study, a numerical model based on cellular automaton is proposed to simulate the human behaviour termed “flow with the stream” in emergency evacuation from a large smoke-filled compartment. In the model, the smoke effect in the context of visibility is considered since visibility range can affect the human behaviour significantly. To simulate the reality that the smoke concentration in a fire compartment is not constant, the proposed model is developed to deal with the scenario in which the visibility range varies in the course of time. An empirical formula is incorporated into the proposed model to estimate the visibility range. The results of numerical tests show that the proposed model can also be used to investigate the effect of the number of guiders through case study.

  18. Pharmacokinetic-Pharmacodynamic Modeling of Unboosted Atazanavir in a Cohort of Stable HIV-Infected Patients

    PubMed Central

    Baudry, Thomas; Gagnieu, Marie-Claude; Boibieux, André; Livrozet, Jean-Michel; Peyramond, Dominique; Tod, Michel; Ferry, Tristan

    2013-01-01

    Limited data on the pharmacokinetics and pharmacodynamics (PK/PD) of unboosted atazanavir (uATV) in treatment-experienced patients are available. The aim of this work was to study the PK/PD of unboosted atazanavir in a cohort of HIV-infected patients. Data were available for 58 HIV-infected patients (69 uATV-based regimens). Atazanavir concentrations were analyzed by using a population approach, and the relationship between atazanavir PK and clinical outcome was examined using logistic regression. The final PK model was a linear one-compartment model with a mixture absorption model to account for two subgroups of absorbers. The mean (interindividual variability) of population PK parameters were as follows: clearance, 13.4 liters/h (40.7%), volume of distribution, 71.1 liters (29.7%), and fraction of regular absorbers, 0.49. Seven subjects experienced virological failure after switch to uATV. All of them were identified as low absorbers in the PK modeling. The absorption rate constant (0.38 ± 0.20 versus 0.75 ± 0.28 h−1; P = 0.002) and ATV exposure (area under the concentration-time curve from 0 to 24 h [AUC0–24], 10.3 ± 2.1 versus 22.4 ± 11.2 mg · h · liter−1; P = 0.001) were significantly lower in patients with virological failure than in patients without failure. In the logistic regression analysis, both the absorption rate constant and ATV trough concentration significantly influenced the probability of virological failure. A significant relationship between ATV pharmacokinetics and virological response was observed in a cohort of HIV patients who were administered unboosted atazanavir. This study also suggests that twice-daily administration of uATV may optimize drug therapy. PMID:23147727

  19. A pharmacokinetic/viral kinetic model to evaluate the treatment effectiveness of danoprevir against chronic HCV

    DOE PAGESBeta

    Canini, Laetitia; Chatterjee, Anushree; Guedj, Jeremie; Lemenuel-Diot, Annabelle; Brennan, Barbara; Smith, Patrick F.; Perelson, Alan S.

    2014-10-16

    Background—Viral kinetic models have proven useful to characterize treatment effectiveness during HCV therapy with interferon (IFN) or with direct acting antivirals (DAAs). Methods—We use a pharmacokinetic/viral kinetic (PK/VK) model to describe HCV RNA kinetics during treatment with danoprevir, a protease inhibitor. In a phase 1 study, danoprevir monotherapy was administered for 14 days in ascending doses ranging from 200 to 600 mg per day to 40 patients of whom 32 were treatment-naïve and 8 were non-responders to prior PEG-IFN-α/ribavirin treatment. Results—In most patients, a biphasic decline of HCV RNA during therapy was observed. A two-compartment PK model and a VKmore » model that considered treatment effectiveness to vary with the predicted danoprevir concentration inside the second compartment provided a good fit to the viral load data. A time-varying effectiveness model was also used to fit the viral load data. We found the antiviral effectiveness increased in a dose-dependent manner, with a 14-day time-averaged effectiveness of 0.95 at the lowest dose (100 mg bid) and 0.99 at the highest dose (200 mg tid). Prior IFN non-responders exhibited a 14-day time-averaged effectiveness of 0.98 (300 mg bid). Finally, the second phase decline showed two different behaviors, with 30% of patients exhibiting a rapid decline of HCV RNA, comparable to that seen with other protease inhibitors (>0.3 d-1), whereas the viral decline was slower in the other patients. Conclusions—Our results are consistent with the modest SVR rates from the INFORM-SVR study where patients were treated with a combination of mericitabine and ritonavir-boosted danoprevir.« less

  20. Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects.

    PubMed

    Zheng, Songmao; Matzneller, Peter; Zeitlinger, Markus; Schmidt, Stephan

    2014-11-01

    Recent clinical trials indicate that the use of azithromycin is associated with the emergence of macrolide resistance. The objective of our study was to simultaneously characterize free target site concentrations and correlate them with the MIC90s of clinically relevant pathogens. Azithromycin (500 mg once daily [QD]) was administered orally to 6 healthy male volunteers for 3 days. The free concentrations in the interstitial space fluid (ISF) of muscle and subcutaneous fat tissue as well as the total concentrations in plasma and polymorphonuclear leukocytes (PMLs) were determined on days 1, 3, 5, and 10. All concentrations were modeled simultaneously in NONMEM 7.2 using a tissue distribution model that accounts for nonlinear protein binding and ionization state at physiological pH. The model performance and parameter estimates were evaluated via goodness-of-fit plots and nonparametric bootstrap analysis. The model we developed described the concentrations at all sampling sites reasonably well and showed that the overall pharmacokinetics of azithromycin is driven by the release of the drug from acidic cell/tissue compartments. The model-predicted unionized azithromycin (AZM) concentrations in the cytosol of PMLs (6.0 ± 1.2 ng/ml) were comparable to the measured ISF concentrations in the muscle (8.7 ± 2.9 ng/ml) and subcutis (4.1 ± 2.4 ng/ml) on day 10, whereas the total PML concentrations were >1,000-fold higher (14,217 ± 2,810 ng/ml). The total plasma and free ISF concentrations were insufficient to exceed the MIC90s of the skin pathogens at all times. Our results indicate that the slow release of azithromycin from low pH tissue/cell compartments is responsible for the long terminal half-life of the drug and thus the extended period of time during which free concentrations reside at subinhibitory concentrations. PMID:25155592

  1. A pharmacokinetic/viral kinetic model to evaluate the treatment effectiveness of danoprevir against chronic HCV

    SciTech Connect

    Canini, Laetitia; Chatterjee, Anushree; Guedj, Jeremie; Lemenuel-Diot, Annabelle; Brennan, Barbara; Smith, Patrick F.; Perelson, Alan S.

    2014-10-16

    Background—Viral kinetic models have proven useful to characterize treatment effectiveness during HCV therapy with interferon (IFN) or with direct acting antivirals (DAAs). Methods—We use a pharmacokinetic/viral kinetic (PK/VK) model to describe HCV RNA kinetics during treatment with danoprevir, a protease inhibitor. In a phase 1 study, danoprevir monotherapy was administered for 14 days in ascending doses ranging from 200 to 600 mg per day to 40 patients of whom 32 were treatment-naïve and 8 were non-responders to prior PEG-IFN-α/ribavirin treatment. Results—In most patients, a biphasic decline of HCV RNA during therapy was observed. A two-compartment PK model and a VK model that considered treatment effectiveness to vary with the predicted danoprevir concentration inside the second compartment provided a good fit to the viral load data. A time-varying effectiveness model was also used to fit the viral load data. We found the antiviral effectiveness increased in a dose-dependent manner, with a 14-day time-averaged effectiveness of 0.95 at the lowest dose (100 mg bid) and 0.99 at the highest dose (200 mg tid). Prior IFN non-responders exhibited a 14-day time-averaged effectiveness of 0.98 (300 mg bid). Finally, the second phase decline showed two different behaviors, with 30% of patients exhibiting a rapid decline of HCV RNA, comparable to that seen with other protease inhibitors (>0.3 d-1), whereas the viral decline was slower in the other patients. Conclusions—Our results are consistent with the modest SVR rates from the INFORM-SVR study where patients were treated with a combination of mericitabine and ritonavir-boosted danoprevir.

  2. Application of Physiologically Based Pharmacokinetic Modeling to Predict Acetaminophen Metabolism and Pharmacokinetics in Children

    PubMed Central

    Jiang, X-L; Zhao, P; Barrett, J S; Lesko, L J; Schmidt, S

    2013-01-01

    Acetaminophen (APAP) is a widely used analgesic and antipyretic drug that undergoes extensive phase I and II metabolism. To better understand the kinetics of this process and to characterize the dynamic changes in metabolism and pharmacokinetics (PK) between children and adults, we developed a physiologically based PK (PBPK) model for APAP integrating in silico, in vitro, and in vivo PK data into a single model. The model was developed and qualified for adults and subsequently expanded for application in children by accounting for maturational changes from birth. Once developed and qualified, it was able to predict clinical PK data in neonates (0–28 days), infants (29 days to <2 years), children (2 to <12 years), and adolescents (12–17 years) following intravenous and orally administered APAP. This approach represents a general strategy for projecting drug exposure in children, in the absence of pediatric PK information, using previous drug- and system-specific information of adults and children through PBPK modeling. PMID:24132164

  3. An earthquake instability model based on faults containing high fluid-pressure compartments

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    It has been proposed that large strike-slip faults such as the San Andreas contain water in seal-bounded compartments. Arguments based on heat flow and stress orientation suggest that in most of the compartments, the water pressure is so high that the average shear strength of the fault is less than 20 MPa. We propose a variation of this basic model in which most of the shear stress on the fault is supported by a small number of compartments where the pore pressure is relatively low. As a result, the fault gouge in these compartments is compacted and lithified and has a high undisturbed strength. When one of these locked regions fails, the system made up of the neighboring high and low pressure compartments can become unstable. Material in the high fluid pressure compartments is initially underconsolidated since the low effective confining pressure has retarded compaction. As these compartments are deformed, fluid pressure remains nearly unchanged so that they offer little resistance to shear. The low pore pressure compartments, however, are overconsolidated and dilate as they are sheared. Decompression of the pore fluid in these compartments lowers fluid pressure, increasing effective normal stress and shear strength. While this effect tends to stabilize the fault, it can be shown that this dilatancy hardening can be more than offset by displacement weakening of the fault (i.e., the drop from peak to residual strength). If the surrounding rock mass is sufficiently compliant to produce an instability, slip will propagate along the fault until the shear fracture runs into a low-stress region. Frictional heating and the accompanying increase in fluid pressure that are suggested to occur during shearing of the fault zone will act as additional destabilizers. However, significant heating occurs only after a finite amount of slip and therefore is more likely to contribute to the energetics of rupture propagation than to the initiation of the instability. We present

  4. Dynamic nuclear renography kinetic analysis: Four-compartment model for assessing kidney function

    SciTech Connect

    Raswan, T. R. Haryanto, F.

    2014-09-30

    Dynamic nuclear renography method produces TACs of kidneys and bladder. Multiple TACs data can be further analyzed to obtain the overview of urinary system's condition. Tracer kinetic analysis was performed using four-compartment models. The system's model consist of four irreversible compartment with four transport constants (k1, k2, k3 and k4). The mathematical expressions of tracer's distributions is fitted to experimental data (TACs) resulting in model constants. This transport constants represent the urinary system behavior, and later can be used for analyzing system's condition. Different intervals of kinetics parameter are clearly shown by abnormal system with respect to the normal one. Furthermore, the system with delayed uptake has 82% lower uptake parameters (k1 and k2) than normal one. Meanwhile, the system with prolonged clearance time has its kinetics parameters k3 or k4 lower than the others. This model is promising for quantitatively describe urinary system's function especially if supplied with more data.

  5. Dynamic nuclear renography kinetic analysis: Four-compartment model for assessing kidney function

    NASA Astrophysics Data System (ADS)

    Raswan, T. R.; Haryanto, F.

    2014-09-01

    Dynamic nuclear renography method produces TACs of kidneys and bladder. Multiple TACs data can be further analyzed to obtain the overview of urinary system's condition. Tracer kinetic analysis was performed using four-compartment models. The system's model consist of four irreversible compartment with four transport constants (k1, k2, k3 and k4). The mathematical expressions of tracer's distributions is fitted to experimental data (TACs) resulting in model constants. This transport constants represent the urinary system behavior, and later can be used for analyzing system's condition. Different intervals of kinetics parameter are clearly shown by abnormal system with respect to the normal one. Furthermore, the system with delayed uptake has 82% lower uptake parameters (k1 and k2) than normal one. Meanwhile, the system with prolonged clearance time has its kinetics parameters k3 or k4 lower than the others. This model is promising for quantitatively describe urinary system's function especially if supplied with more data.

  6. Population pharmacokinetic modeling of glibenclamide in poorly controlled South African type 2 diabetic subjects

    PubMed Central

    Rambiritch, Virendra; Naidoo, Poobalan; Maharaj, Breminand; Pillai, Goonaseelan

    2016-01-01

    Aim The aim of this study was to describe the pharmacokinetics (PK) of glibenclamide in poorly controlled South African type 2 diabetic subjects using noncompartmental and model-based methods. Methods A total of 24 subjects with type 2 diabetes were administered increasing doses (0 mg/d, 2.5 mg/d, 5 mg/d, 10 mg/d, and 20 mg/d) of glibenclamide daily at 2-week intervals. Plasma glibenclamide, glucose, and insulin determinations were performed. Blood sampling times were 0 minute, 30 minutes, 60 minutes, 90 minutes, and 120 minutes (post breakfast sampling) and 240 minutes, 270 minutes, 300 minutes, 330 minutes, 360 minutes, and 420 minutes (post lunch sampling) on days 14, 28, 42, 56, and 70 for doses of 0 mg, 2.5 mg, 5.0 mg, 10 mg, and 20 mg, respectively. Blood sampling was performed after the steady state was reached. A total of 24 individuals in the data set contributed to a total of 841 observation records. The PK was analyzed using noncompartmental analysis methods, which were implemented in WinNonLin®, and population PK analysis using NONMEM®. Glibenclamide concentration data were log transformed prior to fitting. Results A two-compartmental disposition model was selected after evaluating one-, two-, and three-compartmental models to describe the time course of glibenclamide plasma concentration data. The one-compartment model adequately described the data; however, the two-compartment model provided a better fit. The three-compartment model failed to achieve successful convergence. A more complex model, to account for enterohepatic recirculation that was observed in the data, was unsuccessful. Conclusion In South African diabetic subjects, glibenclamide demonstrates linear PK and was best described by a two-compartmental model. Except for the absorption rate constant, the other PK parameters reported in this study are comparable to those reported in the scientific literature. The study is limited by the small study sample size and inclusion of poorly

  7. Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukaemia

    NASA Astrophysics Data System (ADS)

    Popović, Jovan K.; Spasić, Dragan T.; Tošić, Jela; Kolarović, Jovanka L.; Malti, Rachid; Mitić, Igor M.; Pilipović, Stevan; Atanacković, Teodor M.

    2015-05-01

    The aim of this study is to promote a model based on the fractional differential calculus related to the pharmacokinetic individualization of high dose methotrexate treatment in children with acute lymphoblastic leukaemia, especially in high risk patients. We applied two-compartment fractional model on 8 selected cases with the largest number (4-19) of measured concentrations, among 43 pediatric patients received 24-h methotrexate 2-5 g/m2 infusions. The plasma concentrations were determined by fluorescence polarization immunoassay. Our mathematical procedure, designed by combining Post's and Newton's method, was coded in Mathematica 8.0 and performed on Fujicu Celsius M470-2 PC. Experimental data show that most of the measured values of methotrexate were in decreasing order. However, in certain treatments local maximums were detected. On the other hand, integer order compartmental models do not give values which fit well with the observed data. By the use of our model, we obtained better results, since it gives more accurate behavior of the transmission, as well as the local maximums which were recognized in methotrexate monitoring. It follows from our method that an additional test with a small methotrexate dose can be suggested for the fractional system parameter identification and the prediction of a possible pattern with a full dose in the case of high risk patients. A special feature of the fractional model is that it can also recognize and better fit an observed non-monotonic behavior. A new parameter determination procedure can be successfully used.

  8. Simultaneous pharmacokinetic model for rolofylline and both M1-trans and M1-cis metabolites.

    PubMed

    Stroh, Mark; Hutmacher, Matthew M; Pang, Jianmei; Lutz, Ryan; Magara, Hiroshi; Stone, Julie

    2013-04-01

    Rolofylline is a potent, selective adenosine A1 receptor antagonist that was under development for the treatment of patients with acute congestive heart failure and renal impairment. Rolofylline is metabolized primarily to the pharmacologically active M1-trans and M1-cis metabolites (metabolites) by cytochrome P450 (CYP) 3A4. The aim of this investigation was to provide a pharmacokinetic (PK) model for rolofylline and metabolites following intravenous administration to healthy volunteers. Data included for this investigation came from a randomized, double-blind, dose-escalation trial in four groups of healthy volunteers (N=36) where single doses of rolofylline, spanning 1 to 60 mg ,were infused over 1-2 h. The rolofylline and metabolite data were analyzed simultaneously using NONMEM. The simultaneous PK model comprised, in part, a two-compartment linear PK model for rolofylline, with estimates of clearance and volume of distribution at steady-state of 24.4 L/h and 239 L, respectively. In addition, the final PK model contained provisions for both conversion of rolofylline to metabolites and stereochemical conversion of M1-trans to M1-cis. Accordingly, the final model captured known aspects of rolofylline metabolism and was capable of simultaneously describing the PK of rolofylline and metabolites in healthy volunteers. PMID:23355301

  9. Computer assisted modeling of ethyl sulfate pharmacokinetics.

    PubMed

    Schmitt, Georg; Halter, Claudia C; Aderjan, Rolf; Auwaerter, Volker; Weinmann, Wolfgang

    2010-01-30

    For 12 volunteers of a drinking experiment the concentration-time-courses of ethyl sulfate (EtS) and ethanol were simulated and fitted to the experimental data. The concentration-time-courses were described with the same mathematical model as previously used for ethyl glucuronide (EtG). The kinetic model based on the following assumptions and simplifications: a velocity constant k(form) for the first order formation of ethyl sulfate from ethanol and an exponential elimination constant k(el). The mean values (and standard deviations) obtained for k(form) and k(el) were 0.00052 h(-1) (0.00014) and 0.561 h(-1) (0.131), respectively. Using the ranges of these parameters it is possible to calculate minimum and maximum serum concentrations of EtS based on stated ethanol doses and drinking times. The comparison of calculated and measured concentrations can prove the plausibility of alleged ethanol consumption and add evidence to the retrospective calculation of ethanol concentrations based on EtG concentrations. PMID:19913378

  10. Population pharmacokinetic/pharmacodynamic modeling of histamine response measured by histamine iontophoresis laser Doppler.

    PubMed

    Liu, Xiaoxi; Jones, Bridgette L; Roberts, Jessica K; Sherwin, Catherine M

    2016-08-01

    The epicutaneous histamine (EH) test is the current gold standard method for the clinical evaluation of allergic conditions. However, the EH method is limited in providing an objective and qualitative assessment of histamine pharmacodynamic response. The histamine iontophoresis with laser Doppler (HILD) monitoring method, an alternative method, allows a fixed dose of histamine to be delivered and provides an objective, continuous, and dynamic measurement of histamine epicutaneous response in children and adults. However, due to the high sampling frequency (up to 40 Hz), the output files are usually too cumbersome to be directly used for further analysis. In this study, we developed an averaging algorithm that efficiently reduces the HILD data in size. The reduced data was further analyzed and a population linked effect pharmacokinetic/pharmacodynamic (PK/PD) model was developed to describe the local histamine response. The model consisted of a one-compartment PK model and a direct-response fractional maximum effect (Emax) model. The parameter estimates were obtained as follows: absorption rate constant (ka), 0.094/min; absorption lag time (Tlag), 2.72 min; partitioning clearance from local depot to systemic circulation (CLpar), 0.0006 L/min; baseline effect (E0), 13.1 flux unit; Emax, 13.4; concentration at half maximum effect (EC50) 31.1 mg/L. Covariate analysis indicated that age and race had significant influence on Tlag and EC50, respectively. PMID:27307292

  11. SU-C-BRE-03: Dual Compartment Mathematical Modeling of Glioblastoma Multiforme (GBM)

    SciTech Connect

    Yu, V; Nguyen, D; Kupelian, P; Kaprealian, T; Selch, M; Low, D; Pajonk, F; Sheng, K

    2014-06-15

    Purpose: To explore the aggressive recurrence and radioresistence of GBM with a dual compartment tumor survival mathematical model based on intrinsic tumor heterogeneity, cancer stem cells (CSC) and differentiated cancer cells (DCC). Methods: The repopulation and differentiation responses to radiotherapy of a solid tumor were simulated using an Ordinary Differential Equation (ODE). To obtain the tumor radiobiological parameters, we assumed that a tumor consists of two subpopulations, each with its distinctive linear quadratic parameters. The dual compartment cell survival model was constructed as SF(D)=F × exp(-α{sub 1} D-β{sub 1}D{sup 2}) + (1-F) × exp(-α{sub 2}D-β{sub 2}D{sup 2}) for a single fraction of treatment, with F as the fraction of CSC, and α and β describing the radiological properties of each population. Robust least square fitting was performed on clonogenic survival data from one GBM (U373MG) and one NSCLC (H460) cell line. The fit parameters were then used in the ODE model to predict treatment outcome of various treatment schemes. Results: The fit parameters from GBM cell survival data were (F, α{sub 1}, β{sub 1}, α{sub 2}, β{sub 2})=(0.0396, 0.0801, 0.0006, 0.1363, 0.0279), exhibiting two populations with distinctive radiological properties, CSC more radioresistant than DCC. The GBM cell line exhibited significantly poorer tumor control than its single compartment model prediction and NSCLC, which responded well to hypofrationation. The increased radioresistance was due to rapid regrowth of the DCC compartment triggered by its depletion while maintaining a viable CSC population. The rapid regrowth can be reduced by treating dose fractions ≤ 2 Gy with a prolonged treatment period. Conclusion: The interaction between a radioresistant CSC compartment and DCC compartment can explain the poor clinical outcome of GBM after radiotherapy despite dose escalation and hypofractionation attempts. Lower dose fractions result in better treatment

  12. Stability and mixing conditions for HIV/AIDS models with regional compartments

    NASA Astrophysics Data System (ADS)

    Thomas, Richard

    Compartmental models have been adapted to derive temporal epidemic forecasting systems for imitating the transfer of HIV infection between those with different behaviours or rates of risk activity. Alternatively, models with regional compartments, which forecast disease incidence in both space and time, have emerged as a response to the challenge of anticipating the pandemic pathways of this infection. This paper combines these frameworks to obtain properties for a multiregion model that also contains demographic compartments. Section 2 begins by showing how the stability conditions (starting thresholds) for a purely regional model are a special case of the existing conditions that have been derived for the general compartmental framework. Then, these results are extended to encompass a regions with compartments design. Section 3 presents an analysis of the population mixing relationships that are embedded in all these specifications. Here, the topics include the maintenance of contact symmetry, the representation of alternative partner selection behaviours, and the identification of core populations for the diffusion of HIV infection. The discussion considers how these theoretical findings might be applied to disease prevention.

  13. 76 FR 63823 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane Pilot-Compartment View...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ...-SC for the GALP Model G280 airplane was published in the Federal Register on May 25, 2011 (76 FR... G280 Airplane Pilot-Compartment View--Hydrophobic Coatings in Lieu of Windshield Wipers AGENCY: Federal... unusual design feature associated with the pilot-compartment view through a hydrophobic windshield...

  14. Population pharmacokinetic modeling of itraconazole and hydroxyitraconazole for oral SUBA-itraconazole and sporanox capsule formulations in healthy subjects in fed and fasted states.

    PubMed

    Abuhelwa, Ahmad Y; Foster, David J R; Mudge, Stuart; Hayes, David; Upton, Richard N

    2015-09-01

    Itraconazole is an orally active antifungal agent that has complex and highly variable absorption kinetics that is highly affected by food. This study aimed to develop a population pharmacokinetic model for itraconazole and the active metabolite hydroxyitraconazole, in particular, quantifying the effects of food and formulation on oral absorption. Plasma pharmacokinetic data were collected from seven phase I crossover trials comparing the SUBA-itraconazole and Sporanox formulations of itraconazole. First, a model of single-dose itraconazole data was developed, which was then extended to the multidose data. Covariate effects on itraconazole were then examined before extending the model to describe hydroxyitraconazole. The final itraconazole model was a 2-compartment model with oral absorption described by 4-transit compartments. Multidose kinetics was described by total effective daily dose- and time-dependent changes in clearance and bioavailability. Hydroxyitraconazole was best described by a 1-compartment model with mixed first-order and Michaelis-Menten elimination for the single-dose data and a time-dependent clearance for the multidose data. The relative bioavailability of SUBA-itraconazole compared to that of Sporanox was 173% and was 21% less variable between subjects. Food resulted in a 27% reduction in bioavailability and 58% reduction in the transit absorption rate constant compared to that with the fasted state, irrespective of the formulation. This analysis presents the most extensive population pharmacokinetic model of itraconazole and hydroxyitraconazole in the literature performed in healthy subjects. The presented model can be used for simulating food effects on itraconazole exposure and for performing prestudy power analysis and sample size estimation, which are important aspects of clinical trial design of bioequivalence studies. PMID:26149987

  15. Population Pharmacokinetic Modeling of Itraconazole and Hydroxyitraconazole for Oral SUBA-Itraconazole and Sporanox Capsule Formulations in Healthy Subjects in Fed and Fasted States

    PubMed Central

    Foster, David J. R.; Mudge, Stuart; Hayes, David

    2015-01-01

    Itraconazole is an orally active antifungal agent that has complex and highly variable absorption kinetics that is highly affected by food. This study aimed to develop a population pharmacokinetic model for itraconazole and the active metabolite hydroxyitraconazole, in particular, quantifying the effects of food and formulation on oral absorption. Plasma pharmacokinetic data were collected from seven phase I crossover trials comparing the SUBA-itraconazole and Sporanox formulations of itraconazole. First, a model of single-dose itraconazole data was developed, which was then extended to the multidose data. Covariate effects on itraconazole were then examined before extending the model to describe hydroxyitraconazole. The final itraconazole model was a 2-compartment model with oral absorption described by 4-transit compartments. Multidose kinetics was described by total effective daily dose- and time-dependent changes in clearance and bioavailability. Hydroxyitraconazole was best described by a 1-compartment model with mixed first-order and Michaelis-Menten elimination for the single-dose data and a time-dependent clearance for the multidose data. The relative bioavailability of SUBA-itraconazole compared to that of Sporanox was 173% and was 21% less variable between subjects. Food resulted in a 27% reduction in bioavailability and 58% reduction in the transit absorption rate constant compared to that with the fasted state, irrespective of the formulation. This analysis presents the most extensive population pharmacokinetic model of itraconazole and hydroxyitraconazole in the literature performed in healthy subjects. The presented model can be used for simulating food effects on itraconazole exposure and for performing prestudy power analysis and sample size estimation, which are important aspects of clinical trial design of bioequivalence studies. PMID:26149987

  16. Model-based pharmacokinetic analysis of elotuzumab in patients with relapsed/refractory multiple myeloma.

    PubMed

    Gibiansky, Leonid; Passey, Chaitali; Roy, Amit; Bello, Akintunde; Gupta, Manish

    2016-06-01

    Elotuzumab is a humanized immunoglobulin G1 monoclonal antibody in development for the treatment of patients with multiple myeloma who have received one or more prior therapies. In this work, 6958 elotuzumab serum concentrations from 375 patients enrolled in four Phase 1 to 3 clinical trials were used to analyze the pharmacokinetics (PK) of elotuzumab. A population PK model with parallel linear and Michaelis-Menten elimination from the central compartment and limited-capacity target-mediated elimination from the peripheral compartment described the elotuzumab concentration-time course. Clearance of elotuzumab increased with increasing body weight and weight-based dosing generated uniform exposures across a range of body weights. Coadministration of lenalidomide/dexamethasone background therapy decreased elotuzumab nonspecific clearance by 35 %. Target-mediated elimination of elotuzumab increased with increasing baseline serum M-protein, resulting in lower exposure in patients with high baseline serum M-protein concentration. Age, race, sex, renal and hepatic function, Eastern Cooperative Oncology Group performance status, lactate dehydrogenase, albumin and β2-microglobulin had less than 20 % effect on model parameters and are unlikely to have clinically meaningful effects. Impact of anti-drug antibodies (ADAs) on the PK of elotuzumab was assessed as an ad hoc analysis. In the majority of ADA-positive patients, immunogenicity started early, was transient and resolved by 2-4 months. Since the majority of patients had ADAs detected early, this resulted in a corresponding transient increase in nonspecific clearance at these time points. Nonspecific clearance appeared to return to baseline at later time points when ADAs were no longer detected. PMID:26993283

  17. Near-Infrared Monitoring of Model Chronic Compartment Syndrome In Exercising Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Breit, G. A.; Gross, J. H.; Watenpaugh, D. E.; Chance, B.

    1995-01-01

    Chronic compartment syndrome (CCS) is characterized by muscle ischemia, usually in the anterior oompartment of the leg, caused by high intramuscular pressure during exercise. Dual-wave near-infrared (NIR) spectroscopy is an optical technique that allows noninvasive tracking of variations in muscle tissue oxygenation (Chance et al., 1988). We hypothesized that with a model CCS, muscle tissue oxygenation will show a greater decline during exercise and a slower recovery post-exercise than under normal conditions.

  18. EVALUATING A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR USE IN RISK ASSESSMENT

    EPA Science Inventory

    EVALUATING A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR USE IN RISK ASSESSMENT. L H Clark1, H A Barton1, and R W Setzer1. 1US EPA, ORD, NHEERL, ETD, Research Triangle Park, NC, USA.

    Physiologically-based pharmacokinetic (PBPK) models are increasingly being used in eva...

  19. Pharmacokinetic modelling of multi-decadal luminescence time series in coral skeletons

    NASA Astrophysics Data System (ADS)

    Llewellyn, Lyndon E.; Everingham, Yvette L.; Lough, Janice M.

    2012-04-01

    As corals grow, they incorporate chemical indicators of seawater conditions into their aragonite skeleton after they have traversed an outer living tissue layer. Long-lived, massive coral skeletons can record decade- and century-long time series of seawater status. One such environmental clue is luminescence intensity which can correspond to river flow patterns and has been attributed to humic acid incorporation. Seawater humic acid levels are linked to river flow as rainfall extracts them from catchment soils to then flow into rivers and coastal seas. However, discrepancies exist when validating coral luminescence records against river flow data with intense luminescence sometimes occurring in the absence of increased flows. This contributes to uncertainty when reconstructing pre-instrumental river flows and rainfall from coral luminescence. Here we demonstrate that a major portion of coral core luminescence time series can be explained using a single-compartment, pharmacokinetic model that incorporates river flow measurements as the equivalent of drug dose. The model was robust for luminescence series in corals from near-shore reefs regularly influenced by river flow. The model implies that after floods, a proportion of subsequent luminescence peaks can be derived from the initial flood. This explains why some luminescence peaks after floods often do not correspond to additional significant river flows. This provides the first mechanism-based explanation for temporal changes in coral skeleton luminescence that incorporates a mathematical link between two independent time series making this proxy even more robust for reconstructing river flow and rainfall.

  20. Bioenergetic and pharmacokinetic model for exposure of common loon (Gavia immer) chicks to methylmercury

    USGS Publications Warehouse

    Karasov, W.H.; Kenow, K.P.; Meyer, M.W.; Fournier, F.

    2007-01-01

    A bioenergetics model was used to predict food intake of common loon (Gavia immer) chicks as a function of body mass during development, and a pharmacokinetics model, based on first-order kinetics in a single compartment, was used to predict blood Hg level as a function of food intake rate, food Hg content, body mass, and Hg absorption and elimination. Predictions were tested in captive growing chicks fed trout (Salmo gairdneri) with average MeHg concentrations of 0.02 (control), 0.4, and 1.2 ??g/g wet mass (delivered as CH3HgCl). Predicted food intake matched observed intake through 50 d of age but then exceeded observed intake by an amount that grew progressively larger with age, reaching a significant overestimate of 28% by the end of the trial. Respiration in older, nongrowing birds probably was overestimated by using rates measured in younger, growing birds. Close agreement was found between simulations and measured blood Hg, which varied significantly with dietary Hg and age. Although chicks may hatch with different blood Hg levels, their blood level is determined mainly by dietary Hg level beyond approximately two weeks of age. The model also may be useful for predicting Hg levels in adults and in the eggs that they lay, but its accuracy in both chicks and adults needs to be tested in free-living birds. ?? 2007 SETAC.

  1. The use of a physiologically based pharmacokinetic model to evaluate deconvolution measurements of systemic absorption

    PubMed Central

    Levitt, David G

    2003-01-01

    Background An unknown input function can be determined by deconvolution using the systemic bolus input function (r) determined using an experimental input of duration ranging from a few seconds to many minutes. The quantitative relation between the duration of the input and the accuracy of r is unknown. Although a large number of deconvolution procedures have been described, these routines are not available in a convenient software package. Methods Four deconvolution methods are implemented in a new, user-friendly software program (PKQuest, ). Three of these methods are characterized by input parameters that are adjusted by the user to provide the "best" fit. A new approach is used to determine these parameters, based on the assumption that the input can be approximated by a gamma distribution. Deconvolution methodologies are evaluated using data generated from a physiologically based pharmacokinetic model (PBPK). Results and Conclusions The 11-compartment PBPK model is accurately described by either a 2 or 3-exponential function, depending on whether or not there is significant tissue binding. For an accurate estimate of r the first venous sample should be at or before the end of the constant infusion and a long (10 minute) constant infusion is preferable to a bolus injection. For noisy data, a gamma distribution deconvolution provides the best result if the input has the form of a gamma distribution. For other input functions, good results are obtained using deconvolution methods based on modeling the input with either a B-spline or uniform dense set of time points. PMID:12659643

  2. Pharmacokinetic properties and in silico ADME modeling in drug discovery.

    PubMed

    Honório, Kathia M; Moda, Tiago L; Andricopulo, Adriano D

    2013-03-01

    The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME--absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry. PMID:23016542

  3. Compartment syndrome

    MedlinePlus

    ... caused by repetitive activities, such as running. The pressure in a compartment only increases during that activity. Compartment syndrome is most common in the lower leg and forearm. It can also occur in the hand, foot, thigh, and upper arm.

  4. Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model

    PubMed Central

    Li, Yungui; Li, Qingqing; Chen, Baoliang

    2016-01-01

    The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants. PMID:27009902

  5. Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model.

    PubMed

    Li, Yungui; Li, Qingqing; Chen, Baoliang

    2016-01-01

    The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants. PMID:27009902

  6. Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model

    NASA Astrophysics Data System (ADS)

    Li, Yungui; Li, Qingqing; Chen, Baoliang

    2016-03-01

    The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants.

  7. The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease.

    PubMed

    Sherwin, Catherine M T; Fukuda, Tsuyoshi; Brunner, Hermine I; Goebel, Jens; Vinks, Alexander A

    2011-01-01

    With the increasing use of mycophenolic acid (MPA) as an immunosuppressant in solid organ transplantation and in treating autoimmune diseases such as systemic lupus erythematosus, the need for strategies to optimize therapy with this agent has become increasingly apparent. This need is largely based on MPA's significant between-subject and between-occasion (within-subject) pharmacokinetic variability. While there is a strong relationship between MPA exposure and effect, the relationship between drug dose, plasma concentration and exposure (area under the concentration-time curve [AUC]) is very complex and remains to be completely defined. Population pharmacokinetic models using various approaches have been proposed over the past 10 years to further evaluate the pharmacokinetic and pharmacodynamic behaviour of MPA. These models have evolved from simple one-compartment linear iterations to complex multi-compartment versions that try to include various factors, which may influence MPA's pharmacokinetic variability, such as enterohepatic recycling and pharmacogenetic polymorphisms. There have been major advances in the understanding of the roles transport mechanisms, metabolizing and other enzymes, drug-drug interactions and pharmacogenetic polymorphisms play in MPA's pharmacokinetic variability. Given these advances, the usefulness of empirical-based models and the limitations of nonlinear mixed-effects modelling in developing mechanism-based models need to be considered and discussed. If the goal is to individualize MPA dosing, it needs to be determined whether factors which may contribute significantly to variability can be utilized in the population pharmacokinetic models. Some pharmacokinetic models developed to date show promise in being able to describe the impact of physiological processes such as enterohepatic recycling. Most studies have historically been based on retrospective data or poorly designed studies which do not take these factors into consideration

  8. In Vitro Measurements of Metabolism for Application in Pharmacokinetic Modeling

    SciTech Connect

    Lipscomb, John C.; Poet, Torka S.

    2008-04-01

    Abstract Human risk and exposure assessments require dosimetry information. Species-specific tissue dose response will be driven by physiological and biochemical processes. While metabolism and pharmacokinetic data are often not available in humans, they are much more available in laboratory animals; metabolic rate constants can be readily derived in vitro. The physiological differences between laboratory animals and humans are known. Biochemical processes, especially metabolism, can be measured in vitro and extrapolated to account for in vivo metabolism through clearance models or when linked to a physiologically based biological (PBPK) model to describe the physiological processes, such as drug delivery to the metabolic organ. This review focuses on the different organ, cellular, and subcellular systems that can be used to measure in vitro metabolic rate constants and how that data is extrapolated to be used in biokinetic modeling.

  9. Integrated semi-physiological pharmacokinetic model for both sunitinib and its active metabolite SU12662

    PubMed Central

    Yu, Huixin; Steeghs, Neeltje; Kloth, Jacqueline S L; de Wit, Djoeke; van Hasselt, J G Coen; van Erp, Nielka P; Beijnen, Jos H; Schellens, Jan H M; Mathijssen, Ron H J; Huitema, Alwin D R

    2015-01-01

    Aims Previously published pharmacokinetic (PK) models for sunitinib and its active metabolite SU12662 were based on a limited dataset or lacked important elements such as correlations between sunitinib and its metabolite. The current study aimed to develop an improved PK model that circumvented these limitations and to prove the utility of the PK model in treatment optimization in clinical practice. Methods One thousand two hundred and five plasma samples from 70 cancer patients were collected from three PK studies with sunitinib and SU12662. A semi-physiological PK model for sunitinib and SU12662 was developed incorporating pre-systemic metabolism using non-linear mixed effects modelling (nonmem). Allometric scaling based on body weight was applied. The final model was used for simulation of the PK of different treatment regimens. Results Sunitinib and SU12662 PK were best described by a one and two compartment model, respectively. Introduction of pre-systemic formation of SU12662 strongly improved model fit, compared with solely systemic metabolism. The clearance of sunitinib and SU12662 was estimated at 35.7 (relative standard error (RSE) 5.7%) l h−1 and 17.1 (RSE 7.4%) l h−1, respectively for 70 kg patients. Correlation coefficients were estimated between inter-individual variability of both clearances, both volumes of distribution and between clearance and volume of distribution of SU12662 as 0.53, 0.48 and 0.45, respectively. Simulation of the PK model predicted correctly the ratio of patients who did not reach proposed PK targets for efficacy. Conclusions A semi-physiological PK model for sunitinib and SU12662 in cancer patients was presented including pre-systemic metabolism. The model was superior to previous PK models in many aspects. PMID:25393890

  10. Model-Based Estimates of the Effects of Efavirenz on Bedaquiline Pharmacokinetics and Suggested Dose Adjustments for Patients Coinfected with HIV and Tuberculosis

    PubMed Central

    Svensson, Elin M.; Aweeka, Francesca; Park, Jeong-Gun; Marzan, Florence; Karlsson, Mats O.

    2013-01-01

    Safe, effective concomitant treatment regimens for tuberculosis (TB) and HIV infection are urgently needed. Bedaquiline (BDQ) is a promising new anti-TB drug, and efavirenz (EFV) is a commonly used antiretroviral. Due to EFV's induction of cytochrome P450 3A4, the metabolic enzyme responsible for BDQ biotransformation, the drugs are expected to interact. Based on data from a phase I, single-dose pharmacokinetic study, a nonlinear mixed-effects model characterizing BDQ pharmacokinetics and interaction with multiple-dose EFV was developed. BDQ pharmacokinetics were best described by a 3-compartment disposition model with absorption through a dynamic transit compartment model. Metabolites M2 and M3 were described by 2-compartment models with clearance of BDQ and M2, respectively, as input. Impact of induction was described as an instantaneous change in clearance 1 week after initialization of EFV treatment and estimated for all compounds. The model predicts average steady-state concentrations of BDQ and M2 to be reduced by 52% (relative standard error [RSE], 3.7%) with chronic coadministration. A range of models with alternative structural assumptions regarding onset of induction effect and fraction metabolized resulted in similar estimates of the typical reduction and did not offer a markedly better fit to data. Simulations to investigate alternative regimens mitigating the estimated interaction effect were performed. The results suggest that simple adjustments of the standard regimen during EFV coadministration can prevent reduced exposure to BDQ without increasing exposures to M2. However, exposure to M3 would increase. Evaluation in clinical trials of adjusted regimens is necessary to ensure appropriate dosing for HIV-infected TB patients on an EFV-based regimen. PMID:23571542

  11. Busulfan in infants to adult hematopoietic cell transplant recipients: A population pharmacokinetic model for initial and Bayesian dose personalization

    PubMed Central

    McCune, Jeannine S.; Bemer, Meagan J.; Barrett, Jeffrey S.; Baker, K. Scott; Gamis, Alan S.; Holford, Nicholas H.G.

    2014-01-01

    Purpose Personalizing intravenous (IV) busulfan doses to a target plasma concentration at steady state (Css) is an essential component of hematopoietic cell transplantation (HCT). We sought to develop a population pharmacokinetic model to predict IV busulfan doses over a wide age spectrum (0.1 – 66 years) that accounts for differences in age and body size. Experimental design A population pharmacokinetic model based on normal fat mass and maturation based on post-menstrual age was built from 12,380 busulfan concentration-time points obtained after IV busulfan administration in 1,610 HCT recipients. Subsequently, simulation results of the initial dose necessary to achieve a target Css with this model were compared with pediatric-only models. Results A two-compartment model with first-order elimination best fit the data. The population busulfan clearance was 12.4 L/h for an adult male with 62kg normal fat mass (equivalent to 70kg total body weight). Busulfan clearance, scaled to body size – specifically normal fat mass, is predicted to be 95% of the adult clearance at 2.5 years post-natal age. With a target Css of 770 ng/mL, a higher proportion of initial doses achieved the therapeutic window with this age- and size-dependent model (72%) compared to dosing recommended by the Food and Drug Administration (57%) or the European Medicines Agency (70%). Conclusion This is the first population pharmacokinetic model developed to predict initial IV busulfan doses and personalize to a target Css over a wide age spectrum, ranging from infants to adults. PMID:24218510

  12. Incorporation of ABCB1-mediated transport into a physiologically-based pharmacokinetic model of docetaxel in mice

    PubMed Central

    Hudachek, Susan F.

    2015-01-01

    Docetaxel is one of the most widely used anticancer agents. While this taxane has proven to be an effective chemotherapeutic drug, noteworthy challenges exist in relation to docetaxel administration due to the considerable interindividual variability in efficacy and toxicity associated with the use of this compound, largely attributable to differences between individuals in their ability to metabolize and eliminate docetaxel. Regarding the latter, the ATP-binding cassette transporter B1 (ABCB1, PGP, MDR1) is primarily responsible for docetaxel elimination. To further understand the role of ABCB1 in the biodistribution of docetaxel in mice, we utilized physiologically-based pharmacokinetic (PBPK) modeling that included ABCB1-mediated transport in relevant tissues. Transporter function was evaluated by studying docetaxel pharmacokinetics in wild-type FVB and Mdr1a/b constitutive knockout (KO) mice and incorporating this concentration–time data into a PBPK model comprised of eight tissue compartments (plasma, brain, heart, lung, kidney, intestine, liver and slowly perfused tissues) and, in addition to ABCB1-mediated transport, included intravenous drug administration, specific binding to intracellular tubulin, intestinal and hepatic metabolism, glomerular filtration and tubular reabsorption. For all tissues in both the FVB and KO cohorts, the PBPK model simulations closely mirrored the observed data. Furthermore, both models predicted AUC values that were with 15 % of the observed AUC values, indicating that our model-simulated drug exposures accurately reflected the observed tissue exposures. Overall, our PBPK model furthers the understanding of the role of ABCB1 in the biodistribution of docetaxel. Additionally, this exemplary model structure can be applied to investigate the pharmacokinetics of other ABCB1 transporter substrates. PMID:23616082

  13. Linear pharmacokinetic models for evaluating unusual work schedules, exposure limits and body burdens of pollutants.

    PubMed

    Saltzman, B E

    1988-05-01

    The adverse effects of workplace exposures to pollutants relate more accurately to the concentrations of pollutants in the body than in the environment. In many cases pharmacokinetic models may represent the external to internal concentration relationships with useful accuracy. Simplified equations are presented for stepwise calculations on a series of time-averaged, external concentrations to give a corresponding series of internal concentrations. Accurate results were obtained for averaging times not exceeding one-fourth of the biological half-life of the pollutant. A convenient measure of internal concentration is the external concentration that would be at in vivo equilibrium with it (termed biologically effective concentration). Three measures of damage burden are proposed, each appropriate for different toxic mechanisms. The calculations readily may be carried out on a programmable calculator or microcomputer. Illustrative examples show how unusual work schedules may be compared with an 8 hr/day, 5 days/week schedule and how appropriate short- and long-term exposure limits may be determined. Other examples, illustrated for lead, relate absorbed mass rates to body concentrations and body burdens in a two-compartment kinetic model. These calculations should provide a more accurate evaluation of fluctuating concentrations, which can be handled easily. PMID:3400585

  14. Preliminary physiologically based pharmacokinetic models for benzo[a]pyrene and dibenzo[def,p]chrysene in rodents

    SciTech Connect

    Crowell, Susan Ritger; Amin, Shantu G.; Anderson, Kim A.; Krishnegowda, Gowdahalli; Sharma, Arun K.; Soelberg, Jolen J.; Williams, David E.; Corley, Richard A.

    2011-12-15

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated as byproducts of natural and anthropogenic combustion processes. Despite significant public health concern, physiologically based pharmacokinetic (PBPK) modeling efforts for PAHs have so far been limited to naphthalene, plus simpler PK models for pyrene, nitropyrene, and benzo[a]pyrene (B[a]P). The dearth of published models is due in part to the high lipophilicity, low volatility, and myriad metabolic pathways for PAHs, all of which present analytical and experimental challenges. Our research efforts have focused upon experimental approaches and initial development of PBPK models for the prototypic PAH, B[a]P, and the more potent, albeit less studied transplacental carcinogen, dibenzo[def,p]chrysene (DBC). For both compounds, model compartments included arterial and venous blood, flow limited lung, liver, richly perfused and poorly perfused tissues, diffusion limited fat, and a two compartment theoretical gut (for oral exposures). Hepatic and pulmonary metabolism was described for both compounds, as were fractional binding in blood and fecal clearance. Partition coefficients for parent PAH along with their diol and tetraol metabolites were estimated using published algorithms and verified experimentally for the hydroxylated metabolites. The preliminary PBPK models were able to describe many, but not all, of the available data sets, comprising multiple routes of exposure (oral, intravenous) and nominal doses spanning several orders of magnitude. Supported by Award Number P42 ES016465 from the National Institute of Environmental Health Sciences. -- Highlights: Black-Right-Pointing-Pointer We present PBPK models for benzo[a]pyrene (B[a]P) and dibenzo[def,p]chrysene (DBC). Black-Right-Pointing-Pointer B[a]P model accurately predicts data from multiple sources over a wide dose range. Black-Right-Pointing-Pointer DBC model was based on the B[a]P model as less chemical specific

  15. Characterizing airway and alveolar nitric oxide exchange during tidal breathing using a three-compartment model.

    PubMed

    Condorelli, Peter; Shin, Hye-Won; George, Steven C

    2004-05-01

    Exhaled nitric oxide (NO) may be a useful marker of lung inflammation, but the concentration is highly dependent on exhalation flow rate due to a significant airway source. Current methods for partitioning pulmonary NO gas exchange into airway and alveolar regions utilize multiple exhalation flow rates or a single-breath maneuver with a preexpiratory breath hold, which is cumbersome for children and individuals with compromised lung function. Analysis of tidal breathing data has the potential to overcome these limitations, while still identifying region-specific parameters. In six healthy adults, we utilized a three-compartment model (two airway compartments and one alveolar compartment) to identify two potential flow-independent parameters that represent the average volumetric airway flux (pl/s) and the time-averaged alveolar concentration (parts/billion). Significant background noise and distortion of the signal from the sampling system were compensated for by using a Gaussian wavelet filter and a series of convolution integrals. Mean values for average volumetric airway flux and time-averaged alveolar concentration were 2,500 +/- 2,700 pl/s and 3.2 +/- 3.4 parts/billion, respectively, and were strongly correlated with analogous parameters determined from vital capacity breathing maneuvers. Analysis of multiple tidal breaths significantly reduced the standard error of the parameter estimates relative to the single-breath technique. Our initial assessment demonstrates the potential of utilizing tidal breathing for noninvasive characterization of pulmonary NO exchange dynamics. PMID:14729729

  16. Physiologically based pharmacokinetic models for everolimus and sorafenib in mice

    PubMed Central

    Pawaskar, Dipti K.; Straubinger, Robert M.; Fetterly, Gerald J.; Hylander, Bonnie H.; Repasky, Elizabeth A.; Ma, Wen W.

    2013-01-01

    Purpose Everolimus is a mammalian target of rapamycin (mTOR) inhibitor approved as an immunosuppressant and for second-line therapy of hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC). Sorafenib is a multikinase inhibitor used as first-line therapy in HCC and RCC. This study assessed the pharmacokinetics (PK) of everolimus and sorafenib alone and in combination in plasma and tissues, developed physiologically based pharmacokinetic (PBPK) models in mice, and assessed the possibility of PK drug interactions. Methods Single and multiple oral doses of everolimus and sorafenib were administered alone and in combination in immunocompetent male mice and to severe combined immune-deficient (SCID) mice bearing low-passage, patient-derived pancreatic adenocarcinoma in seven different studies. Plasma and tissue samples including tumor were collected over a 24-h period and analyzed by liquid chromatography-tandem mass spectrometry (LC–MS/MS). Distribution of everolimus and sorafenib to the brain, muscle, adipose, lungs, kidneys, pancreas, spleen, liver, GI, and tumor was modeled as perfusion rate-limited, and all data from the diverse studies were fitted simultaneously using a population approach. Results PBPK models were developed for everolimus and sorafenib. PBPK analysis showed that the two drugs in combination had the same PK as each drug given alone. A twofold increase in sorafenib dose increased tumor exposure tenfold, thus suggesting involvement of transporters in tumor deposition of sorafenib. Conclusions The developed PBPK models suggested the absence of PK interaction between the two drugs in mice. These studies provide the basis for pharmacodynamic evaluation of these drugs in patient-derived primary pancreatic adenocarcinomas explants. PMID:23455451

  17. A mechanism-based model for the population pharmacokinetics of free and bound aflibercept in healthy subjects

    PubMed Central

    Thai, Hoai-Thu; Veyrat-Follet, Christine; Vivier, Nicole; Dubruc, Catherine; Sanderink, Gerard; Mentré, France; Comets, Emmanuelle

    2011-01-01

    AIM Aflibercept (VEGF-Trap), a novel anti-angiogenic agent that binds to VEGF, has been investigated for the treatment of cancer. The aim of this study was to develop a mechanism-based pharmacokinetic (PK) model for aflibercept to characterize its binding to VEGF and its PK properties in healthy subjects. METHODS Data from two phase I clinical studies with aflibercept administered as a single intravenous infusion were included in the analysis. Free and bound aflibercept concentration−time data were analysed using a nonlinear mixed-effects modelling approach with MONOLIX 3.1. RESULTS The best structural model involved two compartments for free aflibercept and one for bound aflibercept, with a Michaelis–Menten type binding of free aflibercept to VEGF from the peripheral compartment. The typical estimated clearances for free and bound aflibercept were 0.88 l day−1 and 0.14 l day−1, respectively. The central volume of distribution of free aflibercept was 4.94 l. The maximum binding capacity was 0.99 mg day−1 and the concentration of aflibercept corresponding to half of maximum binding capacity was 2.91 µg ml−1. Interindividual variability of model parameters was moderate, ranging from 13.6% (Vmax) to 49.8% (Q). CONCLUSION The present PK model for aflibercept adequately characterizes the underlying mechanism of disposition of aflibercept and its nonlinear binding to VEGF. PMID:21575034

  18. Aztreonam pharmacokinetics in burn patients.

    PubMed Central

    Friedrich, L V; White, R L; Kays, M B; Brundage, D M; Yarbrough, D

    1991-01-01

    The pharmacokinetics of aztreonam in eight adult patients with severe burn injuries (total body surface area burn, 49% +/- 21% [mean +/- standard deviation]) were studied. The time of initiation of study following burn injury was 7.0 +/- 1.4 days. Four patients at first dose and at steady state were studied. Aztreonam concentrations were measured by high-performance liquid chromatography, and a two-compartment model was used to fit the data. No significant differences in any pharmacokinetic parameters between first dose and steady state were observed. Volume of distribution of the central compartment after first dose (0.14 liters/kg) and volume of distribution at steady state (0.31 liters/kg) were approximately 30% higher than those reported for other patient populations. Total drug clearance and renal drug clearance when normalized to creatinine clearance (CLCR) were similar to those previously reported for other critically ill patients. CLCR was strongly correlated with renal drug clearance (r = 0.94) and total drug clearance (r = 0.95). The extent and degree of burn (percent second or third degree burn) were poorly correlated with all pharmacokinetic parameters with the exception of the volume of distribution at steady state, which was correlated with both total body surface area burn (r = 0.95) and percent second degree burn (r = 0.83). Aztreonam pharmacokinetics are altered as a result of thermal injury; however, CLCR can be used to assess the clearance of aztreonam in burn patients. PMID:2014982

  19. Development of a Physiologically Based Pharmacokinetic Model for Triadimefon and its Metabolite Triandimenol in Rats and Humans

    EPA Science Inventory

    physiologically based pharmacokinetic (PBPK) model was developed for the conazole fungicide triadimefon and its primary metabolite, triadimenol. Rat tissue:blood partition coefficients and metabolic constants were measured in vitro for both compounds. Pharmacokinetic data for par...

  20. USE OF A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL TO ESTIMATE ABSORBED CARBARYL DOSE IN CHILDREN AFTER TURF APPLICATION

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed to investigate exposure scenarios of children to carbaryl following turf application. Physiological, pharmacokinetic and pharmacodynamic parameters describing the fate and effects of carbaryl in rats were scaled ...

  1. Physiologically based pharmacokinetic modeling using microsoft excel and visual basic for applications.

    PubMed

    Marino, Dale J

    2005-01-01

    Abstract Physiologically based pharmacokinetic (PBPK) models are mathematical descriptions depicting the relationship between external exposure and internal dose. These models have found great utility for interspecies extrapolation. However, specialized computer software packages, which are not widely distributed, have typically been used for model development and utilization. A few physiological models have been reported using more widely available software packages (e.g., Microsoft Excel), but these tend to include less complex processes and dose metrics. To ascertain the capability of Microsoft Excel and Visual Basis for Applications (VBA) for PBPK modeling, models for styrene, vinyl chloride, and methylene chloride were coded in Advanced Continuous Simulation Language (ACSL), Excel, and VBA, and simulation results were compared. For styrene, differences between ACSL and Excel or VBA compartment concentrations and rates of change were less than +/-7.5E-10 using the same numerical integration technique and time step. Differences using VBA fixed step or ACSL Gear's methods were generally <1.00E-03, although larger differences involving very small values were noted after exposure transitions. For vinyl chloride and methylene chloride, Excel and VBA PBPK model dose metrics differed by no more than -0.013% or -0.23%, respectively, from ACSL results. These differences are likely attributable to different step sizes rather than different numerical integration techniques. These results indicate that Microsoft Excel and VBA can be useful tools for utilizing PBPK models, and given the availability of these software programs, it is hoped that this effort will help facilitate the use and investigation of PBPK modeling. PMID:20021074

  2. Development of a physiologically based pharmacokinetic model for a domain antibody in mice using the two-pore theory.

    PubMed

    Sepp, Armin; Berges, Alienor; Sanderson, Andrew; Meno-Tetang, Guy

    2015-04-01

    Domain antibodies (dAbs) are the smallest antigen-binding fragments of immunoglobulins. To date, there is limited insight into the pharmacokinetics of dAbs, especially their distribution into tissues and elimination. The objective of this work was to develop a physiologically-based pharmacokinetic model to investigate the biodisposition of a non-specific dAb construct in mice. Following a single IV administration of 10 mg/kg dummy dAb protein to twenty four female mice, frequent blood samples were collected and whole body lateral sections were analyzed by quantitative whole-body autoradiography. The model is based on the two-pore hypothesis of extravasation where organ-specific isogravimetric flow rates (Jorg,ISO) and permeability-surface area products (PSorg) are expressed as linear functions of the lymph flow rate (Jorg) and the kidney compartment is modified to account for glomerular filtration of dAb. As a result, only Jorg, glomerular filtration coefficient and the combined volume of Bowman's capsule, proximal and distal renal tubules and loop of Henle were optimized by fitting simultaneously all blood and organ data to the model. Our model captures the pharmacokinetic profiles of dAb in blood and all organs and shows that extravasation into interstitial space is a predominantly diffusion-driven process. The parameter values were estimated with good precision (%RMSE ≈ 30) and low cross-correlation (R(2) < 0.2). We developed a flexible model with a limited parameter number that may be applied to other biotherapeutics after adapting for size-related effects on extravasation and renal elimination processes. PMID:25577033

  3. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles

    PubMed Central

    Bachler, Gerald; von Goetz, Natalie; Hungerbühler, Konrad

    2013-01-01

    Silver is a strong antibiotic that is increasingly incorporated into consumer products as a bulk, salt, or nanosilver, thus potentially causing side-effects related to human exposure. However, the fate and behavior of (nano)silver in the human body is presently not well understood. In order to aggregate the existing experimental information, a physiologically based pharmacokinetic model (PBPK) was developed in this study for ionic silver and nanosilver. The structure of the model was established on the basis of toxicokinetic data from intravenous studies. The number of calibrated parameters was minimized in order to enhance the predictive capability of the model. We validated the model structure for both silver forms by reproducing exposure conditions (dermal, oral, and inhalation) of in vivo experiments and comparing simulated and experimentally assessed organ concentrations. Therefore, the percutaneous, intestinal, or pulmonary absorption fraction was estimated based on the blood silver concentration of the respective experimental data set. In all of the cases examined, the model could successfully predict the biodistribution of ionic silver and 15–150 nm silver nanoparticles, which were not coated with substances designed to prolong the circulatory time (eg, polyethylene glycol). Furthermore, the results of our model indicate that: (1) within the application domain of our model, the particle size and coating had a minor influence on the biodistribution; (2) in vivo, it is more likely that silver nanoparticles are directly stored as insoluble salt particles than dissolve into Ag+; and (3) compartments of the mononuclear phagocytic system play a minor role in exposure levels that are relevant for human consumers. We also give an example of how the model can be used in exposure and risk assessments based on five different exposure scenarios, namely dietary intake, use of three separate consumer products, and occupational exposure. PMID:24039420

  4. A Multi-Compartment 3-D Finite Element Model of Rectocele and Its Interaction with Cystocele

    PubMed Central

    Luo, Jiajia; Chen, Luyun; Fenner, Dee E.; Ashton-Miller, James A.; DeLancey, John O. L.

    2015-01-01

    We developed a subject-specific 3-D finite element model to understand the mechanics underlying formation of female pelvic organ prolapse, specifically a rectocele and its interaction with a cystocele. The model was created from MRI 3-D geometry of a healthy 45 year-old multiparous woman. It included anterior and posterior vaginal walls, levator ani muscle, cardinal and uterosacral ligaments, anterior and posterior arcus tendineus fascia pelvis, arcus tendineus levator ani, perineal body, perineal membrane and anal sphincter. Material properties were mostly from the literature. Tissue impairment was modeled as decreased tissue stiffness based on previous clinical studies. Model equations were solved using Abaqus v 6.11. The sensitivity of anterior and posterior vaginal wall geometry was calculated for different combinations tissue impairments under increasing intraabdominal pressure. Prolapse size was reported as POP-Q point at point Bp for rectocele and point Ba for cystocele. Results show that a rectocele resulted from impairments of the levator ani and posterior compartment support. For 20% levator and 85% posterior support impairments, simulated rectocele size (at POP-Q point: Bp) increased 0.29 mm/cm H2O without apical impairment and 0.36 mm/cm H2O with 60% apical impairment, as intraabdominal pressures increased from 0 to 150 cm H2O. Apical support impairment could result in the development of either a cystocele or rectocele. Simulated repair of posterior compartment support decreased rectocele but increased a preexisting cystocele. We conclude that development of rectocele and cystocele depend on the presence of anterior, posterior, levator and/or or apical support impairments, as well as the interaction of the prolapse with the opposing compartment. PMID:25757664

  5. Two compartment model of diazepam biotransformation in an organotypical culture of primary human hepatocytes

    SciTech Connect

    Acikgoez, Ali; Karim, Najibulla; Giri, Shibashish; Schmidt-Heck, Wolfgang; Bader, Augustinus

    2009-01-15

    Drug biotransformation is one of the most important parameters of preclinical screening tests for the registration of new drug candidates. Conventional existing tests rely on nonhuman models which deliver an incomplete metabolic profile of drugs due to the lack of proper CYP450 expression as seen in human liver in vivo. In order to overcome this limitation, we used an organotypical model of human primary hepatocytes for the biotransformation of the drug diazepam with special reference to metabolites in both the cell matrix phase and supernatant and its interaction of three inducers (phenobarbital, dexamethasone, aroclor 1254) in different time responses (1, 2, 4, 8, 24 h). Phenobarbital showed the strongest inducing effect in generating desmethyldiazepam and induced up to a 150 fold increase in oxazepam-content which correlates with the increased availability of the precursor metabolites (temazepam and desmethyldiazepam). Aroclor 1254 and dexamethasone had the strongest inducing effect on temazepam and the second strongest on oxazepam. The strong and overlapping inductive role of phenobarbital strengthens the participation of CYP2B6 and CYP3A in diazepam N-demethylation and CYP3A in temazepam formation. Aroclor 1254 preferentially generated temazepam due to the interaction with CYP3A and potentially CYP2C19. In parallel we represented these data in the form of a mathematical model with two compartments explaining the dynamics of diazepam metabolism with the effect of these other inducers in human primary hepatocytes. The model consists of ten differential equations, with one for each concentration c{sub i,j} (i = diazepam, temazepam, desmethyldiazepam, oxazepam, other metabolites) and one for each compartment (j = cell matrix phase, supernatant), respectively. The parameters p{sub k} (k = 1, 2, 3, 4, 13) are rate constants describing the biotransformation of diazepam and its metabolites and the other parameters (k = 5, 6, 7, 8, 9, 10, 11, 12, 14, 15) explain the

  6. USE OF PHARMACOKINETIC MODELS TO ASSESS OCCUPATIONAL AND RESIDENTIAL PESTICIDE EXPOSURE

    EPA Science Inventory

    Urinary biomarker measurements were analyzed using a dynamic pharmacokinetic model. The dynamic model provided the structure to link spot urine samples with corresponding exposure and absorbed dose. Data from both occupational and residential studies were analyzed. In the Agri...

  7. Reconstructing Exposures from Biomarkers using Exposure-Pharmacokinetic Modeling - A Case Study with Carbaryl

    EPA Science Inventory

    Sources of uncertainty involved in exposure reconstruction for a short half-life chemical, carbaryl, were characterized using the Cumulative and Aggregate Risk Evaluation System (CARES), an exposure model, and a human physiologically based pharmacokinetic (PBPK) model. CARES was...

  8. Semi-mechanistic physiologically-based pharmacokinetic modeling of clinical glibenclamide pharmacokinetics and drug-drug-interactions.

    PubMed

    Greupink, Rick; Schreurs, Marieke; Benne, Marina S; Huisman, Maarten T; Russel, Frans G M

    2013-08-16

    We studied if the clinical pharmacokinetics and drug-drug interactions (DDIs) of the sulfonylurea-derivative glibenclamide can be simulated via a physiologically-based pharmacokinetic modeling approach. To this end, a glibenclamide PBPK-model was build in Simcyp using in vitro physicochemical and biotransformation data of the drug, and was subsequently optimized using plasma disappearance data observed after i.v. administration. The model was validated against data observed after glibenclamide oral dosing, including DDIs. We found that glibenclamide pharmacokinetics could be adequately modeled if next to CYP metabolism an active hepatic uptake process was assumed. This hepatic uptake process was subsequently included in the model in a non-mechanistic manner. After an oral dose of 0.875 mg predicted Cmax and AUC were 39.7 (95% CI:37.0-42.7)ng/mL and 108 (95% CI: 96.9-120)ng/mLh, respectively, which is in line with observed values of 43.6 (95% CI: 37.7-49.5)ng/mL and 133 (95% CI: 107-159)ng/mLh. For a 1.75 mg oral dose, the predicted and observed values were 82.5 (95% CI:76.6-88.9)ng/mL vs 91.1 (95% CI: 67.9-115.9) for Cmax and 224 (95% CI: 202-248) vs 324 (95% CI: 197-451)ng/mLh for AUC, respectively. The model correctly predicted a decrease in exposure after rifampicin pre-treatment. An increase in glibenclamide exposure after clarithromycin co-treatment was predicted, but the magnitude of the effect was underestimated because part of this DDI is the result of an interaction at the transporter level. Finally, the effects of glibenclamide and fluconazol co-administration were simulated. Our simulations indicated that co-administration of this potent CYP450 inhibitor will profoundly increase glibenclamide exposure, which is in line with clinical observations linking the glibenclamide-fluconazol combination to an increased risk of hypoglycemia. In conclusion, glibenclamide pharmacokinetics and its CYP-mediated DDIs can be simulated via PBPK-modeling. In addition, our

  9. Pharmacokinetic and Pharmacodynamic Modeling Analysis of Intravenous Esomeprazole in Healthy Volunteers.

    PubMed

    Liu, Dongyang; Yang, Hong; Jiang, Ji; Nagy, Péter; Shen, Kai; Qian, Jiaming; Hu, Pei

    2016-07-01

    Esomeprazole is one of the most commonly used drugs to treat gastroesophageal reflux disease and peptic ulcers, but the quantitative relationships among the pharmacokinetics (PK), pharmacodynamics (PD), and pharmacogenomics (PG) of the drug are not fully understood in special patient populations. A clinical PK/PD/PG study of intravenous (IV) esomeprazole in 5 dosing regimens was conducted in 20 healthy Chinese volunteers, who were categorized into Helicobacter pylori (HP)-negative and HP-positive subgroups. Plasma esomeprazole concentration and intragastric H(+) concentration were monitored for 24 hours postdosing. Population PK (PopPK) models were tested based on elimination characteristics and other data. For a single-dose IV esomeprazole regimen, a 2-compartment model with nonlinear elimination characteristics fitted the PK data well. The elimination of esomeprazole was found to be significantly linked to CYP2C19 genotype by 11% to 29%. A mechanism-based PD model was first tested to mimic the irreversible inhibition of H(+) /K(+) -ATPase by esomeprazole using a cell-killing mechanism and models of gastric H(+) secretion that included the effects of an asymmetric circadian rhythm and food effects. Results from this PD model showed that the turnover rate of H(+) /K(+) -ATPase was significantly different between HP-negative and HP-positive subgroups. In conclusion, the PopPK model quantitatively identified the effects of the CYP2C19 genotype on esomeprazole elimination in healthy subjects for the first time. In addition, the effects of HP status on drug effect, H(+) /K(+) -ATPase turnover, and circadian rhythm amplitude were preliminarily explored using a mechanism-based PD model. PMID:26970404

  10. 75 FR 75 - Special Conditions: Boeing Model 787-8 Airplane; Overhead Crew Rest Compartment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... OCR compartment. (4) Structural failure or deformation of components that could block access to the..., mechanical or structural failure, or persons standing below or against the crew rest compartment outlets....

  11. Application of Physiologically Based Pharmacokinetic Models in Chemical Risk Assessment

    PubMed Central

    Mumtaz, Moiz; Fisher, Jeffrey; Blount, Benjamin; Ruiz, Patricia

    2012-01-01

    Post-exposure risk assessment of chemical and environmental stressors is a public health challenge. Linking exposure to health outcomes is a 4-step process: exposure assessment, hazard identification, dose response assessment, and risk characterization. This process is increasingly adopting “in silico” tools such as physiologically based pharmacokinetic (PBPK) models to fine-tune exposure assessments and determine internal doses in target organs/tissues. Many excellent PBPK models have been developed. But most, because of their scientific sophistication, have found limited field application—health assessors rarely use them. Over the years, government agencies, stakeholders/partners, and the scientific community have attempted to use these models or their underlying principles in combination with other practical procedures. During the past two decades, through cooperative agreements and contracts at several research and higher education institutions, ATSDR funded translational research has encouraged the use of various types of models. Such collaborative efforts have led to the development and use of transparent and user-friendly models. The “human PBPK model toolkit” is one such project. While not necessarily state of the art, this toolkit is sufficiently accurate for screening purposes. Highlighted in this paper are some selected examples of environmental and occupational exposure assessments of chemicals and their mixtures. PMID:22523493

  12. Propofol Pharmacokinetics and Estimation of Fetal Propofol Exposure during Mid-Gestational Fetal Surgery: A Maternal-Fetal Sheep Model

    PubMed Central

    Niu, Jing; Venkatasubramanian, Raja; Vinks, Alexander A.; Sadhasivam, Senthilkumar

    2016-01-01

    Background Measuring fetal drug concentrations is extremely difficult in humans. We conducted a study in pregnant sheep to simultaneously describe maternal and fetal concentrations of propofol, a common intravenous anesthetic agent used in humans. Compared to inhalational anesthesia, propofol supplemented anesthesia lowered the dose of desflurane required to provide adequate uterine relaxation during open fetal surgery. This resulted in better intraoperative fetal cardiac outcome. This study describes maternal and fetal propofol pharmacokinetics (PK) using a chronically instrumented maternal-fetal sheep model. Methods Fetal and maternal blood samples were simultaneously collected from eight mid-gestational pregnant ewes during general anesthesia with propofol, remifentanil and desflurane. Nonlinear mixed-effects modeling was performed by using NONMEM software. Total body weight, gestational age and hemodynamic parameters were tested in the covariate analysis. The final model was validated by bootstrapping and visual predictive check. Results A total of 160 propofol samples were collected. A 2-compartment maternal PK model with a third fetal compartment appropriately described the data. Mean population parameter estimates for maternal propofol clearance and central volume of distribution were 4.17 L/min and 37.7 L, respectively, in a typical ewe with a median heart rate of 135 beats/min. Increase in maternal heart rate significantly correlated with increase in propofol clearance. The estimated population maternal-fetal inter-compartment clearance was 0.0138 L/min and the volume of distribution of propofol in the fetus was 0.144 L. Fetal propofol clearance was found to be almost negligible compared to maternal clearance and could not be robustly estimated. Conclusions For the first time, a maternal-fetal PK model of propofol in pregnant ewes was successfully developed. This study narrows the gap in our knowledge in maternal-fetal PK model in human. Our study confirms

  13. In Vitro Dissolution and In Vivo Bioavailability of Six Brands of Ciprofloxacin Tablets Administered in Rabbits and Their Pharmacokinetic Modeling

    PubMed Central

    Fahmy, Sahar

    2014-01-01

    This study was undertaken to assess the in vitro dissolution and in vivo bioavailability of six brands of ciprofloxacin oral tablets available in the UAE market using rabbits. The in vitro dissolution profiles of the six ciprofloxacin products were determined using the USP dissolution paddle method. Pharmacokinetic modeling using compartmental and noncompartmental analysis was done to determine the pharmacokinetic parameters of ciprofloxacin after single-dose oral administration. In vitro release study revealed that the amount of ciprofloxacin released in 20 minutes was not less than 80% of the labeled amount which is in accordance with the pharmacopoeial requirements. All tested products are considered to be very rapid dissolving except for formulae A and D. Ciprofloxacin plasma concentration in rabbits was best fitted to a two-compartment open model. The lowest bioavailability was determined to be for product A (93.24%) while the highest bioavailability was determined to be for product E (108.01%). Postmarketing surveillance is very crucial to ensure product quality and eliminating substandard products to be distributed and, consequently, ensure better patient clinical outcome. The tested ciprofloxacin generic products distributed in the UAE market were proven to be of good quality and could be used interchangeably with the branded ciprofloxacin product. PMID:24995312

  14. Pharmacokinetic modeling of saturable, renal resorption of perfluoroalkylacids in monkeys--probing the determinants of long plasma half-lives.

    PubMed

    Andersen, Melvin E; Clewell, Harvey J; Tan, Yu-Mei; Butenhoff, John L; Olsen, Geary W

    2006-10-01

    Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) compounds associated with surface protection product manufactures are distributed globally. The 3-5-year half-lives, reproductive and liver toxicity in animals, and lack of understanding of the factors regulating retention in the body have led to a world-wide public concern for use of these materials. Using a novel physiologically-motivated pharmacokinetic model for renal clearance, perfluoroalkylacid pharmacokinetics in monkeys was successfully described by renal resorption via high efficiency transporters for both intravenous and oral dosing. Intravenous dosing with both PFOA and PFOS in Cynomolgus monkeys produced time course curves consistent with a two-compartment distribution. Extending the PK model for intravenous dosing to examine blood and urine time course data for repeated oral dosing clearly identified the saturable renal resorption. Resorption depends on kinetic factors for transport (T(mC), transport maximum; K(T), transport affinity) and free fraction in plasma (f(plasma)). For PFOA, these parameters were estimated to be 5mg/(h kg) (T(mC)), 0.055 mg/L (K(T)), and 0.02 (f(plasma)). PFOS has longer half-life and had respective values of 13.6 mg/(h kg), 0.023 mg/L, and 0.025. PFOS appeared to have a higher transport capacity and lower affinity than PFOA. Human kinetics indicates even higher resorption efficiency. PMID:16978759

  15. In vitro dissolution and in vivo bioavailability of six brands of ciprofloxacin tablets administered in rabbits and their pharmacokinetic modeling.

    PubMed

    Fahmy, Sahar; Abu-Gharbieh, Eman

    2014-01-01

    This study was undertaken to assess the in vitro dissolution and in vivo bioavailability of six brands of ciprofloxacin oral tablets available in the UAE market using rabbits. The in vitro dissolution profiles of the six ciprofloxacin products were determined using the USP dissolution paddle method. Pharmacokinetic modeling using compartmental and noncompartmental analysis was done to determine the pharmacokinetic parameters of ciprofloxacin after single-dose oral administration. In vitro release study revealed that the amount of ciprofloxacin released in 20 minutes was not less than 80% of the labeled amount which is in accordance with the pharmacopoeial requirements. All tested products are considered to be very rapid dissolving except for formulae A and D. Ciprofloxacin plasma concentration in rabbits was best fitted to a two-compartment open model. The lowest bioavailability was determined to be for product A (93.24%) while the highest bioavailability was determined to be for product E (108.01%). Postmarketing surveillance is very crucial to ensure product quality and eliminating substandard products to be distributed and, consequently, ensure better patient clinical outcome. The tested ciprofloxacin generic products distributed in the UAE market were proven to be of good quality and could be used interchangeably with the branded ciprofloxacin product. PMID:24995312

  16. A Two-Compartment Model of VEGF Distribution in the Mouse

    PubMed Central

    Engel-Stefanini, Marianne O.; Popel, Aleksander S.

    2011-01-01

    Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis – the growth of new microvessels from existing microvasculature. Angiogenesis is a complex process involving numerous molecular species, and to better understand it, a systems biology approach is necessary. In vivo preclinical experiments in the area of angiogenesis are typically performed in mouse models; this includes drug development targeting VEGF. Thus, to quantitatively interpret such experimental results, a computational model of VEGF distribution in the mouse can be beneficial. In this paper, we present an in silico model of VEGF distribution in mice, determine model parameters from existing experimental data, conduct sensitivity analysis, and test the validity of the model. The multiscale model is comprised of two compartments: blood and tissue. The model accounts for interactions between two major VEGF isoforms (VEGF120 and VEGF164) and their endothelial cell receptors VEGFR-1, VEGFR-2, and co-receptor neuropilin-1. Neuropilin-1 is also expressed on the surface of parenchymal cells. The model includes transcapillary macromolecular permeability, lymphatic transport, and macromolecular plasma clearance. Simulations predict that the concentration of unbound VEGF in the tissue is approximately 50-fold greater than in the blood. These concentrations are highly dependent on the VEGF secretion rate. Parameter estimation was performed to fit the simulation results to available experimental data, and permitted the estimation of VEGF secretion rate in healthy tissue, which is difficult to measure experimentally. The model can provide quantitative interpretation of preclinical animal data and may be used in conjunction with experimental studies in the development of pro- and anti-angiogenic agents. The model approximates the normal tissue as skeletal muscle and includes endothelial cells to represent the vasculature. As the VEGF system becomes better characterized in other tissues and

  17. Investigation of an alternative generic model for predicting pharmacokinetic changes during physiological stress.

    PubMed

    Peng, Henry T; Edginton, Andrea N; Cheung, Bob

    2013-10-01

    Physiologically based pharmacokinetic models were developed using MATLAB Simulink® and PK-Sim®. We compared the capability and usefulness of these two models by simulating pharmacokinetic changes of midazolam under exercise and heat stress to verify the usefulness of MATLAB Simulink® as a generic PBPK modeling software. Although both models show good agreement with experimental data obtained under resting condition, their predictions of pharmacokinetics changes are less accurate in the stressful conditions. However, MATLAB Simulink® may be more flexible to include physiologically based processes such as oral absorption and simulate various stress parameters such as stress intensity, duration and timing of drug administration to improve model performance. Further work will be conducted to modify algorithms in our generic model developed using MATLAB Simulink® and to investigate pharmacokinetics under other physiological stress such as trauma. PMID:23852614

  18. Development of good modelling practice for phsiologically based pharmacokinetic models for use in risk assessment: The first steps

    EPA Science Inventory

    The increasing use of tissue dosimetry estimated using pharmacokinetic models in chemical risk assessments in multiple countries necessitates the need to develop internationally recognized good modelling practices. These practices would facilitate sharing of models and model eva...

  19. Physiologically-based pharmacokinetic (PBPK) models in human exposure assessment

    SciTech Connect

    Krishnan, K.

    1995-12-31

    The potential dose received by an individual during defined exposure situations can be determined using personal dosimeters or estimated by combining information on exposure scenarios with the environmental concentration (C.) of chemicals. With the latter approach, not only the potential dose but also the internal dose (i.e., amount of chemical that has been absorbed and available for interaction with receptors) and biologically-effective dose (i.e., amount of chemical that actually reaches the cellular sites where interaction with macromolecules occur) can be estimated if C. is provided as an input to PBPK models. These models are mathematical representations of the interrelationships among the critical determinants of the absorption, distribution, metabolism and excretion of chemicals in biota. Since the compartments in this model correspond to biologically relevant tissues or tissue groups, the amount of chemical reaching specific target organ(s) can be estimated. Further, the PBPK models permit the use of biological monitoring data such as urinary levels of metabolites, hemoglobin adduct levels, and alveolar air concentrations, to reconstruct the exposure levels and scenarios for specific subgroups of populations. These models are also useful in providing estimates of target tissue dose in humans simultaneously exposed to chemicals in various media (air, water, soil, food) by different routes (oral, dermal, inhalation). Several examples of exposure assessment for volatile organic chemicals using PBPK models for mammals will be presented, and the strategies for development of these models for other classes of chemicals highlighted.

  20. Lifetime pharmacokinetic model for hydrophobic contaminants in marine mammals

    SciTech Connect

    Hickie, B.E.; Mackay, D.; Koning, J. de

    1999-11-01

    A physiologically based pharmacokinetic model is developed that describes the uptake and release of a hydrophobic organic chemical by a marine mammal over its entire lifetime, i.e., from birth to death. This model is applied to polychlorinated biphenyls (PCBs) in the beluga whale (Delphinapterus leucas). The processes treated are growth; uptake from food, milk, and air; disposition of the chemical among arterial and venous blood, liver, muscle, blubber, and rapidly perfused tissues; and losses by metabolism, release in exhaled air; and by egestion. A separate model is developed for females, which includes pregnancy, birth, and lactation. Food consumption is deduced from size, growth, and from activity-dependent bioenergetic data. The results obtained by simulating continuous PCB exposure over a 30-year period are in accordance with reported concentrations and show the importance of milk transfer to both mother and progeny and the tendency for continued accumulation over the animal's lifetime. Implications of the results are discussed, especially the need for improved data on diets, gut absorption characteristics, and various physiological parameters used in the model.

  1. Modeling the covariance structure in pharmacokinetic crossover trials.

    PubMed

    Lindsey, J K; Wang, J; Byrom, W D; Jones, B

    1999-08-01

    Pharmacokinetic studies of drug and metabolite concentrations in the blood are usually conducted as crossover trials, especially in phases I and II. A longitudinal series of measurements is collected on each subject within each period. However, much of the dependence among such observations, within and between periods, is generally ignored in analyzing this type of data. Usually, only a random coefficient model is fitted for the parameters in the nonlinear mean function, along with allowing the variance to depend on the mean so that it changes over time. Here, we develop models to allow more fully for the structure of the crossover study. We introduce two levels of variance components, for the subjects and for the periods within subjects, and also an autocorrelation within periods. We also retain the time-varying variance, using a separate variance function for this, different from that for the mean. We apply this model to a phase I study of the drug flosequinan and its metabolite. This drug was developed for the treatment of heart failure. Because the metabolite also exhibits an active pharmacologic effect, study of both the parent drug and the metabolite is of interest. We find that the autocorrelation is the element in the covariance structure that most improves the fit of the model but that two levels of variance components can also be necessary. PMID:10473030

  2. A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse

    SciTech Connect

    Lin Zhoumeng; Fisher, Jeffrey W.; Ross, Matthew K.; Filipov, Nikolay M.

    2011-02-15

    Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR and DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5 mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.

  3. Development of a multicompartmental, multiple cell type bioreactor and corresponding pharmacokinetic model for naphthalene

    SciTech Connect

    Sweeney, L.M.

    1993-12-31

    The impracticality of large scale animal testing of compounds has spurred development of in vitro testing methods and the development of physiologically based pharmacokinetic (PBPK) models. A weakness of previous work in these areas is that tissue interactions occurring in vivo are not reproduced. Through computer modeling of reactive systems and development of a multicompartmental, multiple cell type bioreactor these limitations can be overcome. These approaches were used to study naphthalene toxicology. In the PBPK developed for naphthalene, tissue interactions result from a mathematical description of the biotransformation of naphthalene and naphthalene oxide in the lung and liver and circulation of the semi-stable naphthalene oxide throughout the body. This model is believed to be the first describing both parent compound and metabolite with complete PBPKs. The model successfully simulates the in vivo work done with naphthalene. A weakness of PBPKs is that a large number of parameters must be determined. To overcome this limitation, a cell culture analog (CCA) of a PBPK was developed. The CCA contains multiple chambers, each of which represents a tissue or group of similar tissues. Since the lung and liver are important in naphthalene toxicology, a prototype with cells derived from these tissues was constructed. The system was deemed suitable for measuring commonly used indicators of in vitro toxicity. The prototype system was modified to minimize naphthalene sorption by the materials of construction. This system was used in conjunction with cultured H4IIE rat hepatoma cells and L2 rat lung cells to study the importance of circulated naphthalene metabolites (naphthalene oxides) on lung cell toxicity in rodents. By increasing the number of cells and/or inducing cytochrome P450 activity in the liver compartment, lung cell mortality was increased. Glutathione depletion in the lung and liver cells was also observed.

  4. Modeling pharmacokinetic data using heavy-tailed multivariate distributions.

    PubMed

    Lindsey, J K; Jones, B

    2000-08-01

    Pharmacokinetic studies of drug and metabolite concentrations in the blood are usually conducted as crossover trials, especially in Phases I and II. A longitudinal series of measurements is collected on each subject within each period. Dependence among such observations, within and between periods, will generally be fairly complex, requiring two levels of variance components, for the subjects and for the periods within subjects, and an autocorrelation within periods as well as a time-varying variance. Until now, the standard way in which this has been modeled is using a multivariate normal distribution. Here, we introduce procedures for simultaneously handling these various types of dependence in a wider class of distributions called the multivariate power exponential and Student t families. They can have the heavy tails required for handling the extreme observations that may occur in such contexts. We also consider various forms of serial dependence among the observations and find that they provide more improvement to our models than do the variance components. An integrated Ornstein-Uhlenbeck (IOU) stochastic process fits much better to our data set than the conventional continuous first-order autoregression, CAR(1). We apply these models to a Phase I study of the drug, flosequinan, and its metabolite. PMID:10959917

  5. Development of a Human Physiologically Based Pharmacokinetics (PBPK) Model For Dermal Permeability for Lindane

    EPA Science Inventory

    Lindane is a neurotoxicant used for the treatment of lice and scabies present on human skin. Due to its pharmaceutical application, an extensive pharmacokinetic database exists in humans. Mathematical diffusion models allow for calculation of lindane skin permeability coefficient...

  6. High Throughput pharmacokinetic modeling using computationally predicted parameter values: dissociation constants (TDS)

    EPA Science Inventory

    Estimates of the ionization association and dissociation constant (pKa) are vital to modeling the pharmacokinetic behavior of chemicals in vivo. Methodologies for the prediction of compound sequestration in specific tissues using partition coefficients require a parameter that ch...

  7. PHYSIOLOCIGALLY BASED PHARMACOKINETIC (PBPK) MODELING AND MODE OF ACTION IN DOSE-RESPONSE ASSESSMENT

    EPA Science Inventory

    PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING AND MODE OF ACTION IN DOSE-RESPONSE ASSESSMENT. Barton HA. Experimental Toxicology Division, National Health and Environmental Effects Laboratory, ORD, U.S. EPA
    Dose-response analysis requires quantitatively linking infor...

  8. A Mechanistic Pharmacokinetic Model for Liver Transporter Substrates Under Liver Cirrhosis Conditions

    PubMed Central

    Li, R; Barton, HA; Maurer, TS

    2015-01-01

    Liver cirrhosis is a disease characterized by the loss of functional liver mass. Physiologically based pharmacokinetic (PBPK) modeling was applied to interpret and predict how the interplay among physiological changes in cirrhosis affects pharmacokinetics. However, previous PBPK models under cirrhotic conditions were developed for permeable cytochrome P450 substrates and do not directly apply to substrates of liver transporters. This study characterizes a PBPK model for liver transporter substrates in relation to the severity of liver cirrhosis. A published PBPK model structure for liver transporter substrates under healthy conditions and the physiological changes for cirrhosis are combined to simulate pharmacokinetics of liver transporter substrates in patients with mild and moderate cirrhosis. The simulated pharmacokinetics under liver cirrhosis reasonably approximate observations. This analysis includes meta-analysis to obtain system-dependent parameters in cirrhosis patients and a top-down approach to improve understanding of the effect of cirrhosis on transporter-mediated drug disposition under cirrhotic conditions. PMID:26225262

  9. Development of a Physiologically Based Pharmacokinetic Model for Triadimefon and Triadimenol in Rats and Humans

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed for the conazole fungicide triadimefon and its primary metabolite, triadimenol. Rat tissue:blood partition coefficients and metabolic constants were measured in vitro for both compounds. Kinetic time course data...

  10. A Mechanistic Pharmacokinetic Model for Liver Transporter Substrates Under Liver Cirrhosis Conditions.

    PubMed

    Li, R; Barton, H A; Maurer, T S

    2015-06-01

    Liver cirrhosis is a disease characterized by the loss of functional liver mass. Physiologically based pharmacokinetic (PBPK) modeling was applied to interpret and predict how the interplay among physiological changes in cirrhosis affects pharmacokinetics. However, previous PBPK models under cirrhotic conditions were developed for permeable cytochrome P450 substrates and do not directly apply to substrates of liver transporters. This study characterizes a PBPK model for liver transporter substrates in relation to the severity of liver cirrhosis. A published PBPK model structure for liver transporter substrates under healthy conditions and the physiological changes for cirrhosis are combined to simulate pharmacokinetics of liver transporter substrates in patients with mild and moderate cirrhosis. The simulated pharmacokinetics under liver cirrhosis reasonably approximate observations. This analysis includes meta-analysis to obtain system-dependent parameters in cirrhosis patients and a top-down approach to improve understanding of the effect of cirrhosis on transporter-mediated drug disposition under cirrhotic conditions. PMID:26225262

  11. Enhancing the Modeling of PFOA Pharmacokinetics with Bayesian Analysis

    EPA Science Inventory

    The detail sufficient to describe the pharmacokinetics (PK) for perfluorooctanoic acid (PFOA) and the methods necessary to combine information from multiple data sets are both subjects of ongoing investigation. Bayesian analysis provides tools to accommodate these goals. We exa...

  12. Are Physiologically Based Pharmacokinetic Models Reporting the Right C(max)? Central Venous Versus Peripheral Sampling Site.

    PubMed

    Musther, Helen; Gill, Katherine L; Chetty, Manoranjenni; Rostami-Hodjegan, Amin; Rowland, Malcolm; Jamei, Masoud

    2015-09-01

    Physiologically based pharmacokinetic (PBPK) models can over-predict maximum plasma concentrations (C(max)) following intravenous administration. A proposed explanation is that invariably PBPK models report the concentration in the central venous compartment, rather than the site where the samples are drawn. The purpose of this study was to identify and validate potential corrective models based on anatomy and physiology governing the blood supply at the site of sampling and incorporate them into a PBPK platform. Four models were developed and scrutinised for their corrective potential. All assumed the peripheral sampling site concentration could be described by contributions from surrounding tissues and utilised tissue-specific concentration-time profiles reported from the full-PBPK model within the Simcyp Simulator. Predicted concentrations for the peripheral site were compared to the observed C(max). The models results were compared to clinical data for 15 studies over seven compounds (alprazolam, imipramine, metoprolol, midazolam, omeprazole, rosiglitazone and theophylline). The final model utilised tissue concentrations from adipose, skin, muscle and a contribution from artery. Predicted C(max) values considering the central venous compartment can over-predict the observed values up to 10-fold whereas the new sampling site predictions were within 2-fold of observed values. The model was particularly relevant for studies where traditional PBPK models over-predict early time point concentrations. A successful corrective model for C(max) prediction has been developed, subject to further validation. These models can be enrolled as built-up modules into PBPK platforms and potentially account for factors that may affect the initial mixing of the blood at the site of sampling. PMID:26100012

  13. Pharmacokinetics of mitragynine in man

    PubMed Central

    Trakulsrichai, Satariya; Sathirakul, Korbtham; Auparakkitanon, Saranya; Krongvorakul, Jatupon; Sueajai, Jetjamnong; Noumjad, Nantida; Sukasem, Chonlaphat; Wananukul, Winai

    2015-01-01

    Background Kratom, known botanically as Mitragyna speciosa (Korth.), is an indigenous tree in Southeast Asia. Kratom is currently easily available worldwide via special shops and the Internet to use as a drug of abuse, opioid alternative, or pain killer. So far, the pharmacokinetics of this plant has been studied only in animals, and there is no such study in humans. The major abundant active alkaloid in Kratom, mitragynine, is one of the promising new chemical substances to be developed as a new drug. The aim of this study was to examine the pharmacokinetics of mitragynine and assess the linearity in pharmacokinetics in chronic users. Methods Since Kratom is illegal in Thailand, studies in healthy subjects would be unethical. We therefore conducted a prospective study by enrolling ten chronic, regular, healthy users. We adjusted the steady state in each subject by giving a known amount of Kratom tea for 7 days before commencement of the experiment. We admitted and gave different oral doses to subjects to confirm linearity in pharmacokinetics. The mitragynine blood concentrations at 17 times points and the urine concentrations during the 24-hour period were collected and measured by liquid chromatography-tandem mass spectrometry method. Results Ten male subjects completed the study without adverse reactions. The median duration of abuse was 1.75 years. We analyzed one subject separately due to the abnormal behavior of blood concentration. From data of nine subjects, the pharmacokinetic parameters established were time to reach the maximum plasma concentration (0.83±0.35 hour), terminal half-life (23.24±16.07 hours), and the apparent volume of distribution (38.04±24.32 L/kg). The urine excretion of unchanged form was 0.14%. The pharmacokinetics were observed to be oral two-compartment model. Conclusion This was the first pharmacokinetic study in humans, which demonstrated linearity and was consistent with the oral two-compartment model with a terminal half

  14. Physiologically Based Pharmacokinetic Modeling in Pediatric Oncology Drug Development.

    PubMed

    Rioux, Nathalie; Waters, Nigel J

    2016-07-01

    Childhood cancer represents more than 100 rare and ultra-rare diseases, with an estimated 12,400 new cases diagnosed each year in the United States. As such, this much smaller patient population has led to pediatric oncology drug development lagging behind that for adult cancers. Developing drugs for pediatric malignancies also brings with it a number of unique trial design considerations, including flexible enrollment approaches, age-appropriate formulation, acceptable sampling schedules, and balancing the need for age-stratified dosing regimens, given the smaller patient populations. The regulatory landscape for pediatric pharmacotherapy has evolved with U.S. Food and Drug Administration (FDA) legislation such as the 2012 FDA Safety and Innovation Act. In parallel, regulatory authorities have recommended the application of physiologically based pharmacokinetic (PBPK) modeling, for example, in the recently issued FDA Strategic Plan for Accelerating the Development of Therapies for Pediatric Rare Diseases. PBPK modeling provides a quantitative and systems-based framework that allows the effects of intrinsic and extrinsic factors on drug exposure to be modeled in a mechanistic fashion. The application of PBPK modeling in drug development for pediatric cancers is relatively nascent, with several retrospective analyses of cytotoxic therapies, and latterly for targeted agents such as obatoclax and imatinib. More recently, we have employed PBPK modeling in a prospective manner to inform the first pediatric trials of pinometostat and tazemetostat in genetically defined populations (mixed lineage leukemia-rearranged and integrase interactor-1-deficient sarcomas, respectively). In this review, we evaluate the application of PBPK modeling in pediatric cancer drug development and discuss the important challenges that lie ahead in this field. PMID:26936973

  15. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction.

    PubMed

    Lu, Jingtao; Goldsmith, Michael-Rock; Grulke, Christopher M; Chang, Daniel T; Brooks, Raina D; Leonard, Jeremy A; Phillips, Martin B; Hypes, Ethan D; Fair, Matthew J; Tornero-Velez, Rogelio; Johnson, Jeffre; Dary, Curtis C; Tan, Yu-Mei

    2016-02-01

    Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals. PMID:26871706

  16. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction

    PubMed Central

    Grulke, Christopher M.; Chang, Daniel T.; Brooks, Raina D.; Leonard, Jeremy A.; Phillips, Martin B.; Hypes, Ethan D.; Fair, Matthew J.; Tornero-Velez, Rogelio; Johnson, Jeffre; Dary, Curtis C.; Tan, Yu-Mei

    2016-01-01

    Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals. PMID:26871706

  17. Global stability of a multiple infected compartments model for waterborne diseases

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Cao, Jinde

    2014-10-01

    In this paper, mathematical analysis is carried out for a multiple infected compartments model for waterborne diseases, such as cholera, giardia, and rotavirus. The model accounts for both person-to-person and water-to-person transmission routes. Global stability of the equilibria is studied. In terms of the basic reproduction number R0, we prove that, if R0⩽1, then the disease-free equilibrium is globally asymptotically stable and the infection always disappears; whereas if R0>1, there exists a unique endemic equilibrium which is globally asymptotically stable for the corresponding fast-slow system. Numerical simulations verify our theoretical results and present that the decay rate of waterborne pathogens has a significant impact on the epidemic growth rate. Also, we observe numerically that the unique endemic equilibrium is globally asymptotically stable for the whole system. This statement indicates that the present method need to be improved by other techniques.

  18. Physiologically based pharmacokinetic (PBPK) models for lifetime exposure to PCB 153 in male and female harbor porpoises (Phocoena phocoena): model development and evaluation.

    PubMed

    Weijs, Liesbeth; Yang, Raymond S H; Covaci, Adrian; Das, Krishna; Blust, Ronny

    2010-09-15

    Physiologically based pharmacokinetic (PBPK) models were developed for the most persistent polychlorinated biphenyl (PCB 153) in male and female harbor porpoises (Phocoena phocoena) to elucidate processes such as uptake, distribution, and elimination. Due to its limited metabolic capacities, long life span, and top position in marine food chains, this species is highly sensitive to pollution. The models consist of 5 compartments, liver, blubber, kidney, brain, and a compartment which accounts for the rest of the body, all connected through blood. All physiological and biochemical parameters were extracted from the literature, except for the brain/blood partition coefficient and rate of excretion, which were both fitted to data sets used for validation of the models. These data sets were compiled from our own analyses performed with GC-MS on tissue samples of harbor porpoises. The intake of PCB 153 was from milk from birth to 4 months, and after weaning fish was the main food source. Overall, these models reveal that concentrations of PCB 153 in males increase with age but suggest that, as the animals grow older, metabolic transformation can be a possible pathway for elimination as well. In contrast, the model for females confirms that gestation and lactation are key processes for eliminating PCB 153 as body burdens decrease with age. These PBPK models are capable of simulating the bioaccumulation of PCB 153 during the entire life span of approximately 20 years of the harbor porpoises. PMID:20718467

  19. Compartment syndrome

    MedlinePlus

    ... Jobe MT. Compartment syndromes and Volkmann contracture. In: Canale ST, Beaty JH, eds. Campbell's Operative Orthopaedics . 12th ed. ... and Shoulder Service, UCSF Department of Orthopaedic Surgery, San Francisco, CA. Also reviewed by David Zieve, MD, MHA, ...

  20. Compartment syndromes

    NASA Technical Reports Server (NTRS)

    Mubarak, S. J.; Pedowitz, R. A.; Hargens, A. R.

    1989-01-01

    The compartment syndrome is defined as a condition in which high pressure within a closed fascial space (muscle compartment) reduces capillary blood perfusion below the level necessary for tissue viability'. This condition occurs in acute and chronic (exertional) forms, and may be secondary to a variety of causes. The end-result of an extended period of elevated intramuscular pressure may be the development of irreversible tissue injury and Volkmann's contracture. The goal of treatment of the compartment syndrome is the reduction of intracompartmental pressure thus facilitating reperfusion of ischaemic tissue and this goal may be achieved by decompressive fasciotomy. Controversy exists regarding the critical pressure-time thresholds for surgical decompression and the optimal diagnostic methods of measuring intracompartmental pressures. This paper will update and review some current knowledge regarding the pathophysiology, aetiology, diagnosis, and treatment of the acute compartment syndrome.

  1. Integration of Physiologically-Based Pharmacokinetic Modeling into Early Clinical Development: An Investigation of the Pharmacokinetic Nonlinearity

    PubMed Central

    Zhou, L; Gan, J; Yoshitsugu, H; Gu, X; Lutz, JD; Masson, E; Humphreys, WG

    2015-01-01

    BMS-911543, a promising anticancer agent, exhibited time-dependent and dose-dependent nonlinear pharmacokinetics (PKs) in its first-in-human (FIH) study. Initial physiologically based pharmacokinetic (PBPK) modeling efforts using CYP1A2-mediated clearance kinetics were unsuccessful; however, further model analysis revealed that CYP1A2 time-dependent inhibition (TDI) and perhaps other factors could be keys to the nonlinearity. Subsequent experiments in human liver microsomes showed that the compound was a time-dependent inhibitor of CYP1A2 and were used to determine the enzyme inactivation parameter values. In addition, a rat tissue distribution study was conducted and human plasma samples were profiled to support the refinement of the PBPK model. It was concluded that the interplay between four BMS-911543 properties, namely, low solubility, saturation of the metabolizing enzyme CYP1A2, CYP1A2 TDI, and CYP1A2 induction likely resulted in the time-dependent and dose-dependent nonlinear PKs. The methodology of PBPK model-guided unmasking of compound properties can serve as a general practice for mechanistic understanding of a new compound's disposition. PMID:26225254

  2. Semimechanistic cell-cycle type-based pharmacokinetic/pharmacodynamic model of chemotherapy-induced neutropenic effects of diflomotecan under different dosing schedules.

    PubMed

    Mangas-Sanjuan, Víctor; Buil-Bruna, Núria; Garrido, María J; Soto, Elena; Trocóniz, Iñaki F

    2015-07-01

    The current work integrates cell-cycle dynamics occurring in the bone marrow compartment as a key element in the structure of a semimechanistic pharmacokinetic/pharmacodynamic model for neutropenic effects, aiming to describe, with the same set of system- and drug-related parameters, longitudinal data of neutropenia gathered after the administration of the anticancer drug diflomotecan (9,10-difluoro-homocamptothecin) under different dosing schedules to patients (n = 111) with advanced solid tumors. To achieve such an objective, the general framework of the neutropenia models was expanded, including one additional physiologic process resembling cell cycle dynamics. The main assumptions of the proposed model are as follows: within the stem cell compartment, proliferative and quiescent cells coexist, and only cells in the proliferative condition are sensitive to drug effects and capable of following the maturation chain. Cell cycle dynamics were characterized by two new parameters, FProl (the fraction of proliferative [Prol] cells that enters into the maturation chain) and kcycle (first-order rate constant governing cell cycle dynamics within the stem cell compartment). Both model parameters were identifiable as indicated by the results from a bootstrap analysis, and their estimates were supported by date from the literature. The estimates of FProl and kcycle were 0.58 and 1.94 day(-1), respectively. The new model could properly describe the neutropenic effects of diflomotecan after very different dosing scenarios, and can be used to explore the potential impact of dosing schedule dependencies on neutropenia prediction. PMID:25948593

  3. [A nonlinear multi-compartment lung model for optimization of breathing airflow pattern].

    PubMed

    Cai, Yongming; Gu, Lingyan; Chen, Fuhua

    2015-02-01

    It is difficult to select the appropriate ventilation mode in clinical mechanical ventilation. This paper presents a nonlinear multi-compartment lung model to solve the difficulty. The purpose is to optimize respiratory airflow patterns and get the minimum of the work of inspiratory phrase and lung volume acceleration, minimum of the elastic potential energy and rapidity of airflow rate changes of expiratory phrase. Sigmoidal function is used to smooth the respiratory function of nonlinear equations. The equations are established to solve nonlinear boundary conditions BVP, and finally the problem was solved with gradient descent method. Experimental results showed that lung volume and the rate of airflow after optimization had good sensitivity and convergence speed. The results provide a theoretical basis for the development of multivariable controller monitoring critically ill mechanically ventilated patients. PMID:25997262

  4. Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and Monte Carlo simulated scintillation camera imaging

    NASA Astrophysics Data System (ADS)

    Brolin, Gustav; Sjögreen Gleisner, Katarina; Ljungberg, Michael

    2013-05-01

    In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for 99mTc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.

  5. Improving Predictive Modeling in Pediatric Drug Development: Pharmacokinetics, Pharmacodynamics, and Mechanistic Modeling

    SciTech Connect

    Slikker, William; Young, John F.; Corley, Rick A.; Dorman, David C.; Conolly, Rory B.; Knudsen, Thomas; Erstad, Brian L.; Luecke, Richard H.; Faustman, Elaine M.; Timchalk, Chuck; Mattison, Donald R.

    2005-07-26

    A workshop was conducted on November 18?19, 2004, to address the issue of improving predictive models for drug delivery to developing humans. Although considerable progress has been made for adult humans, large gaps remain for predicting pharmacokinetic/pharmacodynamic (PK/PD) outcome in children because most adult models have not been tested during development. The goals of the meeting included a description of when, during development, infants/children become adultlike in handling drugs. The issue of incorporating the most recent advances into the predictive models was also addressed: both the use of imaging approaches and genomic information were considered. Disease state, as exemplified by obesity, was addressed as a modifier of drug pharmacokinetics and pharmacodynamics during development. Issues addressed in this workshop should be considered in the development of new predictive and mechanistic models of drug kinetics and dynamics in the developing human.

  6. An on-chip small intestine-liver model for pharmacokinetic studies.

    PubMed

    Kimura, Hiroshi; Ikeda, Takashi; Nakayama, Hidenari; Sakai, Yasuyuki; Fujii, Teruo

    2015-06-01

    Testing of drug effects and cytotoxicity by using cultured cells has been widely performed as an alternative to animal testing. However, the estimation of pharmacokinetics by conventional cell-based assay methods is difficult because of the inability to evaluate multiorgan effects. An important challenge in the field is to mimic the organ-to-organ network in the human body by using a microfluidic network connecting small-scale tissues based on recently emerging MicroTAS (Micro Total Analysis Systems) technology for prediction of pharmacokinetics. Here, we describe an on-chip small intestine-liver coupled model for pharmacokinetic studies. To construct an in vitro pharmacokinetic model that appropriately models in vivo conditions, physiological parameters such as the structure of internal circulation, volume ratios of each organ, and blood flow ratio of the portal vein to the hepatic artery were mimicked using microfluidic networks. To demonstrate interactions between organs in vitro in pharmacokinetic studies, Caco-2, HepG2, and A549 cell cultures were used as organ models of the small intestine, liver, and lung, respectively, and connected to each other through a microporous membrane and microchannels to prepare a simple model of a physiological organ-to-organ network. The on-chip organ model assay using three types of substrate-epirubicine (EPI), irinotecan (CPT-11), and cyclophosphamide (CPA)-were conducted to model the effects of orally administered or biologically active anticancer drugs. The result suggested that the device can replicate physiological phenomena such as activity of the anticancer drugs on the target cells. This microfluidic device can thus be used as an in vitro organ model to predict the pharmacokinetics of drugs in the human body and may thus provide not only an alternative to animal testing but also a method of obtaining parameters for in silico models of physiologically based pharmacokinetics. PMID:25385717

  7. Three-compartment model for contaminant accumulation by semipermeable membrane devices

    USGS Publications Warehouse

    Gale, R.W.

    1998-01-01

    Passive sampling of dissolved hydrophobic contaminants with lipid (triolein)-containing semipermeable membrane devices (SPMDs) has been gaining acceptance for environmental monitoring. Understanding of the accumulation process has employed a simple polymer film-control model of uptake by the polymer-enclosed lipid, while aqueous film control has been only briefly discussed. A more complete three-compartment model incorporating both aqueous film (turbulent-diffusive) and polymer film (diffusive) mass transfer is developed here and is fit to data from accumulation studies conducted in constant-concentration, flow-through dilutors. This model predicts aqueous film control of the whole device for moderate to high K(ow) compounds, rather than polymer film control. Uptake rates for phenanthrene and 2,2',5,5'- tetrachlorobiphenyl were about 4.8 and 4.2 L/day/standard SPMD, respectively. Maximum 28 day SPMD concentration factors of 30 000 are predicted for solutes with log K(ow) values of >5.5. Effects of varying aqueous and polymer film thicknesses and solute diffusivities in the polymer film are modeled, and overall accumulation by the whole device is predicted to remain under aqueous film control, although accumulation in the triolein may be subject to polymer film control. The predicted half-life and integrative response of SPMDs to pulsed concentration events is proportional to log K(SPMD).Passive sampling of dissolved hydrophobic contaminants with lipid (triolein)-containing semipermeable membrane devices (SPMDs) has been gaining acceptance for environmental monitoring. Understanding of the accumulation process has employed a simple polymer film-control model of uptake by the polymer-enclosed lipid, while aqueous film control has been only briefly discussed. A more complete three-compartment model incorporating both aqueous film (turbulent-diffusive) and polymer film (diffusive) mass transfer is developed here and is fit to data from accumulation studies conducted in

  8. Exploration of the Pharmacokinetic-Pharmacodynamic Relationships for Fosfomycin Efficacy Using an In Vitro Infection Model

    PubMed Central

    VanScoy, Brian D.; McCauley, Jennifer; Ellis-Grosse, Evelyn J.; Okusanya, Olanrewaju O.; Bhavnani, Sujata M.; Forrest, Alan

    2015-01-01

    Fosfomycin, a phosphonic class antibiotic with a broad spectrum of antibacterial activity, has been used outside the United States since the early 1970s for the treatment of a variety of infections. In the United States, an oral (tromethamine salt) formulation is used for uncomplicated urinary tract infections. Recently, there has been interest in the use of an intravenous solution (ZTI-01) for the treatment of a broad range of infections associated with multidrug-resistant bacteria. In this era of multidrug-resistant bacteria with few treatment options, it is critical to understand the pharmacokinetic-pharmacodynamic (PK-PD) determinants for fosfomycin efficacy. Since such data are limited, a one-compartment in vitro infection model was used to determine the PK-PD index associated with efficacy and the magnitude of this measure necessary for various levels of effect. One challenge isolate (Escherichia coli ATCC 25922, for which the fosfomycin agar MIC is 0.5 mg/liter and the broth microdilution MIC is 1 mg/liter) was evaluated in the dose fractionation studies, and two additional clinical E. coli isolates were evaluated in the dose-ranging studies. Mutation frequency studies indicated the presence of an inherently fosfomycin resistant E. coli subpopulation (agar MIC = 32 to 64 mg/liter) within the standard starting inoculum of a susceptibility test. Due to the presence of this resistant subpopulation, we identified the percentage of the dosing interval that drug concentrations were above the inherent resistance inhibitory concentration found at baseline to be the PK-PD index associated with efficacy (r2 = 0.777). The magnitudes of this PK-PD index associated with net bacterial stasis and 1- and 2-log10 CFU/ml reductions from baseline at 24 h were 11.9, 20.9, and 32.8, respectively. These data provide useful information for modernizing and optimizing ZTI-01 dosing regimens for further study. PMID:26100706

  9. 75 FR 81 - Special Conditions: Boeing Model 787-8 Airplane; Overhead Flightcrew Rest Compartment Occupiable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... equipment within the OFCR compartment. (4) Structural failure or deformation of components that could block... applicable to this configuration. Hence, deformations resulting from required static and dynamic structural..., mechanical or structural failure, or persons standing below or against the crew rest compartment outlets....

  10. Compartment-based hydrodynamics and water quality modeling of a northern Everglades wetland, Florida, USA

    USGS Publications Warehouse

    Wang, Hongqing; Meselhe, Ehab A.; Waldon, Michael G.; Harwell, Matthew C.; Chen, Chunfang

    2012-01-01

    The last remaining large remnant of softwater wetlands in the US Florida Everglades lies within the Arthur R. Marshall Loxahatchee National Wildlife Refuge. However, Refuge water quality today is impacted by pumped stormwater inflows to the eutrophic and mineral-enriched 100-km canal, which circumscribes the wetland. Optimal management is a challenge and requires scientifically based predictive tools to assess and forecast the impacts of water management on Refuge water quality. In this research, we developed a compartment-based numerical model of hydrodynamics and water quality for the Refuge. Using the numerical model, we examined the dynamics in stage, water depth, discharge from hydraulic structures along the canal, and exchange flow among canal and marsh compartments. We also investigated the transport of chloride, sulfate and total phosphorus from the canal to the marsh interior driven by hydraulic gradients as well as biological removal of sulfate and total phosphorus. The model was calibrated and validated using long-term stage and water quality data (1995-2007). Statistical analysis indicates that the model is capable of capturing the spatial (from canal to interior marsh) gradients of constituents across the Refuge. Simulations demonstrate that flow from the eutrophic and mineral-enriched canal impacts chloride and sulfate in the interior marsh. In contrast, total phosphorus in the interior marsh shows low sensitivity to intrusion and dispersive transport. We conducted a rainfall-driven scenario test in which the pumped inflow concentrations of chloride, sulfate and total phosphorus were equal to rainfall concentrations (wet deposition). This test shows that pumped inflow is the dominant factor responsible for the substantially increased chloride and sulfate concentrations in the interior marsh. Therefore, the present day Refuge should not be classified as solely a rainfall-driven or ombrotrophic wetland. The model provides an effective screening tool for

  11. The true four-compartment model and the design of the C-O-H-N scanner

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The four compartment (4c) model is often used as the gold standard for body composition analysis. It is not possible, however, to utilize a true 4c model without assessing protein directly. The purpose of this study is to design a fast-neutron based instrument that can measure all four co...

  12. COMPARTMENT MODEL APPROACHES FOR ESTIMATING THE PARAMETERS OF A CHRONIC DISEASE PROCESS UNDER CHANGING RISK FACTOR EXPOSURES

    EPA Science Inventory

    Compartment model approaches have been proposed for the analysis of the age incidence of specific types of cancer. These models represented the age increase in incidence as the result of a compound hazard function where individual level risks were described by the Weibull hazard ...

  13. Use of a simulated annealing algorithm to fit compartmental models with an application to fractal pharmacokinetics.

    PubMed

    Marsh, Rebeccah E; Riauka, Terence A; McQuarrie, Steve A

    2007-01-01

    Increasingly, fractals are being incorporated into pharmacokinetic models to describe transport and chemical kinetic processes occurring in confined and heterogeneous spaces. However, fractal compartmental models lead to differential equations with power-law time-dependent kinetic rate coefficients that currently are not accommodated by common commercial software programs. This paper describes a parameter optimization method for fitting individual pharmacokinetic curves based on a simulated annealing (SA) algorithm, which always converged towards the global minimum and was independent of the initial parameter values and parameter bounds. In a comparison using a classical compartmental model, similar fits by the Gauss-Newton and Nelder-Mead simplex algorithms required stringent initial estimates and ranges for the model parameters. The SA algorithm is ideal for fitting a wide variety of pharmacokinetic models to clinical data, especially those for which there is weak prior knowledge of the parameter values, such as the fractal models. PMID:17706176

  14. Higher Plants in life support systems: design of a model and plant experimental compartment

    NASA Astrophysics Data System (ADS)

    Hezard, Pauline; Farges, Berangere; Sasidharan L, Swathy; Dussap, Claude-Gilles

    The development of closed ecological life support systems (CELSS) requires full control and efficient engineering for fulfilling the common objectives of water and oxygen regeneration, CO2 elimination and food production. Most of the proposed CELSS contain higher plants, for which a growth chamber and a control system are needed. Inside the compartment the development of higher plants must be understood and modeled in order to be able to design and control the compartment as a function of operating variables. The plant behavior must be analyzed at different sub-process scales : (i) architecture and morphology describe the plant shape and lead to calculate the morphological parameters (leaf area, stem length, number of meristems. . . ) characteristic of life cycle stages; (ii) physiology and metabolism of the different organs permit to assess the plant composition depending on the plant input and output rates (oxygen, carbon dioxide, water and nutrients); (iii) finally, the physical processes are light interception, gas exchange, sap conduction and root uptake: they control the available energy from photosynthesis and the input and output rates. These three different sub-processes are modeled as a system of equations using environmental and plant parameters such as light intensity, temperature, pressure, humidity, CO2 and oxygen partial pressures, nutrient solution composition, total leaf surface and leaf area index, chlorophyll content, stomatal conductance, water potential, organ biomass distribution and composition, etc. The most challenging issue is to develop a comprehensive and operative mathematical model that assembles these different sub-processes in a unique framework. In order to assess the parameters for testing a model, a polyvalent growth chamber is necessary. It should permit a controlled environment in order to test and understand the physiological response and determine the control strategy. The final aim of this model is to have an envi

  15. PREDICTIVE PHYSIOLOGICALLY BASED PHARMACOKINETICS MODELING (PBPK) OF PYRETHROID PESTICIDES

    EPA Science Inventory

    Pyrethroids are a class of neurotoxic pesticides that have many different applications in agriculture, horticulture, and homes, and medicinal uses for animals and humans. Differences in the toxicity of pyrethroids are the result of their pharmacokinetic and/or pharmacodynamic pr...

  16. In Vitro Multitissue Interface Model Supports Rapid Vasculogenesis and Mechanistic Study of Vascularization across Tissue Compartments.

    PubMed

    Buno, Kevin P; Chen, Xuemei; Weibel, Justin A; Thiede, Stephanie N; Garimella, Suresh V; Yoder, Mervin C; Voytik-Harbin, Sherry L

    2016-08-31

    A significant challenge facing tissue engineers is the design and development of complex multitissue systems, including vascularized tissue-tissue interfaces. While conventional in vitro models focus on either vasculogenesis (de novo formation of blood vessels) or angiogenesis (vessels sprouting from existing vessels or endothelial monolayers), successful therapeutic vascularization strategies will likely rely on coordinated integration of both processes. To address this challenge, we developed a novel in vitro multitissue interface model in which human endothelial colony forming cell (ECFC)-encapsulated tissue spheres are embedded within a surrounding tissue microenvironment. This highly reproducible approach exploits biphilic surfaces (nanostructured surfaces with distinct superhydrophobic and hydrophilic regions) to (i) support tissue compartments with user-specified matrix composition and physical properties as well as cell type and density and (ii) introduce boundary conditions that prevent the cell-mediated tissue contraction routinely observed with conventional three-dimensional monodispersion cultures. This multitissue interface model was applied to test the hypothesis that independent control of cell-extracellular matrix (ECM) and cell-cell interactions would affect vascularization within the tissue sphere as well as across the tissue-tissue interface. We found that high-cell-density tissue spheres containing 5 × 10(6) ECFCs/mL exhibit rapid and robust vasculogenesis, forming highly interconnected, stable (as indicated by type IV collagen deposition) vessel networks within only 3 days. Addition of adipose-derived stromal cells (ASCs) in the surrounding tissue further enhanced vasculogenesis within the sphere as well as angiogenic vessel elongation across the tissue-tissue boundary, with both effects being dependent on the ASC density. Overall, results show that the ECFC density and ECFC-ASC crosstalk, in terms of paracrine and mechanophysical signaling

  17. A mechanism-based pharmacokinetic/pharmacodynamic model for CYP3A1/2 induction by dexamethasone in rats

    PubMed Central

    Li, Liang; Li, Zai-quan; Deng, Chen-hui; Ning, Miao-ran; Li, Han-qing; Bi, Shan-shan; Zhou, Tian-yan; Lu, Wei

    2012-01-01

    Aim: To develop a pharmacokinetic/pharmacodynamic (PK/PD) model describing the receptor/gene-mediated induction of CYP3A1/2 by dexamethasone (DEX) in rats. Methods: A group of male Sprague-Dawley rats receiving DEX (100 mg/kg, ip) were sacrificed at various time points up to 60 h post-treatment. Their blood sample and liver were collected. The plasma concentration of DEX was determined with a reverse phase HPLC method. CYP3A1/2 mRNA, protein levels and enzyme activity were measured using RT-PCR, ELISA and the testosterone substrate assay, respectively. Data analyses were performed using a first-order conditional estimate (FOCE) with INTERACTION method in NONMEM version 7.1.2. Results: A two-compartment model with zero-order absorption was applied to describe the pharmacokinetic characteristics of DEX. Systemic clearance, the apparent volume of distribution and the duration of zero-order absorption were calculated to be 172.7 mL·kg−1·h−1, 657.4 mL/kg and 10.47 h, respectively. An indirect response model with a series of transit compartments was developed to describe the induction of CYP3A1/2 via PXR transactivation by DEX. The maximum induction of CYP3A1 and CYP3A2 mRNA levels was achieved, showing nearly 21.29- and 8.67-fold increases relative to the basal levels, respectively. The CYP3A1 and CYP3A2 protein levels were increased by 8.02-fold and 2.49-fold, respectively. The total enzyme activities of CYP3A1/2 were shown to increase by up to 2.79-fold, with a lag time of 40 h from the Tmax of the DEX plasma concentration. The final PK/PD model was able to recapitulate the delayed induction of CYP3A1/2 mRNA, protein and enzyme activity by DEX. Conclusion: A mechanism-based PK/PD model was developed to characterize the complex concentration-induction response relationship between DEX and CYP3A1/2 and to resolve the drug- and system-specific PK/PD parameters for the course of induction. PMID:22212433

  18. Pharmacokinetic analysis program based on tank-in-series model, MULTI(TIS), for evaluation of capacity-limited local disposition.

    PubMed

    Fukumura, K; Yamaoka, K; Higashimori, M; Nakagawa, T

    1998-12-01

    A pharmacokinetic analysis program based on a tank-in-series model, MULTI(TIS), was developed for the evaluation of dose-dependency in the local disposition of a drug. The program written in FORTRAN was constructed by expanding MULTI(RUNGE). The reliability of MULTI(TIS) was verified by analyzing the experimental data based on linear and nonlinear tank-in-series models. Linear one- and two-compartment tank-in-series models were adopted to analyze outflow time profiles in single-pass hepatic perfusion following a pulse input of 5'-deoxy-5-fluorouridine (DFUR). The estimated parameters agreed well with those by MULTI(FILT) which is widely used for linear kinetic analysis. The nonlinear models adopted were one-compartment model with Michaelis-Menten elimination and two-compartment models with Michaelis-Menten elimination from central and peripheral compartments. Oxacillin was used as a model drug, because time courses of oxacillin show a capacity-limited hepatic disposition following a pulse input in high doses to the liver (300, 1000, 3000 and 5000 microg). The hepatic recovery ratio (F(H)) of oxacillin increased with dose, whereas the mean transit time (tH) was almost constant. The maximum elimination rate constant (Vmax) and Michaelis constant (Km) of oxacillin were estimated to be 1980 microg/ml/min and 54.1 microg/ml, respectively. Thus, the reliability of MULTI(TIS) was demonstrated for the analysis of nonlinear local disposition, especially, capacity-limited elimination in the liver. PMID:9881650

  19. In vitro-in vivo Pharmacokinetic correlation model for quality assurance of antiretroviral drugs

    PubMed Central

    Restrepo Valencia, Piedad

    2015-01-01

    Introduction: The in vitro-in vivo pharmacokinetic correlation models (IVIVC) are a fundamental part of the drug discovery and development process. The ability to accurately predict the in vivo pharmacokinetic profile of a drug based on in vitro observations can have several applications during a successful development process. Objective: To develop a comprehensive model to predict the in vivo absorption of antiretroviral drugs based on permeability studies, in vitro and in vivo solubility and demonstrate its correlation with the pharmacokinetic profile in humans. Methods: Analytical tools to test the biopharmaceutical properties of stavudine, lamivudine y zidovudine were developed. The kinetics of dissolution, permeability in caco-2 cells and pharmacokinetics of absorption in rabbits and healthy volunteers were evaluated. Results: The cumulative areas under the curve (AUC) obtained in the permeability study with Caco-2 cells, the dissolution study and the pharmacokinetics in rabbits correlated with the cumulative AUC values in humans. These results demonstrated a direct relation between in vitro data and absorption, both in humans and in the in vivo model. Conclusions: The analytical methods and procedures applied to the development of an IVIVC model showed a strong correlation among themselves. These IVIVC models are proposed as alternative and cost/effective methods to evaluate the biopharmaceutical properties that determine the bioavailability of a drug and their application includes the development process, quality assurance, bioequivalence studies and pharmacosurveillance. PMID:26600625

  20. Development of a Population Pharmacokinetic Model To Describe Azithromycin Whole-Blood and Plasma Concentrations over Time in Healthy Subjects

    PubMed Central

    Anic-Milic, T.; Oreskovic, K.; Padovan, J.; Brouwer, K. L. R.; Zuo, P.; Schmith, V. D.

    2013-01-01

    Azithromycin (AZI), a broad-spectrum antibiotic, accumulates in polymorphonuclear cells and peripheral blood mononuclear cells. The distribution of AZI in proinflammatory cells may be important to the anti-inflammatory properties. Previous studies have described plasma AZI pharmacokinetics. The objective of this study was to describe the pharmacokinetics of AZI in whole blood (concentration in whole blood [Cb]) and plasma (concentration in plasma [Cp]) of healthy subjects. In this study, 12 subjects received AZI (500 mg once a day for 3 days). AZI Cb and Cp were quantified in serial samples collected up to 3 weeks after the last dose and analyzed using noncompartmental and compartmental methods. After the last dose, Cb was greater than Cp. Importantly, Cb, but not Cp, was quantifiable in all but one subject at 3 weeks. The blood area under the curve during a 24-h dosing interval (AUC24) was ∼2-fold greater than the plasma AUC24, but simulations suggested that Cb was not at steady state by day 3. Upon exploration of numerous models, an empirical 3-compartment model adequately described Cp and Cb, but Cp was somewhat underestimated. Intercompartmental clearance (CL; likely representing cells) was lower than apparent oral CL (18 versus 118 liters/h). Plasma, peripheral, and cell compartmental volumes were 439 liters, 2,980 liters, and 3,084 liters, respectively. Interindividual variability in CL was low (26.2%), while the volume of distribution variability was high (107%). This is the first report to describe AZI Cb in healthy subjects, the distribution parameters between Cp and Cb, and AZI retention in blood for up to 3 weeks following 3 daily doses. The model can be used to predict Cb from Cp for AZI under various dosing regimens. (This study has been registered at ClinicalTrials.gov under registration no. NCT01026064.) PMID:23629714

  1. AN EXAMPLE OF MODEL STRUCTURE DIFFERENCES USING SENSITIVITY ANALYSES IN PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELS OF TRICHLOROETHYLENE IN HUMANS

    EPA Science Inventory

    Abstract Trichloroethylene (TCE) is an industrial chemical and an environmental contaminant. TCE and its metabolites may be carcinogenic and affect human health. Physiologically based pharmacokinetic (PBPK) models that differ in compartmentalization are developed for TCE metabo...

  2. Validation of a two-compartment model of ventilation/perfusion distribution.

    PubMed

    Loeppky, Jack A; Caprihan, Arvind; Altobelli, Stephen A; Icenogle, Milton V; Scotto, Pietro; Vidal Melo, Marcos F

    2006-03-28

    Ventilation (V (A)) to perfusion (Q ) heterogeneity (V (A)/Q ) analyses by a two-compartment lung model (2C), utilizing routine gas exchange measurements and a computer solution to account for O(2) and CO(2) measurements, were compared with multiple inert gas elimination technique (MIGET) analyses and a multi-compartment (MC) model. The 2C and MC estimates of V (A)/Q mismatch were obtained in 10 healthy subjects, 43 patients having chronic obstructive pulmonary disease (COPD) and in 14 dog experiments where hemodynamics and acid-base status were manipulated with gas mixtures, fluid loading and tilt-table stressors. MIGET comparisons with 2C were made on 6 patients and 32 measurements in healthy subjects before and after exercise at normoxia and altitude hypoxia. Statistically significant correlations for logarithmic standard deviations of V (A)/Q distributions (SD(V (A)/Q )) were obtained for all 2C comparisons, with similar values between 2C and both other methods in the 1.1-1.5 range, compatible with mild to moderate COPD. 2C tended to overestimate MC and MIGET values at low and underestimate them at high SD(V (A)/Q ) values. SD(V (A)/Q ) weighted by Q agreed better with MC and MIGET estimates in the normal range, whereas SD(V (A)/Q ) weighted by V (A) was closer to MC at higher values because the V (A)-weighted SD(V (A)/Q ) is related to blood-to-gas PCO(2) differences that are elevated in disease, thereby allowing better discrimination. The 2C model accurately described functional V (A)/Q characteristics in 26 normal and bronchoconstricted dogs during non-steady state rebreathing and could be used to quantify the effect of reduced O(2) diffusing capacity in diseased lungs. These comparisons indicate that 2C adequately describes V (A)/Q mismatch and can be useful in clinical or experimental situations where other techniques are not feasible. PMID:16024300

  3. A pharmacokinetic/pharmacodynamic model for AMG 416, a novel calcimimetic peptide, following a single intravenous dose in healthy subjects.

    PubMed

    Shen, Jun; Xiao, Jim; Pickthorn, Karen; Huang, Saling; Bell, Gregory; Vick, Andrew; Chen, Ping

    2014-10-01

    AMG 416 is a novel peptide agonist of the calcium-sensing receptor. In support of the clinical development program, a pharmacokinetic (PK)/pharmacodynamic (PD) model was developed to describe the relationship between plasma AMG 416 levels and serum intact parathyroid hormone (iPTH) concentrations in healthy male subjects. AMG 416 plasma concentrations were characterized by a three-compartment linear PK model, while serum iPTH levels were described by an indirect response model with drug effect on the production of iPTH characterized with an inhibitory Emax model. The production of iPTH was modeled by a circadian rhythm function. The systemic clearance of plasma AMG 416 was estimated to be 6.94 L/h. Two sine functions best described iPTH circadian rhythm with an amplitude estimated to be 0.15 and 0.08, respectively. The maximum response Emax and the potency parameter EC50 were estimated to be 0.69 and 21.0 ng/mL, respectively. This work improved our understanding of the interaction between AMG 416 PK and iPTH concentrations in healthy adult male subjects. Data suggest additional PK/PD studies with AMG 416 are warranted in the hemodialysis population. PMID:24752908

  4. Pharmacokinetics of ricobendazole in calves.

    PubMed

    Formentini, E A; Mestorino, O N; Mariño, E L; Errecalde, J O

    2001-06-01

    The pharmacokinetics of ricobendazole (RBZ) and its major metabolite albendazole sulphone (ABZSO2) were studied in six calves, after administration of RBZ (7.5 mg/kg), using a 10% experimental solution by the intravenous (i.v.) route, a 10% commercial solution by the subcutaneous (s.c.) route, and a 10% experimental suspension by the intraruminal (i.r.) route. Blood samples were drawn during a 60-h period. Plasma drug and metabolite concentrations were determined by HPLC. The pharmacokinetic evaluation in each case was prepared by weighted least-squares nonlinear regression analysis. Ricobendazole i.v. data were best fitted by a two-compartment model. The best pharmacokinetic exponents and coefficients were estimated, and the pharmacokinetic variables for RBZ and ABZSO2 were calculated from them. Similar patterns of plasma disposition were found for RBZ after i.r. and s.c. administration, suggesting delayed release from the s.c. site resembling the slow release of the drug from the rumen. PMID:11442798

  5. Population pharmacokinetic models for cefuroxime and metronidazole used in combination as prophylactic agents in colorectal surgery: Model-based evaluation of standard dosing regimens.

    PubMed

    Asín-Prieto, Eduardo; Soraluce, Amaia; Trocóniz, Iñaki F; Campo Cimarras, Eugenia; Sáenz de Ugarte Sobrón, Jaione; Rodríguez-Gascón, Alicia; Isla, Arantxazu

    2015-05-01

    The antibiotics used for prophylaxis in colorectal surgery must maintain appropriate plasma concentrations during the entire surgery to avoid surgical site infections caused by aerobes and anaerobes; cefuroxime plus metronidazole is one of the combinations used. The aim of this study was to evaluate the adequacy of cefuroxime plus metronidazole administration as prophylaxis in colorectal surgery. In total, 63 patients electively undergoing rectal or colon surgery were administered 1500mg of cefuroxime and 1500mg of metronidazole in 15-min and 1-h infusions, respectively, prior to surgery. Blood samples were withdrawn during and after surgery for determination of plasma concentrations by high-performance liquid chromatography. Population pharmacokinetic models were developed using NONMEM 7.2.0. Pharmacokinetic/pharmacodynamic (PK/PD) simulations were performed to explore the ability of different dosage regimens to achieve the pharmacodynamic targets. Pharmacokinetics for both antibiotics were best described by a two-compartment model. Elimination of cefuroxime was conditioned by creatinine clearance (CLCr). The half-life of cefuroxime was 1.5h for patients with normal renal function and 4.9h in patients with renal impairment. Elimination and distribution of metronidazole were affected by patient body weight (BW). PK/PD analysis revealed that a single-dose protocol of 1500mg of cefuroxime and metronidazole is adequate in short surgeries (≤2h). However, for longer surgeries, recommendations are suggested depending on the patient's CLCr and BW. Additional doses of cefuroxime are needed for patients with moderate renal impairment or those presenting normal renal function. For metronidazole, an additional dose is needed for patients with a BW of 90kg. PMID:25758019

  6. Human plasma concentrations of five cytochrome P450 probes extrapolated from pharmacokinetics in dogs and minipigs using physiologically based pharmacokinetic modeling.

    PubMed

    Shida, Satomi; Yamazaki, Hiroshi

    2016-09-01

    The pharmacokinetics of cytochrome P450 probes in humans can be extrapolated from corresponding data in cynomolgus monkeys using simplified physiologically based pharmacokinetic (PBPK) modeling. In the current study, despite some species difference in drug clearances, this modeling methodology was adapted to estimate human plasma concentrations of P450 probes based on data from commonly used medium-sized experimental animals, namely dogs and minipigs. Using known species allometric scaling factors and in vitro metabolic clearance data, the observed plasma concentrations of slowly eliminated caffeine and warfarin and rapidly eliminated omeprazole, metoprolol and midazolam in two young dogs were scaled to human oral monitoring equivalents. Using the same approach, the previously reported pharmacokinetics of the five P450 probes in minipigs was also scaled to human monitoring equivalents. The human plasma concentration profiles of the five P450 probes estimated by the simplified human PBPK models based on observed/reported pharmacokinetics in dogs/minipigs were consistent with previously published pharmacokinetic data in humans. These results suggest that dogs and minipigs, in addition to monkeys, could be suitable models for humans during research into new drugs, especially when used in combination with simple PBPK models. PMID:26652678

  7. 77 FR 5990 - Special Conditions: Learjet Inc., Model LJ-200-1A10 Airplane, Pilot-Compartment View Through...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... Learjet Model LJ-200-1A10 airplane was published in the Federal Register on October 14, 2011 (76 FR 63851... Airplane, Pilot-Compartment View Through Hydrophobic Windshield Coatings in Lieu of Windshield Wipers... or unusual design feature associated with hydrophobic windshield coatings in lieu of...

  8. Calculation of probabilities of transfer, recurrence intervals, and positional indices for linear compartment models. Environmental Sciences Division Publication no. 1544

    SciTech Connect

    Carney, J.H.; DeAngelis, D.L.; Gardner, R.H.; Mankin, J.B.; Post, W.M.

    1981-02-01

    Six indices are presented for linear compartment systems that quantify the probable pathways of matter or energy transfer, the likelihood of recurrence if the model contains feedback loops, and the number of steps (transfers) through the system. General examples are used to illustrate how these indices can simplify the comparison of complex systems or organisms in unrelated systems.

  9. A PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR intravenous and ingested DIMETHYLARSINIC ACID (DMAV) IN MICE.

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model for the organoarsenical dimethylarsinic acid (DMA(V)) was developed in mice. The model was calibrated using tissue time course data from multiple tissues in mice administered DMA(V) intravenously. The final model structure was ...

  10. FRAMEWORK FOR EVALUATION OF PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELS FOR USE IN SAFETY OR RISK ASSESSMENT

    EPA Science Inventory

    ABSTRACT

    Proposed applications of increasingly sophisticated biologically-based computational models, such as physiologically-based pharmacokinetic (PBPK) models, raise the issue of how to evaluate whether the models are adequate for proposed uses including safety or risk ...

  11. Compartment modeling of dynamic brain PET—The impact of scatter corrections on parameter errors

    SciTech Connect

    Häggström, Ida Karlsson, Mikael; Larsson, Anne; Schmidtlein, C. Ross

    2014-11-01

    Purpose: The aim of this study was to investigate the effect of scatter and its correction on kinetic parameters in dynamic brain positron emission tomography (PET) tumor imaging. The 2-tissue compartment model was used, and two different reconstruction methods and two scatter correction (SC) schemes were investigated. Methods: The GATE Monte Carlo (MC) software was used to perform 2 × 15 full PET scan simulations of a voxelized head phantom with inserted tumor regions. The two sets of kinetic parameters of all tissues were chosen to represent the 2-tissue compartment model for the tracer 3′-deoxy-3′-({sup 18}F)fluorothymidine (FLT), and were denoted FLT{sub 1} and FLT{sub 2}. PET data were reconstructed with both 3D filtered back-projection with reprojection (3DRP) and 3D ordered-subset expectation maximization (OSEM). Images including true coincidences with attenuation correction (AC) and true+scattered coincidences with AC and with and without one of two applied SC schemes were reconstructed. Kinetic parameters were estimated by weighted nonlinear least squares fitting of image derived time–activity curves. Calculated parameters were compared to the true input to the MC simulations. Results: The relative parameter biases for scatter-eliminated data were 15%, 16%, 4%, 30%, 9%, and 7% (FLT{sub 1}) and 13%, 6%, 1%, 46%, 12%, and 8% (FLT{sub 2}) for K{sub 1}, k{sub 2}, k{sub 3}, k{sub 4}, V{sub a}, and K{sub i}, respectively. As expected, SC was essential for most parameters since omitting it increased biases by 10 percentage points on average. SC was not found necessary for the estimation of K{sub i} and k{sub 3}, however. There was no significant difference in parameter biases between the two investigated SC schemes or from parameter biases from scatter-eliminated PET data. Furthermore, neither 3DRP nor OSEM yielded the smallest parameter biases consistently although there was a slight favor for 3DRP which produced less biased k{sub 3} and K{sub i

  12. Physiologically based pharmacokinetic modeling of POPs in Greenlanders.

    PubMed

    Sonne, Christian; Gustavson, Kim; Rigét, Frank F; Dietz, Rune; Krüger, Tanja; Bonefeld-Jørgensen, Eva C

    2014-03-01

    Human exposure to persistent organic pollutants (POPs) and the potential health impact in the Arctic far from the emission sources have been highlighted in numerous studies. As a supplement to human POP biomonitoring studies, a physiologically based pharmacokinetic (PBPK) model was set up to estimate the fate of POPs in Greenlandic Inuit's liver, blood, muscle and adipose tissue following long-term exposure to traditional Greenlandic diet. The PBPK model described metabolism, excretion and POP accumulation on the basis of their physicochemical properties and metabolic rates in the organisms. Basic correlations between chemically analyzed blood POP concentrations and calculated daily POP intake from food questionnaire of 118 middle age (18-35years) Greenlandic Inuits from four cities in West Greenland (Qaanaaq: n=40; Qeqertarsuaq: n=36; Nuuk: n=20; Narsaq: n=22) taken during 2003 to 2006 were analyzed. The dietary items included were polar bear, caribou, musk oxen, several marine species such as whales, seals, bird and fish as well as imported food. The contaminant concentrations of the dietary items as well as their chemical properties, uptake, biotransformation and excretion allowed us to estimate the POP concentration in liver, blood, muscle and adipose tissue following long-term exposure to the traditional Greenlandic diet using the PBPK model. Significant correlations were found between chemically analyzed POP blood concentrations and calculated daily intake of POPs for Qeqertarsuaq, Nuuk and Narsaq Inuit but not for the northernmost settlement Qaanaaq, probably because the highest blood POP level was found in this district which might mask the interview-based POP calculations. Despite the large variation in circulating blood POP concentrations, the PBPK model predicted blood concentrations of a factor 2-3 within the actual measured values. Moreover, the PBPK model showed that estimated blood POP concentration increased significantly after consumption of meals

  13. Development of a physiologically based pharmacokinetic model for bisphenol A in pregnant mice

    SciTech Connect

    Kawamoto, Yuko; Matsuyama, Wakoto; Wada, Masahiro; Hishikawa, Junko; Chan, Melissa Pui Ling; Nakayama, Aki; Morisawa, Shinsuke

    2007-10-15

    Bisphenol A (BPA) is a weakly estrogenic monomer used to produce polymers for food contact and other applications, so there is potential for oral exposure of humans to trace amounts via ingestion. To date, no physiologically based pharmacokinetic (PBPK) model has been located for BPA in pregnant mice with or without fetuses. An estimate by a mathematical model is essential since information on humans is difficult to obtain experimentally. The PBPK model was constructed based on the pharmacokinetic data of our experiment following single oral administration of BPA to pregnant mice. The risk assessment of bisphenol A (BPA) on the development of human offspring is an important issue. There have been limited data on the exposure level of human fetuses to BPA (e.g. BPA concentration in cord blood) and no information is available on the pharmacokinetics of BPA in humans with or without fetuses. In the present study, we developed a physiologically based pharmacokinetic (PBPK) model describing the pharmacokinetics of BPA in a pregnant mouse with the prospect of future extrapolation to humans. The PBPK model was constructed based on the pharmacokinetic data of an experiment we executed on pregnant mice following single oral administration of BPA. The model could describe the rapid transfer of BPA through the placenta to the fetus and the slow disappearance from fetuses. The simulated time courses after three-time repeated oral administrations of BPA by the constructed model fitted well with the experimental data, and the simulation for the 10 times lower dose was also consistent with the experiment. This suggested that the PBPK model for BPA in pregnant mice was successfully verified and is highly promising for extrapolation to humans who are expected to be exposed more chronically to lower doses.

  14. Population pharmacokinetic modeling of plasma and intracellular ribavirin concentrations in patients with chronic hepatitis C virus infection.

    PubMed

    Wu, Liviawati S; Rower, Joseph E; Burton, James R; Anderson, Peter L; Hammond, Kyle P; Baouchi-Mokrane, Fafa; Everson, Gregory T; Urban, Thomas J; D'Argenio, David Z; Kiser, Jennifer J

    2015-04-01

    Ribavirin, a guanosine analog, is a broad-spectrum antiviral agent. Ribavirin has been a fundamental component of the treatment of hepatitis C virus (HCV) infection for decades, but there is a very limited understanding of the clinical pharmacology of this drug. Furthermore, it is associated with a major dose-limiting toxicity, hemolytic anemia. Ribavirin undergoes intracellular phosphorylation by host enzymes to ribavirin monophosphate (RMP), ribavirin diphosphate (RDP), and ribavirin triphosphate (RTP). The intracellular forms have been associated with antiviral and toxic effects in vitro, but the kinetics of these phosphorylated moieties have not been fully elucidated in vivo. We developed a model to characterize the plasma pharmacokinetics of ribavirin and the difference between intracellular phosphorylation kinetics in red cells (nonnucleated) and in peripheral blood mononuclear cells (nucleated). A time-independent two-compartment model with first-order absorption described the plasma data well. The cellular phosphorylation kinetics was described by a one-compartment model for RMP, with the formation rate driven by plasma concentrations and the first-order degradation rate. RDP and RTP rapidly reached equilibrium with RMP. Concomitant telaprevir use, inosine triphosphatase genetics, creatinine clearance, weight, and sex were significant covariates. The terminal ribavirin half-life in plasma and phosphorylated anabolites in cells was approximately 224 h. We found no evidence of time-dependent kinetics. These data provide a foundation for uncovering concentration-effect associations for ribavirin and determining the optimal dose and duration of this drug for use in combination with newer direct-acting HCV agents. (This study has been registered at ClinicalTrials.gov under registration no. NCT01097395.). PMID:25645847

  15. Development and validation of an in vitro pharmacokinetic/pharmacodynamic model to test the antibacterial efficacy of antibiotic polymer conjugates.

    PubMed

    Azzopardi, Ernest A; Ferguson, Elaine L; Thomas, David W

    2015-04-01

    This study describes the use of a novel, two-compartment, static dialysis bag model to study the release, diffusion, and antibacterial activity of a novel, bioresponsive dextrin-colistin polymer conjugate against multidrug resistant (MDR) wild-type Acinetobacter baumannii. In this model, colistin sulfate, at its MIC, produced a rapid and extensive drop in viable bacterial counts (<2 log10 CFU/ml at 4 h); however, a marked recovery was observed thereafter, with regrowth equivalent to that of control by 48 h. In contrast, dextrin-colistin conjugate, at its MIC, suppressed bacterial growth for up to 48 h, with 3 log10 CFU/ml lower bacterial counts after 48 h than those of controls. Doubling the concentration of dextrin-colistin conjugate (to 2× MIC) led to an initial bacterial killing of 3 log10 CFU/ml at 8 h, with a similar regrowth profile to 1× MIC treatment thereafter. The addition of colistin sulfate (1× MIC) to dextrin-colistin conjugate (1× MIC) resulted in undetectable bacterial counts after 4 h, followed by suppressed bacterial growth (3.5 log10 CFU/ml lower than that of control at 48 h). Incubation of dextrin-colistin conjugates with infected wound exudate from a series of burn patients (n = 6) revealed an increasing concentration of unmasked colistin in the outer compartment (OC) over time (up to 86.3% of the initial dose at 48 h), confirming that colistin would be liberated from the conjugate by endogenous α-amylase within the wound environment. These studies confirm the utility of this model system to simulate the pharmacokinetics of colistin formation in humans administered dextrin-colistin conjugates and further supports the development of antibiotic polymer conjugates in the treatment of MDR infections. PMID:25512401

  16. A physiologically based pharmacokinetic model for 2,4-toluenediamine leached from polyurethane foam-covered breast implants.

    PubMed Central

    Luu, H M; Hutter, J C; Bushar, H F

    1998-01-01

    Physiologically based pharmacokinetic (PBPK) modeling was used to assess the low-dose exposure of patients to the carcinogen 2, 4-toluenediamine (2,4-TDA) released from the degradation of the polyester urethane foam (PU) used in Meme silicone breast implants. The tissues are represented as five compartments: liver, kidney, gastrointestinal tract, slowly perfused tissues (e.g., fat), and richly perfused tissues (e.g., muscle). The PBPK model was fitted to the plasma and urine concentrations of 2,4-TDA and its metabolite 4-AAT (4-N-acetyl-2-amino toluene) in rats given low doses of 2, 4-TDA intravenously and subcutaneously. The rat model was extrapolated to simulate oral and implant routes in rats. After adjusting for human physiological parameters, the model was then used to predict the bioavailability of 2,4-TDA released from a typical 4.87-g polyester urethane foam implant found in a patient who weighed 58 kg with the Meme and had the breast implant for 10 years. A quantitative risk assessment for 2,4-TDA was performed and the polyester urethane foam did present an unreasonable risk to health for the patient. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9637796

  17. Use of Opportunistic Clinical Data and a Population Pharmacokinetic Model to Support Dosing of Clindamycin for Premature Infants to Adolescents

    PubMed Central

    Gonzalez, Daniel; Melloni, Chiara; Yogev, Ram; Poindexter, Brenda B.; Mendley, Susan R.; Delmore, Paula; Sullivan, Janice E.; Autmizguine, Julie; Lewandowski, Andrew; Harper, Barrie; Watt, Kevin M.; Lewis, Kenneth C.; Capparelli, Edmund V.; Benjamin, Daniel K.; Cohen-Wolkowiez, Michael

    2014-01-01

    Clindamycin is commonly prescribed to treat children with skin and skin structure infections (including those caused by community-acquired methicillin-resistant Staphylococcus aureus [CA-MRSA]), yet little is known about the pharmacokinetics (PK) across pediatric age groups. A population PK analysis was performed in NONMEM using samples collected in an opportunistic study from children receiving intravenous clindamycin per standard of care. The final model was used to optimize pediatric dosing to match adult exposure proven effective against CA-MRSA. A total of 194 plasma PK samples collected from 125 children were included in the analysis. Median age (range) was 3.3 years (0–20). Median dosing was 9.9 mg/kg/dose (3.8–15.1). A 1-compartment model described the data well. The final model included body weight and a sigmoidal maturation relationship between postmenstrual age (PMA) and clearance (CL): CL (L/h)=13.7*(weight/70)0.75*(PMA3.1/(43.63.1+PMA3.1)); V (L)=61.8*(weight/70). Maturation reached 50% adult CL values at ~44 weeks PMA. Our findings support age-based dosing. PMID:24949994

  18. DEVELOPMENT OF A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR PERCHLOROETHYLENE USING TISSUE CONCENTRATION-TIME DATA

    EPA Science Inventory

    The tissue disposition of perchloroethylene (PCE) was characterized experimentally in rats in order to: 1) btain input parameters from in vivo data for the development of a physiologically-based pharmacokinetic (PBPK) model; and 2) use the PBPK model to predict the deposition of ...

  19. Physiologically-based pharmacokinetic (PBPK) modeling to explore potential metabolic pathways of bromochloromethane in rats.

    EPA Science Inventory

    Bromochloromethane (BCM) is a volatile organic compound and a by-product of disinfection of water by chlorination. Physiologically based pharmacokinetic (PBPK) models are used in risk assessment applications and a PBPK model for BCM, Updated with F-344 specific input parameters,...

  20. SUITABILITY OF USING IN VITRO AND COMPUTATIONALLY ESTIMATED PARAMETERS IN SIMPLIFIED PHARMACOKINETIC MODELS

    EPA Science Inventory

    A challenge in PBPK model development is estimating the parameters for absorption, distribution, metabolism, and excretion of the parent compound and metabolites of interest. One approach to reduce the number of parameters has been to simplify pharmacokinetic models by lumping p...

  1. Ethnic and genetic factors in methadone pharmacokinetics: A population pharmacokinetic study☆

    PubMed Central

    Bart, Gavin; Lenz, Scott; Straka, Robert J.; Brundage, Richard C.

    2014-01-01

    Background Treatment of opiate use disorders with methadone is complicated by wide interindividual variability in pharmacokinetics. To identify potentially contributing covariates in methadone pharmacokinetics, we used population pharmacokinetic modeling to estimate clearance (CL/F) and volume of distribution (V/F) for each methadone enantiomer in an ethnically diverse methadone maintained population. Methods Plasma levels of the opiate-active R-methadone and opiate-inactive S-methadone were measured in 206 methadone maintained subjects approximately two and twenty-three hours after a daily oral dose of racmethadone. A linear one-compartment population pharmacokinetic model with first-order conditional estimation with interaction (FOCE-I) was used to evaluate methadone CL/F and V/F. The influence of covariates on parameter estimates was evaluated using stepwise covariate modeling. Covariates included ethnicity, gender, weight, BMI, age, methadone dose, and 21 single nucleotide polymorphisms in genes implicated in methadone pharmacokinetics. Results In the final model, for each enantiomer, Hmong ethnicity reduced CL/F by approximately 30% and the rs2032582 (ABCB1 2677G > T/A) GG genotype was associated with a 20% reduction in CL/F. The presence of the rs3745274 minor allele (CYP2B6 515G > T) reduced CL/F by up to 20% for S-methadone only. A smaller effect of age was noted on CL/F for R-methadone. Conclusion This is the first report showing the influence of the rs2032582 and rs3745274 variants on methadone pharmacokinetics rather than simply dose requirements or plasma levels. Population pharmacokinetics is a valuable method for identifying the influences on methadone pharmacokinetic variability. PMID:25456329

  2. Role of the animal model on the pharmacokinetics of equine-derived antivenoms.

    PubMed

    Rojas, Alicia; Vargas, Mariángela; Ramírez, Nils; Estrada, Ricardo; Segura, Alvaro; Herrera, María; Villalta, Mauren; Gómez, Aarón; Gutiérrez, José María; León, Guillermo

    2013-08-01

    Antivenom pharmacokinetics has been studied in heterologous models in which the animal species used as immunoglobulin source is different from that used as recipient. In these models, after intravenous administration of antivenom, the plasma concentration of immunoglobulins shows a rapid initial declining-phase followed by a slower terminal-phase, which has been associated with antivenom distribution and elimination, respectively. We have compared pharmacokinetic parameters for equine-derived antivenom in homologous (horse) and heterologous (cow) models. It was found that the maximum concentration is lower in cows than in horses. Additionally, the steady-state distribution volume is higher in cows as compared to horses. On the other hand, models were not different in the time required to reach the maximum concentration, the area under the concentration/time curve, the half-life of decay during the slowest phase, the systemic clearance and the mean residence time. Similar results were obtained in a rabbit model, in which the pharmacokinetics was also affected by passive immunization of rabbits with anti-equine IgG. We conclude that, in addition to other physiological differences (e.g. cardiac frequency, plasmatic volume, glomerular filtration rate, etc.) between animal models, the ability to remove foreign immunoglobulins might influence the way in which the plasma concentration of antivenom decreases over time, thereby distorting the pharmacokinetic predictions based on non-compartmental models. PMID:23557996

  3. Steady-state volume of distribution of two-compartment models with simultaneous linear and saturated elimination.

    PubMed

    Wu, Xiaotian; Nekka, Fahima; Li, Jun

    2016-08-01

    The model-independent estimation of physiological steady-state volume of distribution ([Formula: see text]), often referred to non-compartmental analysis (NCA), is historically based on the linear compartment model structure with central elimination. However the NCA-based steady-state volume of distribution ([Formula: see text]) cannot be generalized to more complex models. In the current paper, two-compartment models with simultaneous first-order and Michaelis-Menten elimination are considered. In particular, two indistinguishable models [Formula: see text] and [Formula: see text], both having central Michaelis-Menten elimination, while first-order elimination exclusively either from central or peripheral compartment, are studied. The model-based expressions of the steady-state volumes of distribution [Formula: see text] and their relationships to NCA-based [Formula: see text] are derived. The impact of non-linearity and peripheral elimination is explicitly delineated in the formulas. Being concerned with model identifiability and indistinguishability issues, an interval estimate of [Formula: see text] is suggested. PMID:27405818

  4. Artifacts in dilution pharmacokinetic models caused by adherent bacteria.

    PubMed Central

    Haag, R; Lexa, P; Werkhäuser, I

    1986-01-01

    Liquid cultures of a Pseudomonas aeruginosa strain in Mueller-Hinton broth diluted at rates higher than the bacterial growth rate showed the expected decrease in CFU only for 1 to 2 h. Later the CFU started to increase. This phenomenon can be explained by a hypothesis that assumes that the bacteria multiply in two different compartments. From the first compartment, which comprises bacteria homogeneously distributed in the broth, cells are eliminated at a rate that is dependent on the dilution and growth rates. Concomitantly, the second compartment is formed as a nondilutable adherent population on the surface of the culture vessel. Eventually, only cells stemming from that population appeared in the medium and were subsequently diluted. This hypothesis can be described mathematically by a linear combination of two exponential functions. The calculated values fit the experimental data well. Because similar CFU versus time curves were also found with other strains, care should be taken in interpreting results of experiments performed in liquid cultures and evaluated in terms of CFU. One should bear in mind that within a liquid culture an adherent population may exist, which differs in size according to selective influences (dilution, addition of antibiotics, etc.). This may give rise to artificial and unexpected results. PMID:3089140

  5. Population Pharmacokinetics of Intranasal Scopolamine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Putcha, L.

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.

  6. Pharmacokinetic/Pharmacodynamic Investigation of Colistin against Pseudomonas aeruginosa Using an In Vitro Model

    PubMed Central

    Bergen, Phillip J.; Bulitta, Jurgen B.; Forrest, Alan; Tsuji, Brian T.; Li, Jian; Nation, Roger L.

    2010-01-01

    Colistin plays a key role in treatment of serious infections by Pseudomonas aeruginosa. The aims of this study were to (i) identify the pharmacokinetic/pharmacodynamic (PK/PD) index (i.e., the area under the unbound concentration-time curve to MIC ratio [ƒAUC/MIC], the unbound maximal concentration to MIC ratio [ƒCmax/MIC], or the cumulative percentage of a 24-h period that unbound concentrations exceed the MIC [ƒT>MIC]) that best predicts colistin efficacy and (ii) determine the values for the predictive PK/PD index required to achieve various magnitudes of killing effect. Studies were conducted in a one-compartment in vitro PK/PD model for 24 h using P. aeruginosa ATCC 27853, PAO1, and the multidrug-resistant mucoid clinical isolate 19056 muc. Six intermittent dosing intervals, with a range of ƒCmax colistin concentrations, and two continuous infusion regimens were examined. PK/PD indices varied from 0.06 to 18 for targeted ƒCmax/MIC, 0.36 to 312 for ƒAUC/MIC, and 0 to 100% for ƒT>MIC. A Hill-type model was fit to killing effect data, which were expressed as the log10 ratio of the area under the CFU/ml curve for treated regimens versus control. With ƒCmax values equal to or above the MIC, rapid killing was observed following the first dose; substantial regrowth occurred by 24 h with most regimens. The overall killing effect was best correlated with ƒAUC/MIC (R2 = 0.931) compared to ƒCmax/MIC (R2 = 0.868) and ƒT>MIC (R2 = 0.785). The magnitudes of ƒAUC/MIC required for 1- and 2-log10 reductions in the area under the CFU/ml curve relative to growth control were 22.6 and 30.4, 27.1 and 35.7, and 5.04 and 6.81 for ATCC 27853, PAO1, and 19056 muc, respectively. The PK/PD targets identified will assist in designing optimal dosing strategies for colistin. PMID:20585118

  7. Application of a Bayesian approach to physiological modelling of mavoglurant population pharmacokinetics.

    PubMed

    Wendling, Thierry; Dumitras, Swati; Ogungbenro, Kayode; Aarons, Leon

    2015-12-01

    Mavoglurant (MVG) is an antagonist at the metabotropic glutamate receptor-5 currently under clinical development at Novartis Pharma AG for the treatment of central nervous system diseases. The aim of this study was to develop and optimise a population whole-body physiologically-based pharmacokinetic (WBPBPK) model for MVG, to predict the impact of drug-drug interaction (DDI) and age on its pharmacokinetics. In a first step, the model was fitted to intravenous (IV) data from a clinical study in adults using a Bayesian approach. In a second step, the optimised model was used together with a mechanistic absorption model for exploratory Monte Carlo simulations. The ability of the model to predict MVG pharmacokinetics when orally co-administered with ketoconazole in adults or administered alone in 3-11 year-old children was evaluated using data from three other clinical studies. The population model provided a good description of both the median trend and variability in MVG plasma pharmacokinetics following IV administration in adults. The Bayesian approach offered a continuous flow of information from pre-clinical to clinical studies. Prediction of the DDI with ketoconazole was consistent with the results of a non-compartmental analysis of the clinical data (threefold increase in systemic exposure). Scaling of the WBPBPK model allowed reasonable extrapolation of MVG pharmacokinetics from adults to children. The model can be used to predict plasma and brain (target site) concentration-time profiles following oral administration of various immediate-release formulations of MVG alone or when co-administered with other drugs, in adults as well as in children. PMID:26231433

  8. Pharmacokinetic Model of the Transport of Fast-Acting Insulin From the Subcutaneous and Intradermal Spaces to Blood.

    PubMed

    Lv, Dayu; Kulkarni, Sandip D; Chan, Alice; Keith, Stephen; Pettis, Ron; Kovatchev, Boris P; Farhi, Leon S; Breton, Marc D

    2015-07-01

    Pharmacokinetic (PK) models describing the transport of insulin from the injection site to blood assist clinical decision making and are part of in silico platforms for developing and testing of insulin delivery strategies for treatment of patients with diabetes. The ability of these models to accurately describe all facets of the in vivo insulin transport is therefore critical for their application. Here, we propose a new model of fast-acting insulin analogs transport from the subcutaneous and intradermal spaces to blood that can accommodate clinically observed biphasic appearance and delayed clearance of injected insulin, 2 phenomena that are not captured by existing PK models. To develop the model we compare 9 insulin transport PK models which describe hypothetical insulin delivery pathways potentially capable of approximating biphasic appearance of exogenous insulin. The models are tested with respect to their ability to describe clinical data from 10 healthy volunteers which received 1 subcutaneous and 2 intradermal insulin injections on 3 different occasions. The optimal model, selected based on information and posterior identifiability criteria, assumes that insulin is delivered at the administrative site and is then transported to the bloodstream via 2 independent routes (1) diffusion-like process to the blood and (2) combination of diffusion-like processes followed by an additional compartment before entering the blood. This optimal model accounts for biphasic appearance and delayed clearance of exogenous insulin. It agrees better with the clinical data as compared to commonly used models and is expected to improve the in silico development and testing of insulin treatment strategies, including artificial pancreas systems. PMID:25759184

  9. Pharmacokinetic Model of the Transport of Fast-Acting Insulin From the Subcutaneous and Intradermal Spaces to Blood

    PubMed Central

    Lv, Dayu; Kulkarni, Sandip D.; Chan, Alice; Keith, Stephen; Pettis, Ron; Kovatchev, Boris P.; Farhi, Leon S.; Breton, Marc D.

    2015-01-01

    Pharmacokinetic (PK) models describing the transport of insulin from the injection site to blood assist clinical decision making and are part of in silico platforms for developing and testing of insulin delivery strategies for treatment of patients with diabetes. The ability of these models to accurately describe all facets of the in vivo insulin transport is therefore critical for their application. Here, we propose a new model of fast-acting insulin analogs transport from the subcutaneous and intradermal spaces to blood that can accommodate clinically observed biphasic appearance and delayed clearance of injected insulin, 2 phenomena that are not captured by existing PK models. To develop the model we compare 9 insulin transport PK models which describe hypothetical insulin delivery pathways potentially capable of approximating biphasic appearance of exogenous insulin. The models are tested with respect to their ability to describe clinical data from 10 healthy volunteers which received 1 subcutaneous and 2 intradermal insulin injections on 3 different occasions. The optimal model, selected based on information and posterior identifiability criteria, assumes that insulin is delivered at the administrative site and is then transported to the bloodstream via 2 independent routes (1) diffusion-like process to the blood and (2) combination of diffusion-like processes followed by an additional compartment before entering the blood. This optimal model accounts for biphasic appearance and delayed clearance of exogenous insulin. It agrees better with the clinical data as compared to commonly used models and is expected to improve the in silico development and testing of insulin treatment strategies, including artificial pancreas systems. PMID:25759184

  10. Dixon sequence with superimposed model-based bone compartment provides highly accurate PET/MR attenuation correction of the brain

    PubMed Central

    Koesters, Thomas; Friedman, Kent P.; Fenchel, Matthias; Zhan, Yiqiang; Hermosillo, Gerardo; Babb, James; Jelescu, Ileana O.; Faul, David; Boada, Fernando E.; Shepherd, Timothy M.

    2016-01-01

    Simultaneous PET/MR of the brain is a promising new technology for characterizing patients with suspected cognitive impairment or epilepsy. Unlike CT though, MR signal intensities do not provide a direct correlate to PET photon attenuation correction (AC) and inaccurate radiotracer standard uptake value (SUV) estimation could limit future PET/MR clinical applications. We tested a novel AC method that supplements standard Dixon-based tissue segmentation with a superimposed model-based bone compartment. Methods We directly compared SUV estimation for MR-based AC methods to reference CT AC in 16 patients undergoing same-day, single 18FDG dose PET/CT and PET/MR for suspected neurodegeneration. Three Dixon-based MR AC methods were compared to CT – standard Dixon 4-compartment segmentation alone, Dixon with a superimposed model-based bone compartment, and Dixon with a superimposed bone compartment and linear attenuation correction optimized specifically for brain tissue. The brain was segmented using a 3D T1-weighted volumetric MR sequence and SUV estimations compared to CT AC for whole-image, whole-brain and 91 FreeSurfer-based regions-of-interest. Results Modifying the linear AC value specifically for brain and superimposing a model-based bone compartment reduced whole-brain SUV estimation bias of Dixon-based PET/MR AC by 95% compared to reference CT AC (P < 0.05) – this resulted in a residual −0.3% whole-brain mean SUV bias. Further, brain regional analysis demonstrated only 3 frontal lobe regions with SUV estimation bias of 5% or greater (P < 0.05). These biases appeared to correlate with high individual variability in the frontal bone thickness and pneumatization. Conclusion Bone compartment and linear AC modifications result in a highly accurate MR AC method in subjects with suspected neurodegeneration. This prototype MR AC solution appears equivalent than other recently proposed solutions, and does not require additional MR sequences and scan time. These

  11. 76 FR 30294 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G250 Airplane Pilot Compartment View...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... G250 Airplane Pilot Compartment View--Hydrophobic Coatings in Lieu of Windshield Wipers AGENCY: Federal... windshield coating, in lieu of windshield wipers. The applicable airworthiness regulations do not contain... window coatings in lieu of windshield wipers. Type Certification Basis Under the provisions of 14 CFR...

  12. DEVELOPMENT OF A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR DELTAMETHRIN IN DEVELOPING SPRAGUE-DAWLEY RATS

    EPA Science Inventory

    This work describes the development of a physiologically based pharmacokinetic (PBPK) model of deltamethrin, a type II pyrethroid, in the developing male Sprague-Dawley rat. Generalized Michaelis-Menten equations were used to calculate metabolic rate constants and organ weights ...

  13. ESTIMATING CHLOROFORM BIOTRANSFORMATION IN F-344 RAT LIVER USING IN VITRO TECHNIQUES AND PHARMACOKINETIC MODELING

    EPA Science Inventory

    ESTIMATING CHLOROFORM BIOTRANSFORMATION IN F-344 RAT LIVER USING IN VITRO TECHNIQUES AND PHARMACOKINETIC MODELING

    Linskey, C.F.1, Harrison, R.A.2., Zhao, G.3., Barton, H.A., Lipscomb, J.C4., and Evans, M.V2., 1UNC, ESE, Chapel Hill, NC ; 2USEPA, ORD, NHEERL, RTP, NC; 3 UN...

  14. Feasibility of Metabolic Parameter Estimation in Pharmacokinetic Models of Carbon Tetrachloride Exposure in Rats

    EPA Science Inventory

    Carbon tetrachloride (CCl4) is a toxic chemical that was once used in degreasers and detergents, and some remnants of the chemical may be present in the water supply. Physiologically based pharmacokinetic (PBPK) modeling can assist in understanding resulting internal d...

  15. In vitro and in vivo experimental data for pyrethroid pharmacokinetic models: the case of bifenthrin

    EPA Science Inventory

    Pyrethroids are a class of neurotoxic synthetic pesticides. Exposure to pyrethroids has increased due to declining use of other classes of pesticides. Our studies are focused on generating in vitro and in vivo data for the development of pharmacokinetic models for pyrethroids. Us...

  16. PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURES TO METHYL TERTIARY-BUTYL ETHER

    EPA Science Inventory

    Humans can be exposed by inhalation, ingestion, or dermal absorption to methyl tertiary-butyl ether (MTBE), an oxygenated fuel additive, from contaminated water sources. The purpose of this research was to develop a physiologically based pharmacokinetic model describing in human...

  17. Physiologically-based pharmacokinetic (PBPK) modeling to explore potential metabolic pathways of bromochloromethane in rats

    EPA Science Inventory

    Bromochloromethane (BCM) is a volatile compound and a by-product of disinfection of water by ofchlorination. Physiologically based pharmacokinetic (PBPK) models are used in risk assessment applications. An updated PBPKmodel for BCM is generated and applied to hypotheses testing c...

  18. APPLICATION OF IN VITRO BIOTRANSFORMATION DATA AND PHARMACOKINETIC MODELING TO RISK ASSESSMENT

    EPA Science Inventory

    The adverse biological effects of toxic substances are dependent upon the exposure concentration and the duration of exposure. Pharmacokinetic models can quantitatively relate the external concentration of a toxicant in the environment to the internal dose of the toxicant in the ...

  19. A physiologically-based pharmacokinetic model for disposition of 2,3,7,8-TCDD in fathead minnow and medaka.

    PubMed

    Parhizgari, Zahra; Li, James

    2014-05-01

    A physiologically-based pharmacokinetic model was developed for the disposition of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) in 2 fish species--fathead minnow and medaka. The model was developed based on the empirical data on disposition of dioxins in fish tissues, as well as existing knowledge on the mechanisms of uptake, distribution, storage, and elimination of dioxins in various species (other than fish). The present study examined the applicability of mechanisms known to occur in other species for fish and concluded that the same mechanisms defined for disposition of 2,3,7,8-TCDD in (mostly) rodents can be applicable for the 2 fish species examined as well. Parameter values for the model were selected and/or calibrated using available databases. Model compartments included the gill, kidney, liver, and other richly-perfused tissues, as well as fat and other slowly-perfused tissues. The model was calibrated using 2 independent datasets for exposure of fathead minnow and medaka to 2,3,7,8-TCDD in water. The initial values of the model parameters were selected from several sources, and calibrated to represent the 2 exposure datasets. With very few exceptions, the estimated parameter values for the 2 species were comparable, and the final predictions were in strong agreement with the observations. The model developed in the present study can therefore be used in the prediction of the body burden of 2,3,7,8-TCDD in fathead minnow and medaka. Uncertainty in the model prediction as a result of variability in input parameters is discussed for the parameters with the highest impacts on the model outcome. PMID:24375498

  20. A compartment model of VEGF distribution in blood, healthy and diseased tissues

    PubMed Central

    Stefanini, Marianne O; Wu, Florence TH; Mac Gabhann, Feilim; Popel, Aleksander S

    2008-01-01

    Background Angiogenesis is a process by which new capillaries are formed from pre-existing blood vessels in physiological (e.g., exercise, wound healing) or pathological (e.g., ischemic limb as in peripheral arterial disease, cancer) contexts. This neovascular mechanism is mediated by the vascular endothelial growth factor (VEGF) family of cytokines. Although VEGF is often targeted in anti-angiogenic therapies, there is little knowledge about how its concentration may vary between tissues and the vascular system. A compartment model is constructed to study the VEGF distribution in the tissue (including matrix-bound, cell surface receptor-bound and free VEGF isoforms) and in the blood. We analyze the sensitivity of this distribution to the secretion rate, clearance rate and vascular permeability of VEGF. Results We find that, in a physiological context, VEGF concentration varies approximately linearly with the VEGF secretion rate. VEGF concentration in blood but not in tissue is dependent on the vascular permeability of healthy tissue. Model simulations suggest that relative VEGF increases are similar in blood and tissue during exercise and return to baseline within several hours. In a pathological context (tumor), we find that blood VEGF concentration is relatively insensitive to increased vascular permeability in tumors, to the secretion rate of VEGF by tumors and to the clearance. However, it is sensitive to the vascular permeability in the healthy tissue. Finally, the VEGF distribution profile in healthy tissue reveals that about half of the VEGF is complexed with the receptor tyrosine kinase VEGFR2 and the co-receptor Neuropilin-1. In diseased tissues, this binding can be reduced to 15% while VEGF bound to the extracellular matrix and basement membranes increases. Conclusion The results are of importance for physiological conditions (e.g., exercise) and pathological conditions (e.g., peripheral arterial disease, coronary artery disease, cancer). This

  1. Pharmacokinetics of ambroxol and clenbuterol tablets in healthy Chinese volunteers

    PubMed Central

    Yang, Yong-Ge; Song, Li-Xue; Jiang, Nan; Xu, Xue-Ting; Di, Xiao-Hui; Zhang, Mei

    2015-01-01

    Objective: To investigate the pharmacokinetics of Ambroxol and Clenbuterol Tablets in Chinese healthy volunteers after a single or multiple dosages oral administration. Methods: A total of 9 healthy adult subjects were given Ambroxol and Clenbuterol Tablets in a single dosage or multiple dosages respectively. LC/MS/MS were used for the determination of Ambroxol and Clenbuterol of in plasma. The important pharmacokinetic parameters were calculated by DAS 2.0 software (compartment model). Results: Single and multiple dosage groups of Ambroxol and Clenbuterol were all fitted two-compartment model. The pharmacokinetics fitted first order kinetics process. No difference in pharmacokinetics of Ambroxol in single and multiple dosage groups volunteers was observed, Which showed no marked changes, suggesting that multiple dosing did not influence the velocity of drug metabolism. Moreover, parameters of Clenbuterol had significant difference between the single and multiple dosage groups (P<0.05), showing there was accumulation in the body. 9 subjects had completed single or multiple dosages oral administration test, with no adverse drug reactions appeared during the test. Conclusion: There was no obvious accumulation of Ambroxol after repeated dosing. But obvious accumulation of Clenbuterol was noted in multiple-dose administration. The established method is sensitive, accurate, reliable and specific, and it can meet the requirement of clinical pharmacokinetic trial. PMID:26770490

  2. Fourier domain closed-form formulas for estimation of kinetic parameters in reversible multi-compartment models

    PubMed Central

    2012-01-01

    Background Compared with static imaging, dynamic emission computed tomographic imaging with compartment modeling can quantify in vivo physiologic processes, providing useful information about molecular disease processes. Dynamic imaging involves estimation of kinetic rate parameters. For multi-compartment models, kinetic parameter estimation can be computationally demanding and problematic with local minima. Methods This paper offers a new perspective to the compartment model fitting problem where Fourier linear system theory is applied to derive closed-form formulas for estimating kinetic parameters for the two-compartment model. The proposed Fourier domain estimation method provides a unique solution, and offers very different noise response as compared to traditional non-linear chi-squared minimization techniques. Results The unique feature of the proposed Fourier domain method is that only low frequency components are used for kinetic parameter estimation, where the DC (i.e., the zero frequency) component in the data is treated as the most important information, and high frequency components that tend to be corrupted by statistical noise are discarded. Computer simulations show that the proposed method is robust without having to specify the initial condition. The resultant solution can be fine tuned using the traditional iterative method. Conclusions The proposed Fourier-domain estimation method has closed-form formulas. The proposed Fourier-domain curve-fitting method does not require an initial condition, it minimizes a quadratic objective function and a closed-form solution can be obtained. The noise is easier to control, simply by discarding the high frequency components, and emphasizing the DC component. PMID:22995548

  3. Investigation of Japanese quail (Coturnix japonica) as a pharmacokinetic model for cockatiels (Nymphicus hollandicus) and Poicephalus parrots via comparison of the pharmacokinetics of a single intravenous injection of oxytetracycline hydrochloride.

    PubMed

    Osofsky, A; Tell, L A; Kass, P H; Wetzlich, S E; Nugent-Deal, J; Craigmill, A L

    2005-12-01

    The purpose of this study was to determine whether Japanese quail (Coturnix japonica) would serve as a pharmacokinetic animal model for two small companion parrots: cockatiels (Nymphicus hollandicus) and Poicephalus parrots. Oxytetracycline (OTC) was the pharmacologic agent chosen for this study as it is eliminated primarily by renal glomerular filtration and undergoes minimal metabolism. A single intravenous injection of 20 mg/kg oxytetracycline hydrochloride was administered to the three study groups and blood samples were obtained at 5, 10, 15, and 30 min post-OTC injection as well as 1, 2, 4, 8, 12 and 24 h post-OTC injection. Quantification of plasma OTC was accomplished using a standardized microbial inhibition assay. Naïve-pooled data (NPD) analysis of the plasma concentration-time profile of OTC best fit a two-compartment open model for all three avian species. Noncompartmental analysis of the mean data yielded the following parameters for quail, cockatiels and Poicephalus parrots respectively: lambda(z) = 3.14, 4.57, 3.71 h; AUC = 38.9, 42.7, 49.6 microg x h/mL; and Cl = 514, 468, 403 mL/h/kg. Based on the similarity of these pharmacokinetic parameters, it appears that quail could be used as a model species to predict the appropriate OTC dosing regimen for small psittacine birds. A bootstrap procedure was also applied to these sparse data sets for both compartmental and noncompartmental analysis. The bootstrap procedure allowed for the calculation of variability of parameters; however, the estimates of the parameters were very similar to those calculated using the NPD and the data mean values. PMID:16343282

  4. Physiologically based pharmacokinetic modeling of ethyl acetate and ethanol in rodents and humans.

    PubMed

    Crowell, S R; Smith, J N; Creim, J A; Faber, W; Teeguarden, J G

    2015-10-01

    A physiologically based pharmacokinetic (PBPK) model was developed and applied to a metabolic series approach for the ethyl series (i.e., ethyl acetate, ethanol, acetaldehyde, and acetate). This approach bases toxicity information on dosimetry analyses for metabolically linked compounds using pharmacokinetic data for each compound and toxicity data for parent or individual compounds. In vivo pharmacokinetic studies of ethyl acetate and ethanol were conducted in rats following IV and inhalation exposure. Regardless of route, ethyl acetate was rapidly converted to ethanol. Blood concentrations of ethyl acetate and ethanol following both IV bolus and infusion suggested linear kinetics across blood concentrations from 0.1 to 10 mM ethyl acetate and 0.01-0.8 mM ethanol. Metabolic parameters were optimized and evaluated based on available pharmacokinetic data. The respiratory bioavailability of ethyl acetate and ethanol were estimated from closed chamber inhalation studies and measured ventilation rates. The resulting ethyl series model successfully reproduces blood ethyl acetate and ethanol kinetics following IV administration and inhalation exposure in rats, and blood ethanol kinetics following inhalation exposure to ethanol in humans. The extrapolated human model was used to derive human equivalent concentrations for the occupational setting of 257-2120 ppm ethyl acetate and 72-517 ppm ethyl acetate for continuous exposure, corresponding to rat LOAELs of 350 and 1500 ppm. PMID:26297692

  5. Pharmacokinetic modeling and dosage adaptation of biapenem in Japanese patients during continuous venovenous hemodiafiltration.

    PubMed

    Ikawa, Kazuro; Morikawa, Norifumi; Ikeda, Kayo; Suyama, Hidemichi

    2008-02-01

    The present study examined the pharmacokinetics of biapenem during continuous venovenous hemodiafiltration (CVVHDF) and assessed the pharmacodynamic exposure, based on a pharmacokinetic model, to consider biapenem dosage adaptation in CVVHDF. Biapenem (300 mg) was administered by 2-h infusion to seven critically ill patients receiving CVVHDF. The flow rates were 60 ml/min for blood, 800 ml/h for filtrate, and 600 ml/h for dialysate. The drug concentrations in plasma and filtrate-dialysate were determined by high-performance liquid chromatography and analyzed pharmacokinetically. The sieving coefficient was 0.92 +/- 0.06 (mean +/- SD). The simulation curves, using a multicompartment model, were well fitted to the measurements in plasma and filtrate-dialysate. The clearance by CVVHDF and the clearance by non-CVVHDF routes were 1.29 +/- 0.08 and 6.14 +/- 1.89 l/h, respectively. The multicompartment model was used to assess the pharmacodynamic exposure (time above the minimum inhibitory concentration of 4 microg/ml) in plasma. When the total daily dose was 600 mg, the duration of time was greater at 300 mg every 12 h than at 600 mg every 24 h. The minimum dosages needed to achieve more than 30% of the dosing interval at filtrate-dialysate flow rates of 1.4, 2.8, and 5.6 l/h were 300 mg every 12 h, 600 mg every 12 h, and 600 mg every 12 h, respectively. These results suggested that low doses or increased dosing intervals should be avoided in patients receiving this renal replacement technique. Information on pharmacodynamic exposure obtained from this model may help us to determine the appropriate biapenem dosage for CVVHDF. Moreover, our pharmacokinetic model may be useful for further pharmacokinetic studies of biapenem. PMID:18297447

  6. Population pharmacokinetic modelling of non-linear brain distribution of morphine: influence of active saturable influx and P-glycoprotein mediated efflux

    PubMed Central

    Groenendaal, D; Freijer, J; de Mik, D; Bouw, M R; Danhof, M; de Lange, E C M

    2007-01-01

    Background and purpose: Biophase equilibration must be considered to gain insight into the mechanisms underlying the pharmacokinetic-pharmacodynamic (PK-PD) correlations of opioids. The objective was to characterise in a quantitative manner the non-linear distribution kinetics of morphine in brain. Experimental approach: Male rats received a 10-min infusion of 4 mg kg−1 of morphine, combined with a continuous infusion of the P-glycoprotein (Pgp) inhibitor GF120918 or vehicle, or 40 mg kg−1 morphine alone. Unbound extracellular fluid (ECF) concentrations obtained by intracerebral microdialysis and total blood concentrations were analysed using a population modelling approach. Key results: Blood pharmacokinetics of morphine was best described with a three-compartment model and was not influenced by GF120918. Non-linear distribution kinetics in brain ECF was observed with increasing dose. A one compartment distribution model was developed, with separate expressions for passive diffusion, active saturable influx and active efflux by Pgp. The passive diffusion rate constant was 0.0014 min−1. The active efflux rate constant decreased from 0.0195 min−1 to 0.0113 min−1 in the presence of GF120918. The active influx was insensitive to GF120918 and had a maximum transport (Nmax/Vecf) of 0.66 ng min−1 ml−1 and was saturated at low concentrations of morphine (C50=9.9 ng ml−1). Conclusions and implications: Brain distribution of morphine is determined by three factors: limited passive diffusion; active efflux, reduced by 42% by Pgp inhibition; low capacity active uptake. This implies blood concentration-dependency and sensitivity to drug-drug interactions. These factors should be taken into account in further investigations on PK-PD correlations of morphine. PMID:17471182

  7. Estimation of drug dosage regimens with a pharmacokinetic slide rule.

    PubMed

    Straughn, A B; Cruze, C A; Meyer, M C

    1977-02-01

    A pharmacokinetic slide rule to facilitate the computations based on relatively simple pharmacokinetic principles involved in the development of individualized drug dosage regimens is described. The calculations are based on the assumption that the body can be conceived as a one-compartment open model with drug elimination proceeding by apparent first-order kinetics. Examples are presented (1) to illustrate the clinical application of a slide rule to compute the time-course of drug in the body, (2) to calculate steady-state maximum and minimum levels, and accumulation during multiple dosage and (3) to estimate appropriate maintenance doses and intravenous infusion rates. PMID:842548

  8. A genetic algorithm based global search strategy for population pharmacokinetic/pharmacodynamic model selection

    PubMed Central

    Sale, Mark; Sherer, Eric A

    2015-01-01

    The current algorithm for selecting a population pharmacokinetic/pharmacodynamic model is based on the well-established forward addition/backward elimination method. A central strength of this approach is the opportunity for a modeller to continuously examine the data and postulate new hypotheses to explain observed biases. This algorithm has served the modelling community well, but the model selection process has essentially remained unchanged for the last 30 years. During this time, more robust approaches to model selection have been made feasible by new technology and dramatic increases in computation speed. We review these methods, with emphasis on genetic algorithm approaches and discuss the role these methods may play in population pharmacokinetic/pharmacodynamic model selection. PMID:23772792

  9. Pharmacokinetic study of medicinal polymers: models based on dextrans

    SciTech Connect

    Kulakov, V.N.; Pimenova, G.N.; Matveev, V.A.; Sedov, V.V.; Vasil'ev, A.E.

    1986-09-01

    The authors study the pharmacokinetics of dextrans with various molecular masses modified by fluorescein isothiocyanate (FITC) using a radioisotope method. The radionuclide /sup 125/I was selectively bound to a FITC residue attached to the polysaccharide by electrochemical iodination under potentiostatic conditions. In the experiments, dextrans modified by FITC were labeled with /sup 125/I (DF-/sup 125/I) by electrochemical iodination. The separation of DF-/sup 125/I and FITC from ionic forms of the radionuclide not bound to the polymer was carried out. The properties of the samples obtained are presented. The radioactivity accumulated in the rate organs and urine studied are shown. The features of DF-/sup 125/I behavior in the blood and liver are examined.

  10. A comprehensive physiologically based pharmacokinetic knowledgebase and web-based interface for rapid model ranking and querying

    EPA Science Inventory

    Published physiologically based pharmacokinetic (PBPK) models from peer-reviewed articles are often well-parameterized, thoroughly-vetted, and can be utilized as excellent resources for the construction of models pertaining to related chemicals. Specifically, chemical-specific pa...

  11. Pharmacokinetics of ciprofloxacin in ponies.

    PubMed

    Dowling, P M; Wilson, R C; Tyler, J W; Duran, S H

    1995-02-01

    The pharmacokinetics of ciprofloxacin was investigated in healthy, mature ponies. Ciprofloxacin was administered intravenously to six ponies at a dose of 5 mg per kg body weight. Seven days later, ciprofloxacin was administered orally to each pony at the same dose. Intravenous ciprofloxacin concentration vs. time data best fit a two-compartment open model with first-order elimination from the central compartment. Mean plasma half-life, based on the terminal phase, was 157.89 min (harmonic mean). Total body clearance of ciprofloxacin was 18.12 +/- 3.99 mL/min/kg. Volume of distribution at steady-state was 3.45 +/- 0.72 L/kg. From the pharmacokinetic data and reported minimum inhibitory concentrations for equine gram-negative pathogens, the appropriate dosage of ciprofloxacin was determined to be 5.32 mg per kg body weight at 12 h intervals. Bioavailability of oral ciprofloxacin in ponies was 6.8 +/- 5.33%. Owing to the poor bioavailability, a dosage regimen could not be proposed for oral ciprofloxacin administration in horses. Ciprofloxacin concentrations were determined in tissues and body fluids at 1, 2 and 4 h after intravenous administration. At all times, tissue concentrations exceeded plasma concentrations of ciprofloxacin. Highest concentrations were achieved in kidneys and urine. Potentially therapeutic concentrations were obtained in cerebrospinal and joint fluid, but low concentrations were achieved in aqueous humour. PMID:7752310

  12. Estimation of feasible solution space using Cluster Newton Method: application to pharmacokinetic analysis of irinotecan with physiologically-based pharmacokinetic models

    PubMed Central

    2013-01-01

    Background To facilitate new drug development, physiologically-based pharmacokinetic (PBPK) modeling methods receive growing attention as a tool to fully understand and predict complex pharmacokinetic phenomena. As the number of parameters to reproduce physiological functions tend to be large in PBPK models, efficient parameter estimation methods are essential. We have successfully applied a recently developed algorithm to estimate a feasible solution space, called Cluster Newton Method (CNM), to reveal the cause of irinotecan pharmacokinetic alterations in two cancer patient groups. Results After improvements in the original CNM algorithm to maintain parameter diversities, a feasible solution space was successfully estimated for 55 or 56 parameters in the irinotecan PBPK model, within ten iterations, 3000 virtual samples, and in 15 minutes (Intel Xeon E5-1620 3.60GHz × 1 or Intel Core i7-870 2.93GHz × 1). Control parameters or parameter correlations were clarified after the parameter estimation processes. Possible causes in the irinotecan pharmacokinetic alterations were suggested, but they were not conclusive. Conclusions Application of CNM achieved a feasible solution space by solving inverse problems of a system containing ordinary differential equations (ODEs). This method may give us reliable insights into other complicated phenomena, which have a large number of parameters to estimate, under limited information. It is also helpful to design prospective studies for further investigation of phenomena of interest. PMID:24555857

  13. Assessment of pharmacokinetic interaction of spirulina with glitazone in a type 2 diabetes rat model.

    PubMed

    Gupta, Annu; Nair, Anroop; Kumria, Rachna; Al-Dhubiab, Bandar-E; Chattopadhyaya, Ipshita; Gupta, Sumeet

    2013-12-01

    The objective of the current study was to assess the possible pharmacokinetic interactions of spirulina with glitazones in an insulin resistance rat model. Wistar male albino rats were equally divided into five groups: insulin resistant rats+spirulina (500 mg/kg)+pioglitazone (10 mg/kg), insulin resistant rats+pioglitazone (10 mg/kg), insulin resistant rats+spirulina (500 mg/kg)+rosiglitazone (10 mg/kg), insulin resistant rats+rosiglitazone (10 mg/kg), and insulin resistant rats+spirulina (500 mg/kg). Described doses of pioglitazone, rosiglitazone, or spirulina were per orally administered and the plasma drug concentrations were determined. The pharmacokinetic parameters such as Tmax, Cmax, AUC(0-α), t1/2, and Kel were determined by plotting the drug concentration as a function of time. The data observed in this acute study indicated that there was no statistically significant difference in any of the pharmacokinetic parameters (Tmax, Cmax, AUC(0-α), t1/2, and Kel) of glitazones (pioglitazone, rosiglitazone) or spirulina, when they were coadministered. Given the promising results, this study concludes that the coadministration of spirulina does not influence the pharmacokinetics of glitazones in a type 2 diabetes rat model. Further chronic in vivo studies are recommended to assess the real time effect. PMID:24328701

  14. Effects of CYP2D6 Status on Harmaline Metabolism, Pharmacokinetics and Pharmacodynamics, and a Pharmacogenetics-Based Pharmacokinetic Model

    PubMed Central

    Wu, Chao; Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2009-01-01

    Harmaline is a β-carboline alkaloid showing neuroprotective and neurotoxic properties. Our recent studies have revealed an important role for cytochrome P450 2D6 (CYP2D6) in harmaline O-demethylation. This study, therefore, aimed to delineate the effects of CYP2D6 phenotype/genotype on harmaline metabolism, pharmacokinetics (PK) and pharmacodynamics (PD), and to develop a pharmacogenetics mechanism-based compartmental PK model. In vitro kinetic studies on metabolite formation in human CYP2D6 extensive metabolizer (EM) and poor metabolizer (PM) hepatocytes indicated that harmaline O-demethylase activity (Vmax/Km) was about 9-fold higher in EM hepatocytes. Substrate depletion showed mono-exponential decay trait, and estimated in vitro harmaline clearance (CLint, μL/min/106 cells) was significantly lower in PM hepatocytes (28.5) than EM hepatocytes (71.1). In vivo studies in CYP2D6-humanized and wild-type mouse models showed that wild-type mice were subjected to higher and longer exposure to harmaline (5 and 15 mg/kg; i.v. and i.p.), and more severe hypothermic responses. The PK/PD data were nicely described by our pharmacogenetics-based PK model involving the clearance of drug by CYP2D6 (CLCYP2D6) and other mechanisms (CLother), and an indirect response PD model, respectively. Wild-type mice were also more sensitive to harmaline in marble-burying tests, as manifested by significantly lower ED50 and steeper Hill slope. These findings suggest that distinct CYP2D6 status may cause considerable variations in harmaline metabolism, PK and PD. In addition, the pharmacogenetics-based PK model may be extended to define PK difference caused by other polymorphic drug-metabolizing enzyme in different populations. PMID:19445902

  15. Physiologically based Pharmacokinetic Modeling of 1,4-Dioxane in Rats, Mice, and Humans

    SciTech Connect

    Sweeney, Lisa M.; Thrall, Karla D.; Poet, Torka S.; Corley, Rick; Weber, Thomas J.; Locey, B. J.; Clarkson, Jacquelyn; Sager, S.; Gargas, M. L.

    2008-01-01

    ABSTRACT 1,4-Dioxane (CAS No. 123-91-1) is used primarily as a solvent or as a solvent stabilizer. It can cause lung, liver and kidney damage at sufficiently high exposure levels. Two physiologically-based pharmacokinetic (PBPK) models of 1,4-dioxane and its major metabolite, hydroxyethoxyacetic acid (HEAA), were published in 1990. These models have uncertainties and deficiencies that could be addressed and the model strengthened for use in a contemporary cancer risk assessment for 1,4-dioxane. Studies were performed to fill data gaps and reduce uncertainties pertaining to the pharmacokinetics of 1,4-dioxane and HEAA in rats, mice, and humans. Three types of studies were performed:partition coefficient measurements, blood time course in mice, and in vitro pharmacokinetics using rat, mouse, and human hepatocytes. Updated PBPK models were developed based on these new data and previously available data. The optimized rate of metabolism for the mouse was significantly higher than the value previously estimated. The optimized rat kinetic parameters were similar to those in the 1990 models. Only two human studies were identified. Model predictions were consistent with one study, but did not fit the second as well. In addition, a rat nasal exposure was completed. The results confirmed water directly contacts rat nasal tissues during drinking water under bioassays. Consistent with previous PBPK models, nasal tissues were not specifically included in the model. Use of these models will reduce the uncertainty in future 1,4-dioxane risk assessments.

  16. Pharmacokinetic-pharmacodynamic model for gentamicin and its adaptive resistance with predictions of dosing schedules in newborn infants.

    PubMed

    Mohamed, Ami F; Nielsen, Elisabet I; Cars, Otto; Friberg, Lena E

    2012-01-01

    Gentamicin is commonly used in the management of neonatal infections. Development of adaptive resistance is typical for aminoglycosides and reduces the antibacterial effect. There is, however, a lack of understanding of how this phenomenon influences the effect of different dosing schedules. The aim was to develop a pharmacokinetic-pharmacodynamic (PKPD) model that describes the time course of the bactericidal activity of gentamicin and its adaptive resistance and to investigate different dosing schedules in preterm and term newborn infants based on the developed model. In vitro time-kill curve experiments were conducted on a strain of Escherichia coli (MIC of 2 mg/liter). The gentamicin exposure was either constant (0.125 to 16 mg/liter) or dynamic (simulated concentration-time profiles in a kinetic system with peak concentrations of 2.0, 3.9, 7.8, and 16 mg/liter given as single doses or as repeated doses every 6, 12, or 24 h). Semimechanistic PKPD models were fitted to the bacterial counts in the NONMEM (nonlinear mixed effects modeling) program. A model with compartments for growing and resting bacteria, with a function allowing the maximal bacterial killing of gentamicin to reduce with exposure, characterized both the fast bactericidal effect and the adaptive resistance. Despite a lower peak concentration, preterm neonates were predicted to have a higher bacterial killing effect than term neonates for the same per-kg dose because of gentamicin's longer half-life. The model supported an extended dosing interval of gentamicin in preterm neonates, and for all neonates, dosing intervals of 36 to 48 h were as effective as a 24-h dosing interval for the same total dose. PMID:22037853

  17. Pharmacokinetic-Pharmacodynamic Model for Gentamicin and Its Adaptive Resistance with Predictions of Dosing Schedules in Newborn Infants

    PubMed Central

    Nielsen, Elisabet I.; Cars, Otto; Friberg, Lena E.

    2012-01-01

    Gentamicin is commonly used in the management of neonatal infections. Development of adaptive resistance is typical for aminoglycosides and reduces the antibacterial effect. There is, however, a lack of understanding of how this phenomenon influences the effect of different dosing schedules. The aim was to develop a pharmacokinetic-pharmacodynamic (PKPD) model that describes the time course of the bactericidal activity of gentamicin and its adaptive resistance and to investigate different dosing schedules in preterm and term newborn infants based on the developed model. In vitro time-kill curve experiments were conducted on a strain of Escherichia coli (MIC of 2 mg/liter). The gentamicin exposure was either constant (0.125 to 16 mg/liter) or dynamic (simulated concentration-time profiles in a kinetic system with peak concentrations of 2.0, 3.9, 7.8, and 16 mg/liter given as single doses or as repeated doses every 6, 12, or 24 h). Semimechanistic PKPD models were fitted to the bacterial counts in the NONMEM (nonlinear mixed effects modeling) program. A model with compartments for growing and resting bacteria, with a function allowing the maximal bacterial killing of gentamicin to reduce with exposure, characterized both the fast bactericidal effect and the adaptive resistance. Despite a lower peak concentration, preterm neonates were predicted to have a higher bacterial killing effect than term neonates for the same per-kg dose because of gentamicin's longer half-life. The model supported an extended dosing interval of gentamicin in preterm neonates, and for all neonates, dosing intervals of 36 to 48 h were as effective as a 24-h dosing interval for the same total dose. PMID:22037853

  18. Development of a physiologically based pharmacokinetic model of 2-methoxyethanol and 2-methoxyacetic acid disposition in pregnant rats.

    PubMed

    Hays, S M; Elswick, B A; Blumenthal, G M; Welsch, F; Conolly, R B; Gargas, M L

    2000-02-15

    An accurate description of developing embryos' exposure to a xenobiotic is a desirable component of mechanism-based risk assessments for humans exposed to potential developmental toxicants during pregnancy. 2-Methoxyethanol (2-ME), a solvent used in the manufacture of semiconductors, is embryotoxic and teratogenic in all species tested including nonhuman primates. 2-Methoxyacetic acid (2-MAA) is the primary metabolite of 2-ME and the proximate embryotoxic agent. The objective of the work described here was to adapt an existing physiologically based pharmacokinetic (PBPK) model for 2-ME and 2-MAA kinetics during midorganogenesis in mice to rats on gestation days (GD) 13 and 15. Blood and tissue data were analyzed using the extrapolated PBPK model that was modified to simulate 2-ME and 2-MAA kinetics in maternal plasma and total embryo tissues in pregnant rats. The original mouse model was simplified by combining the embryos and placenta with the richly perfused tissue compartment. The model includes a description of the growth of the developing embryo and changes in the physiology of the dam during pregnancy. Biotransformation pathways of 2-ME to either ethylene glycol (EG) or to 2-MAA were described as first-order processes based on the data collected from rats by Green et al., (Occup. Hyg. 2, 67-75, 1996). Tissue partition coefficients (PCs) for 2-ME and 2-MAA were determined for a variety of maternal tissues and the embryos. Model simulations closely reflected the biological measurement of 2-ME and 2-MAA concentrations in blood and embryo tissue following gavage or iv administration of 2-ME or 2-MAA. The PBPK model for rats as described here is well suited for extrapolation to pregnant women and for assessment of 2-MAA dosimetry under various conditions of possible human exposure to 2-ME. PMID:10662606

  19. Impact of netilmicin regimens on the activities of ceftazidime-netilmicin combinations against Pseudomonas aeruginosa in an in vitro pharmacokinetic model.

    PubMed Central

    Blaser, J; Stone, B B; Groner, M C; Zinner, S H

    1985-01-01

    The antibacterial activities of ceftazidime and netilmicin were studied in a two-compartment in vitro model. Pseudomonas aeruginosa cultures were exposed to changing drug concentrations that mimic human pharmacokinetics. Netilmicin alone reduced the numbers of organisms in cultures of the susceptible strains by more than 99% within 4 h; however, regrowth occurred after 8 h. Although ceftazidime alone killed more slowly than netilmicin, only one of the five strains regrew within 28 h. When both drugs were combined, rapid initial killing occurred without subsequent regrowth. Studied after 24 h in combination with ceftazidime, netilmicin was as effective when given as a single daily dose as when administered in three daily doses that provided 50% more aminoglycoside per day. Decreased bacterial susceptibility was seen after ceftazidime exposure for one strain and after netilmicin exposure for all originally netilmicin-susceptible strains. No such reduction in susceptibility was observed during exposure to the combination. The results of standard in vitro checkerboard tests for synergism were predictive of the initial (4 to 8 h) but not the final (24 to 28 h) assessment of drug interaction in the pharmacokinetic model. PMID:3929682

  20. Physiologically based pharmacokinetic modeling of polyethylene glycol-coated polyacrylamide nanoparticles in rats.

    PubMed

    Li, Dingsheng; Johanson, Gunnar; Emond, Claude; Carlander, Ulrika; Philbert, Martin; Jolliet, Olivier

    2014-08-01

    Nanoparticles' health risks depend on their biodistribution in the body. Phagocytosis may greatly affect this distribution but has not yet explicitly accounted for in whole body pharmacokinetic models. Here, we present a physiologically based pharmacokinetic model that includes phagocytosis of nanoparticles to explore the biodistribution of intravenously injected polyethylene glycol-coated polyacrylamide nanoparticles in rats. The model explains 97% of the observed variation in nanoparticles amounts across organs. According to the model, phagocytizing cells quickly capture nanoparticles until their saturation and thereby constitute a major reservoir in richly perfused organs (spleen, liver, bone marrow, lungs, heart and kidneys), storing 83% of the nanoparticles found in these organs 120 h after injection. Key determinants of the nanoparticles biodistribution are the uptake capacities of phagocytizing cells in organs, the partitioning between tissue and blood, and the permeability between capillary blood and tissues. This framework can be extended to other types of nanoparticles by adapting these determinants. PMID:24392664

  1. Iterative least-squares fitting programs in pharmacokinetics for a programmable handheld calculator.

    PubMed

    Messori, A; Donati-Cori, G; Tendi, E

    1983-10-01

    Programs that perform a nonlinear least-squares fit to data conforming to one-compartment oral or two-compartment intravenous pharmacokinetic models are described. The programs are designed for use on a Hewlett-Packard HP-41 CV programmable calculator equipped with an extended-functions module and one or two extended-memory modules. Initial estimates of variables in the model are calculated by the method of residuals and then iteratively improved by the use of the Gauss-Newton algorithm as modified by Hartley. This modification minimizes convergence problems. The iterative-fitting procedure includes a routine for estimation of lag time for the one-compartment oral model. Clinical applications of the programs are illustrated using previously published data. Programming steps and user instructions are listed. The programs provide an efficient and inexpensive method of estimating pharmacokinetic variables. PMID:6688925

  2. In Vivo Pharmacokinetics/Pharmacodynamics of Cefquinome in an Experimental Mouse Model of Staphylococcus Aureus Mastitis following Intramammary Infusion.

    PubMed

    Yu, Yang; Zhou, Yu-Feng; Chen, Mei-Ren; Li, Xiao; Qiao, Gui-Lin; Sun, Jian; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-01-01

    Staphylococcus aureus remains the major cause of morbidity of bovine mastitis worldwide leading to massive economic losses. Cefquinome is a fourth generation cephalosporin, which preserves susceptibility and antibacterial activity against S. aureus. This work aims to study the pharmacokinetic (PK) and pharmacodynamic (PD) modeling following intramammary administration of cefquinome against S. aureus mastitis. The mouse model of S. aureus mastitis was developed for the PK/PD experiments. The plasma PK characteristics after intramammary injection of cefquinome at various single doses of 25, 50, 100, 200, 400 μg per gland (both fourth pairs of glands: L4 and R4) were calculated using one-compartment and first-order absorption model. PD study was investigated based on twenty-one intermittent dosing regimens, of which total daily dose ranged from 25 to 4800 μg per mouse and dosage intervals included 8, 12 or 24 h. The sigmoid Emax model of inhibitory effect was employed for PK/PD modeling. The results of PK/PD integration of cefquinome against S. aureus suggested that the percentage of duration that drug concentration exceeded the minimal inhibitory concentration (%T>MIC) and the ratio of area under time-concentration curve over MIC (AUC/MIC) are important indexes to evaluate the antibacterial activity. The PK/PD parameters of %T>MIC and AUC0-24/MIC were 35.98% and 137.43 h to obtain a 1.8 logCFU/gland reduction of bacterial colony counts in vivo, against S. aureus strains with cefquinome MIC of 0.5μg/ml. PMID:27218674

  3. In Vivo Pharmacokinetics/Pharmacodynamics of Cefquinome in an Experimental Mouse Model of Staphylococcus Aureus Mastitis following Intramammary Infusion

    PubMed Central

    Yu, Yang; Zhou, Yu-Feng; Chen, Mei-Ren; Li, Xiao; Qiao, Gui-Lin; Sun, Jian; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-01-01

    Staphylococcus aureus remains the major cause of morbidity of bovine mastitis worldwide leading to massive economic losses. Cefquinome is a fourth generation cephalosporin, which preserves susceptibility and antibacterial activity against S. aureus. This work aims to study the pharmacokinetic (PK) and pharmacodynamic (PD) modeling following intramammary administration of cefquinome against S. aureus mastitis. The mouse model of S. aureus mastitis was developed for the PK/PD experiments. The plasma PK characteristics after intramammary injection of cefquinome at various single doses of 25, 50, 100, 200, 400 μg per gland (both fourth pairs of glands: L4 and R4) were calculated using one-compartment and first-order absorption model. PD study was investigated based on twenty-one intermittent dosing regimens, of which total daily dose ranged from 25 to 4800 μg per mouse and dosage intervals included 8, 12 or 24 h. The sigmoid Emax model of inhibitory effect was employed for PK/PD modeling. The results of PK/PD integration of cefquinome against S. aureus suggested that the percentage of duration that drug concentration exceeded the minimal inhibitory concentration (%T>MIC) and the ratio of area under time-concentration curve over MIC (AUC/MIC) are important indexes to evaluate the antibacterial activity. The PK/PD parameters of %T>MIC and AUC0-24/MIC were 35.98% and 137.43 h to obtain a 1.8 logCFU/gland reduction of bacterial colony counts in vivo, against S. aureus strains with cefquinome MIC of 0.5μg/ml. PMID:27218674

  4. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat.

    PubMed

    Martin, Sheppard A; Campbell, Jerry L; Tremblay, Raphael T; Fisher, Jeffrey W

    2012-01-01

    The pharmacokinetic behavior of the majority of jet fuel constituents has not been previously described in the framework of a physiologically based pharmacokinetic (PBPK) model for inhalation exposure. Toxic effects have been reported in multiple organ systems, though exposure methods varied across studies, utilizing either vaporized or aerosolized fuels. The purpose of this work was to assess the pharmacokinetics of aerosolized and vaporized fuels, and develop a PBPK model capable of describing both types of exposures. To support model development, n-tetradecane and n-octane exposures were conducted at 89 mg/m(3) aerosol+vapor and 1000-5000 ppm vapor, respectively. Exposures to JP-8 and S-8 were conducted at ~900-1000 mg/m(3), and ~200 mg/m(3) to a 50:50 blend of both fuels. Sub-models were developed to assess the behavior of representative constituents and grouped unquantified constituents, termed "lumps", accounting for the remaining fuel mass. The sub-models were combined into the first PBPK model for petroleum and synthetic jet fuels. Inhalation of hydrocarbon vapors was described with simple gas-exchange assumptions for uptake and exhalation. For aerosol droplets systemic uptake occurred in the thoracic region. Visceral tissues were described using perfusion and diffusion-limited equations. The model described kinetics at multiple fuel concentrations, utilizing a chemical "lumping" strategy to estimate parameters for fractions of speciated and unspeciated hydrocarbons and gauge metabolic interactions. The model more accurately simulated aromatic and lower molecular weight (MW) n-alkanes than some higher MW chemicals. Metabolic interactions were more pronounced at high (~2700-1000 mg/m(3)) concentrations. This research represents the most detailed assessment of fuel pharmacokinetics to date. PMID:22188408

  5. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A.

    PubMed

    Yang, Xiaoxia; Doerge, Daniel R; Teeguarden, Justin G; Fisher, Jeffrey W

    2015-12-15

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d6-BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d6-BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d6-BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. PMID:26522835

  6. Elucidation of arctigenin pharmacokinetics after intravenous and oral administrations in rats: integration of in vitro and in vivo findings via semi-mechanistic pharmacokinetic modeling.

    PubMed

    Gao, Qiong; Zhang, Yufeng; Wo, Siukwan; Zuo, Zhong

    2014-11-01

    Although arctigenin (AR) has attracted substantial research interests due to its promising and diverse therapeutic effects, studies regarding its biotransformation were limited. The current study aims to provide information regarding the pharmacokinetic properties of AR via various in vitro and in vivo experiments as well as semi-mechanistic pharmacokinetic modeling. Our in vitro rat microsome incubation studies revealed that glucuronidation was the main intestinal and liver metabolic pathway of AR, which occurred with V max, K m, and Clint of 47.5 ± 3.4 nmol/min/mg, 204 ± 22 μM, and 233 ± 9 μl/min/mg with intestinal microsomes and 2.92 ± 0.07 nmol/min/mg, 22.7 ± 1.2 μM, and 129 ± 4 μl/min/mg with liver microsomes, respectively. In addition, demethylation and hydrolysis of AR occurred with liver microsomes but not with intestinal microsomes. In vitro incubation of AR and its metabolites in intestinal content demonstrated that glucuronides of AR excreted in bile could be further hydrolyzed back to the parent compound, suggesting its potential enterohepatic circulation. Furthermore, rapid formation followed by fast elimination of arctigenic acid (AA) and arctigenin-4'-O-glucuronide (AG) was observed after both intravenous (IV) and oral administrations of AR in rats. Linear pharmacokinetics was observed at three different doses for AR, AA, and AG after IV administration of AR (0.48-2.4 mg/kg, r (2) > 0.99). Finally, an integrated semi-mechanistic pharmacokinetic model using in vitro enzyme kinetic and in vivo pharmacokinetic parameters was successfully developed to describe plasma concentrations of AR, AA, and AG after both IV and oral administration of AR at all tested doses. PMID:25274606

  7. Pharmacokinetic Modeling of Lamivudine and Zidovudine Triphosphates Predicts Differential Pharmacokinetics in Seminal Mononuclear Cells and Peripheral Blood Mononuclear Cells

    PubMed Central

    Yang, Kuo H.; Kendrick, Racheal; Reddy, Y. Sunila; Kashuba, Angela D. M.; Troiani, Luigi; Bridges, Arlene S.; Fiscus, Susan A.; Forrest, Alan; Cohen, Myron S.

    2015-01-01

    The male genital tract is a potential site of viral persistence. Therefore, adequate concentrations of antiretrovirals are required to eliminate HIV replication in the genital tract. Despite higher zidovudine (ZDV) and lamivudine (3TC) concentrations in seminal plasma (SP) than in blood plasma (BP) (SP/BP drug concentration ratios of 2.3 and 6.7, respectively), we have previously reported lower relative intracellular concentrations of their active metabolites, zidovudine triphosphate (ZDV-TP) and lamivudine triphosphate (3TC-TP), in seminal mononuclear cells (SMCs) than in peripheral blood mononuclear cells (PBMCs) (SMC/PBMC drug concentration ratios of 0.36 and 1.0, respectively). Here, we use population pharmacokinetic (PK) modeling-based methods to simultaneously describe parent and intracellular metabolite PK in blood, semen, and PBMCs and SMCs. From this model, the time to steady state in each matrix was estimated, and the results indicate that the PK of 3TC-TP and ZDV-TP in PBMCs are different from the PK of the two in SMCs and different for the two triphosphates. We found that steady-state conditions in PBMCs were achieved within 2 days for ZDV-TP and 3 days for 3TC-TP. However, steady-state conditions in SMCs were achieved within 2 days for ZDV-TP and 2 weeks for 3TC-TP. Despite this, or perhaps because of it, ZDV-TP in SMCs does not achieve the surrogate 50% inhibitory concentration (IC50) (as established for PBMCs, assuming SMC IC50 = PBMC IC50) at the standard 300-mg twice-daily dosing. Mechanistic studies are needed to understand these differences and to explore intracellular metabolite behavior in SMCs for other nucleoside analogues used in HIV prevention, treatment, and cure. PMID:26239974

  8. Development of a Physiologically-Based Pharmacokinetic Model for Preterm Neonates: Evaluation with In Vivo Data.

    PubMed

    Claassen, Karina; Thelen, Kirstin; Coboeken, Katrin; Gaub, Thomas; Lippert, Jorg; Allegaert, Karel; Willmann, Stefan

    2015-01-01

    Among pediatric patients, preterm neonates and newborns are the most vulnerable subpopulation. Rapid developmental changes of physiological factors affecting the pharmacokinetics of drug substances in newborns require extreme care in dose and dose regimen decisions. These decisions could be supported by in silico methods such as physiologically-based pharmacokinetic (PBPK) modeling. In a comprehensive literature search, the physiological information of preterm neonates that is required to establish a PBPK model has been summarized and implemented into the database of a generic PBPK software. Physiological parameters include the organ weights and blood flow rates, tissue composition, as well as ontogeny information about metabolic and elimination processes in the liver and kidney. The aim of this work is to evaluate the model's accuracy in predicting the pharmacokinetics following intravenous administration of two model drugs with distinct physicochemical properties and elimination pathways based on earlier reported in vivo data. To this end, PBPK models of amikacin and paracetamol have been set up to predict their plasma levels in preterm neonates. Predicted plasma concentration-time profiles were compared to experimentally obtained in vivo data. For both drugs, plasma concentration time profiles following single and multiple dosing were appropriately predicted for a large range gestational and postnatal ages. In summary, PBPK simulations in preterm neonates appear feasible and might become a useful tool in the future to support dosing decisions in this special patient population. PMID:26323410

  9. Application of multi-compartment wound models to plutonium-contaminated wounds incurred by former workers at rocky flats.

    PubMed

    Falk, Roger B; Daugherty, Nancy M; Aldrich, Joe M; Furman, F Joseph; Hilmas, Duane E

    2006-08-01

    This paper presents the analysis of urine bioassay data, spanning four decades, from five workers who had wounds contaminated with plutonium at the Department of Energy Rocky Flats Plant during the period 1961-1967. The cases were selected from participants in the Department of Energy-sponsored Former Radiation Worker Medical Surveillance Program at Rocky Flats, which provided medical monitoring, modern bioassay measurements, and internal dose re-evaluations for former Rocky Flats workers. The cases include a variety of wound types, excision treatment regimes, and monitoring information. These wound cases illustrate the use of two multi-compartment wound models and three plutonium urine excretion models for retrospective calculation of internal plutonium depositions resulting from wounds for which no chelation therapy was administered. Wound model compartment fractions and half times are determined for each case and urine excretion model as are composite parameter values. The urine analysis and wound count measurements obtained under the program provide data with state-of-the art measurement sensitivity, as well as the opportunity to include long-term excretion and wound site data that exceed 10,000 d post-exposure for retrospective intake and dose evaluations. These data are provided to the radiation dosimetry community for use in developing and testing improved models for plutonium deposition in wounds. PMID:16832194

  10. Prion replication in the hematopoietic compartment is not required for neuroinvasion in scrapie mouse model.

    PubMed

    Loeuillet, Corinne; Lemaire-Vieille, Catherine; Naquet, Philippe; Cesbron-Delauw, Marie-France; Gagnon, Jean; Cesbron, Jean-Yves

    2010-01-01

    Fatal neurodegenerative prion diseases are caused by the transmissible PrP(Sc) prion agent whose initial replication after peripheral inoculation takes place in follicular dendritic cells present in germinal centers of lymphoid organs. However, prion replication also occurs in lymphoid cells. To assess the role of the hematopoietic compartment in neuroinvasion and prion replication, we generated chimeric mice, on a uniform congenic C57/BL6J background, by bone marrow replacement with hematopoietic cells expressing different levels of PrP protein. Nine different types of chimeric mice were inoculated intraperitoneally either with the lymphotropic Rocky Mountain Laboratory (RML) strain or the non lymphotropic ME-7 scrapie strain, at different doses. Here, we clearly demonstrate that overexpression of PrP by the hematopoietic system, or the lack of PrP expression by the bone marrow derived cells, does not change the incubation time period of the disease, even when the mice are infected at limiting doses. We conclude that the hematopoietic compartment is more or less permissive to prion replication, both for RML and ME-7, but does not play a role in neuroinvasion. PMID:20957200

  11. Nonparametric Bayes approach for a semi-mechanistic pharmacokinetic and pharmacodynamic model

    NASA Astrophysics Data System (ADS)

    Dong, Yan

    Both frequentist and Bayesian approaches have been used to characterize population pharmacokinetics and pharmacodynamics(PK/PD) models. These methods focus on estimating the population parameters and assessing the association between the characteristics of PK/PD and the subject covariates. In this work, we propose a Dirichlet process mixture model to classify the patients based on their individualized pharmacokinetic and pharmacodynamic profiles. Then we can predict the new patients' dose-response curves given their concentration-time profiles. Additionally, we implement a modern Markov Chain Monte Carlo algorithm for sampling inference of parameters. The detailed sampling procedures as well as the results are discussed in a simulation data and a real data example. We also evaluate an approximate solution of a system of nonlinear differential equations from Euler's method and compare the results with a general numerical solver, ode from R package, deSolve.

  12. Population Pharmacokinetic and Pharmacodynamic Modeling of AZD4901 and Simulation to Support Dose Selection for the Phase 2a Study.

    PubMed

    Xu, Hongmei; Li, Jianguo; Webber, Lorraine; Kakkar, Rahul; Chen, Yingxue; Al-Huniti, Nidal

    2016-08-01

    Significant and reversible reductions in testosterone levels were observed with AZD4901 in both preclinical and clinical testing. A comprehensive population pharmacokinetic/pharmacodynamic (PK/PD) modeling of AZD4901 concentration and testosterone relationship from 3 phase 1 studies was performed using NONMEM to support dose selection for phase 2a development. A 2-compartment model with first-order absorption and first-order elimination best described AZD4901 PK. Circadian rhythm of baseline testosterone concentrations was well described by a cosine function. An indirect response model with inhibition of testosterone production was used to link the AZD4901 concentration to testosterone response. The AZD4901 concentration to yield 50% maximum testosterone suppression (IC50) was estimated to be 230 ng/mL. Based on simulations, following 40 mg twice daily (BID) treatment, the AZD4901 steady-state trough concentration will be much higher compared to 80 mg once daily (QD). The AZD4901 concentration time above IC50 after 40 mg BID is 84% of the time of the dosing interval compared to only 49% after 80 mg QD. The mean predicted testosterone concentrations at steady state are lower and overall less variable over 24 hours for 40 mg BID dosing compared to 80 mg QD dosing. Population PK and PK/PD analyses demonstrated that AZD4901 40 mg BID is a better dosing strategy to more consistently suppress testosterone during the entire dosing interval. Consequently, 40 mg BID dosing was suggested in a phase 2a trial in females with polycystic ovary syndrome, and the trial resulted in a positive outcome as shown by significant testosterone decrease compared to placebo. PMID:26626581

  13. Pharmacokinetics of macrolides in foals.

    PubMed

    Villarino, N; Martín-Jiménez, T

    2013-02-01

    Macrolides are used for treatment of pneumonia and extrapulmonary conditions caused by Rhodococcus equi. In foals, macrolides have an extraordinary capacity to accumulate in different lung tissue compartments. These drugs show unique pharmacokinetic features such as rapid and extensive distribution and long persistence in pulmonary epithelial lining fluid (PELF) and bronchoalveolar lavage (BAL) cells from foals. This article reviews the pharmacokinetic characteristics of erythromycin, azithromycin, clarithromycin, tulathromycin, telithromycin, gamithromycin, and tilmicosin in foals, with emphasis on PELF and BAL cell concentrations. PMID:23082900

  14. Development of a paediatric population pharmacokinetic model for valacyclovir from literature non-compartmental values originating from sparse studies and Bayesian priors: a simulation study.

    PubMed

    Kechagia, Irene-Ariadne; Dokoumetzidis, Aristides

    2015-06-01

    A preliminary population pharmacokinetic (PopPK) model of valacyclovir in children was developed from non-compartmental analysis (NCA) parameter values from literature, including several age groups, combined with Bayesian priors from a PopPK model of acyclovir, the active metabolite of valacyclovir, from literature too. Also a simulation study was carried out to evaluate the performance of various modelling choices related to the estimation of model parameters from NCA parameters originating from sparse PK studies. Assuming a one-compartment model with first order absorption, a mixed effects, meta-analysis approach was utilized which allows accounting the random intergroup variability, the detection of covariates and the application of informative Bayesian priors on the parameters. The conclusions from the simulation study calculating bias and precision for various cases, were that a model which takes explicitly into account the sampling schedule, performs better than a model using the theoretical expressions of calculating the NCA parameters. Also by using the geometric rather than the arithmetic means of NCA parameters, less biased results are obtained. These findings guided the choices for the valacyclovir model, for which informative priors from a PopPK model of acyclovir were applied for some of the parameters, in order to include a richer covariate model for clearance, not supported by the NCA dataset and a value for bioavailability. This preliminary valacyclovir model can be used in simulations to provide dosage recommendations for children of various ages and to help design more efficiently prospective clinical trials. PMID:25821006

  15. Application of a whole-body pharmacokinetic model for targeted radionuclide therapy to NM404 and FLT

    PubMed Central

    Grudzinski, Joseph J; Floberg, John M; Mudd, Sarah R; Jeffery, Justin J; Peterson, Eric T; Nomura, Alice; Burnette, Ronald R; Tomé, Wolfgang A; Weichert, Jamey P; Jeraj, Robert

    2013-01-01

    Introduction We have previously developed a model that provides relative dosimetry estimates for targeted radionuclide therapy (TRT) agents. The whole body and tumor pharmacokinetic (PK) parameters of this model can be noninvasively measured with molecular imaging, providing a means of comparing potential TRT agents. Parameter sensitivities and noise will affect the accuracy and precision of the estimated PK values and hence dosimetry estimates. The aim of this work is to apply a PK model for TRT to two agents with different magnitudes of clearance rates, NM404 and FLT, explore parameter sensitivity with respect to time and investigate the effect of noise on parameter precision and accuracy. Methods Twenty-three tumor bearing mice were injected with a ‘slow-clearing’ agent, 124I-NM404 (n=10), or a ‘fast-clearing agent, 18F-FLT (3′-deoxy-3′-fluorothymidine) (n=13), and imaged via microPET/CT pseudo-dynamically or dynamically, respectively. Regions-of-interest (ROI) were drawn within the heart and tumor to create time-concentration-curves (TCC) for blood pool and tumor. PK analysis was performed to estimate the mean and standard error of the central compartment efflux-to-influx ratio (k12/k21), central elimination rate constant (kel), and tumor influx-to-efflux ratio (k34/k43), as well as the mean and standard deviation of the dosimetry estimates. NM404 and FLT parameter estimation results were used to analyze model accuracy and parameter sensitivity. The accuracy of the experimental sampling schedule was compared to that of an optimal sampling schedule found using Cramer-Rao Lower Bounds (CRLB) theory. Accuracy was assessed using correlation coefficient, bias, and standard error of the estimate normalized to the mean (SEE/mean). Results The PK parameter estimation of NM404 yielded a central clearance, kel (0.009 ± 0.003 hr−1), normal body retention, k12/k21 (0.69 ± 0.16), tumor retention, k34/k43 (1.44 ± 0.46) and predicted dosimetry, Dtumor (3.47

  16. Application of a whole-body pharmacokinetic model for targeted radionuclide therapy to NM404 and FLT

    NASA Astrophysics Data System (ADS)

    Grudzinski, Joseph J.; Floberg, John M.; Mudd, Sarah R.; Jeffery, Justin J.; Peterson, Eric T.; Nomura, Alice; Burnette, Ronald R.; Tomé, Wolfgang A.; Weichert, Jamey P.; Jeraj, Robert

    2012-03-01

    We have previously developed a model that provides relative dosimetry estimates for targeted radionuclide therapy (TRT) agents. The whole-body and tumor pharmacokinetic (PK) parameters of this model can be noninvasively measured with molecular imaging, providing a means of comparing potential TRT agents. Parameter sensitivities and noise will affect the accuracy and precision of the estimated PK values and hence dosimetry estimates. The aim of this work is to apply a PK model for TRT to two agents with different magnitudes of clearance rates, NM404 and FLT, explore parameter sensitivity with respect to time and investigate the effect of noise on parameter precision and accuracy. Twenty-three tumor bearing mice were injected with a ‘slow-clearing’ agent, 124I-NM404 (n = 10), or a ‘fast-clearing’ agent, 18F-FLT (3‧-deoxy-3‧-fluorothymidine) (n = 13) and imaged via micro-PET/CT pseudo-dynamically or dynamically, respectively. Regions of interest were drawn within the heart and tumor to create time-concentration curves for blood pool and tumor. PK analysis was performed to estimate the mean and standard error of the central compartment efflux-to-influx ratio (k12/k21), central elimination rate constant (kel), and tumor influx-to-efflux ratio (k34/k43), as well as the mean and standard deviation of the dosimetry estimates. NM404 and FLT parameter estimation results were used to analyze model accuracy and parameter sensitivity. The accuracy of the experimental sampling schedule was compared to that of an optimal sampling schedule found using Cramer-Rao lower bounds theory. Accuracy was assessed using correlation coefficient, bias and standard error of the estimate normalized to the mean (SEE/mean). The PK parameter estimation of NM404 yielded a central clearance, kel (0.009 ± 0.003 h-1), normal body retention, k12/k21 (0.69 ± 0.16), tumor retention, k34/k43 (1.44 ± 0.46) and predicted dosimetry, Dtumor (3.47 ± 1.24 Gy). The PK parameter estimation of FLT

  17. Testis dosimetry in individual patients by combining a small-scale dosimetry model and pharmacokinetic modeling-application of 111In-Ibritumomab Tiuxetan (Zevalin®)

    NASA Astrophysics Data System (ADS)

    Meerkhan, Suaad A.; Sjögreen-Gleisner, Katarina; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-12-01

    A heterogeneous distribution of radionuclides emitting low-energy electrons in the testicles may result in a significant difference between an absorbed dose to the radiosensitive spermatogonia and the mean absorbed dose to the whole testis. This study focused on absorbed dose distribution in patients at a finer scale than normally available in clinical dosimetry, which was accomplished by combining a small-scale dosimetry model with patient pharmacokinetic data. The activity in the testes was measured and blood sampling was performed for patients that underwent pre-therapy imaging with 111In-Zevalin®. Using compartment modeling, testicular activity was separated into two components: vascular and extravascular. The uncertainty of absorbed dose due to geometry variations between testicles was explored by an assumed activity micro-distribution and by varying the radius of the interstitial tubule. Results showed that the absorbed dose to germ cells might be strongly dependent on the location of the radioactive source, and may exceed the absorbed dose to the whole testis by as much as a factor of two. Small-scale dosimetry combined with compartmental analysis of clinical data proved useful for gauging tissue dosimetry and interpreting how intrinsic geometric variation influences the absorbed dose.

  18. 76 FR 10482 - Special Conditions: Boeing Model 787-8 Airplane; Overhead Flightcrew-Rest Compartment Occupiable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... equipment within the OFCR compartment. (4) Structural failure or deformation of components that could block... structural tests must not impede rapid evacuation of the OFCR compartment occupants. Seat deformations must... structural failure, or persons standing below or against the flightcrew-rest compartment outlets. One of...

  19. Population Pharmacokinetics and Therapeutic Efficacy of Febuxostat in Patients with Severe Renal Impairment.

    PubMed

    Hira, Daiki; Chisaki, Yugo; Noda, Satoshi; Araki, Hisazumi; Uzu, Takashi; Maegawa, Hiroshi; Yano, Yoshitaka; Morita, Shin-Ya; Terada, Tomohiro

    2015-01-01

    The aim of the present study was to determine the influence of severe renal dysfunction (estimated glomerular filtration rate <30 ml/min/1.73 m(2), including hemodialysis) on the pharmacokinetics and therapeutic effects of febuxostat using a population pharmacokinetic analysis. This study recruited patients with hyperuricemia who were initially treated with allopurinol, but were switched to febuxostat, and it consists of 2 sub-studies: a pharmacokinetic study (26 patients) and retrospective efficacy evaluation study (51 patients). The demographic and clinical data of patients were collected from electronic medical records. Plasma febuxostat concentrations were obtained at each hospital visit. Population pharmacokinetic modeling was performed with NONMEM version 7.2. A total of 128 plasma febuxostat concentrations from 26 patients were used in the population pharmacokinetic analysis. The data were best described by a 1-compartment model with first order absorption. Covariate analysis revealed that renal function did not influence the pharmacokinetics of febuxostat, whereas actual body weight significantly influenced apparent clearance and apparent volume of distribution. The retrospective efficacy analysis showed the favorable therapeutic response of febuxostat switched from allopurinol in patients with moderate to severe renal impairment. No serious adverse event associated with febuxostat was observed irrespective of renal function. The population pharmacokinetic analysis and therapeutic analysis of febuxostat revealed that severe renal dysfunction had no influence on the pharmacokinetic parameters of febuxostat. These results suggest that febuxostat is tolerated well by patients with severe renal impairment. PMID:26183164

  20. Compartment modeling anslysis of C-11 flumazenil kinetics in human brain using dynamic 2D and 3D PET

    SciTech Connect

    Choi, Y.; Simpson, N.; Townsend, D.W.

    1994-05-01

    We examined the feasibility of compartment modeling analysis and the numerical accuracy of model parameters of radioligand delivery and binding in the brain using 2D and 3D PET. Two subjects were injected with C-11 flumazenil (FMZ) i.v., and imaged over the brain with a dynamic sequence of 6x20 s, 2x30 s, 4x90 s, 4x180 s, 2x300 s, 2x600 s, and 2x1200 s frames. Different scatter correction methods were applied to the 3D data: No scatter correction (NOC), dual-energy window subtraction (DEW) and convolution-subtraction (CON). The kinetic data for regions listed below were fitted to a 2-compartment, 2-parameter model. Both 2D and 3D results are similar and within the expected range. The 3D %SE was less than 2D despite the smaller dose. The effect of the scatter in 3D parameter estimates appears to be small. These preliminary data indicate temporally sufficient kinetic data can be acquired in 3D mode to perform compartmental analysis of C-11 FMZ. Improved sensitivity in 3D may allow more accurate receptor characterization especially in small structures or in low specific binding areas.

  1. Pharmacokinetic Modeling of Tumor Bioluminescence Implicates Efflux, and Not Influx, as the Bigger Hurdle in Cancer Drug Therapy

    PubMed Central

    Sim, Hoon; Bibee, Kristin; Wickline, Samuel A.; Sept, David

    2010-01-01

    In vivo bioluminescence imaging is a powerful tool for assessing tumor burden and quantifying therapeutic response in xenograft models. However this technique exhibits significant variability as a consequence of differences in substrate administration, as well as the tumor size, type, and location. Here we present a novel pharmacokinetic (PK) approach that utilizes bioluminescence image data. The sample data are taken from mice implanted with a melanoma tumor cell line that was transfected to express the firefly (Photinus pyralis) luciferase gene. At 5, 7 and 10 days post-implant, IP injections of D-luciferin were given to monitor the uptake into the tumor, and the tumor volume was measured using ultrasound. A multi-compartment PK model was used to simultaneously fit all experiments for each mouse. We observed that the rates of luciferin transport in and out of the tumor exhibited a clear dependence on the tumor volume. Also, the rate of tumor influx increased faster than did the efflux, resulting in a shortening of the time to peak luciferin concentration as the tumor grows. The time of the peak concentration correlated poorly with the tumor volume, but the peak bioluminescence signal and the area under the curve both exhibited a dependence on the tumor surface area. These results agree with Starling’s hypothesis relating the higher interstitial fluid pressure in the tumor with flux across the boundary, and suggest that drug transport may depend more strongly on the surface area of the tumor than its volume. These observations provide a quantitative physical rationale for molecular targeting of therapeutics that enhance trapping and overcome the accelerated efflux kinetics. PMID:21123454

  2. Pharmacokinetic modelling of the placental transfer of nelfinavir and its M8 metabolite: a population study using 75 maternal-cord plasma samples

    PubMed Central

    Hirt, Déborah; Urien, Saïk; Jullien, Vincent; Firtion, Ghislaine; Chappuy, Hélène; Rey, Elisabeth; Pons, Gérard; Mandelbrot, Laurent; Treluyer, Jean-Marc

    2007-01-01

    What is already known about this subject Nelfinavir is an HIV protease inhibitor used in pregnant women, although no ex vivo and few in vivo data are available describing its transfer across the placenta. What this study adds A population pharmacokinetic study was performed on maternal, cord plasma and amniotic fluid samples to characterize the concentration–time courses of nelfinavir and its metabolite M8 in the three compartments and to study the influence of covariates, such as weight and duration of pregnancy, on placental transfer. The pharmacokinetics of nelfinavir and M8 were satisfactorily described by a three compartment model. The median nelfinavir fetus : maternal concentration ratio was 25% for maternal concentrations between 0.1 and 2.5 mg l−1, between the 31st and 41st week of gestation, irrespective of bodyweight. This ratio was significantly higher for M8 (a 55% increase). To our knowledge this is the first population pharmacokinetic integrated model to describe satisfactorily the maternal-foetal-amniotic fluid transfer of a drug. Aims A population pharmacokinetic model was developed to characterize the transfer of nelfinavir and its active metabolite M8 from maternal to cord plasma and amniotic fluid. Methods Concentration data were obtained from 75 women on the day of delivery and for whom maternal, umbilical plasma and amniotic fluid samples were collected. Data from 53 pregnant, 61 nonpregnant and seven consecutively pregnant and non pregnant women were then added to the database, the contents of which were analyzed using NONMEM. Results Nelfinavir and M8 concentrations in maternal plasma, umbilical plasma and amniotic fluid were described by six connected compartments. Mean (% intersubject variability) population estimates were: absorption rate 00.67 h−1, lag time 00.87 h, oral clearance and volume of distribution: 39.5 l h−1 (53%), and 557 l for non pregnant and pregnant women, respectively, and 115 l h−1 (132%) and 1626 l

  3. Pharmacokinetic/pharmacodynamic modelling of NSAIDs in a model of reversible inflammation in the cat

    PubMed Central

    Giraudel, Jerome M; Diquelou, Armelle; Laroute, Valerie; Lees, Peter; Toutain, Pierre-Louis

    2005-01-01

    Data on the relationships between plasma concentration and analgesic and anti-inflammatory effects of NSAIDs are limited because most inflammation models do not permit pharmacokinetic/pharmacodynamic (PK/PD) modelling to be readily performed. In this study, a kaolin-induced inflammation model in the cat was evaluated for pre-clinical characterization of the pharmacodynamic profiles of NSAIDs (determination of efficacy, potency, sensitivity (that is the slope of the concentration–effect relationship) and duration of drug response), using meloxicam as a probe article. Indirect response PK/PD models described the time course and magnitude of responses produced by 0.3 mg kg−1 meloxicam administered subcutaneously. For endpoints for which spontaneous recovery from inflammation was superimposed on drug response, a PK/PD model with a time-dependent Kin was used to allow for the spontaneous changes of the inflammation with time. The selected endpoints were suitable for studying simultaneously the analgesic, anti-inflammatory and antipyretic effects of meloxicam, allowing comparison of relative potencies for these effects. Mean±s.d. IC50 or EC50 values (ng ml−1) were 777±124 (body temperature), 841±187 (locomotion variable), 883±215 (pain score), 911±189 (lameness score) and 1298±449 (skin temperature difference). Corresponding mean times±s.d. of peak responses (h) were 5.6±1.3, 8.6±3.8, 5.2±5.0, 5.6±3.7 and 4.3±2.4, respectively. As the pharmacokinetic profiles of meloxicam in cats and humans are similar, simulations of several dosage regimens in the cat provided a pre-clinical basis, illustrating the value of the cat model for predicting a clinical dose regimen for evaluation in man. The predicted loading doses (mg kg−1) of meloxicam in the cat producing 70% of the maximum attainable responses were 0.29 (body temperature), 0.32 (lameness score), 0.33 (overall locomotion variable), 0.36 (pain score) and 0.50 (skin temperature difference). The

  4. Pharmacokinetic study of a systemically administered novel liposomal Temoporfin formulation in an animal tumor model

    NASA Astrophysics Data System (ADS)

    Svensson, Jenny; Johansson, Ann; Bendsoe, Niels; Gräfe, Susanna; Trebst, Tilmann; Andersson-Engels, Stefan; Svanberg, Katarina

    2007-02-01

    Meso-tetra(hydroxyphenyl)chlorin (mTHPC)(international generic name Temoporfin) is a potent photosensitizer used for photodynamic therapy (PDT). In this study the pharmacokinetics of a systemically administered novel lipid formulation of Temoporfin in a murine tumor model has been investigated. Fluorescence spectroscopy measurements were performed at several time intervals following drug administration, yielding information on the Temoporfin concentration within excised internal organs as a function of time after injection. Both point-monitoring and imaging setups were used. The acquired fluorescence data were correlated to the concentration of Temoporfin obtained with High Performance Liquid Chromatography (HPLC). There was a significant correlation between the fluorescence methods and HPLC for most organs investigated. The pharmacokinetics of this new liposomal formulation of Temoporfin exhibited a rather flat temporal profile in the time interval 2-8 hours in this study.

  5. Compartmental Pharmacokinetic Analysis of Oral Amprenavir with Secondary Peaks▿

    PubMed Central

    Okusanya, Olanrewaju; Forrest, Alan; DiFrancesco, Robin; Bilic, Sanela; Rosenkranz, Susan; Para, Michael F.; Adams, Elizabeth; Yarasheski, Kevin E.; Reichman, Richard C.; Morse, Gene D.

    2007-01-01

    Amprenavir is a protease inhibitor that has been shown to have secondary peaks postulated to be due to enterohepatic recycling. We propose a model to describe the pharmacokinetics of amprenavir which accommodates the secondary peak(s). A total of 82 healthy human immunodeficiency virus (HIV)-seronegative subjects were administered a single 600-mg dose of amprenavir as part of adult AIDS Clinical Trials Group protocol A5043. Serial blood samples were obtained over 24 h. Samples were analyzed for amprenavir and fit to a compartmental model using ADAPT II software, with all relevant parameters conditional with respect to bioavailability. The model accommodated secondary peaks by incorporating clearance out of the central compartment with delayed instantaneous release back into the gut compartment. The data were weighted by the inverse of the estimated measurement error variance; model discrimination was determined using Akaike's Information Criteria. A total of 76 subjects were evaluable in the study analysis. The data were best fit by a two-compartment model, with 98.7% of the subjects demonstrating a secondary peak. Amprenavir had a mean total clearance of 1.163 liters/h/kg of body weight (0.7), a central volume of distribution of 1.208 liters/kg (0.8), a peripheral volume of distribution of 8.2 liters/kg (0.81), and distributional clearance of 0.04 liters/h/kg (0.81). The time to the secondary peak was 7.86 h (0.17), and clearance into a recycling compartment was 0.111 liters/kg/h (0.74). Amprenavir pharmacokinetics has been well described using a two-compartment model with clearance to a recycling compartment and release back into the gut. The nature of the secondary peaks may be an important consideration for the interpretation of amprenavir plasma concentrations during therapeutic drug monitoring. PMID:17283195

  6. Preliminary Modelling of Mass Flux at the Surface of Plant Leaves within the MELiSSA Higher Plant Compartments

    NASA Astrophysics Data System (ADS)

    Holmberg, Madeleine; Paille, Christel; Lasseur, Christophe

    The ESA project Micro Ecological Life Support System Alternative (MELiSSA) is an ecosystem of micro-organisms and higher plants, constructed with the objective of being operated as a tool to understand artificial ecosystems to be used for a long-term or permanent manned planetary base (e.g. Moon or Mars). The purpose of such a system is to provide for generation of food, water recycling, atmospheric regeneration and waste management within defined standards of quality and reliability. As MELiSSA consists of individual compartments which are connected to each other, the robustness of the system is fully dependent on the control of each compartment, as well as the flow management between them. Quality of consumables and reliability of the ecosystem rely on the knowledge, understanding and control of each of the components. This includes the full understanding of all processes related to the higher plants. To progress in that direction, this paper focuses on the mechanical processes driving the gas and liquid exchanges between the plant leaf and its environment. The process responsible for the mass transfer on the surface of plant leaves is diffusion. The diffusion flux is dependent on the behaviour of the stoma of the leaf and also on the leaf boundary layer (BL). In this paper, the physiology of the leaf is briefly examined in order to relate parameters such as light quality, light quantity, CO2 concentration, temperature, leaf water potential, humidity, vapour pressure deficit (VPD) gradients and pollutants to the opening or closing of stomata. The diffusion process is described theoretically and the description is compared to empirical approaches. The variables of the BL are examined and the effect airflow in the compartment has on the BL is investigated. Also presented is the impact changes in different environmental parameters may have on the fluid exchanges. Finally, some tests, to evaluate the accuracy of the concluded model, are suggested.

  7. Improved prediction of tacrolimus concentrations early after kidney transplantation using theory-based pharmacokinetic modelling

    PubMed Central

    Størset, Elisabet; Holford, Nick; Hennig, Stefanie; Bergmann, Troels K; Bergan, Stein; Bremer, Sara; Åsberg, Anders; Midtvedt, Karsten; Staatz, Christine E

    2014-01-01

    Aims The aim was to develop a theory-based population pharmacokinetic model of tacrolimus in adult kidney transplant recipients and to externally evaluate this model and two previous empirical models. Methods Data were obtained from 242 patients with 3100 tacrolimus whole blood concentrations. External evaluation was performed by examining model predictive performance using Bayesian forecasting. Results Pharmacokinetic disposition parameters were estimated based on tacrolimus plasma concentrations, predicted from whole blood concentrations, haematocrit and literature values for tacrolimus binding to red blood cells. Disposition parameters were allometrically scaled to fat free mass. Tacrolimus whole blood clearance/bioavailability standardized to haematocrit of 45% and fat free mass of 60 kg was estimated to be 16.1 l h−1 [95% CI 12.6, 18.0 l h−1]. Tacrolimus clearance was 30% higher (95% CI 13, 46%) and bioavailability 18% lower (95% CI 2, 29%) in CYP3A5 expressers compared with non-expressers. An Emax model described decreasing tacrolimus bioavailability with increasing prednisolone dose. The theory-based model was superior to the empirical models during external evaluation displaying a median prediction error of −1.2% (95% CI −3.0, 0.1%). Based on simulation, Bayesian forecasting led to 65% (95% CI 62, 68%) of patients achieving a tacrolimus average steady-state concentration within a suggested acceptable range. Conclusion A theory-based population pharmacokinetic model was superior to two empirical models for prediction of tacrolimus concentrations and seemed suitable for Bayesian prediction of tacrolimus doses early after kidney transplantation. PMID:25279405

  8. Mathematical modeling and simulation in animal health. Part I: Moving beyond pharmacokinetics.

    PubMed

    Riviere, J E; Gabrielsson, J; Fink, M; Mochel, J

    2016-06-01

    The application of mathematical modeling to problems in animal health has a rich history in the form of pharmacokinetic modeling applied to problems in veterinary medicine. Advances in modeling and simulation beyond pharmacokinetics have the potential to streamline and speed-up drug research and development programs. To foster these goals, a series of manuscripts will be published with the following goals: (i) expand the application of modeling and simulation to issues in veterinary pharmacology; (ii) bridge the gap between the level of modeling and simulation practiced in human and veterinary pharmacology; (iii) explore how modeling and simulation concepts can be used to improve our understanding of common issues not readily addressed in human pharmacology (e.g. breed differences, tissue residue depletion, vast weight ranges among adults within a single species, interspecies differences, small animal species research where data collection is limited to sparse sampling, availability of different sampling matrices); and (iv) describe how quantitative pharmacology approaches could help understanding key pharmacokinetic and pharmacodynamic characteristics of a drug candidate, with the goal of providing explicit, reproducible, and predictive evidence for optimizing drug development plans, enabling critical decision making, and eventually bringing safe and effective medicines to patients. This study introduces these concepts and introduces new approaches to modeling and simulation as well as clearly articulate basic assumptions and good practices. The driving force behind these activities is to create predictive models that are based on solid physiological and pharmacological principles as well as adhering to the limitations that are fundamental to applying mathematical and statistical models to biological systems. PMID:26592724

  9. Validation of a Best-Fit Pharmacokinetic Model for Scopolamine Disposition after Intranasal Administration

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S-L.; Tam, V.; Putcha, L.

    2015-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Motion Sickness. Bioavailability and pharmacokinetics (PK) were determined per Investigative New Drug (IND) evaluation guidance by the Food and Drug Administration. Earlier, we reported the development of a PK model that can predict the relationship between plasma, saliva and urinary scopolamine (SCOP) concentrations using data collected from an IND clinical trial with INSCOP. This data analysis project is designed to validate the reported best fit PK model for SCOP by comparing observed and model predicted SCOP concentration-time profiles after administration of INSCOP.

  10. Population pharmacokinetics modeling of oxcarbazepine to characterize drug interactions in Chinese children with epilepsy

    PubMed Central

    Wang, Yang; Zhang, Hua-nian; Niu, Chang-he; Gao, Ping; Chen, Yu-jun; Peng, Jing; Liu, Mao-chang; Xu, Hua

    2014-01-01

    Aim: To develop a population pharmacokinetics model of oxcarbazepine in Chinese pediatric patients with epilepsy, and to study the interactions between oxcarbazepine and other antiepileptic drugs (AEDs). Methods: A total of 688 patients with epilepsy aged 2 months to 18 years were divided into model (n=573) and valid (n=115) groups. Serum concentrations of the main active metabolite of oxcarbazepine, 10-hydroxycarbazepine (MHD), were determined 0.5–48 h after the last dosage. A population pharmacokinetics (PPK) model was constructed using NLME software. This model was internally evaluated using Bootstrapping and goodness-of-fit plots inspection. The data of the valid group were used to calculate the mean prediction error (MPE), mean absolute prediction error (MAE), mean squared prediction error (MSE) and the 95% confidence intervals (95% CI) to externally evaluate the model. Results: The population values of pharmacokinetic parameters estimated in the final model were as follows: Ka=0.83 h-1, Vd=0.67 L/kg, and CL=0.035 L·kg−1·h−1. The enzyme-inducing AEDs (carbamazepine, phenytoin, phenobarbital) and newer generation AEDs (levetiracetam, lamotrigine, topiramate) increased the weight-normalized CL value of MHD by 17.4% and 10.5%, respectively, whereas the enzyme-inhibiting AED valproic acid decreased it by 3%. No significant association was found between the CL value of MHD and the other covariates. For the final model, the evaluation results (95% CI) were MPE=0.01 (−0.07–0.10) mg/L, MAE=0.46 (0.40–0.51) mg/L, MSE=0.39 (0.27–0.51) (mg/L)2. Conclusion: A PPK model of OXC in Chinese pediatric patients with epilepsy is established. The enzyme-inducing AEDs and some newer generation AEDs (lamotrigine, topiramate) could slightly increase the metabolism of MHD. PMID:25220641

  11. Modeling the Interaction between β-Amyloid Aggregates and Choline Acetyltransferase Activity and Its Relation with Cholinergic Dysfunction through Two-Enzyme/Two-Compartment Model

    PubMed Central

    Fgaier, Hedia; Mustafa, Ibrahim H. I.; Awad, Asmaa A. R.; Elkamel, Ali

    2015-01-01

    The effect of β-amyloid aggregates on activity of choline acetyltransferase (ChAT) which is responsible for synthesizing acetylcholine (ACh) in human brain is investigated through the two-enzyme/two-compartment (2E2C) model where the presynaptic neuron is considered as compartment 1 while both the synaptic cleft and the postsynaptic neuron are considered as compartment 2 through suggesting three different kinetic mechanisms for the inhibition effect. It is found that the incorporation of ChAT inhibition by β-amyloid aggregates into the 2E2C model is able to yield dynamic solutions for concentrations of generated β-amyloid, ACh, choline, acetate, and pH in addition to the rates of ACh synthesis and ACh hydrolysis in compartments 1 and 2. It is observed that ChAT activity needs a high concentration of β-amyloid aggregates production rate. It is found that ChAT activity is reduced significantly when neurons are exposed to high levels of β-amyloid aggregates leading to reduction in levels of ACh which is one of the most significant physiological symptoms of AD. Furthermore, the system of ACh neurocycle is dominated by the oscillatory behavior when ChAT enzyme is completely inhibited by β-amyloid. It is observed that the direct inactivation of ChAT by β-amyloid aggregates may be a probable mechanism contributing to the development of AD. PMID:26413144

  12. Pharmacokinetic-pharmacodynamic modelling and simulation using the electrical circuit simulation program SPICE2.

    PubMed

    Thakker, K M

    1984-01-01

    The use of the electrical circuit simulation program SPICE2 for performing digital computer simulations of linear and non-linear pharmacokinetic-pharmacodynamic models is described. SPICE2 utilizes the principles of network thermodynamics (thermodynamics of electrical circuits). These principles dictate analogy between the conservation laws of chemical reactions and mass transport and Kirchhoff's laws of current and voltage balance, and also prove that Fick's law of diffusion is isomorphous with the conductance form of Ohm's law. Detailed descriptions of program inputs, formats, and options for simulation of linear and non-linear pharmacokinetic-pharmacodynamic systems are provided, with appropriate examples. Single as well as multiple dose simulations (accumulation kinetics and dynamics) are discussed. The advantages of SPICE2 over other available simulation packages, including user-friendliness, ease of operation, versatility, power, and the economy of time and effort afforded, are emphasized. The educational value of SPICE2 as a highly versatile tool for teaching both fundamental and complex pharmacokinetic-pharmacodynamic concepts, as well as its routine usage in elucidating complex research problems, are also discussed. PMID:6549267

  13. Population pharmacokinetics of zonisamide after oral administration in healthy Chinese volunteers.

    PubMed

    Qiu, Xuewen; Dai, Qing; Sun, Fengjun; Liu, Yao; Yang, Bo; Xiang, Rongfeng; Yu, Mingjie; Xiong, Lirong; Bi, Shanshan; Lu, Wei; Chen, Yongchuan; Xia, Peiyuan

    2016-05-01

    To develop a population-based pharmacokinetic model for the oral antiepileptic drug zonisamide using a cohort of healthy (nonepileptic) subjects and evaluate the effect of individual factors on the pharmacokinetics of zonisamide. 30 young adults (21-39 years) in good health were randomly assigned to 3 equal groups (1:1 sex ratio) for single-dose administration of zonisamide at 200 mg, 300 mg, or 400 mg. An additional 9 subjects (22-24 years) were administered once daily zonisamide at 300 mg for 14 days, and comprised the multiple dosing group. Venous blood samples were collected for analysis prior to (baseline, 0 hours) and after (1-300 hours) drug administration, providing 607 total samples used to build the pharmacokinetic model. The population pharmacokinetic analysis was performed by ICON's nonlinear mixed-effect modeling (NONMEM) software. Validation of the final model was carried out by nonparametric bootstrapping and visual predictive check. The zonisamide pharmacokinetics was best described by a two-compartment model with first-order elimination. In the final model, the estimated value of clearance (CL) was 23.25 L/h, the volume of distribution of the central compartment (Vc) was 34.50 L, the intercompartmental clearance (Q) was 20.22 L/h, and the Ka was 0.026 h(-1). The peripheral volume of distribution (Vp) was 1,429 L for single dose and 1,003 L for multiple doses. Body weight was the significant covariate affecting CL, Vc, Vp, and Q. Otherwise, female subjects had a lower Q than male subjects. The pharmacokinetics of zonisamide after oral administration could be described using a linear first-order elimination two-compartment model, which may provide a reference for clinical use of zonisamide in Chinese adults. PMID:27007995

  14. Pharmacokinetic Interpretation of Blood Levels and Urinary Excretion Data for Cefazolin and Cephalothin After Intravenous and Intramuscular Administration in Humans

    PubMed Central

    Rattie, Elisabeth S.; Ravin, Louis J.

    1975-01-01

    Blood levels of cefazolin and cephalothin were determined in two separate crossover studies in 20 healthy male adults, each after intravenous and intramuscular administration. Pharmacokinetic parameters were calculated from the intravenous data based upon a two-compartment open model. The rate constants controlling the distribution between the central and peripheral compartments, the overall elimination rate constants, the apparent volumes of distribution, and the fraction of the dose in the central and peripheral compartments were determined. The bioavailability was calculated to be 100% for cefazolin and cephalothin. PMID:1147591

  15. Information-based ranking of 10 compartment models of diffusion-weighted signal attenuation in fixed prostate tissue.

    PubMed

    Liang, Sisi; Panagiotaki, Eleftheria; Bongers, Andre; Shi, Peng; Sved, Paul; Watson, Geoffrey; Bourne, Roger

    2016-05-01

    This study compares the theoretical information content of single- and multi-compartment models of diffusion-weighted signal attenuation in prostate tissue. Diffusion-weighted imaging (DWI) was performed at 9.4 T with multiple diffusion times and an extended range of b values in four whole formalin-fixed prostates. Ten models, including different combinations of isotropic, anisotropic and restricted components, were tested. Models were ranked using the Akaike information criterion. In all four prostates, two-component models, comprising an anisotropic Gaussian component and an isotropic restricted component, ranked highest in the majority of voxels. Single-component models, whether isotropic (apparent diffusion coefficient, ADC) or anisotropic (diffusion tensor imaging, DTI), consistently ranked lower than multi-component models. Model ranking trends were independent of voxel size and maximum b value in the range tested (1.6-16 mm(3) and 3000-10 000 s/mm(2) ). This study characterizes the two major water components previously identified by biexponential models and shows that models incorporating both anisotropic and restricted components provide more information-rich descriptions of DWI signals in prostate tissue than single- or multi-component anisotropic models and models that do not account for restricted diffusion. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26999065

  16. [Cephalexin pharmacokinetics].

    PubMed

    Koroleva, V G; Vasil'ev, V K; Danilova, V I; Firsov, A A

    1981-03-01

    The pharmacokinetics of cephalexin monohydrate after its oral administration in a single dose was studied on rats and dogs. The analysis of the pharmacokinetic data obtained with the one-compartmental model showed that the rate of the antibiotic absorption in the rats was higher than that in the dogs. The periods of the cephalexin half-absorption and maximum concentration were 0.2 and 1.1 hour in the rats and 0.64 and 1.9 hours in the dogs respectively. The period of the antibiotic half-life was almost the same in both animal species. Selective localization of cephalexin in the kidney and liver tissues was noted. The antibiotic was mainly excreted by the kidneys (98.8 per cent for 24 hours). PMID:7235651

  17. Pharmacokinetic-pharmacodynamic modeling of the antitumor effect of TM208 and EGFR-TKI resistance in human breast cancer xenograft mice

    PubMed Central

    Ji, Xi-wei; Ji, Shuang-min; Li, Run-tao; Wu, Ke-hua; Zhu, Xiao; Lu, Wei; Zhou, Tian-yan

    2016-01-01

    Aim: The novel anticancer compound TM208 is an EGFR tyrosine kinase inhibitor (EGFR-TKI). Since the development of resistance to EGFR-TKIs is a major challenge in their clinical usage, we investigated the profiles of resistance following continuous treatment with TM208 in human breast cancer xenograft mice, and identified the relationship between the tumor pEGFR levels and tumor growth inhibition. Methods: Female BALB/c nude mice were implanted with human breast cancer MCF-7 cells, and the xenograft mice received TM208 (50 or 150 mg·kg−1·d−1, ig) or vehicle for 18 d. The pharmacokinetics (PK) and pharmacodynamics (PD) of TM208 were evaluated. Results: The PK properties of TM208 were described by a one-compartment model with first-order absorption kinetics. Our study showed the inhibitory effects of TM208 on tumor pEGFR levels gradually reached a maximum effect, after which it became weaker over time, which was characterized by a combined tolerance/indirect response PD model with an estimated EC50 (55.9 μg/L), as well as three parameters ('a' of 27.2%, 'b' of 2730%, 'c' of 0.58 h−1) denoting the maximum, extent and rate of resistance, respectively. The relationship between the tumor pEGFR levels and tumor growth inhibition was characterized by a combined logistic tumor growth/transit compartment model with estimated parameters associated with tumor growth characteristics kng (0.282 day−1), drug potency kTM208 (0.0499 cm3/day) and the kinetics of tumor cell death k1 (0.141 day−1), which provided insight into drug mechanisms and behaviors. Conclusion: The proposed PK/PD model provides a better understanding of the pharmacological properties of TM208 in the treatment of breast cancer. Furthermore, simulation based on a tolerance model allows prediction of the occurrence of resistance. PMID:27133303

  18. EVALUATION OF MULTIPLE PHARMACOKINETIC MODELING STRUCTURES FOR TRICHLOROETHYLENE

    EPA Science Inventory

    A series of PBPK models were developed for trichloroethylene (TCE) to evaluate biological processes that may affect the absorption, distribution, metabolism and excretion (ADME) of TCE and its metabolites.

  19. Physiologically based pharmacokinetic modeling of disposition and drug-drug interactions for atorvastatin and its metabolites.

    PubMed

    Zhang, Tao

    2015-09-18

    Atorvastatin is the most commonly used of all statins to lower cholesterol. Atorvastatin is extensively metabolized in both gut and liver to produce several active metabolites. The purpose of the present study is to develop a physiologically based pharmacokinetic (PBPK) model for atorvastatin and its two primary metabolites, 2-hydroxy-atorvastatin acid and atorvastatin lactone, using in vitro and in vivo data. The model was used to predict the pharmacokinetic profiles and drug-drug interaction (DDI) effect for atorvastatin and its metabolites in different DDI scenarios. The predictive performance of the model was assessed by comparing predicted results to observed data after coadministration of atorvastatin with different medications such as itraconazole, clarithromycin, cimetidine, rifampin and phenytoin. This population based PBPK model was able to describe the concentration-time profiles of atorvastatin and its two metabolites reasonably well in the absence or presence of those drugs at different dose regimens. The predicted maximum concentration (Cmax), area under the concentration-time curve (AUC) values and between-phase ratios were in good agreement with clinically observed data. The model has also revealed the importance of different metabolic pathways on the disposition of atorvastatin metabolites. This PBPK model can be utilized to assess the safety and efficacy of atorvastatin in the clinic. This study demonstrated the feasibility of applying PBPK approach to predict the DDI potential of drugs undergoing complex metabolism. PMID:26116278

  20. Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats.

    PubMed

    Westerhout, Joost; Ploeger, Bart; Smeets, Jean; Danhof, Meindert; de Lange, Elizabeth C M

    2012-09-01

    One of the major challenges in the development of central nervous system (CNS)-targeted drugs is predicting CNS exposure in human from preclinical data. In this study, we present a methodology to investigate brain disposition in rats using a physiologically based modeling approach aiming at improving the prediction of human brain exposure. We specifically focused on quantifying regional diffusion and fluid flow processes within the brain. Acetaminophen was used as a test compound as it is not subjected to active transport processes. Microdialysis probes were implanted in striatum, for sampling brain extracellular fluid (ECF) concentrations, and in lateral ventricle (LV) and cisterna magna (CM), for sampling cerebrospinal fluid (CSF) concentrations. Serial blood samples were taken in parallel. These data, in addition to physiological parameters from literature, were used to develop a physiologically based model to describe the regional brain pharmacokinetics of acetaminophen. The concentration-time profiles of brain ECF, CSF(LV), and CSF(CM) indicate a rapid equilibrium with plasma. However, brain ECF concentrations are on average fourfold higher than CSF concentrations, with average brain-to-plasma AUC(0-240) ratios of 121%, 28%, and 35% for brain ECF, CSF(LV), and CSF(CM), respectively. It is concluded that for acetaminophen, a model compound for passive transport into, within, and out of the brain, differences exist between the brain ECF and the CSF pharmacokinetics. The physiologically based pharmacokinetic modeling approach is important, as it allowed the prediction of human brain ECF exposure on the basis of human CSF concentrations. PMID:22588644

  1. Physiologically based pharmacokinetic (PBPK) modeling considering methylated trivalent arsenicals

    EPA Science Inventory

    PBPK modeling provides a quantitative biologically-based framework to integrate diverse types of information for application to risk analysis. For example, genetic polymorphisms in arsenic metabolizing enzymes (AS3MT) can lead to differences in target tissue dosimetry for key tri...

  2. Physiologically-based pharmacokinetic modeling of target-mediated drug disposition of bortezomib in mice.

    PubMed

    Zhang, Li; Mager, Donald E

    2015-10-01

    Bortezomib is a reversible proteasome inhibitor with potent antineoplastic activity that exhibits dose- and time-dependent pharmacokinetics (PK). Proteasome-mediated bortezomib disposition is proposed as the primary source of its nonlinear and apparent nonstationary PK behavior. Single intravenous (IV) doses of bortezomib (0.25 and 1 mg/kg) were administrated to BALB/c mice, with blood and tissue samples obtained over 144 h, which were analyzed by LC/MS/MS. A physiologically based pharmacokinetic (PBPK) model incorporating tissue drug-target binding was developed to test the hypothesis of proteasome-mediated bortezomib disposition. The final model reasonably captured bortezomib plasma and tissue PK profiles, and parameters were estimated with good precision. The rank-order of model estimated tissue target density correlated well with experimentally measured proteasome concentrations reported in the literature, supporting the hypothesis that binding to proteasome influences bortezomib disposition. The PBPK model was further scaled-up to humans to assess the similarity of bortezomib disposition among species. Human plasma bortezomib PK profiles following multiple IV dosing (1.3 mg/m(2)) on days 1, 4, 8, and 11 were simulated by appropriately scaling estimated mouse parameters. Simulated and observed bortezomib concentrations after multiple dosing were in good agreement, suggesting target-mediated bortezomib disposition is likely for both mice and humans. Furthermore, the model predicts that renal impairment should exert minimal influence on bortezomib exposure in humans, confirming that bortezomib dose adjustment is not necessary for patients with renal impairment. PMID:26391023

  3. Population pharmacokinetic modelling to assess the impact of CYP2D6 and CYP3A metabolic phenotypes on the pharmacokinetics of tamoxifen and endoxifen

    PubMed Central

    ter Heine, Rob; Binkhorst, Lisette; de Graan, Anne Joy M; de Bruijn, Peter; Beijnen, Jos H; Mathijssen, Ron H J; Huitema, Alwin D R

    2014-01-01

    Aims Tamoxifen is considered a pro-drug of its active metabolite endoxifen. The major metabolic enzymes involved in endoxifen formation are CYP2D6 and CYP3A. There is considerable evidence that variability in activity of these enzymes influences endoxifen exposure and thereby may influence the clinical outcome of tamoxifen treatment. We aimed to quantify the impact of metabolic phenotype on the pharmacokinetics of tamoxifen and endoxifen. Methods We assessed the CYP2D6 and CYP3A metabolic phenotypes in 40 breast cancer patients on tamoxifen treatment with a single dose of dextromethorphan as a dual phenotypic probe for CYP2D6 and CYP3A. The pharmacokinetics of dextromethorphan, tamoxifen and their relevant metabolites were analyzed using non-linear mixed effects modelling. Results Population pharmacokinetic models were developed for dextromethorphan, tamoxifen and their metabolites. In the final model for tamoxifen, the dextromethorphan derived metabolic phenotypes for CYP2D6 as well as CYP3A significantly (P < 0.0001) explained 54% of the observed variability in endoxifen formation (inter-individual variability reduced from 55% to 25%). Conclusions We have shown that not only CYP2D6, but also CYP3A enzyme activity influences the tamoxifen to endoxifen conversion in breast cancer patients. Our developed model may be used to assess separately the impact of CYP2D6 and CYP3A mediated drug–drug interactions with tamoxifen without the necessity of administering this anti-oestrogenic drug and to support Bayesian guided therapeutic drug monitoring of tamoxifen in routine clinical practice. PMID:24697814

  4. A Physiologically Based Pharmacokinetic Model to Predict the Pharmacokinetics of Highly Protein-Bound Drugs and Impact of Errors in Plasma Protein Binding

    PubMed Central

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2015-01-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057

  5. Population Pharmacokinetic Model Characterizing 24-Hour Variation in the Pharmacokinetics of Oral and Intravenous Midazolam in Healthy Volunteers

    PubMed Central

    van Rongen, A; Kervezee, L; Brill, MJE; van Meir, H; den Hartigh, J; Guchelaar, H-J; Meijer, JH; Burggraaf, J; van Oosterhout, F

    2015-01-01

    Daily rhythms in physiology may affect the pharmacokinetics of a drug. The aim of this study was to evaluate 24-hour variation in the pharmacokinetics of the CYP3A substrate midazolam. Oral (2 mg) and intravenous (1 mg) midazolam was administered at six timepoints throughout the 24-hour period in 12 healthy volunteers. Oral bioavailability (population mean value [RSE%] of 0.28 (7.1%)) showed 24-hour variation that was best parameterized as a cosine function with an amplitude of 0.04 (17.3%) and a peak at 12:14 in the afternoon. The absorption rate constant was 1.41 (4.7%) times increased after drug administration at 14:00. Clearance (0.38 L/min (4.8%)) showed a minor 24-hour variation with an amplitude of 0.03 (14.8%) L/min and a peak at 18:50. Simulations show that dosing time minimally affects the concentration time profiles after intravenous administration, while concentrations are higher during the day compared to the night after oral dosing, reflecting considerable variation in intestinal processes. PMID:26380154

  6. Population Pharmacokinetic Model Characterizing 24-Hour Variation in the Pharmacokinetics of Oral and Intravenous Midazolam in Healthy Volunteers.

    PubMed

    van Rongen, A; Kervezee, L; Brill, Mje; van Meir, H; den Hartigh, J; Guchelaar, H-J; Meijer, J H; Burggraaf, J; van Oosterhout, F

    2015-08-01

    Daily rhythms in physiology may affect the pharmacokinetics of a drug. The aim of this study was to evaluate 24-hour variation in the pharmacokinetics of the CYP3A substrate midazolam. Oral (2 mg) and intravenous (1 mg) midazolam was administered at six timepoints throughout the 24-hour period in 12 healthy volunteers. Oral bioavailability (population mean value [RSE%] of 0.28 (7.1%)) showed 24-hour variation that was best parameterized as a cosine function with an amplitude of 0.04 (17.3%) and a peak at 12:14 in the afternoon. The absorption rate constant was 1.41 (4.7%) times increased after drug administration at 14:00. Clearance (0.38 L/min (4.8%)) showed a minor 24-hour variation with an amplitude of 0.03 (14.8%) L/min and a peak at 18:50. Simulations show that dosing time minimally affects the concentration time profiles after intravenous administration, while concentrations are higher during the day compared to the night after oral dosing, reflecting considerable variation in intestinal processes. PMID:26380154

  7. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR TOLUENE IN THE LONG EVANS RAT: BODY COMPOSITION AND PHYSICAL ACTIVITY.

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model for inhaled toluene was developed for Long-Evans rats as a component of an exposure-dose-response (EDR) model for volatile organic compounds. The PBPK model was needed to link airborne toluene exposure to its concentration in b...

  8. Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment (Final Report)

    EPA Science Inventory

    This final report, Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment addresses the application and evaluation of PBPK models for risk assessment purposes. These models represent an important class o...

  9. A semi-mechanistic pharmacokinetic model of saquinavir combined with itraconazole in HIV-1-positive patients.

    PubMed

    Lohitnavy, Manupat; Methaneethorn, Janthima; Sriarwut, Thanyalak; Pankaew, Anongnat; Jenjob, Anchalee; Phuphuak, Kiatiphong

    2015-01-01

    The mechanism of drug-drug interaction between saquinavir, a protease inhibitor used effectively for HIV/AIDS treatment, and itraconazole, an azole antifungal agent, is hypothesized to involve competitive inhibition at CYP3A4 enzyme, an important drug metabolizing enzyme in humans. The resulting interaction between these CYP3A4 substrates can be utilized clinically as a pharmacokinetic booster for prolonging saquinavir dosing regimen and/or decreasing saquinavir dose requirement in HIV/AIDS patients. To quantitatively describe this specific drug-drug interaction, based on the existing data, we aimed to develop a mathematical model incorporated with the competitive inhibition phenomena. PlotDigitizer was used to extract data from literature. Advance Continuous Simulating Language Extreme (ACSLX), a FORTRAN-based computer program, was employed as our developing tool. Our computer model simulations could successfully describe concentration-time course of saquinavir from selected pharmacokinetic studies in HIV-1-positive patients. To extend the model's utility as an aid in saquinavir dosage regimens, the developed model may be applied to other HIV/AIDS patients in genuine clinical settings. PMID:26736983

  10. A Humanized Mouse Model to Study Human Albumin and Albumin Conjugates Pharmacokinetics.

    PubMed

    Low, Benjamin E; Wiles, Michael V

    2016-01-01

    Albumin is a large, highly abundant protein circulating in the blood stream which is regulated and actively recycled via the neonatal Fc receptor (FcRn). In humans this results in serum albumin having an exceptional long half-life of ~21 days. Some time ago it was realized that these intrinsic properties could be harnessed and albumin could be used as a privileged drug delivery vehicle. However, active development of albumin based therapeutics has been hampered by the lack of economic, relevant experimental models which can accurately recapitulate human albumin metabolism and pharmacokinetics. In mice for example, introduced human albumin is not recycled and is catabolized rapidly. This is mainly due to the failure of mouse FcRn to bind human albumin consequently, human albumin has a half-life of only 2-3 days in mice. To overcome this we developed and characterized a humanized mouse model which is null for mouse FcRn and mouse albumin, but is transgenic for, and expressing functional human FcRn. Published data clearly demonstrate that upon injection of human albumin into this model animal that it accurately recapitulates human albumin FcRn dependent serum recycling, with human albumin now having a half-life ~24 days, closely mimicking that observed in humans. In this practical review we briefly review this model and outline its use for pharmacokinetic studies of human albumin. PMID:27150087

  11. Evaluating Pharmacokinetic and Pharmacodynamic Interactions with Computational Models in Supporting Cumulative Risk Assessment

    PubMed Central

    Tan, Yu-Mei; Clewell, Harvey; Campbell, Jerry; Andersen, Melvin

    2011-01-01

    Simultaneous or sequential exposure to multiple chemicals may cause interactions in the pharmacokinetics (PK) and/or pharmacodynamics (PD) of the individual chemicals. Such interactions can cause modification of the internal or target dose/response of one chemical in the mixture by other chemical(s), resulting in a change in the toxicity from that predicted from the summation of the effects of the single chemicals using dose additivity. In such cases, conducting quantitative cumulative risk assessment for chemicals present as a mixture is difficult. The uncertainties that arise from PK interactions can be addressed by developing physiologically based pharmacokinetic (PBPK) models to describe the disposition of chemical mixtures. Further, PK models can be developed to describe mechanisms of action and tissue responses. In this article, PBPK/PD modeling efforts conducted to investigate chemical interactions at the PK and PD levels are reviewed to demonstrate the use of this predictive modeling framework in assessing health risks associated with exposures to complex chemical mixtures. PMID:21655141

  12. Development and Evaluation of a Gentamicin Pharmacokinetic Model That Facilitates Opportunistic Gentamicin Therapeutic Drug Monitoring in Neonates and Infants.

    PubMed

    Germovsek, Eva; Kent, Alison; Metsvaht, Tuuli; Lutsar, Irja; Klein, Nigel; Turner, Mark A; Sharland, Mike; Nielsen, Elisabet I; Heath, Paul T; Standing, Joseph F

    2016-08-01

    Trough gentamicin therapeutic drug monitoring (TDM) is time-consuming, disruptive to neonatal clinical care, and a patient safety issue. Bayesian models could allow TDM to be performed opportunistically at the time of routine blood tests. This study aimed to develop and prospectively evaluate a new gentamicin model and a novel Bayesian computer tool (neoGent) for TDM use in neonatal intensive care. We also evaluated model performance for predicting peak concentrations and the area under the concentration-time curve from time 0 h to time t h (AUC0- t). A pharmacokinetic meta-analysis was performed on pooled data from three studies (1,325 concentrations from 205 patients). A 3-compartment model was used with the following covariates: allometric weight scaling, postmenstrual and postnatal age, and serum creatinine concentration. Final parameter estimates (standard errors) were as follows: clearance, 6.2 (0.3) liters/h/70 kg of body weight; central volume (V), 26.5 (0.6) liters/70 kg; intercompartmental disposition (Q), 2.2 (0.3) liters/h/70 kg; peripheral volume V2, 21.2 (1.5) liters/70 kg; intercompartmental disposition (Q2), 0.3 (0.05) liters/h/70 kg; peripheral volume V3, 148 (52.0) liters/70 kg. The model's ability to predict trough concentrations from an opportunistic sample was evaluated in a prospective observational cohort study that included data from 163 patients and 483 concentrations collected in five hospitals. Unbiased trough predictions were obtained; the median (95% confidence interval [CI]) prediction error was 0.0004 (-1.07, 0.84) mg/liter. Results also showed that peaks and AUC0- t values could be predicted (from one randomly selected sample) with little bias but relative imprecision, with median (95% CI) prediction errors being 0.16 (-4.76, 5.01) mg/liter and 10.8 (-24.9, 62.2) mg · h/liter, respectively. neoGent was implemented in R/NONMEM and in the freely available TDMx software. PMID:27270281

  13. Myotoxicity of gemfibrozil in Cynomolgus monkey model and its relationship to pharmacokinetic properties

    SciTech Connect

    Liu Aiming; Xie Shuilin; Sun He; Gonzalez, Frank J.; Wei Xiaoxiong; Dai Renke

    2009-03-15

    Fibrate drugs are PPAR{alpha} agonists prescribed for the treatment of dyslipidemia. Severe myotoxicity has been reportedly associated with their use albeit at a low frequency, especially for gemfibrozil. Few studies have investigated the mechanism of fibrate-induced myotoxicity in vivo. Considering the apparent species-related differences in PPAR{alpha} agonist-induced hepatotoxicity, we studied the myotoxicity of gemfibrozil in a Cynomolgus monkey model and explored the relationship between myotoxicity and pharmacokinetics. Six Cynomolgus monkeys were dosed with gemfibrozil twice daily at 600 mg/kg/day for the first two periods (P1 and P2, 8 days and 9 days respectively) and 300 mg/kg/day for the third period (P3, 14 days). Creatine kinase and myoglobin were measured, together with hepatotoxicity and nephrotoxicity markers. Behavioral responses were recorded for indication of toxicity. Pharmacokinetics was carried out following the 16th dosage of P1 and 17th dosage of P2 when myotoxicity was identified. Multivariable data analysis was employed to explore the relationship between pharmacokinetic parameters and myotoxicity markers. Consequently, myotoxicity occurred in monkey no. 2 (M2) and M6 in P1, M3 and M4 in P2, M3 and M6 in P3. Data analysis showed T80-150 (sustained time above the given concentration) contributed for myotoxicity discriminance and correlated with myotoxicity risk. This study revealed Cynomolgus monkey may be a good animal model for myotoxicity evaluation with sensitivity, reproducibility and similarities to humans. More interestingly, they exhibited a much higher incidence of myotoxicity than that of humans. Sustained high drug concentration plays an important role for the occurrence of myotoxicity. This may suggest an influence of drug transport and metabolism on myotoxicity.

  14. Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effects of main active metabolites of tramadol, (+)-O-desmethyltramadol and (-)-O-desmethyltramadol, in rats.

    PubMed

    Valle, M; Garrido, M J; Pavón, J M; Calvo, R; Trocóniz, I F

    2000-05-01

    The pharmacokinetics and pharmacodynamics of the two main metabolites of tramadol, (+)-O-desmethyltramadol and (-)-O-desmethyltramadol, were studied in rats. Pharmacodynamic endpoints evaluated were respiratory depression, measured as the change in arterial blood pCO(2), pO(2), and pH levels; and antinociception, measured by the tail-flick technique. The administration of 10 mg/kg (+)-O-desmethyltramadol in a 10-min i.v. infusion significantly altered pCO(2), pO(2), and pH values in comparison with baseline and lower-dose groups (P <.05). However, 2 mg/kg administered in a 10-min i.v. infusion was enough to achieve 100% antinociception without respiratory depression. Moreover, the beta-funaltrexamine pretreatment completely eliminated the antinociception of the 2-mg/kg dose, suggesting that such an effect is due to mu-opioid receptor activation. To describe and adequately characterize the in vivo antinociceptive effect of the drug, (+)-O-desmethyltramadol was given at different infusion rates of varying lengths (10-300 min). Pharmacokinetics was best described by a two-compartmental model. The time course of response was described using an effect compartment associated with a linear pharmacodynamic model. The estimates of the slope of the effect versus concentration relationship were significantly decreased (P <. 05) as the length of infusion was increased, suggesting the development of tolerance. Doses of up to 8 mg/kg (-)-O-desmethyltramadol given in 10-min i.v. infusion did not elicit either antinociception in the tail-flick test or respiratory effects. These in vivo results are in accordance with the opiate and nonopiate properties reported for these compounds in several in vitro studies. PMID:10773040

  15. Development of an inhalation physiologically based pharmacokinetic (PBPK) model for 2,2, 4-trimethylpentane (TMP) in male Long-Evans rats using gas uptake experiments.

    PubMed

    El-Masri, Hisham A; Dowd, Sean; Pegram, Rex A; Harrison, Randy; Yavanhxay, Sisouphanh J; Simmons, Jane Ellen; Evans, Marina

    2009-12-01

    2,2,4-Trimethylpentane (TMP) is a volatile colorless liquid used primarily to increase the octane rating of combustible fuels. TMP is released in the environment through the manufacture, use, and disposal of products associated with the gasoline and petroleum industry. Short-term inhalation exposure to TMP (< 4 h; > 1000 ppm) caused sensory and motor irritations in rats and mice. Like many volatile hydrocarbons, acute exposure to TMP may also be expected to alter neurological functions. To estimate in vivo metabolic kinetics of TMP and to predict its target tissue dosimetry during inhalation exposures, a physiologically based pharmacokinetic (PBPK) model was developed for the chemical in Long-Evans male rats using closed-chamber gas-uptake experiments. Gas-uptake experiments were conducted in which rats (80-90 days old) were exposed to targeted initial TMP concentrations of 50, 100, 500, and 1000 ppm. The model consisted of compartments for the closed uptake chamber, lung, fat, kidney, liver, brain, and rapidly and slowly perfused tissues. Physiological parameters were obtained from literature. Partition coefficients for the model were experimentally determined for air/blood, fat, liver, kidney, muscle, and brain using vial equilibration methods. Common to other hydrocarbons, metabolism of TMP via oxidative reactions is assumed to mainly occur in the liver. The PBPK model simulations of the closed chamber data were used to estimate in vivo metabolic parameters for TMP in male Long-Evans rats. PMID:19922404

  16. COMPARISON OF THE USE OF A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL AND A CLASSICAL PHARMACOKINETIC MODEL FOR DIOXIN EXPOSURE ASSESSMENTS

    EPA Science Inventory

    In epidemiological studies, exposure assessments to TCDD, known as a possible human carcinogen, assume mono or biphasic elimination rates. Recent data suggests a dose dependent elimination rate for TCDD. A PBPK model, which uses a body burden dependent elimination rate, was dev...

  17. 75 FR 6092 - Special Conditions: Model C-27J Airplane; Class E Cargo Compartment Lavatory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Federal Aviation Administration 14 CFR Part 25 Special Conditions: Model C-27J Airplane; Class E Cargo.... SUMMARY: These special conditions are issued for the Alenia Model C-27J airplane. This airplane has novel... certification of a twin-engine, commercial transport designated as the Model C-27J. The C-27J is a...

  18. A new approach to modeling covariate effects and individualization in population pharmacokinetics-pharmacodynamics.

    PubMed

    Lai, Tze Leung; Shih, Mei-Chiung; Wong, Samuel P

    2006-02-01

    By combining Laplace's approximation and Monte Carlo methods to evaluate multiple integrals, this paper develops a new approach to estimation in nonlinear mixed effects models that are widely used in population pharmacokinetics and pharmacodynamics. Estimation here involves not only estimating the model parameters from Phase I and II studies but also using the fitted model to estimate the concentration versus time curve or the drug effects of a subject who has covariate information but sparse measurements. Because of its computational tractability, the proposed approach can model the covariate effects nonparametrically by using (i) regression splines or neural networks as basis functions and (ii) AIC or BIC for model selection. Its computational and statistical advantages are illustrated in simulation studies and in Phase I trials. PMID:16402288

  19. The isolated perfused equine distal limb as an ex vivo model for pharmacokinetic studies.

    PubMed

    Friebe, M; Stahl, J; Kietzmann, M

    2013-06-01

    Even though intra-articular injections play an important role in the treatment of joint-related lameness in horses, little is known about pharmacokinetic properties of substances used. Therefore, an ex vivo model for pharmacokinetic studies was developed using distal forelimbs of slaughtered horses. The extremity was perfused with gassed Tyrode solution for up to 8 h. Tissue viability was confirmed by measurements of glucose consumption, lactate production, and lactate dehydrogenase activity in the perfusate. Standard criteria for tissue viability had been determined in preliminary experiments (n = 11), which also included histological examinations of the joint capsule. As the model's first implementation, the articular efflux rate of betamethasone (BM), administered as BM disodium phosphate intra-articularly to the fetlock joint (4 mg BM/joint), was investigated. The concentration of BM in the venous perfusate of the radial vein was measured by means of high-performance liquid chromatography. The average BM efflux rate per minute was calculated to be 5.1 μg/min with values ranging from 9 μg/min to 2.9 μg/min. 7.5 h after i.a. application, 2.3 mg BM had left the joint via the radial vein. Using this inexpensive setup, the presented model allows studying a variety of pharmacological topics without the ethical limitations of animal studies. PMID:22913456

  20. Population pharmacokinetics of oseltamivir and oseltamivir carboxylate in obese and non‐obese volunteers

    PubMed Central

    Chairat, Kalayanee; Jittamala, Podjanee; Hanpithakpong, Warunee; Day, Nicholas P. J.; White, Nicholas J.; Pukrittayakamee, Sasithon

    2016-01-01

    Aims The aims of the present study were to compare the pharmacokinetics of oseltamivir and its active antiviral metabolite oseltamivir carboxylate in obese and non‐obese individuals and to determine the effect of obesity on the pharmacokinetic properties of oseltamivir and oseltamivir carboxylate. Methods The population pharmacokinetic properties of oseltamivir and oseltamivir carboxylate were evaluated in 12 obese [body mass index (BMI) ≥30 kg m−2) and 12 non‐obese (BMI <30 kg m−2) Thai adult volunteers receiving a standard dose of 75 mg and a double dose of 150 mg in a randomized sequence. Concentration–time data were collected and analysed using nonlinear mixed‐effects modelling. Results The pharmacokinetics of oseltamivir and oseltamivir carboxylate were described simultaneously by first‐order absorption, with a one‐compartment disposition model for oseltamivir, followed by a metabolism compartment and a one‐compartment disposition model for oseltamivir carboxylate. Creatinine clearance was a significant predictor of oseltamivir carboxylate clearance {3.84% increase for each 10 ml min−1 increase in creatinine clearance [95% confidence interval (CI) 0.178%, 8.02%]}. Obese individuals had an approximately 25% (95% CI 24%, 28%) higher oseltamivir clearance, 20% higher oseltamivir volume of distribution (95% CI 19%, 23%) and 10% higher oseltamivir carboxylate clearance (95% CI 9%, 11%) compared with non‐obese individuals. However, these altered pharmacokinetic properties were small and did not change the overall exposure to oseltamivir carboxylate. Conclusions The results confirmed that a dose adjustment for oseltamivir in obese individuals is not necessary on the basis of its pharmacokinetics. PMID:26810861

  1. Physiologically-based pharmacokinetic model for Fentanyl in support of the development of Provisional Advisory Levels

    SciTech Connect

    Shankaran, Harish; Adeshina, Femi; Teeguarden, Justin G.

    2013-12-15

    Provisional Advisory Levels (PALs) are tiered exposure limits for toxic chemicals in air and drinking water that are developed to assist in emergency responses. Physiologically-based pharmacokinetic (PBPK) modeling can support this process by enabling extrapolations across doses, and exposure routes, thereby addressing gaps in the available toxicity data. Here, we describe the development of a PBPK model for Fentanyl – a synthetic opioid used clinically for pain management – to support the establishment of PALs. Starting from an existing model for intravenous Fentanyl, we first optimized distribution and clearance parameters using several additional IV datasets. We then calibrated the model using pharmacokinetic data for various formulations, and determined the absorbed fraction, F, and time taken for the absorbed amount to reach 90% of its final value, t90. For aerosolized pulmonary Fentanyl, F = 1 and t90 < 1 min indicating complete and rapid absorption. The F value ranged from 0.35 to 0.74 for oral and various transmucosal routes. Oral Fentanyl was absorbed the slowest (t90 ∼ 300 min); the absorption of intranasal Fentanyl was relatively rapid (t90 ∼ 20–40 min); and the various oral transmucosal routes had intermediate absorption rates (t90 ∼ 160–300 min). Based on these results, for inhalation exposures, we assumed that all of the Fentanyl inhaled from the air during each breath directly, and instantaneously enters the arterial circulation. We present model predictions of Fentanyl blood concentrations in oral and inhalation scenarios relevant for PAL development, and provide an analytical expression that can be used to extrapolate between oral and inhalation routes for the derivation of PALs. - Highlights: • We develop a Fentanyl PBPK model for relating external dose to internal levels. • We calibrate the model to oral and inhalation exposures using > 50 human datasets. • Model predictions are in good agreement with the available

  2. Pharmacokinetic and Pharmacodynamic Integration and Modeling of Enrofloxacin in Swine for Escherichia coli

    PubMed Central

    Wang, Jianyi; Hao, Haihong; Huang, Lingli; Liu, Zhenli; Chen, Dongmei; Yuan, Zonghui

    2016-01-01

    The aim of this study was to optimize the dose regimens of enrofloxacin to reduce the development of fluoroquinolone resistance in Escherichia coli (E.coli) using pharmacokinetic/pharmacodynamic (PK/PD) modeling approach. The single dose (2.5 mg/kg body weight) of enrofloxacin was administered intramuscularly (IM) to the healthy pigs. Using cannulation, the pharmacokinetic properties, including peak concentration (Cmax), time to reach Cmax (Tmax), and area under the curve (AUC), were determined in plasma and ileum content. The Cmax, Tmax, and AUC in the plasma were 1.09 ± 0.11 μg/mL, 1.27 ± 0.35 h, and 12.70 ± 2.72 μg·h/mL, respectively. While in ileum content, the Cmax, Tmax, and AUC were 7.07 ± 0.26 μg/mL, 5.54 ± 0.42 h, and 136.18 ± 12.50 μg·h/mL, respectively. Based on the minimum inhibitory concentration (MIC) data of 918 E. coli isolates, an E. coli O101/K99 strain (enrofloxacin MIC = 0.25 μg/mL) was selected for pharmacodynamic studies. The in vitro minimum bactericidal concentration (MBC), mutant prevention concentration (MPC), and ex vivo time-killing curves for enrofloxacin in ileum content were established against the selected E. coli O101/K99 strain. Integrating the in vivo pharmacokinetic data and ex vivo pharmacodynamic data, a sigmoid Emax (Hill) equation was established to provide values for ileum content of AUC24h/MIC producing, bactericidal activity (52.65 h), and virtual eradication of bacteria (78.06 h). A dosage regimen of 1.96 mg/kg every 12 h for 3 days should be sufficient in the treatment of E. coli. PMID:26870006

  3. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling.

    PubMed

    Upreti, Vijay V; Wahlstrom, Jan L

    2016-03-01

    The accurate prediction of pharmacokinetics (PK) is fundamental to underwriting safety and efficacy in pediatric clinical trials; age-dependent PK may be observed with pediatrics because of the growth and maturation processes that occur during development. Understanding the ontogeny of drug-metabolizing enzymes is a critical enabler for pediatric PK prediction, as enzyme expression or activity may change with age. Although ontogeny functions for the cytochrome P450s (CYPs) have been developed, disconnects between ontogeny functions for the same CYP may exist, depending on whether the functions were derived from in vitro or in vivo data. This report describes the development of ontogeny functions for all the major hepatic CYPs based on in vitro or in vivo data; these ontogeny functions were subsequently incorporated into a physiologically based pharmacokinetic model and evaluated. Pediatric PK predictions based on in vivo-derived ontogeny functions performed markedly better than those developed from in vitro data for intravenous (100% versus 51% within 2-fold, respectively) and oral (98% versus 67%, respectively) dosing. The verified models were then applied to complex pediatric scenarios involving active metabolites, CYP polymorphisms and physiological changes because of critical illness; the models reasonably explained the observed age-dependent changes in pediatric PK. PMID:26139104

  4. Constant optimization of oral drug absorption kinetics in the compartment absorption and transit models using particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Prabowo, K.; Sumaryada, T.; Kartono, A.

    2016-01-01

    Simulation of predictive modeling oral drug namely Compartment Absorption and Transit (CAT) using Particle Swarm Optimization (PSO) algorithm has been performed. This research will be carried out optimization of kinetic constant value oral drug use PSO algorithm to obtain the best global transport constant values for CAT equation that can predict drug concentration in plasma. The value of drug absorption rate constant for drug atenolol 25 mg is k10, k12, k21, k13 and k31 with each value is 0.8562, 0.3736, 0.2191, 0.4334 and 1.000 have been obtained thus raising the value of the coefficient of determination of a model CAT. From the experimental data plasma drug concentrations used are Atenolol, the coefficient of determination (R2) obtained from simulations atenolol 25 mg (PSO) was 81.72% and 99.46%. Better correlation between the dependent variable as the drug concentration and explanatory variables such as mass medication, plasma volume, and rate of absorption of the drug has increased in CAT models using PSO algorithm. Based on the results of CAT models fit charts can predict drug concentration in plasma.

  5. Predicting the Toxicokinetics of Trifluralin in Rainbow Trout Using Clearance-Volume Pharmacokinetic Models

    SciTech Connect

    Schultz, Irv R. ); Hayton, William L.; David J.Smith, William H.Gingerich, Maria G.Barker

    1999-10-13

    Trifluralin (TF) is a lipophilic, pre-emergent herbicide widely used in agriculture and known to bioconcentrate in fish. We have characterized the accumulation of TF in rainbow trout under a variety of experimental conditions. Our approach has been to use static water exposure systems and intra-vascular dosing in combination with clearance-volume pharmacokinetic (CV-PK) models to obtain quantitative estimates of uptake clearance, apparent volume of distribution and elimination due to xenobiotic metabolism. This paper will briefly discuss pertinent physicochemical data for TF and review the toxicokinetics of TF in rainbow trout. Emphasis will be placed on physiological interpretations of TF model parameters and practical aspects of modeling TF toxicokinetics with CV-PK models.

  6. UGT1A1 genotype-dependent dose adjustment of belinostat in patients with advanced cancers using population pharmacokinetic modeling and simulation.

    PubMed

    Peer, Cody J; Goey, Andrew K L; Sissung, Tristan M; Erlich, Sheryl; Lee, Min-Jung; Tomita, Yusuke; Trepel, Jane B; Piekarz, Richard; Balasubramaniam, Sanjeeve; Bates, Susan E; Figg, William D

    2016-04-01

    Belinostat is a second-generation zinc-binding histone deacetylase inhibitor that is approved for peripheral T-cell lymphoma and is currently being studied in small cell lung cancer and other advanced carcinomas as a 48-hour continuous intravenous infusion. Belinostat is predominantly metabolized by UGT1A1, which is polymorphic. Preliminary analyses revealed a difference in belinostat clearance based on UGT1A1 genotype. A 2-compartment population pharmacokinetic (PK) model was developed and validated that incorporated the UGT1A1 genotype, albumin, and creatinine clearance on the clearance parameter; body weight was a significant covariate on volume. Simulated doses of 600 and 400 mg/m(2) /24 h given to patients considered extensive or impaired metabolizers, respectively, provided equivalent AUCs. This model and subsequent simulations supported additional PK/toxicity and pharmacogenomics/toxicity analyses to suggest a UGT1A1 genotype-based dose adjustment to normalize belinostat exposure and allow for more tolerable therapy. In addition, global protein lysine acetylation was modeled with PK and demonstrated a reversible belinostat exposure/response relationship, consistent with previous reports. PMID:26637161

  7. Monitoring Tumor Hypoxia Using 18F-FMISO PET and Pharmacokinetics Modeling after Photodynamic Therapy

    PubMed Central

    Tong, Xiao; Srivatsan, Avinash; Jacobson, Orit; Wang, Yu; Wang, Zhantong; Yang, Xiangyu; Niu, Gang; Kiesewetter, Dale O.; Zheng, Hairong; Chen, Xiaoyuan

    2016-01-01

    Photodynamic therapy (PDT) is an efficacious treatment for some types of cancers. However, PDT-induced tumor hypoxia as a result of oxygen consumption and vascular damage can reduce the efficacy of this therapy. Measuring and monitoring intrinsic and PDT-induced tumor hypoxia in vivo during PDT is of high interest for prognostic and treatment evaluation. In the present study, static and dynamic 18F-FMISO PET were performed with mice bearing either U87MG or MDA-MB-435 tumor xenografts immediately before and after PDT at different time points. Significant difference in tumor hypoxia in response to PDT over time was found between the U87MG and MDA-MB-435 tumors in both static and dynamic PET. Dynamic PET with pharmacokinetics modeling further monitored the kinetics of 18F-FMISO retention to hypoxic sites after treatment. The Ki and k3 parametric analysis provided information on tumor hypoxia by distinction of the specific tracer retention in hypoxic sites from its non-specific distribution in tumor. Dynamic 18F-FMISO PET with pharmacokinetics modeling, complementary to static PET analysis, provides a potential imaging tool for more detailed and more accurate quantification of tumor hypoxia during PDT. PMID:27546160

  8. Global optimization of a deuterium calibrated, discrete-state compartment model (DSCM): Application to the eastern Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Carroll, Rosemary W. H.; Pohll, Greg M.; Earman, Sam; Hershey, Ronald L.

    2007-10-01

    SummaryAs part of a larger study to estimate groundwater recharge volumes in the area of the eastern Nevada Test Site (NTS), [Campana, M.E., 1975. Finite-state models of transport phenomena in hydrologic systems, PhD Dissertation: University of Arizona, Tucson] Discrete-state compartment model (DSCM) was re-coded to simulate steady-state groundwater concentrations of a conservative tracer. It was then dynamically linked with the shuffled complex evolution (SCE) optimization algorithm [Duan, Q., Soroosh, S., Gupta, V., 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research 28(4), 1015-1031] in which both flow direction and magnitude were adjusted to minimize errors in predicted tracer concentrations. Code validation on a simple four-celled model showed the algorithm consistent in model predictions and capable of reproducing expected cell outflows with relatively little error. The DSCM-SCE code was then applied to a 15-basin (cell) eastern NTS model developed for the DSCM. Auto-calibration of the NTS model was run given two modeling scenarios, (a) assuming known groundwater flow directions and solving only for magnitudes and, (b) solving for groundwater flow directions and magnitudes. The SCE is a fairly robust algorithm, unlike simulated annealing or modified Gauss-Newton approaches. The DSCM-SCE improves upon its original counterpart by being more user-friendly and by auto-calibrating complex models in minutes to hours. While the DSCM-SCE can provide numerical support to a working hypothesis, it can not definitively define a flow system based solely on δD values given few hydrogeologic constraints on boundary conditions and cell-to-cell interactions.

  9. On the magnetic field distribution generated by a dipolar current source situated in a realistically shaped compartment model of the head.

    PubMed

    Meijs, J W; Bosch, F G; Peters, M J; Lopes da Silva, F H

    1987-03-01

    The magnetic field distribution around the head is simulated using a realistically shaped compartment model of the head. The model is based on magnetic resonance images. The 3 compartments describe the brain, the skull and the scalp. The source is represented by a current dipole situated in the visual cortex. The magnetic field distribution due to the source and that due to the volume currents are calculated separately. The simulations are carried out in order to ascertain which matrix of grid points is suitable as a measuring grid. The possibilities studied are grid points situated in a plane, in a surface which follows the contours of the head and in a sphere. This sphere is taken concentric to the sphere which is the best possible fit for the head. Taking into account the relative contribution of the volume currents and the possible accuracy in the positioning of the magnetic field detector, it can be concluded that the best choice is to measure the normal component of the magnetic field at points which are situated in the spherical surface. The results of this study also show that the magnetic field distribution based on a realistically shaped compartment model differs from that based on a compartment model consisting of concentric spheres. In the spherical model of the head no contribution of the volume currents to the component of the field normal to the sphere can be expected. The difference between the results obtained with these two volume conductor models increases with source depth. PMID:2434313

  10. Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment.

    PubMed Central

    Clewell, H J; Gentry, P R; Covington, T R; Gearhart, J M

    2000-01-01

    A physiologically based pharmacokinetic (PBPK) model was developed that provides a comprehensive description of the kinetics of trichloroethylene (TCE) and its metabolites, trichloroethanol (TCOH), trichloroacetic acid (TCA), and dichloroacetic acid (DCA), in the mouse, rat, and human for both oral and inhalation exposure. The model includes descriptions of the three principal target tissues for cancer identified in animal bioassays: liver, lung, and kidney. Cancer dose metrics provided in the model include the area under the concentration curve (AUC) for TCA and DCA in the plasma, the peak concentration and AUC for chloral in the tracheobronchial region of the lung, and the production of a thioacetylating intermediate from dichlorovinylcysteine in the kidney. Additional dose metrics provided for noncancer risk assessment include the peak concentrations and AUCs for TCE and TCOH in the blood, as well as the total metabolism of TCE divided by the body weight. Sensitivity and uncertainty analyses were performed on the model to evaluate its suitability for use in a pharmacokinetic risk assessment for TCE. Model predictions of TCE, TCA, DCA, and TCOH concentrations in rodents and humans are in good agreement with a variety of experimental data, suggesting that the model should provide a useful basis for evaluating cross-species differences in pharmacokinetics for these chemicals. In the case of the lung and kidney target tissues, however, only limited data are available for establishing cross-species pharmacokinetics. As a result, PBPK model calculations of target tissue dose for lung and kidney should be used with caution. PMID:10807559

  11. Synthetic cellularity based on non-lipid micro-compartments and protocell models.

    PubMed

    Li, Mei; Huang, Xin; Tang, T-Y Dora; Mann, Stephen

    2014-10-01

    This review discusses recent advances in the design and construction of protocell models based on the self-assembly or microphase separation of non-lipid building blocks. We focus on strategies involving partially hydrophobic inorganic nanoparticles (colloidosomes), protein-polymer globular nano-conjugates (proteinosomes), amphiphilic block copolymers (polymersomes), and stoichiometric mixtures of oppositely charged biomolecules and polyelectrolytes (coacervates). Developments in the engineering of membrane functionality to produce synthetic protocells with gated responses and control over multi-step reactions are described. New routes to protocells comprising molecularly crowded, cytoskeletal-like hydrogel interiors, as well as to the construction of hybrid protocell models are also highlighted. Together, these strategies enable a wide range of biomolecular and synthetic components to be encapsulated, regulated and processed within the micro-compartmentalized volume, and suggest that the development of non-lipid micro-ensembles offers an approach that is complementary to protocell models based on phospholipid or fatty acid vesicles. PMID:24952153

  12. The effect of infected external computers on the spread of viruses: A compartment modeling study

    NASA Astrophysics Data System (ADS)

    Yang, Lu-Xing; Yang, Xiaofan

    2013-12-01

    Inevitably, there exist infected computers outside of the Internet. This paper aims to understand how infected external computers affect the spread of computer viruses. For that purpose, a new virus-antivirus spreading model, which takes into account the effect of infected/immune external computers, is established. A systematic study shows that, unlike most previous models, the proposed model admits no virus-free equilibrium and admits a globally asymptotically stable viral equilibrium. This result implies that it would be practically impossible to eradicate viruses on the Internet. As a result, inhibiting the virus prevalence to below an acceptable level would be the next best thing. A theoretical study reveals the effect of different parameters on the steady virus prevalence. On this basis, a number of suggestions are made so as to contain virus spreading.

  13. Pharmacokinetic-pharmacodynamic relationship of anesthetic drugs: from modeling to clinical use

    PubMed Central

    Billard, Valerie

    2015-01-01

    Anesthesia is a combination of unconsciousness, amnesia, and analgesia, expressed in sleeping patients by limited reaction to noxious stimulations. It is achieved by several classes of drugs, acting mainly on central nervous system. Compared to other therapeutic families, the anesthetic drugs, administered by intravenous or pulmonary route, are quickly distributed in the blood and induce in a few minutes effects that are fully reversible within minutes or hours. These effects change in parallel with the concentration of the drug, and the concentration time course of the drug follows with a reasonable precision mathematical models based on the Fick principle. Therefore, understanding concentration time course allows adjusting the dosing delivery scheme in order to control the effects.   The purpose of this short review is to describe the basis of pharmacokinetics and modeling, the concentration-effects relationship, and drug interactions modeling to offer to anesthesiologists and non-anesthesiologists an overview of the rules to follow to optimize anesthetic drug delivery. PMID:26918133

  14. Integration of efficacy, pharmacokinetic and safety assessment of interleukin-1 receptor antagonist in a preclinical model of arthritis.

    PubMed

    Zuurmond, Anne-Marie; Koudijs, Angela; van El, Benno; Doornbos, Robert P; van Manen-Vernooij, Babs C T; Bastiaans, Jacqueline H M W; Penninks, André H; van Bilsen, Jolanda H M; Cnubben, Nicole H P; Degroot, Jeroen

    2011-04-01

    Pharmacokinetic properties and safety profile of a drug are likely influenced by the disease state of a patient. In this study, we investigated the influence of arthritic processes on pharmacokinetics and immunotoxicity of interleukin-1 receptor antagonist (Anakinra) in the rat adjuvant arthritis model. Anakinra dose-dependently suppressed joint inflammation and degradation as demonstrated by reduced clinical arthritis score, paw thickness, synovial infiltration and bone degradation. In addition, plasma levels of chemokines MCP-1 and GRO/KC were reduced. Pharmacokinetic behaviour of Anakinra was influenced by disease state of the rats as judged from a decrease in C(max) and an increase of the MRT as the disease progressed at a dose of 24 and 72 mg Anakinra/kg body weight. The pharmacokinetic parameters increased dose-dependently, but non-proportionally with increasing dose. Low level anti-Anakinra antibody formation was observed at prolonged exposure to the biologic. Safety parameters, including haematology, splenic lymphocyte subset analysis, ex vivo stimulation of spleen cells and histopathology of immune system organs were affected by the disease itself to such extent that no additional effects of Anakinra could be observed. In conclusion, we demonstrated that pharmacokinetic behaviour of Anakinra was influenced by the arthritis background of the rats resulting in decreased internal exposure. PMID:21300126

  15. Bifurcation analysis of a two-compartment hippocampal pyramidal cell model.

    PubMed

    Atherton, Laura A; Prince, Luke Y; Tsaneva-Atanasova, Krasimira

    2016-08-01

    The Pinsky-Rinzel model is a non-smooth 2-compartmental CA3 pyramidal cell model that has been used widely within the field of neuroscience. Here we propose a modified (smooth) system that captures the qualitative behaviour of the original model, while allowing the use of available, numerical continuation methods to perform full-system bifurcation and fast-slow analysis. We study the bifurcation structure of the full system as a function of the applied current and the maximal calcium conductance. We identify the bifurcations that shape the transitions between resting, bursting and spiking behaviours, and which lead to the disappearance of bursting when the calcium conductance is reduced. Insights gained from this analysis, are then used to firstly illustrate how the irregular spiking activity found between bursting and stable spiking states, can be influenced by phase differences in the calcium and dendritic voltage, which lead to corresponding changes in the calcium-sensitive potassium current. Furthermore, we use fast-slow analysis to investigate the mechanisms of bursting and show that bursting in the model is dependent on the intermediately slow variable, calcium, while the other slow variable, the activation gate of the afterhyperpolarisation current, does not contribute to setting the intraburst dynamics but participates in setting the interburst interval. Finally, we discuss how some of the described bifurcations affect spiking behaviour, during sharp-wave ripples, in a larger network of Pinsky-Rinzel cells. PMID:27221619

  16. Computer Modeling of Sand Transport on Mars Using a Compart-Mentalized Fluids Algorithm (CFA)

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Stratton, D.

    1999-01-01

    It has been postulated that aeolian transport on Mars may be significantly different from that on Earth. From laboratory experiments simulating martian grain transport [2], it has been observed that (saltating) grains striking the bed can cause hundreds of secondary reptation trajectories when impact occurs at speeds postulated for Mars. Some of the ballistically induced trajectories "die ouf' and effectively join the ranks on the creep population that is merely nudged along by impact. Many of the induced reptation trajectories, however, are sufficiently high for the grains to become part of the saltation load (it is irrelevant to the boundary layer how a grain attained its initial lift force). When these grains, in turn, strike the surface, they too are capable of inducing more reptating grains. This cascading effect has been discussed in connection with terrestrial aeolian transport in an attempt to dispel the notion that sand motion is divisible only into creep and saltation loads. On Earth, only a few grains are splashed by impact. On Mars, it may be hundreds. We developed a computer model to address this phenomenon because there are some important ramifications: First, this ratio may mean that martian aeolian transport is dominated by reptation flux rather than saltation. On Earth, the flux would be a roughly balanced mixture between reptation/creep and saltation. On Venus, there would be no transport other than by saltation. In other words, an understanding of planetary aeolian processes may not be necessarily understood by extrapolating from the "Earth case", with only gravity and atmospheric density/viscosity being considered as variables. Second, the reptation flux on Mars may be self sustaining, so that little input is required by the wind once transport has been initiated. The number of grains saturating the boundary layer near the bed may mean that average grain speed on Mars might conceivably be less than that on Earth. This would say much for models

  17. Development of Physiologically Based Pharmacokinetic/Pharmacodynamic Model for Indomethacin Disposition in Pregnancy

    PubMed Central

    Alqahtani, Saeed; Kaddoumi, Amal

    2015-01-01

    Findings of a recent clinical study showed indomethacin has lower plasma levels and higher steady-state apparent clearance in pregnant subjects when compared to those in non-pregnant subjects reported in separate studies. Thus, in the current work we developed a pregnancy physiological based pharmacokinetic/pharmacodynamic (PBPK/PD) model for indomethacin to explain the differences in indomethacin pharmacokinetics between pregnancy and non-pregnancy. A whole-body PBPK model with key pregnancy-related physiological changes was developed to characterize indomethacin PK in pregnant women and compare these parameters to those in non-pregnant subjects. Data related to maternal physiological and biological changes were obtained from literature and incorporated into the structural PBPK model that describes non-pregnant PK data. Changes in indomethacin area under the curve (AUC), maximum concentration (Cmax) and average steady-state concentration (Cave) in pregnant women were predicted. Model-simulated PK profiles were in agreement with observed data. The predicted mean ratio (non-pregnant:second trimester (T2)) of indomethacin Cave was 1.6 compared to the observed value of 1.59. In addition, the predicted steady-state apparent clearance (CL/Fss) ratio was almost similar to the observed value (0.46 vs. 0.42). Sensitivity analysis suggested changes in CYP2C9 activity, and to a lesser extent UGT2B7, as the primary factor contributing to differences in indomethacin disposition between pregnancy and non-pregnancy. The developed PBPK model which integrates prior physiological knowledge, in vitro and in vivo data, allowed the successful prediction of indomethacin disposition during T2. Our PBPK/PD model suggested a higher indomethacin dosing requirement during pregnancy. PMID:26431339

  18. Towards Rational Dosing Algorithms for Vancomycin in Neonates and Infants Based on Population Pharmacokinetic Modeling

    PubMed Central

    Janssen, Esther J. H.; Välitalo, Pyry A. J.; Allegaert, Karel; de Cock, Roosmarijn F. W.; Simons, Sinno H. P.; Sherwin, Catherine M. T.; van den Anker, Johannes N.

    2015-01-01

    Because of the recent awareness that vancomycin doses should aim to meet a target area under the concentration-time curve (AUC) instead of trough concentrations, more aggressive dosing regimens are warranted also in the pediatric population. In this study, both neonatal and pediatric pharmacokinetic models for vancomycin were externally evaluated and subsequently used to derive model-based dosing algorithms for neonates, infants, and children. For the external validation, predictions from previously published pharmacokinetic models were compared to new data. Simulations were performed in order to evaluate current dosing regimens and to propose a model-based dosing algorithm. The AUC/MIC over 24 h (AUC24/MIC) was evaluated for all investigated dosing schedules (target of >400), without any concentration exceeding 40 mg/liter. Both the neonatal and pediatric models of vancomycin performed well in the external data sets, resulting in concentrations that were predicted correctly and without bias. For neonates, a dosing algorithm based on body weight at birth and postnatal age is proposed, with daily doses divided over three to four doses. For infants aged <1 year, doses between 32 and 60 mg/kg/day over four doses are proposed, while above 1 year of age, 60 mg/kg/day seems appropriate. As the time to reach steady-state concentrations varies from 155 h in preterm infants to 36 h in children aged >1 year, an initial loading dose is proposed. Based on the externally validated neonatal and pediatric vancomycin models, novel dosing algorithms are proposed for neonates and children aged <1 year. For children aged 1 year and older, the currently advised maintenance dose of 60 mg/kg/day seems appropriate. PMID:26643337

  19. Computational approaches and metrics required for formulating biologically realistic nanomaterial pharmacokinetic models

    NASA Astrophysics Data System (ADS)

    Riviere, Jim E.; Scoglio, Caterina; Sahneh, Faryad D.; Monteiro-Riviere, Nancy A.

    2013-01-01

    The field of nanomaterial pharmacokinetics is in its infancy, with major advances largely restricted by a lack of biologically relevant metrics, fundamental differences between particles and small molecules of organic chemicals and drugs relative to biological processes involved in disposition, a scarcity of sufficiently rich and characterized in vivo data and a lack of computational approaches to integrating nanomaterial properties to biological endpoints. A central concept that links nanomaterial properties to biological disposition, in addition to their colloidal properties, is the tendency to form a biocorona which modulates biological interactions including cellular uptake and biodistribution. Pharmacokinetic models must take this crucial process into consideration to accurately predict in vivo disposition, especially when extrapolating from laboratory animals to humans since allometric principles may not be applicable. The dynamics of corona formation, which modulates biological interactions including cellular uptake and biodistribution, is thereby a crucial process involved in the rate and extent of biodisposition. The challenge will be to develop a quantitative metric that characterizes a nanoparticle's surface adsorption forces that are important for predicting biocorona dynamics. These types of integrative quantitative approaches discussed in this paper for the dynamics of corona formation must be developed before realistic engineered nanomaterial risk assessment can be accomplished.

  20. Pharmacokinetics and Pharmacodynamics of Clofazimine in a Mouse Model of Tuberculosis

    PubMed Central

    Swanson, Rosemary V.; Adamson, John; Moodley, Chivonne; Ngcobo, Bongani; Ammerman, Nicole C.; Dorasamy, Afton; Moodley, Sashen; Mgaga, Zinhle; Tapley, Asa; Bester, Linda A.; Singh, Sanil; Grosset, Jacques H.

    2015-01-01

    The antileprosy drug clofazimine has shown potential for shortening tuberculosis treatment; however, the current dosing of the drug is not evidence based, and the optimal dosing is unknown. Our objective was to conduct a preclinical evaluation of the pharmacokinetics and pharmacodynamics of clofazimine in the mouse model of tuberculosis, with the goal of providing useful information on dosing for future studies. Pharmacokinetic parameters were evaluated in infected and uninfected BALB/c mice. Pharmacodynamic parameters were evaluated in Mycobacterium tuberculosis-infected mice that were treated for 12 weeks with one of six different clofazimine dosing regimens, i.e., doses of 6.25, 12.5, and 25 mg/kg of body weight/day and 3 regimens with loading doses. Clofazimine progressively accumulated in the lungs, livers, and spleens of the mice, reaching levels of greater than 50 μg/g in all tissues by 4 weeks of administration, while serum drug levels remained low at 1 to 2 μg/ml. Elimination of clofazimine was extremely slow, and the half-life was dependent on the duration of drug administration. Clofazimine exhibited dose-dependent tissue and serum concentrations. At any dose, clofazimine did not have bactericidal activity during the first 2 weeks of administration but subsequently demonstrated potent, dose-independent bactericidal activity. The antituberculosis activity of clofazimine was dependent on neither the dose administered nor the drug concentrations in the tissues, suggesting that much lower doses could be effectively used for tuberculosis treatment. PMID:25753644

  1. 76 FR 26949 - Special Conditions: Boeing Model 747-8 Series Airplanes; Overhead Flight Attendant Rest Compartment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... equipment within the OFAR compartment. (4) Structural failure or deformation of components that could block... minimize the possibility of blockage, which might result from fire, mechanical or structural failure,...

  2. A multi-compartment model for interneurons in the dorsal lateral geniculate nucleus.

    PubMed

    Halnes, Geir; Augustinaite, Sigita; Heggelund, Paul; Einevoll, Gaute T; Migliore, Michele

    2011-09-01

    GABAergic interneurons (INs) in the dorsal lateral geniculate nucleus (dLGN) shape the information flow from retina to cortex, presumably by controlling the number of visually evoked spikes in geniculate thalamocortical (TC) neurons, and refining their receptive field. The INs exhibit a rich variety of firing patterns: Depolarizing current injections to the soma may induce tonic firing, periodic bursting or an initial burst followed by tonic spiking, sometimes with prominent spike-time adaptation. When released from hyperpolarization, some INs elicit rebound bursts, while others return more passively to the resting potential. A full mechanistic understanding that explains the function of the dLGN on the basis of neuronal morphology, physiology and circuitry is currently lacking. One way to approach such an understanding is by developing a detailed mathematical model of the involved cells and their interactions. Limitations of the previous models for the INs of the dLGN region prevent an accurate representation of the conceptual framework needed to understand the computational properties of this region. We here present a detailed compartmental model of INs using, for the first time, a morphological reconstruction and a set of active dendritic conductances constrained by experimental somatic recordings from INs under several different current-clamp conditions. The model makes a number of experimentally testable predictions about the role of specific mechanisms for the firing properties observed in these neurons. In addition to accounting for the significant features of all experimental traces, it quantitatively reproduces the experimental recordings of the action-potential- firing frequency as a function of injected current. We show how and why relative differences in conductance values, rather than differences in ion channel composition, could account for the distinct differences between the responses observed in two different neurons, suggesting that INs may be

  3. Error analysis of the quantification of hepatic perfusion using a dual-input single-compartment model

    NASA Astrophysics Data System (ADS)

    Miyazaki, Shohei; Yamazaki, Youichi; Murase, Kenya

    2008-11-01

    We performed an error analysis of the quantification of liver perfusion from dynamic contrast-enhanced computed tomography (DCE-CT) data using a dual-input single-compartment model for various disease severities, based on computer simulations. In the simulations, the time-density curves (TDCs) in the liver were generated from an actually measured arterial input function using a theoretical equation describing the kinetic behavior of the contrast agent (CA) in the liver. The rate constants for the transfer of CA from the hepatic artery to the liver (K1a), from the portal vein to the liver (K1p), and from the liver to the plasma (k2) were estimated from simulated TDCs with various plasma volumes (V0s). To investigate the effect of the shapes of input functions, the original arterial and portal-venous input functions were stretched in the time direction by factors of 2, 3 and 4 (stretching factors). The above parameters were estimated with the linear least-squares (LLSQ) and nonlinear least-squares (NLSQ) methods, and the root mean square errors (RMSEs) between the true and estimated values were calculated. Sensitivity and identifiability analyses were also performed. The RMSE of V0 was the smallest, followed by those of K1a, k2 and K1p in an increasing order. The RMSEs of K1a, K1p and k2 increased with increasing V0, while that of V0 tended to decrease. The stretching factor also affected parameter estimation in both methods. The LLSQ method estimated the above parameters faster and with smaller variations than the NLSQ method. Sensitivity analysis showed that the magnitude of the sensitivity function of V0 was the greatest, followed by those of K1a, K1p and k2 in a decreasing order, while the variance of V0 obtained from the covariance matrices was the smallest, followed by those of K1a, K1p and k2 in an increasing order. The magnitude of the sensitivity function and the variance increased and decreased, respectively, with increasing disease severity and decreased

  4. Update on a Pharmacokinetic-Centric Alternative Tier II Program for MMT—Part II: Physiologically Based Pharmacokinetic Modeling and Manganese Risk Assessment

    PubMed Central

    Taylor, Michael D.; Clewell, Harvey J.; Andersen, Melvin E.; Schroeter, Jeffry D.; Yoon, Miyoung; Keene, Athena M.; Dorman, David C.

    2012-01-01

    Recently, a variety of physiologically based pharmacokinetic (PBPK) models have been developed for the essential element manganese. This paper reviews the development of PBPK models (e.g., adult, pregnant, lactating, and neonatal rats, nonhuman primates, and adult, pregnant, lactating, and neonatal humans) and relevant risk assessment applications. Each PBPK model incorporates critical features including dose-dependent saturable tissue capacities and asymmetrical diffusional flux of manganese into brain and other tissues. Varied influx and efflux diffusion rate and binding constants for different brain regions account for the differential increases in regional brain manganese concentrations observed experimentally. We also present novel PBPK simulations to predict manganese tissue concentrations in fetal, neonatal, pregnant, or aged individuals, as well as individuals with liver disease or chronic manganese inhalation. The results of these simulations could help guide risk assessors in the application of uncertainty factors as they establish exposure guidelines for the general public or workers. PMID:22645610

  5. Dose Reconstruction of Di(2-ethylhexyl) Phthalate Using a Simple Pharmacokinetic Model

    PubMed Central

    Calafat, Antonia M.

    2012-01-01

    Background: Di(2-ethylhexyl) phthalate (DEHP), used primarily as a plasticizer for polyvinyl chloride, is found in a variety of products. Previous studies have quantified human exposure by back calculating intakes based on DEHP metabolite concentrations in urine and by determining concentrations of DEHP in exposure media (e.g., air, food, dust). Objectives: To better understand the timing and extent of DEHP exposure, we used a simple pharmacokinetic model to “reconstruct” the DEHP dose responsible for the presence of DEHP metabolites in urine. Methods: We analyzed urine samples from eight adults for four DEHP metabolites [mono(2-ethylhexyl) phthalate, mono(2-ethyl-5-hydroxyhexyl) phthalate, mono(2-ethyl-5-oxohexyl) phthalate, and mono(2-ethyl-5-carboxypentyl) phthalate]. Participants provided full volumes of all voids over 1 week and recorded the time of each void and information on diet, driving, and outdoor activities. Using a model previously calibrated on a single person self-dosed with DEHP in conjunction with the eight participants’ data, we used a simple trial-and-error method to determine times and doses of DEHP that resulted in a best fit of predicted and observed urinary concentrations of the metabolites. Results: The average daily mean and median reconstructed DEHP doses were 10.9 and 5.0 µg/kg-day, respectively. The highest single modeled dose of 60 µg/kg occurred when one study participant reported consuming coffee and a bagel with egg and sausage that was purchased at a gas station. About two-thirds of all modeled intake events occurred near the time of reported food or beverage consumption. Twenty percent of the modeled DEHP exposure occurred between 2200 hours and 0500 hours. Conclusions: Dose reconstruction using pharmacokinetic models—in conjunction with biomonitoring data, diary information, and other related data—can provide a powerful means to define timing, magnitude, and possible sources of exposure to a given contaminant. PMID

  6. Radiological assessment by compartment model POSEIDON-R of radioactivity released in the ocean following Fukushima Daiichi accident

    NASA Astrophysics Data System (ADS)

    Bezhenar, Roman; Maderich, Vladimir; Heling, Rudie; Jung, Kyung Tae; Myoung, Jung-Goo

    2013-04-01

    The modified compartment model POSEIDON-R (Lepicard et al, 2004), was applied to the North-Western Pacific and adjacent seas. It is for the first time, that a compartment model was used in this region, where 25 Nuclear Power Plants (NPP) are operated. The aim of this study is to perform a radiological assessment of the releases of radioactivity due to the Fukushima Daiichi accident. The model predicts the dispersion of radioactivity in water column and in the sediments, and the transfer of radionuclides throughout the marine food web, and the subsequent doses to the population due to the consumption of fishery products. A generic predictive dynamical food-chain model is used instead of concentration factor (CF) approach. The radionuclide uptake model for fish has as central feature the accumulation of radionuclides in the target tissue. Three layer structure of the water column makes it possible to describe deep-water transport adequately. In total 175 boxes cover the Northwestern Pacific, the East China Sea, and the Yellow Sea and East/Japan Sea. Water fluxes between boxes were calculated by averaging three-dimensional currents obtained by hydrodynamic model ROMS over a 10-years period. Tidal mixing between boxes was parameterized. The model was validated on observation data on the Cs-137 in water for the period 1945-2004. The source terms from nuclear weapon tests are regional source term from the bomb tests on Atoll Enewetak and Atoll Bikini and global deposition from weapons tests. The correlation coefficient between predicted and observed concentrations of Cs-137 in the surface water is 0.925 and RMSE=1.43 Bq/m3. A local-scale coastal box was used according POSEIDON's methodology to describe local processes of activity transport, deposition and food web around the Fukushima Daiichi NPP. The source term to the ocean from the Fukushima accident includes a 10-days release of Cs-134 (5 PBq) and Cs-137 (4 PBq) directly into the ocean and 6 and 5 PBq of Cs-134 and

  7. An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion

    NASA Astrophysics Data System (ADS)

    Gou, J.; Ward, M. J.

    2016-04-01

    A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell

  8. [A model of protectability of the ISS service module habitable compartments for radiation risk assessment].

    PubMed

    Mitrikas, V G

    2004-01-01

    A geometric model of the International space station (ISS) service module has been built up with account of basic structural components and spatial heterogeneity of matter distribution in SM equipment for the purpose of evaluating influence of a selected matter distribution function on the R-16 absorbed dose estimation. The uniform matter distribution function was shown to give the absorbed dose upper bound. Correspondingly, equipment representation as a homogeneous average density matter gives the absorbed dose lower bound. The best results were achieved using the normal law (Gauss law) for the matter distribution function. Shielding functions for DB-8 detectors (new radiation monitoring system elements) are presented. PMID:15372799

  9. An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion

    NASA Astrophysics Data System (ADS)

    Gou, J.; Ward, M. J.

    2016-08-01

    A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell

  10. Physiologically based pharmacokinetic modeling of hydrogen cyanide levels in human breath.

    PubMed

    Stamyr, Kristin; Mörk, Anna-Karin; Johanson, Gunnar

    2015-08-01

    Hydrogen cyanide (HCN) is a potent and fast-acting toxin increasingly recognized as an important cause of death in fire victims. Prompt diagnosis and treatment of cyanide poisoning are essential to avoid fatalities. Unfortunately, there are at present few rapid diagnostic methods. A noninvasive methodology would be to use HCN in exhaled air as a marker for systemic exposure. To explore this possibility, we developed a preliminary physiologically based pharmacokinetic model. The model suggests that breath HCN levels following inhalation exposure at near-lethal and lethal conditions are 0.1-1 ppm, i.e., one to two orders of magnitude higher than the background breath level of about 0.01 ppm in unexposed subjects. Hence, our results imply that breath analysis may be used as a rapid diagnostic method for cyanide poisoning. PMID:25069802

  11. Pharmacokinetic and Pharmacodynamic Evaluation of AZD5847 in a Mouse Model of Tuberculosis

    PubMed Central

    Balasubramanian, V.; Shandil, Radha; Gaonkar, Sheshagiri; Mahesh, K. N.; Reddy, Jitender; Deshpande, Abhijeet; Bharath, Sowmya; Kumar, Naveen; Wright, Lindsay; Melnick, David; Butler, Scott L.

    2014-01-01

    AZD5847, a novel oxazolidinone with an MIC of 1 μg/ml, exhibits exposure-dependent killing kinetics against extracellular and intracellular Mycobacterium tuberculosis. Oral administration of AZD5847 to mice infected with M. tuberculosis H37Rv in a chronic-infection model resulted in a 1.0-log10 reduction in the lung CFU count after 4 weeks of treatment at a daily area under the concentration-time curve (AUC) of 105 to 158 μg · h/ml. The pharmacokinetic-pharmacodynamic parameter that best predicted success in an acute-infection model was an AUC for the free, unbound fraction of the drug/MIC ratio of ≥20. The percentage of time above the MIC in all of the efficacious regimens was 25% or greater. PMID:24820085

  12. [Pharmacokinetics--pharmacodynamics of modafinil in mice].

    PubMed

    Ma, Zhang-Qing; Hong, Zong-Yuan; Wang, Wu-San; Tao, Fang

    2012-01-01

    To guide the reasonable clinical application of modafinil (MOD), pharmacokinetics and pharmacodynamics of MOD in mice and the correlation between them were investigated. Male mice (Kunming strain) were given a single oral dose of MOD (120 mg x kg(-1)). The plasma concentration of MOD was measured by HPLC and the pharmacokinetic parameters were calculated with DAS 3.0 software. For another batch of male Kunming strain mice, their locomotor activities were recorded by an infrared ray passive sensor after a same oral dose of MOD, and the synchronization and correlation between the changes of MOD plasma concentration and the locomotor activity induced by MOD were compared and analyzed. The results showed that the plasma concentration-time curve of MOD was fitted to two-compartment open model with a first order absorption. The main pharmacokinetic parameters t1/2alpha, t1/2beta, t(max), C(max) and AUC(0-inifinity) were 0.42 h, 3.10 h, 1.00 h, 41.34 mg x L(-1) and 142.22 mg x L(-1) x h, respectively. MOD significantly increased locomotor activity and the effect lasted for about 4 h. The changes of MOD plasma concentration and the locomotor activity induced by MOD were synchronous. In conclusion, there is a significant correlation between the effect of MOD and its plasma concentration after administration of 120 mg x kg(-1) in mice. PMID:22493813

  13. Simulation of Drug Uptake in a Two Compartmental Fractional Model for a Biological System.

    PubMed

    Petráš, Ivo; Magin, Richard L

    2011-12-01

    This paper presents a very effective numerical method for the solution of the two-compartmental pharmacokinetic model for oral drug administration. This model consists of a set of two fractional order differential equations which connect the two compartments. The first compartment represents the gut while the second compartment corresponds to the drug concentration in the target tissue. For ease of computation, the numerical solution is also created as a Matlab function. PMID:21822359

  14. The role of digitalis pharmacokinetics in converting atrial fibrillation and flutter to regular sinus rhythm.

    PubMed

    Jelliffe, Roger W

    2014-05-01

    This report examined the role of digitalis pharmacokinetics in helping to guide therapy with digitalis glycosides with regard to converting atrial fibrillation (AF) or flutter to regular sinus rhythm (RSR). Pharmacokinetic models of digitoxin and digoxin, containing a peripheral non-serum effect compartment, were used to analyze outcomes in a non-systematic literature review of five clinical studies, using the computed concentrations of digitoxin and digoxin in the effect compartment of these models in an analysis of their outcomes. Four cases treated by the author were similarly examined. Three literature studies showed results no different from placebo. Dosage regimens achieved ≤11 ng/g in the model's peripheral compartment. However, two other studies achieved significant conversion to RSR. Their peripheral concentrations were 9-14 ng/g. In the four patients treated by the author, three converted using classical clinical titration with incremental doses, plus therapeutic drug monitoring and pharmacokinetic guidance from the models for maintenance dosage. They converted at peripheral concentrations of 9-18 ng/g, similar to the two studies above. No toxicity was seen. Successful maintenance was achieved, using the models and their pharmacokinetic guidance, by giving somewhat larger than average recommended dosage regimens in order to maintain peripheral concentrations present at conversion. The fourth patient did not convert, but only reached peripheral concentrations of 6-7 ng/g, similar to the studies in which conversion was no better than placebo. Pharmacokinetic analysis and guidance play a highly significant role in converting AF to RSR. To the author's knowledge, this has not been specifically described before. In my experience, conversion of AF or flutter to RSR does not occur until peripheral concentrations of 9-18 ng/g are reached. Results in the four cases correlated well with the literature findings. More work is needed to further evaluate these

  15. Development of Multi-Route Physiologically-based Pharmacokinetic Models for Ethanol in the Adult, Pregnant, and Neonatal Rat

    EPA Science Inventory

    Biofuel blends of 10% ethanol (EtOH) and gasoline are common in the United States, and higher EtOH concentrations are being considered (15-85%). Currently, no physiologically-based pharmacokinetic (PBPK) models are available to describe the kinetics of EtOH-based biofuels. PBPK...

  16. PHYSIOLOGICALLY-BASED PHARMACOKINETIC AND PHARMACODYNAMIC (PBPK/PD) MODEL FOR PREDICTING THE DERMAL DOSE AND DISPOSITION OF ORGANOPHOSPHORUS INSECTICIDES

    EPA Science Inventory

    Physiologically-based pharmacokinetic/ pharmacodynamic (PBPK/PD) models are particularly suited for interpretation of cumulative risk via the dermal route for which aggregate exposure must be assessed for chemicals having a common mechanism of toxicity. To this end, a quantita...

  17. Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment (External Review Draft 2005)

    EPA Science Inventory

    This draft report of Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment (PDF, 110pp, 1MB, About PDF) addresses the appli...

  18. Development of a Pediatric Physiologically Based Pharmacokinetic Model for Sirolimus: Applying Principles of Growth and Maturation in Neonates and Infants

    PubMed Central

    Emoto, C; Fukuda, T; Johnson, TN; Adams, DM; Vinks, AA

    2015-01-01

    This study describes the maturation of sirolimus clearance in a cohort of very young pediatric patients with vascular anomalies. The relationship between allometrically scaled in vivo clearance and age was described by the Emax model in patients aged 1 month to 2 years. Consistent with the observed increase, in vitro intrinsic clearance of sirolimus using pediatric liver microsomes showed a similar age-dependent increase. In children older than 2 years, allometrically scaled sirolimus clearance did not show further maturation. Simulated clearance estimates with a sirolimus physiologically based pharmacokinetic model that included CYP3A4/5/7 and CYP2C8 maturation profiles were in close agreement with observed in vivo clearance values. In addition, physiologically based pharmacokinetic model-simulated sirolimus pharmacokinetic profiles predicted the actual observations well. These results demonstrate the utility of a physiologically based pharmacokinetic modeling approach for the prediction of the developmental trajectory of sirolimus metabolic activity and its effects on total body clearance in neonates and infants. PMID:26225230

  19. DEVELOPMENT OF A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR DELTAMETHRIN IN ADULT AND DEVELOPING SPRAGUE-DAWLEY RATS

    EPA Science Inventory

    This work describes the development of a physiologically based pharmacokinetic (PBPK) model of deltamethrin, a type II pyrethroid, in the developing male Sprague-Dawley rat. Generalized Michaelis-Menten equations were used to calculate metabolic rate constants and organ weights ...

  20. Development of a Pediatric Physiologically Based Pharmacokinetic Model for Sirolimus: Applying Principles of Growth and Maturation in Neonates and Infants.

    PubMed

    Emoto, C; Fukuda, T; Johnson, T N; Adams, D M; Vinks, A A

    2015-02-01

    This study describes the maturation of sirolimus clearance in a cohort of very young pediatric patients with vascular anomalies. The relationship between allometrically scaled in vivo clearance and age was described by the Emax model in patients aged 1 month to 2 years. Consistent with the observed increase, in vitro intrinsic clearance of sirolimus using pediatric liver microsomes showed a similar age-dependent increase. In children older than 2 years, allometrically scaled sirolimus clearance did not show further maturation. Simulated clearance estimates with a sirolimus physiologically based pharmacokinetic model that included CYP3A4/5/7 and CYP2C8 maturation profiles were in close agreement with observed in vivo clearance values. In addition, physiologically based pharmacokinetic model-simulated sirolimus pharmacokinetic profiles predicted the actual observations well. These results demonstrate the utility of a physiologically based pharmacokinetic modeling approach for the prediction of the developmental trajectory of sirolimus metabolic activity and its effects on total body clearance in neonates and infants. PMID:26225230

  1. Protein profiles in mucosal and systemic compartments in response to Vibrio cholerae in a mouse pulmonary infection model.

    PubMed

    Kang, Seok-Seong; Baik, Jung Eun; Yang, Jae Seung; Cho, Kun; Yun, Cheol-Heui; Han, Seung Hyun

    2015-09-01

    We have recently shown that a mouse lung infection model resulting in acute pneumonia could be used for evaluating the protective immunity induced by mucosal vaccines against Vibrio cholerae. In order to gain insight and better understanding of the pathogenicity of V. cholerae infection, we identified and compared proteins induced by V. cholerae in nasal washes, bronchoalveolar lavages (BAL), and sera. Intranasal administration of V. cholerae increased the concentration of total proteins in nasal washes and BAL fluids, but not in sera. LTQ-Orbitrap hybrid Fourier transform mass spectrometry showed that cytoskeletal proteins, protease inhibitors and anti-inflammatory mediators were present in nasal washes from uninfected mice. The distinctly expressed proteins in nasal washes in response to V. cholerae mainly consisted of protease inhibitors, anti-inflammatory proteins, and anti-microbial proteins. A number of protease inhibitors and anti-inflammatory proteins were selectively expressed in BAL fluids from V. cholerae-infected mice, while cytoskeletal proteins and heat shock proteins were mainly observed in BAL fluids from uninfected mice. A large number of serum complements, protease inhibitors, and acute phase proteins were expressed in V. cholerae-infected mice. Collectively, these results suggest that intranasal administration of V. cholerae leading to acute pneumonia elicited alterations of protein profiles associated with immune homeostasis and host protection in both the mucosal and systemic compartments. PMID:26150210

  2. Differentiating T2 hyperintensity in neonatal white matter by two-compartment model of diffusional kurtosis imaging

    PubMed Central

    Gao, Jie; Li, Xianjun; Li, Yanyan; Zeng, Lingxia; Jin, Chao; Sun, Qinli; Xu, Duan; Yu, Bolang; Yang, Jian

    2016-01-01

    In conventional neonatal MRI, the T2 hyperintensity (T2h) in cerebral white matter (WM) at term-equivalent age due to immaturity or impairment is still difficult to identify. To clarify such issue, this study used the metrics derived from a two-compartment WM model of diffusional kurtosis imaging (WM-DKI), including intra-axonal, extra-axonal axial and radial diffusivities (Da, De,// and De,⊥), to compare WM differences between the simple T2h and normal control for both preterm and full-term neonates, and between simple T2h and complex T2h with hypoxic-ischemic encephalopathy (HIE). Results indicated that compared with control, the simple T2h showed significantly increased De,// and De,⊥, but no significant change in Da in multiple premyelination regions, indicative of expanding extra-axonal diffusion microenvironment; while myelinated regions showed no changes. However, compared with simple T2h, the complex T2h with HIE had decreased Da, increased De,⊥ in both premyelination and myelinated regions, indicative of both intra- and extra-axonal diffusion alterations. While diffusion tensor imaging (DTI) failed to distinguish simple T2h from complex T2h with HIE. In conclusion, superior to DTI-metrics, WM-DKI metrics showed more specificity for WM microstructural changes to distinguish simple T2h from complex T2h with HIE. PMID:27075248

  3. Mycoplasma gallisepticum and Escherichia coli mixed infection model in broiler chickens for studying valnemulin pharmacokinetics.

    PubMed

    Xiao, X; Zhao, D H; Yang, X; Shi, W; Deng, H; Ma, J; Zhang, S; Liu, Y H

    2014-02-01

    A Mycoplasma gallisepticum-Escherichia coli mixed infection model was developed in broiler chickens, which was applied to pharmacokinetics of valnemulin in the present experiment. The velogenic M. gallisepticum standard strain S6 was rejuvenated to establish the animal model, and the wild E. coli strain O78 was injected as supplementary inoculum to induce chronic respiratory disease in chickens. The disease model was evaluated based on its clinical signs, histopathological examination, bacteriological assay, and serum plate agglutination test. The pharmacokinetics of valnemulin in infected chickens was determined by intramuscular (i.m.) injection and oral administration (per os, p.o.) of a single dose of 10 mg/kg body weight (BW). Plasma samples were analyzed by liquid chromatography-tandem mass spectrometry. The plasma concentration-time curve of valnemulin was analyzed using the noncompartmental method. After the i.m. administration, the mean values of Cmax , Tmax , AUClast , MRT, CLβ /F, Vz /F, and t1⁄2β , were 27.94 μg/mL, 1.57 h, 171.63 μg·h/mL, 4.51 h, 0.06 L/h/kg, 0.56 L/kg, and 6.50 h, respectively. By contrast, the corresponding values after p.o. administration were 5.93 μg/mL, 7.14 h, 47.60 μg·h/mL, 9.80 h, 0.22 L/h/kg, 3.35 L/kg, and 10.60 h. The disposition of valnemulin was retarded in infected chickens after both modes of extravascular administration as compared to the healthy controls. More attention should be given to monitoring the therapeutic efficacy and adverse effects of mixed infection because of higher required plasma drug concentration and enlarged AUC with valnemulin treatment. PMID:23782411

  4. Pharmacokinetic predictions based on a variable dosage frequency in chronic treatment.

    PubMed

    Messori, A; Donati-Cori, G; Tendi, E

    1983-04-01

    After repeated intramuscular or oral administration, plasma drug levels are predicted by using a programmable calculator. Predictions are based on a one-compartment, open model with first-order absorption. The actual times of dosing are considered, so that the assumption of a constant dosing interval is not required. A brief analysis of the pharmacokinetic consequences that may result from a variable dosage frequency is presented. PMID:6839963

  5. Physiologically based pharmacokinetic model use in risk assessment--Why being published is not enough.

    PubMed

    McLanahan, Eva D; El-Masri, Hisham A; Sweeney, Lisa M; Kopylev, Leonid Y; Clewell, Harvey J; Wambaugh, John F; Schlosser, P M

    2012-03-01

    A panel of experts in physiologically based pharmacokinetic (PBPK) modeling and relevant quantitative methods was convened to describe and discuss model evaluation criteria, issues, and choices that arise in model application and computational tools for improving model quality for use in human health risk assessments (HHRAs). Although publication of a PBPK model in a peer-reviewed journal is a mark of good science, subsequent evaluation of published models and the supporting computer code is necessary for their consideration for use in HHRAs. Standardized model evaluation criteria and a thorough and efficient review process can reduce the number of review and revision iterations and hence the time needed to prepare a model for application. Efficient and consistent review also allows for rapid identification of needed model modifications to address HHRA-specific issues. This manuscript reports on the workshop where a process and criteria that were created for PBPK model review were discussed along with other issues related to model review and application in HHRA. Other issues include (1) model code availability, portability, and validity; (2) probabilistic (e.g., population-based) PBPK models and critical choices in parameter values to fully characterize population variability; and (3) approaches to integrating PBPK model outputs with other HHRA tools, including benchmark dose modeling. Two specific case study examples are provided to illustrate challenges that were encountered during the review and application process. By considering the frequent challenges encountered in the review and application of PBPK models during the model development phase, scientists may be better able to prepare their models for use in HHRAs. PMID:22045031

  6. Population Pharmacokinetics of Rifampicin in Chinese Patients With Pulmonary Tuberculosis.

    PubMed

    Jing, Ying; Zhu, Li Qin; Yang, Jian Wei; Huang, Shu Ping; Wang, Qian; Zhang, Jie

    2016-05-01

    Rifampicin (RIF) induces cytochrome P450, which in turn catalyzes drug metabolism; however, pharmacokinetic studies on this phenomenon in the Chinese population, especially in the context of disease, are limited. Therefore, we sought to establish population-based pharmacokinetic models of RIF in a Chinese population with pulmonary tuberculosis (TB). Clinical data were retrospectively collected from 54 patients with pulmonary TB and analyzed alongside RIF blood levels from 95 samples collected prior to RIF administration and between 2 and 12 hours after treatment. HPLC was used to measure serum RIF concentrations. A nonlinear mixed model used to characterize RIF pharmacokinetics and the data generated from the present study were validated using a bootstrap method. Covariates, including demographics, as well as hematological and biological indicators were analyzed. We observed a 1-compartment model with first-order absorption. Typical population values of apparent clearance (CL/F) and apparent volume of distribution (VD /F) were 4.02 L/h and 57.8 L, respectively. No covariate significantly changed the parameters of CL/F and VD . The present study may serve as a foundation for individualized therapy and offer a basis for pharmacokinetic-pharmacodynamic (PK-PD) analysis. PMID:26387492

  7. Population pharmacokinetic analysis of isoniazid, acetylisoniazid, and isonicotinic acid in healthy volunteers.

    PubMed

    Seng, Kok-Yong; Hee, Kim-Hor; Soon, Gaik-Hong; Chew, Nicholas; Khoo, Saye H; Lee, Lawrence Soon-U

    2015-11-01

    In this study, we aimed to quantify the effects of the N-acetyltransferase 2 (NAT2) phenotype on isoniazid (INH) metabolism in vivo and identify other sources of pharmacokinetic variability following single-dose administration in healthy Asian adults. The concentrations of INH and its metabolites acetylisoniazid (AcINH) and isonicotinic acid (INA) in plasma were evaluated in 33 healthy Asians who were also given efavirenz and rifampin. The pharmacokinetics of INH, AcINH, and INA were analyzed using nonlinear mixed-effects modeling (NONMEM) to estimate the population pharmacokinetic parameters and evaluate the relationships between the parameters and the elimination status (fast, intermediate, and slow acetylators), demographic status, and measures of renal and hepatic function. A two-compartment model with first-order absorption best described the INH pharmacokinetics. AcINH and INA data were best described by a two- and a one-compartment model, respectively, linked to the INH model. In the final model for INH, the derived metabolic phenotypes for NAT2 were identified as a significant covariate in the INH clearance, reducing its interindividual variability from 86% to 14%. The INH clearance in fast eliminators was 1.9- and 7.7-fold higher than in intermediate and slow eliminators, respectively (65 versus 35 and 8 liters/h). Creatinine clearance was confirmed as a significant covariate for AcINH clearance. Simulations suggested that the current dosing guidelines (200 mg for 30 to 45 kg and 300 mg for >45 kg) may be suboptimal (3 mg/liter ≤ Cmax ≤ 6 mg/liter) irrespective of the acetylator class. The analysis established a model that adequately characterizes INH, AcINH, and INA pharmacokinetics in healthy Asians. Our results refine the NAT2 phenotype-based predictions of the pharmacokinetics for INH. PMID:26282412

  8. Population Pharmacokinetic Analysis of Isoniazid, Acetylisoniazid, and Isonicotinic Acid in Healthy Volunteers

    PubMed Central

    Seng, Kok-Yong; Hee, Kim-Hor; Soon, Gaik-Hong; Chew, Nicholas; Khoo, Saye H.

    2015-01-01

    In this study, we aimed to quantify the effects of the N-acetyltransferase 2 (NAT2) phenotype on isoniazid (INH) metabolism in vivo and identify other sources of pharmacokinetic variability following single-dose administration in healthy Asian adults. The concentrations of INH and its metabolites acetylisoniazid (AcINH) and isonicotinic acid (INA) in plasma were evaluated in 33 healthy Asians who were also given efavirenz and rifampin. The pharmacokinetics of INH, AcINH, and INA were analyzed using nonlinear mixed-effects modeling (NONMEM) to estimate the population pharmacokinetic parameters and evaluate the relationships between the parameters and the elimination status (fast, intermediate, and slow acetylators), demographic status, and measures of renal and hepatic function. A two-compartment model with first-order absorption best described the INH pharmacokinetics. AcINH and INA data were best described by a two- and a one-compartment model, respectively, linked to the INH model. In the final model for INH, the derived metabolic phenotypes for NAT2 were identified as a significant covariate in the INH clearance, reducing its interindividual variability from 86% to 14%. The INH clearance in fast eliminators was 1.9- and 7.7-fold higher than in intermediate and slow eliminators, respectively (65 versus 35 and 8 liters/h). Creatinine clearance was confirmed as a significant covariate for AcINH clearance. Simulations suggested that the current dosing guidelines (200 mg for 30 to 45 kg and 300 mg for >45 kg) may be suboptimal (3 mg/liter ≤ Cmax ≤ 6 mg/liter) irrespective of the acetylator class. The analysis established a model that adequately characterizes INH, AcINH, and INA pharmacokinetics in healthy Asians. Our results refine the NAT2 phenotype-based predictions of the pharmacokinetics for INH. PMID:26282412

  9. A framework for meta-analysis of veterinary drug pharmacokinetic data using mixed effect modeling.

    PubMed

    Li, Mengjie; Gehring, Ronette; Lin, Zhoumeng; Riviere, Jim

    2015-04-01

    Combining data from available studies is a useful approach to interpret the overwhelming amount of data generated in medical research from multiple studies. Paradoxically, in veterinary medicine, lack of data requires integrating available data to make meaningful population inferences. Nonlinear mixed-effects modeling is a useful tool to apply meta-analysis to diverse pharmacokinetic (PK) studies of veterinary drugs. This review provides a summary of the characteristics of PK data of veterinary drugs and how integration of these data may differ from human PK studies. The limits of meta-analysis include the sophistication of data mining, and generation of misleading results caused by biased or poor quality data. The overriding strength of meta-analysis applied to this field is that robust statistical analysis of the diverse sparse data sets inherent to veterinary medicine applications can be accomplished, thereby allowing population inferences to be made. PMID:25641543

  10. Utility of population pharmacokinetic modeling in the assessment of therapeutic protein-drug interactions.

    PubMed

    Chow, Andrew T; Earp, Justin C; Gupta, Manish; Hanley, William; Hu, Chuanpu; Wang, Diane D; Zajic, Stefan; Zhu, Min

    2014-05-01

    Assessment of pharmacokinetic (PK) based drug-drug interactions (DDI) is essential for ensuring patient safety and drug efficacy. With the substantial increase in therapeutic proteins (TP) entering the market and drug development, evaluation of TP-drug interaction (TPDI) has become increasingly important. Unlike for small molecule (e.g., chemical-based) drugs, conducting TPDI studies often presents logistical challenges, while the population PK (PPK) modeling may be a viable approach dealing with the issues. A working group was formed with members from the pharmaceutical industry and the FDA to assess the utility of PPK-based TPDI assessment including study designs, data analysis methods, and implementation strategy. This paper summarizes key issues for consideration as well as a proposed strategy with focuses on (1) PPK approach for exploratory assessment; (2) PPK approach for confirmatory assessment; (3) importance of data quality; (4) implementation strategy; and (5) potential regulatory implications. Advantages and limitations of the approach are also discussed. PMID:24272952

  11. Population Pharmacokinetics of 3-Aminopyridine-2-Carboxaldehyde Thiosemicarbazone (Triapine®) in Cancer Patients

    PubMed Central

    Kolesar, Jill; Brundage, Richard C.; Pomplun, Marcia; Alberti, Dona; Holen, Kyle; Traynor, Anne; Ivy, Percy; Wilding, George

    2011-01-01

    Purpose The purpose of this study was to develop a population pharmacokinetic (PK) model for 3-AP pharmacokinetics and to evaluate the effect of ABCB1 polymorphisms on the pharmacokinetic profile of 3-AP and to assess the relationship between 3AP disposition and patient covariates. Methods A total of 40 patients with advanced cancer from two phase 1 studies were included in the population PK model building. Patients received 3-AP 25–105 mg/m2 IV on day 1. 3-AP plasma and erythrocyte levels were sampled at 10 timepoints over a 24-hour period and measured by a validated HPLC method. Data were analyzed by a nonlinear mixed-effects modeling approach using the NONMEM system. Results 3AP pharmacokinetics were described as a 3-compartment model with first-order elimination. One compartment representing the plasma and another representing erythrocyte concentrations. Gender was associated with volume of distribution, in which women had a lower V2. The number of cycles administered was associated with clearance; those with decreased clearance were more likely to receive less than 2 cycles before going off study. Conclusion This study suggests that monitoring 3-AP plasma concentrations in the first cycle and dose adjustment in those with decreased clearance may be helpful in decreasing toxicity associated with the 3-AP. PMID:20440618

  12. Compartment model predicts VEGF secretion and investigates the effects of VEGF trap in tumor-bearing mice.

    PubMed

    Finley, Stacey D; Dhar, Manjima; Popel, Aleksander S

    2013-01-01

    Angiogenesis, the formation of new blood vessels from existing vasculature, is important in tumor growth and metastasis. A key regulator of angiogenesis is vascular endothelial growth factor (VEGF), which has been targeted in numerous anti-angiogenic therapies aimed at inhibiting tumor angiogenesis. Systems biology approaches, including computational modeling, are useful for understanding this complex biological process and can aid in the development of novel and effective therapeutics that target the VEGF family of proteins and receptors. We have developed a computational model of VEGF transport and kinetics in the tumor-bearing mouse, which includes three-compartments: normal tissue, blood, and tumor. The model simulates human tumor xenografts and includes human (VEGF121 and VEGF165) and mouse (VEGF120 and VEGF164) isoforms. The model incorporates molecular interactions between these VEGF isoforms and receptors (VEGFR1 and VEGFR2), as well as co-receptors (NRP1 and NRP2). We also include important soluble factors: soluble VEGFR1 (sFlt-1) and α-2-macroglobulin. The model accounts for transport via macromolecular transendothelial permeability, lymphatic flow, and plasma clearance. We have fit the model to available in vivo experimental data on the plasma concentration of free VEGF Trap and VEGF Trap bound to mouse and human VEGF in order to estimate the rates at which parenchymal cells (myocytes and tumor cells) and endothelial cells secrete VEGF. Interestingly, the predicted tumor VEGF secretion rates are significantly lower (0.007-0.023 molecules/cell/s, depending on the tumor microenvironment) than most reported in vitro measurements (0.03-2.65 molecules/cell/s). The optimized model is used to investigate the interstitial and plasma VEGF concentrations and the effect of the VEGF-neutralizing agent, VEGF Trap (aflibercept). This work complements experimental studies performed in mice and provides a framework with which to examine the effects of anti

  13. Compartment Model Predicts VEGF Secretion and Investigates the Effects of VEGF Trap in Tumor-Bearing Mice

    PubMed Central

    Finley, Stacey D.; Dhar, Manjima; Popel, Aleksander S.

    2013-01-01

    Angiogenesis, the formation of new blood vessels from existing vasculature, is important in tumor growth and metastasis. A key regulator of angiogenesis is vascular endothelial growth factor (VEGF), which has been targeted in numerous anti-angiogenic therapies aimed at inhibiting tumor angiogenesis. Systems biology approaches, including computational modeling, are useful for understanding this complex biological process and can aid in the development of novel and effective therapeutics that target the VEGF family of proteins and receptors. We have developed a computational model of VEGF transport and kinetics in the tumor-bearing mouse, which includes three-compartments: normal tissue, blood, and tumor. The model simulates human tumor xenografts and includes human (VEGF121 and VEGF165) and mouse (VEGF120 and VEGF164) isoforms. The model incorporates molecular interactions between these VEGF isoforms and receptors (VEGFR1 and VEGFR2), as well as co-receptors (NRP1 and NRP2). We also include important soluble factors: soluble VEGFR1 (sFlt-1) and α-2-macroglobulin. The model accounts for transport via macromolecular transendothelial permeability, lymphatic flow, and plasma clearance. We have fit the model to available in vivo experimental data on the plasma concentration of free VEGF Trap and VEGF Trap bound to mouse and human VEGF in order to estimate the rates at which parenchymal cells (myocytes and tumor cells) and endothelial cells secrete VEGF. Interestingly, the predicted tumor VEGF secretion rates are significantly lower (0.007–0.023 molecules/cell/s, depending on the tumor microenvironment) than most reported in vitro measurements (0.03–2.65 molecules/cell/s). The optimized model is used to investigate the interstitial and plasma VEGF concentrations and the effect of the VEGF-neutralizing agent, VEGF Trap (aflibercept). This work complements experimental studies performed in mice and provides a framework with which to examine the effects of anti

  14. Preclinical pharmacokinetics of TPN729MA, a novel PDE5 inhibitor, and prediction of its human pharmacokinetics using a PBPK model

    PubMed Central

    Gao, Zhi-wei; Zhu, Yun-ting; Yu, Ming-ming; Zan, Bin; Liu, Jia; Zhang, Yi-fan; Chen, Xiao-yan; Li, Xue-ning; Zhong, Da-fang

    2015-01-01

    Aim: TPN729MA is a novel selective PDE5 inhibitor currently under clinical development in China for the treatment of erectile dysfunction. In this study we characterized its preclinical pharmacokinetics (PK) and predict its human PK using a physiologically based pharmacokinetic (PBPK) model. Methods: The preclinical PK of TPN729MA was studied in rats and dogs. Human clearance (CL) values for TPN729MA were predicted from various allometric methods and from intrinsic CL determined in human liver microsomes. Human PK and plasma concentration versus time profiles of TPN729MA were predicted by using a PBPK model in GastroPlus. Considering the uncertainties in the prediction, a preliminary human study was conducted in 3 healthy male volunteers with an oral dose of 25 mg. Results: After a single intravenous administration of TPN729MA at a dose of 1 mg/kg in rats and 3 mg/kg in dogs, the plasma CL was 69.7 mL·min−1·kg−1 in rats and 26.3 mL·min−1·kg−1 in dogs, and the steady-state volumes of distribution (Vss) were 7.35 L/kg in rats and 6.48 L/kg in dogs. The oral bioavailability of TPN729MA was 10% in rats and above 34% in dogs. Profiles of predicted plasma concentration versus time were similar to those observed in humans at 25 mg, and the predicted Tmax, Cmax and AUC values were within 2-fold of the observed values. Conclusion: TPN729MA demonstrates good preclinical PK. This compound is a valuable candidate for further clinical development. This study shows the benefits of using a PBPK model to predict PK in humans. PMID:26592518

  15. Estimating marbofloxacin withdrawal time in broiler chickens using a population physiologically based pharmacokinetics model.

    PubMed

    Yang, F; Yang, Y R; Wang, L; Huang, X H; Qiao, G; Zeng, Z L

    2014-12-01

    Residue depletion of marbofloxacin in broiler chicken after oral administration at 5 mg/kg/day for three consecutive days was studied in this study. The areas under the concentration-time curve from 0 h to ∞ (AUC0-∞ s) of marbofloxacin in tissues and plasma were used to calculate tissue/plasma partition coefficients (PX s). Based on PX s and the other parameters derived from published studies, a flow-limited physiologically based pharmacokinetics (PBPK) model was developed to predict marbofloxacin concentrations, which were then compared with those derived from the residue depletion study so as to validate this model. Considering individual difference in drug disposition, a Monte Carlo simulation included 1000 iterations was further incorporated into the validated model to generate a population PBPK model and to estimate the marbofloxacin residue withdrawal times in edible tissues. The withdrawal periods were compared to those derived from linear regression analysis. The PBPK model presented here successfully predicted the measured concentrations in all tissues. The withdrawal times in all edible tissues derived from the population PBPK model were longer than those from linear regression analysis, and based on the residues in kidney, a withdrawal time of 4 days was estimated for marbofloxacin after oral administration at 5 mg/kg/day for three consecutive days. It was shown that population PBPK model could be used to accurately predict marbofloxacin residue withdrawal time in edible tissues in broiler chickens. PMID:24903645

  16. Metformin and cimetidine: Physiologically based pharmacokinetic modelling to investigate transporter mediated drug-drug interactions.

    PubMed

    Burt, H J; Neuhoff, S; Almond, L; Gaohua, L; Harwood, M D; Jamei, M; Rostami-Hodjegan, A; Tucker, G T; Rowland-Yeo, K

    2016-06-10

    Metformin is used as a probe for OCT2 mediated transport when investigating possible DDIs with new chemical entities. The aim of the current study was to investigate the ability of physiologically-based pharmacokinetic (PBPK) models to simulate the effects of OCT and MATE inhibition by cimetidine on metformin kinetics. PBPK models were developed, incorporating mechanistic kidney and liver sub-models for metformin (OCT and MATE substrate) and a mechanistic kidney sub-model for cimetidine. The models were used to simulate inhibition of the MATE1, MATE2-K, OCT1 and OCT2 mediated transport of metformin by cimetidine. Assuming competitive inhibition and using cimetidine Ki values determined in vitro, the predicted metformin AUC ratio was 1.0 compared to an observed value of 1.46. The observed AUC ratio could only be recovered with this model when the cimetidine Ki for OCT2 was decreased 1000-fold or the Ki's for both OCT1 and OCT2 were decreased 500-fold. An alternative description of metformin renal transport by OCT1 and OCT2, incorporating electrochemical modulation of the rate of metformin uptake together with 8-18-fold decreases in cimetidine Ki's for OCTs and MATEs, allowed recovery of the extent of the observed effect of cimetidine on metformin AUC. While the final PBPK model has limitations, it demonstrates the benefit of allowing for the complexities of passive permeability combined with active cellular uptake modulated by an electrochemical gradient and active efflux. PMID:27019345

  17. Compartmented electrode structure

    DOEpatents

    Vissers, Donald R.; Shimotake, Hiroshi; Gay, Eddie C.; Martino, Fredric J.

    1977-06-14

    Electrodes for secondary electrochemical cells are provided with compartments for containing particles of the electrode reactant. The compartments are defined by partitions that are generally impenetrable to the particles of reactant and, in some instances, to the liquid electrolyte used in the cell. During cycling of the cell, reactant material initially loaded into a particular compartment is prevented from migrating and concentrating within the lower portion of the electrode or those portions of the electrode that exhibit reduced electrical resistance.

  18. Compilation of basal metabolic and blood perfusion rates in various multi-compartment, whole-body thermoregulation models.

    PubMed

    Shitzer, Avraham; Arens, Edward; Zhang, Hui

    2016-07-01

    The assignments of basal metabolic rates (BMR), basal cardiac output (BCO), and basal blood perfusion rates (BBPR) were compared in nine multi-compartment, whole-body thermoregulation models. The data are presented at three levels of detail: total body, specific body regions, and regional body tissue layers. Differences in the assignment of these quantities among the compared models increased with the level of detail, in the above order. The ranges of variability in the total body BMR was 6.5 % relative to the lowest value, with a mean of 84.3 ± 2 W, and in the BCO, it was 8 % with a mean of 4.70 ± 0.13 l/min. The least variability among the body regions is seen in the combined torso (shoulders, thorax, and abdomen: ±7.8 % BMR and ±5.9 % BBPR) and in the combined head (head, face, and neck ±9.9 % BMR and ±10.9 % BBPR), determined by the ratio of the standard deviation to the mean. Much more variability is apparent in the extremities with the most showing in the BMR of the feet (±117 %), followed by the BBPR in the arms (±61.3 %). In the tissue layers, most of the bone layers were assigned zero BMR and BBPR, except in the shoulders and in the extremities that were assigned non-zero values in a number of models. The next lowest values were assigned to the fat layers, with occasional zero values. Skin basal values were invariably non-zero but involved very low values in certain models, e.g., BBPR in the feet and the hands. Muscle layers were invariably assigned high values with the highest found in the thorax, abdomen, and legs. The brain, lung, and viscera layers were assigned the highest of all values of both basal quantities with those of the brain layers showing rather tight ranges of variability in both basal quantities. Average basal values of the "time-seasoned" models presented in this study could be useful as a first step in future modeling efforts subject to appropriate adjustment of values to conform to most recently available and

  19. Compilation of basal metabolic and blood perfusion rates in various multi-compartment, whole-body thermoregulation models

    NASA Astrophysics Data System (ADS)

    Shitzer, Avraham; Arens, Edward; Zhang, Hui

    2015-11-01

    The assignments of basal metabolic rates (BMR), basal cardiac output (BCO), and basal blood perfusion rates (BBPR) were compared in nine multi-compartment, whole-body thermoregulation models. The data are presented at three levels of detail: total body, specific body regions, and regional body tissue layers. Differences in the assignment of these quantities among the compared models increased with the level of detail, in the above order. The ranges of variability in the total body BMR was 6.5 % relative to the lowest value, with a mean of 84.3 ± 2 W, and in the BCO, it was 8 % with a mean of 4.70 ± 0.13 l/min. The least variability among the body regions is seen in the combined torso (shoulders, thorax, and abdomen: ±7.8 % BMR and ±5.9 % BBPR) and in the combined head (head, face, and neck ±9.9 % BMR and ±10.9 % BBPR), determined by the ratio of the standard deviation to the mean. Much more variability is apparent in the extremities with the most showing in the BMR of the feet (±117 %), followed by the BBPR in the arms (±61.3 %). In the tissue layers, most of the bone layers were assigned zero BMR and BBPR, except in the shoulders and in the extremities that were assigned non-zero values in a number of models. The next lowest values were assigned to the fat layers, with occasional zero values. Skin basal values were invariably non-zero but involved very low values in certain models, e.g., BBPR in the feet and the hands. Muscle layers were invariably assigned high values with the highest found in the thorax, abdomen, and legs. The brain, lung, and viscera layers were assigned the highest of all values of both basal quantities with those of the brain layers showing rather tight ranges of variability in both basal quantities. Average basal values of the "time-seasoned" models presented in this study could be useful as a first step in future modeling efforts subject to appropriate adjustment of values to conform to most recently available and reliable data.

  20. Compilation of basal metabolic and blood perfusion rates in various multi-compartment, whole-body thermoregulation models

    NASA Astrophysics Data System (ADS)

    Shitzer, Avraham; Arens, Edward; Zhang, Hui

    2016-07-01

    The assignments of basal metabolic rates (BMR), basal cardiac output (BCO), and basal blood perfusion rates (BBPR) were compared in nine multi-compartment, whole-body thermoregulation models. The data are presented at three levels of detail: total body, specific body regions, and regional body tissue layers. Differences in the assignment of these quantities among the compared models increased with the level of detail, in the above order. The ranges of variability in the total body BMR was 6.5 % relative to the lowest value, with a mean of 84.3 ± 2 W, and in the BCO, it was 8 % with a mean of 4.70 ± 0.13 l/min. The least variability among the body regions is seen in the combined torso (shoulders, thorax, and abdomen: ±7.8 % BMR and ±5.9 % BBPR) and in the combined head (head, face, and neck ±9.9 % BMR and ±10.9 % BBPR), determined by the ratio of the standard deviation to the mean. Much more variability is apparent in the extremities with the most showing in the BMR of the feet (±117 %), followed by the BBPR in the arms (±61.3 %). In the tissue layers, most of the bone layers were assigned zero BMR and BBPR, except in the shoulders and in the extremities that were assigned non-zero values in a number of models. The next lowest values were assigned to the fat layers, with occasional zero values. Skin basal values were invariably non-zero but involved very low values in certain models, e.g., BBPR in the feet and the hands. Muscle layers were invariably assigned high values with the highest found in the thorax, abdomen, and legs. The brain, lung, and viscera layers were assigned the highest of all values of both basal quantities with those of the brain layers showing rather tight ranges of variability in both basal quantities. Average basal values of the "time-seasoned" models presented in this study could be useful as a first step in future modeling efforts subject to appropriate adjustment of values to conform to most recently available and reliable data.

  1. Accuracy of DXA in estimating body composition changes in elite athletes using a four compartment model as the reference method

    PubMed Central

    2010-01-01

    Background Dual-energy x-ray absorptiometry (DXA) provides an affordable and practical assessment of multiple whole body and regional body composition. However, little information is available on the assessment of changes in body composition in top-level athletes using DXA. The present study aimed to assess the accuracy of DXA in tracking body composition changes (relative fat mass [%FM], absolute fat mass [FM], and fat-free mass [FFM]) of elite male judo athletes from a period of weight stability to prior to a competition, compared to a four compartment model (4C model), as the criterion method. Methods A total of 27 elite male judo athletes (age, 22.2 ± 2.8 yrs) athletes were evaluated. Measures of body volume by air displacement plethysmography, bone mineral content assessed by DXA, and total-body water assessed by deuterium dilution were used in a 4C model. Statistical analyses included examination of the coefficient of determinant (r2), standard error of estimation (SEE), slope, intercept, and agreement between models. Results At a group level analysis, changes in %FM, FM, and FFM estimates by DXA were not significantly different from those by the 4C model. Though the regression between DXA and the 4C model did not differ from the line of identity DXA %FM, FM, and FFM changes only explained 29%, 36%, and 38% of the 4C reference values, respectively. Individual results showed that the 95% limits of agreement were -3.7 to 5.3 for %FM, -2.6 to 3.7 for FM, and -3.7 to 2.7 for FFM. The relation between the difference and the mean of the methods indicated a significant trend for %FM and FM changes with DXA overestimating at the lower ends and underestimating at the upper ends of FM changes. Conclusions Our data indicate that both at group and individual levels DXA did not present an expected accuracy in tracking changes in adiposity in elite male judo athletes. PMID:20307312

  2. Rapid model exploration for complex hierarchical data: application to pharmacokinetics of insulin aspart.

    PubMed

    Goudie, Robert J B; Hovorka, Roman; Murphy, Helen R; Lunn, David

    2015-10-15

    We consider situations, which are common in medical statistics, where we have a number of sets of response data, from different individuals, say, potentially under different conditions. A parametric model is defined for each set of data, giving rise to a set of random effects. Our goal here is to efficiently explore a range of possible 'population' models for the random effects, to select the most appropriate model. The range of possible models is potentially vast, because the random effects may depend on observed covariates, and there may be multiple credible ways of partitioning their variability. Here, we consider pharmacokinetic (PK) data on insulin aspart, a fast acting insulin analogue used in the treatment of diabetes. PK models are typically nonlinear (in their parameters), often complex and sometimes only available as a set of differential equations, with no closed-form solution. Fitting such a model for just a single individual can be a challenging task. Fitting a joint model for all individuals can be even harder, even without the complication of an overarching model selection objective. We describe a two-stage approach that decouples the population model for the random effects from the PK model applied to the response data but nevertheless fits the full, joint, hierarchical model, accounting fully for uncertainty. This allows us to repeatedly reuse results from a single analysis of the response data to explore various population models for the random effects. This greatly expedites not only model exploration but also cross-validation for the purposes of model criticism. © 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:26013427

  3. Compartment Syndrome in Children.

    PubMed

    Hosseinzadeh, Pooya; Hayes, Christopher B

    2016-07-01

    Compartment syndrome in children can present differently than adults. Increased analgesic need should be considered the first sign of evolving compartment syndrome in children. Children with supracondylar humerus fractures, floating elbow injuries, operatively treated forearm fractures, and tibia fractures are at high risk for developing compartment syndrome. Elbow flexion beyond 90° in supracondylar humerus fractures and closed treatment of forearm fractures in floating elbow injuries are associated with increased risk of compartment syndrome. Prompt diagnosis and treatment with fasciotomy in children result in excellent long-term outcomes. PMID:27241380

  4. Pharmacokinetic/pharmacodynamic modelling approaches in paediatric infectious diseases and immunology☆

    PubMed Central

    Barker, Charlotte I.S.; Germovsek, Eva; Hoare, Rollo L.; Lestner, Jodi M.; Lewis, Joanna; Standing, Joseph F.

    2014-01-01

    Pharmacokinetic/pharmacodynamic (PKPD) modelling is used to describe and quantify dose–concentration–effect relationships. Within paediatric studies in infectious diseases and immunology these methods are often applied to developing guidance on appropriate dosing. In this paper, an introduction to the field of PKPD modelling is given, followed by a review of the PKPD studies that have been undertaken in paediatric infectious diseases and immunology. The main focus is on identifying the methodological approaches used to define the PKPD relationship in these studies. The major findings were that most studies of infectious diseases have developed a PK model and then used simulations to define a dose recommendation based on a pre-defined PD target, which may have been defined in adults or in vitro. For immunological studies much of the modelling has focused on either PK or PD, and since multiple drugs are usually used, delineating the relative contributions of each is challenging. The use of dynamical modelling of in vitro antibacterial studies, and paediatric HIV mechanistic PD models linked with the PK of all drugs, are emerging methods that should enhance PKPD-based recommendations in the future. PMID:24440429

  5. Population pharmacokinetic/pharmacodynamic modeling of guanfacine effects on QTc and heart rate in pediatric patients.

    PubMed

    Knebel, William; Ermer, James; Purkayastha, Jaideep; Martin, Patrick; Gastonguay, Marc R

    2014-11-01

    Using a previously developed population pharmacokinetic model, an exposure-response (ER) model was successfully developed to describe guanfacine plasma concentrations and changes in heart rate (HR) and the QT interval. Guanfacine exposure was associated with small decreases in HR and a small prolongation of the population-corrected QT (QTcP) interval. Based on the final ER model for effect of guanfacine on HR, the estimated population typical decrease in HR would be 2.3% (2.1-2.7%) of the baseline circadian HR for every 1 ng/mL of guanfacine exposure. A QTcP was developed for the analysis using the sampled population. An effect of sex on baseline-corrected QT (BQTP) was the only covariate effect in the final ER model for QTcP, its inclusion resulting in a typical baseline QTcP estimate that is 9 (5-13) ms higher for females. There was no evidence of QT-RR hysteresis. A linear model was used to relate guanfacine plasma concentrations to QTcP. The typical (95% confidence interval) slope parameter was estimated to be 0.941 (0.62-1.25) ms/ng/mL. The final model predicted an approximate 1-ms increase from baseline for every 1 ng/mL of guanfacine in plasma. The main predictor of QTcP prolongation was guanfacine exposure, which decreased with body weight and increased with dose. PMID:25135837

  6. Compartmental modelling of the pharmacokinetics of a breast cancer resistance protein.

    PubMed

    Grandjean, Thomas R B; Chappell, Mike J; Yates, James T W; Jones, Kevin; Wood, Gemma; Coleman, Tanya

    2011-11-01

    A mathematical model for the pharmacokinetics of Hoechst 33342 following administration into a culture medium containing a population of transfected cells (HEK293 hBCRP) with a potent breast cancer resistance protein inhibitor, Fumitremorgin C (FTC), present is described. FTC is reported to almost completely annul resistance mediated by BCRP in vitro. This non-linear compartmental model has seven macroscopic sub-units, with 14 rate parameters. It describes the relationship between the concentration of Hoechst 33342 and FTC, initially spiked in the medium, and the observed change in fluorescence due to Hoechst 33342 binding to DNA. Structural identifiability analysis has been performed using two methods, one based on the similarity transformation/exhaustive modelling approach and the other based on the differential algebra approach. The analyses demonstrated that all models derived are uniquely identifiable for the experiments/observations available. A kinetic modelling software package, namely FACSIMILE (MPCA Software, UK), was used for parameter fitting and to obtain numerical solutions for the system equations. Model fits gave very good agreement with in vitro data provided by AstraZeneca across a variety of experimental scenarios. PMID:20971524

  7. Physiological modeling and extrapolation of pharmacokinetic interactions from binary to more complex chemical mixtures.

    PubMed

    Krishnan, Kannan; Haddad, Sami; Béliveau, Martin; Tardif, Robert

    2002-12-01

    The available data on binary interactions are yet to be considered within the context of mixture risk assessment because of our inability to predict the effect of a third or a fourth chemical in the mixture on the interacting binary pairs. Physiologically based pharmacokinetic (PBPK) models represent a potentially useful framework for predicting the consequences of interactions in mixtures of increasing complexity. This article highlights the conceptual basis and validity of PBPK models for extrapolating the occurrence and magnitude of interactions from binary to more complex chemical mixtures. The methodology involves the development of PBPK models for all mixture components and interconnecting them at the level of the tissue where the interaction is occurring. Once all component models are interconnected at the binary level, the PBPK framework simulates the kinetics of all mixture components, accounting for the interactions occurring at various levels in more complex mixtures. This aspect was validated by comparing the simulations of a binary interaction-based PBPK model with experimental data on the inhalation kinetics of m-xylene, toluene, ethyl benzene, dichloromethane, and benzene in mixtures of varying composition and complexity. The ability to predict the kinetics of chemicals in complex mixtures by accounting for binary interactions alone within a PBPK model is a significant step toward the development of interaction-based risk assessment for chemical mixtures. PMID:12634130

  8. Model-based evaluation of the pharmacokinetic differences between adults and children for lopinavir and ritonavir in combination with rifampicin

    PubMed Central

    Zhang, Chao; Denti, Paolo; Decloedt, Eric H; Ren, Yuan; Karlsson, Mats O; McIlleron, Helen

    2013-01-01

    Aims Rifampicin profoundly reduces lopinavir concentrations. Doubled doses of lopinavir/ritonavir compensate for the effect of rifampicin in adults, but fail to provide adequate lopinavir concentrations in young children on rifampicin-based antituberculosis therapy. The objective of this study was to develop a population pharmacokinetic model describing the pharmacokinetic differences of lopinavir and ritonavir, with and without rifampicin, between children and adults. Methods An integrated population pharmacokinetic model developed in nonmem 7 was used to describe the pharmacokinetics of lopinavir and ritonavir in 21 HIV infected adults, 39 HIV infected children and 35 HIV infected children with tuberculosis, who were established on lopinavir/ritonavir-based antiretroviral therapy with and without rifampicin-containing antituberculosis therapy. Results The bioavailability of lopinavir was reduced by 25% in adults whereas children on antituberculosis treatment experienced a 59% reduction, an effect that was moderated by the dose of ritonavir. Conversely, rifampicin increased oral clearance of both lopinavir and ritonavir to a lesser extent in children than in adults. Rifampicin therapy in administered doses increased CL of lopinavir by 58% in adults and 48% in children, and CL of ritonavir by 34% and 22% for adults and children, respectively. In children, the absorption half-life of lopinavir and the mean transit time of ritonavir were lengthened, compared with those in adults. Conclusions The model characterized important differences between adults and children in the effect of rifampicin on the pharmacokinetics of lopinavir and ritonavir. As adult studies cannot reliably predict their magnitude in children, drug–drug interactions should be evaluated in paediatric patient populations. PMID:23432610

  9. Controlled iontophoretic transport of huperzine A across skin in vitro and in vivo: effect of delivery conditions and comparison of pharmacokinetic models.

    PubMed

    Kalaria, Dhaval R; Patel, Pratikkumar; Merino, Virginia; Patravale, Vandana B; Kalia, Yogeshvar N

    2013-11-01

    determined in male Wistar rats in vivo (4 mM HupA; 0.5 mA · cm(-2) for 5 h with Ag/AgCl electrodes) using two-compartment models with either constant or time-variant input rates. A superior fit was obtained using the time-variant model, and the input rate in vivo was significantly greater than that in vitro. Based on these results and the known pharmacokinetics, it was estimated that therapeutic amounts of HupA could be delivered for the treatment of Alzheimer's disease using a reasonably sized patch. PMID:24028565

  10. Pharmacokinetic plasma behaviors of intravenous and oral bioavailability of thymoquinone in a rabbit model.

    PubMed

    Alkharfy, Khalid M; Ahmad, Ajaz; Khan, Rao M A; Al-Shagha, Waleed M

    2015-09-01

    Thymoquinone (THQ), the active constituent of Nigella sativa seeds, has demonstrated some potential pharmacological activities. The present study was designed to investigate the pharmacokinetic behavior of THQ following intravenous (IV) and oral (PO) administration using an animal model. THQ was given vascularly (5 mg/kg IV) and extravascularly (20 mg/kg PO) to Vole rabbits, and blood samples were collected at predetermined time points. The concentrations of THQ in plasma were measured by a high-performance liquid chromatography, and the pharmacokinetic parameters were determined using both compartmental and non-compartmental analyses. The calculated clearance (CL) following IV administration was 7.19 ± 0.83 ml/kg/min, and the estimated volume of distribution at steady state (V ss) was 700.90 ± 55.01 ml/kg. Whereas with PO dosing, apparent CL/F value was 12.30 ± 0.30 ml/min/kg and V ss/F was 5,109.46 ± 196.08 ml/kg. These parameters were associated with an elimination half-life (T 1/2) of 63.43 ± 10.69 and 274.61 ± 8.48 min with IV and PO dosing, respectively. The calculated absorption T 1/2 was about 217 min. Compartmental analysis revealed T 1/2α of ~8.9 min and T 1/2β of ~86.6 min. The calculated absolute bioavailability of THQ was ~58 % with a lag time of ~23 min. The estimated THQ protein binding was >99 %. Therefore, THQ represents a compound with rapid elimination and relatively slower absorption following PO administration. PMID:24924310

  11. Physiologically based pharmacokinetic modeling of dibromoacetic acid in F344 rats

    SciTech Connect

    Matthews, Jessica L.; Schultz, Irvin R.; Easterling, Michael R.; Melnick, Ronald L.

    2010-04-15

    A novel physiologically based pharmacokinetic (PBPK) model structure, which includes submodels for the common metabolites (glyoxylate (GXA) and oxalate (OXA)) that may be involved in the toxicity or carcinogenicity of dibromoacetic acid (DBA), has been developed. Particular attention is paid to the representation of hepatic metabolism, which is the primary elimination mechanism. DBA-induced suicide inhibition is modeled by irreversible covalent binding of the intermediate metabolite alpha-halocarboxymethylglutathione (alphaH1) to the glutathione-S-transferase zeta (GSTzeta) enzyme. We also present data illustrating the presence of a secondary non-GSTzeta metabolic pathway for DBA, but not dichloroacetic acid (DCA), that produces GXA. The model is calibrated with plasma and urine concentration data from DBA exposures in female F344 rats through intravenous (IV), oral gavage, and drinking water routes. Sensitivity analysis is performed to confirm identifiability of estimated parameters. Finally, model validation is performed with data sets not used during calibration. Given the structural similarity of dihaloacetates (DHAs), we hypothesize that the PBPK model presented here has the capacity to describe the kinetics of any member or mixture of members of this class in any species with the alteration of chemical-and species-specific parameters.

  12. Analysing saturable antibody binding based on serum data and pharmacokinetic modelling

    NASA Astrophysics Data System (ADS)

    Kletting, Peter; Kiryakos, Hady; Reske, Sven N.; Glatting, Gerhard

    2011-01-01

    In radioimmunotherapy, organ dose calculations are frequently based on pretherapeutic biodistribution measurements, assuming equivalence between pretherapeutic and therapeutic biodistribution. However, when saturation of antibody binding sites is important, this assumption might not be justified. Residual antibody and different amounts of administered antibody may lead to a considerably altered therapeutic biodistribution. In this study we developed a method based on serum activity measurements to investigate this effect in radioimmunotherapy with 90Y-labelled anti-CD66 antibody. Pretherapeutic and therapeutic serum activity data of ten patients with acute leukaemia were fitted to a set of four parsimonious pharmacokinetic models. All models included the key mechanisms of antibody binding, immunoreactivity and degradation; however, they differed with respect to linear or nonlinear binding and global or individual fitting of the model parameters. The empirically most supported model was chosen according to the corrected Akaike information criterion. The nonlinear models were most supported by the data (sum of probabilities ≈100%). Using the presented method, we identified relevant saturable binding for radioimmunotherapy with 90Y-labelled anti-CD66 antibody solely based on serum data. This general method may also be applicable to investigate other systems where saturation of binding sites might be important.

  13. Insights From an Integrated Physiologically Based Pharmacokinetic Model for Brain Penetration.

    PubMed

    Trapa, Patrick E; Belova, Elena; Liras, Jenny L; Scott, Dennis O; Steyn, Stefan J

    2016-02-01

    Central-nervous-system, physiologically based pharmacokinetic (PBPK) models predict exposure profiles in the brain, that is, the rate and extent of distribution. The current work develops one such model and presents improved methods for determining key input parameters. A simple linear regression statistical model estimates the passive permeability at the blood-brain barrier from brain uptake index data and descriptors, and a novel analysis extracts the relative active transport parameter from in vitro assays taking into consideration both paracellular transport and unstirred water layers. The integrated PBPK model captures the concentration profiles of both rate-restricted and effluxed compounds with high passive permeability. In many cases, compounds distribute rapidly into the brain and are, therefore, not rate limited. The PBPK model is then simplified to a straightforward equation to describe brain-to-plasma ratios at steady state. The equation can estimate brain penetration either from in vitro efflux data or from in vivo results from another species and, therefore, is a valuable tool in the discovery setting. PMID:26869440

  14. Application of a Physiologically Based Pharmacokinetic Model to Study Theophylline Metabolism and Its Interactions With Ciprofloxacin and Caffeine.

    PubMed

    Navid, A; Ng, D M; Wong, S E; Lightstone, F C

    2016-02-01

    Theophylline is a commonly used bronchodilator. However, due to its narrow therapeutic range, moderate elevation of serum concentration can result in adverse drug reactions (ADRs). ADRs occur because of interhuman pharmacokinetic variability and interactions with coprescribed medicines. We developed a physiologically based pharmacokinetic (PBPK) model of theophylline, caffeine, and ciprofloxacin metabolisms to: examine theophylline pharmacokinetic variability, and predict population-level outcomes of drug-drug interactions (DDIs). A simulation-based equation for personalized dosing of theophylline was derived. Simulations of DDI show that calculated personalized doses are safe even after cotreatment with large doses of strong inhibitors. Simulations of adult populations indicate that the elderly are most susceptible to ADRs stemming from theophylline-ciprofloxacin and theophylline-caffeine interactions. Females, especially Asians, due to their smaller average size, are more susceptible to DDI-induced ADRs following typical dosing practices. Our simulations also show that the higher adipose and lower muscle fractions in females significantly alter the pharmacokinetics of theophylline or ciprofloxacin. PMID:26933518

  15. 76 FR 63851 - Special Conditions: Learjet Inc., Model LJ-200-1A10 Airplane, Pilot-Compartment View Through...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... Airplane, Pilot-Compartment View Through Hydrophobic Windshield Coatings In Lieu of Windshield Wipers... will have a novel or unusual design feature associated with hydrophobic windshield coatings in lieu of... airplane uses a hydrophobic windshield coating, in lieu of windshield wipers, for an unobstructed...

  16. 76 FR 44246 - Special Conditions: Boeing Model 747-8 Series Airplanes; Overhead Flight Attendant Rest Compartment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... the Federal Register on May 10, 2011 (76 FR 26949). No comments were received and the special... compartment. (4) Structural failure or deformation of components that could block access to the available... possibility of blockage, which might result from fire, mechanical or structural failure, or persons...

  17. 78 FR 25846 - Special Conditions: Airbus, Model A340-600 Series Airplanes; Lower Deck Crew Rest Compartments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... April 11, 2000 (65 FR 19477-19478), as well as at http://DocketsInfo.dot.gov/ . Docket: Background... equipment within the LDCR compartment, (4) Structural failure or deformation of components that could block... designed to minimize the possibility of blockage, which might result from fire, mechanical or...

  18. Revisiting Dosing Regimen Using Pharmacokinetic/Pharmacodynamic Mathematical Modeling: Densification and Intensification of Combination Cancer Therapy.

    PubMed

    Meille, Christophe; Barbolosi, Dominique; Ciccolini, Joseph; Freyer, Gilles; Iliadis, Athanassios

    2016-08-01

    Controlling effects of drugs administered in combination is particularly challenging with a densified regimen because of life-threatening hematological toxicities. We have developed a mathematical model to optimize drug dosing regimens and to redesign the dose intensification-dose escalation process, using densified cycles of combined anticancer drugs. A generic mathematical model was developed to describe the main components of the real process, including pharmacokinetics, safety and efficacy pharmacodynamics, and non-hematological toxicity risk. This model allowed for computing the distribution of the total drug amount of each drug in combination, for each escalation dose level, in order to minimize the average tumor mass for each cycle. This was achieved while complying with absolute neutrophil count clinical constraints and without exceeding a fixed risk of non-hematological dose-limiting toxicity. The innovative part of this work was the development of densifying and intensifying designs in a unified procedure. This model enabled us to determine the appropriate regimen in a pilot phase I/II study in metastatic breast patients for a 2-week-cycle treatment of docetaxel plus epirubicin doublet, and to propose a new dose-ranging process. In addition to the present application, this method can be further used to achieve optimization of any combination therapy, thus improving the efficacy versus toxicity balance of such a regimen. PMID:26946136

  19. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling.

    PubMed

    Abaci, Hasan Erbil; Shuler, Michael L

    2015-04-01

    Advances in maintaining multiple human tissues on microfluidic platforms has led to a growing interest in the development of microphysiological systems for drug development studies. Determination of the proper design principles and scaling rules for body-on-a-chip systems is critical for their strategic incorporation into physiologically based pharmacokinetic (PBPK)/pharmacodynamic (PD) model-aided drug development. While the need for a functional design considering organ-organ interactions has been considered, robust design criteria and steps to build such systems have not yet been defined mathematically. In this paper, we first discuss strategies for incorporating body-on-a-chip technology into the current PBPK modeling-based drug discovery to provide a conceptual model. We propose two types of platforms that can be involved in the different stages of PBPK modeling and drug development; these are μOrgans-on-a-chip and μHuman-on-a-chip. Then we establish the design principles for both types of systems and develop parametric design equations that can be used to determine dimensions and operating conditions. In addition, we discuss the availability of the critical parameters required to satisfy the design criteria, consider possible limitations for estimating such parameter values and propose strategies to address such limitations. This paper is intended to be a useful guide to the researchers focused on the design of microphysiological platforms for PBPK/PD based drug discovery. PMID:25739725

  20. Use of physiologically-based pharmacokinetic modeling to predict the disposition and metabolic fate of trichloroethylene

    SciTech Connect

    Greenberg, M.S.; Burton, G.A. Jr.; Fisher, J.W.

    1995-12-31

    Due to its carcinogenic potential, the kinetics of TCE metabolism to its primary oxidative products was studied in B6C3F1 mice exposed to TCE vapor concentrations of 100, 300 and 600 ppm in inhalation chambers. TCE and its metabolites were quantified in the blood, liver, kidney, fat and lungs by GC analysis. A physiologically-based pharmacokinetic (PB-PK) model was used to simulate the distribution and metabolism of TCE in the body using SIMUSOLV. The PB-PK model structure consisted of liver, kidney, lung, richly and slowly perfused tissues, and fat that were interconnected by arterial and venous blood pools. Tissue:blood partition coefficients for fat, liver, lung and slowly and rapidly perfused tissues and a blood:air partition coefficient were measured in the laboratory for TCE and its metabolites. The in vivo Michaelis-Menten metabolic constants, Vmaxc and Km, were determined for TCE in gas uptake studies. These values were Km = 0.2 mg/L and Vmaxc = 31.4 mg/hr-kg and they were used in the current PB-PK model to describe the metabolism of TCE to its primary oxidative metabolites. The results suggest that such models can be a useful tool in the evaluation of the impacts of environmental contaminants in any species for which adequate physiological data are available.

  1. Biodistribution and translational pharmacokinetic modeling of a human recombinant alkaline phosphatase.

    PubMed

    Peters, Esther; Stevens, Jasper; Arend, Jacques; Guan, Zheng; Raaben, Willem; Laverman, Peter; van Elsas, Andrea; Masereeuw, Rosalinde; Pickkers, Peter

    2015-11-10

    Clinical trials showed renal protective effects of bovine intestinal alkaline phosphatase (AP) in patients with sepsis-associated acute kidney injury (AKI). Subsequently, a human recombinant chimeric AP (recAP) was developed as a pharmaceutically acceptable alternative. Here, we investigated the biodistribution and pharmacokinetics (PK) of recAP and developed a translational population PK model. Biodistribution was studied during LPS-induced AKI in rats. Iodine-125-labeled recAP was primarily taken up by liver, spleen, adrenals, heart, lungs and kidneys followed by the gastro-intestinal tract and thyroid. Tissue distribution was not critically affected by endotoxemia. PK parameters were determined in rats and minipigs during IV bolus injections of recAP, administered once, or once daily during seven consecutive days. Plasma concentrations of recAP increased with increasing dose and disappeared in a biphasic manner. Exposure to recAP, estimated by AUC and Cmax, was similar on days 1 and 7. Subsequently, population approach nonlinear mixed effects modeling was performed with recAP rat and minipig and biAP phase I PK data. Concentration versus time data was accurately described in all species by a two-compartmental model with allometric scaling based on body weight. This model provides a solid foundation for determining the optimal dose and duration of first-in-man recAP studies. PMID:26325308

  2. The Implications of Using a Physiologically Based Pharmacokinetic (PBPK) Model for Pesticide Risk Assessment

    PubMed Central

    Lu, Chensheng; Holbrook, Christina M.; Andres, Leo M.

    2010-01-01

    Background A physiologically based pharmacokinetic (PBPK) model would make it possible to simulate the dynamics of chemical absorption, distribution, metabolism, and elimination (ADME) from different routes of exposures and, in theory, could be used to evaluate associations between exposures and biomarker measurements in blood or urine. Objective We used a PBPK model to predict urinary excretion of 3,5,6-trichloro-2-pyridinol (TCPY), the specific metabolite of chlorpyrifos (CPF), in young children. Methods We developed a child-specific PBPK model for CPF using PBPK models previously developed for rats and adult humans. Data used in the model simulation were collected from 13 children 3–6 years of age who participated in a cross-sectional pesticide exposure assessment study with repeated environmental and biological sampling. Results The model-predicted urinary TCPY excretion estimates were consistent with measured levels for 2 children with two 24-hr duplicate food samples that contained 350 and 12 ng/g of CPF, respectively. However, we found that the majority of model outputs underpredicted the measured urinary TCPY excretion. Conclusions We concluded that the potential measurement errors associated with the aggregate exposure measurements will probably limit the applicability of PBPK model estimates for interpreting urinary TCPY excretion and absorbed CPF dose from multiple sources of exposure. However, recent changes in organophosphorus (OP) use have shifted exposures from multipathways to dietary ingestion only. Thus, we concluded that the PBPK model is still a valuable tool for converting dietary pesticide exposures to absorbed dose estimates when the model input data are accurate estimates of dietary pesticide exposures. PMID:20056589

  3. Comparative pharmacokinetics of (/sup 65/Zn)zinc sulfate and (/sup 65/Zn)zinc pantothenate injected intravenously in rabbits

    SciTech Connect

    Guillard, O.; Courtois, P.; Murai, P.; Ducassou, D.; Reiss, D.

    1984-11-01

    The pharmacokinetics of zinc sulfate were compared with those of a new zinc salt, pantothenate, in rabbits. Each salt was administered at a dosage of 3.3 microCi of zinc-65/kg of body weight. The measured pharmacokinetics of the two compounds responded to a two-compartment open model. The urinary elimination of the two salts was similar, as was their localization in the skin and fur, but zinc pantothenate was fixed by the liver to a lesser extent than was zinc sulfate.

  4. Development of a Multicompartment Permeability-Limited Lung PBPK Model and Its Application in Predicting Pulmonary Pharmacokinetics of Antituberculosis Drugs

    PubMed Central

    Gaohua, L; Wedagedera, J; Small, BG; Almond, L; Romero, K; Hermann, D; Hanna, D; Jamei, M; Gardner, I

    2015-01-01

    Achieving sufficient concentrations of antituberculosis (TB) drugs in pulmonary tissue at the optimum time is still a challenge in developing therapeutic regimens for TB. A physiologically based pharmacokinetic model incorporating a multicompartment permeability-limited lung model was developed and used to simulate plasma and pulmonary concentrations of seven drugs. Passive permeability of drugs within the lung was predicted using an in vitro-in vivo extrapolation approach. Simulated epithelial lining fluid (ELF):plasma concentration ratios showed reasonable agreement with observed clinical data for rifampicin, isoniazid, ethambutol, and erythromycin. For clarithromycin, itraconazole and pyrazinamide the observed ELF:plasma ratios were significantly underpredicted. Sensitivity analyses showed that changing ELF pH or introducing efflux transporter activity between lung tissue and ELF can alter the ELF:plasma concentration ratios. The described model has shown utility in predicting the lung pharmacokinetics of anti-TB drugs and provides a framework for predicting pulmonary concentrations of novel anti-TB drugs. PMID:26535161

  5. Development of a physiologically based pharmacokinetic model of actinomycin D in children with cancer

    PubMed Central

    Walsh, Christopher; Bonner, Jennifer J.; Johnson, Trevor N.; Neuhoff, Sibylle; Ghazaly, Essam A.; Gribben, John G.; Boddy, Alan V.

    2016-01-01

    Aims Use of the anti‐tumour antibiotic actinomycin D is associated with development of hepatotoxicity, particularly in young children. A paucity of actinomycin D pharmacokinetic data make it challenging to develop a sound rationale for defining dosing regimens in younger patients. The study aim was to develop a physiologically based pharmacokinetic (PBPK) model using a combination of data from the literature and generated from experimental analyses. Methods Assays to determine actinomycin D Log P, blood:plasma partition ratio and ABCB1 kinetics were conducted. These data were combined with physiochemical properties sourced from the literature to generate a compound file for use within the modelling‐simulation software Simcyp (version 14 release 1). For simulation, information was taken from two datasets, one from 117 patients under the age of 21 and one from 20 patients aged 16–48. Results The final model incorporated clinical renal and biliary clearance data and an additional systemic clearance value. The mean AUC0‐26h of simulated subjects was within 1.25‐fold of the observed AUC0‐26h (84 ng h ml−1 simulated vs. 93 ng h ml−1 observed). For the younger age ranges, AUC predictions were within two‐fold of observed values, with simulated data from six of the eight age/dose ranges falling within 15% of observed data. Simulated values for actinomycin D AUC0‐26h and clearance in infants aged 0–12 months ranged from 104 to 115 ng h ml−1 and 3.5–3.8 l h−1, respectively. Conclusions The model has potential utility for prediction of actinomycin D exposure in younger patients and may help guide future dosing. However, additional independent data from neonates and infants is needed for further validation. Physiological differences between paediatric cancer patients and healthy children also need to be further characterized and incorporated into PBPK models. PMID:26727248

  6. An adaptive extended Kalman filter for fluorescence diffuse optical tomography of tumor pharmacokinetics

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wu, Linhui; Yi, Xi; Zhang, Limin; Gao, Feng; Zhao, Huijuan

    2014-03-01

    According to the morphological differences in the vascularization between healthy and diseased tissues, pharmacokinetic-rate images of fluorophore can provide diagnostic information for tumor differentiation, and especially have the potential for staging of tumors. In this paper, fluorescence diffuse optical tomography method is firstly used to acquire metabolism-related time-course images of the fluorophore concentration. Based on a two-compartment model comprised of plasma and extracelluar-extravascular space, we next propose an adaptive-EKF framework to estimate the pharmacokinetic-rate images. With the aid of a forgetting factor, the adaptive-EKF compensate the inaccuracy initial values and emphasize the effect of the current data in order to realize a better online estimation compared with the conventional EKF. We use simulate data to evaluate the performance of the proposed methodology. The results suggest that the adaptive-EKF can obtain preferable pharmacokinetic-rate images than the conventional EKF with higher quantitativeness and noise robustness.

  7. Pharmacokinetics of Vancomycin in Elderly Patients Aged over 80 Years.

    PubMed

    Bourguignon, Laurent; Cazaubon, Yoann; Debeurme, Guillaume; Loue, Constance; Ducher, Michel; Goutelle, Sylvain

    2016-08-01

    Since the 1950s, vancomycin has remained a reference treatment for severe infections caused by Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus Vancomycin is a nephrotoxic and ototoxic drug mainly eliminated through the kidneys. It has a large interindividual pharmacokinetic variability, which justifies monitoring its plasma concentrations in patients. This is especially important in patients aged over 80 years, who frequently have renal impairment. However, the pharmacokinetics of vancomycin in this population is very poorly described in the literature. The objective of this work was to propose a model able to predict the pharmacokinetics of vancomycin in very elderly people. First, a population pharmacokinetic model was carried out using the algorithm NPAG (nonparametric adaptive grid) on a database of 70 hospitalized patients aged over 80 years and treated with vancomycin. An external validation then was performed on 41 patients, and the predictive capabilities of the model were assessed. The model had two compartments and six parameters. Body weight and creatinine clearance significantly influenced vancomycin volume of distribution and body clearance, respectively. The means (± standard deviations) of vancomycin volume of distribution and clearance were 36.3 ± 15.2 liter and 2.0 ± 0.9 liter/h, respectively. In the validation group, the bias and precision were -0.75 mg/liter and 8.76 mg/liter for population predictions and -0.39 mg/liter and 2.68 mg/liter for individual predictions. In conclusion, a pharmacokinetic model of vancomycin in a very elderly population has been created and validated for predicting plasma concentrations of vancomycin. PMID:27185796

  8. Addressing Early Life Sensitivity Using Physiologically Based Pharmacokinetic Modeling and In Vitro to In Vivo Extrapolation

    PubMed Central

    Yoon, Miyoung; Clewell, Harvey J.

    2016-01-01

    Physiologically based pharmacokinetic (PBPK) modeling can provide an effective way to utilize in vitro and in silico based information in modern risk assessment for children and other potentially sensitive populations. In this review, we describe the process of in vitro to in vivo extrapolation (IVIVE) to develop PBPK models for a chemical in different ages in order to predict the target tissue exposure at the age of concern in humans. We present our on-going studies on pyrethroids as a proof of concept to guide the readers through the IVIVE steps using the metabolism data collected either from age-specific liver donors or expressed enzymes in conjunction with enzyme ontogeny information to provide age-appropriate metabolism parameters in the PBPK model in the rat and human, respectively. The approach we present here is readily applicable to not just to other pyrethroids, but also to other environmental chemicals and drugs. Establishment of an in vitro and in silico-based evaluation strategy in conjunction with relevant exposure information in humans is of great importance in risk assessment for potentially vulnerable populations like early ages where the necessary information for decision making is limited. PMID:26977255

  9. The method of averaging applied to pharmacokinetic/pharmacodynamic indirect response models.

    PubMed

    Dunne, Adrian; de Winter, Willem; Hsu, Chyi-Hung; Mariam, Shiferaw; Neyens, Martine; Pinheiro, José; Woot de Trixhe, Xavier

    2015-08-01

    The computational effort required to fit the pharmacodynamic (PD) part of a pharmacokinetic/pharmacodynamic (PK/PD) model can be considerable if the differential equations describing the model are solved numerically. This burden can be greatly reduced by applying the method of averaging (MAv) in the appropriate circumstances. The MAv gives an approximate solution, which is expected to be a good approximation when the PK profile is periodic (i.e. repeats its values in regular intervals) and the rate of change of the PD response is such that it is approximately constant over a single period of the PK profile. This paper explains the basis of the MAv by means of a simple mathematical derivation. The NONMEM® implementation of the MAv using the abbreviated FORTRAN function FUNCA is described and explained. The application of the MAv is illustrated by means of an example involving changes in glycated hemoglobin (HbA1c%) following administration of canagliflozin, a selective sodium glucose co-transporter 2 inhibitor. The PK/PD model applied to these data is fitted with NONMEM® using both the MAv and the standard method using a numerical differential equation solver (NDES). Both methods give virtually identical results but the NDES method takes almost 8 h to run both the estimation and covariance steps, whilst the MAv produces the same results in less than 30 s. An outline of the NONMEM® control stream and the FORTRAN code for the FUNCA function is provided in the appendices. PMID:26142076

  10. Population pharmacokinetic and pharmacodynamic modeling for assessing risk of bisphosphonate-related osteonecrosis of the jaw

    PubMed Central

    Sedghizadeh, Parish P.; Jones, Allan C.; LaVallee, Chris; Jelliffe, Roger W.; Le, Anh D.; Lee, Peter; Kiss, Andrew; Neely, Michael

    2012-01-01

    Objective We hypothesized that patients with bisphosphonate (BP)-related osteonecrosis of the jaw (BRONJ) accumulate higher levels of BP in bone than those without BRONJ. Study Design Using the Pmetrics® package and published data, we designed a population pharmacokinetic model of pamidronate concentration in plasma and bone and derived a toxic bone BP threshold of 0.2 mM. With the model, and using patient individual BP duration and bone mineral content estimated from lean body weight, we calculated bone BP levels in 153 subjects. Results Mean bone BP in 69 BRONJ cases was higher than in 84 controls (0.20 vs. 0.10 mM, P<0.001) consistent with the toxic bone threshold of 0.2 mM. BRONJ was also associated with longer duration BP therapy (5.3 vs. 2.7 years, P<0.001), older age (76 vs. 70 years, P<0.001), and Asian race (49% vs. 14%, P<0.001). Conclusions Our model accurately discriminated BRONJ cases from controls, among patients on BP therapy. PMID:23246224

  11. PANSYM: a symbolic equation generator for mathematical modelling, analysis and control of metabolic and pharmacokinetic systems.

    PubMed

    Thomaseth, K

    1994-02-14

    Software is presented for automatic generation of first-order ordinary differential equations (ODE) that arise from lumped parameter representations of metabolic and pharmacokinetic systems. The definition of system structures is accomplished by fractional transfer rates between state variables, together with input/output equations and initial conditions of state variables. General non-linear mathematical expressions can be assigned to all structure definition items. The software parses and interprets the system definitions and generates symbolically the mathematical expression of the model's set of ODE. In addition, symbolic derivatives of state equations are determined with respect to model parameters, state variables and external inputs. These derivatives represent the constituents of systems of sensitivity-differential and adjoint-differential equations that arise in identification and optimal control problems. Finally, output routines generate source code that, once compiled and linked to simulation programs, allows efficient numerical integration of the system of ODE. This software has been developed in PROLOG on Macintosh computers and has been extensively used with the programming environment MATLAB. Possible applications of this software include model building, sensitivity analysis, identification, optimal experiment design and numerical solution of optimal control problems. PMID:8205801

  12. Population pharmacokinetic and pharmacodynamic modeling of epinephrine administered using a mobile inhaler.

    PubMed

    Frechen, Sebastian; Suleiman, Ahmed Abbas; Mohammad Nejad Sigaroudi, Ali; Wachall, Bertil; Fuhr, Uwe

    2015-12-01

    Inhaled epinephrine is a potential alternative to self-administered intramuscular epinephrine in imminent anaphylactic reactions. The objective was to develop a pharmacokinetic-pharmacodynamic model describing exposure and effects on heart rate of inhaled epinephrine. Data from a 4-phase cross-over clinical trial in 9 healthy volunteers including 0.3 mg intramuscular epinephrine, two doses of inhaled epinephrine (4 mg/mL solution administered during [mean] 18 and 25 min, respectively) using a mobile pocket inhaler, and an inhaled placebo were analyzed using mixed-effects modeling. Inhaled epinephrine was available almost immediately and more rapidly than via the intramuscular route (absorption half-live 29 min). Epinephrine plasma concentrations declined rapidly after terminating inhalation (elimination half-life 4.1 min) offering the option to stop exposure in case of adverse events. While the expected maximum concentration was higher for inhaled epinephrine, this was not associated with safety concerns due to only moderate additional hemodynamic effects compared to intramuscular administration. Bioavailability after inhalation (4.7%) was subject to high interindividual and interoccasional variability highlighting that training of inhalation would be essential for patients. The proposed model suggests that the use of a highly concentrated epinephrine solution via inhalation may offer an effective treatment option in anaphylaxis, while efficacy in patients remains to be shown. PMID:26615448

  13. Reconstructing exposures from biomarkers using exposure-pharmacokinetic modeling--A case study with carbaryl.

    PubMed

    Brown, Kathleen; Phillips, Martin; Grulke, Christopher; Yoon, Miyoung; Young, Bruce; McDougall, Robin; Leonard, Jeremy; Lu, Jingtao; Lefew, William; Tan, Yu-Mei

    2015-12-01

    Sources of uncertainty involved in exposure reconstruction for short half-life chemicals were characterized using computational models that link external exposures to biomarkers. Using carbaryl as an example, an exposure model, the Cumulative and Aggregate Risk Evaluation System (CARES), was used to generate time-concentration profiles for 500 virtual individuals exposed to carbaryl. These exposure profiles were used as inputs into a physiologically based pharmacokinetic (PBPK) model to predict urinary biomarker concentrations. These matching dietary intake levels and biomarker concentrations were used to (1) compare three reverse dosimetry approaches based on their ability to predict the central tendency of the intake dose distribution; and (2) identify parameters necessary for a more accurate exposure reconstruction. This study illustrates the trade-offs between using non-iterative reverse dosimetry methods that are fast, less precise and iterative methods that are slow, more precise. This study also intimates the necessity of including urine flow rate and elapsed time between last dose and urine sampling as part of the biomarker sampling collection for better interpretation of urinary biomarker data of short biological half-life chemicals. Resolution of these critical data gaps can allow exposure reconstruction methods to better predict population-level intake doses from large biomonitoring studies. PMID:26545325

  14. Development of a Physiologically Based Model to Describe the Pharmacokinetics of Methylphenidate in Juvenile and Adult Humans and Nonhuman Primates

    PubMed Central

    Yang, Xiaoxia; Morris, Suzanne M.; Gearhart, Jeffery M.; Ruark, Christopher D.; Paule, Merle G.; Slikker, William; Mattison, Donald R.; Vitiello, Benedetto; Twaddle, Nathan C.; Doerge, Daniel R.; Young, John F.; Fisher, Jeffrey W.

    2014-01-01

    The widespread usage of methylphenidate (MPH) in the pediatric population has received considerable attention due to its potential effect on child development. For the first time a physiologically based pharmacokinetic (PBPK) model has been developed in juvenile and adult humans and nonhuman primates to quantitatively evaluate species- and age-dependent enantiomer specific pharmacokinetics of MPH and its primary metabolite ritalinic acid. The PBPK model was first calibrated in adult humans using in vitro enzyme kinetic data of MPH enantiomers, together with plasma and urine pharmacokinetic data with MPH in adult humans. Metabolism of MPH in the small intestine was assumed to account for the low oral bioavailability of MPH. Due to lack of information, model development for children and juvenile and adult nonhuman primates primarily relied on intra- and interspecies extrapolation using allometric scaling. The juvenile monkeys appear to metabolize MPH more rapidly than adult monkeys and humans, both adults and children. Model prediction performance is comparable between juvenile monkeys and children, with average root mean squared error values of 4.1 and 2.1, providing scientific basis for interspecies extrapolation of toxicity findings. Model estimated human equivalent doses in children that achieve similar internal dose metrics to those associated with pubertal delays in juvenile monkeys were found to be close to the therapeutic doses of MPH used in pediatric patients. This computational analysis suggests that continued pharmacovigilance assessment is prudent for the safe use of MPH. PMID:25184666

  15. Development of a physiologically based model to describe the pharmacokinetics of methylphenidate in juvenile and adult humans and nonhuman primates.

    PubMed

    Yang, Xiaoxia; Morris, Suzanne M; Gearhart, Jeffery M; Ruark, Christopher D; Paule, Merle G; Slikker, William; Mattison, Donald R; Vitiello, Benedetto; Twaddle, Nathan C; Doerge, Daniel R; Young, John F; Fisher, Jeffrey W

    2014-01-01

    The widespread usage of methylphenidate (MPH) in the pediatric population has received considerable attention due to its potential effect on child development. For the first time a physiologically based pharmacokinetic (PBPK) model has been developed in juvenile and adult humans and nonhuman primates to quantitatively evaluate species- and age-dependent enantiomer specific pharmacokinetics of MPH and its primary metabolite ritalinic acid. The PBPK model was first calibrated in adult humans using in vitro enzyme kinetic data of MPH enantiomers, together with plasma and urine pharmacokinetic data with MPH in adult humans. Metabolism of MPH in the small intestine was assumed to account for the low oral bioavailability of MPH. Due to lack of information, model development for children and juvenile and adult nonhuman primates primarily relied on intra- and interspecies extrapolation using allometric scaling. The juvenile monkeys appear to metabolize MPH more rapidly than adult monkeys and humans, both adults and children. Model prediction performance is comparable between juvenile monkeys and children, with average root mean squared error values of 4.1 and 2.1, providing scientific basis for interspecies extrapolation of toxicity findings. Model estimated human equivalent doses in children that achieve similar internal dose metrics to those associated with pubertal delays in juvenile monkeys were found to be close to the therapeutic doses of MPH used in pediatric patients. This computational analysis suggests that continued pharmacovigilance assessment is prudent for the safe use of MPH. PMID:25184666

  16. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    SciTech Connect

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  17. An alternate metabolic hypothesis for a binary mixture of trichloroethylene and carbon tetrachloride: application of physiologically based pharmacokinetic (PBPK) modeling in rats.

    EPA Science Inventory

    Carbon tetrachloride (CC4) and trichloroethylene (TCE) are hepatotoxic volatile organic compounds (VOCs) and environmental contaminants. Previous physiologically based pharmacokinetic (PBPK) models describe the kinetics ofindividual chemical disposition and metabolic clearance fo...

  18. Pharmacokinetic-pharmacodynamic assessment of faropenem in a lethal murine Bacillus anthracis inhalation postexposure prophylaxis model.

    PubMed

    Gill, Stanley C; Rubino, Christopher M; Bassett, Jennifer; Miller, Lynda; Ambrose, Paul G; Bhavnani, Sujata M; Beaudry, Amber; Li, Jinfang; Stone, Kimberly Clawson; Critchley, Ian; Janjic, Nebojsa; Heine, Henry S

    2010-05-01

    There are few options for prophylaxis after exposure to Bacillus anthracis, especially in children and women of childbearing potential. Faropenem is a beta-lactam in the penem subclass that is being developed as an oral prodrug, faropenem medoxomil, for the treatment of respiratory tract infections. Faropenem was shown to have in vitro activity against B. anthracis strains that variably express the bla1 beta-lactamase (MIC range, pharmacokinetic-pharmacodynamic (PK-PD) relationships between the plasma faropenem free-drug (f) concentrations and efficacy against B. anthracis in a murine postexposure prophylaxis inhalation model. The plasma PKs and PKs-PDs of faropenem were evaluated in BALB/c mice following the intraperitoneal (i.p.) administration of doses ranging from 2.5 to 160 mg/kg of body weight. For the evaluation of efficacy, mice received by inhalation aerosol doses of B. anthracis (Ames strain; faropenem MIC, 0.06 microg/ml) at 100 times the 50% lethal dose. The faropenem dosing regimens (10, 20, 40, and 80 mg/kg/day) were administered i.p. at 24 h postchallenge at 4-, 6-, and 12-h intervals for 14 days. The sigmoid maximum-threshold-of-efficacy (E(max)) model fit the survival data, in which the free-drug area under the concentration-time curve (fAUC)/MIC ratio, the maximum concentration of free drug in plasma (fC(max))/MIC ratio, and the cumulative percentage of a 24-h period that the free-drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (f %T(MIC)) were each evaluated. Assessment of f %T(MIC) demonstrated the strongest correlation with survival (R(2) = 0.967) compared to the correlations achieved by assessment of fAUC/MIC or fC(max)/MIC, for which minimal correlations were observed. The 50% effective dose (ED(50)), ED(90), and ED(99) corresponded to f %T(MIC) values of 10.6, 13.4, and 16.4%, respectively, and E(max) was 89.3%. Overall, faropenem demonstrated a high

  19. Physiologically based pharmacokinetic modeling of zinc oxide nanoparticles and zinc nitrate in mice.

    PubMed

    Chen, Wei-Yu; Cheng, Yi-Hsien; Hsieh, Nan-Hung; Wu, Bo-Chun; Chou, Wei-Chun; Ho, Chia-Chi; Chen, Jen-Kun; Liao, Chung-Min; Lin, Pinpin

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) have been widely used in consumer products, therapeutic agents, and drug delivery systems. However, the fate and behavior of ZnO NPs in living organisms are not well described. The purpose of this study was to develop a physiologically based pharmacokinetic model to describe the dynamic interactions of (65)ZnO NPs in mice. We estimated key physicochemical parameters of partition coefficients and excretion or elimination rates, based on our previously published data quantifying the biodistributions of 10 nm and 71 nm (65)ZnO NPs and zinc nitrate ((65)Zn(NO3)2) in various mice tissues. The time-dependent partition coefficients and excretion or elimination rates were used to construct our physiologically based pharmacokinetic model. In general, tissue partition coefficients of (65)ZnO NPs were greater than those of (65)Zn(NO3)2, particularly the lung partition coefficient of 10 nm (65)ZnO NPs. Sensitivity analysis revealed that 71 nm (65)ZnO NPs and (65)Zn(NO3)2 were sensitive to excretion and elimination rates in the liver and gastrointestinal tract. Although the partition coefficient of the brain was relative low, it increased time-dependently for (65)ZnO NPs and (65)Zn(NO3)2. The simulation of (65)Zn(NO3)2 was well fitted with the experimental data. However, replacing partition coefficients of (65)ZnO NPs with those of (65)Zn(NO3)2 after day 7 greatly improved the fitness of simulation, suggesting that ZnO NPs might decompose to zinc ion after day 7. In this study, we successfully established a potentially predictive dynamic model for slowly decomposed NPs. More caution is suggested for exposure to (65)ZnO NPs <10 nm because those small (65)ZnO NPs tend to accumulate in the body for a relatively longer time than 71 nm (65)ZnO NPs and (65)Zn(NO3)2 do. PMID:26491297

  20. Physiologically based pharmacokinetic modeling of zinc oxide nanoparticles and zinc nitrate in mice

    PubMed Central

    Chen, Wei-Yu; Cheng, Yi-Hsien; Hsieh, Nan-Hung; Wu, Bo-Chun; Chou, Wei-Chun; Ho, Chia-Chi; Chen, Jen-Kun; Liao, Chung-Min; Lin, Pinpin

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) have been widely used in consumer products, therapeutic agents, and drug delivery systems. However, the fate and behavior of ZnO NPs in living organisms are not well described. The purpose of this study was to develop a physiologically based pharmacokinetic model to describe the dynamic interactions of 65ZnO NPs in mice. We estimated key physicochemical parameters of partition coefficients and excretion or elimination rates, based on our previously published data quantifying the biodistributions of 10 nm and 71 nm 65ZnO NPs and zinc nitrate (65Zn(NO3)2) in various mice tissues. The time-dependent partition coefficients and excretion or elimination rates were used to construct our physiologically based pharmacokinetic model. In general, tissue partition coefficients of 65ZnO NPs were greater than those of 65Zn(NO3)2, particularly the lung partition coefficient of 10 nm 65ZnO NPs. Sensitivity analysis revealed that 71 nm 65ZnO NPs and 65Zn(NO3)2 were sensitive to excretion and elimination rates in the liver and gastrointestinal tract. Although the partition coefficient of the brain was relative low, it increased time-dependently for 65ZnO NPs and 65Zn(NO3)2. The simulation of 65Zn(NO3)2 was well fitted with the experimental data. However, replacing partition coefficients of 65ZnO NPs with those of 65Zn(NO3)2 after day 7 greatly improved the fitness of simulation, suggesting that ZnO NPs might decompose to zinc ion after day 7. In this study, we successfully established a potentially predictive dynamic model for slowly decomposed NPs. More caution is suggested for exposure to 65ZnO NPs <10 nm because those small 65ZnO NPs tend to accumulate in the body for a relatively longer time than 71 nm 65ZnO NPs and 65Zn(NO3)2 do. PMID:26491297

  1. Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles.

    PubMed

    Carlander, Ulrika; Li, Dingsheng; Jolliet, Olivier; Emond, Claude; Johanson, Gunnar

    2016-01-01

    To assess the potential toxicity of nanoparticles (NPs), information concerning their uptake and disposition (biokinetics) is essential. Experience with industrial chemicals and pharmaceutical drugs reveals that biokinetics can be described and predicted accurately by physiologically-based pharmacokinetic (PBPK) modeling. The nano PBPK models developed to date all concern a single type of NP. Our aim here was to extend a recent model for pegylated polyacrylamide NP in order to develop a more general PBPK model for nondegradable NPs injected intravenously into rats. The same model and physiological parameters were applied to pegylated polyacrylamide, uncoated polyacrylamide, gold, and titanium dioxide NPs, whereas NP-specific parameters were chosen on the basis of the best fit to the experimental time-courses of NP accumulation in various tissues. Our model describes the biokinetic behavior of all four types of NPs adequately, despite extensive differences in this behavior as well as in their physicochemical properties. In addition, this simulation demonstrated that the dose exerts a profound impact on the biokinetics, since saturation of the phagocytic cells at higher doses becomes a major limiting step. The fitted model parameters that were most dependent on NP type included the blood:tissue coefficients of permeability and the rate constant for phagocytic uptake. Since only four types of NPs with several differences in characteristics (dose, size, charge, shape, and surface properties) were used, the relationship between these characteristics and the NP-dependent model parameters could not be elucidated and more experimental data are required in this context. In this connection, intravenous biodistribution studies with associated PBPK analyses would provide the most insight. PMID:26929620

  2. Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles

    PubMed Central

    Carlander, Ulrika; Li, Dingsheng; Jolliet, Olivier; Emond, Claude; Johanson, Gunnar

    2016-01-01

    To assess the potential toxicity of nanoparticles (NPs), information concerning their uptake and disposition (biokinetics) is essential. Experience with industrial chemicals and pharmaceutical drugs reveals that biokinetics can be described and predicted accurately by physiologically-based pharmacokinetic (PBPK) modeling. The nano PBPK models developed to date all concern a single type of NP. Our aim here was to extend a recent model for pegylated polyacrylamide NP in order to develop a more general PBPK model for nondegradable NPs injected intravenously into rats. The same model and physiological parameters were applied to pegylated polyacrylamide, uncoated polyacrylamide, gold, and titanium dioxide NPs, whereas NP-specific parameters were chosen on the basis of the best fit to the experimental time-courses of NP accumulation in various tissues. Our model describes the biokinetic behavior of all four types of NPs adequately, despite extensive differences in this behavior as well as in their physicochemical properties. In addition, this simulation demonstrated that the dose exerts a profound impact on the biokinetics, since saturation of the phagocytic cells at higher doses becomes a major limiting step. The fitted model parameters that were most dependent on NP type included the blood:tissue coefficients of permeability and the rate constant for phagocytic uptake. Since only four types of NPs with several differences in characteristics (dose, size, charge, shape, and surface properties) were used, the relationship between these characteristics and the NP-dependent model parameters could not be elucidated and more experimental data are required in this context. In this connection, intravenous biodistribution studies with associated PBPK analyses would provide the most insight. PMID:26929620

  3. Population pharmacogenetic-based pharmacokinetic modeling of efavirenz, 7-hydroxy- and 8-hydroxyefavirenz

    PubMed Central

    Abdelhady, A.M.; Desta, Z.; Jiang, F.; Yeo, C.W.; Shin, J.; Overholser, B. R.

    2015-01-01

    Objectives The purpose of this study was to determine the demographic and pharmacogenetic covariates that influence the disposition of efavirenz (EFV) and its major metabolites. Methods: A population pharmacokinetic (PK) model was developed from a randomized, cross-over, drug-interaction study in healthy male Korean subjects (n=17). Plasma concentrations of EFV and its hydroxy-metabolites (0–120 hrs) were measured by LC/MS/MS. Genomic DNA was genotyped for variants in the cytochrome P450 (CYP) 2A6, 2B6, 3A5 and MDR1 genes. A PK model was built in a stepwise procedure using nonlinear mixed effect modeling in NONMEM 7. The covariate model was built using the generalized additive modeling and forward selection-backward elimination. Model-based simulations were performed to predict EFV steady-state concentrations following 200, 400, and 600 mg daily oral dose among different CYP2B6 genotypes Results The final model included only CYP2B6 genotype as covariate that predicts EFV clearance through the formation of 8-OH EFV that represented 65% to 80% of EFV clearance. The total clearance of EFV in CYP2B6*6/*6 genotype was ~ 30% lower than CYP2B6*1/*1 or CYP2B6*1/*6 alleles (P<0.001). Clopidogrel reduced both formation and elimination clearances of 8-OH EFV by 22% and 19% respectively (P= 0.033 and 0.041). Other demographics and genotype of accessory CYP pathways did not predict EFV or metabolites PK. Conclusion CYP2B6 genotype was the only significant predictor of EFV disposition. The developed model may serve as the foundation for further exploration of pharmacogenetic-based dosing of EFV. PMID:24142869

  4. Time-dependent diffusion in skeletal muscle with the random permeable barrier model (RPBM): Application to normal controls and chronic exertional compartment syndrome patients

    PubMed Central

    Sigmund, Eric E.; Novikov, Dmitry S.; Sui, Dabang; Ukpebor, Obehi; Baete, Steven; Babb, James S.; Liu, Kecheng; Feiweier, Thorsten; Kwon, Jane; Mcgorty, KellyAnne; Bencardino, Jenny; Fieremans, Els

    2014-01-01

    Purpose To collect diffusion tensor imaging (DTI) at multiple diffusion times Td in skeletal muscle in normal subjects and chronic exertional compartment syndrome (CECS) patients and analyze the data with the random permeable barrier model (RPBM) for biophysical specificity. Materials and Methods Using an IRB-approved HIPAA-compliant protocol, seven patients with clinical suspicion of CECS and eight healthy volunteers underwent DTI of the calf muscle in a Siemens MAGNETOM Verio 3-T scanner at rest and after treadmill exertion at 4 different diffusion times. Radial diffusion values λrad were computed for each of 7 different muscle compartments and analyzed with RPBM to produce estimates of free diffusivity D0, fiber diameter a, and permeability κ. Fiber diameter estimates were compared with measurements from literature autopsy reference for several compartments. Response factors (post/pre-exercise ratios) were computed and compared between normal controls and CECS patients using a mixed-model two-way analysis of variance. Results All subjects and muscle compartments showed nearly time-independent diffusion along and strongly time-dependent diffusion transverse to the muscle fibers. RPBM estimates of fiber diameter correlated well with corresponding autopsy reference. D0 showed significant (p<0.05) increases with exercise for volunteers, and a increased significantly (p<0.05) in volunteers. At the group level, response factors of all three parameters showed trends differentiating controls from CECS patients, with patients showing smaller diameter changes (p=0.07), and larger permeability increases (p=0.07) than controls. Conclusions Time-dependent diffusion measurements combined with appropriate tissue modeling can provide enhanced microstructural specificity for in vivo tissue characterization. In CECS patients, our results suggest that high-pressure interfiber edema elevates free diffusion and restricts exercise-induced fiber dilation. Such specificity may be

  5. Pharmacokinetic model for the absorption of subcutaneously injected soluble insulin and monomeric insulin analogues.

    PubMed

    Trajanoski, Z; Wach, P; Kotanko, P; Ott, A; Skraba, F

    1993-09-01

    A subcutaneous insulin absorption model is presented for parameter estimation from the time course of plasma insulin. Modifications of a published model were made for the absorption of soluble insulin and monomeric insulin analogues in the range of therapeutic concentrations and volumes. The modified diffusion-dissociation model with distributed parameters was approximated by a multiple-compartment model. Subcutaneous absorption of soluble insulin and monomeric insulin analogues with various volumes, concentrations, and injection depths was simulated. The model for soluble insulin exhibits volume, concentration, and injection depth dependent absorption, as experimentally observed. It was found that binding of soluble insulin in the subcutaneous tissue is negligible for U-40 and U-100 strengths. The absorption of identical doses (10 U) of soluble U-40 insulin was markedly faster (T-50% = 159.4 min) than the absorption of U-100 (T-50% = 196.2 min). According to the simulation results, the absorption rate of monomeric analogues is not dependent on concentration. No significant chances of the absorption rate could also be observed by varying volume and injection depth of the monomeric analogues. PMID:8218870

  6. Benchmark dose risk assessment for formaldehyde using airflow modeling and a single-compartment, DNA-protein cross-link dosimetry model to estimate human equivalent doses.

    PubMed

    Schlosser, Paul M; Lilly, Patrick D; Conolly, Rory B; Janszen, Derek B; Kimbell, Julie S

    2003-06-01

    Formaldehyde induced squamous-cell carcinomas in the nasal passages of F344 rats in two inhalation bioassays at exposure levels of 6 ppm and above. Increases in rates of cell proliferation were measured by T. M. Monticello and colleagues at exposure levels of 0.7 ppm and above in the same tissues from which tumors arose. A risk assessment for formaldehyde was conducted at the CIIT Centers for Health Research, in collaboration with investigators from Toxicological Excellence in Risk Assessment (TERA) and the U.S. Environmental Protection Agency (U.S. EPA) in 1999. Two methods for dose-response assessment were used: a full biologically based modeling approach and a statistically oriented analysis by benchmark dose (BMD) method. This article presents the later approach, the purpose of which is to combine BMD and pharmacokinetic modeling to estimate human cancer risks from formaldehyde exposure. BMD analysis was used to identify points of departure (exposure levels) for low-dose extrapolation in rats for both tumor and the cell proliferation endpoints. The benchmark concentrations for induced cell proliferation were lower than for tumors. These concentrations were extrapolated to humans using two mechanistic models. One model used computational fluid dynamics (CFD) alone to determine rates of delivery of inhaled formaldehyde to the nasal lining. The second model combined the CFD method with a pharmacokinetic model to predict tissue dose with formaldehyde-induced DNA-protein cross-links (DPX) as a dose metric. Both extrapolation methods gave similar results, and the predicted cancer risk in humans at low exposure levels was found to be similar to that from a risk assessment conducted by the U.S. EPA in 1991. Use of the mechanistically based extrapolation models lends greater certainty to these risk estimates than previous approaches and also identifies the uncertainty in the measured dose-response relationship for cell proliferation at low exposure levels, the dose

  7. Ecposure Related Dose Estimating Model

    EPA Science Inventory

    ERDEM is a physiologically based pharmacokinetic (PBPK) modeling system consisting of a general model and an associated front end. An actual model is defined when the user prepares an input command file. Such a command file defines the chemicals, compartments and processes that...

  8. Prediction of denosumab effects on bone remodeling: A combined pharmacokinetics and finite element modeling.

    PubMed

    Hambli, Ridha; Boughattas, Mohamed Hafedh; Daniel, Jean-Luc; Kourta, Azeddine

    2016-07-01

    Denosumab is a fully human monoclonal antibody that inhibits receptor activator of nuclearfactor-kappa B ligand (RANKL). This key mediator of osteoclast activities has been shown to inhibit osteoclast differentiation and hence, to increase bone mineral density (BMD) in treated patients. In the current study, we develop a computer model to simulate the effects of denosumab treatments (dose and duration) on the proximal femur bone remodeling process quantified by the variation in proximal femur BMD. The simulation model is based on a coupled pharmacokinetics model of denosumab with a pharmacodynamics model consisting of a mechanobiological finite element remodeling model which describes the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed which controls the level of bone cell autocrine and paracrine factors. The cellular behavior is based on Komarova et al.׳s (2003) dynamic law which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cell dynamics rather than by adaptive elasticity approaches. The proposed finite element model was implemented in the finite element code Abaqus (UMAT routine). In order to perform a preliminary validation, in vivo human proximal femurs were selected and scanned at two different time intervals (at baseline and at a 36-month interval). Then, a 3D FE model was generated and the denosumab-remodeling algorithm was applied to the scans at t0 simulating daily walking activities for a duration of 36 months. The predicted results (density variation) were compared to existing published ones performed on a human cohort (FREEDOM

  9. Validation of Human Physiologically Based Pharmacokinetic Model for Vinyl Acetate Against Human Nasal Dosimetry Data

    SciTech Connect

    Hinderliter, Paul M.; Thrall, Karla D.; Corley, Rick A.; Bloemen, Louis J.; Bogdanffy, M S.

    2005-05-01

    Vinyl acetate has been shown to induce nasal lesions in rodents in inhalation bioassays. A physiologically based pharmacokinetic (PBPK) model for vinyl acetate has been used in human risk assessment, but previous in vivo validation was conducted only in rats. Controlled human exposures to vinyl acetate were conducted to provide validation data for the application of the model in humans. Five volunteers were exposed to 1, 5, an