Science.gov

Sample records for competing spin dynamics

  1. Hadron Spin Dynamics

    SciTech Connect

    Brodsky, Stanley J.

    2002-01-09

    Spin effects in exclusive and inclusive reactions provide an essential new dimension for testing QCD and unraveling hadron structure. Remarkable new experiments from SLAC, HERMES (DESY), and Jefferson Lab present many challenges to theory, including measurements at HERMES and SMC of the single spin asymmetries in ep {yields} e{prime}{pi}X where the proton is polarized normal to the scattering plane. This type of single spin asymmetry may be due to the effects of rescattering of the outgoing quark on the spectators of the target proton, an effect usually neglected in conventional QCD analyses. Many aspects of spin, such as single-spin asymmetries and baryon magnetic moments are sensitive to the dynamics of hadrons at the amplitude level, rather than probability distributions. I will illustrate the novel features of spin dynamics for relativistic systems by examining the explicit form of the light-front wavefunctions for the two-particle Fock state of the electron in QED, thus connecting the Schwinger anomalous magnetic moment to the spin and orbital momentum carried by its Fock state constituents and providing a transparent basis for understanding the structure of relativistic composite systems and their matrix elements in hadronic physics. I also present a survey of outstanding spin puzzles in QCD, particularly A{sub NN} in elastic pp scattering, the J/{psi} {yields} {rho}{pi} puzzle, and J/{psi} polarization at the Tevatron.

  2. Competing spin pumping effects in magnetic hybrid structures

    SciTech Connect

    Azevedo, A. Alves Santos, O.; Fonseca Guerra, G. A.; Cunha, R. O.; Rezende, S. M.; Rodrguez-Surez, R.

    2014-02-03

    Pure spin current can be detected by its conversion into charge current in nanometer thick nonmagnetic metal layer with large spin-orbit coupling by means of the inverse spin Hall effect (ISHE). Recently, it has been shown that the metallic ferromagnet Permalloy (Py) can also be used as spin current detector in experiments in which an ISHE voltage is created in a Py layer in contact with the insulating ferromagnet yttrium iron garnet (YIG) under a thermal gradient in the longitudinal spin Seebeck configuration. Here, we report experiments with microwave driven spin pumping in heterostructures made with single crystal YIG film and a nanometer thick Py or Pt layer that show that Py behaves differently than nonmagnetic metals as a spin current detector. The results are attributed to the competition between the spin currents generated by the dynamics of the magnetizations in YIG and in Py, which are exchange coupled at the interface.

  3. Spin-current emission governed by nonlinear spin dynamics

    PubMed Central

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-01-01

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712

  4. Spin-current emission governed by nonlinear spin dynamics

    NASA Astrophysics Data System (ADS)

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-01

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.

  5. Spin-current emission governed by nonlinear spin dynamics.

    PubMed

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-01-01

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712

  6. Electron spin decoherence in nuclear spin baths and dynamical decoupling

    SciTech Connect

    Zhao, N.; Yang, W.; Ho, S. W.; Hu, J. L.; Wan, J. T. K.; Liu, R. B.

    2011-12-23

    We introduce the quantum theory of the electron spin decoherence in a nuclear spin bath and the dynamical decoupling approach for protecting the electron spin coherence. These theories are applied to various solid-state systems, such as radical spins in molecular crystals and NV centers in diamond.

  7. Renormdynamics, Discrete Dynamics and Spin

    NASA Astrophysics Data System (ADS)

    Makhaldiani, Nugzar

    2016-02-01

    In the Standard Model of Particle Physics (SM), minimal supersymmetric extension of the SM (MSSM), standard pion-nucleon field theory and other models is shown how to define the values of coupling constants and masses. Discrete dynamics, spins, constituent supersymmetric model for W and Higgs bosons considered, supersymmetric mechanism of confinement in QCD described.

  8. Spin dynamics simulations at AGS

    SciTech Connect

    Huang, H.; MacKay, W.W.; Meot, F.; Roser, T.

    2010-05-23

    To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.

  9. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    SciTech Connect

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  10. Scattering bottleneck for spin dynamics in metallic helical antiferromagnetic dysprosium

    NASA Astrophysics Data System (ADS)

    Langner, M. C.; Roy, S.; Kemper, A. F.; Chuang, Y.-D.; Mishra, S. K.; Versteeg, R. B.; Zhu, Y.; Hertlein, M. P.; Glover, T. E.; Dumesnil, K.; Schoenlein, R. W.

    2015-11-01

    Ultrafast studies of magnetization dynamics have revealed fundamental processes that govern spin dynamics, and the emergence of time-resolved x-ray techniques has extended these studies to long-range spin structures that result from interactions with competing symmetries. By combining time-resolved resonant x-ray scattering and ultrafast magneto-optical Kerr studies, we show that the dynamics of the core spins in the helical magnetic structure occur on much longer time scales than the excitation of conduction electrons in the lanthanide metal Dy. The observed spin behavior differs markedly from that observed in the ferromagnetic phase of other lanthanide metals or transition metals and is strongly dependent on temperature and excitation fluence. This unique behavior results from coupling of the real-space helical spin structure to the shape of the conduction electron Fermi surface in momentum space, which creates a bottleneck in spin scattering events that transfer the valence excitation to the core spins. The dependence of the dynamics on the intersite interactions renders the helical ordering much more robust to perturbations than simple ferromagnetic or antiferromagnetic ordering, where dynamics are driven primarily by on-site interactions.

  11. Polarized hyperons probe dynamics of quark spin

    SciTech Connect

    Daniel S. Carman; T. S. Harry Lee; Mac Mestayer; Reinhard Schumacher

    2007-08-01

    Researchers at Jefferson Laboratory demonstrate how two analyses of the same data provide two plausible models of spin transfer in exclusive hyperon production, yielding quite different pictures of quark spin dynamics and challenging existing theories.

  12. Spin dynamics with inertia in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Kikuchi, Toru; Tatara, Gen

    2015-11-01

    The nonadiabatic contribution of environmental degrees of freedom yields an effective inertia of spin in the effective spin dynamics. In this paper, we study several aspects of the inertia of spin in metallic ferromagnets: (i) a concrete expression of the spin inertia ms: ms=? Sc/(2 gsd) , where Sc is the spin polarization of conduction electrons and gsd is the s d coupling constant; (ii) a dynamical behavior of spin with inertia, discussed from the viewpoints of a spinning top and of a particle on a sphere; (iii) the behavior of spin waves and domain walls in the presence of inertia and the behavior of spin with inertia under a time-dependent magnetic field.

  13. Coherent spin mixing dynamics in a spin-1 atomic condensate

    SciTech Connect

    Zhang Wenxian; Chang, M.-S.; Chapman, M.S.; Zhou, D.L.; You, L.

    2005-07-15

    We study the coherent off-equilibrium spin mixing inside an atomic condensate. Using mean-field theory and adopting the single-spatial-mode approximation, the condensate spin dynamics is found to be well described by that of a nonrigid pendulum and displays a variety of periodic oscillations in an external magnetic field. Our results illuminate several recent experimental observations and provide critical insights into the observation of coherent interaction-driven oscillations in a spin-1 condensate.

  14. Electron-spin dynamics induced by photon spins

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer

    2014-10-01

    Strong rotating magnetic fields may cause a precession of the electron's spin around the rotation axis of the magnetic field. The superposition of two counterpropagating laser beams with circular polarization and opposite helicity features such a rotating magnetic field component but also carries spin. The laser's spin density, which can be expressed in terms of the laser's electromagnetic fields and potentials, couples to the electron's spin via a relativistic correction to the Pauli equation. We show that the quantum mechanical interaction of the electron's spin with the laser's rotating magnetic field and with the laser's spin density counteract each other in such a way that a net spin rotation remains with a precession frequency that is much smaller than the frequency one would expect from the rotating magnetic field alone. In particular, the frequency scales differently with the laser's electric field strength depending on whether relativistic corrections are taken into account or not. Thus, the relativistic coupling of the electron's spin to the laser's spin density changes the dynamics not only quantitatively but also qualitatively as compared to the nonrelativistic theory. The electron's spin dynamics are a genuine quantum mechanical relativistic effect.

  15. Spin-flop transition driven by competing magnetoelastic anisotropy terms in a spin-spiral antiferromagnet

    NASA Astrophysics Data System (ADS)

    Benito, L.

    2015-06-01

    Holmium, the archetypical system for spin-spiral antiferromagnetism, undergoes an in-plane spin-flop transition earlier attributed to competing symmetry-breaking and fully symmetric magnetoelastic anisotropy terms [Phys. Rev. Lett. 94, 227204 (2005), 10.1103/PhysRevLett.94.227204], which underlines the emergence of sixfold magnetoelastic constants in heavy rare earth metals, as otherwise later studies suggested. A model that encompasses magnetoelastic contributions to the in-plane sixfold magnetic anisotropy is laid out to elucidate the mechanism behind the spin-flop transition. The model, which is tested in a Ho-based superlattice, shows that the interplay between competing fully symmetric ? -magnetoelastic and symmetry-breaking ? -magnetoelastic anisotropy terms triggers the spin reorientation. This also unveils the dominant role played by the sixfold exchange magnetostriction constant, where D?2 66?0.32 GPa against its crystal-field counterpart M?2 66?-0.2 GPa, in contrast to the crystal-field origin of the symmetry-breaking magnetostriction in rare earth metals.

  16. Spin dynamics in paramagnetic diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Phan, Van-Nham; Tran, Minh-Tien

    2015-10-01

    Microscopic properties of low-energy spin dynamics in diluted magnetic semiconductor are addressed in a framework of the Kondo lattice model including random distribution of magnetic dopants. Based on the fluctuation-dissipation theorem, we derive an explicit dependence of the spin diffusion coefficient on the single-particle Green function which is directly evaluated by dynamical mean-field theory. In the paramagnetic state, the magnetic scattering has been manifested to suppress spin diffusion. In agreement with other ferromagnet systems, we also point out that the spin diffusion in diluted magnetic semiconductors at small carrier concentration displays a monotonic 1 /T -like temperature dependence. By investigating the spin diffusion coefficient on a wide range of the model parameters, the obtained results have provided a significant scenario to understand the spin dynamics in the paramagnetic diluted magnetic semiconductors.

  17. Spin dynamics in driven composite multiferroics

    NASA Astrophysics Data System (ADS)

    Wang, Zidong; Grimson, Malcolm J.

    2015-09-01

    A spin dynamics approach has been used to study the behavior of the magnetic spins and the electric pseudo-spins in a 1-D composite multiferroic chain with a linear magneto-electric coupling at the interface. The response is investigated with either external magnetic or electric fields driving the system. The spin dynamics is based on the Landau-Lifshitz-Gilbert equation. A Gaussian white noise is later added into the dynamic process to include the thermal effects. The interface requires a closer inspection of the magneto-electric effects. Thus, we construct a 2-D ladder model to describe the behavior of the magnetic spins and the electric pseudo-spins with different magneto-electric couplings.

  18. Seeing Spin Dynamics in Atomic Gases

    NASA Astrophysics Data System (ADS)

    Stamper-Kurn, Dan M.

    2015-06-01

    The dynamics of internal spin, electronic orbital, and nuclear motion states of atoms and molecules have preoccupied the atomic and molecular physics community for decades. Increasingly, such dynamics are being examined within many-body systems composed of atomic and molecular gases. Our findings sometimes bear close relation to phenomena observed in condensed-matter systems, while on other occasions they represent truly new areas of investigation. I discuss several examples of spin dynamics that occur within spinor Bose-Einstein gases, highlighting the advantages of spin-sensitive imaging for understanding and utilizing such dynamics.

  19. Ultrafast spin dynamics in II-VI diluted magnetic semiconductors with spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Ungar, F.; Cygorek, M.; Tamborenea, P. I.; Axt, V. M.

    2015-05-01

    We study theoretically the ultrafast spin dynamics of II-VI diluted magnetic semiconductors in the presence of spin-orbit interaction. Our goal is to explore the interplay or competition between the exchange sd coupling and the spin-orbit interaction in both bulk and quantum-well systems. For bulk materials we concentrate on Zn1 -xMnxSe and take into account the Dresselhaus interaction, while for quantum wells we examine Hg1 -x -yMnxCdyTe systems with a strong Rashba coupling. Our calculations were performed with a recently developed formalism which incorporates electronic correlations beyond mean-field theory originating from the exchange sd coupling. For both bulk and quasi-two-dimensional systems we find that, by varying the system parameters within realistic ranges, either of the two interactions can be chosen to play a dominant role or they can compete on an equal footing with each other. The most notable effect of the spin-orbit interaction in both types of system is the appearance of strong oscillations where the exchange sd coupling by itself causes only an exponential decay of the mean electronic spin components. The mean-field approximation is also studied and an analytical interpretation is given as to why it shows a strong suppression of the spin-orbit-induced dephasing of the spin component parallel to the Mn magnetic field.

  20. Relativistic dynamical spin excitations of magnetic adatoms

    NASA Astrophysics Data System (ADS)

    dos Santos Dias, M.; Schweflinghaus, B.; Blügel, S.; Lounis, S.

    2015-02-01

    We present a first-principles theory of dynamical spin excitations in the presence of spin-orbit coupling. The broken global spin rotational invariance leads to a new sum rule. We explore the competition between the magnetic anisotropy energy and the external magnetic field, as well as the role of electron-hole excitations, through calculations for 3 d -metal adatoms on the Cu(111) surface. The spin excitation resonance energy and lifetime display nontrivial behavior, establishing the strong impact of relativistic effects. We legitimate the use of the Landau-Lifshitz-Gilbert equation down to the atomic limit, but with parameters that differ from a stationary theory.

  1. Unusual spin dynamics in topological insulators

    NASA Astrophysics Data System (ADS)

    Dra, Balzs; Simon, Ferenc

    2015-10-01

    The dynamic spin susceptibility (DSS) has a ubiquitous Lorentzian form around the Zeeman energy in conventional materials with weak spin orbit coupling, whose spectral width characterizes the spin relaxation rate. We show that DSS has an unusual non-Lorentzian form in topological insulators, which are characterized by strong SOC, and the anisotropy of the DSS reveals the orientation of the underlying spin texture of topological states. At zero temperature, the high frequency part of DSS is universal and increases in certain directions as ?d-1 with d?=?2 and 3 for surface states and Weyl semimetals, respectively, while for helical edge states, the interactions renormalize the exponent as d?=?2K?-?1 with K the Luttinger-liquid parameter. As a result, spin relaxation rate cannot be deduced from the DSS in contrast to the case of usual metals, which follows from the strongly entangled spin and charge degrees of freedom in these systems.

  2. Ab initio non-relativistic spin dynamics

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi; Goings, Joshua J.; Frisch, Michael J.; Li, Xiaosong

    2014-12-01

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li3 molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  3. Ab initio non-relativistic spin dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  4. Dynamics of a Slender Spinning Membrane

    NASA Astrophysics Data System (ADS)

    Juang, Jer-Nan; Hung, Chung-Han; Wilkie, William K.

    2015-10-01

    A novel approach is introduced to conduct dynamic analysis of a spinning, high aspect ratio membrane. In this formulation, an inextensible, long, slender membrane is modeled using a discrete set of lumped masses. Lagranges equations are used to derive the highly coupled ordinary differential equations for in-plane, out-of-plane, and twisting motions for the spinning membrane. The generalized and uncoupled linear equations for small motion are used to compute the vibration mode frequencies which are compared to results from an uncoupled analysis of blade motion using rotor dynamics. Linearized behavior is shown to reduce to the linearized solutions for the spinning membrane blade developed by MacNeal. Numerical simulations along with 3-D animations are used to study the linear and nonlinear uncoupled dynamics of the spinning membrane.

  5. Magnetic Suspension for Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter

    1998-01-01

    NASA Lewis Research Center's Dynamic Spin Rig, located in Building 5, Test Cell CW-18, is used to test turbomachinery blades and components by rotating them in a vacuum chamber. A team from Lewis' Machine Dynamics Branch successfully integrated a magnetic bearing and control system into the Dynamic Spin Rig. The magnetic bearing worked very well both to support and shake the shaft. It was demonstrated that the magnetic bearing can transmit more vibrational energy into the shaft and excite some blade modes to larger amplitudes than the existing electromagnetic shakers can.

  6. Spin dynamics and spin freezing at ferromagnetic quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Schmakat, P.; Wagner, M.; Ritz, R.; Bauer, A.; Brando, M.; Deppe, M.; Duncan, W.; Duvinage, C.; Franz, C.; Geibel, C.; Grosche, F. M.; Hirschberger, M.; Hradil, K.; Meven, M.; Neubauer, A.; Schulz, M.; Senyshyn, A.; Sllow, S.; Pedersen, B.; Bni, P.; Pfleiderer, C.

    2015-07-01

    We report selected experimental results on the spin dynamics and spin freezing at ferromagnetic quantum phase transitions to illustrate some of the most prominent escape routes by which ferromagnetic quantum criticality is avoided in real materials. In the transition metal Heusler compound Fe2TiSn we observe evidence for incipient ferromagnetic quantum criticality. High pressure studies in MnSi reveal empirical evidence for a topological non-Fermi liquid state without quantum criticality. Single crystals of the hexagonal Laves phase compound Nb1- y Fe2+ y provide evidence of a ferromagnetic to spin density wave transition as a function of slight compositional changes. Last but not least, neutron depolarisation imaging in CePd1- x Rh x underscore evidence taken from the bulk properties of the formation of a Kondo cluster glass.

  7. Spinning compact binary dynamics and chameleon orbits

    NASA Astrophysics Data System (ADS)

    Gergely, Lszl rpd; Keresztes, Zoltn

    2015-01-01

    We analyze the conservative evolution of spinning compact binaries to second post-Newtonian (2PN) order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. As a main result we derive a closed system of first-order differential equations in a compact form, for a set of dimensionless variables encompassing both orbital elements and spin angles. These evolutions are constrained by conservation laws holding at 2PN order. As required by the generic theory of constrained dynamical systems we perform a consistency check and prove that the constraints are preserved by the evolution. We apply the formalism to show the existence of chameleon orbits, whose local, orbital parameters evolve from elliptic (in the Newtonian sense) near pericenter, towards hyperbolic at large distances. This behavior is consistent with the picture that general relativity predicts stronger gravity at short distances than Newtonian theory does.

  8. Dynamic Nuclear Polarization by Electrical Spin Injection

    NASA Astrophysics Data System (ADS)

    Strand, Jonathan

    2004-03-01

    The hyperfine coupling between electrons and nuclei in GaAs can give rise to dynamic nuclear polarization (DNP) and plays an important role in many proposed spintronic devices. We have demonstrated that DNP can be driven by a spin-polarized current injected from Fe into a GaAs quantum well (QW). The samples are Schottky spin-LEDs in which a Fe contact is a source of spin-polarized electrons and a QW serves as a spin detector. Measurements are performed in a low magnetic field (<1 kOe) applied in the plane of the QW. In this geometry the QW electroluminescence polarization (ELP) is sensitive only to the component of the spin that precesses out of the QW plane after injection into the GaAs. We find that the precession frequency depends on both the applied field and a hyperfine field (B_N) due to polarized nuclei. The data are described by modeling the electron spin dynamics while incorporating the magnetocrystalline anisotropy of the Fe contact, spin relaxation in the QW, and an effective BN up to 1 T [1]. BN increases with increasing current density before saturating at current densities 10 A/cm^2. The DNP decreases with increasing temperature and is not detected above 80 K. Explicit signatures of DNP are observed via the time dependence of the ELP and resonant depolarization of nuclei by a time-dependent magnetic field (H_1) [2]. BN builds up exponentially with characteristic times of 20-45 seconds and persists for several minutes after the spin-polarized current is turned off. This approach to spin injection realizes the possibility of using DC electrical currents to inject and manipulate spin-polarized carriers in a semiconductor device. [1] J. Strand, et al., Phys. Rev. Lett. 91, 036602 (2003); [2] Appl. Phys. Lett. 83, 3335 (2003).

  9. Spin Hall phenomenology of magnetic dynamics

    NASA Astrophysics Data System (ADS)

    Tserkovnyak, Yaroslav; Bender, Scott A.

    2014-07-01

    We study the role of spin-orbit interactions in the coupled magnetoelectric dynamics of a ferromagnetic film coated with an electrical conductor. While the main thrust of this work is phenomenological, several popular simple models are considered microscopically in some detail, including Rashba and Dirac two-dimensional electron gases coupled to a magnetic insulator, as well as a diffusive spin Hall system. We focus on the long-wavelength magnetic dynamics that experiences current-induced torques and produces fictitious electromotive forces. Our phenomenology provides a suitable framework for analyzing experiments on current-induced magnetic dynamics and reciprocal charge pumping, including the effects of magnetoresistance and Gilbert-damping anisotropies, without a need to resort to any microscopic considerations or modeling. Finally, some remarks are made regarding the interplay of spin-orbit interactions and magnetic textures.

  10. Spin dynamics simulation studies of classical spin models

    NASA Astrophysics Data System (ADS)

    Bunker, Alex Edwin

    1998-10-01

    A general spin dynamics program has been developed which can determine the dynamic structure factor S(q, ?), and the intermediate function S(q, t), in the [100], [110], and [111] directions, for a number of classical magnetic models at any temperature desired. The dynamics in both the critical and hydrodynamic regimes of a variety of classical Heisenberg models have been investigated. Our simulation results are compared to the results of experiments as well as other theoretical techniques since large spin magnetic crystals exist where these models are appropriate, including the SC isotropic antiferromagnet RbMnF3, the BCC anisotropic antiferromagnets MnF2 and FeF2 and the FCC isotropic ferromagnets EuO and EuS. For the isotropic antiferromagnet a dynamic critical exponent of z = 1.5 was found, in agreement with both the experimental results and analytical theory. In disagreement with the findings of other theoretical techniques, but in agreement with the experimental results, a diffusive central peak was found to exist at the critical temperature in S(q, ?). For the anisotropic antiferromagnet, in agreement with experiment and theory, the dynamic structure factor S(q, ?), was found to have a diffusive longitudinal component and a suppressed propagative transverse component. We found the dynamic critical exponent to be z~2 but were unable to differentiate between two conflicting theoretical predictions of z = 2 and z = 2.175. Both the SC and BCC isotropic Heisenberg model, with both ferromagnetic and antiferromagnetic interactions, as well as the anisotropic Heisenberg antiferromagnet were studied in the hydrodynamic regime. The spin-wave stiffness coefficient D(T) was determined as a function of temperature. For all these models the propagative excitations in the longitudinal component of the dynamic structure factor were found to result from two-spin-waves. This results in a prediction that the longitudinal component of the dynamic structure factor contains two peaks separated by twice the energy gap frequency for the anisotropic antiferromagnet. The diffusive central peak was found to persist well into the hydrodynamic regime for the antiferromagnetic case but not the ferromagnetic case in agreement with experimental results. Initial results for the biquadratic and double exchange Hamiltonians in the hydrodynamic regime have also been obtained.

  11. Coherent spin transport through dynamic quantum dots.

    PubMed

    Stotz, James A H; Hey, Rudolf; Santos, Paulo V; Ploog, Klaus H

    2005-08-01

    Spin transport and manipulation in semiconductors have been studied intensively with the ultimate goal of realizing spintronic devices. Previous work in GaAs has focused on controlling the carrier density, crystallographic orientation and dimensionality to limit the electron spin decoherence and allow transport over long distances. Here, we introduce a new method for the coherent transport of spin-polarized electronic wave packets using dynamic quantum dots (DQDs) created by the piezoelectric field of coherent acoustic phonons. Photogenerated spin carriers transported by the DQDs in undoped GaAs (001) quantum wells exhibit a spin coherence length exceeding 100 microm, which is attributed to the simultaneous control of the carrier density and the dimensionality by the DQDs during transport. In the absence of an applied magnetic field, we observe the precession of the electron spin induced by the internal magnetic field associated with the spin splitting of the conduction band (Dresselhaus term). The coherent manipulation of the precession frequency is also achieved by applying an external magnetic field. PMID:16041380

  12. Relaxation and coherent oscillations in the spin dynamics of II-VI diluted magnetic quantum wells

    NASA Astrophysics Data System (ADS)

    Ungar, F.; Cygorek, M.; Tamborenea, P. I.; Axt, V. M.

    2015-10-01

    We study theoretically the ultrafast spin dynamics of II-VI diluted magnetic quantum wells in the presence of spin-orbit interaction. We extend a recent study where it was shown that the spin-orbit interaction and the exchange sd coupling in bulk and quantum wells can compete resulting in qualitatively new dynamics when they act simultaneously. We concentrate on Hg1-x-yMnxCdyTe quantum wells, which have a highly tunable Rashba spin-orbit coupling. Our calculations use a recently developed formalism which incorporates electronic correlations originating from the exchange sd-coupling. We find that the dependence of electronic spin oscillations on the excess energy changes qualitatively depending on whether or not the spin-orbit interaction dominates or is of comparable strength with the sd interaction.

  13. Dynamics of fractionalization in quantum spin liquids

    NASA Astrophysics Data System (ADS)

    Knolle, J.; Kovrizhin, D. L.; Chalker, J. T.; Moessner, R.

    2015-09-01

    We present the theory of dynamical spin response for the Kitaev honeycomb model, obtaining exact results for the structure factor (SF) in gapped and gapless, Abelian and non-Abelian quantum spin-liquid (QSL) phases. We also describe the advances in methodology necessary to compute these results. The structure factor shows signatures of spin fractionalization into emergent quasiparticles: Majorana fermions and fluxes of Z2 gauge field. In addition to a broad continuum from spin fractionalization, we find sharp (? -function) features in the response. These arise in two distinct ways: from excited states containing only (static) fluxes and no (mobile) fermions, and from excited states in which fermions are bound to fluxes. The SF is markedly different in Abelian and non-Abelian QSLs, and bound fermion-flux composites appear only in the non-Abelian phase.

  14. Probing spin dynamics from the Mott insulating to the superfluid regime in a dipolar lattice gas

    NASA Astrophysics Data System (ADS)

    de Paz, A.; Pedri, P.; Sharma, A.; Efremov, M.; Naylor, B.; Gorceix, O.; Maréchal, E.; Vernac, L.; Laburthe-Tolra, B.

    2016-02-01

    We analyze the spin dynamics of an out-of-equilibrium large spin dipolar atomic Bose gas in an optical lattice. We observe a smooth crossover from a complex oscillatory behavior to an exponential behavior throughout the Mott-to-superfluid transition. While both of these regimes are well described by our theoretical models, we provide data in the intermediate regime where dipolar interactions, contact interactions, and superexchange mechanisms compete. In this strongly correlated regime, spin dynamics and transport are coupled, which challenges theoretical models for quantum magnetism.

  15. RNA Dynamics: Perspectives from Spin Labels

    PubMed Central

    Nguyen, Phuong

    2011-01-01

    Dynamics are an important and indispensible physical attribute that plays essential roles in RNA function. RNA dynamics are complex, spanning vast timescales and encompassing large number of physical modes. The technique of site-directed spin labeling (SDSL), which derives information on local structural and dynamic features of a macromolecule by monitoring a chemically stable nitroxide radical using electron paramagnetic resonance (EPR) spectroscopy, has been applied to monitor intrinsic dynamics at defined structural states as well as to probe conformational transition dynamics of RNAs. Current state of SDSL studies of RNA dynamics is summarized here. Further SDSL developments promise to open up many more opportunities for probing RNA dynamics and connecting dynamics to structure and function. PMID:21882345

  16. The classical and quantum dynamics of molecular spins on graphene

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  17. The classical and quantum dynamics of molecular spins on graphene.

    PubMed

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices. PMID:26641019

  18. Femtosecond Spin Dynamics in Magnetic Quantum Structures

    NASA Astrophysics Data System (ADS)

    Samarth, Nitin

    1996-03-01

    Although ultrafast spectroscopy has become a powerful tool for investigating dynamical electronic processes in semiconductor quantum structures, it is only recently that parallel developments in femtosecond magneto-optics and epitaxial materials engineering have led to detailed studies of electronic spin dynamics in quantum structures. An overview is provided of femtosecond-resolved magneto-optical experiments aimed at understanding exciton spin scattering and coherence in magnetic quantum structures created by systematically incorporating local moments into semiconductor quantum wells. Femtosecond upconversion spectroscopy as well time-resolved Faraday rotation provide a direct view of spin-flip scattering between Zeeman-split exciton states, showing how the spin-flip scattering rate varies with quantum confinement and local moment distribution. (S. A. Crooker et al.), Phys. Rev. Lett. 75, 505 (1995). Femtosecond Faraday rotation also allows the observation of quantum beats between coherently excited populations of spin-split excitons.footnote J. J. Baumberg et al.,Phys. Rev. Lett. 72, 717 (1994). The latter experiments are discussed within the context of a recent theory that attributes such quantum beats to the existence of exciton-exciton correlations.(Th. Ostreich, K. Schonhammer and L. J. Sham, Phys. Rev. Lett. 75), 2554 (1995). Finally, we present a discussion of ongoing experiments in which strongly enhanced quantum beats with unusually long coherence times are observed during time-resolved Voigt effect experiments.(S. A. Crooker, D. D. Awschalom, F. Flack and N. Samarth [to be published].)

  19. Unusual spin dynamics in topological insulators.

    PubMed

    Dóra, Balázs; Simon, Ferenc

    2015-01-01

    The dynamic spin susceptibility (DSS) has a ubiquitous Lorentzian form around the Zeeman energy in conventional materials with weak spin orbit coupling, whose spectral width characterizes the spin relaxation rate. We show that DSS has an unusual non-Lorentzian form in topological insulators, which are characterized by strong SOC, and the anisotropy of the DSS reveals the orientation of the underlying spin texture of topological states. At zero temperature, the high frequency part of DSS is universal and increases in certain directions as ω(d-1) with d = 2 and 3 for surface states and Weyl semimetals, respectively, while for helical edge states, the interactions renormalize the exponent as d = 2K - 1 with K the Luttinger-liquid parameter. As a result, spin relaxation rate cannot be deduced from the DSS in contrast to the case of usual metals, which follows from the strongly entangled spin and charge degrees of freedom in these systems. PMID:26439629

  20. Unusual spin dynamics in topological insulators

    PubMed Central

    Dóra, Balázs; Simon, Ferenc

    2015-01-01

    The dynamic spin susceptibility (DSS) has a ubiquitous Lorentzian form around the Zeeman energy in conventional materials with weak spin orbit coupling, whose spectral width characterizes the spin relaxation rate. We show that DSS has an unusual non-Lorentzian form in topological insulators, which are characterized by strong SOC, and the anisotropy of the DSS reveals the orientation of the underlying spin texture of topological states. At zero temperature, the high frequency part of DSS is universal and increases in certain directions as ωd−1 with d = 2 and 3 for surface states and Weyl semimetals, respectively, while for helical edge states, the interactions renormalize the exponent as d = 2K − 1 with K the Luttinger-liquid parameter. As a result, spin relaxation rate cannot be deduced from the DSS in contrast to the case of usual metals, which follows from the strongly entangled spin and charge degrees of freedom in these systems. PMID:26439629

  1. Structurally Dynamic Spin Market Networks

    NASA Astrophysics Data System (ADS)

    Horvth, Denis; Kuscsik, Zoltn

    The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.

  2. Dynamic spin response for Heisenberg ladders

    SciTech Connect

    Piekarewicz, J.; Shepard, J.R.

    1998-05-01

    We employ the recently proposed plaquette basis to investigate static and dynamic properties of isotropic two-leg Heisenberg spin ladders. Simple noninteracting multiplaquette states provide a remarkably accurate picture of the energy/site and dynamic spin response of these systems. Insights afforded by this simple picture suggest a very efficient truncation scheme for more precise calculations. When the small truncation errors are accounted for using recently developed contractor renormalization techniques, very accurate results requiring a small fraction of the computational effort of exact calculations are obtained. These methods allow us to determine the energy/site, gap, and spin response of 2{times}16 ladders. The former two values are in good agreement with density-matrix renormalization-group results. The spin-response calculations show that nearly all the strength is concentrated in the lowest triplet level and that coherent many-body effects enhance the response/site by nearly a factor of 1.6 over that found for 2{times}2 systems. {copyright} {ital 1998} {ital The American Physical Society}

  3. Dynamics of spin charge carriers in polyaniline

    NASA Astrophysics Data System (ADS)

    Krinichnyi, V. I.

    2014-06-01

    The review summarizes the results of the study of emeraldine forms of polyaniline by multifrequency (9.7-140 GHz, 3-cm and 2-mm) wavebands Electron Paramagnetic Resonance (EPR) spectroscopy combined with the spin label and probe, steady-state saturation of spin-packets, and saturation transfer methods. Spin excitations formed in emeraldine form of polyaniline govern structure, magnetic resonance, and electronic properties of the polymer. Conductivity in neutral or weakly doped samples is defined mainly by interchain charge tunneling in the frames of the Kivelson theory. As the doping level increases, this process is replaced by a charge thermal activation transport by molecular-lattice polarons. In heavily doped polyaniline, the dominating is the Mott charge hopping between well-conducting crystalline ravels embedded into amorphous polymer matrix. The main properties of polyaniline are described in the first part. The theoretical background of the magnetic, relaxation, and dynamics study of nonlinear spin carriers transferring a charge in polyaniline is briefly explicated in the second part. An original data obtained in the EPR study of the nature, relaxation, and dynamics of polarons as well as the mechanism of their transfer in polyaniline chemically modified by sulfuric, hydrochloric, camphorsulfonic, 2-acrylamido-2-methyl-1-propanesulfonic, and para-toluenesulfonic acids up to different doping levels are analyzed in the third part. Some examples of utilization of polyaniline in molecular electronics and spintronics are described.

  4. Combined molecular dynamics-spin dynamics simulations of bcc iron

    SciTech Connect

    Perera, Meewanage Dilina N; Yin, Junqi; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Brown, Greg

    2014-01-01

    Using a classical model that treats translational and spin degrees of freedom on an equal footing, we study phonon-magnon interactions in BCC iron with combined molecular and spin dynamics methods. The atomic interactions are modeled via an empirical many-body potential while spin dependent interactions are established through a Hamiltonian of the Heisenberg form with a distance dependent magnetic exchange interaction obtained from first principles electronic structure calculations. The temporal evolution of translational and spin degrees of freedom was determined by numerically solving the coupled equations of motion, using an algorithm based on the second order Suzuki-Trotter decomposition of the exponential operators. By calculating Fourier transforms of space- and time-displaced correlation functions, we demonstrate that the the presence of lattice vibrations leads to noticeable softening and damping of spin wave modes. As a result of the interplay between lattice and spin subsystems, we also observe additional longitudinal spin wave excitations, with frequencies which coincide with that of the longitudinal lattice vibrations.

  5. Combined molecular dynamics-spin dynamics simulations of bcc iron

    NASA Astrophysics Data System (ADS)

    Perera, Dilina; Landau, David P.; Nicholson, Don M.; Stocks, G. Malcolm; Eisenbach, Markus; Yin, Junqi; Brown, Gregory

    2014-03-01

    Using a classical model that treats translational and spin degrees of freedom on an equal footing, we study phonon-magnon interactions in BCC iron with combined molecular and spin dynamics methods. The atomic interactions are modeled via an empirical many-body potential while spin dependent interactions are established through a Hamiltonian of the Heisenberg form with a distance dependent magnetic exchange interaction obtained from first principles electronic structure calculations. The temporal evolution of translational and spin degrees of freedom was determined by numerically solving the coupled equations of motion, using an algorithm based on the second order Suzuki-Trotter decomposition of the exponential operators. By calculating Fourier transforms of space- and time-displaced correlation functions, we demonstrate that the the presence of lattice vibrations leads to noticeable softening and damping of spin wave modes. As a result of the interplay between lattice and spin subsystems, we also observe additional longitudinal spin wave excitations, with frequencies which coincide with that of the longitudinal lattice vibrations.

  6. Dynamics of the Lunar Spin Axis

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    2006-01-01

    The evolution of the lunar spin axis is studied. Prior work has assumed that the inclination of the lunar orbit is constant and that the node regresses uniformly. This work takes into account the nonconstant inclination and nonuniform regression of the node as determined from averaged models of the motion of the lunar orbit. The resulting dynamics is considerably more rich, exhibiting additional resonances, period doubling and tripling, and chaos.

  7. Planetary Interior Structure Revealed by Spin Dynamics

    NASA Astrophysics Data System (ADS)

    Margot, J.; Peale, S. J.; Jurgens, R. F.; Slade, M. A.; Holin, I. V.

    2002-12-01

    The spin state of a planet depends on the distribution of mass within the interior, gradual and discrete changes in its moments of inertia, dissipation mechanisms at the surface and below, and external torques. Detailed measurements of the spin dynamics can therefore reveal much about planetary interior structure, interactions at the core-mantle and atmosphere-surface boundaries, and mass redistribution events. Studies of the spin precession, polar wobble, and length of day variations have been used to determine Earth's moments of inertia and rigidity and to study the effects of atmospheric angular momentum changes, post-glacial rebound, and large earthquakes. In planetary investigations the spin measurements are particularly important because other means of constraining interior properties require in-situ or orbiting sensors (e.g. seismometers, magnetometers, and Doppler tracking of spacecraft). Here we describe the successful implementation of a new Earth-based radar technique (Holin, 1992) that provides spin state measurements with unprecedented accuracy. Our first observations were designed to characterize Mercury's core. Peale (1976) showed that the measurement of four quantities (the obliquity of the planet, the amplitude of its longitude librations, and the second-degree gravitational harmonics) are sufficient to determine the size and state of Mercury's core. The existence of a molten core would place strong constraints on the thermal and rotational histories of the planet, with profound implications for the composition and rotation state of the planet at the time of formation. A solid core would have a fundamental impact on theories of planetary magnetic field generation. We observed Mercury with the Goldstone radar and the Green Bank Telescope in May-June 2002. We illuminated the planet with a monochromatic signal, recorded the scattered power at the two antennas, and cross-correlated the echoes in the time domain. We obtained strong correlations which directly constrain the instantaneous spin rate and orientation. Our measurements provide the first experimental proof that Mercury is in a Cassini state, a three-order of magnitude improvement in the knowledge of the spin orientation, a measurement of the obliquity which places new constraints on the moments of inertia, and an upper-limit to the amplitude of the longitude librations which constrains interior properties. The IAU-recommended values for the spin orientation of Mercury have not changed since the Mariner days (Davies et al., 1980). The new spin solution can be used to improve the geodetic control of the Mariner 10 images, a task that was pioneered and perfected by Merton G. Davies (1917-2001).

  8. Set-valued dynamic treatment regimes for competing outcomes

    PubMed Central

    Laber, Eric B.; Lizotte, Daniel J.; Ferguson, Bradley

    2014-01-01

    Summary Dynamic treatment regimes operationalize the clinical decision process as a sequence of functions, one for each clinical decision, where each function maps up-to-date patient information to a single recommended treatment. Current methods for estimating optimal dynamic treatment regimes, for example Q-learning, require the specification of a single outcome by which the ‘goodness’ of competing dynamic treatment regimes is measured. However, this is an over-simplification of the goal of clinical decision making, which aims to balance several potentially competing outcomes, e.g., symptom relief and side-effect burden. When there are competing outcomes and patients do not know or cannot communicate their preferences, formation of a single composite outcome that correctly balances the competing outcomes is not possible. This problem also occurs when patient preferences evolve over time. We propose a method for constructing dynamic treatment regimes that accommodates competing outcomes by recommending sets of treatments at each decision point. Formally, we construct a sequence of set-valued functions that take as input up-to-date patient information and give as output a recommended subset of the possible treatments. For a given patient history, the recommended set of treatments contains all treatments that produce non-inferior outcome vectors. Constructing these set-valued functions requires solving a non-trivial enumeration problem. We offer an exact enumeration algorithm by recasting the problem as a linear mixed integer program. The proposed methods are illustrated using data from the CATIE schizophrenia study. PMID:24400912

  9. Spin glass dynamics at the mesoscale

    NASA Astrophysics Data System (ADS)

    Guchhait, Samaresh; Kenning, Gregory G.; Orbach, Raymond L.; Rodriguez, Gilberto F.

    2015-01-01

    The mesoscale allows a new probe of spin glass dynamics. Because the spin glass lower critical dimension dl>2 , the growth of the correlation length ? (t ,T ) can change the nature of the spin glass state at a crossover time tco when ? (tco,T )=? , a minimum characteristic sample length (e.g., film thickness for thin films and crystallite size for bulk samples). For thin films, and times t dynamics is observed. When t >tco , a crossover to d =2 behavior takes place. The parallel correlation length, associated with a Tg=0 transition, increases in time from the saturated value of the perpendicular correlation length ? to an equilibrium value of the parallel correlation length proportional to T-?. This results in a pancakelike correlated state, with a thickness ? and a temperature-dependent in-plane radius that increases with decreasing temperature. Activated dynamics is associated with these states. Measurements on Cu:Mn thin films are analyzed quantitatively within this framework. We extract a temperature-dependent activation energy from a fit to the frequency dependence of the dynamic susceptibility. The extrapolated temperature at which the activation energy would become large is close to the extrapolated glass transition temperature from ac susceptibility measurements. All known relevant experimental data are consistent with this approach. For polycrystalline materials, there is a distribution of length scales P (? ) . For sufficiently broad distributions, a logarithmic time dependence is derived for the time decay of the thermoremanent magnetization MTRM(t ,T ) using an approach originally derived by Ma. Properties dependent upon an effective waiting time tweff are derived that are consistent with experiment, and further measurements are suggested.

  10. Competing chiral orders in the topological Haldane-Hubbard model of spin-1/2 fermions and bosons

    NASA Astrophysics Data System (ADS)

    Hickey, C.; Rath, P.; Paramekanti, A.

    2015-04-01

    Motivated by experiments on ultracold atoms which have realized the Haldane model for a Chern insulator, we consider its strongly correlated Mott limit with spin-1/2 fermions. We find that slave rotor mean-field theory yields gapped or gapless chiral spin liquid Mott insulators. To study competing magnetic orders, we consider the strong coupling effective spin Hamiltonian which includes chiral three-spin exchange. We obtain its classical phase diagram, uncovering various chiral magnetic orders including tetrahedral, cone, and noncoplanar spiral states which can compete with putative chiral quantum spin liquids. We study the effect of thermal fluctuations on these states, identifying crossovers in the spin chirality, and phase transitions associated with lattice symmetry breaking. We also discuss analogous effective spin Hamiltonians for correlated spin-1/2 bosons. Finally, we point out possible experimental implications of our results for cold atom experiments.

  11. Dynamical picture of spin Hall effect based on quantum spin vorticity theory

    NASA Astrophysics Data System (ADS)

    Fukuda, Masahiro; Ichikawa, Kazuhide; Senami, Masato; Tachibana, Akitomo

    2016-02-01

    It is proposed that the dynamical picture of the spin Hall effect can be explained as the generation of the spin vorticity by the applied electric field on the basis of the "quantum spin vorticity theory", which describes the equation of motion of local spin and the vorticity of spin in the framework of quantum field theory. Similarly, it is proposed that the dynamical picture of the inverse spin Hall effect can be explained as the acceleration of the electron by the rotation of the spin torque density as driving force accompanying the generation of the spin vorticity. These explanations may help us to understand spin phenomena in condensed matter and molecular systems from a unified viewpoint.

  12. Spin dynamics simulation of electron spin relaxation in Ni2 +(aq)

    NASA Astrophysics Data System (ADS)

    Rantaharju, Jyrki; Mare, Ji?; Vaara, Juha

    2014-07-01

    The ability to quantitatively predict and analyze the rate of electron spin relaxation of open-shell systems is important for electron paramagnetic resonance and paramagnetic nuclear magnetic resonance spectroscopies. We present a combined molecular dynamics (MD), quantum chemistry (QC), and spin dynamics simulation method for calculating such spin relaxation rates. The method is based on the sampling of a MD trajectory by QC calculations, to produce instantaneous parameters of the spin Hamiltonian used, in turn, to numerically solve the Liouville-von Neumann equation for the time evolution of the spin density matrix. We demonstrate the approach by simulating the relaxation of electron spin in an aqueous solution of Ni2 + ion. The spin-lattice (T1) and spin-spin (T2) relaxation rates are extracted directly from the simulations of the time dependence of the longitudinal and transverse magnetization, respectively. Good agreement with the available, indirectly obtained experimental data is obtained by our method.

  13. Momentum and spin in entropic quantum dynamics

    NASA Astrophysics Data System (ADS)

    Nawaz, Shahid

    We study quantum theory as an example of entropic inference. Our goal is to remove conceptual difficulties that arise in quantum mechanics. Since probability is a common feature of quantum theory and of any inference problem, we briefly introduce probability theory and the entropic methods to update probabilities when new information becomes available. Nelson's stochastic mechanics and Caticha's derivation of quantum theory are discussed in the subsequent chapters. Our first goal is to understand momentum and angular momentum within an entropic dynamics framework and to derive the corresponding uncertainty relations. In this framework momentum is an epistemic concept -- it is not an attribute of the particle but of the probability distributions. We also show that the Heisenberg's uncertainty relation is an osmotic effect. Next we explore the entropic analog of angular momentum. Just like linear momentum, angular momentum is also expressed in purely informational terms. We then extend entropic dynamics to curved spaces. An important new feature is that the displacement of a particle does not transform like a vector. It involves second order terms that account for the effects of curvature . This leads to a modified Schrodinger equation for curved spaces that also take into account the curvature effects. We also derive Schrodinger equation for a charged particle interacting with external electromagnetic field on general Riemannian manifolds. Finally we develop the entropic dynamics of a particle of spin 1/2. The particle is modeled as a rigid point rotator interacting with an external EM field. The configuration space of such a rotator is R 3 x S3 (S 3 is the 3-sphere). The model describes the regular representation of SU(2) which includes all the irreducible representations (spin 0, 1/2, 1, 3/2,...) including spin 1/2.

  14. Entanglement Dynamics of Two Spins in Initially Correlated Wheel-Shaped Spin Baths

    NASA Astrophysics Data System (ADS)

    Sun, Kai-Le; Chen, Jun; Wang, Fa-Qiang; Yu, Ya-Fei; Zhang, Zhi-Ming

    2016-02-01

    We study the effects of the initial correlations in environment on the entanglement dynamics of spin system. The correlated environment is novelly simulated by two correlated wheel-shaped spin baths, each consisting of an intermediate spin interacting with a spin-ring. The correlations in environment are achieved by the entanglement between two intermediate spins. The spin system includes two system-spins, and the interaction between the spin system and the environment is implemented by the coupling between the system-spin and the intermediate spin. Firstly, we analyze the influences of the initial entanglement between the two intermediate spins, the coupling parameters and the temperature of the baths on the entanglement dynamics of the two system-spins in equivalent subsystems. It is demonstrated that the initial entanglement between the baths can act as a resource for the generation and the revivals of the entanglement of the system-spins. Moreover, the amount of the generation and the revivals of the entanglement of the system-spins can be enhanced by regulating the coupling constants and the temperature of the baths. In addition, we also investigate the influences of different coupling ratios in non-equivalent subsystems, it is found that changing the coupling ratios of two subsystems has a significant effect on the generation and revivals of entanglement of system-spins.

  15. Refrustration and competing orders in the prototypical Dy2Ti2O7 spin ice material

    NASA Astrophysics Data System (ADS)

    Henelius, P.; Lin, T.; Enjalran, M.; Hao, Z.; Rau, J. G.; Altosaar, J.; Flicker, F.; Yavors'kii, T.; Gingras, M. J. P.

    2016-01-01

    Spin ices, frustrated magnetic materials analogous to common water ice, have emerged over the past 15 years as exemplars of high frustration in three dimensions. Recent experimental developments aimed at interrogating anew the low-temperature properties of these systems, in particular whether the predicted transition to long-range order occurs, behoove researchers to scrutinize our current dipolar spin ice model description of these materials. In this work, we do so by combining extensive Monte Carlo simulations and mean-field theory calculations to analyze data from previous magnetization, diffuse neutron scattering, and specific-heat measurements on the paradigmatic Dy2Ti2O7 spin ice material. In this work, we also reconsider the possible importance of the nuclear specific heat Cnuc in Dy2Ti2O7 . We find that Cnuc is not entirely negligible below a temperature ˜0.5 K and must therefore be taken into account in a quantitative analysis of the calorimetric data of this compound below that temperature. We find that in this material, small effective spin-spin exchange interactions compete with the magnetostatic dipolar interaction responsible for the main spin ice phenomenology. This causes an unexpected "refrustration" of the long-range order that would be expected from the incompletely self-screened dipolar interaction and which positions the material at the boundary between two competing classical long-range-ordered ground states. This allows for the manifestation of new physical low-temperature phenomena in Dy2Ti2O7 , as exposed by recent specific-heat measurements. We show that among the four most likely causes for the observed upturn of the specific heat at low temperature [an exchange-induced transition to long-range order, quantum non-Ising (transverse) terms in the effective spin Hamiltonian, the nuclear hyperfine contribution, and random disorder], only the last appears to be reasonably able to explain the calorimetric data.

  16. Lindblad dynamics of a quantum spherical spin

    NASA Astrophysics Data System (ADS)

    Wald, Sascha; Henkel, Malte

    2016-03-01

    The coherent quantum dynamics of a single bosonic spin variable, subject to a constraint derived from the quantum spherical model of a ferromagnet, and coupled to an external heat bath, is studied through the Lindblad equation for the reduced density matrix. Closed systems of equations of motion for several quantum observables are derived and solved exactly. The relationship to the single-mode Dicke model from quantum optics is discussed. The analysis of the interplay of the quantum fluctuation and the dissipation and their influence on the relaxation of the time-dependent magnetisation leads to the distinction of qualitatively different regimes of weak and strong quantum couplings. Considering the model’s behaviour in an external field as a simple mean-field approximation of the dynamics of a quantum spherical ferromagnet, the magnetic phase diagram appears to be re-entrant and presents a quantum analogue of well-established classical examples of fluctuation-induced order.

  17. Nonlinear damping effects in spin torque dynamics of magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Barsukov, Igor; Chen, Yu-Jin; Lee, Han Kyu; Goncalves, Alexandre; Katine, Jordan; Arias, Rodrigo; Ivanov, Boris; Krivorotov, Ilya

    2015-03-01

    Performance of nanoscale spin torque devices such as memory (STT-MRAM) and auto-oscillators critically depends on magnetic relaxation. It is commonly assumed that magnetization dynamics in the presence of spin torque can be understood as simple competition between antidamping arising from spin torque and Gilbert damping of the free layer. However our experiments reveal that the situation is more complex and that nonlinear damping processes in the free layer of magnetic tunnel junction (MTJ) nanopillars can strongly alter spin torque driven dynamics. We study elliptical MTJ nanopillars with in-plane magnetizations of the free layer and SAF layers by spin torque ferromagnetic resonance. We find an excitation spectrum associated with standing spin waves of the free layer. By varying the external field, the energy of a higher-order spin wave mode becomes twice the energy of the main mode. This opens up a nonlinear, resonant relaxation channel, giving rise to a damping increase of approximately 20 percent. With increasing spin torque provided by a DC bias current, we find that this relaxation channel competes with antidamping in a nonlinear manner, increasingly contributing to and even dominating the relaxation at subcritical currents.

  18. Competing exotic quantum phases of spin-1/2 ultracold lattice bosons with extended spin interactions

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Chen; Rousseau, Valry G.; Scalettar, Richard T.; Batrouni, George G.

    2015-08-01

    Advances in pure optical trapping techniques now allow the creation of degenerate Bose gases with internal degrees of freedom. Systems such as 87Rb,39K, or 23Na in the F =1 hyperfine state offer an ideal platform for studying the interplay of superfluidity and quantum magnetism. Motivated by the experimental developments, we study ground-state phases of a two-component Bose gas loaded on an optical lattice. The system is described effectively by the Bose-Hubbard Hamiltonian with on-site and near-neighbor spin-spin interactions. An important feature of our investigation is the inclusion of interconversion (spin-flip) terms between the two species, which has been observed in optical lattice experiments. Using mean-field theory and quantum Monte Carlo simulations, we map out the phase diagram of the system. A rich variety of phases is identified, including antiferromagnetic (AF) Mott insulators and ferromagnetic and AF superfluids.

  19. Nonequilibrium dynamics and spin segregation in trapped gases

    NASA Astrophysics Data System (ADS)

    Koller, Andrew P.; Mundinger, Joshua; Wall, Michael L.; Rey, Ana Maria

    2015-05-01

    We consider harmonically trapped spin-1/2 gases quenched far from equilibrium by a Ramsey pulse. A magnetic field gradient is applied to the trapped gas, resulting in different trapping potentials for the two spin species. We model the dynamics using an effective spin model Hamiltonian with long range interactions, and use the spin model to understand the results of several experiments on spin diffusion and spin segregation in trapped gases. Supported by JILA-NSF-PFC-1125844, NSF-PIF- 1211914, ARO, AFOSR, AFOSR-MURI, and NDSEG.

  20. Nonequilibrium Spin Dynamics: from Protons in Water to a Gauge Theory of Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Tokatly, I. V.; Sherman, E. Ya.

    Nonequilibrium dynamics of spin degrees of freedom in condensed matter, ranging from classical liquids to solids and ultracold atomic gases, is one of the focus topics in physics. Here we present a gauge theory of spin dynamics in spinorbit coupled gases for a "pure" gauge realization of the spin-orbit coupling field. This approach allows one to describe the spin dynamics in fermionic systems in terms of exact general response functions and to map it on the density dynamics in a dual system without spin-orbit coupling. We apply this approach to electrons in disordered two-dimensional structures and to cold atomic gases of interacting fermions with synthetic spin-orbit coupling at very low temperatures.

  1. Enhanced spin-current tensor contribution in collision dynamics

    SciTech Connect

    Iwata, Yoritaka; Maruhn, Joachim A.

    2011-07-15

    The tensor and spin-orbit forces contribute essentially to the formation of the spin mean field, and give rise to the same dynamical effect, namely spin polarization. In this paper, based on time-dependent density functional calculations, we show that the tensor force, which usually acts like a small correction to the spin-orbit force, becomes more important in heavy-ion reactions and the effect increases with the mass of the system.

  2. Dynamic nuclear spin resonance in n-GaAs.

    PubMed

    Chen, Y S; Reuter, D; Wieck, A D; Bacher, G

    2011-10-14

    The dynamics of optically detected nuclear magnetic resonance is studied in n-GaAs via time-resolved Kerr rotation using an on-chip microcoil for rf field generation. Both optically allowed and optically forbidden NMR are observed with a dynamics controlled by the interplay between dynamic nuclear polarization via hyperfine interaction with optically generated spin-polarized electrons and nuclear spin depolarization due to magnetic resonance absorption. Comparing the characteristic nuclear spin relaxation rate obtained in experiment with master equation simulations, the underlying nuclear spin depolarization mechanism for each resonance is extracted. PMID:22107431

  3. Influences of Initial States on Entanglement Dynamics of Two Central Spins in a Spin Environment

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Jian; Xu, Bao-Ming; Li, Lin; Zou, Jian; Li, Hai; Shao, Bin

    2016-03-01

    We investigate the entanglement dynamics of two electronic spins coupled to a bath of nuclear spins for two special cases, one is that two central spins both interact with a common bath, and the other is that one of two spins interacts with a bath. We consider three types of initial states with different correlations between the system and the bath, i.e., quantum correlation, classical correlation, and no-correlation. We show that the initial correlations (no matter quantum correlations or classical correlations) can effectively avoid the occurrence of entanglement sudden death. Irrespective of whether both two spins or only one of the two spins interacts with the bath, the system can gain more entanglement in the process of the time evolution for initial quantum correlations. In addition, we find that the effects of the distribution of coupling constants on entanglement dynamics crucially depend on the initial state of the spin bath.

  4. Influences of Initial States on Entanglement Dynamics of Two Central Spins in a Spin Environment

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Jian; Xu, Bao-Ming; Li, Lin; Zou, Jian; Li, Hai; Shao, Bin

    2015-09-01

    We investigate the entanglement dynamics of two electronic spins coupled to a bath of nuclear spins for two special cases, one is that two central spins both interact with a common bath, and the other is that one of two spins interacts with a bath. We consider three types of initial states with different correlations between the system and the bath, i.e., quantum correlation, classical correlation, and no-correlation. We show that the initial correlations (no matter quantum correlations or classical correlations) can effectively avoid the occurrence of entanglement sudden death. Irrespective of whether both two spins or only one of the two spins interacts with the bath, the system can gain more entanglement in the process of the time evolution for initial quantum correlations. In addition, we find that the effects of the distribution of coupling constants on entanglement dynamics crucially depend on the initial state of the spin bath.

  5. Dynamics of a macroscopic spin qubit in spin-orbit coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Mardonov, Sh; Modugno, M.; Sherman, E. Ya

    2015-06-01

    We consider a macroscopic spin qubit based on spin-orbit coupled Bose-Einstein condensates, where, in addition to the spin-orbit coupling (SOC), spin dynamics strongly depends on the interaction between particles. The evolution of the spin for freely expanding, trapped, and externally driven condensates is investigated. For condensates oscillating at the frequency corresponding to the Zeeman splitting in the synthetic magnetic field, the spin Rabi frequency does not depend on the interaction between the atoms since it produces only internal forces and does not change the total momentum. However, interactions and SOC bring the system into a mixed spin state, where the total spin is inside rather than on the Bloch sphere. This greatly extends the available spin space making it three-dimensional, but imposes limitations on the reliable spin manipulation of such a macroscopic qubit. The spin dynamics can be modified by introducing suitable spin-dependent initial phases, determined by the SOC, in the spinor wave function.

  6. Electron-spin dynamics in elliptically polarized light waves

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Ahrens, Sven; Grobe, Rainer

    2014-11-01

    We investigate the coupling of the spin angular momentum of light beams with elliptical polarization to the spin degree of freedom of free electrons. It is shown that this coupling, which is of similar origin as the well-known spin-orbit coupling, can lead to spin precession. The spin-precession frequency is proportional to the product of the laser field's intensity and its spin density. The electron-spin dynamics is analyzed by employing exact numerical methods as well as time-dependent perturbation theory based on the fully relativistic Dirac equation and on the nonrelativistic Pauli equation that is amended by a relativistic correction that accounts for the light's spin density.

  7. Electron Spin Dynamics in Semiconductor Quantum Dots

    SciTech Connect

    Marie, X.; Belhadj, T.; Urbaszek, B.; Amand, T.; Krebs, O.; Lemaitre, A.; Voisin, P.

    2011-07-15

    An electron spin confined to a semiconductor quantum dot is not subject to the classical spin relaxation mechanisms known for free carriers but it strongly interacts with the nuclear spin system via the hyperfine interaction. We show in time resolved photoluminescence spectroscopy experiments on ensembles of self assembled InAs quantum dots in GaAs that this interaction leads to strong electron spin dephasing.

  8. Impact of nuclear spin dynamics on electron transport through donors

    NASA Astrophysics Data System (ADS)

    Gorman, S. K.; Broome, M. A.; Baker, W. J.; Simmons, M. Y.

    2015-09-01

    We present an analysis of electron transport through two weakly coupled precision-placed phosphorus donors in silicon. In particular, we examine the (1,1)?(0,2) charge transition where we predict a type of current blockade driven entirely by the nuclear spin dynamics. Using this nuclear spin blockade mechanism, we devise a protocol to read out the state of single nuclear spins using electron-transport measurements only. We extend our model to include realistic effects such as Stark shifted hyperfine interactions and multidonor clusters. In the case of multidonor clusters we show how nuclear spin blockade can be alleviated, allowing for low magnetic field electron-spin measurements.

  9. Nonequilibrium dynamics of spin-orbit-coupled lattice bosons

    NASA Astrophysics Data System (ADS)

    Ng, H. T.

    2015-10-01

    We study the nonequilibrium dynamics of two-component bosonic atoms in a one-dimensional optical lattice in the presence of spin-orbit coupling. In the Mott-insulating regime, the two-component bosonic system at unity filling can be described by the quantum spin X X Z model. The atoms are initially prepared in their lower spin states. The system becomes out of equilibrium by suddenly introducing spin-orbit coupling to the atoms. The system shows the relaxation and nonstationary dynamics, respectively, in the different interaction regimes. We find that the time average of magnetization is useful to characterize the many-body dynamics. The effects of even and odd numbers of sites are discussed. Our result sheds light on nonequilibrium dynamics due to the interplay between spin-orbit coupling and atomic interactions.

  10. Quasiparticle dynamics and competing order in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Orenstein, Joseph

    2014-03-01

    We report time-resolved optical measurements that reveal quasiparticle and collective mode dynamics in the presence of competing order in cuprate superconductors. In these measurements, we use low-intensity short pulses of light to perturb the equilibrium state and time-resolve the ensuing change in optical reflectivity at a photon energy of 1.5 eV. The perturbing pulse generates a nonequilibrium population of quasiparticles near the Fermi energy by allowed dipole transitions as well as collective excitations through a Raman process. Tracking the relaxation of the single particle and collective modes through the phase space of temperature, carrier concentration, and magnetic field allows us to observe the interaction between the competing phases. In this talk I will describe measurements in (i) YBCO ortho III and VIII in which photoexcitation is observed to generated collective oscillations of CDW order whose phase begins to rotate by 180 at the superconducting transition temperature (Tc) . (ii) Nd 2-xCexCuO4+? that indicate excitation of a collective mode that displays quantum critical dynamics above Tc and competition with superconductivity below. (iii) HgBa2CuO4+? that indicate a cusp in the quasiparticle recombination lifetime at Tc that we associate with quasiparticle coherence effects. The size of the cusp is maximal at 8% hole concentration, possibly coinciding with the peak of a competing CDW phase, and decreases rapidly with applied magnetic field. Lastly, we observe a complex, non-monotonic temperature dependence in the dynamics near hole concentration of 18%, providing evidence for competing phases within the superconducting dome. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.

  11. Hedgehog spin texture and competing orders on the surface of strained topological crystalline insulators

    NASA Astrophysics Data System (ADS)

    Huang, Cheng-Yi; Tsai, Wei-Feng; Wang, Yung Jui; Lin, Hsin; Bansil, Arun

    2014-03-01

    We discuss spin reorientation phenomena, which may or may not yield gap formation, on the surface of topological crystalline insulators Pb1-xSnx(Te, Se) under various applied strains. The low-energy surface electrons on the (001) surface behave like massless Dirac particles with four Dirac points centered along the intersection of the mirror (xz or yz) plane and the surface plane. We use a four-band k.p model, which captures the spin and orbital texture of the surface states around surface X (or Y) point up to the energy around the Lifshitz transition, and systematically study effects of the applied strain. In contrast to the case without any strain, where the absence of the out-of-the-plane spin component is guaranteed by both the mirror and the time-reversal symmetries, we find that without time-reversal symmetry breaking, the hedgehog-like spin textures associated with a gap formation can be induced by the strain only, breaking the xz mirror symmetry. The other cases cannot induce a gap at Dirac points. We also investigate interaction-driven competing orders under the strain and obtain a phase diagram at the mean-field level to reveal the possible novel surface states in the system.

  12. Nonlinear dynamics of spin and charge in spin-Calogero model

    SciTech Connect

    Kulkarni, Manas; Franchini, Fabio; Abanov, Alexander G.

    2009-10-15

    The fully nonlinear dynamics of spin and charge in spin-Calogero model is studied. The latter is an integrable one-dimensional model of quantum spin-1/2 particles interacting through inverse-square interaction and exchange. Classical hydrodynamic equations of motion are written for this model in the regime where gradient corrections to the exact hydrodynamic formulation of the theory may be neglected. In this approximation variables separate in terms of dressed Fermi momenta of the model. Hydrodynamic equations reduce to a set of decoupled Riemann-Hopf (or inviscid Burgers') equations for the dressed Fermi momenta. We study the dynamics of some nonequilibrium spin-charge configurations for times smaller than the time scale of the gradient catastrophe. We find an interesting interplay between spin and charge degrees of freedom. In the limit of large coupling constant the hydrodynamics reduces to the spin hydrodynamics of the Haldane-Shastry model.

  13. Semiclassical spin-spin dynamics and feedback control in transport through a quantum dot

    NASA Astrophysics Data System (ADS)

    Mosshammer, Klemens; Brandes, Tobias

    2014-10-01

    We present a theory of magnetotransport through an electronic orbital, where the electron spin interacts with a (sufficiently) large external spin via an exchange interaction. Using a semiclassical approximation, we derive a set of equations of motions for the electron density matrix and the mean value of the external spin that turns out to be highly nonlinear. The dissipation via the electronic leads is implemented in terms of a quantum master equation that is combined with the nonlinear terms of the spin-spin interaction. With an anisotropic exchange coupling a variety of dynamics is generated, such as self-sustained oscillations with parametric resonances or even chaotic behavior. Within our theory we can integrate a Maxwell-demon-like closed-loop feedback scheme that is capable of transporting particles against an applied bias voltage and that can be used to implement a spin filter to generate spin-dependent oscillating currents of opposite directions.

  14. Using Nonequilibrium Dynamics to Probe Competing Orders in a Mott-Peierls System.

    PubMed

    Wang, Y; Moritz, B; Chen, C-C; Jia, C J; van Veenendaal, M; Devereaux, T P

    2016-02-26

    Competition between ordered phases, and their associated phase transitions, are significant in the study of strongly correlated systems. Here, we examine one aspect, the nonequilibrium dynamics of a photoexcited Mott-Peierls system, using an effective Peierls-Hubbard model and exact diagonalization. Near a transition where spin and charge become strongly intertwined, we observe antiphase dynamics and a coupling-strength-dependent suppression or enhancement in the static structure factors. The renormalized bosonic excitations coupled to a particular photoexcited electron can be extracted, which provides an approach for characterizing the underlying bosonic modes. The results from this analysis for different electronic momenta show an uneven softening due to a stronger coupling near k_{F}. This behavior reflects the strong link between the fermionic momenta, the coupling vertices, and ultimately, the bosonic susceptibilities when multiple phases compete for the ground state of the system. PMID:26967429

  15. Spin pumping magnetization dynamics and scattering theory

    NASA Astrophysics Data System (ADS)

    Arne, Brataas

    2003-03-01

    Nanostructured ferromagnet-normal metal systems have recently attracted considerable attention. Slonczewski and Berger proposed that a spin-current could cause a switching of the magnetization orientation [1,2]. In their picture the spin-current induces a torque, a "spin-torque", on the spins of the conduction electrons, which subsequently transmit this torque to the magnetization. We demonstrate that there is also the reverse mechanism: Precessing ferromagnets inject a spin-current into adjacent conductors [3]. When the normal metal is a good sink this "pumping" of spins slows down the precession corresponding to an enhanced Gilbert damping in the Landau-Lifshitz equation. In the opposite regime, when the spin-flip relaxation time in the normal metal is long, "spin-pumping" opens the way to create a pure spin source ("spin battery") [4]. [1] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996). [2] L. Berger, Phys. Rev. B 54, 9353 (1996). [3] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002). [4] A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, and B. I. Halperin, Phys. Rev. B 66, 060404 (R) (2002).

  16. Dynamics of Spin-(1)/(2) Quantum Plasmas

    NASA Astrophysics Data System (ADS)

    Marklund, Mattias; Brodin, Gert

    2007-01-01

    The fully nonlinear governing equations for spin-(1)/(2) quantum plasmas are presented. Starting from the Pauli equation, the relevant plasma equations are derived, and it is shown that nontrivial quantum spin couplings arise, enabling studies of the combined collective and spin dynamics. The linear response of the quantum plasma in an electron-ion system is obtained and analyzed. Applications of the theory to solid state and astrophysical systems as well as dusty plasmas are pointed out.

  17. Dynamics of spin-1/2 quantum plasmas.

    PubMed

    Marklund, Mattias; Brodin, Gert

    2007-01-12

    The fully nonlinear governing equations for spin-1/2 quantum plasmas are presented. Starting from the Pauli equation, the relevant plasma equations are derived, and it is shown that nontrivial quantum spin couplings arise, enabling studies of the combined collective and spin dynamics. The linear response of the quantum plasma in an electron-ion system is obtained and analyzed. Applications of the theory to solid state and astrophysical systems as well as dusty plasmas are pointed out. PMID:17358613

  18. Dynamics of test bodies with spin in de Sitter spacetime

    SciTech Connect

    Obukhov, Yuri N.; Puetzfeld, Dirk

    2011-02-15

    We study the motion of spinning test bodies in the de Sitter spacetime of constant positive curvature. With the help of the 10 Killing vectors, we derive the 4-momentum and the tensor of spin explicitly in terms of the spacetime coordinates. However, in order to find the actual trajectories, one needs to impose the so-called supplementary condition. We discuss the dynamics of spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.

  19. Relaxation dynamics of a fermionic quantum gas with high spin

    NASA Astrophysics Data System (ADS)

    Flaeschner, Nick; Krauser, Jasper; Sengstock, Klaus; Becker, Christoph; Ebling, Ulrich; Lewenstein, Maciej; Eckardt, Andre

    2014-05-01

    The relaxation of a closed quantum system constitutes a fundamental question in many-body physics. We present a detailed study of relaxation dynamics in a fermionic quantum gas of 40 K atoms with high spin. The fermions are initially prepared far from equilibrium occupying only a few spin states. This induces a complex relaxation dynamics towards an equal spin population; meanwhile the whole spin system provides a bath for the thermalization for its individual spin subsystems. Our experimental results yield a good agreement with a kinetic Boltzmann equation, derived from a microscopic approach without free parameters. We identify several collisional processes governing the dynamics on fully different time scales and demonstrate the high experimental control by tuning the crucial parameters of the system, e.g. density and magnetic field. Our results open the path to engineering an open system with controllable dissipation into empty subsystems.

  20. Domain wall dynamics in a spin-reorientation transition system Au/Co/Au

    SciTech Connect

    Roy, Sujoy; Seu, Keoki; Turner, Joshua J.; Park, Sungkyun; Kevan, Steve; Falco, Charles M.

    2009-05-14

    We report measurements of domain wall dynamics in an ultrathin Au/Co/Au system that exhibits a spin reorientation phase transition as a function of temperature.The domain walls exhibit cooperative motion throughout the temperature range of 150 - 300 K. The decay times were found to exhibit a maximum at the transition temperature. The slowdown has been explained as due to formation of a double well in the energy landscape by the different competing interactions. Our results show that the complex, slow dynamics can provide a more fundamental understanding of magnetic phase transitions.

  1. Production dynamics and high p/sub T/ spin effects

    SciTech Connect

    Soffer, J.

    1988-08-01

    We will emphasize the importance of spin for our understanding of production dynamics at high p/sub T/. Within the framework of perturbative QCD several predictions for interesting spin observables are presented for various reactions. They are crucial tests accessible to existing or future experimental programs. 17 refs., 10 figs.

  2. Self-quenching of nuclear spin dynamics in the central spin problem

    NASA Astrophysics Data System (ADS)

    Brataas, Arne; Rashba, Emmanuel I.

    2014-01-01

    We consider, in the framework of the central spin s =1/2 model, driven dynamics of two electrons in a double quantum dot subject to hyperfine interaction with nuclear spins and spin-orbit coupling. The nuclear subsystem dynamically evolves in response to Landau-Zener singlet-triplet transitions of the electronic subsystem controlled by external gate voltages. Without noise and spin-orbit coupling, subsequent Landau-Zener transitions die out after about 104 sweeps, the system self-quenches, and nuclear spins reach one of the numerous glassy dark states. We present an analytical model that captures this phenomenon. We also account for the multi-nuclear-specie content of the dots and numerically determine the evolution of around 107 nuclear spins in up to 2105 Landau-Zener transitions. Without spin-orbit coupling, self-quenching is robust and sets in for arbitrary ratios of the nuclear spin precession times and the waiting time between Landau-Zener sweeps as well as under moderate noise. In the presence of spin-orbit coupling of a moderate magnitude, and when the waiting time is in resonance with the precession time of one of the nuclear species, the dynamical evolution of nuclear polarization results in stroboscopic screening of spin-orbit coupling. However, small deviations from the resonance or strong spin-orbit coupling destroy this screening. We suggest that the success of the feedback loop technique for building nuclear gradients is based on the effect of spin-orbit coupling.

  3. Managerial competencies necessary in today's dynamic health care environment.

    PubMed

    Anderson, Peggy; Pulich, Marcia

    2002-12-01

    The traditional functions of management--planning, organizing, leading, and controlling--continue to be the key activities used to enable the organization to accomplish its goals and objectives. Though significant changes have occurred in all organizational structures, processes, and managerial styles, these traditional functions remain a constant. What has undergone significant change, as this article examines, are the skills and competencies within each function, which managers must develop and employ if they are to be successful practitioners in today's dynamic health care organizations. PMID:14959894

  4. Dynamics of ferromagnetic spin glass: randomly canted ferromagnet versus skewed spin glass

    NASA Astrophysics Data System (ADS)

    Janutka, Andrzej

    2003-12-01

    A ferromagnetic spin glass (FSG) is one of the three isotropic and homogeneous phases of the long-range partially ordered magnets with spin and atomic disorder which are selected by symmetry (Andreev 1978 Sov. Phys.—JETP 47 411) (the others are genuine and antiferromagnetic spin glasses). The linear dynamical response to a magnetic field of two sub-phases of a FSG with drastically different dynamics, a randomly canted ferromagnet, in which the component spins create an acute angle with the summary magnetic moment, and a less-ordered skewed spin glass is analysed in the spin-wave approximation in the framework of phenomenological theory. The spin-wave damping coefficients and frequency shifts due to a magnon-magnon interaction are evaluated as functions of temperature and wavevector as well as the spectral-weight functions of the linear response to a magnetic field and the neutron scattering cross section which provides the possibility for experimental verification of the results. Substantial differences in the spin-wave characteristics of the FSG compared to those of the Heisenberg spin glass and the Heisenberg ferromagnet are found to be due to non-linear anisotropy effects in a FSG.

  5. Spin dynamics simulation of electron spin relaxation in Ni{sup 2+}(aq)

    SciTech Connect

    Rantaharju, Jyrki Mareš, Jiří Vaara, Juha

    2014-07-07

    The ability to quantitatively predict and analyze the rate of electron spin relaxation of open-shell systems is important for electron paramagnetic resonance and paramagnetic nuclear magnetic resonance spectroscopies. We present a combined molecular dynamics (MD), quantum chemistry (QC), and spin dynamics simulation method for calculating such spin relaxation rates. The method is based on the sampling of a MD trajectory by QC calculations, to produce instantaneous parameters of the spin Hamiltonian used, in turn, to numerically solve the Liouville-von Neumann equation for the time evolution of the spin density matrix. We demonstrate the approach by simulating the relaxation of electron spin in an aqueous solution of Ni{sup 2+} ion. The spin-lattice (T{sub 1}) and spin-spin (T{sub 2}) relaxation rates are extracted directly from the simulations of the time dependence of the longitudinal and transverse magnetization, respectively. Good agreement with the available, indirectly obtained experimental data is obtained by our method.

  6. Shapiro like steps reveals molecular nanomagnets' spin dynamics

    NASA Astrophysics Data System (ADS)

    Abdollahipour, Babak; Abouie, Jahanfar; Ebrahimi, Navid

    2015-09-01

    We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet's spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields.

  7. Dynamic control of spin wave spectra using spin-polarized currents

    SciTech Connect

    Wang, Qi; Zhang, Huaiwu Tang, Xiaoli; Bai, Feiming; Zhong, Zhiyong; Fangohr, Hans

    2014-09-15

    We describe a method of controlling the spin wave spectra dynamically in a uniform nanostripe waveguide through spin-polarized currents. A stable periodic magnetization structure is observed when the current flows vertically through the center of nanostripe waveguide. After being excited, the spin wave is transmitted at the sides of the waveguide. Numerical simulations of spin-wave transmission and dispersion curves reveal a single, pronounced band gap. Moreover, the periodic magnetization structure can be turned on and off by the spin-polarized current. The switching process from full rejection to full transmission takes place within less than 3?ns. Thus, this type magnonic waveguide can be utilized for low-dissipation spin wave based filters.

  8. Gilbert damping of ferromagnetic metals incorporating inhomogeneous spin dynamics

    SciTech Connect

    Umetsu, Nobuyuki Miura, Daisuke; Sakuma, Akimasa

    2015-05-07

    The effects of inhomogeneous spin dynamics on magnetic damping in ferromagnetic metals are studied. On the basis of linear response theory, we derive the microscopic expression for the Gilbert damping term in a two-dimensional electron gas interacting with the magnetization via exchange coupling in the presence of Rashba spin-orbit coupling (SOC). In the spin wave propagating with the wave vector, q, the behavior of q-dependent damping can be explained in terms of both inter- and intra-band spin excitations. The spatially dependent damping torques originating from Rashba SOC that cancel out in a uniform precession system distort the circular orbit of a magnetization-precession trajectory in the presence of inhomogeneous spin dynamics.

  9. Dynamics, synchronization, and quantum phase transitions of two dissipative spins

    SciTech Connect

    Orth, Peter P.; Le Hur, Karyn; Roosen, David; Hofstetter, Walter

    2010-10-01

    We analyze the static and dynamic properties of two Ising-coupled quantum spins embedded in a common bosonic bath as an archetype of dissipative quantum mechanics. First, we elucidate the ground-state phase diagram for an Ohmic and a sub-Ohmic bath using a combination of bosonic numerical renormalization group (NRG), analytical techniques, and intuitive arguments. Second, by employing the time-dependent NRG we investigate the system's rich dynamical behavior arising from the complex interplay between spin-spin and spin-bath interactions. Interestingly, spin oscillations can synchronize due to the proximity of the common non-Markovian bath and the system displays highly entangled steady states for certain nonequilibrium initial preparations. We complement our nonperturbative numerical results by exact analytical solutions when available and provide quantitative limits on the applicability of the perturbative Bloch-Redfield approach at weak coupling.

  10. Cosmological dynamics with propagating Lorentz connection modes of spin zero

    SciTech Connect

    Chen, Hsin; Ho, Fei-Hung; Nester, James M.; Wang, Chih-Hung; Yo, Hwei-Jang E-mail: 93242010@cc.ncu.edu.tw E-mail: chwang@phy.ncu.edu.tw

    2009-10-01

    The Poincar gauge theory of gravity has a Lorentz connection with both torsion and curvature. For this theory two good propagating connection modes, carrying spin-0{sup +} and spin-0{sup ?}, have been found. The possible effects of the spin-0{sup +} mode in cosmology were investigated in a previous work by our group; there it was found that the 0{sup +} mode could account for the presently accelerating universe. Here, we extend the analysis to also include the spin-0{sup ?} mode. The resulting cosmological model has three degrees of freedom. We present both the Lagrangian and Hamiltonian form of the dynamic equations for this model, find the late-time normal modes, and present some numerical evolution cases. In the late time asymptotic regime the two dynamic modes decouple, and the acceleration of the Universe oscillates due to the spin-0{sup +} mode.

  11. Gilbert damping of ferromagnetic metals incorporating inhomogeneous spin dynamics

    NASA Astrophysics Data System (ADS)

    Umetsu, Nobuyuki; Miura, Daisuke; Sakuma, Akimasa

    2015-05-01

    The effects of inhomogeneous spin dynamics on magnetic damping in ferromagnetic metals are studied. On the basis of linear response theory, we derive the microscopic expression for the Gilbert damping term in a two-dimensional electron gas interacting with the magnetization via exchange coupling in the presence of Rashba spin-orbit coupling (SOC). In the spin wave propagating with the wave vector, q, the behavior of q-dependent damping can be explained in terms of both inter- and intra-band spin excitations. The spatially dependent damping torques originating from Rashba SOC that cancel out in a uniform precession system distort the circular orbit of a magnetization-precession trajectory in the presence of inhomogeneous spin dynamics.

  12. NMR with generalized dynamics of spin and spatial coordinates

    SciTech Connect

    Lee, Chang Jae

    1987-11-01

    This work is concerned with theoretical and experimental aspects of the generalized dynamics of nuclear spin and spatial coordinates under magnetic-field pulses and mechanical motions. The main text begins with an introduction to the concept of ''fictitious'' interactions. A systematic method for constructing fictitious spin-1/2 operators is given. The interaction of spins with a quantized-field is described. The concept of the fictitious interactions under the irradiation of multiple pulses is utilized to design sequences for selectively averaging linear and bilinear operators. Relations between the low-field sequences and high-field iterative schemes are clarified. These relations and the transformation properties of the spin operators are exploited to develop schemes for heteronuclear decoupling of multi-level systems. The resulting schemes are evaluated for heteronuclear decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples and from a homonuclear spin-1/2 pair in liquids. A relation between the spin and the spatial variables is discussed. The transformation properties of the spin operators are applied to spatial coordinates and utilized to develop methods for removing the orientational dependence responsible for line broadening in a powder sample. Elimination of the second order quadrupole effects, as well as the first order anisotropies is discussed. It is shown that various sources of line broadening can effectively be eliminated by spinning and/or hopping the sample about judiciously chosen axes along with appropriate radio-frequency pulse sequences.

  13. Nonadiabatic multichannel dynamics of a spin-orbit-coupled condensate

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Zheng, Jun-hui; Wang, Daw-wei

    2015-06-01

    We investigate the nonadiabatic dynamics of a driven spin-orbit-coupled Bose-Einstein condensate in both weak and strong driven force. It is shown that the standard Landau-Zener (LZ) tunneling fails in the regime of weak driven force and/or strong spin-orbital coupling, where the full nonadiabatic dynamics requires a new mechanism through multichannel effects. Beyond the semiclassical approach, our numerical and analytical results show an oscillating power-law decay in the quantum limit, different from the exponential decay in the semiclassical limit of the LZ effect. Furthermore, the condensate density profile is found to be dynamically fragmented by the multichannel effects and enhanced by interaction effects. Our work therefore provides a complete picture to understand the nonadiabatic dynamics of a spin-orbit coupled condensate, including various ranges of driven force and interaction effects through multichannel interference. The experimental indication of these nonadiabatic dynamics is also discussed.

  14. Competing magnetic fluctuations in iron pnictide superconductors: Role of ferromagnetic spin correlations revealed by NMR

    DOE PAGESBeta

    Wiecki, P.; Roy, B.; Johnston, D. C.; Bud’ko, S. L.; Canfield, P. C.; Furukawa, Y.

    2015-09-22

    In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using 75As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe2As2 families of iron-pnictide superconductors. Furthermore, these FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of Tc and the shape of the superconducting domemore » in these and other iron-pnictide families.« less

  15. Competing Magnetic Fluctuations in Iron Pnictide Superconductors: Role of Ferromagnetic Spin Correlations Revealed by NMR

    NASA Astrophysics Data System (ADS)

    Wiecki, P.; Roy, B.; Johnston, D. C.; Bud'ko, S. L.; Canfield, P. C.; Furukawa, Y.

    2015-09-01

    In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using 75As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe2As2 families of iron-pnictide superconductors. These FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of Tc and the shape of the superconducting dome in these and other iron-pnictide families.

  16. Competing magnetic fluctuations in iron pnictide superconductors: Role of ferromagnetic spin correlations revealed by NMR

    SciTech Connect

    Wiecki, P.; Roy, B.; Johnston, D. C.; Bud’ko, S. L.; Canfield, P. C.; Furukawa, Y.

    2015-09-22

    In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using 75As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe2As2 families of iron-pnictide superconductors. Furthermore, these FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of Tc and the shape of the superconducting dome in these and other iron-pnictide families.

  17. Simulating spin dynamics in organic solids under heteronuclear decoupling.

    PubMed

    Frantsuzov, Ilya; Ernst, Matthias; Brown, Steven P; Hodgkinson, Paul

    2015-09-01

    Although considerable progress has been made in simulating the dynamics of multiple coupled nuclear spins, predicting the evolution of nuclear magnetisation in the presence of radio-frequency decoupling remains challenging. We use exact numerical simulations of the spin dynamics under simultaneous magic-angle spinning and RF decoupling to determine the extent to which numerical simulations can be used to predict the experimental performance of heteronuclear decoupling for the CW, TPPM and XiX sequences, using the methylene group of glycine as a model system. The signal decay times are shown to be strongly dependent on the largest spin order simulated. Unexpectedly large differences are observed between the dynamics with and without spin echoes. Qualitative trends are well reproduced by modestly sized spin system simulations, and the effects of finite spin-system size can, in favourable cases, be mitigated by extrapolation. Quantitative prediction of the behaviour in complex parameter spaces is found, however, to be very challenging, suggesting that there are significant limits to the role of numerical simulations in RF decoupling problems, even when specialist techniques, such as state-space restriction, are used. PMID:26073419

  18. Universal Coarsening Dynamics of a Quenched Ferromagnetic Spin-1 Condensate

    NASA Astrophysics Data System (ADS)

    Williamson, Lewis A.; Blakie, P. B.

    2016-01-01

    We demonstrate that a quasi-two-dimensional spin-1 condensate quenched to a ferromagnetic phase undergoes universal coarsening in its late time dynamics. The quench can be implemented by a sudden change in the applied magnetic field and, depending on the final value, the ferromagnetic phase has easy-axis (Ising) or easy-plane (X Y ) symmetry, with different dynamical critical exponents. Our results for the easy-plane phase reveal a fractal domain structure and the crucial role of polar-core spin vortices in the coarsening dynamics.

  19. Universal Coarsening Dynamics of a Quenched Ferromagnetic Spin-1 Condensate.

    PubMed

    Williamson, Lewis A; Blakie, P B

    2016-01-15

    We demonstrate that a quasi-two-dimensional spin-1 condensate quenched to a ferromagnetic phase undergoes universal coarsening in its late time dynamics. The quench can be implemented by a sudden change in the applied magnetic field and, depending on the final value, the ferromagnetic phase has easy-axis (Ising) or easy-plane (XY) symmetry, with different dynamical critical exponents. Our results for the easy-plane phase reveal a fractal domain structure and the crucial role of polar-core spin vortices in the coarsening dynamics. PMID:26824546

  20. Incomplete fusion dynamics by spin distribution measurements

    SciTech Connect

    Singh, D.; Ali, R.; Ansari, M. Afzal; Singh, Pushpendra P.; Sharma, M. K.; Singh, B. P.; Babu, K. Surendra; Sinha, Rishi K.; Kumar, R.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2010-02-15

    Spin distributions for various evaporation residues populated via complete and incomplete fusion of {sup 16}O with {sup 124}Sn at 6.3 MeV/nucleon have been measured, using charged particles (Z=1,2)-{gamma} coincidence technique. Experimentally measured spin distributions of the residues produced as incomplete fusion products associated with 'fast'{alpha}- and 2{alpha}-emission channels observed in the 'forward cone' are found to be distinctly different from those of the residues produced as complete fusion products. Moreover, 'fast'{alpha}-particles that arise from larger angular momentum in the entrance channel are populated at relatively higher driving input angular momentum than those produced through complete fusion. The incomplete fusion residues are populated in a limited, higher-angular-momentum range, in contrast to the complete fusion products, which are populated over a broad spin range.

  1. The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Wollan, D. S.

    1974-01-01

    A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.

  2. Gigahertz dynamics of a strongly driven single quantum spin.

    PubMed

    Fuchs, G D; Dobrovitski, V V; Toyli, D M; Heremans, F J; Awschalom, D D

    2009-12-11

    Two-level systems are at the core of numerous real-world technologies such as magnetic resonance imaging and atomic clocks. Coherent control of the state is achieved with an oscillating field that drives dynamics at a rate determined by its amplitude. As the strength of the field is increased, a different regime emerges where linear scaling of the manipulation rate breaks down and complex dynamics are expected. By calibrating the spin rotation with an adiabatic passage, we have measured the room-temperature "strong-driving" dynamics of a single nitrogen vacancy center in diamond. With an adiabatic passage to calibrate the spin rotation, we observed dynamics on sub-nanosecond time scales. Contrary to conventional thinking, this breakdown of the rotating wave approximation provides opportunities for time-optimal quantum control of a single spin. PMID:19965386

  3. Competing effect of blocking and spin frustration in nanostructured gadolinium iron garnets

    NASA Astrophysics Data System (ADS)

    Phan, M. H.; Morales, M. B.; Srikanth, H.; Chinnasamy, C. N.; Harris, V. G.

    2009-03-01

    The ground state magnetic properties and relaxation mechanism in magnetically frustrated system of Gd3Fe5O12 is of topical interest due to its complex magnetic structure. As a consequence of geometric and magnetic frustrations, the Gd3Fe5O12 system is expected to show glassy magnetic behavior. Through a comprehensive study of DC magnetization, AC susceptibility, transverse susceptibility, and magnetocaloric effect in Gd3Fe5O12 bulk and nanostructured materials, we provide physical insights into the glassy nature and magnetic relaxation mechanisms in the gadolinium iron garnet system. It is shown that bulk Gd3Fe5O12 undergoes two different glassy states at temperatures below its compensation temperature with the low temperature glass properties strongly influenced by Gd ordering. However, the glassy nature is largely suppressed in Gd3Fe5O12 nanoparticles in which the blocking phenomenon competes with the spin frustration effect. As particle size is decreased, the blocking effect is dominant over the spin frustration effect. As a result, the nanostructured system shows magnetic relaxation features arising mainly from superparamagnetism.

  4. Enhancement of spin coherence in a spin-1 Bose-Einstein condensate by dynamical decoupling approaches

    SciTech Connect

    Ning Boyuan; Zhuang Jun; Zhang Wenxian; You, J. Q.

    2011-07-15

    We study the enhancement of spin coherence with periodic, concatenated, or Uhrig dynamical decoupling N-pulse sequences in a spin-1 Bose-Einstein condensate, where the intrinsic dynamical instability in such a ferromagnetically interacting condensate causes spin decoherence and eventually leads to a multiple spatial-domain structure or a spin texture. Our results show that all three sequences successfully enhance the spin coherence by pushing the wave vector of the most unstable mode in the condensate to a larger value. Among the three sequences with the same number of pulses, the concatenated one shows the best performance in preserving the spin coherence. More interestingly, we find that all three sequences exactly follow the same enhancement law, k{sub -}T{sup 1/2}=c, with k{sub -} the wave vector of the most unstable mode, T the sequence period, and c a sequence-dependent constant. Such a law between k{sub -} and T is also derived analytically for an attractive scalar Bose-Einstein condensate subjected to a periodic dynamical decoupling sequence.

  5. Number Fluctuation Dynamics of Atomic Spin Mixing inside a Condensate

    SciTech Connect

    Chang, Lee; Zhai, Q.; Lu Rong; You, L.

    2007-08-24

    We investigate the quantum dynamics of number fluctuations inside an atomic condensate during coherent spin mixing among internal states of the ground state hyperfine manifold, by quantizing the semiclassical nonrigid pendulum model in terms of the conjugate variable pair: the relative phase and the atom number. Our result provides a theoretical basis that resolves the resolution limit, or the effective ''shot-noise'' level, for counting atoms that is needed to clearly detect quantum correlation effects in spin mixing.

  6. Numerical Researches on Dynamical Systems with Relativistic Spin

    NASA Astrophysics Data System (ADS)

    Han, W. B.

    2010-04-01

    It is well known that spinning compact binaries are one of the most important research objects in the universe. Especially, EMRIs (extreme mass ratio inspirals) involving stellar compact objects which orbit massive black holes, are considered to be primary sources of gravitational radiation (GW) which could be detected by the space-based interferometer LISA. GW signals from EMRIs can be used to test general relativity, measure the masses and spins of central black holes and study essential physics near horizons. Compared with the situation without spin, the complexity of extreme objects, most of which rotate very fast, is much higher. So the dynamics of EMRI systems are numerically and analytically studied. We focus on how the spin effects on the dynamics of these systems and the produced GW radiations. Firstly, an ideal model of spinning test particles around Kerr black hole is considered. For equatorial orbits, we present the correct expression of effective potential and analyze the stability of circular orbits. Especially, the gravitational binding energy and frame-dragging effect of extreme Kerr black hole are much bigger than those without spin. For general orbits, spin can monotonically enlarge orbital inclination and destroy the symmetry of orbits about equatorial plane. It is the most important that extreme spin can produce orbital chaos. By carefully investigating the relations between chaos and orbital parameters, we point out that chaos usually appears for orbits with small pericenter, big eccentricity and orbital inclination. It is emphasized that Poincar section method is invalid to detect the chaos of spinning particles, and the way of systems toward chaos is the period-doubling bifurcation. Furthermore, we study how spins effect on GW radiations from spinning test particles orbiting Kerr black holes. It is found that spins can increase orbit eccentricity and then make h+ component be detected more easily. But for h component, because spins change orbital inclination in a complicated way, it is more difficult to build GW signal templates. Secondly, based on the scalar gravity theory, a numerical relativistic model of EMRIs is constructed to consider the self-gravity and radiation reaction of low-mass objects. Finally, we develop a new method with multiple steps for Hamilton systems to meet the needs of numerical researches. This method can effectively maintain each conserved quantity of the separable Hamilton system. In addition, for constrained system with a few first integrals, we present a new numerical stabilization method named as adjustment-stabilization method, which can maintain all known conserved quantities in a given dynamical system and greatly improve the numerical accuracy. Our new method is the most complete stabilization method up to now.

  7. Robust dynamical decoupling sequences for individual-nuclear-spin addressing

    NASA Astrophysics Data System (ADS)

    Casanova, J.; Wang, Z.-Y.; Haase, J. F.; Plenio, M. B.

    2015-10-01

    We propose the use of non-equally-spaced decoupling pulses for high-resolution selective addressing of nuclear spins by a quantum sensor. The analytical model of the basic operating principle is supplemented by detailed numerical studies that demonstrate the high degree of selectivity and the robustness against static and dynamic control-field errors of this scheme. We exemplify our protocol with a nitrogen-vacancy-center-based sensor to demonstrate that it enables the identification of individual nuclear spins that form part of a large spin ensemble.

  8. Quantum Parallelism as a Tool for Ensemble Spin Dynamics Calculations

    NASA Astrophysics Data System (ADS)

    Álvarez, Gonzalo A.; Danieli, Ernesto P.; Levstein, Patricia R.; Pastawski, Horacio M.

    2008-09-01

    Efficient simulations of quantum evolutions of spin-1/2 systems are relevant for ensemble quantum computation as well as in typical NMR experiments. We propose an efficient method to calculate the dynamics of an observable provided that the initial excitation is “local.” It resorts to a single entangled pure initial state built as a superposition, with random phases, of the pure elements that compose the mixture. This ensures self-averaging of any observable, drastically reducing the calculation time. The procedure is tested for two representative systems: a spin star (cluster with random long range interactions) and a spin ladder.

  9. Vanishing current hysteresis under competing nuclear spin pumping processes in a quadruplet spin-blockaded double quantum dot

    SciTech Connect

    Amaha, S.; Hatano, T.; Tarucha, S.; Gupta, J. A.; Austing, D. G.

    2015-04-27

    We investigate nuclear spin pumping with five-electron quadruplet spin states in a spin-blockaded weakly coupled vertical double quantum dot device. Two types of hysteretic steps in the leakage current are observed on sweeping the magnetic field and are associated with bidirectional polarization of nuclear spin. Properties of the steps are understood in terms of bias-voltage-dependent conditions for the mixing of quadruplet and doublet spin states by the hyperfine interaction. The hysteretic steps vanish when up- and down-nuclear spin pumping processes are in close competition.

  10. Optically induced dynamic nuclear spin polarisation in diamond

    NASA Astrophysics Data System (ADS)

    Scheuer, Jochen; Schwartz, Ilai; Chen, Qiong; Schulze-Sünninghausen, David; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi; Luy, Burkhard; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.

  11. Collective Dynamics in Spin-Textured Electronic Systems

    NASA Astrophysics Data System (ADS)

    Wong, Clement H.

    2010-06-01

    In chapter I and II, we develop the hydrodynamic theory of collinear spin currents coupled to magnetization dynamics in metallic ferromagnets. The collective spin density couples to the spin current through a U(1) Berry-phase gauge field determined by the local texture and dynamics of the magnetization. We determine phenomenologically the dissipative corrections to the equation of motion for the electronic current, which consist of a dissipative spin-motive force generated by magnetization dynamics and a magnetic texture-dependent resistivity tensor. The reciprocal dissipative, adiabatic spin torque on the magnetic texture follows from the Onsager principle. By applying general thermodynamic relations, we determine a lower bound on the magnetic-texture resistivity. We investigate the effects of thermal fluctuations and find that electronic dynamics contribute to a nonlocal Gilbert damping tensor in the Landau-Lifshitz-Gilbert equation for the magnetization. In chapter III, we apply our general theory to soliton dynamics in spin-textured metals. We find it necessary to modify the Landau-Lifshitz-Gilbert equation and the corresponding solitonic equations of motion to include higher-order texture effects stemming hydrodynamic backaction. As an example, we consider the gyration of a vortex in a point-contact spin valve, and discuss modifications of orbit radius, frequency, and dissipation power. In chapter IV, we generalize our hydrodynamic theory to a kinetic equation, which we derive in a semiclassical expansion of the density-matrix equation of motion up to the first order in quantum mechanical corrections for a general two-band Hamiltonian. We find, in addition to corrections to the single-particle equation of motion due to Berry curvatures, a modification to the phase-space density of states, and interband terms associated with transport through a general curved phase space. We apply our kinetic equation to the case of inhomogeneities stemming from gauge potentials such as electromagnetic perturbations, and specifically to the electromagnetic response of massive 2D Dirac fermions.

  12. The connection between statics and dynamics of spin glasses

    NASA Astrophysics Data System (ADS)

    Wittmann, Matthew; Young, A. P.

    2016-01-01

    We present results of numerical simulations on a one-dimensional Ising spin glass with long-range interactions. Parameters of the model are chosen such that it is a proxy for a short-range spin glass above the upper critical dimension (i.e. in the mean-field regime). The system is quenched to a temperature well below the transition temperature {{T}\\text{c}} and the growth of correlations is observed. The spatial decay of the correlations at distances less than the dynamic correlation length ? (t) agrees quantitatively with the predictions of a static theory, the metastate, evaluated according to the replica symmetry breaking (RSB) theory. We also compute the dynamic exponent z?(T?) defined by ? (t)\\propto {{t}1/z(T)} and find that it is compatible with the mean-field value of the critical dynamical exponent for short range spin glasses.

  13. Spin-orbital dynamics in a system of polar molecules

    NASA Astrophysics Data System (ADS)

    Syzranov, Sergey; Wall, Michael; Gurarie, Victor; Rey, Ana Maria

    2015-05-01

    We consider the dynamics of a two-dimensional system of ultracold polar molecules weakly perturbed from a stationary state. We demonstrate that dipole-dipole interactions in such a system generate chiral excitations with a non-trivial Berry phase 2 ? . These excitations, which we call chirons, resemble low-energy quasiparticles in bilayer graphene and emerge regardless of the quantum statistics and for arbitrary ratios of kinetic to interaction energies. Chirons manifest themselves in the dynamics of the spin density profile, spin currents, and spin coherences, even for molecules pinned in a deep optical lattice. We derive the kinetic equation that describes chiron dynamics and calculate the distributions of physical observables for experimentally realisable initial conditions. This work was supported by NIST: JILA-NSF-PFC-1125844, NSF-PIF-1211914, NSF-PHY11-25915, ARO, ARO-DARPA-OLE, AFOSR, AFOSR-MURI; NSF: DMR-1001240, PHY-1125844, and the Alexander von Humboldt Foundation.

  14. Storing entanglement of nuclear spins via Uhrig dynamical decoupling

    SciTech Connect

    Roy, Soumya Singha; Mahesh, T. S.; Agarwal, G. S.

    2011-06-15

    Stroboscopic spin flips have already been shown to prolong the coherence times of quantum systems under noisy environments. Uhrig's dynamical decoupling scheme provides an optimal sequence for a quantum system interacting with a dephasing bath. Several experimental demonstrations have already verified the efficiency of such dynamical decoupling schemes in preserving single-qubit coherences. In this work we describe the experimental study of Uhrig's dynamical decoupling in preserving two-qubit entangled states using an ensemble of spin-1/2 nuclear pairs in solution state. We find that the performance of odd-order Uhrig sequences in preserving entanglement is superior to both even-order Uhrig sequences and periodic spin-flip sequences. We also find that there exists an optimal order of the Uhrig sequence in which a singlet state can be stored at high correlation for about 30 seconds.

  15. Tunable nonequilibrium dynamics of field quenches in spin ice

    PubMed Central

    Mostame, Sarah; Castelnovo, Claudio; Moessner, Roderich; Sondhi, Shivaji L.

    2014-01-01

    We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state—a “Coulomb phase”—whose excitations are point-like defects—magnetic monopoles—in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties—including even the effective dimensionality of the system—can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics. PMID:24379372

  16. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160 K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea -eb - n } during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions.

  17. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.

    PubMed

    Mentink-Vigier, Frederic; Akbey, mit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions. PMID:26232770

  18. Dynamics of a mesoscopic nuclear spin ensemble interacting with an optically driven electron spin

    NASA Astrophysics Data System (ADS)

    Stanley, M. J.; Matthiesen, C.; Hansom, J.; Le Gall, C.; Schulte, C. H. H.; Clarke, E.; Atatre, M.

    2014-11-01

    The ability to discriminate between simultaneously occurring noise sources in the local environment of semiconductor InGaAs quantum dots, such as electric and magnetic field fluctuations, is key to understanding their respective dynamics and their effect on quantum dot coherence properties. We present a discriminatory approach to all-optical sensing based on two-color resonance fluorescence of a quantum dot charged with a single electron. Our measurements show that local magnetic field fluctuations due to nuclear spins in the absence of an external magnetic field are described by two correlation times, both in the microsecond regime. The nuclear spin bath dynamics show a strong dependence on the strength of resonant probing, with correlation times increasing by a factor of 4 as the optical transition is saturated. We interpret the behavior as motional averaging of both the Knight field of the resident electron spin and the hyperfine-mediated nuclear spin-spin interaction due to optically induced electron spin flips.

  19. Dynamics of spin torque switching in all-perpendicular spin valve nanopillars

    NASA Astrophysics Data System (ADS)

    Liu, H.; Bedau, D.; Sun, J. Z.; Mangin, S.; Fullerton, E. E.; Katine, J. A.; Kent, A. D.

    2014-05-01

    We present a systematic experimental study of the spin-torque-induced magnetic switching statistics at room temperature, using all-perpendicularly magnetized spin-valves as a model system. Three physical regimes are distinguished: a short-time ballistic limit below a few nanoseconds, where spin-torque dominates the reversal dynamics from a thermal distribution of initial conditions; a long time limit, where the magnetization reversal probability is determined by spin-torque-amplified thermal activation; and a cross-over regime, where the spin-torque and thermal agitation both contribute. For a basic quantitative understanding of the physical processes involved, an analytical macrospin model is presented which contains both spin-torque dynamics and finite temperature effects. The latter was treated rigorously using a Fokker-Plank formalism, and solved numerically for specific sets of parameters relevant to the experiments to determine the switching probability behavior in the short-time and cross-over regimes. This analysis shows that thermal fluctuations during magnetization reversal greatly affect the switching probability over all the time scales studied, even in the short-time limit.

  20. Destination state screening of active spaces in spin dynamics simulations

    NASA Astrophysics Data System (ADS)

    Krzystyniak, M.; Edwards, Luke J.; Kuprov, Ilya

    2011-06-01

    We propose a novel avenue for state space reduction in time domain Liouville space spin dynamics simulations, using detectability as a selection criterion - only those states that evolve into or affect other detectable states are kept in the simulation. This basis reduction procedure (referred to as destination state screening) is formally exact and can be applied on top of the existing state space restriction techniques. As demonstrated below, in many cases this results in further reduction of matrix dimension, leading to considerable acceleration of many spin dynamics simulation types. Destination state screening is implemented in the latest version of the Spinach library (http://spindynamics.org).

  1. Spin-torque-driven vortex dynamics in a spin-valve pillar with a perpendicular polarizer

    NASA Astrophysics Data System (ADS)

    Liu, Yaowen; He, Huan; Zhang, Zongzhi

    2007-12-01

    Spin-torque-driven vortex dynamics are studied by micromagnetic modeling in a spin-valve pillar which contains a perpendicular polarizer and a vortex free layer. Two kinds of transient oscillations mediated by the vortex-core motion are observed. The oscillations are treated as the competition among the spin torque, gyroforce, Gilbert damping, and the restoring force, governed by the generalized Thiele equation [A. A. Thiele, J. Appl. Phys. 45, 377 (1974)]. The fundamental frequency is dominated by the gyrotropic motion, while the high-frequency oscillation is triggered by the balance of the spin torque and demagnetizing field. The polarity of the vortex core can be switched through a vortex-antivortex pair creation and annihilation process.

  2. Local spin dynamics with the electron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Fukuda, Masahiro; Soga, Kota; Senami, Masato; Tachibana, Akitomo

    2016-01-01

    The local spin dynamics of the electron is studied from the viewpoint of the electric dipole moment (EDM) of the electron in the framework of the quantum field theory. The improvements of the computational accuracy of the effective electric field (Eeff) for the EDM and the understanding of spin precession are important for the experimental determination of the upper bound of the EDM. Calculations of Eeff in YbF (2?1 /2 ), BaF (2?1 /2 ), ThO (3?1 ), and HF+ (2?1 /2 ) are performed on the basis of the restricted active space configuration interaction approach by using the four-component relativistic electronic structure calculation. The spin precession is also discussed from the viewpoint of local spin torque dynamics. We show that a contribution to the torque density for the spin is brought into by the EDM. Distributions of the local spin angular momentum density and torque densities induced by external fields in the above molecules are calculated and a property related with large Eeff is discussed.

  3. Competing decay modes of a high-spin isomer in the proton-unbound nucleus ¹⁵⁸Ta*

    DOE PAGESBeta

    Carroll, R. J.; Page, R. D.; Joss, D. T.; Uusitalo, J.; Darby, I. G.; Andgren, K.; Cederwall, B.; Eeckhaudt, S.; Grahn, T.; Gray-Jones, C.; et al

    2015-01-01

    An isomeric state at high spin and excitation energy was recently observed in the proton-unbound nucleus 158Ta. This state was observed to decay by both α and γ decay modes. The large spin change required to decay via γ-ray emission incurs a lifetime long enough for α decay to compete. The α decay has an energy of 8644(11) keV, which is among the highest observed in the region, a partial half-life of 440(70) μs and changes the spin by 11ℏ. In this study, additional evidence supporting the assignment of this α decay to the high-spin isomer in 158Ta will bemore » presented.« less

  4. Competing decay modes of a high-spin isomer in the proton-unbound nucleus ¹⁵⁸Ta*

    SciTech Connect

    Carroll, R. J.; Page, R. D.; Joss, D. T.; Uusitalo, J.; Darby, I. G.; Andgren, K.; Cederwall, B.; Eeckhaudt, S.; Grahn, T.; Gray-Jones, C.; Greenlees, P. T.; Hadinia, B.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppänen, A. -P.; Nyman, M.; O'Donnell, D.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Seweryniak, D.; Simpson, J.

    2015-01-01

    An isomeric state at high spin and excitation energy was recently observed in the proton-unbound nucleus 158Ta. This state was observed to decay by both α and γ decay modes. The large spin change required to decay via γ-ray emission incurs a lifetime long enough for α decay to compete. The α decay has an energy of 8644(11) keV, which is among the highest observed in the region, a partial half-life of 440(70) μs and changes the spin by 11ℏ. In this study, additional evidence supporting the assignment of this α decay to the high-spin isomer in 158Ta will be presented.

  5. Thermalization and dynamic phase transition of quantum spins

    NASA Astrophysics Data System (ADS)

    Babadi, Mehrtash; Demler, Eugene; Knap, Michael

    2015-03-01

    We develop a controlled field theoretic technique for studying far-from-equilibrium dynamics of interacting quantum spins. This is achieved by combining the Majorana fermion representation of spins and 1/N expansion of the two-particle irreducible effective action (2PI-EA). We use the technique to study the relaxation dynamics of quantum spin spirals in the Heisenberg model. The non-equilibrium magnetization and spin correlations are found by solving the Kadanoff-Baym and Bethe-Salpeter equations resulting from the 1/N expansion of the 2PI-EA to the next-to-leading order. In three dimensions, we identify a dynamic phase transition in the steady state magnetization for spiral states near the Nel order. We further find a dynamical stabilization of the initial out-of-plane ordering instability in the course of the relaxation dynamics, in contrast to the linear response analysis. M.B. was supported by IQIM, an NSF Physics Frontiers Center. MK an ED acknowledge support from Harvard-MIT CUA, ARO-MURI Quism program, ARO-MURI on Atomtronics, as well as the Austrian Science Fund (FWF) Project No. J 3361-N20.

  6. Spinor dynamics in an antiferromagnetic spin-1 thermal Bose gas.

    PubMed

    Pechkis, H K; Wrubel, J P; Schwettmann, A; Griffin, P F; Barnett, R; Tiesinga, E; Lett, P D

    2013-07-12

    We present experimental observations of coherent spin-population oscillations in a cold thermal, Bose gas of spin-1 23Na atoms. The population oscillations in a multi-spatial-mode thermal gas have the same behavior as those observed in a single-spatial-mode antiferromagnetic spinor Bose-Einstein condensate. We demonstrate this by showing that the two situations are described by the same dynamical equations, with a factor of 2 change in the spin-dependent interaction coefficient, which results from the change to particles with distinguishable momentum states in the thermal gas. We compare this theory to the measured spin population evolution after times up to a few hundreds of ms, finding quantitative agreement with the amplitude and period. We also measure the damping time of the oscillations as a function of magnetic field. PMID:23889412

  7. Antiferromagnetic order and spin dynamics in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Dai, Pengcheng

    2015-07-01

    High-transition temperature (high-Tc) superconductivity in the iron pnictides or chalcogenides emerges from the suppression of the static antiferromagnetic order in their parent compounds, similar to copper oxide superconductors. This raises a fundamental question concerning the role of magnetism in the superconductivity of these materials. Neutron scattering, a powerful probe to study the magnetic order and spin dynamics, plays an essential role in determining the relationship between magnetism and superconductivity in high-Tc superconductors. The rapid development of modern neutron time-of-flight spectrometers allows a direct determination of the spin dynamical properties of iron-based superconductors throughout the entire Brillouin zone. In this paper, an overview is presented of the neutron scattering results on iron-based superconductors, focusing on the evolution of spin-excitation spectra as a function of electron and hole doping and isoelectronic substitution. Spin dynamical properties of iron-based superconductors are compared with those of copper oxide and heavy fermion superconductors and the common features of spin excitations in these three families of unconventional superconductors and their relationship with superconductivity are discussed.

  8. Spin dynamics in a Curie-switch.

    PubMed

    Kravets, A F; Tovstolytkin, A I; Dzhezherya, Yu I; Polishchuk, D M; Kozak, I M; Korenivski, V

    2015-11-11

    Ferromagnetic resonance properties of F1/f/F2/AF multilayers, where weakly ferromagnetic spacer f is sandwiched between strongly ferromagnetic layers F1 and F2, with F1 being magnetically soft and F2-magnetically hard due to exchange pinning to antiferromagnetic layer AF, are investigated. Spacer-mediated exchange coupling is shown to strongly affect the resonance fields of both F1 and F2 layers. Our theoretical calculations as well as measurements show that the key magnetic parameters of the spacer, which govern the ferromagnetic resonance in F1/f/F2/AF, are the magnetic exchange length ([Formula: see text]), effective saturation magnetization at T??=??0 (m 0) and effective Curie temperature ([Formula: see text]). The values of these key parameters are deduced from the experimental data for multilayers with f??=??Ni x Cu100-x , for the key ranges in the Ni-concentration ([Formula: see text] at. %) and spacer thickness ([Formula: see text] nm). The results obtained provide a deeper insight into thermally-controlled spin precession and switching in magnetic nanostructures, with potential applications in spin-based oscillators and memory devices. PMID:26471166

  9. Spin Dynamics during Ultrafast Optical Demagnetization

    NASA Astrophysics Data System (ADS)

    Eisebitt, Stefan

    2015-03-01

    Magnetic order can be influenced on a sub-picosecund time scale via femtosecond optical pulses. In particular, demagnetization and switching can be triggered optically and while the applications e.g. for magnetic data storage are obvious, the underlying mechanisms are still under debate. We have investigated the contribution of electronic transport to optical demagnetization via pump-probe experiments at free-electron x-ray lasers. In ferromagnetic thin film multilayers with perpendicular anisotropy, optically excited electrons can move within a labyrinth domain network. Using x-ray magnetic circular dichroism (XMCD) as a contrast mechanism for small angle x-ray scattering to probe the local magnetization, we observe an ultrafast broadening of the domain walls, consistent with the existence of superdiffusive spin currents. Via pump-probe x-ray holographic imaging we obtain real space images of the local magnetization within the domain structure after pumping the system by a laterally confined excitation generated by an optical standing wave. With a temporal resolution of about 100 fs, we observe the propagation of a demagnetization front in real space, again consistent with the existence of superdiffusive spin currents. Support by BMBF in FSP-301 and 302 via Contracts 05K10KTB, 05K13KT3 and 05K13KT4 is gratefully acknowledged.

  10. Spin dynamics of density wave and frustrated spin systems probed by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd L.

    This dissertation encompasses my major experimental work using nuclear magnetic resonance (NMR) to probe the local magnetism and spin dynamics of two interesting systems in condensed matter: density wave and frustrated spin systems. Density waves are ordered ground states formed due to the instability in low-dimensions while frustrated spin systems inhibit long-range magnetic ordering due to their corner-shared triangular structure. The first part of this dissertation entails a discussion of the broken symmetry ground states in low dimensional systems: spin density waves (SDW), charge density waves (CDW), and spin-Peierls (SP) states. Simultaneous 77Se NMR and electrical transport is employed to investigate the spin density wave (SDW) ground state in the quasi-one-dimensional (Q1D) organic conductor (TMTSF)2PF6 and the field-induced spin density wave (FISDW) transitions in (TMTSF)2ClO4. Furthermore, angular-dependent measurements were taken at very high magnetic fields to probe the anisotropic properties of FISDW subphases, giving insight into the electronic structure in the quantum limit. The CDW and SP ground states in another Q1D organic conductor (Per)2Pt[mnt]2 were studied using 195Pt NMR revealing the breaking of the SP state at high magnetic fields. The role of doping in the electronic correlations of the newly discovered CDW-superconductor CuxTiSe 2 is revealed by 63Cu and 77Se NMR. The later part of this dissertation focuses on the kagome spin systems which show very interesting phenomena due to magnetic frustration. Using 69,71Ga NMR, the dynamical behavior of spins in the spin-liquid state in one of the first rare-earth kagome materials Pr3Ga 5SiO14 is described and compared with other existing frustrated spin systems. On the other hand, 93Nb NMR on structurally similar material Ba3NbFe3Si2O14 provides an opportunity to study multiferroicity in a geometrically frustrated lattice. This work shows how NMR contributes to the understanding of these two distinct classes of condensed matter systems.

  11. Investigations of quantum pendulum dynamics in a spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael

    2013-05-01

    We investigate the quantum spin dynamics of a spin-1 BEC initialized to an unstable critical point of the dynamical phase space. The subsequent evolution of the collective states of the system is analogous to an inverted simple pendulum in the quantum limit and yields non-classical states with quantum correlations. For short evolution times in the low depletion limit, we observe squeezed states and for longer times beyond the low depletion limit we observe highly non-Gaussian distributions. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, and M.S. Chapman, ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).

  12. Controlling the quantum dynamics of a mesoscopic spin bath in diamond

    PubMed Central

    de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald

    2012-01-01

    Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing. PMID:22536480

  13. Controlling the quantum dynamics of a mesoscopic spin bath in diamond

    NASA Astrophysics Data System (ADS)

    de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald

    2012-04-01

    Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing.

  14. Spin dynamics in storage rings and linear accelerators

    SciTech Connect

    Irwin, J.

    1994-04-01

    The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.

  15. Terahertz electromagnons in spin-diluted cupric oxide: dynamics of twisted spin states

    NASA Astrophysics Data System (ADS)

    Lloyd-Hughes, James; Jones, Samuel; Wurz, Nicola; Failla, Michele; McConville, Chris; Prabhakaran, Dharmalingham

    2015-03-01

    Understanding the physics of magnetoelectric materials may lead to their application in actuators, sensors and solid state memories. Improper multiferroics also have novel quasiparticle excitations: electromagnons form when spin-waves become electric-dipole active. We investigated magnons, electromagnons and spin-lattice coupling in Cu(1-x)Zn(x)O (0dynamics was elucidated by Raman and Fourier-transform spectroscopy, showing strong spin-lattice coupling in Cu(1-x)Zn(x)O. While the phonon and magnon modes broaden and shift as a result of alloy-induced disorder, the electromagnon was found to be insensitive to Zn substitution and the induced disorder in the local spin structure. The results demonstrate that electromagnon excitations and dynamic magnetoelectric coupling can be maintained even in disordered spin systems, and at elevated temperatures.

  16. Competing spin-liquid states in the spin-1/2 Heisenberg model on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Jun; Gong, Shou-Shu; Zhu, Wei; Sheng, D. N.

    2015-10-01

    We study the spin-1/2 Heisenberg model on the triangular lattice with antiferromagnetic first- (J1) and second- (J2) nearest-neighbor interactions using density matrix renormalization group. By studying the spin correlation function, we find a 120? magnetic order phase for J2?0.07 J1 and a stripe antiferromagnetic phase for J2?0.15 J1 . Between these two phases, we identify a spin-liquid region characterized by exponential decaying spin and dimer correlations, as well as large spin singlet and triplet excitation gaps on finite-size systems. We find two near degenerating ground states with distinct properties in two sectors, which indicates more than one spin-liquid candidate in this region. While the sector with spinons is found to respect time reversal symmetry, the even sector without spinons breaks such a symmetry for finite-size systems. Furthermore, we detect the signature of the fractionalization by following the evolution of different ground states with inserting spin flux into the cylinder system. Moreover, by tuning the anisotropic bond coupling, we explore the nature of the spin-liquid phase and find the optimal parameter region for gapped Z2 spin liquids.

  17. Hexagonal type Ising nanowire with mixed spins: Some dynamic behaviors

    NASA Astrophysics Data System (ADS)

    Kantar, Ersin; Kocakaplan, Yusuf

    2015-11-01

    The dynamic behaviors of a mixed spin (1/2-1) hexagonal Ising nanowire (HIN) with core-shell structure in the presence of a time dependent magnetic field are investigated by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics (DEFT). According to the values of interaction parameters, temperature dependence of the dynamic magnetizations, the hysteresis loop areas and the dynamic correlations are investigated to characterize the nature (first- or second-order) of the dynamic phase transitions (DPTs). Dynamic phase diagrams, including compensation points, are also obtained. Moreover, from the thermal variations of the dynamic total magnetization, the five compensation types can be found under certain conditions, namely the Q-, R-, S-, P-, and N-types.

  18. The spin-ladder and spin-chain system (La,Y,Sr,Ca) 14Cu 24O 41: Electronic phases, charge and spin dynamics

    NASA Astrophysics Data System (ADS)

    Vuleti?, T.; Korin-Hamzi?, B.; Ivek, T.; Tomi?, S.; Gorshunov, B.; Dressel, M.; Akimitsu, J.

    2006-05-01

    The quasi-one-dimensional cuprates (La,Y,Sr,Ca) 14Cu 24O 41, consisting of spin-chains and spin-ladders, have attracted much attention, mainly because they represent the first superconducting copper oxide with a non-square lattice. Theoretically, in isolated hole-doped two-leg ladders, superconductivity is tightly associated with the spin gap, although in competition with a charge-density wave (CDW). Indeed, both the gapped spin-liquid and CDW states have been established in the doped spin-ladders of Sr14-xCaxCu24O41, however the relevance of these objects to electronic properties and superconductivity is still subject of intensive discussion. In this treatise, an appreciable set of experimental data is reviewed, which has been acquired in recent years, indicating a variety of magnetic and charge arrangements found in the chains and ladders of underdoped (La,Y) y(S,Ca) 14- yCu 24O 41 and fully doped Sr14-xCaxCu24O41. Based on these data, phase diagrams are constructed for the chains of underdoped systems (as a function of La, Y-substitution), as well as for the chains and ladders of the fully doped ones (as a function of Ca-substitution). We try to reconcile contradictory results concerning the charge dynamics in the ladders, like the hole redistribution between ladders and chains, collective modes and pseudogap, field-dependent transport and the temperature scales and doping levels at which the two-dimensional CDW develops in the ladder planes. The remaining open issues are clearly extracted. In the discussion the experimental results are contrasted with theoretical predictions, which allows us to conclude with two important remarks concerning the nature of the competing CDW and superconducting ground states. A density wave in ladders, characterized by a sinusoidal charge modulation, belongs to the class of broken symmetry patterns, which is theoretically predicted for strongly correlated low-dimensional electron systems; however its precise texture and nature is still an open issue. As for superconductivity, the presence of the spin gap in the normal state points towards d-wave symmetry and magnetic origin of the attractive interaction. However, there is a finite density of mobile quasi-particles that appears for high Ca contents and increases with pressure, concomitantly with increased two-dimensionality and metallicity. For this reason the superconductivity in the doped ladders of Sr14-xCaxCu24O41 which occurs under high pressure cannot simply be a stabilization of the d-wave superconductivity expected for a pure single ladder system.

  19. Spin dynamics of the potassium magnetometer in spin-exchange relaxation free regime

    NASA Astrophysics Data System (ADS)

    Ji-Qing, Fu; Peng-Cheng, Du; Qing, Zhou; Ru-Quan, Wang

    2016-01-01

    The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium SERF magnetometer. A pumpprobe approach is used to identify the unique spin dynamics of the atomic ensemble in the SERF regime. A single channel sensitivity of 8 fTHz?1/2 is achieved with our SERF magnetometer. Project supported by the National Natural Science Foundation of China (Grant No.61227902).

  20. Dynamical decoupling assisted acceleration of two-spin evolution in XY spin-chain environment

    NASA Astrophysics Data System (ADS)

    Wei, Yong-Bo; Zou, Jian; Wang, Zhao-Ming; Shao, Bin; Li, Hai

    2016-01-01

    We study the speed-up role of dynamical decoupling in an open system, which is modeled as two central spins coupled to their own XY spin-chain environment. We show that the fast bang-bang pulses can suppress the system evolution, which manifests the quantum Zeno effect. In contrast, with the increasing of the pulse interval time, the bang-bang pulses can enhance the decay of the quantum speed limit time and induce the speed-up process, which displays the quantum anti-Zeno effect. In addition, we show that the random pulses can also induce the speed-up of quantum evolution.

  1. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Secchi, A.; Lichtenstein, A. I.; Katsnelson, M. I.

    2016-02-01

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as dipole-dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms.

  2. Computer studies of multiple-quantum spin dynamics

    SciTech Connect

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.

  3. Covariant hamiltonian spin dynamics in curved space-time

    NASA Astrophysics Data System (ADS)

    d'Ambrosi, G.; Satish Kumar, S.; van Holten, J. W.

    2015-04-01

    The dynamics of spinning particles in curved space-time is discussed, emphasizing the hamiltonian formulation. Different choices of hamiltonians allow for the description of different gravitating systems. We give full results for the simplest case with minimal hamiltonian, constructing constants of motion including spin. The analysis is illustrated by the example of motion in Schwarzschild space-time. We also discuss a non-minimal extension of the hamiltonian giving rise to a gravitational equivalent of the Stern-Gerlach force. We show that this extension respects a large class of known constants of motion for the minimal case.

  4. Reconstruing Competence.

    ERIC Educational Resources Information Center

    Lindsay, Philip R.; Stuart, Roger

    1997-01-01

    A more dynamic conceptualization of managerial competence is derived from a contextually embedded framework that views organizational culture and the business environment as significant determinants of competence. (SK)

  5. On the spin-axis dynamics of a Moonless Earth

    SciTech Connect

    Li, Gongjie; Batygin, Konstantin

    2014-07-20

    The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficient as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.

  6. Universal dynamic scaling in three-dimensional Ising spin glasses.

    PubMed

    Liu, Cheng-Wei; Polkovnikov, Anatoli; Sandvik, Anders W; Young, A P

    2015-08-01

    We use a nonequilibrium Monte Carlo simulation method and dynamical scaling to study the phase transition in three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity v (temperature change versus time) in Monte Carlo simulations starting at a high temperature. This approach has the advantage that the equilibrium limit does not have to be strictly reached for a scaling analysis to yield critical exponents. For the dynamic exponent we obtain z=5.85(9) for bimodal couplings distribution and z=6.00(10) for the Gaussian case. Assuming universal dynamic scaling, we combine the two results and obtain z=5.93±0.07 for generic 3D Ising spin glasses. PMID:26382365

  7. Universal dynamic scaling in three-dimensional Ising spin glasses

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Wei; Polkovnikov, Anatoli; Sandvik, Anders W.; Young, A. P.

    2015-08-01

    We use a nonequilibrium Monte Carlo simulation method and dynamical scaling to study the phase transition in three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity v (temperature change versus time) in Monte Carlo simulations starting at a high temperature. This approach has the advantage that the equilibrium limit does not have to be strictly reached for a scaling analysis to yield critical exponents. For the dynamic exponent we obtain z =5.85 (9 ) for bimodal couplings distribution and z =6.00 (10 ) for the Gaussian case. Assuming universal dynamic scaling, we combine the two results and obtain z =5.93 ±0.07 for generic 3D Ising spin glasses.

  8. Spin dynamics in highly frustrated pyrochlore magnets

    NASA Astrophysics Data System (ADS)

    Petit, Sylvain; Guitteny, Solne; Robert, Julien; Bonville, Pierre; Decorse, Claudia; Ollivier, Jacques; Mutka, Hannu; Mirebeau, Isabelle

    2015-01-01

    This paper aims at showing the complementarity between time-of-flight and triple-axis neutron scattering experiments, on the basis of two topical examples in the field of geometrical magnetic frustration. Rare earth pyrochlore magnets R2Ti2O7 (R is a rare earth) play a prominent role in this field, as they form model systems showing a rich variety of ground states, depending on the balance between dipolar, exchange interactions and crystal field. We first review the case of the XY antiferromagnet Er2 Ti2 O7. Here a transition towards a Nel state is observed, possibly induced by an order-by-disorder mechanism. Effective exchange parameters can be extracted from S(Q,?). We then examine the case of the spin liquid Tb2 Ti2 O7. Recent experiments reveal a complex ground state characterized by "pinch points" and supporting a low energy excitation. These studies demonstrate the existence of a coupling between crystal field transitions and a transverse acoustic phonon mode.

  9. Competing orders in spin-1 and spin-3/2 XXZ kagome antiferromagnets: A series expansion study

    NASA Astrophysics Data System (ADS)

    Oitmaa, J.; Singh, R. R. P.

    2016-01-01

    We study the competition between ?{3 }?{3 } (RT3) and q =0 (Q0) magnetic orders in spin-1 and spin-3/2 kagome-lattice XXZ antiferromagnets with varying XY anisotropy parameter ? , using series expansion methods. The Hamiltonian is split into two parts: an H0 which favors the classical order in the desired pattern and an H1, which is treated in perturbation theory by a series expansion. We find that the ground state energy series for the RT3 and Q0 phases are identical up to sixth order in the expansion, but ultimately a selection occurs, which depends on spin and the anisotropy ? . Results for ground state energy and the magnetization are presented. These results are compared with recent spin-wave theory and coupled-cluster calculations. The series results for the phase diagram are close to the predictions of spin-wave theory. For the spin-1 model at the Heisenberg point (? =1 ), our results are consistent with a vanishing order parameter, that is, an absence of a magnetically ordered phase. We also develop series expansions for the ground state energy of the spin-1 Heisenberg model in the trimerized phase. We find that the ground state energy in this phase is lower than those of magnetically ordered ones, supporting the existence of a spontaneously trimerized phase in this model.

  10. Response: Spinning the Pinwheel, Together: More Thoughts on Affective Social Competence.

    ERIC Educational Resources Information Center

    Halberstadt, Amy G.; Dunsmore, Julie C.; Denham, Susanne A.

    2001-01-01

    Addresses the variations, reactions, and additions to the affective social competence model presented earlier. Specifically addresses the issue of whether sending, receiving, and experiencing are equal components to affective social competence; the time course of affective social competence; the cognitive representations of self and world;

  11. Matrix Formalism for Spin Dynamics Near a Single Depolarization Resonance

    SciTech Connect

    Chao, Alexander W.; /SLAC

    2005-10-26

    A matrix formalism is developed to describe the spin dynamics in a synchrotron near a single depolarization resonance as the particle energy (and therefore its spin precession frequency) is varied in a prescribed pattern as a function of time such as during acceleration. This formalism is first applied to the case of crossing the resonance with a constant crossing speed and a finite total step size, and then applied also to other more involved cases when the single resonance is crossed repeatedly in a prescribed manner consisting of linear ramping segments or sudden jumps. How repeated crossings produce an interference behavior is discussed using the results obtained. For a polarized beam with finite energy spread, a spin echo experiment is suggested to explore this interference effect.

  12. Comparisons of Social Competence in Young Children with and without Hearing Loss: A Dynamic Systems Framework

    ERIC Educational Resources Information Center

    Hoffman, Michael F.; Quittner, Alexandra L.; Cejas, Ivette

    2015-01-01

    This study compared levels of social competence and language development in 74 young children with hearing loss and 38 hearing peers aged 2.5-5.3 years. This study was the first to examine the relationship between oral language and social competence using a dynamic systems framework in children with and without hearing loss. We hypothesized that,

  13. Comparisons of Social Competence in Young Children with and without Hearing Loss: A Dynamic Systems Framework

    ERIC Educational Resources Information Center

    Hoffman, Michael F.; Quittner, Alexandra L.; Cejas, Ivette

    2015-01-01

    This study compared levels of social competence and language development in 74 young children with hearing loss and 38 hearing peers aged 2.5-5.3 years. This study was the first to examine the relationship between oral language and social competence using a dynamic systems framework in children with and without hearing loss. We hypothesized that,…

  14. Phase diagrams of a spin-1 Ising system with competing short- and long-range interactions.

    PubMed

    Salmon, Octavio D Rodriguez; de Sousa, J Ricardo; Neto, Minos A

    2015-09-01

    We have studied the phase diagrams of the one-dimensional spin-1 Blume-Capel model with anisotropy constant D, in which equivalent-neighbor ferromagnetic interactions of strength -J are superimposed on nearest-neighbor antiferromagnetic interactions of strength K. A rich critical behavior is found due to the competing interactions. At zero temperature two ordered phases exist in the D/J-K/J plane, namely the ferromagnetic (F) and the antiferromagnetic one (AF). For lower values of D/J(D/J<0.25) these two ordered phases are separated by the point K_{c}=0.25J. For 0.250.5, only phases AF and F exist and are separated by a line given by D/J=K/J. At finite temperatures, we found that the ferromagnetic region of the phase diagram in the k_{B}T/J-D/J plane is enriched by another ferromagnetic phase F^{^{'}} above a first-order line for 0.195

  15. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    SciTech Connect

    Mueller, K.T. California Univ., Berkeley, CA . Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  16. Dynamics of a Spin-Boson System ---How Does the Dynamic Compensation Manifest Itself---

    NASA Astrophysics Data System (ADS)

    Tsuzuki, T.

    1991-02-01

    We study the non-adiabatic effect of the bosonic bath on the spin dynamics by the light of the dynamic compensation theorem. We examine the time-evolutions of the probability of finding the up-state of spin and the thermal average of sigma_{z}(t). The dynamics is formulated in competition between the tunneling coherence of spin and the non-adiabatic effect of bath in the equitable treatment. We prove the complete compensation of the infrared divergences due to the zero-point and thermodynamic fluctuations by the dynamical fluctuation of the coherent boson (the dynamic compensation). We further present the exact expressions of the above two quantities in the series form.

  17. Chaos and dynamics of spinning particles in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Han, Wenbiao

    2008-09-01

    We study chaos dynamics of spinning particles in Kerr spacetime of rotating black holes use the Papapetrou equations by numerical integration. Because of spin, this system exists many chaos solutions, and exhibits some exceptional dynamic character. We investigate the relations between the orbits chaos and the spin magnitude S, pericenter, polar angle and Kerr rotation parameter a by means of a kind of brand new Fast Lyapulov Indicator (FLI) which is defined in general relativity. The classical definition of Lyapulov exponent (LE) perhaps fails in curve spacetime. And we emphasize that the Poincar sections cannot be used to detect chaos for this case. Via calculations, some new interesting conclusions are found: though chaos is easier to emerge with bigger S, but not always depends on S monotonically; the Kerr parameter a has a contrary action on the chaos occurrence. Furthermore, the spin of particles can destroy the symmetry of the orbits about the equatorial plane. And for some special initial conditions, the orbits have equilibrium points.

  18. Coherent spin-rotational dynamics of oxygen superrotors

    NASA Astrophysics Data System (ADS)

    Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery

    2014-09-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N? 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N?slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.

  19. Ultrafast and Distinct Spin Dynamics in Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Radu, I.; Stamm, C.; Eschenlohr, A.; Radu, F.; Abrudan, R.; Vahaplar, K.; Kachel, T.; Pontius, N.; Mitzner, R.; Holldack, K.; Fhlisch, A.; Ostler, T. A.; Mentink, J. H.; Evans, R. F. L.; Chantrell, R. W.; Tsukamoto, A.; Itoh, A.; Kirilyuk, A.; Kimel, A. V.; Rasing, Th.

    2015-08-01

    Controlling magnetic order on ultrashort timescales is crucial for engineering the next-generation magnetic devices that combine ultrafast data processing with ultrahigh-density data storage. An appealing scenario in this context is the use of femtosecond (fs) laser pulses as an ultrafast, external stimulus to fully set the orientation and the magnetization magnitude of a spin ensemble. Achieving such control on ultrashort timescales, e.g., comparable to the excitation event itself, remains however a challenge due to the lack of understanding the dynamical behavior of the key parameters governing magnetism: The elemental magnetic moments and the exchange interaction. Here, we investigate the fs laser-induced spin dynamics in a variety of multi-component alloys and reveal a dissimilar dynamics of the constituent magnetic moments on ultrashort timescales. Moreover, we show that such distinct dynamics is a general phenomenon that can be exploited to engineer new magnetic media with tailor-made, optimized dynamic properties. Using phenomenological considerations, atomistic modeling and time-resolved X-ray magnetic circular dichroism (XMCD), we demonstrate demagnetization of the constituent sub-lattices on significantly different timescales that depend on their magnetic moments and the sign of the exchange interaction. These results can be used as a recipe for manipulation and control of magnetization dynamics in a large class of magnetic materials.

  20. Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Mehmed, Oral; Johnson, Dexter; Montague, Gerald; Duffy, Kirsten; Jansen, Ralph

    2005-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig is an apparatus for vibration testing of turbomachine blades in a vacuum at rotational speeds from 0 to 40,000 rpm. This rig includes (1) a vertically oriented shaft on which is mounted an assembly comprising a rotor holding the blades to be tested, (2) two actively controlled heteropolar radial magnetic bearings at opposite ends of the shaft, and (3) an actively controlled magnetic thrust bearing at the upper end of the shaft. This rig is a more capable successor to a prior apparatus, denoted the Dynamic Spin Rig (DSR), that included a vertically oriented shaft with a mechanical thrust bearing at the upper end and a single actively controlled heteropolar radial magnetic bearing at the lower end.

  1. Spin-motive Force Induced by Domain Wall Dynamics in the Antiferromagnetic Spin Valve

    NASA Astrophysics Data System (ADS)

    Sugano, Ryoko; Ichimura, Masahiko; Takahashi, Saburo; Maekawa, Sadamichi; Crest Collaboration

    2014-03-01

    In spite of no net magnetization in antiferromagnetic (AF) textures, the local magnetic properties (Neel magnetization) can be manipulated in a similar fashion to ferromagnetic (F) ones. It is expected that, even in AF metals, spin transfer torques (STTs) lead to the domain wall (DW) motion and that the DW motion induces spin-motive force (SMF). In order to study the Neel magnetization dynamics and the resultant SMF, we treat the nano-structured F1/AF/F2 junction. The F1 and F2 leads behave as a spin current injector and a detector, respectively. Each F lead is fixed in the different magnetization direction. Torsions (DW in AF) are introduced reflecting the fixed magnetization of two F leads. We simulated the STT-induced Neel magnetization dynamics with the injecting current from F1 to F2 and evaluate induced SMF. Based on the adiabatic electron dynamics in the AF texture, Langevin simulations are performed at finite temperature. This research was supported by JST, CREST, Japan.

  2. Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque

    NASA Astrophysics Data System (ADS)

    Locatelli, N.; Naletov, V. V.; Grollier, J.; de Loubens, G.; Cros, V.; Deranlot, C.; Ulysse, C.; Faini, G.; Klein, O.; Fert, A.

    2011-02-01

    We investigate the dynamics of two coupled vortices driven by spin transfer. We are able to independently control with current and perpendicular field and to detect the respective chiralities and polarities of the two vortices. For current densities above J =5.7×107 A/cm2, a highly coherent signal (linewidth down to 46 kHz) can be observed, with a strong dependence on the relative polarities of the vortices. It demonstrates the interest of using coupled dynamics in order to increase the coherence of the microwave signal. Emissions exhibit a linear frequency evolution with perpendicular field, with coherence conserved even at zero magnetic field.

  3. The perception-action dynamics of action competency are altered by both physical and observational training.

    PubMed

    Buchanan, John J; Ramos, Jorge; Robson, Nina

    2015-04-01

    Action competency is defined as the ability of an individual to self-evaluate their own performance capabilities. The current experiment demonstrated that physical and observational training with a motor skill alters action competency ratings in a similar manner. Using a pre-test and post-test protocol, the results revealed that action competency is constrained prior to training by the intrinsic dynamics of relative phase (?), with in-phase (? = 0) and anti-phase (? = 180) patterns receiving higher competency ratings than other relative phase patterns. After 2 days of training, action competency ratings for two trained relative phase patterns, +60 and +120, increased following physical practice or observational practice. A transfer test revealed that both physical performance ability and action competency ability transferred to the symmetry partners (-60 and -120) of the two trained relative phase patterns following physical or observational training. The findings also revealed that relative motion direction acts as categorical information that helps to organize action production and facilitate action competency. The results are interpreted based on the coordination dynamics theory of perception-action coupling, and extend this theory by showing that visual perception, action production, and action competency are all constrained in a consistent manner by the dynamics of the order parameter relative phase. As a whole, the findings revealed that relative motion, relative phase, and possibly relative amplitude information are all distinct sources of information that contribute to the emergence of a kinematic understanding of action in the nervous system. PMID:25618008

  4. Dynamics of entanglement of two electron spins interacting with nuclear spin baths in quantum dots

    NASA Astrophysics Data System (ADS)

    Bragar, Igor; Cywiński, Łukasz

    2015-04-01

    We study the dynamics of entanglement of two electron spins in two quantum dots, in which each electron is interacting with its nuclear spin environment. Focusing on the case of uncoupled dots, and starting from either Bell or Werner states of two qubits, we calculate the decay of entanglement due to the hyperfine interaction with the nuclei. We mostly focus on the regime of magnetic fields in which the bath-induced electron spin flips play a role, for example, their presence leads to the appearance of entanglement sudden death at finite time for two qubits initialized in a Bell state. For these fields, the intrabath dipolar interactions and spatial inhomogeneity of hyperfine couplings are irrelevant on the time scale of coherence (and entanglement) decay, and most of the presented calculations are performed using the uniform-coupling approximation to the exact hyperfine Hamiltonian. We provide a comprehensive overview of entanglement decay in this regime, considering both free evolution of the qubits, and an echo protocol with simultaneous application of π pulses to the two spins. All the currently relevant for experiments bath states are considered: the thermal state, narrowed states (characterized by diminished uncertainty of one of the components of the Overhauser field) of two uncorrelated baths, and a correlated narrowed state with a well-defined value of the z component of the Overhauser field interdot gradient. While we mostly use concurrence to quantify the amount of entanglement in a mixed state of the two electron spins, we also show that their entanglement dynamics can be reconstructed from measurements of the currently relevant for experiments entanglement witnesses and the fidelity of quantum teleportation, performed using a partially disentangled state as a resource.

  5. Dynamics of hot random quantum spin chains: from anyons to Heisenberg spins

    NASA Astrophysics Data System (ADS)

    Parameswaran, Siddharth; Potter, Andrew; Vasseur, Romain

    2015-03-01

    We argue that the dynamics of the random-bond Heisenberg spin chain are ergodic at infinite temperature, in contrast to the many-body localized behavior seen in its random-field counterpart. First, we show that excited-state real-space renormalization group (RSRG-X) techniques suffer from a fatal breakdown of perturbation theory due to the proliferation of large effective spins that grow without bound. We repair this problem by deforming the SU (2) symmetry of the Heisenberg chain to its `anyonic' version, SU(2)k , where the growth of effective spins is truncated at spin S = k / 2 . This enables us to construct a self-consistent RSRG-X scheme that is particularly simple at infinite temperature. Solving the flow equations, we compute the excited-state entanglement and show that it crosses over from volume-law to logarithmic scaling at a length scale ?k ~e?k3 . This reveals that (a) anyon chains have random-singlet-like excited states for any finite k; and (b) ergodicity is restored in the Heisenberg limit k --> ? . We acknowledge support from the Quantum Materials program of LBNL (RV), the Gordon and Betty Moore Foundation (ACP), and UC Irvine startup funds (SAP).

  6. TOPICAL REVIEW: Quantum spin nanotubes—frustration, competing orders and criticalities

    NASA Astrophysics Data System (ADS)

    Sakai, Tôru; Sato, Masahiro; Okamoto, Kiyomi; Okunishi, Kouichi; Itoi, Chigak

    2010-10-01

    Recent developments of theoretical studies on spin nanotubes are reviewed, especially focusing on the S = 1/2 three-leg spin tube. In contrast to the three-leg spin ladder, the tube has a spin gap in the case of the regular-triangle unit cell when the rung interaction is sufficiently large. The effective theory based on the Hubbard Hamiltonian indicates a quantum phase transition to a gapless spin liquid due to the lattice distortion to an isosceles triangle. This is also supported by the numerical diagonalization and the density matrix renormalization group analyses. Furthermore, combining analytical and numerical approaches, we reveal several novel magnetic-field-induced phenomena: Néel, dimer, chiral and/or inhomogeneous orders, a new mechanism for the magnetization plateau formation, and others. The recently synthesized spin tube materials are also briefly introduced.

  7. Global phase diagram of competing ordered and quantum spin-liquid phases on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Gong, Shou-Shu; Zhu, Wei; Balents, Leon; Sheng, D. N.

    2015-02-01

    We study the quantum phase diagram of the spin-1 /2 Heisenberg model on the kagome lattice with first-, second-, and third-neighbor interactions J1,J2, and J3 by means of density matrix renormalization group. For small J2 and J3, this model sustains a time-reversal invariant quantum spin-liquid phase. With increasing J2 and J3, we find in addition a q =(0 ,0 ) Nel phase, a chiral spin-liquid phase, an apparent valence-bond crystal phase, and a complex noncoplanar magnetically ordered state with spins forming the vertices of a cuboctahedron known as a cuboc1 phase. Both the chiral spin liquid and cuboc1 phase break time-reversal symmetry in the sense of spontaneous scalar spin chirality. We show that the chiralities in the chiral spin liquid and cuboc1 are distinct, and that these two states are separated by a strong first-order phase transition. The transitions from the chiral spin liquid to both the q =(0 ,0 ) phase and to time-reversal symmetric spin liquid, however, are consistent with continuous quantum phase transitions.

  8. Gibbsianizing nonequilibrium dynamics of artificial spin ice and other spin systems

    NASA Astrophysics Data System (ADS)

    Lammert, Paul E.; Crespi, Vincent H.; Nisoli, Cristiano

    2012-04-01

    Beyond effective temperature for nonequilibrium spin systems is the concept of an effective potential, an as if potential with no regard for real energies. But if the former is ad hoc, the latter would surely seem more so. We take up the task of tying a flow of effective interaction in coupling space to specified dynamics, and illustrate what can be done with pencil-and-paper approximations as well as Monte-Carlo integration of the flow equations. This Gibbsianization program is applied to a model of a zero-temperature quench from a completely disordered state as well as a model of artificial spin lattice rotational demagnetization in the disorder-dominated regime. Lessons are drawn regarding the most fruitful effective potentials to use in modelling laboratory systems.

  9. Dynamics of Spin I=3/2 under Spin-Locking Conditions in an Ordered Environment

    NASA Astrophysics Data System (ADS)

    van der Maarel, J. R. C.; Jesse, W.; Hancu, I.; Woessner, D. E.

    2001-08-01

    We have derived approximate analytic solutions to the master equation describing the evolution of the spin I=3/2 density operator in the presence of a radio-frequency (RF) field and both static and fluctuating quadrupolar interactions. Spectra resulting from Fourier transformation of the evolutions of the on-resonance spin-locked magnetization into the various coherences display two satellite pairs and, in some cases, a central line. The central line is generally trimodal, consisting of a narrow component related to a slowly relaxing mode and two broad components pertaining to two faster relaxing modes. The rates of the fast modes are sensitive to slow molecular motion. Neither the amplitude nor the width of the narrow component is affected by the magnitude of the static coupling, whereas the corresponding features of the broad components depend in a rather complicated manner on the spin-lock field strength and static quadrupolar interaction. Under certain experimental conditions, the dependencies of the amplitudes on the dynamics are seen to vanish and the relaxation rates reduce to relatively simple expressions. One of the promising emerging features is the fact that the evolutions into the selectively detected quadrupolar spin polarization order and the rank-two double-quantum coherence do not exhibit a slowly relaxing mode and are particularly sensitive to slow molecular motion. Furthermore, these coherences can only be excited in the presence of a static coupling and this makes it possible to discern nuclei in anisotropic from those in isotropic environment. The feasibility of the spin-lock pulse sequences with limited RF power and a nonvanishing average electric field gradient has been demonstrated through experiments on sodium in a dense lyotropic DNA liquid crystal.

  10. Planar spin-transfer device with dynamical polarizer and analizer

    NASA Astrophysics Data System (ADS)

    Bazaliy, Yaroslaw; Kravchenko, Anton

    2011-03-01

    The behavior of the planar spin-transfer devices with monodomain magnetic layers can be described by the macrospin Landau-Lifshitz-Gilbert (LLG) equation with spin-transfer terms. The LLG description of a device with two layers is simplified after applying the overdamped, large easy-plane anisotropy approximation. A decrease of the magnetic layer thickness asymmetry creates a transition from the conventional polarizer-analizer (``fixed layer -- free layer'') operation regime to the regime of the nearly identical magnets. Here electric current leads to a ``Slonczewski windmill'' dynamic state, rather than producing the magnetic switching. The ``windmill'' precession state of a device with two free layers was investigated by numerical solution of the LLG equation.

  11. Dynamic response of an artificial square spin ice

    NASA Astrophysics Data System (ADS)

    Jungfleisch, M. B.; Zhang, W.; Iacocca, E.; Sklenar, J.; Ding, J.; Jiang, W.; Zhang, S.; Pearson, J. E.; Novosad, V.; Ketterson, J. B.; Heinonen, O.; Hoffmann, A.

    2016-03-01

    Magnetization dynamics in an artificial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich spectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets. Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.

  12. Dynamic magnetism of an iron(II)-chlorido spin chain and its hexametallic segment.

    PubMed

    Qin, Lei; Zhang, Zhong; Zheng, Zhiping; Speldrich, Manfred; Kgerler, Paul; Xue, Wei; Wang, Bao-Ying; Chen, Xiao-Ming; Zheng, Yan-Zhen

    2015-01-21

    An air-stable iron(ii) chain compound [Fe(phen)(Cl)2]n (, phen = 1,10-phenanthroline) was prepared and exhibits intrachain ferromagnetic interactions as well as competing interchain antiferromagnetic interactions that are mediated by ?-? stacking of the phen ligands, resulting in metamagnetic behaviour. The interchain interactions can be altered by changing the external magnetic field, and disparate magnetic dynamics was thus observed from zero to the critical field of 1500 Oe. Zero-field cooled (ZFC) and field-cooled (FC) magnetization and heat capacity measurements indicate that long-range antiferromagnetic ordering occurs at lower fields, and this ordering disappears when the external field is larger than 1500 Oe. The low-frequency ac susceptibility data are consistent with the exponential increase of the temperature-dependent dc data, indicating a Glauber-type dynamics under the field of 1500 Oe. Thus, is considered as a metamagnetic single-chain magnet. For further analysis, a discrete hexametallic segment of the chain, [Fe6(phen)6(Cl)12] (), was also isolated and was shown to possess a high-spin ground state and display slow magnetic relaxations like single-molecule magnets. Magnetic analysis using CONDON suggests weak ferromagnetic interactions between the metal centres. The polymeric compound can be viewed as being constructed using the hexametallic unit which is of a low energy barrier, suggesting the significance of intrachain ferromagnetic interactions in enhancing the spin-reversal energy barrier of the short chains. PMID:25428779

  13. Effect of electron spin dynamics on solid-state dynamic nuclear polarization performance.

    PubMed

    Siaw, Ting Ann; Fehr, Matthias; Lund, Alicia; Latimer, Allegra; Walker, Shamon A; Edwards, Devin T; Han, Song-I

    2014-09-21

    For the broadest dissemination of solid-state dynamic nuclear polarization (ssDNP) enhanced NMR as a material characterization tool, the ability to employ generic mono-nitroxide radicals as spin probes is critical. A better understanding of the factors contributing to ssDNP efficiency is needed to rationally optimize the experimental condition for the practically accessible spin probes at hand. This study seeks to advance the mechanistic understanding of ssDNP by examining the effect of electron spin dynamics on ssDNP performance at liquid helium temperatures (4-40 K). The key observation is that bi-radicals and mono-radicals can generate comparable nuclear spin polarization at 4 K and 7 T, which is in contrast to the observation for ssDNP at liquid nitrogen temperatures (80-150 K) that finds bi-radicals to clearly outperform mono-radicals. To rationalize this observation, we analyze the change in the DNP-induced nuclear spin polarization (Pn) and the characteristic ssDNP signal buildup time as a function of electron spin relaxation rates that are modulated by the mono- and bi-radical spin concentration. Changes in Pn are consistent with a systematic variation in the product of the electron spin-lattice relaxation time and the electron spin flip-flop rate that constitutes an integral saturation factor of an inhomogeneously broadened EPR spectrum. We show that the comparable Pn achieved with both radical species can be reconciled with a comparable integral EPR saturation factor. Surprisingly, the largest Pn is observed at an intermediate spin concentration for both mono- and bi-radicals. At the highest radical concentration, the stronger inter-electron spin dipolar coupling favors ssDNP, while oversaturation diminishes Pn, as experimentally verified by the observation of a maximum Pn at an intermediate, not the maximum, microwave (?w) power. At the maximum ?w power, oversaturation reduces the electron spin population differential that must be upheld between electron spins that span a frequency difference matching the (1)H NMR frequency-characteristic of the cross effect DNP. This new mechanistic insight allows us to rationalize experimental conditions where generic mono-nitroxide probes can offer competitive ssDNP performance to that of custom designed bi-radicals, and thus helps to vastly expand the application scope of ssDNP for the study of functional materials and solids. PMID:24968276

  14. The effect of iron spin transition on convective dynamics, slab dynamics and the geoid

    NASA Astrophysics Data System (ADS)

    Jacobs, Michael; van den Berg, Arie; Spakman, Wim; Cadek, Ondrej; Cizkova, Hana; Matyska, Ctirad

    2013-04-01

    Iron bearing minerals in the Earths lower mantle show a transition from high-spin to low-spin in the iron constituent. This has been observed in particular for ferropericlase both experimentally (Fei et al, 2007, Lin et al. 2005) and in first principles calculations (Wu et al, 2009). The situation is less unambiguous for perovskite. Umemoto et al (2010) showed that the effect on volume is small compared to experimental uncertainty. Therefore we only considered the spin effects in ferropericlase in our models. The spin transition is characterized by a high valued positive Clapeyron slope ? = 19MPa-K while the smoothness of the transition increases with temperature. Fei et al. (2007) showed that at room temperature the spin transition pressure for iron richer composition occurs at higher values, e.g 40 GPa at 20 mol% FeO, 60 GPa at 40 mol% FeO. In order to get a full thermodynamic description of mantle material that includes the effects of spin transitions in ferropericlase we developed a model based on the multi-Einstein vibrational model approach of Jacobs et al. (2013). This model represents volume-pressure data of Lin et al. (2005), spin fraction data predicted by Wu et al. (2009) and it also includes the observed composition dependence of the spin transition pressure. Our new model further includes the thermodynamic description of Jacobs and de Jong (2007) that has been extended to describe thermodynamic properties of iron bearing (Mg,Fe)SiO3 perovskite. Because the spin transition pressure is composition dependent, the spin transition results in the formation of miscibility gap regions separating compositions enriched in high spin and compositions enriched in low-spin state. The spin transition affects thermodynamic properties, density, thermal expansivity, bulk modulus and heat capacity which in turn impact the convection dynamics of the Earth mantle. For instance, due to the high positive Clapeyron-slope of the transition convective mixing becomes more vigorous as observed in Boussinesq type modelling results of Bower et al, 2009, Shanas et al, 2011. Negative buoyancy of lithospheric slabs in the deep mantle is enhanced by the increase of thermal expansivity induced by the spin transition. Therefore the sinking rate of slabs are affected by the presence of the spin transition. Therefore the effects of the transition must be included in mantle convection modelling, done in order to bracket mantle viscosity values (Cizkova et al., 2012). Here we investigate the impact of the iron spin transition on the convective dynamics of the mantle and the distribution of material properties. As the spin transition related variations of material properties (e.g. thermal expansivity) are significant especially at lower temperatures, we concentrate mainly on the consequences for slab dynamics. To this end we use a compressible convection model based on a self consistent formulation of the thermo-physical material properties density, thermal expansivity and specific heat at constant pressure as described in (Jacobs and van den Berg, 2011). Finally, we evaluate the consequences of spin induced density contrasts in cold downwellings for the interpretation of the geoid. Bower et al. (2009) Geophys Res Lett, 36, L10306 Cizkova et al. (2012) Phys Earth Planet Inter 200, 56-62 Fei et al. (2007) Geophy res Lett, 34, L17307, 1-5 Jacobs and de Jong (2007) Geochim Cosmochim Acta, 71, 3630-3655 Jacobs and van den Berg (2011) Phys Earth Planet Inter, 186, 36-48 Jacobs et al. (2013) Phys Chem Minerals, in press Lin et al. (2005) Nature 436, 377-380 Shahnas et al (2011) J Geophys Res 116, B08205, 1-16 Umemoto et al (2010) Phys Earth Planet Int, 180, 209-214 Wu et al (2009) Phys Rev B 80, 014409, 1-8

  15. Spin dynamics of EuS in the paramagnetic phase

    NASA Astrophysics Data System (ADS)

    Chaudhury, Ranjan; Shastry, B. S.

    1989-09-01

    The spin dynamics of the semiclassical Heisenberg model on the fcc lattice, with ferromagnetic interaction in the first-neighbor shell, antiferromagnetic interaction in the second-neighbor shell, and which undergoes a ferromagnetic transition, is studied in the paramagnetic phase at the temperature 1.1Tc using the Monte Carlo molecular-dynamics technique. The important quantities calculated are the dynamic structure function S(q,?) and the spin autocorrelation function . Our results for S(q,?) show the existence of purely diffusive modes in the low-q regime. For q close to the zone boundary, our calculated S(q,?) shows a two-peaked or a multipeaked structure depending upon the magnitude and direction of q and signifies damped propagating modes. This result disagrees with the theoretical predictions of Young and Shastry for all the principal directions and of Lindgard clearly for the <100> direction. Our results for S(q,?) for q along the <111> direction is in fairly good agreement with the recent neutron scattering experiment of Bni et al.; however, our results for the <100> direction somewhat disagrees with the experiment of Bohn et al. Our calculated auto-correlation function shows a diffusive behavior temporally.

  16. Spin-state configuration induced faster spin dynamics in epitaxial La1-xSrxCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Cui, W. Y.; Li, P.; Bai, H. L.

    2015-05-01

    Two important features: spin-state configuration and spin dynamics in phase-separated ferromagnetic/spin-glass epitaxial La1-xSrxCoO3 thin films (x=0.07, 0.17, 0.26, 0.30, 0.40, 0.60) have been investigated and elaborated, proved by both magnetic analyses and first principle calculations. The configuration with high-spin (HS) state Co3+ and low-spin (LS) state Co4+ is considered to be the most stable spin-state configuration for La1-xSrxCoO3 at ground state, which was demonstrated by calculating the magnetic moments of La1-xSrxCoO3, as well as first principle calculation. The stretched Co-O bond by Sr doping causes the decrease of crystal field splitting, resulting in the HS state Co3+ and LS state Co4+. The spin dynamics in the La1-xSrxCoO3 thin films was found to be faster than the classic spin-glass compounds, which is attributed to the higher-spin Co3+, and rather smaller ferromagnetic cluster size (~2.16 to ~21.5 nm) in the epitaxial films than that in referenced polycrystalline compounds (~35 to ~240 nm).

  17. Comparisons of social competence in young children with and without hearing loss: a dynamic systems framework.

    PubMed

    Hoffman, Michael F; Quittner, Alexandra L; Cejas, Ivette

    2015-04-01

    This study compared levels of social competence and language development in 74 young children with hearing loss and 38 hearing peers aged 2.5-5.3 years. This study was the first to examine the relationship between oral language and social competence using a dynamic systems framework in children with and without hearing loss. We hypothesized that, due to deficits in oral language, children who were deaf would display lower levels of social competence than their hearing peers. Furthermore, language age would predict social competence scores. Social competence was measured with a general and deaf-specific measure. Results showed that children with hearing loss performed significantly worse than hearing peers on the general measure but better than the norms on the deaf-specific measure. Controlling for maternal education and income, regression analyses indicated that hearing status and language age predicted social competence in both groups. Among children with hearing loss, correlations were also found between age at diagnosis, age at amplification, and two of the general social competence measures. Results supported our hypothesis that deficits in language would have cascading negative effects on the development of social competence in young deaf children. Development of early intervention programs that target both language and social skills are needed for this population. PMID:25583707

  18. Random walk approach to spin dynamics in a two-dimensional electron gas with spin-orbit coupling

    SciTech Connect

    Yang, Luyi; Orenstein, J.; Lee, Dung-Hai

    2010-09-27

    We introduce and solve a semiclassical random walk (RW) model that describes the dynamics of spin polarization waves in zinc-blende semiconductor quantum wells. We derive the dispersion relations for these waves, including the Rashba, linear and cubic Dresselhaus spin-orbit interactions, as well as the effects of an electric field applied parallel to the spin polarization wave vector. In agreement with calculations based on quantum kinetic theory [P. Kleinert and V. V. Bryksin, Phys. Rev. B 76, 205326 (2007)], the RW approach predicts that spin waves acquire a phase velocity in the presence of the field that crosses zero at a nonzero wave vector, q{sub 0}. In addition, we show that the spin-wave decay rate is independent of field at q{sub 0} but increases as (q-q{sub 0}){sup 2} for q {ne} q{sub 0}. These predictions can be tested experimentally by suitable transient spin grating experiments.

  19. Spin-down Dynamics of Magnetized Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Oglethorpe, R. L. F.; Garaud, P.

    2013-12-01

    It has long been known that solar-type stars undergo significant spin-down, via magnetic braking, during their main-sequence lifetimes. However, magnetic braking only operates on the surface layers; it is not yet completely understood how angular momentum is transported within the star and how rapidly the spin-down information is communicated to the deep interior. In this work, we use insight from recent progress in understanding internal solar dynamics to model the interior of other solar-type stars. We assume, following Gough & McIntyre, that the bulk of the radiation zone of these stars is held in uniform rotation by the presence of an embedded large-scale primordial field, confined below a stably stratified, magnetic-free tachocline by large-scale meridional flows downwelling from the convection zone. We derive simple equations to describe the response of this model interior to spin-down of the surface layers, which are identical to the two-zone model of MacGregor & Brenner, with a coupling timescale proportional to the local Eddington-Sweet timescale across the tachocline. This timescale depends both on the rotation rate of the star and on the thickness of the tachocline, and it can vary from a few hundred thousand years to a few Gyr, depending on stellar properties. Qualitative predictions of the model appear to be consistent with observations, although they depend sensitively on the assumed functional dependence of the tachocline thickness on the stellar rotation rate.

  20. Spin-down dynamics of magnetized solar-type stars

    SciTech Connect

    Oglethorpe, R. L. F.; Garaud, P.

    2013-12-01

    It has long been known that solar-type stars undergo significant spin-down, via magnetic braking, during their main-sequence lifetimes. However, magnetic braking only operates on the surface layers; it is not yet completely understood how angular momentum is transported within the star and how rapidly the spin-down information is communicated to the deep interior. In this work, we use insight from recent progress in understanding internal solar dynamics to model the interior of other solar-type stars. We assume, following Gough and McIntyre, that the bulk of the radiation zone of these stars is held in uniform rotation by the presence of an embedded large-scale primordial field, confined below a stably stratified, magnetic-free tachocline by large-scale meridional flows downwelling from the convection zone. We derive simple equations to describe the response of this model interior to spin-down of the surface layers, which are identical to the two-zone model of MacGregor and Brenner, with a coupling timescale proportional to the local Eddington-Sweet timescale across the tachocline. This timescale depends both on the rotation rate of the star and on the thickness of the tachocline, and it can vary from a few hundred thousand years to a few Gyr, depending on stellar properties. Qualitative predictions of the model appear to be consistent with observations, although they depend sensitively on the assumed functional dependence of the tachocline thickness on the stellar rotation rate.

  1. Skyrmion dynamics in chiral ferromagnets under spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Komineas, Stavros; Papanicolaou, Nikos

    2015-11-01

    We study the dynamics of skyrmions under spin-transfer torque in Dzyaloshinskii-Moriya materials with easy-axis anisotropy. In particular, we study the motion of a topological skyrmion with skyrmion number Q =1 and a nontopological skyrmionium with Q =0 using their linear momentum, virial relations, and numerical simulations. The nontopological Q =0 skyrmionium is accelerated in the direction of the current flow and it either reaches a steady state with constant velocity, or it is elongated to infinity. The steady-state velocity is given by a balance between current and dissipation and has an upper limit. In contrast, the topological Q =1 skyrmion converges to a steady state with constant velocity at an angle to the current flow. When the spin current stops the Q =1 skyrmion is spontaneously pinned, whereas the Q =0 skyrmionium continues propagation. Exact solutions for the propagating skyrmionium are identified as solutions of equations given numerically in a previous work. Further exact results for propagating skyrmions are given in the case of the pure exchange model. The traveling solutions provide arguments that a spin-polarized current will cause rigid motion of a skyrmion or a skyrmionium.

  2. Non-Equilibrium Spin Dynamics in the Subpicosecond Regime

    NASA Astrophysics Data System (ADS)

    Rebei, Adnan

    2007-03-01

    Femto-second laser pulses are becoming an important tool that allows us to explore non-equilibrium spin dynamics at short time (high frequency) scales [1]. It has therefore become apparent [2] that more rigorous treatments are needed to correctly address spin relaxation at these energies. I will show how functional-methods of calculations of correlation energies in electron gas [3] can be successfully adapted to the problem of relaxation in magnetic systems [4]. The study of short time response entails a careful treatment of initial conditions. Our formalism naturally takes care of this and avoids the assumption that the system has been in equilibrium in the infinite past, an assumption common in Boltzmann-type treatments. As an example, we discuss possible non-equilibrium effects due to ultrasonic attenuation on spin relaxation when the magnon sub-system is initially near the Curie point. [1] A. V. Kimmel et al, Nature 435, 655 (2005); L. Guidoni et al., Phys. Rev. Lett. 89, 017401 (2002). [2] A. Rebei and J. Hohlfeld, Phys. Rev. 97, 117601 (2006); A. Rebei and M. Simionato, Phys. Rev. B 71, 174415 (2005). [3] A. Rebei and W. N. G. Hitchon, Int. J. Mod. Phys. B 17, 973 (2003). [4] A. Rebei, W.N.G. Hitchon, and G. J. Parker, Phys. Rev. B 72, 064408 (2005).

  3. Spin dynamics and relaxation in the classical-spin Kondo-impurity model beyond the LandauLifschitzGilbert equation

    NASA Astrophysics Data System (ADS)

    Sayad, Mohammad; Potthoff, Michael

    2015-11-01

    The real-time dynamics of a classical spin in an external magnetic field and local exchange coupled to an extended one-dimensional system of non-interacting conduction electrons is studied numerically. Retardation effects in the coupled electron-spin dynamics are shown to be the source for the relaxation of the spin in the magnetic field. Total energy and spin is conserved in the non-adiabatic process. Approaching the new local ground state is therefore accompanied by the emission of dispersive wave packets of excitations carrying energy and spin and propagating through the lattice with Fermi velocity. While the spin dynamics in the regime of strong exchange coupling J is rather complex and governed by an emergent new time scale, the motion of the spin for weak J is regular and qualitatively well described by the LandauLifschitzGilbert (LLG) equation. Quantitatively, however, the full quantumclassical hybrid dynamics differs from the LLG approach. This is understood as a breakdown of weak-coupling perturbation theory in J in the course of time. Furthermore, it is shown that the concept of the Gilbert damping parameter is ill-defined for the case of a one-dimensional system.

  4. Detection of spin torque magnetization dynamics through low frequency noise

    NASA Astrophysics Data System (ADS)

    Cascales, Juan Pedro; Herranz, David; Ebels, Ursula; Katine, Jordan A.; Aliev, Farkhad G.

    2015-08-01

    We present a comparative study of high frequency dynamics and low frequency noise in elliptical magnetic tunnel junctions with lateral dimensions under 100 nm presenting current-switching phenomena. The analysis of the high frequency oscillation modes with respect to the current reveals the onset of a steady-state precession regime for negative bias currents above J = 10 7 A / cm 2 , when the magnetic field is applied along the easy axis of magnetization. By the study of low frequency noise for the same samples, we demonstrate the direct link between changes in the oscillation modes with the applied current and the normalised low frequency (1/f) noise as a function of the bias current. These findings prove that low frequency noise studies could be a simple and powerful technique to investigate spin-torque based magnetization dynamics.

  5. Spin glass model for dynamics of cell reprogramming

    NASA Astrophysics Data System (ADS)

    Pusuluri, Sai Teja; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    2015-03-01

    Recent experiments show that differentiated cells can be reprogrammed to become pluripotent stem cells. The possible cell fates can be modeled as attractors in a dynamical system, the ``epigenetic landscape.'' Both cellular differentiation and reprogramming can be described in the landscape picture as motion from one attractor to another attractor. We perform Monte Carlo simulations in a simple model of the landscape. This model is based on spin glass theory and it can be used to construct a simulated epigenetic landscape starting from the experimental genomic data. We re-analyse data from several cell reprogramming experiments and compare with our simulation results. We find that the model can reproduce some of the main features of the dynamics of cell reprogramming.

  6. Spin dynamics under the Hamiltonian varying with time in discrete steps: Molecular dynamics-based simulation of electron and nuclear spin relaxation in aqueous nickel(II)

    NASA Astrophysics Data System (ADS)

    Odelius, Michael; Ribbing, Carl; Kowalewski, Jozef

    1996-03-01

    A method of calculating the time correlation functions for electron spin is proposed, based on solving the time-dependent Schrdinger equation for a spin Hamiltonian that contains a term varying randomly in discrete time steps. It is applied to the study of electron spin relaxation in aqueous solution of nickel(II) ions with S=1. The random term in the spin Hamiltonian in this case is the zero-field splitting (ZFS) interaction. The method is evaluated by an application to a model system (the pseudorotation model) for which an analytical solution to the electron spin relaxation problem is known. The same method is then employed to study the electron and nuclear spin dynamics in a system where the time variation of the zero-field splitting is obtained by a combination of ab initio quantum chemistry and molecular dynamics simulations.

  7. Dynamical spin structure factor of one-dimensional interacting fermions

    NASA Astrophysics Data System (ADS)

    Zyuzin, Vladimir A.; Maslov, Dmitrii L.

    2015-02-01

    We revisit the dynamic spin susceptibility ? (q ,? ) of one-dimensional interacting fermions. To second order in the interaction, backscattering results in a logarithmic correction to ? (q ,? ) at q ?kF , even if the single-particle spectrum is linearized near the Fermi points. Consequently, the dynamic spin structure factor Im ? (q ,? ) is nonzero at frequencies above the single-particle continuum. In the boson language, this effect results from the marginally irrelevant backscattering operator of the sine-Gordon model. Away from the threshold, the high-frequency tail of Im ? (q ,? ) due to backscattering is larger than that due to finite mass by a factor of kF/q . We derive the renormalization group equations for the coupling constants of the g -ology model at finite ? and q and find the corresponding expression for ? (q ,? ) , valid to all orders in the interaction but not in the immediate vicinity of the continuum boundary, where the finite-mass effects become dominant.

  8. A Competency Model for Process Dynamics and Control and Its Use for Test Construction at University Level

    ERIC Educational Resources Information Center

    Taskinen, Pivi H.; Steimel, Jochen; Grfe, Linda; Engell, Sebastian; Frey, Andreas

    2015-01-01

    This study examined students' competencies in engineering education at the university level. First, we developed a competency model in one specific field of engineering: process dynamics and control. Then, the theoretical model was used as a frame to construct test items to measure students' competencies comprehensively. In the empirical

  9. Quenching of dynamic nuclear polarization by spinorbit coupling in GaAs quantum dots

    PubMed Central

    Nichol, John M.; Harvey, Shannon P.; Shulman, Michael D.; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I.; Halperin, Bertrand I.; Yacoby, Amir

    2015-01-01

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spinorbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electronnuclear system, despite weak spinorbit coupling in GaAs. Using LandauZener sweeps to measure static and dynamic properties of the electron spinflip probability, we observe that the size of the spinorbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spinorbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spinorbit coupling in central-spin systems. PMID:26184854

  10. Odd-parity superconductivity by competing spin-orbit coupling and orbital effect in artificial heterostructures

    NASA Astrophysics Data System (ADS)

    Watanabe, Tatsuya; Yoshida, Tomohiro; Yanase, Youichi

    2015-11-01

    We show that odd-parity superconductivity occurs in multilayer Rashba systems without requiring spin-triplet Cooper pairs. A pairing interaction in the spin-singlet channel stabilizes the odd-parity pair-density-wave (PDW) state in the magnetic field parallel to the two-dimensional conducting plane. It is shown that the layer-dependent Rashba spin-orbit coupling and the orbital effect play essential roles for the PDW state in binary and tricolor heterostructures. We demonstrate that the odd-parity PDW state is a symmetry-protected topological superconducting state characterized by the one-dimensional winding number in the symmetry class BDI. The superconductivity in the artificial heavy-fermion superlattice CeCoIn5/YbCoIn5 and bilayer interface SrTiO3/LaAlO3 is discussed.

  11. Competing mechanism for generating high spin excitations in ?-soft nuclei: the 136Nd case

    NASA Astrophysics Data System (ADS)

    Petrache, C. M.; Bazzacco, D.; Lunardi, S.; Rossi Alvarez, C.; Venturelli, R.; Bucurescu, D.; Ur, C. A.; De Acua, D.; Maron, G.; Napoli, D. R.; Medina, N. H.; Oliveira, J. R. B.; Wyss, R.

    1996-02-01

    High-spin structures in 136Nd have been investigated via the 110Pd( 30Si,4n) reaction at 125 MeV using the GASP array. Several bands consisting of stretched quadrupole transitions were identified. Two of them reach spins comparable to those of the highly-deformed (HD) band in 136Nd, which is based on a neutron i {13}/{2}- {h {9}/{2}}/{f {7}/{2}} configuration. Total routhian surface (TRS) calculations indicate that regular high-spin excitations in this ?-soft nucleus, can be also generated through successive pairs of h {11}/{2} protons and neutrons coupled to a stable small-deformation triaxial core. The previously reported ?-ray transitions of an excited HD band, identical to the yrast HD band, are not confirmed by our data.

  12. Nearest-Neighbor Repulsion and Competing Charge and Spin Order in the Extended Hubbard Model.

    NASA Astrophysics Data System (ADS)

    Bahman, Davoudi; Tremblay, A.-M. S.

    2006-03-01

    We generalize the Two-Particle Self-Consistent (TPSC) approach to study the extended Hubbard model where the nearest-neighbor interaction V is present in addition to the local interaction U. Our results are in good agreement with available Quantum Monte-Carlo results over the whole range of density n up to intermediate coupling. As a function of U, V and n we observe different kinds of charge and spin orders, like commensurate/incommensurate charge and spin density wave, phase separation, and ferromagnetic order. For attractive V superconductivity could exist in the regions where the other types of charge and spin orders do not dominate. Ref.: B. Davoudi and A.-M.S. Tremblay, cond-mat/0509707

  13. Influence of temperature on spin polarization dynamics in dilute nitride semiconductorsRole of nonparamagnetic centers

    NASA Astrophysics Data System (ADS)

    Baranowski, M.; Misiewicz, J.

    2015-10-01

    We report theoretical studies of spin polarization dynamics in dilute nitride semiconductors. We develop a commonly used rate equation model [Lagarde et al., Phys. Status Solidi A 204, 208 (2007) and Kunold et al. Phys. Rev. B 83, 165202 (2011)] to take into account the influence of shallow localizing states on the temperature dependence of spin polarization dynamics and a spin filtering effect. Presented investigations show that the experimentally observed temperature dependence of a spin polarization lifetime in dilute nitrides can be related to the electron capture process by shallow localizing states without paramagnetic properties. This process reduces the efficiency of spin filtering effect by deep paramagnetic centers, especially at low temperatures.

  14. Phonon-magnon interactions in BCC iron: A combined molecular and spin dynamics study

    SciTech Connect

    Perera, Meewanage Dilina N; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Yin, Junqi; Brown, Greg

    2014-01-01

    Combining an atomistic many-body potential with a classical spin Hamiltonian pa- rameterized by first principles calculations, molecular-spin dynamics computer sim- ulations were performed to investigate phonon-magnon interactions in BCC iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, addi- tional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.

  15. Dynamical spin injection at a quasi-one-dimensional ferromagnet-graphene interface

    SciTech Connect

    Singh, S.; Ahmadi, A.; Mucciolo, E. R.; Barco, E. del; Cherian, C. T.; Özyilmaz, B.

    2015-01-19

    We present a study of dynamical spin injection from a three-dimensional ferromagnet into two-dimensional single-layer graphene. Comparative ferromagnetic resonance (FMR) studies of ferromagnet/graphene strips buried underneath the central line of a coplanar waveguide show that the FMR linewidth broadening is the largest when the graphene layer protrudes laterally away from the ferromagnetic strip, indicating that the spin current is injected into the graphene areas away from the area directly underneath the ferromagnet being excited. Our results confirm that the observed damping is indeed a signature of dynamical spin injection, wherein a pure spin current is pumped into the single-layer graphene from the precessing magnetization of the ferromagnet. The observed spin pumping efficiency is difficult to reconcile with the expected backflow of spins according to the standard spin pumping theory and the characteristics of graphene, and constitutes an enigma for spin pumping in two-dimensional structures.

  16. Interplay of spin and motional dynamics in ultracold atoms and molecules

    NASA Astrophysics Data System (ADS)

    Hazzard, Kaden

    2015-05-01

    Several recent ultracold experiments have realized many-body ``spin models'' - systems where interacting spins are frozen in space. One example I will discuss is polar molecules in an optical lattice. By comparing the JILA group's measurements of far-from-equilibrium molecule dynamics with theoretical predictions, we were able to characterize the spin Hamiltonian and benchmark a new numerical algorithm. Even richer possibilities exist beyond spin models, where both spin and motional degrees of freedom evolve dynamically. Such interplay of spin and motion underlies exotic phenomena such as high-temperature superconductivity. I will describe how the unique properties of emerging ultracold systems - nonreactive ultracold molecules, Rydberg atoms, and alkaline earth atoms - make possible the independent control of the spins, their motion, and the spin-motion coupling.

  17. Spin-charge transport driven by magnetization dynamics on the disordered surface of doped topological insulators

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuhisa; Shintani, Kunitaka; Tanaka, Yukio

    2015-07-01

    We theoretically study the spin and charge generations along with the electron transport on a disordered surface of a doped three-dimensional topological insulator/magnetic insulator junction by using Green's function techniques. We find that the spin and charge currents are induced by not only local, but also nonlocal magnetization dynamics through nonmagnetic impurity scattering on the disordered surface of the doped topological insulator. We also clarify that the spin current as well as charge density are induced by spatially inhomogeneous magnetization dynamics, and the spin current diffusively propagates on the disordered surface. Using these results, we discuss both local and nonlocal spin torques before and after the spin and spin-current generations on the surface, and provide a procedure to detect the spin current.

  18. Non-diffusive spin dynamics in a two-dimensional electron gas

    SciTech Connect

    Weber, C.P.

    2010-04-28

    We describe measurements of spin dynamics in the two-dimensional electron gas in GaAs/GaAlAs quantum wells. Optical techniques, including transient spin-grating spectroscopy, are used to probe the relaxation rates of spin polarization waves in the wavevector range from zero to 6 x 10{sup 4} cm{sup -1}. We find that the spin polarization lifetime is maximal at nonzero wavevector, in contrast with expectation based on ordinary spin diffusion, but in quantitative agreement with recent theories that treat diffusion in the presence of spin-orbit coupling.

  19. Non-diffusive spin dynamics in a two-dimensional electrongas

    SciTech Connect

    Weber, Christopher P.; Orenstein, Joseph; Bernevig, B. Andrei; Zhang, Shou-Cheng; Stephens, Jason; Awschalom, David D.

    2006-12-12

    We describe measurements of spin dynamics in thetwo-dimensional electron gas in GaAs/GaAlAs quantum wells. Opticaltechniques, including transient spin-grating spectroscopy, are used toprobe the relaxation rates of spin polarization waves in the wavevectorrange from zero to 6E4 cm-1. We find that the spin polarization lifetimeis maximal at nonzero wavevector, in contrast with expectation based onordinary spin diffusion, but in quantitative agreement with recenttheories that treat diffusion in the presence of spin-orbitcoupling.

  20. Lattice dynamics in spin-crossover nanoparticles through nuclear inelastic scattering

    NASA Astrophysics Data System (ADS)

    Flix, Gautier; Mikolasek, Mirko; Peng, Haonan; Nicolazzi, William; Molnr, Gbor; Chumakov, Aleksandr I.; Salmon, Lionel; Bousseksou, Azzedine

    2015-01-01

    We used nuclear inelastic scattering (NIS) to investigate the lattice dynamics in [Fe(pyrazine)(Ni(CN)4)] spin crossover nanoparticles. The vibrational density of states of iron was extracted from the NIS data, which allowed to determine characteristic thermodynamical and lattice dynamical parameters as well as their spin-state dependence. The optical part of the NIS spectra compares well with the Raman scattering data reflecting the expansion/contraction of the coordination octahedron during the spin transition. From the acoustic part, we extracted the sound velocity in the low-spin (vLS=2073 31 m s-1) and high-spin (vHS=1942 23 m s-1) states of the particles. The spin-state dependence of this parameter is of primary interest to rationalize the spin-transition behavior in solids as well as its dynamics and finite size effects.

  1. Strain dependent electron spin dynamics in bulk cubic GaN

    SciTech Connect

    Schaefer, A.; Buß, J. H.; Hägele, D.; Rudolph, J.; Schupp, T.; Zado, A.; As, D. J.

    2015-03-07

    The electron spin dynamics under variable uniaxial strain is investigated in bulk cubic GaN by time-resolved magneto-optical Kerr-rotation spectroscopy. Spin relaxation is found to be approximately independent of the applied strain, in complete agreement with estimates for Dyakonov-Perel spin relaxation. Our findings clearly exclude strain-induced relaxation as an effective mechanism for spin relaxation in cubic GaN.

  2. Spin-Entry Characteristics of a Large Supersonic Bomber as Determined by Dynamic Model Tests

    NASA Technical Reports Server (NTRS)

    Bowman, James S.

    1965-01-01

    An investigation has been conducted in the Langley spin tunnel and at a catapult launch facility of a 1/60-scale dynamic model to determine the spin-entry characteristics of a large supersonic bomber. Catapult tests indicated that spin-entry motions were obtainable for a center-of-gravity location of 0.21 mean aerodynamic chord but were not obtainable at a center-of-gravity location of 0.25 mean aerodynamic chord. Deflected ailerons were effective in promoting or preventing the spin- entry motion and this effect was qualitatively the same as it was for the fully developed spin. Varying the configuration had little significant effect on the spin-entry characteristics. Brief tests conducted with the model in the Langley spin tunnel indicated that fully developed spins were obtainable at the forward center-of-gravity location and that spins were highly unlikely at the rearward center-of-location.

  3. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics

    NASA Astrophysics Data System (ADS)

    Coish, W. A.; Loss, Daniel

    2004-11-01

    We have performed a systematic calculation for the non-Markovian dynamics of a localized electron spin interacting with an environment of nuclear spins via the Fermi contact hyperfine interaction. This work applies to an electron in the s -type orbital ground state of a quantum dot or bound to a donor impurity, and is valid for arbitrary polarization p of the nuclear spin system, and arbitrary nuclear spin I in high magnetic fields. In the limit of p=1 and I=(1)/(2) , the Born approximation of our perturbative theory recovers the exact electron spin dynamics. We have found the form of the generalized master equation (GME) for the longitudinal and transverse components of the electron spin to all orders in the electron spin-nuclear spin flip-flop terms. Our perturbative expansion is regular, unlike standard time-dependent perturbation theory, and can be carried out to higher orders. We show this explicitly with a fourth-order calculation of the longitudinal spin dynamics. In zero magnetic field, the fraction of the electron spin that decays is bounded by the smallness parameter ?=1/p2N , where N is the number of nuclear spins within the extent of the electron wave function. However, the form of the decay can only be determined in a high magnetic field, much larger than the maximum Overhauser field. In general the electron spin shows rich dynamics, described by a sum of contributions with nonexponential decay, exponential decay, and undamped oscillations. There is an abrupt crossover in the electron spin asymptotics at a critical dimensionality and shape of the electron envelope wave function. We propose a scheme that could be used to measure the non-Markovian dynamics using a standard spin-echo technique, even when the fraction that undergoes non-Markovian dynamics is small.

  4. Solid effect in magic angle spinning dynamic nuclear polarization

    PubMed Central

    Corzilius, Bjrn; Smith, Albert A.; Griffin, Robert G.

    2012-01-01

    For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\omega _0 ^{ - 2}\\end{equation*} \\end{document}?0?2 field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ? = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect. PMID:22894339

  5. Solid effect in magic angle spinning dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2012-08-01

    For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.

  6. Nuclear spin dynamics in double quantum dots: Multistability, dynamical polarization, criticality, and entanglement

    NASA Astrophysics Data System (ADS)

    Schuetz, M. J. A.; Kessler, E. M.; Vandersypen, L. M. K.; Cirac, J. I.; Giedke, G.

    2014-05-01

    We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically defined double quantum dot in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective hyperfine coupling results in sizable nuclear spin entanglement between the two quantum dots in the steady state of the evolution. We investigate this effect using analytical and numerical techniques, and demonstrate its robustness under various types of imperfections.

  7. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  8. Manipulating magnetic anisotropy and ultrafast spin dynamics of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Cheng, Zhao-Hua; He, Wei; Zhang, Xiang-Qun; Sun, Da-Li; Du, Hai-Feng; Wu, Qiong; Ye, Jun; Fang, Ya-Peng; Liu, Hao-Liang

    2015-07-01

    We present our extensive research into magnetic anisotropy. We tuned the terrace width of Si(111) substrate by a novel method: varying the direction of heating current and consequently manipulating the magnetic anisotropy of magnetic structures on the stepped substrate by decorating its atomic steps. Laser-induced ultrafast demagnetization of a CoFeB/MgO/CoFeB magnetic tunneling junction was explored by the time-resolved magneto-optical Kerr effect (TR-MOKE) for both the parallel state (P state) and the antiparallel state (AP state) of the magnetizations between two magnetic layers. It was observed that the demagnetization time is shorter and the magnitude of demagnetization is larger in the AP state than those in the P state. These behaviors are attributed to the ultrafast spin transfer between two CoFeB layers via the tunneling of hot electrons through the MgO barrier. Our observation indicates that ultrafast demagnetization can be engineered by the hot electron tunneling current. This opens the door to manipulate the ultrafast spin current in magnetic tunneling junctions. Furthermore, an all-optical TR-MOKE technique provides the flexibility for exploring the nonlinear magnetization dynamics in ferromagnetic materials, especially with metallic materials. Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403, 2011CB921801, and 2012CB933101) and the National Natural Science Foundation of China (Grant Nos. 51427801, 11374350, 51201179, and 11274361).

  9. Electron Correlation and Spin Dynamics in Iron Pnictides and Chalcogenides

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Si, Qimiao; Goswami, Pallab; Abrahams, Elihu

    2013-07-01

    Superconductivity in the iron pnictides and chalcogenides is closely connected to a bad-metal normal state and a nearby antiferromagnetic order. Therefore, considerable attention has been focused on the role of electron correlations and spin dynamics. In this article, we summarize some key experiments that quite directly imply strong electron correlations in these materials, and discuss aspects of the recent theoretical studies on these issues. In particular, we outline a w-expansion, which treats the correlation effects using the Mott transition as the reference point. For the parent systems, it gives rise to an effective J1-J2 model that is coupled to the itinerant electrons in the vicinity of the Fermi energy; this model yields an isoelectronically-tuned quantum critical point, and allows a study of the distribution of the spin spectral weight in the energy and momentum space in the paramagnetic phase. Within the same framework, we demonstrate the Mott insulating phase in the iron oxychalcogenides as well as the alkaline iron selenides; for the latter system, we also consider the role of an orbital-selective Mott phase. Finally, we discuss the singlet superconducting pairing driven by the short-range J1-J2 interactions. Our considerations highlight the iron pnictides and chalcogenides as exemplifying strongly-correlated electron systems at the boundary of electronic localization and itinerancy.

  10. Non-Markovian reduced dynamics and entanglement evolution of two coupled spins in a quantum spin environment

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao-Zhong; Goan, Hsi-Sheng; Zhu, Ka-Di

    2007-01-01

    The exact quantum dynamics of the reduced density matrix of two coupled spin qubits in a quantum Heisenberg XY spin star environment in the thermodynamic limit at arbitrarily finite temperatures is obtained using an operator technique. In this approach, the transformed Hamiltonian becomes effectively Jaynes-Cumming-like and thus the analysis is also relevant to cavity quantum electrodynamics. This special operator technique is mathematically simple and physically clear, and allows us to treat systems and environments that could all be strongly coupled mutually and internally. To study their entanglement evolution, the concurrence of the reduced density matrix of the two coupled central spins is also obtained exactly. It is shown that the dynamics of the entanglement depends on the initial state of the system and the coupling strength between the two coupled central spins, the thermal temperature of the spin environment, and the interaction between the constituents of the spin environment. We also investigate the effect of detuning, which in our model can be controlled by the strength of a locally applied external magnetic field. It is found that the detuning has a significant effect on the entanglement generation between the two-spin qubits.

  11. High temperature electron spin dynamics in bulk cubic GaN: Nanosecond spin lifetimes far above room-temperature

    SciTech Connect

    Bu, J. H.; Schaefer, A.; Hgele, D.; Rudolph, J.; Schupp, T.; As, D. J.

    2014-11-03

    The electron spin dynamics in n-doped bulk cubic GaN is investigated for very high temperatures from 293?K up to 500?K by time-resolved Kerr-rotation spectroscopy. We find extraordinarily long spin lifetimes exceeding 1?ns at 500?K. The temperature dependence of the spin relaxation time is in qualitative agreement with predictions of Dyakonov-Perel theory, while the absolute experimental times are an order of magnitude shorter than predicted. Possible reasons for this discrepancy are discussed, including the role of phase mixtures of hexagonal and cubic GaN as well as the impact of localized carriers.

  12. High temperature electron spin dynamics in bulk cubic GaN: Nanosecond spin lifetimes far above room-temperature

    NASA Astrophysics Data System (ADS)

    Buß, J. H.; Schaefer, A.; Schupp, T.; As, D. J.; Hägele, D.; Rudolph, J.

    2014-11-01

    The electron spin dynamics in n-doped bulk cubic GaN is investigated for very high temperatures from 293 K up to 500 K by time-resolved Kerr-rotation spectroscopy. We find extraordinarily long spin lifetimes exceeding 1 ns at 500 K. The temperature dependence of the spin relaxation time is in qualitative agreement with predictions of Dyakonov-Perel theory, while the absolute experimental times are an order of magnitude shorter than predicted. Possible reasons for this discrepancy are discussed, including the role of phase mixtures of hexagonal and cubic GaN as well as the impact of localized carriers.

  13. Spin-tunnel investigation of a 1/25-scale model of the General Dynamics F-16XL airplane

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.; White, W. L.

    1984-01-01

    A spin-tunnel investigation of the spin and recovery characteristics of a 1/25-scale model to the General Dynamics F-16XL aircraft was conducted in the Langley Spin Tunnel. Tests included erect and inverted spins at various symmetric and asymmetric loading conditions. The required size of an emergency spin-recovery parachute was determined.

  14. Assessing intracranial vascular compliance using dynamic arterial spin labeling.

    PubMed

    Yan, Lirong; Liu, Collin Y; Smith, Robert X; Jog, Mayank; Langham, Michael; Krasileva, Kate; Chen, Yufen; Ringman, John M; Wang, Danny J J

    2016-01-01

    Vascular compliance (VC) is an important marker for a number of cardiovascular diseases and dementia, which is typically assessed in the central and peripheral arteries indirectly by quantifying pulse wave velocity (PWV), and/or pulse pressure waveform. To date, very few methods are available for the quantification of intracranial VC. In the present study, a novel MRI technique for in-vivo assessment of intracranial VC was introduced, where dynamic arterial spin labeling (ASL) scans were synchronized with the systolic and diastolic phases of the cardiac cycle. VC is defined as the ratio of change in arterial cerebral blood volume (?CBV) and change in arterial pressure (?BP). Intracranial VC was assessed in different vascular components using the proposed dynamic ASL method. Our results show that VC mainly occurs in large arteries, and gradually decreases in small arteries and arterioles. The comparison of intracranial VC between young and elderly subjects shows that aging is accompanied by a reduction of intracranial VC, in good agreement with the literature. Furthermore, a positive association between intracranial VC and cerebral perfusion measured using pseudo-continuous ASL with 3D GRASE MRI was observed independent of aging effects, suggesting loss of VC is associated with a decline in perfusion. Finally, a significant positive correlation between intracranial and central (aortic arch) VC was observed using an ungated phase-contrast 1D projection PWV technique. The proposed dynamic ASL method offers a promising approach for assessing intracranial VC in a range of cardiovascular diseases and dementia. PMID:26364865

  15. Group dynamics for the acquisition of competences in Project Management

    NASA Astrophysics Data System (ADS)

    Taguas, E. V.; Aguilar, M. C.; Castillo, C.; Polo, M. J.; Pérez, R.

    2012-04-01

    The Bologna Process promotes European citizens' employability from teaching fields in the University which implies the design of activities addressed to the development of skills for the labor market and engagement of employers. This work has been conceived for improving the formation of Engineering Project Management through group dynamics focused on: 1) the use of the creativity for solving problems; 2) promoting leadership capacities and social skills in multidisciplinary/multicultural work groups; 3) the ethical, social and environmental compromise; 4) the continuous learning. Different types of activities were designed: short activities of 15-30 minutes where fragments of books or songs are presented and discussed and long activities (2 h) where groups of students take different roles for solving common problems and situations within the Engineering Projects context. An electronic book with the content of the dynamics and the material for the students has been carried out. A sample of 20 students of Electronic Engineering degree which had participated at least in two dynamics, evaluated the utility for improving their formation in Engineering Project Management with a mark of 8.2 (scale 0-10, standard deviation equal to 0.9). On the other hand, the teachers observed how this type of work, promotes the interdisciplinary training and the acquisition of social skills, usually not-included in the objectives of the subjects.

  16. Dynamical stability of the holographic system with two competing orders

    NASA Astrophysics Data System (ADS)

    Du, Yiqiang; Lan, Shan-Quan; Tian, Yu; Zhang, Hongbao

    2016-01-01

    We investigate the dynamical stability of the holographic system with two order parameters, which exhibits competition and coexistence of condensations. In the linear regime, we have developed the gauge dependent formalism to calculate the quasi-normal modes by gauge fixing, which turns out be considerably convenient. Furthermore, by giving different Gaussian wave packets as perturbations at the initial time, we numerically evolve the full nonlinear system until it arrives at the final equilibrium state. Our results show that the dynamical stability is consistent with the thermodynamical stability. Interestingly, the dynamical evolution, as well as the quasi-normal modes, shows that the relaxation time of this model is generically much longer than the simplest holographic system. We also find that the late time behavior can be well captured by the lowest lying quasi-normal modes except for the non-vanishing order towards the single ordered phase. To our knowledge, this exception is the first counter example to the general belief that the late time behavior towards a final stable state can be captured by the lowest lying quasi-normal modes. In particular, a double relation is found for this exception in certain cases.

  17. Spin dynamics in high- T c copper oxides

    NASA Astrophysics Data System (ADS)

    Lavagna, M.; Stemmann, G.; Ppin, C.

    1995-05-01

    We analyze the spectrum of magnetic excitations as observed by neutron diffraction and NMR experiments in Y Ba2Cu3O6+x, in the frame of the single-band t-t'-J model in which the next-nearest-neighbour hopping term has been introduced in order to fit the shape of the Fermi surface revealed in photoemission. Within the slave-boson approach, we have as well examined the d-wave superconducting state, and the singlet-RVB phase appropriate to describe the normal state of heavily-doped systems. Our calculations show a smooth evolution of the spectrum from one phase to the other, with the existence of a spin-gap in the frequency-dependence of ??(?Q,w)-The value of the threshold of excitations EG is found to increase with doping, while the characteristic temperature-scale Tm at which the spin-gap opens, exhibits a regular decrease, reaching Tc only in overdoped regime. This very atypical combined variation of EG and Tm with doping results of strong-correlation effects in presence o realistic band structure. We point out the presence of a resonance in the w-dependence of ??(?Q,w) in good agreement with the neutron diffraction results obtained at x = 0.92 and x = 1.0. This resonance is analyzed as a dynamical Kohn anomaly of the second kind in the Cooper channel. Finally, we examine the ?q-dependence of the dynamical susceptibility allowing to study the magnetic correlation length ? as a function of doping, frequency and temperature.

  18. Competing D’yakonov-Perel’ and Elliott-Yafet spin relaxation in germanium

    NASA Astrophysics Data System (ADS)

    Patibandla, S.; Atkinson, G. M.; Bandyopadhyay, S.; Tepper, G. C.

    2010-03-01

    In most technologically important semiconductors, the two main spin relaxation mechanisms are the D’yakonov-Perel’ (DP) and the Elliott-Yafet (EY) modes. In the former, the spin relaxation rate increases, while in the latter it decreases, with increasing carrier mobility. Accordingly, the DP mode should dominate in high-mobility samples and the EY mode in low-mobility ones. We have carried out experiments in high-mobility bulk and low-mobility nanowire samples of germanium and found that indeed the DP mode dominates in the high-mobility samples and the EY mode in the low-mobility ones. The DP relaxation time was found to be three orders of magnitude shorter than the EY relaxation time. This suggests that low-mobility samples may be preferable for some spintronic applications.

  19. Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates in a Random Potential.

    PubMed

    Mardonov, Sh; Modugno, M; Sherman, E Ya

    2015-10-30

    Disorder plays a crucial role in spin dynamics in solids and condensed matter systems. We demonstrate that for a spin-orbit coupled Bose-Einstein condensate in a random potential two mechanisms of spin evolution that can be characterized as "precessional" and "anomalous" are at work simultaneously. The precessional mechanism, typical for solids, is due to the condensate displacement. The unconventional anomalous mechanism is due to the spin-dependent velocity producing the distribution of the condensate spin polarization. The condensate expansion is accompanied by a random displacement and fragmentation, where it becomes sparse, as clearly revealed in the spin dynamics. Thus, different stages of the evolution can be characterized by looking at the condensate spin. PMID:26565441

  20. Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates in a Random Potential

    NASA Astrophysics Data System (ADS)

    Mardonov, Sh.; Modugno, M.; Sherman, E. Ya.

    2015-10-01

    Disorder plays a crucial role in spin dynamics in solids and condensed matter systems. We demonstrate that for a spin-orbit coupled Bose-Einstein condensate in a random potential two mechanisms of spin evolution that can be characterized as "precessional" and "anomalous" are at work simultaneously. The precessional mechanism, typical for solids, is due to the condensate displacement. The unconventional anomalous mechanism is due to the spin-dependent velocity producing the distribution of the condensate spin polarization. The condensate expansion is accompanied by a random displacement and fragmentation, where it becomes sparse, as clearly revealed in the spin dynamics. Thus, different stages of the evolution can be characterized by looking at the condensate spin.

  1. Generation of spin-polarized currents via cross-relaxation with dynamically pumped paramagnetic impurities

    SciTech Connect

    Meriles, Carlos A.; Doherty, Marcus W.

    2014-07-14

    Key to future spintronics and spin-based information processing technologies is the generation, manipulation, and detection of spin polarization in a solid state platform. Here, we theoretically explore an alternative route to spin injection via the use of dynamically polarized nitrogen-vacancy (NV) centers in diamond. We focus on the geometry where carriers and NV centers are confined to proximate, parallel layers and use a “trap-and-release” model to calculate the spin cross-relaxation probabilities between the charge carriers and neighboring NV centers. We identify near-unity regimes of carrier polarization depending on the NV spin state, applied magnetic field, and carrier g-factor. In particular, we find that unlike holes, electron spins are distinctively robust against spin-lattice relaxation by other, unpolarized paramagnetic centers. Further, the polarization process is only weakly dependent on the carrier hopping dynamics, which makes this approach potentially applicable over a broad range of temperatures.

  2. Coherent multi-flavour spin dynamics in a fermionic quantum gas

    NASA Astrophysics Data System (ADS)

    Krauser, Jasper S.; Heinze, Jannes; Flschner, Nick; Gtze, Sren; Jrgensen, Ole; Lhmann, Dirk-Sren; Becker, Christoph; Sengstock, Klaus

    2012-11-01

    Microscopic spin-interaction processes are fundamental for global static and dynamical magnetic properties of many-body systems. Quantum gases as pure and well-isolated systems offer intriguing possibilities to study basic magnetic processes including non-equilibrium dynamics. Here, we report on the realization of a well-controlled fermionic spinor gas in an optical lattice with tunable effective spin ranging from 1/2 to 9/2. We observe long-lived intrinsic spin oscillations and investigate the transition from two-body to many-body dynamics. The latter involves a complex interplay of spin and spatial degrees of freedom and implies an instability of an initially band insulating state. Using an external magnetic field we control the dimensionality of the system and tune the spin oscillations in and out of resonance. Our results open new routes to study quantum magnetism of fermionic particles beyond conventional spin 1/2 systems.

  3. Low-energy-state dynamics of entanglement for spin systems

    SciTech Connect

    Jafari, R.

    2010-11-15

    We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.

  4. Free vibration and dynamic response analysis of spinning structures

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The proposed effort involved development of numerical procedures for efficient solution of free vibration problems of spinning structures. An eigenproblem solution procedure, based on a Lanczos method employing complex arithmetic, was successfully developed. This task involved formulation of the numerical procedure, FORTRAN coding of the algorithm, checking and debugging of software, and implementation of the routine in the STARS program. A graphics package for the E/S PS 300 as well as for the Tektronix terminals was successfully generated and consists of the following special capabilities: (1) a dynamic response plot for the stresses and displacements as functions of time; and (2) a menu driven command module enabling input of data on an interactive basis. Finally, the STARS analysis capability was further improved by implementing the dynamic response analysis package that provides information on nodal deformations and element stresses as a function of time. A number of test cases were run utilizing the currently developed algorithm implemented in the STARS program and such results indicate that the newly generated solution technique is significantly more efficient than other existing similar procedures.

  5. Magnetization dynamics in an artificial spin ice on kagome

    NASA Astrophysics Data System (ADS)

    Petrova, Olga; Mellado, Paula; Tchernyshyov, Oleg

    2010-03-01

    We study magnetization dynamics in an artificial spin ice on kagome realized as a honeycomb network of connected ferromagnetic nanowires studied recently by several experimental groups [1]. The sites of the honeycomb network carry magnetic charge, defined as the source of the magnetic field H, of strength 1 in suitably chosen units. Magnetization reversal in individual wires under the action of an applied magnetic field is mediated by the emission of a domain wall carrying magnetic charge 2 at one of the wire's ends, its propagation along the wire and its absorption at the other end. We include the effects of quenched disorder, arising from lattice imperfections, domain wall's inertia, observed recently in permalloy nanowires, and magnetostatic interactions between magnetic charges [2]. The inertia and magnetostatic repulsion between like charges are responsible for avalanches in magnetization reversal observed experimentally [1]. That and an inherently dissipative character of the magnetization dynamics suggest interesting parallels with granular materials [3]. [1] Y. Qi, T. Brintlinger, and J. Cumings, Phys. Rev. B 77, 094418 (2008). [2] E. Saitoh et al., Nature 432, 203 (2004). [3] X. Ke et al., Phys. Rev. Lett. 101, 037205 (2008).

  6. Resolving remote nuclear spins in a noisy bath by dynamical decoupling design

    NASA Astrophysics Data System (ADS)

    Ma, Wenchao; Shi, Fazhan; Xu, Kebiao; Wang, Pengfei; Xu, Xiangkun; Rong, Xing; Ju, Chenyong; Duan, Chang-Kui; Zhao, Nan; Du, Jiangfeng

    2015-09-01

    We experimentally resolve several weakly coupled nuclear spins in diamond using a series of dynamical decoupling controls. Some nuclear spin signals, hidden by decoherence under ordinary dynamical decoupling controls, are shifted forward in time domain to the coherence time range and thus rescued from the fate of being submerged by the noisy spin bath. In this way, more and remote single nuclear spins are resolved. Additionally, the field of detection can be continuously tuned on subnanoscale. This method extends the capacity of nanoscale magnetometry and may be applicable in other systems for high-resolution noise spectroscopy.

  7. Dynamic message-passing approach for kinetic spin models with reversible dynamics

    NASA Astrophysics Data System (ADS)

    Del Ferraro, Gino; Aurell, Erik

    2015-07-01

    A method to approximately close the dynamic cavity equations for synchronous reversible dynamics on a locally treelike topology is presented. The method builds on (a) a graph expansion to eliminate loops from the normalizations of each step in the dynamics and (b) an assumption that a set of auxilary probability distributions on histories of pairs of spins mainly have dependencies that are local in time. The closure is then effectuated by projecting these probability distributions on n -step Markov processes. The method is shown in detail on the level of ordinary Markov processes (n =1 ) and outlined for higher-order approximations (n >1 ). Numerical validations of the technique are provided for the reconstruction of the transient and equilibrium dynamics of the kinetic Ising model on a random graph with arbitrary connectivity symmetry.

  8. Binary dynamics from spin1-spin2 coupling at fourth post-Newtonian order

    NASA Astrophysics Data System (ADS)

    Levi, Michele

    2012-03-01

    We calculate via the effective field theory (EFT) approach the next-to-next-to-leading order (NNLO) spin1-spin2 conservative potential for a binary. Hereby, we first demonstrate the ability of the EFT approach to go at NNLO in post-Newtonian (PN) corrections from spin effects. The NNLO spin1-spin2 interaction is evaluated at fourth PN order for a binary of maximally rotating compact objects. This sector includes contributions from diagrams, which are not pure spin1-spin2 diagrams, as they contribute through the leading-order spin accelerations and precessions, that should be first taken into account here. The fact that the spin is derivative-coupled adds significantly to the complexity of computations. In particular, for the irreducible two-loop diagrams, which are the most complicated to evaluate in this sector, irreducible two-loop tensor integrals up to order 4 are required. The EFT calculation is carried out in terms of the nonrelativistic gravitational (NRG) fields. However, not all of the benefits of the NRG fields apply to spin interactions, as all possible diagram topologies are realized at each order of G included. Still, the NRG fields remain advantageous, and thus there was no use of automated computations in this work. Our final result can be reduced, and a corresponding Hamiltonian may be derived.

  9. Dynamics of the collective modes of an inhomogeneous spin ensemble in a cavity

    SciTech Connect

    Wesenberg, Janus H.; Kurucz, Zoltan; Moelmer, Klaus

    2011-02-15

    We study the excitation dynamics of an inhomogeneously broadened spin ensemble coupled to a single cavity mode. The collective excitations of the spin ensemble can be described in terms of generalized spin waves, and, in the absence of the cavity, the free evolution of the spin ensemble can be described as a drift in the wavenumber without dispersion. In this article we show that the dynamics in the presence of coupling to the cavity mode can be described solely by a modified time evolution of the wavenumbers. In particular, we show that collective excitations with a well-defined wavenumber pass without dispersion from negative to positive-valued wavenumbers without populating the zero wavenumber spin wave mode. The results are relevant for multimode collective quantum memories where qubits are encoded in different spin waves.

  10. Control of spin dynamics in a two-dimensional electron gas by electromagnetic dressing

    NASA Astrophysics Data System (ADS)

    Pervishko, A. A.; Kibis, O. V.; Morina, S.; Shelykh, I. A.

    2015-11-01

    We solved the Schrödinger problem for a two-dimensional electron gas (2DEG) with the Rashba spin-orbit interaction in the presence of a strong high-frequency electromagnetic field (dressing field). The found eigenfunctions and eigenenergies of the problem are used to describe the spin dynamics of the dressed 2DEG within the formalism of the density matrix response function. Solving the equations of spin dynamics, we show that the dressing field can switch the spin relaxation in the 2DEG between the cases corresponding to the known Elliott-Yafet and D'yakonov-Perel' regimes. As a result, the spin properties of the 2DEG can be tuned by a high-frequency electromagnetic field. The present effect opens an unexplored way for controlling the spin with light and, therefore, forms the physical prerequisites for creating light-tuned spintronics devices.

  11. Spinach - A software library for simulation of spin dynamics in large spin systems

    NASA Astrophysics Data System (ADS)

    Hogben, H. J.; Krzystyniak, M.; Charnock, G. T. P.; Hore, P. J.; Kuprov, Ilya

    2011-02-01

    We introduce a software library incorporating our recent research into efficient simulation algorithms for large spin systems. Liouville space simulations (including symmetry, relaxation and chemical kinetics) of most liquid-state NMR experiments on 40+ spin systems can now be performed without effort on a desktop workstation. Much progress has also been made with improving the efficiency of ESR, solid state NMR and Spin Chemistry simulations. Spinach is available for download at http://spindynamics.org.

  12. Numerical and analytical approach to the quantum dynamics of two coupled spins in bosonic baths

    SciTech Connect

    Sergi, Alessandro; Sinayskiy, Ilya; Petruccione, Francesco

    2009-07-15

    The quantum dynamics of a spin chain interacting with multiple bosonic baths is described in a mixed Wigner-Heisenberg representation. The formalism is illustrated by simulating the time evolution of the reduced density matrix of two coupled spins, where each spin is also coupled to its own bath of harmonic oscillators. In order to prove the validity of the approach, an analytical solution in the Born-Markov approximation is found. The agreement between the two methods is shown.

  13. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    SciTech Connect

    Prabhakar, Sanjay; Melnik, Roderick; Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes ; Bonilla, Luis L.; Raynolds, James E.

    2013-12-02

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges.

  14. Spin dynamics of isolated donor electrons in phosphorus-doped silicon from high-frequency electron spin resonance

    NASA Astrophysics Data System (ADS)

    Song, Myeonghun; Jeong, Minki; Kang, Byeongki; Lee, Soonchil; Ueno, Tomohiro; Matsubara, Akira; Mizusaki, Takao; Fujii, Yutaka; Mitsudo, Seitaro; Chiba, Meiro

    2010-05-01

    We present the spin dynamics of isolated donor electrons in phosphorus-doped silicon at low temperature and in a high magnetic field. We performed a steady-state electron spin resonance (ESR) on the sample with a dopant concentration of 6.5 × 1016 cm - 3 in a high field of 2.87 T (80 GHz) and at temperatures from 48 down to 1.8 K. As the temperature decreases below 16 K, the resonance spectral line changes from the usual derivative form characteristic of absorptions. Very long spin-lattice relaxation time T1 at low temperature gives rise to rapid passage effects and results in a dramatic change in the line shape and intensity as a function of temperature. We show that the numerical analysis based on the passage effects well explains the observed spectral changes with temperature. The spin-lattice relaxation time T1 is derived by numerical fit to the experimental data. We discuss the dynamic nuclear polarization of 31P nuclear spins which shows up as asymmetric intensities of the hyperfine-split ESR resonance lines.

  15. Combined molecular and spin dynamics study of collective excitations in BCC iron

    NASA Astrophysics Data System (ADS)

    Perera, Dilina; Landau, David P.; Nicholson, Don; Stocks, G. Malcolm

    2014-03-01

    Spin dynamics simulations of classical spin systems have revealed a substantial amount of information regarding the collective excitations in magnetic materials. However, much of the previous work has been restricted to lattice-based spin models that completely disregard the effect of lattice vibrations. Combining an empirical many body potential with a spin Hamiltonian parameterized by first principles calculations, we present a compressible magnetic model for BCC iron, which treats the dynamics of translational degrees of freedom on an equal footing with the magnetic (spin) degrees of freedom. This model provides us with a unified framework for performing combined molecular and spin dynamics simulations and make simultaneous quantitative measurements of the spin wave and vibrational spectrum. Results from our simulations reveal that the presence of lattice vibrations leads to softening and damping of spin waves, as well as evidence for a novel form of longitudinal spin wave excitation coupled with the longitudinal phonon mode of the same frequency. Furthermore, we will also discuss the influence of lattice vibrations at different temperatures and the implications of using different atomistic potentials. Research sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, ``Center for Defect Physics,'' an Energy Frontier Research Center. Done...processed 13325 records...10:54:51

  16. Charge and Spin Dynamics of the Hubbard Chains

    NASA Technical Reports Server (NTRS)

    Park, Youngho; Liang, Shoudan

    1999-01-01

    We calculate the local correlation functions of charge and spin for the one-chain and two-chain Hubbard model using density matrix renormalization group method and the recursion technique. Keeping only finite number of states we get good accuracy for the low energy excitations. We study the charge and spin gaps, bandwidths and weights of the spectra for various values of the on-site Coulomb interaction U and the electron filling. In the low energy part, the local correlation functions are different for the charge and spin. The bandwidths are proportional to t for the charge and J for the spin respectively.

  17. Quantum control of orbital and spin dynamics in diamond using ultrafast optical pulses

    NASA Astrophysics Data System (ADS)

    Heremans, F. Joseph

    2015-03-01

    Optically addressable spin defects in solid-state materials have shown great potential for applications ranging from metrology to quantum information processing. Many of these experiments require a detailed understanding of the full Hamiltonian dynamics in order to develop precise quantum control. Here we use picosecond resonant optical pulses to investigate the coherent orbital and spin dynamics of the nitrogen-vacancy (NV) center in diamond, over timescales spanning six orders of magnitude. We implement an ultrafast optical pump-probe technique to study the NV center's orbital-doublet, spin-triplet excited state at cryogenic temperatures (T < 20 K), where the excited state becomes stable and optically coherent with the ground state. This technique, coupled with optical polarization selection rules, allows us to probe the coherent orbital dynamics of the NV center's excited state. These experiments reveal dynamics on femtosecond to nanosecond timescales due to the interplay between the ground and excited state orbital levels. This all-optical technique also provides a method to dynamically control the spin state of the NV center by harnessing the excited state structure. Through studying the spin dynamics of the NV center with coherent pulses of light, we are able to rotate the spin state on sub-nanosecond timescales. Furthermore, by tuning the excited-state spin Hamiltonian with an external magnetic field, we demonstrate arbitrary-axis spin rotations through controlled unitary evolution of the spin state. Extending this to the full excited-state manifold, we develop a time-domain quantum tomography technique to precisely map the NV center's excited state Hamiltonian. These techniques generalize to other systems and can be a powerful tool in characterizing and controlling qubits in other optically addressable spin systems. This work is supported by the AFOSR and NSF.

  18. Spin dynamics of superfluid helium-3 in aerogel

    NASA Astrophysics Data System (ADS)

    Barker, Barry Irving

    An experimental study of the spin dynamics of superfluid helium-3 in high porosity silica aerogel has been conducted. The superfluid phases of bulk helium-3 are well understood, but the understanding of "dirty" anisotropic superfluids is still in its infancy. High porosity aerogel was used to produce scattering centers (impurities) in the otherwise ultra-pure helium-3. Continuous-wave nuclear magnetic resonance (cw-NMR) was chosen as the probe for this system. The impurities were found to suppress the superfluid transition temperature in a sample-dependent manner, consistent with previous results using other probes. The use of cw-NMR allowed a direct measurement of the NMR lineshape. Such measurements indicated a texturally broadened line, not seen in previous pulsed-NMR experiments. Careful examination of the lineshape allowed conclusive determination that the system entered an equal spin pairing (ESP) state upon cooling below Tc. The localized helium-3 (at least the second layer) is involved in atomic exchange with that in the liquid, increasing the magnetization substantially. Since the average frequency shift is inversely proportional to the magnetization, the removal of the localized helium-3 increased the observed frequency shifts. Increased sensitivity to changes in magnetization after removing localized helium-3 allowed us to recognize a first-order phase transition. This was the first evidence for an AB transition in aerogel. Quantitative analysis of the lineshapes allows us to make an estimate of the average energy gap in the two phases. We find the A phase gap is roughly 0.55 that found in bulk, while the maximum B phase gap is 0.55 times the bulk value. This analysis is complicated by the presence of textural effects, and we found that the average frequency of the absorption is not indicative of the energy gap. The A phase was found to be stable over a temperature range smaller than that in bulk helium-3. We also found the A phase supercooled below the thermodynamic AB transition temperature. Finally, we observe a narrow region of A phase at pressures as low as 12 bar, where previous work found only B phase.

  19. Dynamic phase diagrams of the mixed Ising bilayer system consisting of spin-3/2 and spin-2

    NASA Astrophysics Data System (ADS)

    Temizer, mt; Tlek, Mesimi; Yarar, Semih

    2014-12-01

    The nonequilibrium behavior of the mixed spin-3/2 and spin-2 Ising system on the bilayer square lattice under a time-varying magnetic field is studied by using the Glauber-type stochastic dynamics. The dynamic equations describing the behavior of the system are derived by utilizing the Master equation and Glauber transition rates. The time variations of average magnetizations and the thermal variations of the dynamic magnetizations are investigated to obtain the dynamic phase diagrams. The dynamic phase diagrams are constructed in four different planes for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions and the effects of the Hamiltonian parameters on the dynamic critical behavior of the system are studied. It is observed that the system exhibits seven fundamental phases and twenty five mixed phases which are composed of binary, ternary and tetrad combinations of fundamental phases. It is also found that the dynamic phase diagrams contain both first- and second-order phase transitions besides dynamic tricritical point, triple point (TP), quadruple point (QP), double critical end point (B), zero temperature critical point (Z), multicritical point (A) and tetracritical point (M). The reentrant behavior occurs for the FM/FM interaction.

  20. Collective dynamics of solid-state spin chains and ensembles in quantum information processing

    NASA Astrophysics Data System (ADS)

    Ping, Yuting

    This thesis is concerned with the collective dynamics in different spin chains and spin ensembles in solid-state materials. The focus is on the manipulation of electron spins, through spin-spin and spin-photon couplings controlled by voltage potentials or electromagnetic fields. A brief review of various systems is provided to describe the possible physical implementation of the ideas, and also outlines the basis of the adopted effective interaction models. The first two ideas presented explore the collective behaviour of non-interacting spin chains with external couplings. One focuses on mapping the identical state of spin-singlet pairs in two currents onto two distant, static spins downstream, creating distributed entanglement that may be accessed. The other studies a quantum memory consisting of an array of non-interacting, static spins, which may encode and decode multiple flying spins. Both chains could effectively `enhance' weak couplings in a cumulative fashion, and neither scheme requires active quantum control. Moreover, the distributed entanglement generated can offer larger separation between the qubits than more conventional protocols that only exploit the tunnelling effects between quantum dots. The quantum memory can also `smooth' the statistical fluctuations in the effects of local errors when the stored information is spread. Next, an interacting chain of static spins with nearest-neighbour interactions is introduced to connect distant end spins. Previously, it has been shown that this approach provides a cubic speed-up when compared with the direct coupling between the target spins. The practicality of this scheme is investigated by analysing realistic error effects via numerical simulations, and from that perspective relaxation of the nearest-neighbour assumption is proposed. Finally, a non-interacting electron spin ensemble is reviewed as a quantum memory to store single photons from an on-chip stripline cavity. It is then promoted to a full quantum processor, with major error effects analysed.

  1. Effect of electron electric dipole moment on the spin dynamics of the YbF molecule

    NASA Astrophysics Data System (ADS)

    Soga, Kota; Fukuda, Masahiro; Senami, Masato; Tachibana, Akitomo

    2014-09-01

    The existence of the large value of the electron electric dipole moment (EDM) is predicted in extensions of the standard model (SM). To find or exclude physics beyond SM, the EDM is studied in many experiments, where the precession motion of the electron spin is used for the detection. This motion depends on the internal effective electric field (EEF). The accurate prediction of the relation between the EDM and the spin motion is mandatory for deriving the constraint of the EDM. In addition to the computation of EEF, our group studies the spin dynamics by the equation of motion (EOM) of spin. In our group, we have studied the spin motion based on quantum field theory (QFT). In QFT, the spin motion is governed by the spin torque and zeta force. The latter gives local effects and cannot be described in quantum mechanics (QM). Hence, in our approach, there is a difference from ordinary treatment of the spin motion based on QM. In this work, we show that the existence of the EDM modifies our EOM of the spin, that is, the EDM gives the additional contribution to the spin torque. This torque is induced by not only electric field but also magnetic field as a result of relativistic generalization. Then we show our results of the local spin torque distribution for the YbF molecule.

  2. Interaction-tuned dynamical transitions in a Rashba spin-orbit-coupled Fermi gas.

    PubMed

    Radi?, Juraj; Natu, Stefan S; Galitski, Victor

    2014-03-01

    We consider the time evolution of the magnetization in a Rashba spin-orbit coupled Fermi gas, starting from a fully polarized initial state. We model the dynamics using a Boltzmann equation, which we solve in the Hartree-Fock approximation. The resulting nonlinear system of equations gives rise to three distinct dynamical regimes with qualitatively different asymptotic behaviors of the magnetization at long times. The distinct regimes and the transitions between them are controlled by the ratio of interaction and spin-orbit coupling strength ?: for small ?, the magnetization decays to zero. For intermediate ?, it displays undamped oscillations about zero, and for large ?, a partially magnetized state is dynamically stabilized. The dynamics we find is a spin analog of interaction induced self-trapping in double-well Bose Einstein condensates. The predicted phenomena can be realized in trapped Fermi gases with synthetic spin-orbit interactions. PMID:24655264

  3. Spin and Charge Dynamics in Atomic Fermions Loaded on Optical Lattice

    NASA Astrophysics Data System (ADS)

    Okumura, Masahiko; Onishi, Hiroaki; Yamada, Susumu; Machida, Masahiko

    2009-03-01

    We study spin and charge dynamics of trapped two-component fermions loaded on an optical lattice by using the time dependent density matrix renormalization group (TDDMRG) method. The present target issue is dynamics of spin and charge in Mott state recently realized experimentally by [1]. Firstly, we simply shake a trapped potential superposed onto an optical lattice and observe the charge dynamics on the Mott state by using TDDMRG. Secondly, we do the same thing on a trapped potential which works only on a pseudo-spin species and observe the spin density dynamics. These results are compared with non-trapped case with an open boundary condition. Also, we compare one-dimensional chain like cases with those of n-legs square and triangular ladder systems. References [1] U. Schneider, L. Hackermuller, S. Will, Th. Best, I. Bloch, T. A. Costi, R. W. Helmes, D. Rasch, A. Rosch, arXiv:0809.1464.

  4. Dynamic neutron scattering on incoherent systems using efficient resonance spin flip techniques

    SciTech Connect

    Häussler, Wolfgang; Kredler, Lukas

    2014-05-15

    We have performed numerical ray-tracing Monte-Carlo-simulations of incoherent dynamic neutron scattering experiments. We intend to optimize the efficiency of incoherent measurements depending on the fraction of neutrons scattered without and with spin flip at the sample. In addition to conventional spin echo, we have numerically and experimentally studied oscillating intensity techniques. The results point out the advantages of these different spin echo variants and are an important prerequisite for neutron resonance spin echo instruments like RESEDA (FRM II, Munich), to choose the most efficient technique depending on the scattering vector range and the properties of the sample system under study.

  5. 1H-NMR study of the spin dynamics of fine superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bordonali, L.; Furukawa, Y.; Kraken, M.; Litterst, F. J.; Sangregorio, C.; Casula, M. F.; Lascialfari, A.

    2012-05-01

    We report a broadband 1H-NMR study of the temperature spin dynamics of nearly monodisperse dextran-coated ?-Fe2O3 magnetic nanoparticles. We observed a maximum in T1-1(T) that decreases in amplitude and shifts toward higher temperatures with increasing field. We suggest that this is related to the progressive superparamagnetic spin blocking of the ferrite core. The data can be explained by assuming a single electronic spin-spin correlation time and introducing a field-dependent distribution of anisotropy energy barriers.

  6. Spin-exchange dynamical structure factor of the S=1/2 Heisenberg chain.

    PubMed

    Klauser, Antoine; Mossel, Jorn; Caux, Jean-Sbastien; van den Brink, Jeroen

    2011-04-15

    We determine the spin-exchange dynamical structure factor of the Heisenberg spin chain, as is measured by indirect resonant inelastic x-ray scattering (RIXS). We find that two-spin RIXS excitations nearly entirely fractionalize into two-spinon states. These share the same continuum lower bound as single-spin neutron scattering excitations, even if the relevant final states belong to orthogonal symmetry sectors. The RIXS spectral weight is mainly carried by higher-energy excitations, and is beyond the reach of the low-energy effective theories of Luttinger liquid type. PMID:21568610

  7. 1H-NMR study of the spin dynamics of fine superparamagnetic nanoparticles

    SciTech Connect

    Bordonali, L.; Furukawa, Y.; Kraken, M.; Litterst, F.J.; Sangregorio, C.; Casula, M.F.; Lascialfari, A.

    2012-05-25

    We report a broadband 1H-NMR study of the temperature spin dynamics of nearly monodisperse dextran-coated ?-Fe2O3 magnetic nanoparticles. We observed a maximum in T1?1(T) that decreases in amplitude and shifts toward higher temperatures with increasing field. We suggest that this is related to the progressive superparamagnetic spin blocking of the ferrite core. The data can be explained by assuming a single electronic spin-spin correlation time and introducing a field-dependent distribution of anisotropy energy barriers.

  8. Spin dynamics and relaxation in graphene dictated by electron-hole puddles.

    PubMed

    Van Tuan, Dinh; Ortmann, Frank; Cummings, Aron W; Soriano, David; Roche, Stephan

    2016-01-01

    The understanding of spin dynamics and relaxation mechanisms in clean graphene, and the upper time and length scales on which spin devices can operate, are prerequisites to realizing graphene-based spintronic technologies. Here we theoretically reveal the nature of fundamental spin relaxation mechanisms in clean graphene on different substrates with Rashba spin-orbit fields as low as a few tens of μeV. Spin lifetimes ranging from 50 picoseconds up to several nanoseconds are found to be dictated by substrate-induced electron-hole characteristics. A crossover in the spin relaxation mechanism from a Dyakonov-Perel type for SiO2 substrates to a broadening-induced dephasing for hBN substrates is described. The energy dependence of spin lifetimes, their ratio for spins pointing out-of-plane and in-plane, and the scaling with disorder provide a global picture about spin dynamics and relaxation in ultraclean graphene in the presence of electron-hole puddles. PMID:26876333

  9. Spin dynamics and relaxation in graphene dictated by electron-hole puddles

    PubMed Central

    Van Tuan, Dinh; Ortmann, Frank; Cummings, Aron W.; Soriano, David; Roche, Stephan

    2016-01-01

    The understanding of spin dynamics and relaxation mechanisms in clean graphene, and the upper time and length scales on which spin devices can operate, are prerequisites to realizing graphene-based spintronic technologies. Here we theoretically reveal the nature of fundamental spin relaxation mechanisms in clean graphene on different substrates with Rashba spin-orbit fields as low as a few tens of μeV. Spin lifetimes ranging from 50 picoseconds up to several nanoseconds are found to be dictated by substrate-induced electron-hole characteristics. A crossover in the spin relaxation mechanism from a Dyakonov-Perel type for SiO2 substrates to a broadening-induced dephasing for hBN substrates is described. The energy dependence of spin lifetimes, their ratio for spins pointing out-of-plane and in-plane, and the scaling with disorder provide a global picture about spin dynamics and relaxation in ultraclean graphene in the presence of electron-hole puddles. PMID:26876333

  10. Probing dynamics of a spin ensemble of P1 centers in diamond using a superconducting resonator

    NASA Astrophysics Data System (ADS)

    de Lange, Gijs; Ranjan, Vishal; Schutjens, Ron; Debelhoir, Thibault; Groen, Joost; Szombati, Daniel; Thoen, David; Klapwijk, Teun; Hanson, Ronald; Dicarlo, Leonardo

    2013-03-01

    Solid-state spin ensembles are promising candidates for realizing a quantum memory for superconducting circuits. Understanding the dynamics of such ensembles is a necessary step towards achieving this goal. Here, we investigate the dynamics of an ensemble of nitrogen impurities (P1 centers) in diamond using magnetic-field controlled coupling to the first two modes of a superconducting (NbTiN) coplanar waveguide resonator. Three hyperfine-split spin sub-ensembles are clearly resolved in the 0.25-1.2 K temperature range, with a collective coupling strength extrapolating to 23 MHz at full polarization. The coupling to multiple modes allows us to distinguish the contributions of dipolar broadening and magnetic field inhomogeneity to the spin linewidth. We find the spin polarization recovery rate to be temperature independent below 1 K and conclude that spin out-diffusion across the resonator mode volume provides the mechanism for spin relaxation of the ensemble. Furthermore, by pumping spins in one sub-ensemble and probing the spins in the other sub-ensembles, we observe fast steady-state cross-relaxation (compared to spin repolarization) across the hyperfine transitions. These observations have important implications for using the three sub-ensembles as independent quantum memories. Research supported by NWO, FOM, and EU Project SOLID

  11. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    SciTech Connect

    Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  12. Unified dynamics of electrons and photons via Zitterbewegung and spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Leary, C. C.; Smith, Karl H.

    2014-02-01

    We show that when an electron or photon propagates in a cylindrically symmetric waveguide, it experiences both a Zitterbewegung effect and a spin-orbit interaction leading to identical propagation dynamics for both particles. Applying a unified perturbative approach to both particles simultaneously, we find that to first order in perturbation theory, their Hamiltonians each contain identical Darwin (Zitterbewegung) and spin-orbit terms, resulting in the unification of their dynamics. The presence of the Zitterbewegung effect may be interpreted physically as the delocalization of the electron on the scale of its Compton wavelength, or the delocalization of the photon on the scale of its wavelength in the waveguide. The presence of the spin-orbit interaction leads to the prediction of several rotational effects: the spatial or time evolution of either particle's spin or polarization vector is controlled by the sign of its orbital angular momentum quantum number or, conversely, its spatial wave function is controlled by its spin angular momentum.

  13. Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot

    NASA Astrophysics Data System (ADS)

    Bechtold, Alexander; Rauch, Dominik; Li, Fuxiang; Simmet, Tobias; Ardelt, Per-Lennart; Regler, Armin; Mller, Kai; Sinitsyn, Nikolai A.; Finley, Jonathan J.

    2015-12-01

    The control of solid-state qubits requires a detailed understanding of the decoherence mechanisms. Despite considerable progress in uncovering the qubit dynamics in strong magnetic fields, decoherence at very low magnetic fields remains puzzling, and the role of quadrupole coupling of nuclear spins is poorly understood. For spin qubits in semiconductor quantum dots, phenomenological models of decoherence include two basic types of spin relaxation: fast dephasing due to static but randomly distributed hyperfine fields (~2 ns) and a much slower process (>1 ?s) of irreversible monotonic relaxation due either to nuclear spin co-flips or other complex many-body interaction effects. Here we show that this is an oversimplification; the spin qubit relaxation is determined by three rather than two distinct stages. The additional stage corresponds to the effect of coherent precession processes that occur in the nuclear spin bath itself, leading to a relatively fast but incomplete non-monotonic relaxation at intermediate timescales (~750 ns).

  14. Brownian motion and quantum dynamics of magnetic monopoles in spin ice

    PubMed Central

    Bovo, L.; Bloxsom, J.A.; Prabhakaran, D.; Aeppli, G.; Bramwell, S.T.

    2013-01-01

    Spin ice illustrates many unusual magnetic properties, including zero point entropy, emergent monopoles and a quasi liquidgas transition. To reveal the quantum spin dynamics that underpin these phenomena is an experimental challenge. Here we show how crucial information is contained in the frequency dependence of the magnetic susceptibility and in its high frequency or adiabatic limit. The typical response of Dy2Ti2O7 spin ice indicates that monopole diffusion is Brownian but is underpinned by spin tunnelling and is influenced by collective monopole interactions. The adiabatic response reveals evidence of driven monopole plasma oscillations in weak applied field, and unconventional critical behaviour in strong applied field. Our results clarify the origin of the relatively high frequency response in spin ice. They disclose unexpected physics and establish adiabatic susceptibility as a revealing characteristic of exotic spin systems. PMID:23443563

  15. Electrical current and coupled electron-nuclear spin dynamics in double quantum dots

    NASA Astrophysics Data System (ADS)

    Giavaras, G.; Lambert, Neill; Nori, Franco

    2013-03-01

    We examine electronic transport in a spin-blockaded double quantum dot. We show that by tuning the strength of the spin-orbit interaction the current flowing through the double dot exhibits a dip at zero magnetic field or a peak at a magnetic field for which the two-electron energy levels anticross. This behavior is due to the dependence of the singlet-triplet mixing on the field and spin-orbit amplitude. We derive approximate expressions for the current as a function of the amplitudes of the states involved in the transport. We also consider an alternative model that takes into account a finite number of nuclear spins and study the resulting coupled dynamics between electron and nuclear spins. We show that if the spin ensemble is in a thermal state there are regular oscillations in the transient current followed by quasichaotic revivals akin to those seen in a thermal Jaynes-Cummings model.

  16. SU(2s+1) symmetry and nonlinear dynamics of high spin magnets

    SciTech Connect

    Kovalevsky, M.Y. Glushchenko, A.V.

    2014-10-15

    The article is devoted to the description of dynamics of magnets with arbitrary spin on the basis of the Hamiltonian formalism. The relationship of quantum states and magnetic degrees of freedom has been considered. Subalgebras of Poisson bracket of magnetic values for spin s=1/2; 1; 3/2 have been established. We have obtained non-linear dynamic equations for the normal and degenerate non-equilibrium states of high-spin magnets with the SO(3), SU(4), SU(2)×SU(2), SU(3), SO(4), SO(5) symmetries of exchange interaction. The connection between models of magnetic exchange energy and the Casimir invariants has been discussed.

  17. Finite temperature spin-dynamics and phase transitions in spin-orbital models

    SciTech Connect

    Chen, C.-C.

    2010-04-29

    We study finite temperature properties of a generic spin-orbital model relevant to transition metal compounds, having coupled quantum Heisenberg-spin and Ising-orbital degrees of freedom. The model system undergoes a phase transition, consistent with that of a 2D Ising model, to an orbitally ordered state at a temperature set by short-range magnetic order. At low temperatures the orbital degrees of freedom freeze-out and the model maps onto a quantum Heisenberg model. The onset of orbital excitations causes a rapid scrambling of the spin spectral weight away from coherent spin-waves, which leads to a sharp increase in uniform magnetic susceptibility just below the phase transition, reminiscent of the observed behavior in the Fe-pnictide materials.

  18. Dynamics of extended spinning masses in a gravitational field

    SciTech Connect

    Mashhoon, Bahram; Singh, Dinesh

    2006-12-15

    We develop a first-order approximation method for the influence of spin on the motion of extended spinning test masses in a gravitational field. This approach is illustrated for approximately circular equatorial motion in the exterior Kerr spacetime. In this case, the analytic results for the first-order approximation are compared to the numerical integration of the exact system and the limitations of the first-order results are pointed out. Furthermore, we employ our analytic results to illustrate the gravitomagnetic clock effect for spinning particles.

  19. Formulation of numerical procedures for dynamic analysis of spinning structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1986-01-01

    The paper presents the descriptions of recently developed numerical algorithms that prove to be useful for the solution of the free vibration problem of spinning structures. First, a generalized procedure for the computation of nodal centrifugal forces in a finite element owing to any specified spin rate is derived in detail. This is followed by a description of an improved eigenproblem solution procedure that proves to be economical for the free vibration analysis of spinning structures. Numerical results are also presented which indicate the efficacy of the currently developed procedures.

  20. Modeling two-spin dynamics in a noisy environment

    SciTech Connect

    Testolin, M. J.; Hollenberg, L. C. L.; Cole, J. H.

    2009-10-15

    We describe how the effect of charge noise on a pair of spins coupled via the exchange interaction can be calculated by modeling charge fluctuations as a random telegraph noise process using probability density functions. We develop analytic expressions for the time-dependent superoperator of a pair of spins as a function of fluctuation amplitude and rate. We show that the theory can be extended to include multiple fluctuators, in particular, spectral distributions of fluctuators. These superoperators can be included in time-dependent analyses of the state of spin systems designed for spintronics or quantum information processing to determine the decohering effects of exchange fluctuations.

  1. Neutrino spin dynamics in dense matter and electromagnetic field

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.; Lobanov, A. E.; Murchikova, E. M.

    2009-01-01

    A complete set of solutions to the Dirac-Pauli equation is derived for a massive neutrino that interacts with dense matter and a strong electromagnetic field. It is shown that these solutions may describe neutrino spin precession.

  2. Cavity Exciton-Polaritons, Bose Einstein Condensation and Spin Dynamics

    SciTech Connect

    Malpuech, Guillaume; Solnyshkov, Dmitry; Shelykh, Ivan

    2009-10-07

    An introduction giving elementary properties of cavity exciton-polariton will be given. The condition of occurrence of the polariton lasing effect and of the polariton Bose Eintein condensation will be discussed. The impact of the structural disorder on the superfluid behavior of polariton condensates will be analysed. The spin properties of polariton condensates will be discussed. I will show how the anisotropy of the polariton-polariton interaction leads to the suppression of zeeman splitting for polariton condensates (spin Meissner effects). I will show how the combined impact of disorder and spin Meissner effect can lead to the formation of a new condense phase. I will show how these phenomena can allow for the realization of a polaritonic Datta Das spin transistor.

  3. Atom-diatom scattering dynamics of spinning molecules

    SciTech Connect

    Eyles, C. J.; Floß, J.; Averbukh, I. Sh.; Leibscher, M.

    2015-01-14

    We present full quantum mechanical scattering calculations using spinning molecules as target states for nuclear spin selective atom-diatom scattering of reactive D+H{sub 2} and F+H{sub 2} collisions. Molecules can be forced to rotate uni-directionally by chiral trains of short, non-resonant laser pulses, with different nuclear spin isomers rotating in opposite directions. The calculations we present are based on rotational wavepackets that can be created in this manner. As our simulations show, target molecules with opposite sense of rotation are predominantly scattered in opposite directions, opening routes for spatially and quantum state selective scattering of close chemical species. Moreover, two-dimensional state resolved differential cross sections reveal detailed information about the scattering mechanisms, which can be explained to a large degree by a classical vector model for scattering with spinning molecules.

  4. Coherent Spin Dynamics in Molecular Cr8Zn Wheels.

    PubMed

    Ghirri, Alberto; Chiesa, Alessandro; Carretta, Stefano; Troiani, Filippo; van Tol, Johan; Hill, Stephen; Vitorica-Yrezabal, Inigo; Timco, Grigore A; Winpenny, Richard E P; Affronte, Marco

    2015-12-17

    Controlling and understanding transitions between molecular spin states allows selection of the most suitable ones for qubit encoding. Here we present a detailed investigation of single crystals of a polynuclear Cr8Zn molecular wheel using 241 GHz electron paramagnetic resonance (EPR) spectroscopy in high magnetic field. Continuous wave spectra are well reproduced by spin Hamiltonian calculations, which evidence that transitions in correspondence to a well-defined anticrossing involve mixed states with different total spin. We studied, by means of spin echo experiments, the temperature dependence of the dephasing time (T2) down to 1.35 K. These results are reproduced by considering both hyperfine and intermolecular dipolar interactions, evidencing that the dipolar contribution is completely suppressed at the lowest temperature. Overall, these results shed light on the effects of the decoherence mechanisms, whose understanding is crucial to exploit chemically engineered molecular states as a resource for quantum information processing. PMID:26633293

  5. Theoretical studies of the spin dynamics of quadrupolar nuclei at rotational resonance conditions

    NASA Astrophysics Data System (ADS)

    Walls, Jamie D.; Lim, Kwang Hun; Pines, Alexander

    2002-01-01

    A theory of the spin dynamics of I=3/2 quadrupolar nuclei in the sudden-passage limit is discussed in relation to the recently observed rotational resonance (RR) effects on the excitation and conversion of triple-quantum coherence in the FASTER multiple-quantum magic-angle spinning (MQMAS) experiments [T. Vosegaard, P. Florian, D. Massiot, and P. J. Grandinetti, J. Chem. Phys. 114, 4618 (2001)]. A novel interaction frame, which combines the quadrupolar interaction with the central transition radio frequency irradiation, is shown to be useful in understanding the complex spin dynamics at and away from RR conditions. Analytical expressions for the Hamiltonian obtained from bimodal Floquet theory are included in order to provide insight into the spin dynamics observed in the FASTER MQMAS experiments. Numerical simulations have been performed and were found to support the theoretical formalism.

  6. QUANTUM SIMULATION. Localization-delocalization transition in the dynamics of dipolar-coupled nuclear spins.

    PubMed

    Álvarez, Gonzalo A; Suter, Dieter; Kaiser, Robin

    2015-08-21

    Nonequilibrium dynamics of many-body systems are important in many scientific fields. Here, we report the experimental observation of a phase transition of the quantum coherent dynamics of a three-dimensional many-spin system with dipolar interactions. Using nuclear magnetic resonance (NMR) on a solid-state system of spins at room-temperature, we quench the interaction Hamiltonian to drive the evolution of the system. Depending on the quench strength, we then observe either localized or extended dynamics of the system coherence. We extract the critical exponents for the localized cluster size of correlated spins and diffusion coefficient around the phase transition separating the localized from the delocalized dynamical regime. These results show that NMR techniques are well suited to studying the nonequilibrium dynamics of complex many-body systems. PMID:26293957

  7. Nuclear magnetometry studies of spin dynamics in quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Fauzi, M. H.; Watanabe, S.; Hirayama, Y.

    2014-12-01

    We performed a nuclear magnetometry study on quantum Hall ferromagnet with a bilayer total filling factor of ?tot=2 . We found not only a rapid nuclear relaxation but also a sudden change in the nuclear-spin polarization distribution after a one-second interaction with a canted antiferromagnetic phase. We discuss the possibility of observing cooperative phenomena coming from nuclear-spin ensemble triggered by hyperfine interaction in quantum Hall system.

  8. Pseudofermion dynamical theory for the spin dynamical correlation functions of the half-filled 1D Hubbard model

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Čadež, T.

    2016-03-01

    A modified version of the metallic-phase pseudofermion dynamical theory (PDT) of the 1D Hubbard model is introduced for the spin dynamical correlation functions of the half-filled 1D Hubbard model Mott-Hubbard phase. The Mott-Hubbard insulator phase PDT is applied to the study of the model longitudinal and transverse spin dynamical structure factors at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. The relation of our theoretical results to both condensed-matter and ultra-cold atom systems is discussed.

  9. All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect

    NASA Astrophysics Data System (ADS)

    Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Hoffmann, Axel

    2016-02-01

    The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy, and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.

  10. Polaron spin filtering in an organic ferromagnetic polymer: a dynamics simulation.

    PubMed

    Wang, Hui; Li, Yuan; Li, Dong-Mei; Cui, Bin; Liu, De-Sheng

    2016-01-01

    We present a model study of the dynamic properties of a polaron in an organic ferromagnetic polymer by focusing on the spin correlation between the polymer backbone and the side radicals. The simulations are performed by using a tight-binding description coupled with a nonadiabatic dynamics method. We find that, in the presence of an external electric field, the polarons with both up and down spins can get trapped near the side radicals of the polymer chain unless the electric field is stronger than a critical field. However, the magnitudes of the critical electric field vary quite differently for the spin-up and spin-down polarons as a function of the number of side radicals in the polymer, leading to the exponential change of the range of the electric field within which the spin-filtering takes place. The range of the electric field increases nearly in a linear manner with the strength of the electron-lattice coupling as a result of the increase of the polaron binding energy. The impact of the strength of the spin correlation between the backbone and the side radicals on the polaron spin filtering is also discussed. These findings are expected to be useful for the design of organic-based spin filters. PMID:26616237

  11. Optical initialization and dynamics of spin in a remotely doped quantum well

    SciTech Connect

    Kennedy, T. A.; Scheibner, M.; Efros, Al. L.; Bracker, A. S.; Gammon, D.; Shabaev, A.

    2006-01-15

    The excitation of electron spin polarization and coherence by picosecond light pulses and their dynamics in a wide remotely doped quantum well are studied theoretically and experimentally. Assuming that all electrons in the quantum well are localized, the theory considers the resonant interaction of light pulses with the four-level system formed by the electron spins of the ground state and the hole spins of the trion excited state. The theory describes the effects of spontaneous emission, a transverse magnetic field and hole spin relaxation on the dynamics detected by the Kerr rotation of a probe pulse. Time resolved Kerr rotation experiments were carried out on a remotely doped 14 nm GaAs quantum well in the frequency range of optical transitions to the heavy hole (HH) trion and to the light-hole (LH) trion degenerate with the HH exciton. The experiments on the resonant excitation of the HH trion show a very slow heavy hole spin relaxation and, consequently, a weak electron spin polarization after the trion relaxation. In contrast, the resonant excitation of the LH trion/HH exciton results in a fast hole spin relaxation that increases electron spin polarization.

  12. Short-Time Glassy Dynamics in Viscous Protein Solutions with Competing Interactions

    NASA Astrophysics Data System (ADS)

    Godfrin, P. Douglas; Hudson, Steven D.; Hong, Kunlun; Porcar, Lionel; Falus, Peter; Wagner, Norman J.; Liu, Yun

    2015-11-01

    The glass transition of colloidal dispersions interacting with both a short-ranged attraction and long-ranged repulsion is studied using highly purified lysozyme solutions. Newtonian liquid behavior is observed at all conditions while measurements of the dynamics in the short-time limit show features typical of glassy colloidal systems at high protein concentrations. This interesting behavior is due to the competition of the attraction and repulsion that produces a heterogeneous microstructure only at intermediate range length scales. The results demonstrate that theories for the macroscopic properties of systems with competing interactions need to include intermediate range order.

  13. Low energy spin dynamics in the spin ice, Ho2Sn2O7

    SciTech Connect

    Ehlers, Georg; Huq, Ashfia; Diallo, Souleymane Omar; Adriano, Cris; Rule, K; Cornelius, A. L.; Fouquet, Peter; Pagliuso, P G; Gardner, Jason

    2012-01-01

    The magnetic properties of Ho{sub 2}Sn{sub 2}O{sub 7} have been investigated and compared to other spin ice compounds. Although the lattice has expanded by 3% relative to the better studied Ho{sub 2}Ti{sub 2}O{sub 7} spin ice, no significant changes were observed in the high temperature properties, T {approx}> 20 K. As the temperature is lowered and correlations develop, Ho{sub 2}Sn{sub 2}O{sub 7} enters its quantum phase at a slightly higher temperature than Ho{sub 2}Ti{sub 2}O{sub 7} and is more antiferromagnetic in character. Below 80 K a weak inelastic mode associated with the holmium nuclear spin system has been measured. The hyperfine field at the holmium nucleus was found to be {approx}700 T.

  14. Jordan-Wigner approach to dynamic correlations in spin ladders

    NASA Astrophysics Data System (ADS)

    Nunner, Tamara S.; Kopp, Thilo

    2004-03-01

    We present a method for studying the excitations of low-dimensional quantum spin systems based on the Jordan-Wigner transformation. Using an extended random-phase approximation (RPA) scheme we calculate the correlation function of neighboring spin flips for the one-dimensional spin-1/2 chain which well approximates the optical conductivity of Sr2CuO3. We analyze several possible generalizations of the Jordan-Wigner approach to the two-leg spin-1/2 ladder. On the mean-field level the most accurate results are obtained when the spin operators are numbered in a meanderlike sequence. Calculation of the optical conductivity based on an extended RPA scheme for the meander-path approach yields very good agreement with a previous density matrix renormalization group evaluation. For polarization along the legs higher-order correlations are important to explain the weight of high-energy continuum excitations and we estimate the contribution of 4- and 6-fermion processes.

  15. Molecular dynamics simulation of site-directed spin labeling: experimental validation in muscle fibers.

    PubMed Central

    LaConte, Leslie E W; Voelz, Vincent; Nelson, Wendy; Enz, Michael; Thomas, David D

    2002-01-01

    We have developed a computational molecular dynamics technique to simulate the motions of spin labels bound to the regulatory domain of scallop myosin. These calculations were then directly compared with site-directed spin labeling experimental results obtained by preparing seven single-cysteine mutants of the smooth muscle (chicken gizzard) myosin regulatory light chain and performing electron paramagnetic resonance experiments on these spin-labeled regulatory light chains in functional scallop muscle fibers. We determined molecular dynamics simulation conditions necessary for obtaining a convergent orientational trajectory of the spin label, and from these trajectories we then calculated correlation times, orientational distributions, and order parameters. Simulated order parameters closely match those determined experimentally, validating our molecular dynamics modeling technique, and demonstrating our ability to predict preferred sites for labeling by computer simulation. In several cases, more than one rotational mode was observed within the 14-ns trajectory, suggesting that the spin label samples several local energy minima. This study uses molecular dynamics simulations of an experimental system to explore and enhance the site-directed spin labeling technique. PMID:12324407

  16. Spectroscopically Resolved Imaging of Spin Dynamics in Ferromagnets Using Nitrogen-Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Wolfe, Christopher; Bhallamudi, Vidya; Manuilov, Sergei; Wang, Hailong; Du, Chunhui; Teeling-Smith, Richelle; Purser, Carola; Berger, Andrew; Adur, Rohan; Yang, Fengyuan; Hammel, P. Chris

    2015-03-01

    Understanding ferromagnetic dynamics is important for the development of future nanoscale spintronic and magnonic devices. Nitrogen-vacancy centers (NV) in diamond provide us with one of the few tools that has been shown to be capable of both broadband spectroscopy of ferromagnetic resonance1 and nanometer scale imaging of magnetic fields2. Towards the goal of studying ferromagnetic dynamics at the nanoscale, we report recent results of the local spectroscopy of spin dynamics in ferromagnetic materials using NV centers. We see an especially strong coupling to low frequency excitations such as domains and domain walls, and observe a clear spatial dependence of the excitation of different spin wave modes.

  17. Cascaded spin motive force driven by the dynamics of the skyrmion lattice

    SciTech Connect

    Ohe, Jun-ichiro; Shimada, Yuhki

    2013-12-09

    We numerically investigate the spin motive force (SMF) driven by the dynamics of a Skyrmion lattice. The rotating mode of the Skyrmion core excited by the AC magnetic field induces the large spin-dependent electric field near the core. Due to the collective dynamics of Skyrmion lattice, the measurable voltage is enhanced by the cascade effect of the SMF. The amplitude of the AC voltage is estimated to 30??V in a macroscopic sample, where 100 Skyrmions exist between two probes. We also investigate the SMF due to the dynamics of the helical magnetic state, where the enhancement of the SMF does not occur.

  18. Optical and spin polarization dynamics in GaSe nanoslabs

    NASA Astrophysics Data System (ADS)

    Tang, Yanhao; Xie, Wei; Mandal, Krishna C.; McGuire, John A.; Lai, C. W.

    2015-05-01

    We report nearly complete preservation of "spin memory" between optical absorption and photoluminescence (PL) in nanometer slabs of GaSe pumped with up to 0.2 eV excess energy. At cryogenic temperatures, the initial degree of circular polarization (?0) of PL approaches unity, with the major fraction of the spin polarization decaying with a time constant >500 ps in sub-100-nm GaSe nanoslabs. Even at room temperature, ?0 as large as 0.7 is observed, while pumping 1 eV above the band edge yields ?0=0.15 . Angular momentum preservation for both electrons and holes is due to the separation of the nondegenerate conduction and valence bands from other bands. In contrast to valley polarization in atomically thin transition-metal dichalcogenides, here optical spin polarization is preserved in nanoslabs of 100 layers or more of GaSe.

  19. Precession dynamics in spin-orbit coupling - A unified theory

    NASA Astrophysics Data System (ADS)

    Blitzer, L.

    1984-04-01

    Equations are developed for the secular motions of the node and pericenter referred to the invariant plane in a two-body problem when one is a sphere and the other a spinning asymmetrical rigid body (e. g., Sun-planet system, or point satellite-planet system). Oblateness precession of satellite orbits and equinoctial precession of planets are shown to be merely opposite extreme cases of the single phenomenon of precession in spin-orbit coupling, in which the determining parameter is the ratio of orbital to spin angular momentum (h0/hs). The "critical" inclination for apsidal motion also depends on this ratio, varying from 63.43° in the one extreme when (h0/hs) very low 1, to 90° in the opposite extreme when (h0/hs) very large 1. Application is made to the Earth-Sun-Moon system.

  20. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    SciTech Connect

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; Vaknin, David

    2015-07-06

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.

  1. Unraveling Photoinduced Spin Dynamics in the Topological Insulator Bi2 Se3

    NASA Astrophysics Data System (ADS)

    Wang, M. C.; Qiao, S.; Jiang, Z.; Luo, S. N.; Qi, J.

    2016-01-01

    We report on a time-resolved ultrafast optical spectroscopy study of the topological insulator Bi2 Se3 . We unravel that a net spin polarization cannot only be generated using circularly polarized light via interband transitions between topological surface states (SSs), but also via transitions between SSs and bulk states. Our experiment demonstrates that tuning photon energy or temperature can essentially allow for photoexcitation of spin-polarized electrons to unoccupied topological SSs with two distinct spin relaxation times (25 and 300 fs ), depending on the coupling between SSs and bulk states. The intrinsic mechanism leading to such distinctive spin dynamics is the scattering in SSs and bulk states which is dominated by Eg2 and A1g 1 phonon modes, respectively. These findings are suggestive of novel ways to manipulate the photoinduced coherent spins in topological insulators.

  2. Unraveling Photoinduced Spin Dynamics in the Topological Insulator Bi_{2}Se_{3}.

    PubMed

    Wang, M C; Qiao, S; Jiang, Z; Luo, S N; Qi, J

    2016-01-22

    We report on a time-resolved ultrafast optical spectroscopy study of the topological insulator Bi_{2}Se_{3}. We unravel that a net spin polarization cannot only be generated using circularly polarized light via interband transitions between topological surface states (SSs), but also via transitions between SSs and bulk states. Our experiment demonstrates that tuning photon energy or temperature can essentially allow for photoexcitation of spin-polarized electrons to unoccupied topological SSs with two distinct spin relaxation times (?25 and ?300??fs), depending on the coupling between SSs and bulk states. The intrinsic mechanism leading to such distinctive spin dynamics is the scattering in SSs and bulk states which is dominated by E_{g}^{2} and A_{1g}^{1} phonon modes, respectively. These findings are suggestive of novel ways to manipulate the photoinduced coherent spins in topological insulators. PMID:26849605

  3. Constrained spin-density dynamics of an iron-sulfur complex: Ferredoxin cofactor

    NASA Astrophysics Data System (ADS)

    Ali, Md. Ehesan; Nair, Nisanth N.; Staemmler, Volker; Marx, Dominik

    2012-06-01

    The computation of antiferromagnetic exchange coupling constants J by means of efficient density-based approaches requires in practice to take care of both spin projection to approximate the low spin ground state and proper localization of the magnetic orbitals at the transition metal centers. This is demonstrated here by a combined approach where the extended broken-symmetry (EBS) technique is employed to include the former aspect, while spin density constraints are applied to ensure the latter. This constrained EBS (CEBS) approach allows us to carry out ab initio molecular dynamics on a spin-projected low spin potential energy surface that is generated on-the-fly by propagating two coupled determinants and thereby accessing the antiferromagnetic coupling along the trajectory. When applied to the prototypical model of the oxidized [2Fe-2S] cofactor in Ferredoxins, [Fe2S2(SH)4]2-, at room temperature, CEBS leads to remarkably good results for geometrical structures and coupling constants J.

  4. Solid effect DNP polarization dynamics in a system of many spins.

    PubMed

    Wi?niewski, Daniel; Karabanov, Alexander; Lesanovsky, Igor; Kckenberger, Walter

    2016-03-01

    We discuss the polarization dynamics during solid effect dynamic nuclear polarization (DNP) in a central spin model that consists of an electron surrounded by many nuclei. To this end we use a recently developed formalism and validate first its performance by comparing its predictions to results obtained by solving the Liouville von Neumann master equation. The use of a Monte Carlo method in our formalism makes it possible to significantly increase the number of spins considered in the model system. We then analyse the dependence of the nuclear bulk polarization on the presence of nuclei in the vicinity of the electron and demonstrate that increasing the minimal distance between nuclei and electrons leads to a rise of the nuclear bulk polarization. These observations have implications for the design of radicals that can lead to improved values of nuclear spin polarization. Furthermore, we discuss the potential to extend our formalism to more complex spin systems such as cross effect DNP. PMID:26920828

  5. Dynamical skyrmion state in a spin current nano-oscillator with perpendicular magnetic anisotropy.

    PubMed

    Liu, R H; Lim, W L; Urazhdin, S

    2015-04-01

    We study the spectral characteristics of spin current nano-oscillators based on the Pt/[Co/Ni] magnetic multilayer with perpendicular magnetic anisotropy. By varying the applied magnetic field and current, both localized and propagating spin wave modes of the oscillation are achieved. At small fields, we observe an abrupt onset of the modulation sidebands. We use micromagnetic simulations to identify this state as a dynamical magnetic skyrmion stabilized in the active device region by spin current injection, whose current-induced dynamics is accompanied by the gyrotropic motion of the core due to the skew deflection. Our results demonstrate a practical route for controllable skyrmion manipulation by spin current in magnetic thin films. PMID:25884135

  6. Dynamical Skyrmion State in a Spin Current Nano-Oscillator with Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Liu, R. H.; Lim, W. L.; Urazhdin, S.

    2015-04-01

    We study the spectral characteristics of spin current nano-oscillators based on the Pt /[Co /Ni ] magnetic multilayer with perpendicular magnetic anisotropy. By varying the applied magnetic field and current, both localized and propagating spin wave modes of the oscillation are achieved. At small fields, we observe an abrupt onset of the modulation sidebands. We use micromagnetic simulations to identify this state as a dynamical magnetic skyrmion stabilized in the active device region by spin current injection, whose current-induced dynamics is accompanied by the gyrotropic motion of the core due to the skew deflection. Our results demonstrate a practical route for controllable skyrmion manipulation by spin current in magnetic thin films.

  7. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    SciTech Connect

    Mukai, Atsushi; Kurisaki, Tomohiro; Sato, Satoshi B.; Kobayashi, Toshihide; Kondoh, Gen; Hashimoto, Naohiro

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  8. Spin dynamics in electron-doped iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhou, Tao; Ting, C. S.; Su, Wu-Pei

    2010-09-01

    The doping dependence of spin excitations in Ba(Fe1-xCox)2As2 is studied based on a phenomenological two-orbital model under the random-phase approximation. We adopt this model because of its ability to fit the doping evolution of the Fermi surfaces and the asymmetry in the superconductivity (SC) coherent peaks as observed, respectively, by the angle-resolved photoemission spectroscopy (ARPES) and the scanning tunneling microscopy experiments in this type of compounds. The interplay between the spin-density wave and SC is considered in our calculation. Our results for the spin susceptibility are in qualitative agreement with neutron-scattering (NS) experiments in various doping ranges at temperatures above and below the superconducting transition temperature Tc . For the overdoped sample where one of the two hole pockets around ? point disappears according to ARPES, we show that the imaginary part of the spin susceptibility in both SC and normal phases exhibits a gaplike behavior. This feature is consistent with the pseudogap as observed by recent nuclear magnetic resonance and NS experiments.

  9. Neutrino spin dynamics in dense matter and electromagnetic field

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.

    2008-11-01

    We discuss behavior of massive Dirac neutrino with anomalous magnetic moment propagating through dense magnetized matter on the basis of the obtained solutions of the Dirac-Pauli equation. This system of solutions demonstrates spin rotating properties and represents pure neutrino states.

  10. Comment on Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain

    NASA Astrophysics Data System (ADS)

    de Gier, Jan

    2012-10-01

    We consider the paper Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain, by Klauser, Mossel and Caux (2012 J. Stat. Mech. P03012) to be a new and important step in the numerical analysis of the correlation functions of quantum spin chains. The correlation functions considered in this paper were not previously computed, their analytical study is extremely complicated and the numerical results can be used for comparison with experiments.

  11. Ultrafast optical studies of coherent spin dynamics in magnetic quantum structures

    NASA Astrophysics Data System (ADS)

    Crooker, Scott A.

    Using femtosecond lasers and ultrafast optical techniques, we have investigated the time-evolution of the spins of electrons, holes, and excitons which are optically injected into magnetic semiconductor quantum wells. Here, the spins of the mobile electronic carriers can directly couple to the spins of the local magnetic moments (Mn2+) present in the quantum structure, leading to new channels for spin relaxation, decoherence, and angular momentum transfer. Timescales, strengths, and physical manifestations of these dynamic spin-spin interactions are measured in real-time with femtosecond resolution using a method of ultrafast Faraday rotation. Model systems in which to study the interaction of electronic spins with embedded local moments are realized in a new class of 'digital' magnetic heterostructures: II-VI ZnSe/ZnCdSe single quantum wells containing discrete mono- and submonolayer planes of MnSe. Strong coupling between excitons and local moments is observed, resulting in large effective exciton g-factors (g ~ 500) and enhanced Faraday rotation. The fractional planes of magnetic material can be considered nearly ideal 2-D spin distributions, and the statistics of Mn spin clustering in the 2D planes is studied through photoluminescence Zeeman shifts in high magnetic fields (30T). In longitudinal applied magnetic fields (Faraday geometry), the monotonic exciton spin relaxation is rapid (<5ps) and found to depend solely on the magnitude of the exciton Zeeman splitting, regardless of the particular digital magnetic environment. No longlived spin-dependent imprint on the magnetic sublattice is measured. By contrast, in transverse magnetic fields the electron spins are found to precess at THz frequencies, enabling measurement of the electron spin decoherence time separate from the spin relaxation of the holes. Furthermore, the data indicate that the embedded Mn2+ sublattice undergoes an ultrafast coherent rotation about the transient exchange field of the spin polarized holes. The perturbed Mn2+ spin ensemble subsequently undergoes a measurable free-induction decay, permitting all-optical time-domain electron paramagnetic resonance studies of fractional-monolayer magnetic planes.

  12. Dynamics of a strain-coupled, hybrid spin-oscillator system

    NASA Astrophysics Data System (ADS)

    Maletinsky, Patrick

    2015-03-01

    A single spin coupled to a mechanical oscillator forms a prototypical hybrid quantum system. With a strong and robust coupling mechanism, such devices could yield high-performance nanoscale sensors, be applied for quantum information processing tasks or ultimately be used to study macroscopic objects in the quantum regime. In this talk, I will present our recent experiments where we established a novel type of such a hybrid spin-oscillator system. Specifically, we implemented for the first time diamond nanomechanical resonators, which are coupled to embedded Nitrogen-Vacancy (NV) centre electronic spins through crystalline strain. This strain coupling mechanism is highly robust, potentially strong and leads to interesting dynamics due to the nontrivial strain coupling Hamiltonian. I will illustrate these aspects though our recent experimental results, which include the first quantitative determination of the relevant strain coupling constants and the demonstration of resolved sideband operation in our devices. I will also discuss recent experiments in which we demonstrated coherent driving of NV spins through time-varying strain fields and studied the resulting intriguing dynamics of the strain-driven NV spin system. Our results constitute first essential steps towards future experiments of our hybrid system in the quantum regime. Examples for these include spin-based oscillator sideband cooling or the recently proposed generation of spin-squeezing in nanomechanical oscillators.

  13. Spin dynamics in patterned nanometer-thick yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Jungfleisch, Matthias Benjamin; Zhang, Wei; Jiang, Wanjun; Wu, Stephen M.; Pearson, John E.; Bhattacharya, Anand; Hoffmann, Axel; Sklenar, Joseph; Ketterson, John B.; Chang, Houchen; Wu, Mingzhong

    2015-03-01

    We present experimental investigations on the propagation of spin-wave modes in micro-structured yttrium iron garnet (YIG) stripes.1 The stripes were patterned by photo-lithography from high-quality 40-nm-thick YIG films grown by sputtering.2 Magnetization dynamics is driven by the rf field of a shorted coplanar waveguide patterned onto the YIG stripes. The propagation of spin waves are detected by means of spatially-resolved Brillouin light scattering microscopy. The propagation distance of spin waves is determined in the linear regime, where an exponential decay of 10 ?m is observed. The estimated Gilbert damping parameter extracted from the spin-wave decay length is 3 times larger than that obtained through ferromagnetic resonance measurements in unstructured films, which is possibly due to enhanced two-magnon scattering in the patterned films. Furthermore, studies on the spin dynamics driven by spin-torque ferromagnetic resonance in YIG/Pt bilayers and the corresponding spatially-resolved spin-wave distribution are presented. This work was supported by Department of Energy, Office of Science, Materials Science and Engineering Division, the Army Research Office, and National Science Foundation.

  14. Spin dynamics and domain formation of a spinor Bose-Einstein condensate in an optical cavity

    SciTech Connect

    Zhou Lu; Zhang Keye; Zhang Weiping; Pu Han; Ling, Hong Y.

    2010-06-15

    We consider a ferromagnetic spin-1 Bose-Einstein condensate (BEC) dispersively coupled to a unidirectional ring cavity. We show that the ability of the cavity to modify, in a highly nonlinear fashion, matter-wave phase shifts adds an additional dimension to the study of spinor condensates. In addition to demonstrating strong matter-wave bistability as in our earlier publication [L. Zhou et al., Phys. Rev. Lett. 103, 160403 (2009)], we show that the interplay between atomic and cavity fields can greatly enrich both the physics of critical slowing down in spin-mixing dynamics and the physics of spin-domain formation in spinor condensates.

  15. Impurity and boundary effects on magnetic monopole dynamics in spin ice

    NASA Astrophysics Data System (ADS)

    Kycia, J. B.; Revell, H. M.; Yaraskavitch, L. R.; Mason, J. D.; Ross, K. A.; Noad, H. M. L.; Dabkowska, H. A.; Gaulin, B. D.; Henelius, P.

    2013-03-01

    Using a SQUID magnetometer, we measure the time-dependent magnetic relaxation in Dy2Ti2O7 and find that it decays with a stretched exponential followed by a very slow long-time tail. In a Monte Carlo simulation governed by Metropolis dynamics we find that surface effects and a very low level of stuffed spins (0.30%) - magnetic Dy ions substituted for non-magnetic Ti ions - can explain these signatures in the relaxation. We find that the additional spins trap the magnetic monopole excitations and provide the first example of how defects in a spin-ice material can obstruct the flow of monopoles.

  16. Neutron Scattering Study on spin dynamics in superconducting (TlRb)2Fe4Se5

    SciTech Connect

    Chi, Songxue; Ye, Feng; Bao, Wei; Fang, Dr. Minghu; Wang, H.D.; Dong, C.H.; Savici, Andrei T; Granroth, Garrett E; Stone, Matthew B; Fishman, Randy Scott

    2013-01-01

    Spin dynamics in superconducting (Tl,Rb)2Fe4Se5 was investigated using the inelastic neutron scattering technique. Spin wave branches that span an energy range from 6.5 to 209 meV are success- fully described by a Heisenberg model whose dominant interactions include only the in-plane nearest (J1 and J0 1) and next nearest neighbor (J2 and J0 2) exchange terms within and between the tetramer spin blocks, respectively. These exchange constants, experimentally determined in this work, would crucially constrain the diverse theoretical viewpoints on magnetism and superconductivity in the Fe-based materials.

  17. Direct observation of dynamics of single spinning dust grains in weakly magnetized complex plasma

    SciTech Connect

    Dzlieva, E. S.; Karasev, V. Yu.; Petrov, O. F.

    2012-01-15

    The rotational dynamics of single dust grains in a weak magnetic field is investigated on a kinetic level. Experiments reveal spin-up of spherical dust grains and alignment of their magnetic moments parallel to the magnetic induction vector. The angular velocity of spinning prolate grains varies as magnetic induction increases to 250 G. Spinning dust grains are found to flip over only when the magnetic field magnitude is changing. The results demonstrate that dusty plasma has paramagnetic properties. Qualitative interpretations are proposed to explain newly discovered phenomena.

  18. Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current.

    PubMed

    Guslienko, Konstantin Y; Sukhostavets, Oksana V; Berkov, Dmitry V

    2014-01-01

    We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed. PMID:25147490

  19. Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong

    2010-07-01

    This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.

  20. Low temperature spin dynamics in Cr7Ni-Cu-Cr7Ni coupled molecular rings

    NASA Astrophysics Data System (ADS)

    Bordonali, L.; Furukawa, Y.; Mariani, M.; Sabareesh, K. P. V.; Garlatti, E.; Carretta, S.; Lascialfari, A.; Timco, G.; Winpenny, R. E. P.; Borsa, F.

    2014-05-01

    Proton Nuclear Magnetic Resonance (NMR) relaxation measurements have been performed down to very low temperature (50 mK) to determine the effect of coupling two Cr7Ni molecular rings via a Cu2+ ion. No difference in the spin dynamics was found from nuclear spin lattice relaxation down to 1.5 K. At lower temperature, the 1H-NMR line broadens dramatically indicating spin freezing. From the plot of the line width vs. magnetization, it is found that the freezing temperature is higher (260 mK) in the coupled ring with respect to the single Cr7Ni ring (140 mK).

  1. Existence of a dynamic compensation temperature of the mixed spin-1 and spin-3/2 Ising model within the effective-field theory

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoling; Qi, Yang

    2015-07-01

    The effective-field theory with correlations based on Glauber-type stochastic dynamic is used to study the dynamic compensation behavior of the mixed spin-1 and spin-3/2 ferrimagnetic Ising model. The system is a layered honeycomb structure in which two kinds of spins (spin-1 and spin-3/2) occupy sites alternately. This is related to the experimental works of a molecular-based magnetic multilayer film, AMIIFeII(C2O4)3(A = N(n -CnH 2 n + 1) 4 ,MII = Mn,Fe) . The system is in the presence of a sinusoidal oscillating magnetic field and the Glauber dynamic is used to describe the time evolution of the system. The effects of the interlayer coupling and a crystal-field constant of the spin-1 sublattice on the compensation temperature are investigated. Dynamic phase diagrams, including the compensation points are presented. Besides second-order phase transition, lines of first-order phase transition, the dynamic tricritical point, the dynamic zero-temperature critical point and the multicritical point are found. The dynamic tricritical point, the dynamic compensation point and the non-magnetic phase predicted by the mean-field theory are confirmed by the effective-field theory.

  2. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator.

    PubMed

    Ovartchaiyapong, Preeti; Lee, Kenneth W; Myers, Bryan A; Jayich, Ania C Bleszynski

    2014-01-01

    The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high-quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy centre spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen-vacancy centre. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen-vacancy ground-state spin. The nitrogen-vacancy centre is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 10(-6) strain Hz(-1/2). Finally, we show how this spin-resonator system could enable coherent spin-phonon interactions in the quantum regime. PMID:25034828

  3. Two-level system in spin baths: non-adiabatic dynamics and heat transport.

    PubMed

    Segal, Dvira

    2014-04-28

    We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model. PMID:24784256

  4. Two-level system in spin baths: Non-adiabatic dynamics and heat transport

    SciTech Connect

    Segal, Dvira

    2014-04-28

    We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.

  5. All-Electrical Measurement of Interfacial Dzyaloshinskii-Moriya Interaction Using Collective Spin-Wave Dynamics.

    PubMed

    Lee, Jong Min; Jang, Chaun; Min, Byoung-Chul; Lee, Seo-Won; Lee, Kyung-Jin; Chang, Joonyeon

    2016-01-13

    Dzyaloshinskii-Moriya interaction (DMI), which arises from the broken inversion symmetry and spin-orbit coupling, is of prime interest as it leads to a stabilization of chiral magnetic order and provides an efficient manipulation of magnetic nanostructures. Here, we report all-electrical measurement of DMI using propagating spin wave spectroscopy based on the collective spin wave with a well-defined wave vector. We observe a substantial frequency shift of spin waves depending on the spin chirality in Pt/Co/MgO structures. After subtracting the contribution from other sources to the frequency shift, it is possible to quantify the DMI energy in Pt/Co/MgO systems. The result reveals that the DMI in Pt/Co/MgO originates from the interfaces, and the sign of DMI corresponds to the inversion asymmetry of the film structures. The electrical excitation and detection of spin waves and the influence of interfacial DMI on the collective spin-wave dynamics will pave the way to the emerging field of spin-wave logic devices. PMID:26653115

  6. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator

    PubMed Central

    Ovartchaiyapong, Preeti; Lee, Kenneth W.; Myers, Bryan A.; Jayich, Ania C. Bleszynski

    2014-01-01

    The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high-quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogenvacancy centre spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogenvacancy spinstrain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogenvacancy centre. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogenvacancy ground-state spin. The nitrogenvacancy centre is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 10?6 strain Hz?1/2. Finally, we show how this spin-resonator system could enable coherent spinphonon interactions in the quantum regime. PMID:25034828

  7. Spin-Relaxation Dynamics of E' Centers at High Density in SiO2 Thin Films for Single-Spin Tunneling Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ambal, K.; Payne, A.; Waters, D. P.; Williams, C. C.; Boehme, C.

    2015-08-01

    The suitability of the spin dynamics of paramagnetic silicon dangling bonds (E' centers) in high-E'-density amorphous silicon dioxide (SiO2 ) as probe spins for single-spin tunneling force microscopy (SSTFM) is studied. SSTFM is a spin-selection-rule-based scanning-probe single-spin readout concept. Following the synthesis of SiO2 thin films on (111)-oriented crystalline-silicon substrates with room-temperature stable densities of [E'] >5 ×1018 cm-3 throughout the 60-nm thin film, pulsed electron paramagnetic resonance spectroscopy is conducted on the E' centers at temperatures between T =5 K and T =70 K . The measurements reveal that the spin coherence (the transverse spin-relaxation time T2) of these centers is significantly shortened compared to low-E'-density SiO2 films and within error margins not dependent on temperature. In contrast, the spin-flip times (the longitudinal relaxation times T1) are dependent on the temperature but with much weaker dependence than low-density SiO2 , with the greatest deviations from low-density SiO2 seen for T =5 K . These results, discussed in the context of the spin-relaxation dynamics of dangling-bond states of other silicon-based disordered solids, indicate the suitability of E' centers in high-density SiO2 as probe spins for SSTFM.

  8. Slow Spin Dynamics in Superconducting Ca0.9Ce0.1Fe2As2.

    PubMed

    Nadeem, K; Zhang, W; Chen, D Y; Ren, Z A; Qiu, X G

    2015-01-01

    Slow spin dynamics has been observed in superconducting under-doped Ca0.9Ce0.1Fe2As2 single crystal. Below 100 K, the system exhibits hysteresis in the cooling and warming protocols of temperature dependent resistivity due to first order tetragonal to orthorhombic structural transition with simultaneous magnetic transition from paramagnetic to spin density wave antiferromagnetic state of the iron (Fe) ions. Zero field cooled/field cooled (ZFC/FC) magnetization curves showed splitting at 32 K followed by a sharp increase of the FC curve and then FC plateau at low temperatures. Slow spin relaxation in both the ZFC and FC protocols was observed which is typical for spin-glass system. The system also showed features analogue to spin-glass behavior such as ZFC peak, FC plateau, ZFC slow spin relaxation, magnetic hysteresis, and ZFC ac memory effect. The spin-glass like behavior was rather weak and vanished at higher fields. The origin of the slow spin dynamics could be the inhomogeneous distribution of the cerium (Ce) spins ordered along the c-axis OR interactions between Fe and Ce spins which lead to magnetic frustration of Ce spins. All these findings support the coexistence of slow spin dynamics of Ce spins and superconductivity in Ca0.9Ce0.1Fe2As2 single crystal. PMID:26024047

  9. Chiral spin liquid emerging between competing magnetic order states in the spin-1/2 J1-J2-J3 kagome Heisenberg model

    NASA Astrophysics Data System (ADS)

    Gong, Shoushu; Zhu, Wei; Balents, Leon; Sheng, Dongning

    2015-03-01

    We studied the extended spin- 1 / 2 kagome model with the first neighbor (J1), the second (J2) and third neighbor (J3) couplings using density matrix renormalization group. We established a quantum phase diagram for 0 <= J 2 <= 0 . 25J1 and 0 <=J3 <=J1 , where we find a q = (0 , 0) Neel phase, a chiral spin liquid (CSL), a cuboc1 phase that breaks both time-reversal and spin rotational symmetries, and a valence-bond solid at the neighbor of the Heisenberg model, where a possible Z2 spin liquid has been previously identified. Interestingly, the classical cuboc1 phase could survive in the spin- 1 / 2 system with strong quantum fluctuations, and the CSL emerges between the q = (0 , 0) and the cuboc1 phases. We discover that the CSL has the short spin correlation pattern consistent with the cuboc1 phase, but the chiral order structure is totally different. The CSL might be understood as a result of the competitions between the q = (0 , 0) and the cuboc1 phases in the presence of strong quantum fluctuations. We further studied the quantum phase transitions from the CSL to the magnetically ordered phases, and to the possible Z2 spin liquid of the Heisenberg kagome model. Interestingly, the exotic continuous topological phase transition might be realized in the system.

  10. Femtosecond Spin Dynamics Mechanism In Graphenes: The Bloch NMR-Schrdinger Probe

    NASA Astrophysics Data System (ADS)

    Emetere, Moses E.; Nikouravan, Bijan

    2014-12-01

    The mechanism of the femtosecond spin dynamics is still not properly understood. The remodeled Bloch-Schrdinger equation was incorporated into the Hamiltonian. The mechanism of the femtosecond dynamics was investigated under three quantum states. The spin relaxation mechanism operated in a single continuous time scale (>70ps) which was in variance with known postulate. The transient reflectivity measured to be within an angular range of 18.60 to 90.0 at a pulse range of 1 MHz to 6.5 MHz. Beyond the pulse intensity of -2.5, the system elapsed into a quasi-equilibrium state which explains the independence of the magnetic moment on the pulse intensity. Different possibilities of the femtosecond spin dynamics were worked out for future study.

  11. Keeping a spin qubit alive in natural silicon: Comparing optimal working points and dynamical decoupling

    NASA Astrophysics Data System (ADS)

    Balian, S. J.; Liu, Ren-Bao; Monteiro, T. S.

    2015-06-01

    There are two distinct techniques of proven effectiveness for extending the coherence lifetime of spin qubits in environments of other spins. One is dynamical decoupling, whereby the qubit is subjected to a carefully timed sequence of control pulses; the other is tuning the qubit towards "optimal working points" (OWPs), which are sweet spots for reduced decoherence in magnetic fields. By means of quantum many-body calculations, we investigate the effects of dynamical decoupling pulse sequences far from and near OWPs for a central donor qubit subject to decoherence from a nuclear spin bath. Key to understanding the behavior is to analyze the degree of suppression of the usually dominant contribution from independent pairs of flip-flopping spins within the many-body quantum bath. We find that to simulate recently measured Hahn echo decays at OWPs (lowest-order dynamical decoupling), one must consider clusters of three interacting spins since independent pairs do not even give finite-T2 decay times. We show that while operating near OWPs, dynamical decoupling sequences require hundreds of pulses for a single order of magnitude enhancement of T2, in contrast to regimes far from OWPs, where only about 10 pulses are required.

  12. Anomalously slow spin dynamics and short-range correlations in the quantum spin ice systems Yb2Ti2O7 and Yb2Sn2O7

    NASA Astrophysics Data System (ADS)

    Maisuradze, A.; Dalmas de Rotier, P.; Yaouanc, A.; Forget, A.; Baines, C.; King, P. J. C.

    2015-09-01

    We report a positive muon spin relaxation and rotation (? SR ) study of the quantum spin ice materials Yb2Ti2O7 and Yb2Sn2O7 focusing on the low field response. In agreement with earlier reports, data recorded in small longitudinal fields evidence anomalously slow spin dynamics in the microsecond range below the temperature Tc at which the specific heat displays an intense peak, namely Tc=0.24 K and 0.15 K, respectively, for the two systems. We found that slow dynamics extends above Tc up to at least 0.7 K for both compounds. The conventional dynamical Gaussian Kubo-Toyabe model describes the ? SR spectra recorded above Tc. At lower temperatures a published analytical extension of the Gaussian Kubo-Toyabe model provides a good description, consistent with the existence of short-range magnetic correlations. While the physical response of the two systems is qualitatively the same, Yb2Ti2O7 exhibits a much larger local magnetic susceptibility than Yb2Sn2O7 below Tc. Considering previously reported ac susceptibility, neutron scattering, and ? SR results, we suggest the existence of anomalously slow spin dynamics to be a common physical property of pyrochlore magnetic materials. The possibility of molecular spin substructures to be associated to the slow dynamics and therefore the short-range correlations is mentioned. The slow spin dynamics observed under field does not exclude the presence of much faster dynamics detected in extremely low or zero field.

  13. Flight dynamics of a spinning projectile descending on a parachute

    SciTech Connect

    Benedetti, G.A.

    1989-02-01

    During the past twenty years Sandia National Laboratories and the US Army have vertically gun launched numerous 155mm and eight-inch diameter flight test projectiles. These projectiles are subsequently recovered using an on-board parachute recovery system which is attached to the forward case structure of the projectile. There have been at least five attempts to describe, through analytical and numerical simulations, the translational and rotational motions of a spinning projectile descending on a parachute. However, none of these investigations have correctly described the large nutational motion of the projectile since all of them overlooked the fundamental mechanism which causes these angular motions. Numerical simulations as well as a closed form analytical solution show conclusively that the Magnus moment is responsible for the large nutational motion of the projectile. That is, when the center of pressure for the Magnus force is aft of the center of mass for the projectile, the Magnus moment causes an unstable (or large) nutational motion which always tends to turn the spinning projectile upside down while it is descending on the parachute. Conversely, when the center of mass for the projectile is aft of the center of pressure for the Magnus force, the Magnus moment stabilizes the nutational motion tending to always point the base of the spinning projectile down. The results of this work are utilized to render projectile parachute recovery systems more reliable and to explain what initially may appear to be strange gyrodynamic behavior of a spinning projectile descending on a parachute. 14 refs., 20 figs.

  14. Dynamic stability of a spinning tube conveying a fluid through a symmetrical noncircular cross-section

    NASA Astrophysics Data System (ADS)

    Benedetti, G. A.

    1990-11-01

    When a fluid flows inside a tube, the deformations of the tube can interact with the fluid flowing within it and these dynamic interactions can result in significant lateral motions of the tube and the flowing fluid. The purpose of this report is to examine the dynamic stability of a spinning tube through which an incompressible frictionless fluid is flowing. The tube can be considered as either a hollow beam or a hollow cable. The analytical results can be applied to spinning or stationary tubes through which fluids are transferred; e.g., liquid coolants, fuels and lubricants, slurry solutions, and high explosives in paste form. The coupled partial differential equations are determined for the lateral motion of a spinning Bernoulli-Euler beam or a spinning cable carrying an incompressible flowing fluid. The beam, which spins about an axis parallel to its longitudinal axis and which can also be loaded by a constant axial force, is straight, uniform, simply supported, and rests on a massless, uniform elastic foundation that spins with the beam. Damping for the beam and foundation is considered by using a combined uniform viscous damping coefficient. The fluid, in addition to being incompressible, is frictionless, has a constant density, and flows at a constant speed relative to the longitudinal beam axis. The Galerkin method is used to reduce the coupled partial differential equations for the lateral motion of the spinning beam to a coupled set of 2N, second order, ordinary differential equations for the generalized beam coordinates. By simplifying these equations and examining the roots of the characteristic equation, an analytical solution is obtained for the lateral dynamic instability of the beam (or cable). The analytical solutions determined the minimum critical fluid speed and the critical spin speeds, for a specified fluid speed, in terms of the physical parameters of the system.

  15. Non-markovian mesoscopic dissipative dynamics of open quantum spin chains

    NASA Astrophysics Data System (ADS)

    Benatti, F.; Carollo, F.; Floreanini, R.; Narnhofer, H.

    2016-01-01

    We study the dissipative dynamics of N quantum spins with Lindblad generator consisting of operators scaling as fluctuations, namely with the inverse square-root of N. In the large N limit, the microscopic dissipative time-evolution converges to a non-Markovian unitary dynamics on strictly local operators, while at the mesoscopic level of fluctuations it gives rise to a dissipative non-Markovian dynamics. The mesoscopic time-evolution is Gaussian and exhibits either a stable or an unstable asymptotic character; furthermore, the mesoscopic dynamics builds correlations among fluctuations that survive in time even when the original microscopic dynamics is unable to correlate local observables.

  16. Effect of thermal fluctuations in spin-torque driven magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Bonin, R.; Bertotti, G.; Serpico, C.; Mayergoyz, I. D.; d'Aquino, M.

    2007-09-01

    Nanomagnets with uniaxial symmetry driven by an external field and spin-polarized currents are considered. Anisotropy, applied field, and spin polarization are all aligned along the symmetry axis. Thermal fluctuations are described by adding a Gaussian white noise stochastic term to the Landau-Lifshitz-Gilbert equation for the deterministic dynamics. The corresponding Fokker-Planck equation is derived. It is shown that deterministic dynamics, thermal relaxation, and transition rate between stable states are governed by an effective potential including the effect of current injection.

  17. A spin-wave logic gate based on a width-modulated dynamic magnonic crystal

    NASA Astrophysics Data System (ADS)

    Nikitin, Andrey A.; Ustinov, Alexey B.; Semenov, Alexander A.; Chumak, Andrii V.; Serga, Alexander A.; Vasyuchka, Vitaliy I.; Lähderanta, Erkki; Kalinikos, Boris A.; Hillebrands, Burkard

    2015-03-01

    An electric current controlled spin-wave logic gate based on a width-modulated dynamic magnonic crystal is realized. The device utilizes a spin-wave waveguide fabricated from a single-crystal Yttrium Iron Garnet film and two conducting wires attached to the film surface. Application of electric currents to the wires provides a means for dynamic control of the effective geometry of waveguide and results in a suppression of the magnonic band gap. The performance of the magnonic crystal as an AND logic gate is demonstrated.

  18. Geometric phases and quantum correlations dynamics in spin-boson model

    SciTech Connect

    Wu, Wei; Xu, Jing-Bo

    2014-01-28

    We explore the dynamics of spin-boson model for the Ohmic bath by employing the master equation approach and obtain an explicit expression of reduced density matrix. We also calculate the geometric phases of the spin-boson model by making use of the analytical results and discuss how the dissipative bosonic environment affects geometric phases. Furthermore, we investigate the dynamics of quantum discord and entanglement of two qubits each locally interacting with its own independent bosonic environments. It is found that the decay properties of quantum discord and entanglement are sensitive to the choice of initial state's parameter and coupling strength between system and bath.

  19. A spin-wave logic gate based on a width-modulated dynamic magnonic crystal

    SciTech Connect

    Nikitin, Andrey A.; Ustinov, Alexey B.; Semenov, Alexander A.; Kalinikos, Boris A.; Chumak, Andrii V.; Serga, Alexander A.; Vasyuchka, Vitaliy I.; Hillebrands, Burkard; Lhderanta, Erkki

    2015-03-09

    An electric current controlled spin-wave logic gate based on a width-modulated dynamic magnonic crystal is realized. The device utilizes a spin-wave waveguide fabricated from a single-crystal Yttrium Iron Garnet film and two conducting wires attached to the film surface. Application of electric currents to the wires provides a means for dynamic control of the effective geometry of waveguide and results in a suppression of the magnonic band gap. The performance of the magnonic crystal as an AND logic gate is demonstrated.

  20. Laser control of ultrafast spin dynamics on homodinuclear iron- and nickel-oxide clusters

    NASA Astrophysics Data System (ADS)

    Jin, Wei; Li, Chun; Lefkidis, Georgios; Hbner, Wolfgang

    2014-01-01

    We present a fully ab initio theory for coherent laser-induced ultrafast spin manipulation on the homodinuclear magnetic clusters FeOFe, FeOOFe, NiONi, and NiOONi. With the oxygen atom(s) bridging the magnetically active centers, the clusters tend to adopt asymmetric geometries due to the Jahn-Teller effect. Therefore they have well-defined spin localization which is required for local spin manipulation. We find that both spin-flip and spin-transfer scenarios can be achieved on the clusters FeOFe and FeOOFe while only spin flip is realized on NiONi and NiOONi, based on which we predict that the Fe-containing clusters are quite promising for logic operations. The different dynamical behavior on these systems is analyzed in detail from the viewpoint of their distinct electronic structures and related spectra. In striving for better magnetization dynamics control, the results obtained on these prototypic systems strongly indicate their great potential in spintronic device design and future practical applications.

  1. Dynamics and control of flexible spinning solar sails under reflectivity modulation

    NASA Astrophysics Data System (ADS)

    Mu, Junshan; Gong, Shengping; Ma, Pengbin; Li, Junfeng

    2015-10-01

    Electrochromic devices have been used for the attitude control of a spinning solar sail in a deep space mission by modulating the reflectivity of the sail membrane. As a flexible spinning solar sail has no rigid structure to support its membrane, the distributed load due to solar radiation will lead to the deformation of the sail membrane, and the control torque generated by reflectivity modulation can introduce oscillatory motion to the membrane. By contrast, the deformation and oscillatory motion of the sail membrane have an impact on the performance of the reflectivity control. This paper investigates the dynamics and control of flexible spinning solar sails under reflectivity modulation. The static deformation of a spinning sail membrane subjected to solar radiation pressure in an equilibrium state is analyzed. The von Karman theory is used to obtain the displacements and the stress distribution in the equilibrium states. A simplified analytical first-order mode is chosen to model the membrane oscillation. The coupled membrane oscillation-attitude-orbit dynamics are considered for a GeoSail formation flying mission. The relative attitude and orbit control of flexible spinning solar sails under reflectivity modulation are numerically tested. The simulations indicate that the membrane deformation and oscillation have a lower impact on the control of the reflectivity modulated sails than the increase of the spinning rate.

  2. Nonlinear Dynamics of Magnons observed by AC Spin Pumping in Magnetic Hybrid Structures

    NASA Astrophysics Data System (ADS)

    Vilela-Leao, L. H.; Cunha, R. O.; Azevedo, A.; Rodriguez-Suarez, R. L.; Rezende, S. M.

    2015-03-01

    The electron spin degree of freedom constitutes the basic means to carry and store information in the field of spintronics. In the spin pumping process, the microwave driven magnetization dynamics in a ferromagnetic film generates a spin current in an attached metallic layer that can be converted into a charge current by means of the inverse spin Hall effect and detected by a voltage signal. While the time independent component (DC) of the spin current has been widely investigated in a variety of material structures, recently it has been recognized that the alternating current (AC) component is much larger, though more difficult to detect, and has many attractive features. We report experiments with microwave driven DC and AC spin pumping in bilayers made of the insulating ferrimagnet yttrium iron garnet (YIG) and platinum that reveal the nonlinear dynamics involving the driven mode and a pair of magnon modes with half frequency. This process occurs when the frequency is lowered below a critical value so that a three-magnon splitting process with energy conservation is made possible. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  3. Muon spin relaxation and hyperfine-enhanced Pr141 nuclear spin dynamics in Pr(Os,Ru)4Sb12 and (Pr,La)Os4Sb12

    NASA Astrophysics Data System (ADS)

    Shu, Lei; Maclaughlin, D. E.; Aoki, Y.; Tunashima, Y.; Yonezawa, Y.; Sanada, S.; Kikuchi, D.; Sato, H.; Heffner, R. H.; Higemoto, W.; Ohishi, K.; Ito, T. U.; Bernal, O. O.; Hillier, A. D.; Kadono, R.; Koda, A.; Ishida, K.; Sugawara, H.; Frederick, N. A.; Yuhasz, W. M.; Sayles, T. A.; Yanagisawa, T.; Maple, M. B.

    2007-07-01

    Zero- and longitudinal-field muon spin relaxation experiments have been carried out in the alloy series Pr(Os1-xRux)4Sb12 and Pr1-yLayOs4Sb12 to elucidate the anomalous dynamic muon spin relaxation observed in these materials. The damping rate ? associated with this relaxation varies with temperature, applied magnetic field, and dopant concentrations x and y in a manner consistent with the hyperfine enhancement of Pr141 nuclear spins first discussed by Bleaney [Physica (Utrecht) 69, 317 (1973)]. This mechanism arises from Van Vleck-like admixture of magnetic Pr3+ crystalline-electric-field-split excited states into the nonmagnetic singlet ground state by the nuclear hyperfine coupling, thereby increasing the strengths of spin-spin interactions between Pr141 and muon spins and within the Pr141 spin system. We find qualitative agreement with this scenario and conclude that electronic spin fluctuations are not directly involved in the dynamic muon spin relaxation.

  4. Non-local detection of spin dynamics via spin rectification effect in yttrium iron garnet/SiO2/NiFe trilayers near simultaneous ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Soh, Wee Tee; Peng, Bin; Ong, C. K.

    2015-08-01

    The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-local SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO2 spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.

  5. Acoustic study of dynamical molecular-spin state without magnetic phase transition in spin-frustrated ZnFe2O4

    NASA Astrophysics Data System (ADS)

    Watanabe, Tadataka; Takita, Shota; Tomiyasu, Keisuke; Kamazawa, Kazuya

    2015-11-01

    Ultrasound velocity measurements were performed on a single crystal of spin-frustrated ferrite spinel ZnFe2O4 from 300 K down to 2 K. In this cubic crystal, all the symmetrically independent elastic moduli exhibit softening with a characteristic minimum with decreasing temperature below 100 K. This elastic anomaly suggests a coupling between dynamical lattice deformations and molecular-spin excitations. In contrast, the elastic anomalies, normally driven by the magnetostructural phase transition and its precursor, are absent in ZnFe2O4 , suggesting that the spin-lattice coupling cannot play a role in relieving frustration within this compound. The present study infers that, for ZnFe2O4 , the dynamical molecular-spin state evolves at low temperatures without undergoing precursor spin-lattice fluctuations and spin-lattice ordering. It is expected that ZnFe2O4 provides the unique dynamical spin-lattice liquidlike system, where not only the spin molecules but also the cubic lattice fluctuate spatially and temporally.

  6. Real-time and real-space spin and energy dynamics in one-dimensional spin-1/2 systems induced by local quantum quenches at finite temperatures

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Moore, J. E.; Heidrich-Meisner, F.

    2014-02-01

    We study the spin and energy dynamics in one-dimensional spin-1/2 systems induced by local quantum quenches at finite temperatures using a time-dependent density matrix renormalization group method. System sizes are chosen large enough to ensure that the time-dependent data for the accessible time scales represent the behavior in the thermodynamic limit. As a main result, we observe a ballistic spreading of perturbations of the energy density in the integrable spin-1/2 XXZ chain for all temperatures and exchange anisotropies, related to the divergent thermal conductivity in this model and the exact conservation of the energy current. In contrast, the spin dynamics is ballistic in the massless phase, but shows a diffusive behavior at high temperatures in the easy-axis phase in the case of a vanishing background spin density. We extract a quantitative estimate for the spin-diffusion constant from the time dependence of the spatial variance of the spin density, which agrees well with values obtained from current-current correlation functions using an Einstein relation. Interestingly, the diffusion constant approaches a constant value deep in the easy-axis regime. As an example for nonintegrable models, we consider two-leg ladders, for which we observe indications of diffusive energy and spin dynamics. The relevance of our results for recent experiments with quantum magnets and bosons in optical lattices is discussed.

  7. Parametrization, molecular dynamics simulation and calculation of electron spin resonance spectra of a nitroxide spin label on a poly-alanine alpha helix

    PubMed Central

    Sezer, Deniz; Freed, Jack H.; Roux, Benoît

    2009-01-01

    The nitroxide spin label 1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl-methanethiosulfonate (MTSSL), commonly used in site-directed spin labeling of proteins, is studied with molecular dynamics (MD) simulations. After developing force field parameters for the nitroxide moiety and the spin label linker, we simulate MTSSL attached to a poly-alanine alpha helix in explicit solvent to elucidate the factors affecting its conformational dynamics. Electron spin resonance spectra at 9 and 250 GHz are simulated in the time domain using the MD trajectories and including global rotational diffusion appropriate for the tumbling of T4 Lysozyme in solution. Analysis of the MD simulations reveals the presence of significant hydrophobic interactions of the spin label with the alanine side chains. PMID:18412413

  8. EPR, charge transport, and spin dynamics in doped polyanilines

    NASA Astrophysics Data System (ADS)

    Kon'kin, A. L.; Shtyrlin, V. G.; Garipov, R. R.; Aganov, A. V.; Zakharov, A. V.; Krinichnyi, V. I.; Adams, P. N.; Monkman, A. P.

    2002-08-01

    Charge transport and magnetic properties of films of polyaniline (PAN) doped with 10-camphorsulfonic acid and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) have been studied by conductivity, magnetic-susceptibility superconducting quantum interference device measurements, and 3-cm and 8-mm electron paramagnetic resonance (EPR) spectroscopy at doping levels (x) from 0.3 to 0.9 over a temperature range from 15 to 300 K. The temperature dependences of conductivities were explained in terms of the advanced multiphase heterogeneous granular metallic (HGM) model with percolation including disordered metallic (DM) and nonmetallic (NM) phases. The anomalous conductivity change in the PAN-AMPSAx system at T>240 K was accounted quantitatively for a solid-phase equilibrium with the occurrence of the disordered anion phase from the metallic islands. A means for analysis of the EPR line shape in conducting media has been developed and, with this, conductivity and microwave dielectric constants were estimated and two EPR signals, R1 and R2, were detected in both systems. It was shown that R1 signal belongs to pinned radicals of isolated polymer chains, whereas R2 is the weight-averaged signal, resulting from three types of paramagnetic centers, localized and mobile spins in the NM and DM phases, which interact via exchange. From the temperature and frequency dependences of the R2 linewidth the spin-diffusion parameters for the NM phase in both systems were determined. It was found that the HGM model allows good explanation of both charge transport and spin diffusion in the doped polyaniline films.

  9. Low field domain wall dynamics in artificial spin-ice basis structure

    NASA Astrophysics Data System (ADS)

    Kwon, J.; Goolaup, S.; Lim, G. J.; Kerk, I. S.; Chang, C. H.; Roy, K.; Lew, W. S.

    2015-10-01

    Artificial magnetic spin-ice nanostructures provide an ideal platform for the observation of magnetic monopoles. The formation of a magnetic monopole is governed by the motion of a magnetic charge carrier via the propagation of domain walls (DWs) in a lattice. To date, most experiments have been on the static visualization of DW propagation in the lattice. In this paper, we report on the low field dynamics of DW in a unit spin-ice structure measured by magnetoresistance changes. Our results show that reversible DW propagation can be initiated within the spin-ice basis. The initial magnetization configuration of the unit structure strongly influences the direction of DW motion in the branches. Single or multiple domain wall nucleation can be induced in the respective branches of the unit spin ice by the direction of the applied field.

  10. Chaotic dynamics of stellar spin in binaries and the production of misaligned hot Jupiters.

    PubMed

    Storch, Natalia I; Anderson, Kassandra R; Lai, Dong

    2014-09-12

    Many exoplanetary systems containing hot Jupiters are observed to have highly misaligned orbital axes relative to the stellar spin axes. Kozai-Lidov oscillations of orbital eccentricity and inclination induced by a binary companion, in conjunction with tidal dissipation, constitute a major channel for the production of hot Jupiters. We demonstrate that gravitational interaction between the planet and its oblate host star can lead to chaotic evolution of the stellar spin axis during Kozai cycles. As parameters such as the planet mass and stellar rotation period are varied, periodic islands can appear in an ocean of chaos, in a manner reminiscent of other dynamical systems. In the presence of tidal dissipation, the complex spin evolution can leave an imprint on the final spin-orbit misalignment angles. PMID:25214623

  11. Bethe lattice approach and relaxation dynamics study of spin-crossover materials

    NASA Astrophysics Data System (ADS)

    Oke, Toussaint Djidjoho; Hontinfinde, Flix; Boukheddaden, Kamel

    2015-07-01

    Dynamical properties of Prussian blue analogs and spin-crossover materials are investigated in the framework of a Blume-Emery-Griffiths (BEG) spin-1 model, where states 1 and 0 represent the high-spin (HS) state and the low-spin state, respectively. The quadrupolar interaction depends on the temperature in the form . Magnetic interactions are controlled by a factor such that for (), magnetic ordering is not expected. The model is exactly solved using the Bethe lattice approach for the equilibrium properties. The results are closer to those calculated by numerical simulations with suitable Arrhenius-type transition rates. The study of relaxation processes of non-equilibrium HS states revealed one-step nonlinear sigmoidal relaxation curves of the HS fraction at low temperatures. We found that increasing the magnetic interactions leads to the appearance of a plateau in the thermal hysteresis as well as in the relaxation curves of the HS fraction at low temperature.

  12. Critical dynamics and finite-time scaling in spin ice systems

    NASA Astrophysics Data System (ADS)

    Castelnovo, Claudio; Hamp, James; Chandran, Anushya; Moessner, Roderich

    2015-03-01

    Spin ice materials such as Dy2Ti2O7 and Ho2Ti2O7 provide a rare instance of emergent gauge symmetry and fractionalisation in three dimensions. Magnetic frustration leads to highly degenerate yet locally constrained ground states. Their elementary excitations carry a fraction of the magnetic moment of the microscopic spin degrees of freedom and can be thought of as magnetic monopoles. One of the distinguishing manifestations of this emergent ``Coulomb phase'' is a liquid-gas phase diagram that appears in an applied magnetic field-a feature that is expected in itinerant charge liquids but unprecedented in localised spin systems. Monopoles act as facilitators to the spin dynamics. At low temperatures they are sparse and dynamics becomes slow, leading to an interplay between emergent topological properties and lattice scale physics in response and equilibration properties. In this work, we investigate the dynamics in spin ice close to the critical end point of the liquid gas phase diagram. Critically divergent length scales give rise to finite time scaling properties that reflect the universal scaling exponents at the critical point. We use our results to obtain these exponents by tuning the approach direction in the field-temperature plane.

  13. Dynamics of polymer film formation during spin coating

    SciTech Connect

    Mouhamad, Y.; Clarke, N.; Jones, R. A. L.; Geoghegan, M.; Mokarian-Tabari, P.

    2014-09-28

    Standard models explaining the spin coating of polymer solutions generally fail to describe the early stages of film formation, when hydrodynamic forces control the solution behavior. Using in situ light scattering alongside theoretical and semi-empirical models, it is shown that inertial forces (which initially cause a vertical gradient in the radial solvent velocity within the film) play a significant role in the rate of thinning of the solution. The development of thickness as a function of time of a solute-free liquid (toluene) and a blend of polystyrene and poly(methyl methacrylate) cast from toluene were fitted to different models as a function of toluene partial pressure. In the case of the formation of the polymer blend film, a concentration-dependent (Huggins) viscosity formula was used to account for changes in viscosity during spin coating. A semi-empirical model is introduced, which permits calculation of the solvent evaporation rate and the temporal evolution of the solute volume fraction and solution viscosity.

  14. Effective magnetization damping for a dynamical spin texture in metallic ferromagnet

    NASA Astrophysics Data System (ADS)

    Sukhostavets, Oksana V.; Gonzalez, Julian M.; Guslienko, Konstantin Y.

    2015-10-01

    An additional magnetization damping for an inhomogeneous spin texture in metallic ferromagnets is calculated on the basis of the s-d exchange model. The effect of conduction electrons on the magnetization dynamics is accounted for the case of slowly varying spin texture within adiabatic approximation by using a coordinate transformation to the local quantization axis. The moving magnetic vortex in a circular nanodot made of permalloy is considered as an example. The dependence of the damping on the dot geometrical sizes is obtained. It is found that the additional damping can reach up to 50% of magnitude of the phenomenological Gilbert damping in the Landau-Lifshitz equation of magnetization motion and should be taken into account for any inhomogeneous spin texture dynamics in ferromagnetic metals.

  15. Dynamical properties of the spin-Peierls compound ?'-NaV2O5

    NASA Astrophysics Data System (ADS)

    Augier, D.; Poilblanc, D.; Haas, S.; Delia, A.; Dagotto, E.

    1997-09-01

    Dynamical properties of the inorganic spin-Peierls compound ?'-NaV2O5 are investigated using a one-dimensional dimerized Heisenberg model. By exact diagonalizations of chains with up to 28 sites, supplemented by a finite-size scaling analysis, the dimerization parameter ? is determined by requiring that the model reproduces the experimentally observed spin gap ?. The dynamical and static spin structure factors are calculated. As for CuGeO3, the existence of a low-energy magnon branch separated from the continuum is predicted. The present calculations also suggest that a large magnetic Raman scattering intensity should appear above an energy threshold of 1.9?. The predicted photoemission spectrum is qualitatively similar to results for an undimerized chain due to the presence of sizable short-range antiferromagnetic correlations.

  16. Polarization dynamics in spin-polarized vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Gerhardt, Nils C.; Hpfner, Henning; Lindemann, Markus; Hofmann, Martin R.

    2014-08-01

    Spin-polarized lasers and especially spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) are at- tractive novel spintronic devices providing functionalities and characteristics superior to their conventional purely charge-based counterparts. This applies in particular to ultrafast dynamics, modulation capability and chirp control of directly modulated lasers. Here we demonstrate that ultrafast oscillations of the circular polarization degree can be generated in VCSELs by pulsed spin injection which have the potential to reach frequencies beyond 100 GHz. These oscillations are due to the coupling of the carrier-spin-photon system via the optical birefringence for the linearly polarized laser modes in the micro-cavity and are principally decoupled from conventional relaxation oscillations of the carrier-photon system. Utilizing these polarization oscillations is a very promising path to ultrafast directly modulated spin-VCSELs in the near future as long as an effective concept can be developed to modulate or switch these polarization oscillations. After briefly reviewing the state of research in the emerging field of spin-VCSELs, we present a novel concept for controlled switching of polarization oscillations by use of multiple optical spin injection pulses. Depending on the amplitude and phase conditions of the excitation pulses, constructive or destructive interference of polarization oscillations leads to an excitation, stabilization or switch-off of these oscillations. Furthermore even short single polarization bursts can be generated with pulse widths only limited by the resonance frequency of the polarization oscillation. Consequently, this concept is an important building block for using spin controlled polarization oscillations for future communication applications.

  17. Effects of ruthenium seed layer on the microstructure and spin dynamics of thin permalloy films

    SciTech Connect

    Jin Lichuan; Zhang Huaiwu; Tang Xiaoli; Bai Feiming; Zhong Zhiyong

    2013-02-07

    The spin dynamics and microstructure properties of a sputtered 12 nm Ni{sub 81}Fe{sub 19} thin film have been enhanced by the use of a ruthenium seed layer. Both the ferromagnetic resonance field and linewidth are enhanced dramatically as the thickness of ruthenium seed layer is increased. The surface anisotropy energy constant can also be largely tailored from 0.06 to 0.96 erg/cm{sup -2} by changing the seed layer thickness. The changes to the dynamics magnetization properties are caused by both ruthenium seed layer induced changes in the Ni{sub 81}Fe{sub 19} structure properties and surface topography properties. Roughness induced inhomogeneous linewidth broadening is also seen. The damping constant is highly tunable via the ruthenium thickness. This approach can be used to tailor both the structure and spin dynamic properties of thin Ni{sub 81}Fe{sub 19} films over a wide range. And it may benefit the applications of spin dynamics and spin current based devices.

  18. Three-dimensional Computational Fluid Dynamics Investigation of a Spinning Helicopter Slung Load

    NASA Technical Reports Server (NTRS)

    Theorn, J. N.; Duque, E. P. N.; Cicolani, L.; Halsey, R.

    2005-01-01

    After performing steady-state Computational Fluid Dynamics (CFD) calculations using OVERFLOW to validate the CFD method against static wind-tunnel data of a box-shaped cargo container, the same setup was used to investigate unsteady flow with a moving body. Results were compared to flight test data previously collected in which the container is spinning.

  19. Quasiclassical magnetic order and its loss in a spin-1/2 Heisenberg antiferromagnet on a triangular lattice with competing bonds

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.; Campbell, C. E.

    2015-01-01

    We use the coupled cluster method (CCM) to study the zero-temperature ground-state (GS) properties of a spin-1/2 J1-J2 Heisenberg antiferromagnet on a triangular lattice with competing nearest-neighbor and next-nearest-neighbor exchange couplings J1>0 and J2?? J1>0 , respectively, in the window 0 ?? <1 . The classical version of the model has a single GS phase transition at ?cl=1/8 in this window from a phase with 3-sublattice antiferromagnetic (AFM) 120? Nel order for ? ?cl . This classical accidental degeneracy is lifted by quantum fluctuations, which favor a 2-sublattice AFM striped phase. For the quantum model we work directly in the thermodynamic limit of an infinite number of spins, with no consequent need for any finite-size scaling analysis of our results. We perform high-order CCM calculations within a well-controlled hierarchy of approximations, which we show how to extrapolate to the exact limit. In this way we find results for the case ? =0 of the spin-1/2 model for the GS energy per spin, E /N =-0.5521 (2 ) J1 , and the GS magnetic order parameter, M =0.198 (5 ) (in units where the classical value is Mcl=1/2), which are among the best available. For the spin-1/2 J1-J2 model we find that the classical transition at ? =?cl is split into two quantum phase transitions at ?1c=0.060 (10 ) and ?2c=0.165 (5 ) . The two quasiclassical AFM states (viz., the 120? Nel state and the striped state) are found to be the stable GS phases in the regime ? ?2c , respectively, while in the intermediate regimes ?1c

  20. Dynamics of a fluid contained in a spinning, coning cylinder

    NASA Astrophysics Data System (ADS)

    Sedney, Raymond; Hall, Philip; Gerber, Nathan

    1988-01-01

    The fluid motion inside a cylinder which simultaneously spins and cones is determined according to linear theory for small coning angles. The Navier-Stokes equations are solved by expansions in spatial eigenfunctions. This form of spectral method gives an efficient solver over a wide range of Reynolds numbers; cases for Re less than or equal to 2,500 have been computed. The results are validated by comparing computed and measured pressure and moment coefficients. Comparisons are also made with results from a nonlinear finite difference method for which the CPU time is about 400 times that of the present method. The CPU time for the spatial eigenvalue method varies from 10 seconds at Re = 10 to 25 minutes at Re = 1,000. The restriction of linear theory is not severe; for coning angle of 20 deg, the moment coefficient from linear and nonlinear computations differ by 2 percent.

  1. Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition

    SciTech Connect

    Conduit, G. J.; Altman, E.

    2010-10-15

    We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes.

  2. Nonperturbative spin-boson and spin-spin dynamics and nonlinear Fano interferences: a unified dissipaton theory based study.

    PubMed

    Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2015-01-14

    We consider the hybrid system-bath dynamics, based on the Yan's dissipaton formalism [Y. J. Yan, J. Chem. Phys. 140, 054105 (2014)]. This theory provides a unified quasi-particle treatment on three distinct classes of quantum bath, coupled nonperturbatively to arbitrary quantum systems. In this work, to study the entangled system and bath polarization and nonlinear Fano interference, we incorporate further the time-dependent light field, which interacts with both the molecular system and the collective bath dipoles directly. Numerical demonstrations are carried out on a two-level system, with comparison between phonon and exciton baths, in both linear and nonlinear Fano interference regimes. PMID:25591343

  3. Resolving the role of femtosecond heated electrons in ultrafast spin dynamics

    PubMed Central

    Mendil, J.; Nieves, P.; Chubykalo-Fesenko, O.; Walowski, J.; Santos, T.; Pisana, S.; Mnzenberg, M.

    2014-01-01

    Magnetization manipulation is essential for basic research and applications. A fundamental question is, how fast can the magnetization be reversed in nanoscale magnetic storage media. When subject to an ultrafast laser pulse, the speed of the magnetization dynamics depends on the nature of the energy transfer pathway. The order of the spin system can be effectively influenced through spin-flip processes mediated by hot electrons. It has been predicted that as electrons drive spins into the regime close to almost total demagnetization, characterized by a loss of ferromagnetic correlations near criticality, a second slower demagnetization process takes place after the initial fast drop of magnetization. By studying FePt, we unravel the fundamental role of the electronic structure. As the ferromagnet Fe becomes more noble in the FePt compound, the electronic structure is changed and the density of states around the Fermi level is reduced, thereby driving the spin correlations into the limit of critical fluctuations. We demonstrate the impact of the electrons and the ferromagnetic interactions, which allows a general insight into the mechanisms of spin dynamics when the ferromagnetic state is highly excited, and identifies possible recording speed limits in heat-assisted magnetization reversal. PMID:24496221

  4. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    SciTech Connect

    Baltisberger, J.H.

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  5. Chaos-driven dynamics in spin-orbit-coupled atomic gases

    NASA Astrophysics Data System (ADS)

    Larson, Jonas; Anderson, Brandon M.; Altland, Alexander

    2013-01-01

    The dynamics, appearing after a quantum quench, of a trapped, spin-orbit coupled, dilute atomic gas is studied. The characteristics of the evolution is greatly influenced by the symmetries of the system, and we especially compare evolution for an isotropic Rashba coupling and for an anisotropic spin-orbit coupling. As we make the spin-orbit coupling anisotropic, we break the rotational symmetry and the underlying classical model becomes chaotic; the quantum dynamics is affected accordingly. Within experimentally relevant time scales and parameters, the system thermalizes in a quantum sense. The corresponding equilibration time is found to agree with the Ehrenfest time, i.e., we numerically verify a ln(?-1) scaling. Upon thermalization, we find that the equilibrated distributions show examples of quantum scars distinguished by accumulation of atomic density for certain energies. At shorter time scales, we discuss nonadiabatic effects deriving from the spin-orbit-coupled induced Dirac point. In the vicinity of the Dirac point, spin fluctuations are large and, even at short times, a semiclassical analysis fails.

  6. Charged carrier spin dynamics in ZnO quantum wells and epilayers

    NASA Astrophysics Data System (ADS)

    Kim, Jungtaek; Puls, J.; Sadofev, S.; Henneberger, F.

    2016-01-01

    Longitudinal charged carrier spin dynamics is studied for ZnO quantum wells and epilayers using the optical transition of the negatively charged exciton X- and the neutral donor bound exciton D0X , respectively. The hole spin relaxation is derived from the optical orientation of X- and D0X photoluminescence, whereas the spin relaxation of the resident electrons and donor electrons is accessed via the bleaching of the spin selective excitation process. Hole spin relaxation times of τ1s ,h of 80 and 140 ps are found for D0X and X-, respectively, which are practically independent of a magnetic field B∥ applied along the ZnO c ⃗ axis. Much longer longitudinal electron spin relaxation times in the 1 μ s range are uncovered if the hyperfine interaction is suppressed by a proper B∥. A field strength of ≈2 mT is large enough proving the extremely small value of the Overhauser field in ZnO. This is related to the very restricted number of magnetic nuclei interacting with the electron inside the volume of the exciton complex.

  7. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    DOE PAGESBeta

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-24

    In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal controlmore » scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less

  8. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    SciTech Connect

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-24

    In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.

  9. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    NASA Astrophysics Data System (ADS)

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-01

    We demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from 0.7 ms up to 30 ms . We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.

  10. Quantum spin dynamics at terahertz frequencies in 2D hole gases and improper ferroelectrics

    NASA Astrophysics Data System (ADS)

    Lloyd-Hughes, J.

    2015-08-01

    Terahertz time-domain spectroscopy permits the excitations of novel materials to be examined with exquisite precision. Improper ferroelectric materials such as cupric oxide (CuO) exhibit complex magnetic ground states. CuO is antiferromagnetic below 213K, but has an incommensurate cycloidal magnetic phase between 213K and 230K. Remarkably, the cycloidal magnetic phase drives ferroelectricity, where the material becomes polar. Such improper multiferroics are of great contemporary interest, as a better understanding of the science of magnetoelectric materials may lead to their application in actuators, sensors and solid state memories. Improper multiferroics also have novel quasiparticle excitations: electromagnons form when spin-waves become electric-dipole active. By examining the dynamic response of spins as they interact with THz radiation we gain insights into the underlying physics of multi-ferroics. In contrast to improper ferroelectrics, where magnetism drives structural inversion asymmetry (SIA), two-dimensional electronic systems can exhibit non-degenerate spin states as a consequence of SIA created by strain and/or electric fields. We identify and explore the influence of the Rashba spin-orbit interaction upon cyclotron resonance at terahertz frequencies in high-mobility 2D hole gases in germanium quantum wells. An enhanced Rashba spin-orbit interaction can be linked to the strain of the quantum well, while a time-frequency decomposition method permitted the dynamical formation and decay of spin-split cyclotron resonances to be tracked on picosecond timescales. Long spin-decoherence times concurrent with high hole mobilities highlight the potential of Ge quantum wells in spintronics.

  11. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces.

    PubMed

    Lloveras, V; Badetti, E; Veciana, J; Vidal-Gancedo, J

    2016-02-25

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution, this diradical shows a strong spin exchange interaction between both radicals which is modulated by temperature, but also gold nanoparticles (AuNPs) functionalized with this diradical permit investigation of such a phenomenon in surface-grafted radicals. The spin-labelled AuNP synthesis was optimized to obtain high coverage of spin labels to lead to high spin exchange interaction. The obtained AuNPs were studied by Electron Paramagnetic Resonance (EPR), UV-Vis, and IR spectroscopies, HR-TEM microscopy, Cyclic Voltammetry (CV), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA). This inorganic-organic hybrid material also showed dipolar interactions between its radicals which were confirmed by the appearance in the EPR spectra of an |?ms| = 2 transition at half-field. This signal gives direct evidence of the presence of a high-spin state and permitted us to study the nature of the magnetic coupling between the spins which was found to be antiferromagnetic. Self-Assembled Monolayers (SAMs) of these radicals on the Au (111) substrate were also prepared and studied by contact angle, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Cyclic Voltammetry and EPR. The magnetic as well as the electrochemical properties of the hybrid surfaces were studied and compared with the properties of this diradical in solution. Analogies between the properties of AuNPs with high coverage of radicals and those of SAM were observed. PMID:26864080

  12. Neutron spin echo study of the dynamics of undercooled selenium

    NASA Astrophysics Data System (ADS)

    Simon, Ch.; Faivre, G.; Zorn, R.; Batallan, F.; Legrand, J. F.

    1992-03-01

    We present neutron spin echo measurements on the structural relaxation of undercooled liquid selenium above glass transition. We find a two-stage relaxation process essentially similar to that generally observed in liquids, except for the fact that the slow-stage characteristic time tau_1 varies with the temperature T more slowly than η(T)/T, where η(T) is the macroscopic viscosity. We interpret this apparent discrepancy with respect to the usually found scaling law as the manifestation of the equilibrium-polymer nature of liquid selenium. On the other hand, the data suggest that the Kohlrausch exponent of the slow stage is temperature dependent. Concerning the rapid stage of the relaxation, we show that a possible alternative to the mode-coupling interpretation is to attribute it to the existence of local inhomogeneities of the density close to the glass transition. Nous présentons des résultats de mesures au spectromètre à écho de spin sur la relaxation structurale du sélenium en surfusion près de la transition vitreuse. Nous trouvons une relaxation en deux étapes, essentiellement conforme à celle trouvée antérieurement dans d'autres liquides, à ceci près que le temps caractéristique tau_1 du stade lent varie avec la température T plus lentement que η(T)/T, où η(T) est la viscosité macroscopique. Nous interprétons cet écart apparent à la loi d'échelle généralement observée comme la manifestation du fait que le sélénium liquide est un polymère d'équilibre. L'analyse des données suggège d'autre part que l'exposant de Kohlrausch du stade lent dépend de la température. Quant au stade rapide de la relaxation, nous montrons qu'il peut être interprété, sans recourir à la théorie du couplage de modes, par l'existance d'hétérogénéités locales de la densité au voisinage de la transition vitreuse.

  13. Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models

    NASA Astrophysics Data System (ADS)

    Steinhaus, Sebastian

    2015-09-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to so-called intertwiner models defined for SU (2 )k. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretization. We coarse grain this toy model via tensor network renormalization and uncover an interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background configurations and conversely, the Ising model can induce phase transitions in the background. Moreover, we observe a strong coupling of both systems if close to both phase transitions.

  14. Exciton fine structure and spin/valley dynamics in nanosystems (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Glazov, Mikhail M.

    2015-09-01

    In my invited talk the fine structure of neutral and charged excitons for GaAs/AlGaAs quantum dots (QDs) grown on (111) plane as well for transition metal dichalcogenides (TMDCs) monolayers will be discussed. These, at first glance, different systems posses similar trigonal symmetry, which makes exciton fine structure and spin dynamics unusual compared with standard low-dimensional semiconductors. The effects of long-range exchange interaction induced mixing of excitons in two valleys of TMDCs and of magneto-induced mixing of bright and dark excitonic states in trigonal QDs are predicted and confirmed experimentally. Manifestations of excitonic spin/valley dynamics in photoluminescence, pump-probe Kerr rotation and spin noise are discussed. The presentation will be based on the following references: [1] G. Sallen, B. Urbaszek, M. M. Glazov, et al., Dark-Bright Mixing of Interband Transitions in Symmetric Semiconductor Quantum Dots, Phys. Rev. Lett. 107, 166604 (2011). [2] L. Bouet, M. Vidal, T. Mano, N. Ha, T. Kuroda, M. V. Durnev, M. M. Glazov, et al., Charge tuning in [111] grown GaAs droplet quantum dots, Appl. Phys. Lett. 105, 082111 (2014). [3] M. M. Glazov, et al., Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides Phys. Rev. B 89, 201302(R) (2014). [4] C. R. Zhu, K. Zhang, M. Glazov, et al., Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers, Phys. Rev. B 90, 161302(R) (2014).

  15. Spin dynamics of the LAGEOS satellite in support of a measurement of the Earth's gravitomagnetism

    NASA Astrophysics Data System (ADS)

    Habib, Salman; Holz, Daniel E.; Kheyfets, Arkady; Matzner, Richard A.; Miller, Warner A.; Tolman, Brian W.

    1994-11-01

    LAGEOS is an accurately tracked, dense spherical satellite covered with 426 retroreflectors. Ciufolini has suggested the launch of an additional satellite (LAGEOS-3) into an orbit supplementary to that of the 1976-launched LAGEOS-1. In addition to providing a more accurate real-time measurement of the Earth's length of day and polar wobble, this paired-satellite experiment would provide the first direct measurement of the general relativistic frame-dragging effect. Of the five dominant error sources in this experiment, the largest one involves surface forces on the satellite, and their consequent impact on the orbital nodal precession. The surface forces are a function of the spin dynamics of the satellite. Consequently, we undertake here a theoretical effort to model the spin dynamics of LAGEOS. In this paper we derive, and solve numerically, a set of Euler equations that evolve the angular momentum vector for a slightly oblate spheroid of brass orbiting an Earth-like mass, idealized as being a perfect sphere and having a perfect polar-oriented dipole magnetic field. We have identified three phases of the rotational dynamics-a fast spin phase, a spin-orbit resonance phase, and an asymptotic (tidally locked) phase. From our numerical runs we give analytic expressions for this tidally locked phase.

  16. Transient dynamics of spin-polarized injection in helical Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Calzona, A.; Carrega, M.; Dolcetto, G.; Sassetti, M.

    2015-11-01

    We analyze the time evolution of spin-polarized electron wave packets injected into the edge states of a two-dimensional topological insulator. In the presence of electron interactions, the system is described as a helical Luttinger liquid and injected electrons fractionalize. However, because of the presence of metallic detectors, no evidences of fractionalization are encoded in dc measurements, and in this regime the system does not show deviations from its non-interacting behavior. Nevertheless, we show that the helical Luttinger liquid nature emerges in the transient dynamics, where signatures of charge/spin fractionalization can be clearly identified.

  17. Short-range order above the Curie temperature in the dynamic spin-fluctuation theory

    NASA Astrophysics Data System (ADS)

    Melnikov, N. B.; Reser, B. I.

    2016-01-01

    Based on the dynamic spin-fluctuation theory, we study the spin-density correlations in the ferromagnetic metals. We obtain computational formulae for the correlation function and correlation radius in different approximations of the theory. Using these formulae, we calculate the magnetic short-range order above the Curie temperature in bcc Fe. Results of the calculation confirm our theoretical prediction that the inverse correlation radius increases linearly with temperature for T sufficiently large. The calculated short-range order is small but sufficient to correctly describe neutron scattering experiments. A considerable amount of the short-range order is shown to persist up to temperatures much higher than the Curie temperature.

  18. Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics

    SciTech Connect

    Tomasello, R.; Carpentieri, M.; Finocchio, G.

    2013-12-16

    This Letter introduces a micromagnetic model able to characterize the magnetization dynamics in three terminal magnetic tunnel junctions, where the effects of spin-transfer torque and spin-orbit torque are taken into account. Our results predict that the possibility to separate electrically those two torque sources is very promising from a technological point of view for both next generation of nanoscale spintronic oscillators and microwave detectors. A scalable synchronization scheme based on the parallel connection of those three terminal devices is also proposed.

  19. Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics

    NASA Astrophysics Data System (ADS)

    Tomasello, R.; Carpentieri, M.; Finocchio, G.

    2013-12-01

    This Letter introduces a micromagnetic model able to characterize the magnetization dynamics in three terminal magnetic tunnel junctions, where the effects of spin-transfer torque and spin-orbit torque are taken into account. Our results predict that the possibility to separate electrically those two torque sources is very promising from a technological point of view for both next generation of nanoscale spintronic oscillators and microwave detectors. A scalable synchronization scheme based on the parallel connection of those three terminal devices is also proposed.

  20. Non-equilibrium transport and spin dynamics in single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Moldoveanu, V.; Dinu, I. V.; Tanatar, B.

    2015-11-01

    The time-dependent transport through single-molecule magnets (SMM) coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized Master equation (GME) method. We calculate the transient currents which develop when the molecule is smoothly coupled to the source and drain electrodes. The signature of the electrically induced magnetic switching on these transient currents is investigated. Our simulations show that the magnetic switching of the molecular spin can be read indirectly from the transient currents if one lead is magnetic and it is much faster if the leads have opposite spin polarizations. We identify effects of the transverse anisotropy on the dynamics of molecular states.

  1. Carrier and Spin Dynamics in InAsP Ternary Alloys

    NASA Astrophysics Data System (ADS)

    Meeker, Michael; McCutcheon, Kelly; Bhowmick, Mithun; Magill, Brenden; Khodaparast, Giti A.; Tischler, Joe G.; Choi, Sukgeun G.; Palmstrm, Chris J.

    2013-03-01

    The recent rapid progress in the field of spintronics involves extensive measurements of carrier and spin relaxation dynamics in III-V semiconductors. In addition, as the switching rates in electronic and optoelectronic devices are pushed to higher frequencies, it is important to understand carrier dynamic phenomena in semiconductors on femtosecond time-scales. In this work, we employed time and polarization-resolved differential transmission measurements in near and mid-infrared, to probe carrier and spin relaxation times in several InAsP ternary alloys. Our results demonstrate the unique and complex dynamics in this material system that can be important for electronic and optoelectronic devices. We present our experimental observations and compare them with the observations in InAs and InP. Supported by: NSF-Career Award DMR-0846834 and Virginia Tech ICTAS

  2. Dynamical transition in the D=3 Edwards-Anderson spin glass in an external magnetic field.

    PubMed

    Baity-Jesi, M; Baños, R A; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Iñiguez, D; Maiorano, A; Mantovani, F; Marinari, E; Martin-Mayor, V; Monforte-Garcia, J; Muñoz Sudupe, A; Navarro, D; Parisi, G; Perez-Gaviro, S; Pivanti, M; Ricci-Tersenghi, F; Ruiz-Lorenzo, J J; Schifano, S F; Seoane, B; Tarancon, A; Tripiccione, R; Yllanes, D

    2014-03-01

    We study the off-equilibrium dynamics of the three-dimensional Ising spin glass in the presence of an external magnetic field. We have performed simulations both at fixed temperature and with an annealing protocol. Thanks to the Janus special-purpose computer, based on field-programmable gate array (FPGAs), we have been able to reach times equivalent to 0.01 s in experiments. We have studied the system relaxation both for high and for low temperatures, clearly identifying a dynamical transition point. This dynamical temperature is strictly positive and depends on the external applied magnetic field. We discuss different possibilities for the underlying physics, which include a thermodynamical spin-glass transition, a mode-coupling crossover, or an interpretation reminiscent of the random first-order picture of structural glasses. PMID:24730822

  3. Dynamics During Thrust Maneuvers of Flexible Spinning Satellites with Axial and Radial Booms

    NASA Technical Reports Server (NTRS)

    Longman, R. W.; Fedor, J. V.

    1986-01-01

    The dynamic response to operational maneuvers of spinning symmetric spacecraft with radial and axial booms was analyzed as part of the prelaunch dynamic analysis of the ISEE-3 spacecraft placed in a halo orbit around an Earth-Sun libration point, and later renamed ICE when it was directed to fly-by comet Giacobini-Zinner. The results presented use simple spacecraft models, and frequently give predictions that are good and easily obtained when the results from using a general purpose multibody dynamics program were very time consuming to obtain. Deployment of radial booms, spin-up after partial deployment, stationkeeping, and trajectory changes are analyzed. The latter two can involve both axial thrusting and pulsed radial thrusting once per revolution.

  4. Testing statics-dynamics equivalence at the spin-glass transition in three dimensions

    NASA Astrophysics Data System (ADS)

    Fernndez, Luis Antonio; Martn-Mayor, Vctor

    2015-05-01

    The statics-dynamics correspondence in spin glasses relate nonequilibrium results on large samples (the experimental realm) with equilibrium quantities computed on small systems (the typical arena for theoretical computations). Here we employ statics-dynamics equivalence to study the Ising spin-glass critical behavior in three dimensions. By means of Monte Carlo simulation, we follow the growth of the coherence length (the size of the glassy domains), on lattices too large to be thermalized. Thanks to the large coherence lengths we reach, we are able to obtain accurate results in excellent agreement with the best available equilibrium computations. To do so, we need to clarify the several physical meanings of the dynamic exponent close to the critical temperature.

  5. Simulation of spin dynamics: a tool in MRI system development

    NASA Astrophysics Data System (ADS)

    Stöcker, Tony; Vahedipour, Kaveh; Shah, N. Jon

    2011-05-01

    Magnetic Resonance Imaging (MRI) is a routine diagnostic tool in the clinics and the method of choice in soft-tissue contrast medical imaging. It is an important tool in neuroscience to investigate structure and function of the living brain on a systemic level. The latter is one of the driving forces to further develop MRI technology, as neuroscience especially demands higher spatiotemporal resolution which is to be achieved through increasing the static main magnetic field, B0. Although standard MRI is a mature technology, ultra high field (UHF) systems, at B0 >= 7 T, offer space for new technical inventions as the physical conditions dramatically change. This work shows that the development strongly benefits from computer simulations of the measurement process on the basis of a semi-classical, nuclear spin-1/2 treatment given by the Bloch equations. Possible applications of such simulations are outlined, suggesting new solutions to the UHF-specific inhomogeneity problems of the static main field as well as the high-frequency transmit field.

  6. Using synthetic model systems to understand charge separation and spin dynamics in photosynthetic reaction centers.

    SciTech Connect

    Wasielewski, M. R.

    1998-08-27

    Our current work in modeling reaction center dynamics has resulted in the observation of each major spin-dependent photochemical pathway that is observed in reaction centers. The development of new, simpler model systems has permitted us to probe deeply into the mechanistic issues that drive these dynamics. Based on these results we have returned to biomimetic chlorophyll-based electron donors to mimic these dynamics. Future studies will focus on the details of electronic structure and energetic of both the donor-acceptor molecules and their surrounding environment that dictate the mechanistic pathways and result in efficient photosynthetic charge separation.

  7. Uniqueness regime for Markov dynamics on quantum lattice spin systems

    NASA Astrophysics Data System (ADS)

    Crawford, N.; De Roeck, W.; Schtz, M.

    2015-10-01

    We consider a lattice of weakly interacting quantum Markov processes. Without interaction, the dynamics at each site is relaxing exponentially to a unique stationary state. With interaction, we show that there remains a unique stationary state in the thermodynamic limit, i.e. absence of phase coexistence, and the relaxation towards it is exponentially fast for local observables. We do not assume that the quantum Markov process is reversible (detailed balance) w.r.t. a local Hamiltonian.

  8. Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Li, Bao-An; Shen, Wen-Qing; Xia, Yin

    2015-10-01

    It is well known that noncentral nuclear forces, such as the spin-orbital coupling and the tensor force, play important roles in understanding many interesting features of nuclear structures. However, their dynamical effects in nuclear reactions are poorly known because only the spin-averaged observables are normally studied both experimentally and theoretically. Realizing that spin-sensitive observables in nuclear reactions may convey useful information about the in-medium properties of noncentral nuclear interactions, besides earlier studies using the time-dependent Hartree-Fock approach to understand the effects of spin-orbital coupling on the threshold energy and spin polarization in fusion reactions, some efforts have been made recently to explore the dynamical effects of noncentral nuclear forces in intermediate-energy heavy-ion collisions using transport models. The focus of these studies has been on investigating signatures of the density and isospin dependence of the form factor in the spin-dependent single-nucleon potential. Interestingly, some useful probes were identified in the model studies but so far there are still no data to compare with. In this brief review, we summarize the main physics motivations as well as the recent progress in understanding the spin dynamics and identifying spin-sensitive observables in heavy-ion reactions at intermediate energies. We hope the interesting, important, and new physics potentials identified in the spin dynamics of heavy-ion collisions will stimulate more experimental work in this direction.

  9. Dynamics of nuclear spin measurement in a mesoscopic solid-state quantum computer

    NASA Astrophysics Data System (ADS)

    Berman, Gennady P.; Campbell, David K.; Doolen, Gary D.; Nagaev, Kirill E.

    2000-04-01

    We study numerically the process of nuclear spin measurement in a solid-state quantum computer of the type proposed by Kane, by calculating the quantum dynamics of two coupled nuclear spins on 31 P donors implanted in 28 Si. We estimate the time of the `quantum swap operation' - the minimum measurement time required for the reliable transfer of quantum information from the nuclear spin subsystem to the electronic subsystem. Our calculations show that for realistic values of the parameters this time is of the order of icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/> swap ~5 10-5 s. We also calculate the probability of error for typical values of the external noise.

  10. Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics

    PubMed Central

    Veshtort, Mikhail; Griffin, Robert G.

    2011-01-01

    Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R2). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two 13C nuclei and about ten 1H nuclei from their nearest environment. Spin diffusion constants computed by this method are in excellent agreement with the spin diffusion constants obtained through equations given by the relaxation theory of PDSD. The constants resulting from these two approaches were also in excellent agreement with the results of 2D rotary resonance recoupling proton-driven spin diffusion (R3-PDSD) experiments performed in three model compounds, where magnetization exchange occurred over distances up to 4.9 . With the methodology presented, highly accurate internuclear distances can be extracted from such data. Relayed transfer of magnetization between distant nuclei appears to be the main (and apparently resolvable) source of uncertainty in such measurements. The non-Markovian kinetic equation was applied to the analysis of the R2 spin dynamics. The conventional semi-phenomenological treatment of relxation in R2 has been shown to be equivalent to the assumption of the Lorentzian spectral density function in the relaxatoin theory of PDSD. As this assumption is a poor approximation in real physical systems, the conventional R2 treatment is likely to carry a significant model error that has not been recognized previously. The relaxation theory of PDSD appears to provide an accurate, parameter-free alternative. Predictions of this theory agreed well with the full quantum mechanical simulations of the R2 dynamics in the few simple model systems we considered. PMID:21992326

  11. A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics.

    PubMed

    Valero, Rosendo; Truhlar, Donald G

    2007-09-01

    A diabatic representation is convenient in the study of electronically nonadiabatic chemical reactions because the diabatic energies and couplings are smooth functions of the nuclear coordinates and the couplings are scalar quantities. A method called the fourfold way was devised in our group to generate diabatic representations for spin-free electronic states. One drawback of diabatic states computed from the spin-free Hamiltonian, called a valence diabatic representation, for systems in which spin-orbit coupling cannot be ignored is that the couplings between the states are not zero in asymptotic regions, leading to difficulties in the calculation of reaction probabilities and other properties by semiclassical dynamics methods. Here we report an extension of the fourfold way to construct diabatic representations suitable for spin-coupled systems. In this article we formulate the method for the case of even-electron systems that yield pairs of fragments with doublet spin multiplicity. For this type of system, we introduce the further simplification of calculating the triplet diabatic energies in terms of the singlet diabatic energies via Slater's rules and assuming constant ratios of Coulomb to exchange integrals. Furthermore, the valence diabatic couplings in the triplet manifold are taken equal to the singlet ones. An important feature of the method is the introduction of scaling functions, as they allow one to deal with multibond reactions without having to include high-energy diabatic states. The global transformation matrix to the new diabatic representation, called the spin-valence diabatic representation, is constructed as the product of channel-specific transformation matrices, each one taken as the product of an asymptotic transformation matrix and a scaling function that depends on ratios of the spin-orbit splitting and the valence splittings. Thus the underlying basis functions are recoupled into suitable diabatic basis functions in a manner that provides a multibond generalization of the switch between Hund's cases in diatomic spectroscopy. The spin-orbit matrix elements in this representation are taken equal to their atomic values times a scaling function that depends on the internuclear distances. The spin-valence diabatic potential energy matrix is suitable for semiclassical dynamics simulations. Diagonalization of this matrix produces the spin-coupled adiabatic energies. For the sake of illustration, diabatic potential energy matrices are constructed along bond-fission coordinates for the HBr and the BrCH(2)Cl molecules. Comparison of the spin-coupled adiabatic energies obtained from the spin-valence diabatics with those obtained by ab initio calculations with geometry-dependent spin-orbit matrix elements shows that the new method is sufficiently accurate for practical purposes. The method formulated here should be most useful for systems with a large number of atoms, especially heavy atoms, and/or a large number of spin-coupled electronic states. PMID:17691756

  12. Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.

    2016-01-01

    As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.

  13. Bosonization approach to charge and spin dynamics of one-dimensional spin- (1)/(2) fermions with band curvature in a clean quantum wire

    NASA Astrophysics Data System (ADS)

    Teber, Sofian

    2007-07-01

    We consider one-dimensional spin- (1)/(2) fermions in a clean quantum wire, with forward scattering interactions and a nonlinear single-particle spectrum ?k=v?k?+k2/2m , where v is the Fermi velocity and 1/m is the band curvature. We calculate the dynamical structure factor (DSF) of the model at small wave vector q with the help of the bosonization technique. For spinless fermions, we show that, starting from the single-parametric spectrum ?=u?q? , bosonization emulates the two-parametric excitation spectrum ?=u?q?q2/2m* , where m* decreases with increasing repulsive interactions. Moreover, away from the excitation cone, i.e., ??u?q? , bosonization yields the two-pair excitation continuum of the DSF. For spinful fermions, we show that the spin-charge coupling (SCC) due to band curvature affects the charge and spin DSFs in an asymmetric way. For the charge DSF, SCC manifests as a two-peak structure: a charge peak at ?=u??q? but also a spin peak at ?=u??q? , as charge fluctuations may decay via chargeless spin-singlet excitations. For the magnetic DSF, SCC manifests as a continuous transfer of magnetic spectral weight to frequencies ?>u??q? , as spin fluctuations decay via pairs of chargeless spin and spinless charge-neutral excitations.

  14. A Conservative Solution to the Stochastic Dynamical Reduction Problem. Case of Spin- z Measurement of a Spin-1/2 Particle

    NASA Astrophysics Data System (ADS)

    Halabi, T.

    2013-10-01

    Stochastic dynamical reduction for the case of spin- z measurement of a spin-1/2 particle describes a random walk on the spin- z axis. The measurements result depends on which of the two points: spin- z= ?/2 is reached first. Borns rule is recovered as long as the expected step size in spin- z is independent of proximity to endpoints. Here, we address the questions raised by this description: (1) When is collapse triggered, and what triggers it? (2) Why is the expected step size in spin- z (as opposed to polar angle) independent of proximity to endpoints? (3) Why does spin lock in the vertical directions? The difficulties associated with (1) are rooted, as is Bells theorem, in the time-asymmetric assumption that the present distribution over hidden variables is independent of future settings. We believe, a priori of any of the experiments of modern physics, that such a time-asymmetric assumption is dubious when probing the microscopic scale. As for (2) and (3), they are simultaneously resolved by abandoning the fundamental distinction drawn between spin and spatial angular momentum, and by appealing to very tiny (in both magnitude and spatial extent) but numerous patches of magnetic noise in the Stern-Gerlachs field.

  15. Dynamical control of Mn spin-system cooling by photogenerated carriers in a (Zn,Mn)Se/BeTe heterostructure

    NASA Astrophysics Data System (ADS)

    Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.

    2010-08-01

    The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.

  16. Magnetization Dynamics from Time-Dependent Noncollinear Spin Density Functional Theory Calculations.

    PubMed

    Peralta, Juan E; Hod, Oded; Scuseria, Gustavo E

    2015-08-11

    A computational scheme, based on a time-dependent extension of noncollinear spin density functional theory, for the simultaneous simulation of charge and magnetization dynamics in molecular systems is presented. We employ a second-order Magnus propagator combined with an efficient predictor-corrector scheme that allows us to treat large molecular systems over long simulation periods. The method is benchmarked against the low-frequency dynamics of the H-He-H molecule where the magnetization dynamics can be modeled by the simple classical magnetization precession of a Heisenberg-Dirac-van Vleck Hamiltonian. Furthermore, the magnetic exchange couplings of the bimetallic complex [Cu(bpy)(H2O)(NO3)2(?-C2O4)] (BISDOW) are extracted from its low-frequency spin precession dynamics showing good agreement with the coupling obtained from ground state energy differences. Our approach opens the possibility to perform real-time simulation of spin-related phenomena using time-dependent density functional theory in realistic molecular systems. PMID:26574449

  17. Multi-Spin Interactions and Dynamics in Model Systems for Organic Molecular Materials

    NASA Astrophysics Data System (ADS)

    Gardner, Daniel M.

    This thesis presents results from the application of electron paramagnetic resonance (EPR) techniques to study the spin-spin interactions of novel organic compounds possessing one or more unpaired electron spins. The first two chapters focus on the use of steady-state techniques to probe the interaction of a single unpaired electron with its surrounding environment. The second part of this thesis expands on these studies by employing transient techniques to analyze and control the spin-spin interactions and dynamics of systems which undergo photoinduced charge separation to generate multiple unpaired electrons. In Chapter 2 a series of novel trifluoromethylated perylene and naphthalene imide and diimide compounds are chemically reduced to yield their respective radical anions. EPR spectroscopy at both X-band and W-band fields allows for characterization of the hyperfine coupling constants and g-tensors which are important for studying their role as intermediates in electron transfer reactions. In Chapter 3 continuous-wave electron-nuclear double resonance (ENDOR) spectroscopy is employed to study the sharing of an unpaired electron across oligomers of naphthalene-1,8:4,5-bis(dicarboximide) in several novel geometries. Transient EPR techniques are introduced in Chapter 4 to measure the spin-spin interactions in photogenerated radical pairs in a series of electron donor-acceptor systems designed to mimic the photosynthetic reaction center. Measurement of the dipolar interaction at X-band fields allows for the determination of the radical pair distance, while the enhanced spectral resolution at W-band fields allows for analysis of the anisotropy of the g-tensors thereby allowing for the determination of the geometry of the radical pair. In Chapter 5 a novel U-shaped electron donor-acceptor-radical system is introduced in which use of a xanthene spacer results in negligible magnetic exchange interactions between the acceptor radical anion and the appended stable radical while the short through-space distance results in a strong ferromagnetic dipolar interaction leading to unique spectral features in the transient EPR spectra. In contrast, Chapter 6 is focused on a linear electron donor-acceptor-radical system in which magnetic exchange results in polarization of the appended radical spin which is then transferred to neighboring nuclear spins through the use of pulse ENDOR sequences thereby opening possibilities for a nuclear spin memory.

  18. Charge Dynamics and Spin Blockade in a Hybrid Double Quantum Dot in Silicon

    NASA Astrophysics Data System (ADS)

    Urdampilleta, Matias; Chatterjee, Anasua; Lo, Cheuk Chi; Kobayashi, Takashi; Mansir, John; Barraud, Sylvain; Betz, Andreas C.; Rogge, Sven; Gonzalez-Zalba, M. Fernando; Morton, John J. L.

    2015-07-01

    Electron spin qubits in silicon, whether in quantum dots or in donor atoms, have long been considered attractive qubits for the implementation of a quantum computer because of silicon's "semiconductor vacuum" character and its compatibility with the microelectronics industry. While donor electron spins in silicon provide extremely long coherence times and access to the nuclear spin via the hyperfine interaction, quantum dots have the complementary advantages of fast electrical operations, tunability, and scalability. Here, we present an approach to a novel hybrid double quantum dot by coupling a donor to a lithographically patterned artificial atom. Using gate-based rf reflectometry, we probe the charge stability of this double quantum-dot system and the variation of quantum capacitance at the interdot charge transition. Using microwave spectroscopy, we find a tunnel coupling of 2.7 GHz and characterize the charge dynamics, which reveals a charge T2* of 200 ps and a relaxation time T1 of 100 ns. Additionally, we demonstrate a spin blockade at the inderdot transition, opening up the possibility to operate this coupled system as a singlet-triplet qubit or to transfer a coherent spin state between the quantum dot and the donor electron and nucleus.

  19. Dynamic magnetization switching and spin wave excitations by voltage-induced torque

    NASA Astrophysics Data System (ADS)

    Shiota, Yoichi

    2013-03-01

    The effect of electric fields on ultrathin ferromagnetic metal layer is one of the promising approaches for manipulating the spin direction with low-energy consumption, localization, and coherent behavior. Several experimental approaches to realize it have been investigated using ferromagnetic semiconductors, magnetostriction together with piezo-electric materials, multiferroic materials, and ultrathin ferromagnetic layer. In this talk, we will present a dynamic control of spins by voltage-induced torque. We used the magnetic tunnel junctions with ultrathin ferromagnetic layer, which shows voltage-induced perpendicular magnetic anisotropy change. By applying the voltage to the junction, the magnetic easy-axis in the ultrathin ferromagnetic layer changes from in-plane to out-of-plane, which causes a precession of the spins. This precession resulted in a two-way toggle switching by determining an appropriate pulse length. On the other hand, an application of rf-voltage causes an excitation of a uniform spin-wave. Since the precession of spin associates with an oscillation in the resistance of the junction, the applied rf-signal is rectified and produces a dc-voltage. From the spectrum of the dc-voltage as a function of frequency, we could estimate the voltage-induced torque. This research was supported by CREST-JST, G-COE program, and JSPS for the fellowship. Collaborators include T. Nozaki, S. Miwa, F. Bonell, N. Mizuochi, T. Shinjo, and Y. Suzuki.

  20. Spin dynamics of the cerium and uranium monopnictides studied by neutron scattering (invited)

    SciTech Connect

    Haelg, B.; Furrer, A.

    1984-03-20

    The spin dynamics of the cerium and uranium monopnictides studied by diffuse and inelastic neutron scattering is reviewed. The diffuse scattering above the antiferromagnetic ordering temperature largely corresponds to longitudinal spin fluctuations which are highly anisotropic. For CeAs, CeSb, and UAs multicritical behavior has been found, i.e., the symmetry of the critical scattering above T/sub N/ differs from the actual type of magnetic ordering below T/sub N/. In the ordered state the magnetic excitation spectrum of UN and UAs exhibits only a broad response, whereas well defined spin-wave branches have been observed for USb and the cerium monopnictides. A very detailed study of the magnetic excitations has been performed for CeAs, where the spin-wave dispersion is split into two modes of transverse polarization due to the exchange anisotropy. One of these modes exhibits nearly zero energy gap and quadratic dispersion which has not previously been observed in antiferromangets. A generalized random-phase-approximation calculation taking into account anisotropic exchange interactions consistently describes the transverse magnetic excitations for TT/sub N/. In USb, CeSb, and CeBi the magnetic excitations display similar feature as the spin-waves in CeAs and can be understood in close analogy to the treatment applied to CeAs.

  1. Long wavelength spin dynamics in diluted magnetic systems: Scaling of magnon lifetime

    NASA Astrophysics Data System (ADS)

    Chakraborty, Akash; Bouzerar, Georges

    2015-05-01

    Spin wave excitations in disordered magnetic systems have been one of the most widely studied fields in condensed matter physics for several decades. However, a careful and extensive search reveals a longstanding controversy on one important aspect, which is the wave-vector dependence of the spin wave intrinsic linewidth. We theoretically investigate the low-temperature spin wave excitations in disordered (diluted) ferromagnetic systems with a particular focus on the linewidth behavior in the long wavelength limit (q ? 0). The linewidth is extracted from a proper finite size analysis of the dynamical spectral functions, taking into account the effects of disorder and spin fluctuations treated within self-consistent local RPA. We obtain an unambiguous q5 scaling of the intrinsic linewidth, which is attributed to the disorder induced damping of the spin waves. This is in agreement with some previous theoretical studies on the Heisenberg ferromagnets, although the exchange interactions were mostly restricted to nearest neighbors unlike in our case. We also demonstrate the difficulties in extracting the correct scaling of the linewidth as it is sensitive to the q values considered, and one can obtain an incorrect q-dependence if the q's are not sufficiently small. Finally, our findings are discussed in the light of prospective spintronics applications.

  2. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    DOE PAGESBeta

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; et al

    2015-07-06

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we showmore » that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.« less

  3. Quantum Dynamics of Many-body Spin Chains Using Atomic Ions

    NASA Astrophysics Data System (ADS)

    Senko, Crystal

    2014-05-01

    Quantum simulation, a field in which well-controlled quantum systems are used to study many-body physics that would otherwise be challenging to model, has undergone a great deal of progress in recent years. In particular, trapped ions have proven an excellent platform for simulating quantum magnetism, with their long-lived coherence times, tunable spin-spin interactions mediated by optical dipole forces, and ease of individual readout. The manipulation of more than 10 spins is now routine and has allowed the study of dynamics that will be difficult to simulate classically in larger systems, such as spectroscopy of excitation energies (arXiv:1401.5751) and the spread of spin correlations in a system with long-range interactions (arXiv:1401.5088). In the near future, we expect to apply these techniques to the study of a variety of phenomena such as prethermalization in an isolated quantum system, and to upgrade the apparatus so as to handle many tens of spins, a system size well beyond what is classically calculable. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.

  4. Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy

    NASA Astrophysics Data System (ADS)

    Stoll, Hermann; Noske, Matthias; Weigand, Markus; Richter, Kornel; Krger, Benjamin; Reeve, Robert; Hnze, Max; Adolff, Christian; Stein, Falk-Ulrich; Meier, Guido; Klui, Mathias; Schtz, Gisela

    2015-04-01

    The dynamics of emergent magnetic quasiparticles, such as vortices, domain walls, and bubbles are studied by scanning transmission x-ray microscopy (STXM), combining magnetic (XMCD) contrast with about 25 nm lateral resolution as well as 70 ps time resolution. Essential progress in the understanding of magnetic vortex dynamics is achieved by vortex core reversal observed by sub-GHz excitation of the vortex gyromode, either by ac magnetic fields or spin transfer torque. The basic switching scheme for this vortex core reversal is the generation of a vortex-antivortex pair. Much faster vortex core reversal is obtained by exciting azimuthal spin wave modes with (multi-GHz) rotating magnetic fields or orthogonal monopolar field pulses in x and y direction, down to 45 ps in duration. In that way unidirectional vortex core reversal to the vortex core 'down' or 'up' state only can be achieved with switching times well below 100 ps. Coupled modes of interacting vortices mimic crystal properties. The individual vortex oscillators determine the properties of the ensemble, where the gyrotropic mode represents the fundamental excitation. By self-organized state formation we investigate distinct vortex core polarization configurations and understand these eigenmodes in an extended Thiele model. Analogies with photonic crystals are drawn. Oersted fields and spin-polarized currents are used to excite the dynamics of domain walls and magnetic bubbles. From the measured phase and amplitude of the displacement of domain walls we deduce the size of the non-adiabatic spin-transfer torque. For sensing applications, the displacement of domain walls is studied and a direct correlation between domain wall velocity and spin structure is found. Finally the synchronous displacement of multiple domain walls using perpendicular field pulses is demonstrated as a possible paradigm shift for magnetic memory and logic applications.

  5. Tests of Dynamic Scale Model of Gemini Capsule in the Langley 20-Foot Free-Spinning Tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Tests of Dynamic Scale Model of Gemini Capsule in the Langley 20-Foot Free-Spinning Tunnel. The film shows three spin tunnel tests of a 1/20 scale model of the Gemini capsule. In the first test, the capsule spins freely. In tests 2 and 3, a drogue parachute is attached to the capsule. [Entire movie available on DVD from CASI as Doc ID 20070030989. Contact help@sti.nasa.gov

  6. Temporal dynamics and genetic diversity of chemotactic-competent microbial populations in the rhizosphere.

    PubMed

    Buchan, Alison; Crombie, Burnette; Alexandre, Gladys M

    2010-12-01

    The contribution of chemotaxis to the competitive colonization of the rhizosphere for the vast majority of the soil community is unknown. We have developed and applied a molecular diagnostic tool, based on a gene encoding the central regulator of bacterial chemotaxis (cheA), to characterize and temporally track specific populations of native microbes with chemotaxis potential that are present in soil exposed to two rhizospheres: wheat and cowpea. The data show that the chemotactic-competent communities present in the rhizospheres of the two plants are distinct and less diverse than the bulk soil, indicating the development of unique microbial communities. Consistent with the supposition that selection and recruitment of specific soil microbes takes place in the rhizosphere, the dynamics of specific cheA phylotypes provides support for the hypothesis that chemotaxis provides a competitive advantage to some soil microbes. This is the first study to examine and profile the genetic diversity of chemotaxis genes in natural populations. As such, it illustrates our limited understanding of microbial chemotaxis for the majority of soil microbes. It also highlights the value of a culture-independent approach for examining chemotaxis populations in order to build empirical lines of evidence for its role in structuring of microbial assemblages. PMID:20629701

  7. Using action dynamics to assess competing stimulus control during stimulus equivalence testing.

    PubMed

    O'Hora, Denis P; Tyndall, Ian T; McMorrow, Mairad; Dale, Rick A C

    2013-09-01

    Previous studies have identified potential sources of competing stimulus control in tests for stimulus equivalence. The present experiment employed the Nintendo Wii remote (Wiimote) to investigate whether such competition would affect suboperant action dynamics (e.g., topographies of equivalence responses). Following one-to-many training on conditional discriminations sufficient to establish three 3-member equivalence classes, participants were presented with a test for equivalence responding that included five different trial types. These included "traditional" equivalence trials, on which the incorrect stimulus had previously been presented as a correct comparison stimulus during training, trials on which a novel unrelated word was provided as the incorrect comparison, and trials on which the incorrect stimulus varied in orthographical and phonological similarity to the sample stimulus. The presence of phonological and orthographic distractor stimuli significantly reduced the probability of equivalence-consistent responding, relative to neutral distractors, but this effect was almost exclusively seen in participants who failed to demonstrate equivalence on traditional equivalence trials. Analyses of correct response trajectories suggested that the prior history of reinforcement for choosing the incorrect stimulus on the traditional equivalence trial gave rise to greater competition than did phonological or orthographic similarity between the sample and incorrect comparisons. PMID:23378287

  8. Dissipation dynamics and spin-orbit force in time-dependent Hartree-Fock theory

    NASA Astrophysics Data System (ADS)

    Dai, Gao-Feng; Guo, Lu; Zhao, En-Guang; Zhou, Shan-Gui

    2014-10-01

    We investigate the one-body dissipation dynamics in heavy-ion collisions of O16+O16 using a fully three-dimensional time-dependent Hartree-Fock (TDHF) theory with the modern Skyrme energy functional and without any symmetry restrictions. The energy dissipation is revealed to decrease in deep-inelastic collisions of the light systems as the bombarding energy increases owing to the competition between collective motion and single-particle degrees of freedom. The role of spin-orbit force is given particular emphasis in deep-inelastic collisions. The spin-orbit force causes a significant enhancement of the dissipation. The time-even coupling of spin-orbit force plays a dominant role at low energies, while the influence of time-odd terms is notable at high energies. About 40-65% of the total dissipation depending on the different parameter sets is predicted to arise from the spin-orbit force. The theoretical fusion cross section has a reasonably good agreement with the experimental data, considering that no free parameters are adjusted to reaction dynamics in the TDHF approach.

  9. Toward the Fourth Dimension of Membrane Protein Structure: Insight into Dynamics from Spin-labeling EPR Spectroscopy

    PubMed Central

    Mchaourab, Hassane S.; Steed, P. Ryan; Kazmier, Kelli

    2011-01-01

    Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the nativelike environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60-80) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology. PMID:22078555

  10. Non-equilibrium dynamics of an unstable quantum pendulum explored in a spin-1 Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Gerving, C. S.; Hoang, T. M.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.

    2012-11-01

    A pendulum prepared perfectly inverted and motionless is a prototype of unstable equilibrium and corresponds to an unstable hyperbolic fixed point in the dynamical phase space. Here, we measure the non-equilibrium dynamics of a spin-1 Bose-Einstein condensate initialized as a minimum uncertainty spin-nematic state to a hyperbolic fixed point of the phase space. Quantum fluctuations lead to non-linear spin evolution along a separatrix and non-Gaussian probability distributions that are measured to be in good agreement with exact quantum calculations up to 0.25s. At longer times, atomic loss due to the finite lifetime of the condensate leads to larger spin oscillation amplitudes, as orbits depart from the separatrix. This demonstrates how decoherence of a many-body system can result in apparent coherent behaviour. This experiment provides new avenues for studying macroscopic spin systems in the quantum limit and for investigations of important topics in non-equilibrium quantum dynamics.

  11. Nonequilibrium dynamics of a mixed spin-1/2 and spin-3/2 Ising ferrimagnetic system with a time dependent oscillating magnetic field source

    NASA Astrophysics Data System (ADS)

    Vatansever, Erol; Polat, Hamza

    2015-10-01

    Nonequilibrium phase transition properties of a mixed Ising ferrimagnetic model consisting of spin-1/2 and spin-3/2 on a square lattice under the existence of a time dependent oscillating magnetic field have been investigated by making use of Monte Carlo simulations with a single-spin flip Metropolis algorithm. A complete picture of dynamic phase boundary and magnetization profiles have been illustrated and the conditions of a dynamic compensation behavior have been discussed in detail. According to our simulation results, the considered system does not point out a dynamic compensation behavior, when it only includes the nearest-neighbor interaction, single-ion anisotropy and an oscillating magnetic field source. As the next-nearest-neighbor interaction between the spins-1/2 takes into account and exceeds a characteristic value which sensitively depends upon values of single-ion anisotropy and only of amplitude of external magnetic field, a dynamic compensation behavior occurs in the system. Finally, it is reported that it has not been found any evidence of dynamically first-order phase transition between dynamically ordered and disordered phases, which conflicts with the recently published molecular field investigation, for a wide range of selected system parameters.

  12. Growth-temperature dependence of optical spin-injection dynamics in self-assembled InGaAs quantum dots

    SciTech Connect

    Yamamura, Takafumi; Kiba, Takayuki; Yang, Xiaojie; Takayama, Junichi; Subagyo, Agus; Sueoka, Kazuhisa; Murayama, Akihiro

    2014-09-07

    The growth-temperature dependence of the optical spin-injection dynamics in self-assembled quantum dots (QDs) of In{sub 0.5}Ga{sub 0.5}As was studied by increasing the sheet density of the dots from 2 × 10{sup 10} to 7 × 10{sup 10} cm{sup −2} and reducing their size through a decrease in growth temperature from 500 to 470 °C. The circularly polarized transient photoluminescence (PL) of the resulting QD ensembles was analyzed after optical excitation of spin-polarized carriers in GaAs barriers by using rate equations that take into account spin-injection dynamics such as spin-injection time, spin relaxation during injection, spin-dependent state-filling, and subsequent spin relaxation. The excitation-power dependence of the transient circular polarization of PL in the QDs, which is sensitive to the state-filling effect, was also examined. It was found that a systematic increase occurs in the degree of circular polarization of PL with decreasing growth temperature, which reflects the transient polarization of exciton spin after spin injection. This is attributed to strong suppression of the filling effect for the majority-spin states as the dot-density of the QDs increases.

  13. Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.

    PubMed

    Zhao, Li; Fielden, Samuel W; Feng, Xue; Wintermark, Max; Mugler, John P; Meyer, Craig H

    2015-11-01

    Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness. PMID:26169322

  14. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    SciTech Connect

    Chui, C. P.; Zhou, Yan

    2014-03-15

    Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD) simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  15. An efficient numerical method for computing dynamics of spin F = 2 Bose-Einstein condensates

    SciTech Connect

    Wang Hanquan

    2011-07-01

    In this paper, we extend the efficient time-splitting Fourier pseudospectral method to solve the generalized Gross-Pitaevskii (GP) equations, which model the dynamics of spin F = 2 Bose-Einstein condensates at extremely low temperature. Using the time-splitting technique, we split the generalized GP equations into one linear part and two nonlinear parts: the linear part is solved with the Fourier pseudospectral method; one of nonlinear parts is solved analytically while the other one is reformulated into a matrix formulation and solved by diagonalization. We show that the method keeps well the conservation laws related to generalized GP equations in 1D and 2D. We also show that the method is of second-order in time and spectrally accurate in space through a one-dimensional numerical test. We apply the method to investigate the dynamics of spin F = 2 Bose-Einstein condensates confined in a uniform/nonuniform magnetic field.

  16. Heteroclinic dynamics and attitude motion chaotization of coaxial bodies and dual-spin spacecraft

    NASA Astrophysics Data System (ADS)

    Doroshin, Anton V.

    2012-03-01

    Heteroclinic dynamics of a free coaxial bodies system and dual-spin spacecraft is examined. New analytical solutions for heteroclinic orbits, corresponded to the polhodes-separatrices in the space of the angular moment components, are obtained. On the base of these analytical heteroclinic solutions analysis of possibility of the system motion chaotization with the help of Melnikov method is conducted. The analysis shows the polhode-separatrix-orbit splitting at presence of small harmonical perturbation torques between the coaxial bodies. The separatrix splitting generates the chaotic layer near the unperturbed separatrix region. This fact proves possibility of realization of non-regular dynamics and chaotic tilting motion of the dual-spin spacecraft.

  17. Molecular dynamics simulations of spin and pure liquids with preservation of all the conservation laws.

    PubMed

    Omelyan, I P; Mryglod, I M; Folk, R

    2001-07-01

    A methodology is developed to integrate numerically the equations of motion for classical many-body systems in molecular dynamics simulations. Its distinguishable feature is the possibility to preserve, independently on the size of the time step, all the conservation laws inherent in the description without breaking the time reversibility. As a result, an implicit second-order algorithm is derived and applied to pure liquids, as well as spin liquids, for which the dynamics is characterized by the conservation of total energy, linear and angular momenta, as well as magnetization and individual spin lengths. It is demonstrated on the basis of Lennard-Jones and Heisenberg fluid models that when such quantities as energy and magnetization must be conserved perfectly, the algorithm turns out to be more efficient than popular decomposition integrators and standard predictor-corrector schemes. PMID:11461329

  18. Magnetic soft x-ray microscopy-imaging fast spin dynamics inmagnetic nanostructures

    SciTech Connect

    Fischer, Peter; Kim, Dong-Hyun; Mesler, Brooke L.; Chao, Weilun; Sakdinawat, Anne E.; Anderson, Erik H.

    2007-06-01

    Magnetic soft X-ray microscopy combines 15nm spatial resolution with 70ps time resolution and elemental sensitivity. Fresnel zone plates are used as X-ray optics and X-ray magnetic circular dichroism serves as magnetic contrast mechanism. Thus scientifically interesting and technologically relevant low dimensional nanomagnetic systems can be imaged at fundamental length and ultrafast time scales in a unique way. Studies include magnetization reversal in magnetic multilayers, nanopatterned systems, vortex dynamics in nanoelements and spin current induced phenomena.

  19. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    SciTech Connect

    Obaid, Rana; Kinzel, Daniel; Oppel, Markus González, Leticia

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  20. Spin Dynamics in Permalloy Disks with Vortex Structure

    NASA Astrophysics Data System (ADS)

    Buess, Matthias; Höllinger, Rainer; Haug, Thomas; Perzlmaier, Korbinian; Back, Christian H.; Pescia, Danilo; Scheinfein, Micheal R.

    2004-03-01

    Micron sized ferromagnetic permalloy disks exhibiting a ferromagnetic vortex structure are excited by a magnetic field pulse. The fast rise time pulse field is generated by an optically triggered electrical pulse in a lithographically fabricated microcoil. Experiments were performed for a series of different sample dimensions. The excitation is imaged using time resolved magneto-optic polar Kerr microscopy in a stroboscopic experiment. We present the spatially resolved magnetic maps at different delay times, stitched together to form a magnetic movie. The dynamical excitations are composed of symmetric and non-sysmmetric parts which can not be separated at first glance. However, in a detailed analysis up to five Eigen-modes can be extracted from the data and can be visualized in the Fourier transform of the magnetic movie. The symmetric excitations can be accounted for in a simple model based purely on dipolar interactions. The model is supported by micromagnetic simulations and shows good quantitative agreement in the resonance frequencies for different modes. Furthermore, insight can be gained into the energy dissipation of the system from the same data.

  1. Bioengineering Spin-Offs from Dynamical Systems Theory

    NASA Astrophysics Data System (ADS)

    Collins, J. J.

    1997-03-01

    Recently, there has been considerable interest in applying concepts and techniques from dynamical systems and statistical physics to physiological systems. In this talk, we present work dealing which two active topics in this area: stochastic resonance and (2) chaos control. Stochastic resonance is a phenomenon wherein the response of nonlinear system to a weak input signal is optimally enhanced by the presence of a particular level of noise. Here we demonstrate that noise-based techniques can be used to lower sensory detection thresholds in humans. We discuss how from a bioengineering and clinical standpoint, these developments may be particularly relevant for individuals with elevated sensory thresholds, such as older adults and patients with peripheral neuropathy. Chaos control techniques have been applied to a wide range of experimental systems, including biological preparations. The application of chaos control to biological systems has led to speculations that these methods may be clinically useful. Here we demonstrate that the principles of chaos control can be utilized to stabilize underlying unstable periodic orbits in non-chaotic biological systems. We discuss how from a bioengineering and clinical standpoint, these developments may be important for suppressing or eliminating certain types of cardiac arrhythmias.

  2. Competing valence bond and symmetry-breaking Mott states of spin-3/2 fermions on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Jakab, D.; Szirmai, E.; Lewenstein, M.; Szirmai, G.

    2016-02-01

    We investigate magnetic properties of strongly interacting four component spin-3/2 ultracold fermionic atoms in the Mott insulator limit with one particle per site in an optical lattice with honeycomb symmetry. In this limit, atomic tunneling is virtual, and only the atomic spins can exchange. We find a competition between symmetry-breaking and liquidlike disordered phases. Particularly interesting are valence bond states with bond centered magnetizations, situated between the ferromagnetic and conventional valence bond phases. In the framework of a mean-field theory, we calculate the phase diagram and identify an experimentally relevant parameter region where a homogeneous SU(4) symmetric Affleck-Kennedy-Lieb-Tasaki-like valence bond state is present.

  3. Spin Dynamics of Kelvin's Pebbles, Jellett's Eggs, and Shiva's Lingam Stones

    NASA Astrophysics Data System (ADS)

    Brecher, Kenneth

    2015-04-01

    Study of the problem of the rise of the center of mass (COM) of spinning objects is said to have begun in the late nineteenth century. These early mathematical treatments aimed to explain the motion of the newly invented and patented ``tippe top.'' This semi-spheroidal top will invert when spun on a smooth surface while raising its COM. Because of the importance of friction in their dynamics, such non-holonomic systems are not readily amenable to analytic treatment, or of intuitive understanding. In notes written in 1844 - before the invention of the tippe top - Lord Kelvin (William Thomson) discussed the problem of the rising COM of spinning objects. He experimented with both oblate and prolate ellipsoidal pebbles, but did not publish a complete theoretical treatment of the problem. J. H. Jellett, in his 1872 book ``Theory of Friction,'' provided a partial account of the related problem of the rise of the COM for an egg-shaped (ovoid) object, making use of a new (adiabatic) invariant of the motion that he devised. Naturally occurring prolate ellipsoidal ``Lingam stones'' from the Narmada River in India exhibit similar counter-intuitive dynamical behavior. When spun around its minor axis in a horizontal plane, a Lingam stone will stand erect and spin around its major axis in a vertical position. This presentation will explore the history and some of the experimental facts and theoretical ideas about the rotational dynamics of such physical objects.

  4. Spin dynamics of the quantum XY chain and ladder in a random field

    NASA Astrophysics Data System (ADS)

    Nunes, M. E. S.; Plascak, J. A.; Florencio, J.

    2004-02-01

    We investigate the Hamiltonian dynamics of two low-dimensional quantum spin systems in a random field, at the infinite-temperature limit: the XY chain and the two-leg XY ladder with interchain Ising interactions. We determine the longitudinal spin autocorrelation functions of the spin- {1}/{2} XY chain and ladder in the presence of disordered fields by using the method of recurrence relations. The first six basis vectors for the chain and the first four basis vectors for the ladder of the dynamic Hilbert spaces of σjz( t), as well as the corresponding recurrents and moments of the time-dependent autocorrelation function, are analytically computed for bimodal distributions of the fields. We did find a remarkable result in the disordered models. Cases with a fraction of p sites under field BB and a fraction of 1- p sites under the field BA have the same longitudinal dynamics as those with p sites under field BA and 1- p sites under the field BB. We also find that both the XY chain and the two-leg XY ladder with Ising interchain coupling in the presence of random fields are sensitive to the percentage of disorder but not to the intensity of the fields.

  5. The dynamics of diluted Ho spin ice Ho2-xYxTi2O7 studied byneutron spin echo spectroscopy

    SciTech Connect

    Ehlers, G.; Gardner, J.S.; Booth, C.H.; Daniel, M.; Kam, K.C.; Cheetham, A.K.; Antonio, D.; Brooks, H.E.; Cornelius, A.L.; Bramwell,S.T.; Lago, J.; Haussler, W.; Rosov, N.

    2006-02-27

    We have studied the spin relaxation in diluted spin ice Ho{sub 2-x} Y{sub x} Ti{sub 2}O{sub 7} by means of neutron spin echo spectroscopy. Remarkably, the geometrical frustration is not relieved by doping with non-magnetic Y, and the dynamics of the freezing is unaltered in the spin echo time window up to x {approx_equal} 1.6. At higher doping with non-magnetic Y (x {ge} 1.6) a new relaxation process at relatively high temperature (up to at least T {approx_equal} 55 K) appears which is more than 10 times faster than the thermally activated main relaxation process. We find evidence that over the whole range of composition all Ho spins participate in the dynamics. These results are compared to a.c. susceptibility measurements of the diluted Ho and Dy spin ice systems. X-ray absorption fine structure (EXAFS) spectra and x-ray diffraction show that the samples are structurally well ordered.

  6. Non-local dynamics of weakly nonlinear spin excitations in thin ferromagnetic films

    NASA Astrophysics Data System (ADS)

    Kiseliev, V. V.; Tankeyev, A. P.

    1996-12-01

    Effective integro-differential equations of weakly nonlinear dynamics describing the interaction of quasi-one-dimensional exchange-dipole spin-waves are derived for a thin ferromagnetic slab (film). The non-local part of the magnetostatic dispersion of these waves has been taken into account. Algebraic soliton-like states have been predicted. The conditions of their existence and their dynamic properties are investigated depending on the film thickness and on the magnitude and orientation of the external magnetic field. The role of crystallographic magnetic anisotropy in the formation of these states is analysed.

  7. Theory of transverse spin dynamics in a polarized Fermi liquid and an itinerant ferromagnet

    NASA Astrophysics Data System (ADS)

    Mineev, V. P.

    2005-10-01

    Linear equations for the transverse spin dynamics in a weakly polarized degenerate Fermi liquid are derived from the Landau-Silin phenomenological kinetic equation with a general two-particle collision integral. Unlike a previous treatment where the Fermi velocity and density of states were taken to be constant independent of polarization we make no such assumption. The equations found describe the spin dynamics in a paramagnetic Fermi liquid with finite polarization as well in an itinerant ferromagnet. The results are confirmed by field theoretical calculations based on the integral equation for the vertex function. The transverse spin wave frequency in a polarized paramagnetic Fermi liquid is found to be proportional to k2 with a complex diffusion coefficient such that the damping has a finite value proportional to the quasiparticles scattering rate at T=0 . This behavior of a polarized Fermi liquid contrasts with the behavior of a Heisenberg ferromagnet in the hydrodynamic regime where the transverse spin-wave attenuation appears in terms proportional to k4 . The reactive part of the diffusion coefficient in a paramagnetic state at T=0 proves to be inversely proportional to the magnetization whereas in a ferromagnetic it is directly proportional to the magnetization. The dissipative part of the diffusion coefficient at T=0 in the paramagnetic state is polarization independent, whereas in the ferromagnetic state it is proportional to the square of the magnetization. Moreover, the spin wave spectrum in a ferromagnetic Fermi liquid proves to be unstable demonstrating the difficulty of applying a Fermi liquid description to itinerant ferromagnetism.

  8. Dynamic magnetic properties of the mixed spin-1 and spin-3/2 Ising system on a two-layer square lattice

    NASA Astrophysics Data System (ADS)

    Temizer, mt

    2014-12-01

    In this study, the dynamic critical behavior of the mixed spin-1 and spin-3/2 Ising system on a bilayer square lattice is studied by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic (FM/FM) and antiferromagnetic/ferromagnetic (AFM/FM) interactions in the presence of a time-varying external magnetic field. The dynamic equations describing the time-dependencies of the average magnetizations are derived from the Master equation. The phases in the system are obtained by solving these dynamic equations. The temperature dependence of the dynamic magnetizations is investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions and to obtain the dynamic phase transition temperatures. The dynamic phase diagrams are constructed in seven different planes for both FM/FM and AFM/FM interactions and the effects of the related interaction parameters on the dynamic phase diagrams are examined. It is found that the dynamic phase diagrams display many dynamic critical points, such as tricritical point, triple point (TP), quadruple point (QP), double critical end point (B), multicritical point (A) and tetracritical point (M). Moreover, the reentrant behavior is observed for AFM/FM interaction in the system.

  9. Energy Band and Josephson Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Yu, Zi-Fa; Xue, Ju-Kui

    2015-10-01

    We theoretically investigate the energy band structure and Josephson dynamics of a spin-orbit coupled Bose-Einstein condensate in a double-well potential. We study the energy band structure and the corresponding tunneling dynamics of the system by properly adjusting the SO coupling, Raman coupling, Zeeman field and atomic interactions. The coupled effects of SO coupling, Raman coupling, Zeeman field and atomic interactions lead to the appearance of complex energy band structure including the loop structure. Particularly, the emergence of the loop structure in energy band also depends on SO coupling, Raman coupling, Zeeman field and atomic interactions. Correspondingly, the Josephson dynamics of the system are strongly related to the energy band structure. Especially, the emergence of the loop structure results in complex tunneling dynamics, including suppression-revival transitions and self-trapping of atoms transfer between two spin states and two wells. This engineering provides a possible means for studying energy level and corresponding dynamics of two-species SO coupled BECs. Supported by the National Natural Science Foundation of China under Grant Nos. 11274255 and 11305132, by Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20136203110001, by the Natural Science Foundation of Gansu province under Grant No. 2011GS04358, and by Creation of Science and Technology of Northwest Normal University under Grant Nos. NWNU-KJCXGC-03-48, NWNU-LKQN-12-12

  10. First glimpse of the soft x-ray induced excited spin-state trapping effect dynamics on spin cross-over molecules

    SciTech Connect

    Davesne, V.; Gruber, M.; Physikalisches Institut, Karlsruhe Institut of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe ; Miyamachi, T.; Da Costa, V.; Boukari, S.; Scheurer, F.; Joly, L.; Bowen, M.; Beaurepaire, E.; Ohresser, P.; Otero, E.; Choueikani, F.; Gaspar, A. B.; Real, J. A.; Wulfhekel, W.

    2013-08-21

    The dynamics of the soft x-ray induced excited spin state trapping (SOXIESST) effect of Fe(phen){sub 2}(NCS){sub 2} (Fe-phen) powder have been investigated by x-ray absorption spectroscopy (XAS) using the total electron yield method, in a wide temperature range. The low-spin (LS) state is excited into the metastable high-spin (HS) state at a rate that depends on the intensity of the x-ray illumination it receives, and both the temperature and the intensity of the x-ray illumination will affect the maximum HS proportion that is reached. We find that the SOXIESST HS spin state transforms back to the LS state at a rate that is similar to that found for the light induced excited spin state trapping (LIESST) effect. We show that it is possible to use the SOXIESST effect in combination with the LIESST effect to investigate the influence of cooperative behavior on the dynamics of both effects. To investigate the impact of molecular cooperativity, we compare our results on Fe-phen with those obtained for Fe([Me{sub 2}Pyrz]{sub 3}BH){sub 2} (Fe-pyrz) powder, which exhibits a similar thermal transition temperature but with a hysteresis. We find that, while the time constant of the dynamic is identical for both molecules, the SOXIESST effect is less efficient at exciting the HS state in Fe-pyrz than in Fe-phen.

  11. Static and dynamic spin fluctuations in the spin glass doping regime in La 2-xSr xCuO 4+?

    NASA Astrophysics Data System (ADS)

    Birgeneau, R. J.; Belk, N.; Endoh, Y.; Erwin, R. W.; Kastner, M. A.; Keimer, B.; Shirane, G.

    1992-06-01

    We review the results of neutron scattering studies of the static and dynamic spin fluctuations in crystals of La 2- xSr xCuO 4+? in the doping regime intermediate between the Nel and superconducting regions. In this regime the in-plane resistance is linear in temperature down to ?80 K with a crossover due to logarithmic conductance effects at lower temperatures. The static spin correlations are well described by a simple model in which the inverse correlation length K( x,T= K( x,0)+ K(0, T. The most dramatic new result is the discovery by Keimer et al. that the dynamic spin fluctuations exhibit a temperature dependence which is a simple function of ?/ T for temperatures 10 K ? T?500K for a wide range of energies. This scaling leads to a natural explanation of a variety of normal state properties of the copper oxides.

  12. Evidence of impurity and boundary effects on magnetic monopole dynamics in spin ice

    NASA Astrophysics Data System (ADS)

    Revell, H. M.; Yaraskavitch, L. R.; Mason, J. D.; Ross, K. A.; Noad, H. M. L.; Dabkowska, H. A.; Gaulin, B. D.; Henelius, P.; Kycia, J. B.

    2013-01-01

    Electrical resistance is a crucial and well-understood property of systems ranging from computer microchips to nerve impulse propagation in the human body. Here we study the motion of magnetic charges in spin ice and find that extra spins inserted in Dy2Ti2O7 trap magnetic monopole excitations and provide the first example of how defects in a spin-ice material obstruct the flow of monopoles--a magnetic version of residual resistance. We measure the time-dependent magnetic relaxation in Dy2Ti2O7 and show that it decays with a stretched exponential followed by a very slow long-time tail. In a Monte Carlo simulation governed by Metropolis dynamics we show that surface effects and a very low level of stuffed spins (0.30%)--magnetic Dy ions substituted for non-magnetic Ti ions--cause these signatures in the relaxation. In addition, we find evidence that the rapidly diverging experimental timescale is due to a temperature-dependent attempt rate proportional to the monopole density.

  13. Dynamic Model Investigation of a 1/20 Scale Gemini Spacecraft in the Langley Spin Tunnel

    NASA Technical Reports Server (NTRS)

    Lee, Henry A.; Costigan, Peter J.; Bowman, James S., Jr.

    1963-01-01

    The investigation was conducted in the Langley spin tunnel. The tunnel is an atmospheric wind tunnel with a vertically rising airstream in the test section and a maximum airspeed of approximately 90 feet per second. For this investigation, the model was hand launched into the vertically rising airstream. At times the model, both with and without a drogue parachute, was launched gently with as little disturbance as possible to determine what motions of the spacecraft were self-excited. At other times, the spacecraft with pre-deployed drogue parachute was launched into various spinning motions to determine the effectiveness of the drogue parachute in terminating these spinning motions. During drogue-parachute deployment tests, the spacecraft was launched into various spinning and tumbling motions and the drogue parachute was deployed. The motions of the model were photographed with a motion-picture camera, and some of the film records were read to obtain typical time histories of the model motion. The angles of attack indicated in the time histories presented are believed to be accurate within +/-1 degree. The mass and dimensional characteristics of the dynamic model are believed to be measured to an accuracy of: +/-1 percent for the weight, +/-1 percent for z(sub cg)/d, +/-15 percent for x (sub cg), and +/-5 percent for the moments of inertia. The towline and bridle-line lengths were simulated to an accuracy of +/-1 foot full scale.

  14. Water dynamics in hectorite clays: influence of temperature studied by coupling neutron spin echo and molecular dynamics.

    PubMed

    Marry, Virginie; Dubois, Emmanuelle; Malikova, Natalie; Durand-Vidal, Serge; Longeville, Stphane; Breu, Josef

    2011-04-01

    Within the wider context of water behavior in soils, and with a particular emphasis on clays surrounding underground radioactive waste packages, we present here the translational dynamics of water in clays in low hydrated states as studied by coupling molecular dynamics (MD) simulations and quasielastic neutron scattering experiments by neutron spin echo (NSE). A natural montmorillonite clay of interest is modeled by a synthetic clay which allows us to understand the determining parameters from MD simulations by comparison with the experimental values. We focus on temperatures between 300 and 350 K, i.e., the range relevant to the highlighted application. The activation energy Ea experimentally determined is 6.6 kJ/mol higher than that for bulk water. Simulations are in good agreement with experiments for the relevant set of conditions, and they give more insight into the origin of the observed dynamics. PMID:21381672

  15. Dependence of spin dynamics on in-plane magnetic field in AlGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Lv, Meng; Yu, Guolin; Xu, Yonggang; Chang, Zhigang; Lin, Tie; Zhao, Degang; Dai, Ning; Chu, Junhao; Lockwood, D. J.

    2015-12-01

    We systematically investigate the weak antilocalization effect and the dependence of spin dynamics on the in-plane magnetic field for two Al x Ga1?x N/GaN quantum wells, in which these effects are dominated by the spin-orbit interaction originating from the structural inversion asymmetry and the bulk inversion asymmetry, respectively. By fitting the weak antilocalization magnetoconductance, the phase coherence time and spin-orbit scattering time are obtained. With the increase of in-plane magnetic fields, the phase coherence time decreases quadratically while the spin-orbit scattering time increases quadratically. We attribute these variations to the competition between the Zeeman splitting and the spin-orbit interaction. The comparison between systems dominated by structural inversion asymmetry and bulk inversion asymmetry in the in-plane magnetic field is also made. Our findings may provide clues to control the weak antilocalization effect and spin-orbit interaction via the in-plane field.

  16. Multi-Q hexagonal spin density waves and dynamically generated spin-orbit coupling: Time-reversal invariant analog of the chiral spin density wave

    NASA Astrophysics Data System (ADS)

    Venderbos, J. W. F.

    2016-03-01

    We study hexagonal spin-channel ("triplet") density waves with commensurate M -point propagation vectors. We first show that the three Q =M components of the singlet charge density and charge-current density waves can be mapped to multicomponent Q =0 nonzero angular momentum order in three dimensions (3D) with cubic crystal symmetry. This one-to-one correspondence is exploited to define a symmetry classification for triplet M -point density waves using the standard classification of spin-orbit coupled electronic liquid crystal phases of a cubic crystal. Through this classification we naturally identify a set of noncoplanar spin density and spin-current density waves: the chiral spin density wave and its time-reversal invariant analog. These can be thought of as 3 DL =2 and 4 spin-orbit coupled isotropic β -phase orders. In contrast, uniaxial spin density waves are shown to correspond to α phases. The noncoplanar triple-M spin-current density wave realizes a novel 2 D semimetal state with three flavors of four-component spin-momentum locked Dirac cones, protected by a crystal symmetry akin to nonsymmorphic symmetry, and sits at the boundary between a trivial and topological insulator. In addition, we point out that a special class of classical spin states, defined as classical spin states respecting all lattice symmetries up to global spin rotation, are naturally obtained from the symmetry classification of electronic triplet density waves. These symmetric classical spin states are the classical long-range ordered limits of chiral spin liquids.

  17. Dynamical structure factor and Raman scattering of Kitaev spin liquids - signatures of fractionalization

    NASA Astrophysics Data System (ADS)

    Knolle, Johannes

    2015-03-01

    Topological states of matter present a wide variety of striking new phenomena, most prominently is the fractionalization of electrons. Their detection, however, is fundamentally complicated by the lack of any local order. While there are now several instances of candidate topological spin liquids, their identification remains challenging. We provide a complete and exact theoretical study of the dynamical structure factor and the inelastic Raman scattering response of a two-dimensional quantum spin liquid in Abelian and non-Abelian phases. Our analysis of dynamical properties of the Kitaev model identifies new varieties of the venerable X-ray edge problem and explores connections to the physics of quantum quenches. We discuss the effect of bound states and bond disorder on the response. Overall, we show that there are salient signatures of the Majorana fermions and gauge fluxes emerging in Kitaev's honeycomb model. We make connection to recent experiments and explore more generally the influence of integrability breaking for Kitaev spin liquid response functions.

  18. Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering

    NASA Astrophysics Data System (ADS)

    Zakeri, Kh.; Lindner, J.; Barsukov, I.; Meckenstock, R.; Farle, M.; von Hörsten, U.; Wende, H.; Keune, W.; Rocker, J.; Kalarickal, S. S.; Lenz, K.; Kuch, W.; Baberschke, K.; Frait, Z.

    2007-09-01

    The magnetic relaxation processes following the dynamical excitation of the spin system of ferromagnets are investigated by ferromagnetic resonance (FMR) between 1 and 70GHz using epitaxial Fe3Si films as a prototype system. Two relaxation channels, i.e., dissipative, isotropic Gilbert damping G as well as anisotropic two-magnon scattering Γ , are simultaneously identified by frequency and angle dependent FMR and quantitatively analyzed. The scattering rates due to two-magnon scattering at crystallographic defects for spin waves propagating in ⟨100⟩ and ⟨110⟩ directions, γΓ⟨100⟩=0.25(2)GHz and γΓ⟨110⟩=0.04(2)GHz , and the Gilbert damping term G=0.051(1)GHz are determined. We show that changing the film thickness from 8to40nm and slightly modifying the Fe concentration influence the relaxation channels. Our results, which reveal the contributions of longitudinal and transverse relaxation processes may be of general importance for the understanding of spin-wave dynamics in magnetic structures.

  19. Dynamics of Bound Monopoles in Artificial Spin Ice: How to Store Energy in Dirac Strings.

    PubMed

    Vedmedenko, E Y

    2016-02-19

    Dirac strings in spin ices are lines of reversed dipoles joining two quasiparticle excitations. These excitations behave as unbound emergent monopoles if the tension of Dirac strings vanishes. In this Letter, analytical and numerical analysis are used to study the dynamics of two-dimensional dipolar spin ices, artificially created analogs of bulk spin ice, in the regime of bound monopoles. It is shown that, in this regime, strings, rather than monopoles, are effective degrees of freedom explaining the finite-width band of Pauling states. A measurable prediction of path-time dependence of endpoints of a stretched and, then, released Dirac string is made and verified via simulations. It is shown that string dynamics is defined by the characteristic tension-to-mass ratio, which is determined by the fine structure constant and lattice dependent parameter. It is proposed to use string tension to achieve spontaneous magnetic currents. A concept of an energy storing device on the basis of this principle is proposed and illustrated by an experimental demonstration. A scheme of independent measurement at the nanoscale is proposed. PMID:26943555

  20. Dynamics of Bound Monopoles in Artificial Spin Ice: How to Store Energy in Dirac Strings

    NASA Astrophysics Data System (ADS)

    Vedmedenko, E. Y.

    2016-02-01

    Dirac strings in spin ices are lines of reversed dipoles joining two quasiparticle excitations. These excitations behave as unbound emergent monopoles if the tension of Dirac strings vanishes. In this Letter, analytical and numerical analysis are used to study the dynamics of two-dimensional dipolar spin ices, artificially created analogs of bulk spin ice, in the regime of bound monopoles. It is shown that, in this regime, strings, rather than monopoles, are effective degrees of freedom explaining the finite-width band of Pauling states. A measurable prediction of path-time dependence of endpoints of a stretched and, then, released Dirac string is made and verified via simulations. It is shown that string dynamics is defined by the characteristic tension-to-mass ratio, which is determined by the fine structure constant and lattice dependent parameter. It is proposed to use string tension to achieve spontaneous magnetic currents. A concept of an energy storing device on the basis of this principle is proposed and illustrated by an experimental demonstration. A scheme of independent measurement at the nanoscale is proposed.

  1. Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics

    SciTech Connect

    Pohlit, Merlin Porrati, Fabrizio; Huth, Michael; Müller, Jens

    2015-05-07

    We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their “coercive field” with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior within experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' “survival time” with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct “paths” most likely driven by thermal perturbation.

  2. Multiple Reflection Effect on Spin-Transfer Torque Dynamics in Spin Valves with a Single or Dual Polarizer

    NASA Astrophysics Data System (ADS)

    Zhu, Weiwei; Zhang, Zongzhi; Zhang, Jianwei; Liu, Yaowen

    2015-04-01

    In this paper, spin-dependent multiple reflection effect on spin-transfer torque (STT) has been theoretically and numerically studied in a spin valve nanopillar with a single or dual spin-polarizer. By using a scattering matrix method, we formulate an analytical expression of STT that contains the multiple interfacial reflection effect. It is found that the multiple reflections could enhance the STT efficiency and reduce the critical switching current. The STT efficiency depends on the spin polarization of both the free layer and polarizer. In the nanopillars with a dual spin polarizer, the multiple reflections would cause an asymmetric frequency dependence on the applied current, albeit exactly the same parameters are used in all three ferromagnetic layers, indicating that the frequency in the negative current varies much faster than that in the positive case.

  3. Collective dynamics of a spin-orbit-coupled Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Hu, Fang-Qi; Wang, Jian-Jun; Yu, Zi-Fa; Zhang, Ai-Xia; Xue, Ju-Kui

    2016-02-01

    We study the collective dynamics of the spin-orbit coupled two pseudospin components of a Bose-Einstein condensate trapped in a quasi-one-dimensional harmonic potential, by using variational and directly numerical approach of binary mean-field Gross-Pitaevskii equations. The results show that, because of strong coupling of spin-orbit coupling (SOC), Rabi coupling, and atomic interaction, the collective dynamics of the system behave as complex characters. When the Rabi coupling is absent, the density profiles of the system preserve the Gauss type and the wave packets do harmonic oscillations. The amplitude of the collective oscillations increases with SOC. Furthermore, when the SOC strength increases, the dipole oscillations of the two pseudospin components undergo a transition from in-phase to out-of-phase oscillations. When the Rabi coupling present, there will exist a critical value of SOC strength (which depends on the Rabi coupling and atomic interaction). If the SOC strength is less than this critical value, the density profiles of the system can preserve the Gauss type and the wave packets do anharmonic (the frequency of dipole oscillations depends on SOC) oscillations synchronously (i.e., in-phase oscillations). However, if the SOC strength is larger than this critical value, the wave packets are dynamically fragmented and the stable dipole oscillations of the system can not exist. The collective dynamics of the system can be controlled by adjusting the atomic interaction, SOC, and Rabi-coupling strength.

  4. Dynamic susceptibility evidence of surface spin freezing in ultrafine NiFe2O4 nanoparticles.

    PubMed

    Tackett, Ronald J; Bhuiya, Abdul W; Botez, Cristian E

    2009-11-01

    We investigated the dynamic behavior of ultrafine NiFe2O4 nanoparticles (average size D = 3.5 nm) that exhibit anomalous low temperature magnetic properties such as low saturation magnetization and high-field irreversibility in both M(H) and ZFC-FC processes. Besides the expected blocking of the superspin, observed at T1 approximately 45 K, the system undergoes a magnetic transition at T2 approximately 6 K. For the latter, frequency- and temperature-resolved dynamic susceptibility data reveal characteristics that are unambiguously related to collective spin freezing: the relative variation (per frequency decade) of the in-phase susceptibility peak temperature is approximately 0.025, critical dynamics analysis yields an exponent znu = 9.6 and a zero-field freezing temperature T(F) = 5.8 K, and, in a magnetic field, T(F)(H) is excellently described by the de Almeida-Thouless line delta T(F) = 1 - T(F)(H)/T(F) alpha H(2/3). Moreover, out-of-phase susceptibility versus temperature datasets collected at different frequencies collapse on a universal dynamic scaling curve. All these observations indicate the existence of a spin-glass-like surface layer that surrounds the superparamagnetic core and undergoes a transition to a frozen state upon cooling below 5.8 K. PMID:19809109

  5. Ultrafast infrared studies of the role of spin states in organometallic reaction dynamics.

    PubMed

    Lomont, Justin P; Nguyen, Son C; Harris, Charles B

    2014-05-20

    The importance of spin state changes in organometallic reactions is a topic of significant interest, as an increasing number of reaction mechanisms involving changes of spin state are consistently being uncovered. The potential influence of spin state changes on reaction rates can be difficult to predict, and thus this class of reactions remains among the least well understood in organometallic chemistry. Ultrafast time-resolved infrared (TRIR) spectroscopy provides a powerful tool for probing the dynamics of spin state changes in organometallic catalysis, as such processes often occur on the picosecond to nanosecond time scale and can readily be monitored in the infrared via the absorptions of carbonyl reporter ligands. In this Account, we summarize recent work from our group directed toward identifying trends in reactivity that can be used to offer predictive insight into the dynamics of coordinatively unsaturated organometallic reaction intermediates. In general, coordinatively unsaturated 16-electron (16e) singlets are able to coordinate to solvent molecules as token ligands to partially stabilize the coordinatively unsaturated metal center, whereas 16e triplets and 17-electron (17e) doublets are not, allowing them to diffuse more rapidly through solution than their singlet counterparts. Triplet complexes typically (but not always) undergo spin crossover prior to solvent coordination, whereas 17e doublets do not coordinate solvent molecules as token ligands and cannot relax to a lower spin state to do so. 16e triplets are typically able to undergo facile spin crossover to yield a 16e singlet where an associative, exothermic reaction pathway exists. The combination of facile spin crossover with faster diffusion through solution for triplets can actually lead to faster catalytic reactivity than for singlets, despite the forbidden nature of these reactions. We summarize studies on odd-electron complexes in which 17e doublets were found to display varying behavior with regard to their tendency to react with 2-electron donor ligands to form 19-electron (19e) adducts. The ability of 19e adducts to serve as reducing agents in disproportionation reactions depends on whether the excess electron density localized at the metal center or at a ligand site. The reactivity of both 16e and 17e complexes toward a widely used organic nitroxyl radical (TEMPO) are reviewed, and both classes of complexes generally react similarly via an associative mechanism with a low barrier to these reactions. We also describe recent work targeted at unraveling the photoisomerization mechanism of a thermal-solar energy storage complex in which spin state changes were found to play a crucial role. Although a key triplet intermediate was found to be required for this photoisomerization mechanism to proceed, the details of why this triplet is formed in some complexes (those based on ruthenium) and not others (those based on iron, molybdenum, or tungsten) remains uncertain, and further exploration in this area may lead to a better understanding of the factors that influence intramolecular and excited state spin state changes. PMID:24819619

  6. Long-time-scale dynamics of spin textures in a degenerate F=1 {sup 87}Rb spinor Bose gas

    SciTech Connect

    Guzman, J.; Jo, G.-B.; Murch, K. W.; Thomas, C. K.; Wenz, A. N.; Stamper-Kurn, D. M.

    2011-12-15

    We investigate the long-term dynamics of spin textures prepared by cooling unmagnetized spinor gases of F=1 {sup 87}Rb to quantum degeneracy, observing domain coarsening and a strong dependence of the equilibration dynamics on the quadratic Zeeman shift q. For small values of |q|, the textures arrive at a configuration independent of the initial spin-state composition, characterized by large length-scale spin domains and the establishment of easy-axis (negative q) or easy-plane (positive q) magnetic anisotropy. For larger |q|, equilibration is delayed as the spin-state composition of the degenerate spinor gas remains close to its initial value. These observations support the mean-field equilibrium phase diagram predicted for a ferromagnetic spinor Bose-Einstein condensate and also illustrate that equilibration is achieved under a narrow range of experimental settings, making the F=1 {sup 87}Rb gas more suitable for studies of nonequilibrium quantum dynamics.

  7. Poisson bracket approach to the dynamics of nematic liquid crystals: The role of spin angular momentum

    NASA Astrophysics Data System (ADS)

    Stark, H.; Lubensky, T. C.

    2005-11-01

    Nematic liquid crystals are well modeled as a fluid of rigid rods. Starting from this model, we use a Poisson-bracket formalism to derive the equations governing the dynamics of nematic liquid crystals. We treat the spin angular momentum density arising from the rotation of constituent molecules about their centers of mass as an independent field and derive equations for it, the mass density, the momentum density, and the nematic director. Our equations reduce to the original Leslie-Ericksen equations, including the inertial director term that is neglected in the hydrodynamic limit, only when the moment of inertia for angular momentum parallel to the director vanishes and when a dissipative coefficient favoring locking of the angular frequencies of director rotation and spin angular momentum diverges. Our equations reduce to the equations of nematohydrodynamics in the hydrodynamic limit but with dissipative coefficients that depend on the coefficient that must diverge to produce the Leslie-Ericksen equations.

  8. A Comparison Study of Magnetic Bearing Controllers for a Fully Suspended Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Johnson, Dexter; Morrison, Carlos; Mehmed, Oral; Huff, Dennis (Technical Monitor)

    2002-01-01

    NASA Glenn Research Center (GRC) has developed a fully suspended magnetic bearing system for the Dynamic Spin Rig (DSR) that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust bearing and the associated control system were integrated into the DSR to provide noncontact magnetic suspension and mechanical excitation of the 35 lb vertical rotor with blades to induce turbomachinery blade vibration. A simple proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked very well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, and energy savings for the system. The test results of a variety of controllers we demonstrated up to the rig's maximum allowable speed of 10,000 rpm are shown.

  9. Quantum Langevin approach for non-Markovian quantum dynamics of the spin-boson model

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng-Yang; Chen, Mi; Yu, Ting; You, J. Q.

    2016-02-01

    One longstanding difficult problem in quantum dissipative dynamics is to solve the spin-boson model in a non-Markovian regime where a tractable systematic master equation does not exist. The spin-boson model is particularly important due to its crucial applications in quantum noise control and manipulation as well as its central role in developing quantum theories of open systems. Here we solve this important model by developing a non-Markovian quantum Langevin approach. By projecting the quantum Langevin equation onto the coherent states of the bath, we can derive a set of non-Markovian quantum Bloch equations containing no explicit noise variables. This special feature offers a tremendous advantage over the existing stochastic Schrödinger equations in numerical simulations. The physical significance and generality of our approach are briefly discussed.

  10. Langevin spin dynamics based on ab initio calculations: numerical schemes and applications.

    PubMed

    Rzsa, L; Udvardi, L; Szunyogh, L

    2014-05-28

    A method is proposed to study the finite-temperature behaviour of small magnetic clusters based on solving the stochastic Landau-Lifshitz-Gilbert equations, where the effective magnetic field is calculated directly during the solution of the dynamical equations from first principles instead of relying on an effective spin Hamiltonian. Different numerical solvers are discussed in the case of a one-dimensional Heisenberg chain with nearest-neighbour interactions. We performed detailed investigations for a monatomic chain of ten Co atoms on top of a Au(0?0?1) surface. We found a spiral-like ground state of the spins due to Dzyaloshinsky-Moriya interactions, while the finite-temperature magnetic behaviour of the system was well described by a nearest-neighbour Heisenberg model including easy-axis anisotropy. PMID:24806308

  11. Multidimensional instability and dynamics of spin avalanches in crystals of nanomagnets.

    PubMed

    Jukimenko, O; Dion, C M; Marklund, M; Bychkov, V

    2014-11-21

    We obtain a fundamental instability of the magnetization-switching fronts in superparamagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instability theory for both linear and nonlinear stages. By using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in combustion, inertial confinement fusion, and thermonuclear supernovae, and the instability of doping fronts in organic semiconductors. PMID:25479521

  12. Implementation of dynamically corrected gates on a single electron spin in diamond.

    PubMed

    Rong, Xing; Geng, Jianpei; Wang, Zixiang; Zhang, Qi; Ju, Chenyong; Shi, Fazhan; Duan, Chang-Kui; Du, Jiangfeng

    2014-02-01

    Precise control of an open quantum system is critical to quantum information processing but is challenging due to inevitable interactions between the quantum system and the environment. We demonstrated experimentally a type of dynamically corrected gates using only bounded-strength pulses on the nitrogen-vacancy centers in diamond. The infidelity of quantum gates caused by a nuclear-spin bath is reduced from being the second order to the sixth order of the noise-to-control-field ratio, which offers greater efficiency in reducing infidelity. The quantum gates have been protected to the limit essentially set by the spin-lattice relaxation time T1. Our work marks an important step towards fault-tolerant quantum computation in realistic systems. PMID:24580578

  13. Implementation of Dynamically Corrected Gates on a Single Electron Spin in Diamond

    NASA Astrophysics Data System (ADS)

    Rong, Xing; Geng, Jianpei; Wang, Zixiang; Zhang, Qi; Ju, Chenyong; Shi, Fazhan; Duan, Chang-Kui; Du, Jiangfeng

    2014-02-01

    Precise control of an open quantum system is critical to quantum information processing but is challenging due to inevitable interactions between the quantum system and the environment. We demonstrated experimentally a type of dynamically corrected gates using only bounded-strength pulses on the nitrogen-vacancy centers in diamond. The infidelity of quantum gates caused by a nuclear-spin bath is reduced from being the second order to the sixth order of the noise-to-control-field ratio, which offers greater efficiency in reducing infidelity. The quantum gates have been protected to the limit essentially set by the spin-lattice relaxation time T1. Our work marks an important step towards fault-tolerant quantum computation in realistic systems.

  14. Vortex-antivortex dynamics driven by spin-torque in a nanocontact

    NASA Astrophysics Data System (ADS)

    Zaspel, C. E.; Kireev, V. E.

    2015-10-01

    A spin-polarized current in a nanocontact has been shown to induce the formation of a magnetic vortex at the nanocontact by the Oersted field, and spin-torque drives the vortex core in an elliptical orbit about the nanocontact. For the case of an external in-plane magnetic field in an extended free layer, the magnetization will be uniform far from the nanocontact, implying that vortex formation must be accompanied by the formation of an antivortex. Using the Thiele approach to describe the vortex-antivortex dynamics it is shown that the frequency of gyrotropic motion of the vortex is a function of the nanocontact current which is linear for large vortex-antivortex separations and it becomes nonlinear as the separation is decreased. The equilibrium vortex -antivortex separation can be controlled by the nanocontact current as well as the external magnetic field.

  15. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3{NIT(C6H4OPh)}]: A ?+ spin relaxation study

    NASA Astrophysics Data System (ADS)

    Arosio, Paolo; Corti, Maurizio; Mariani, Manuel; Orsini, Francesco; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro

    2015-05-01

    The spin dynamics of the molecular magnetic chain [Dy(hfac)3{NIT(C6H4OPh)}] were investigated by means of the Muon Spin Relaxation (?+SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac)3{NIT(C6H4OPh)}] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing ?+SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate ?interm(T), associated with the intermediate relaxing component. The experimental ?interm(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to ? = ?0 exp(?/kBT), corresponding to a distribution of energy barriers ?. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  16. Tracking the charge and spin dynamics of electronic excited states in inorganic complexes

    NASA Astrophysics Data System (ADS)

    Gaffney, Kelly

    2015-03-01

    Inorganic complexes have many advantageous properties for solar energy applications, including strong visible absorption and photocatalytic activity. Whether used as a photocatalyst or a photosensitizer, the lifetime of electronic excited states and the earth abundance of the molecular components represent a key property for solar energy applications. These dual needs have undermined the usefulness of many coordination compounds. Isoelectronic iron and ruthenium based complexes represent a clear example. Ru-polypyridal based molecules have been the workhorse of solar energy related research and dye sensitized solar cells for decades, but the replacement of low abundance Ru with Fe leads to million-fold reductions in metal to ligand charge transfer (MLCT) excited state lifetimes. Understanding the origin of this million-fold reduction in lifetime and how to control excited state relaxation in 3d-metal complexes motivates the work I will discuss. We have used the spin sensitivity of hard x-ray fluorescence spectroscopy and the intense femtosecond duration pulses generated by the LCLS x-ray laser to probe the spin dynamics in a series of electronically excited [Fe(CN)6-2N(2,2'-bipyridine)N]2 N - 4 complexes, with N = 1-3. These femtosecond resolution measurements demonstrate that modification of the solvent and ligand environment can lengthen the MLCT excited state lifetime by more than two orders of magnitude. They also verify the role of triplet ligand field excited states in the spin crossover dynamics from singlet to quintet spin configurations. Work supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  17. DYNAMICAL SPIN SUSCEPTIBILITY IN THE TD-LDA AND QSGW APPROXIMATIONS

    SciTech Connect

    SCHILFGAARDE, MARK VAN; KOTANI, TAKAO

    2012-10-15

    Abstract. This project was aimed at building the transverse dynamical spin susceptibility with the TD-LDA and the recently-developed Quasparticle Self-Consisent Approximations, which determines an optimum quasiparticle picture in a self-consistent manner within the GW approximation. Our main results were published into two papers, (J. Phys. Cond. Matt. 20, 95214 (2008), and Phys. Rev. B83, 060404(R) (2011). In the first paper we present spin wave dispersions for MnO, NiO, and #11;-MnAs based on quasiparticle self-consistent GW approximation (QSGW). For MnO and NiO, QSGW results are in rather good agreement with experiments, in contrast to the LDA and LDA+U descriptions. For #11;-MnAs, we find a collinear ferromagnetic ground state in QSGW, while this phase is unstable in the LDA. In the second, we apply TD-LDA to the CaFeAs2 — the first attempt the first ab initio calculation of dynamical susceptibililty in a system with complex electronic structure Magnetic excitations in the striped phase of CaFe2As2 are studied as a function of local moment amplitude. We find a new kind of excitation: sharp resonances of Stoner-like (itinerant) excitations at energies comparable to the N´eel temperature, originating largely from a narrow band of Fe d states near the Fermi level, and coexisting with more conventional (localized) spin waves. Both kinds of excitations can show multiple branches, highlighting the inadequacy of a description based on a localized spin model.

  18. Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat.

    PubMed

    Qiao, Xu; Bei, Shuikuan; Li, Chunjie; Dong, Yan; Li, Haigang; Christie, Peter; Zhang, Fusuo; Zhang, Junling

    2015-01-01

    The mechanistic understanding of the dynamic processes linking nutrient acquisition and biomass production of competing individuals can be instructive in optimizing intercropping systems. Here, we examine the effect of inoculation with Funneliformis mosseae on competitive dynamics between wheat and faba bean. Wheat is less responsive to mycorrhizal inoculation. Both inoculated and uninoculated wheat attained the maximum instantaneous N and P capture approximately five days before it attained the maximum instantaneous biomass production, indicating that wheat detected the competitor and responded physiologically to resource limitation prior to the biomass response. By contrast, the instantaneous N and P capture by uninoculated faba bean remained low throughout the growth period, and plant growth was not significantly affected by competing wheat. However, inoculation substantially enhanced biomass production and N and P acquisition of faba bean. The exudation of citrate and malate acids and acid phosphatase activity were greater in mycorrhizal than in uninoculated faba bean, and rhizosphere pH tended to decrease. We conclude that under N and P limiting conditions, temporal separation of N and P acquisition by competing plant species and enhancement of complementary resource use in the presence of AMF might be attributable to the competitive co-existence of faba bean and wheat. PMID:25631933

  19. Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat

    PubMed Central

    Qiao, Xu; Bei, Shuikuan; Li, Chunjie; Dong, Yan; Li, Haigang; Christie, Peter; Zhang, Fusuo; Zhang, Junling

    2015-01-01

    The mechanistic understanding of the dynamic processes linking nutrient acquisition and biomass production of competing individuals can be instructive in optimizing intercropping systems. Here, we examine the effect of inoculation with Funneliformis mosseae on competitive dynamics between wheat and faba bean. Wheat is less responsive to mycorrhizal inoculation. Both inoculated and uninoculated wheat attained the maximum instantaneous N and P capture approximately five days before it attained the maximum instantaneous biomass production, indicating that wheat detected the competitor and responded physiologically to resource limitation prior to the biomass response. By contrast, the instantaneous N and P capture by uninoculated faba bean remained low throughout the growth period, and plant growth was not significantly affected by competing wheat. However, inoculation substantially enhanced biomass production and N and P acquisition of faba bean. The exudation of citrate and malate acids and acid phosphatase activity were greater in mycorrhizal than in uninoculated faba bean, and rhizosphere pH tended to decrease. We conclude that under N and P limiting conditions, temporal separation of N and P acquisition by competing plant species and enhancement of complementary resource use in the presence of AMF might be attributable to the competitive co-existence of faba bean and wheat. PMID:25631933

  20. Dynamic Phase Transitions In The Spin-2 Ising System Under An Oscillating Magnetic Field Within The Effective-Field Theory

    SciTech Connect

    Ertas, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2010-12-23

    The dynamic phase transitions are studied in the spin-2 Ising model under a time-dependent oscillating magnetic field by using the effective-field theory with correlations. The effective-field dynamic equation is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic order parameter and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are presented in (T/zJ, h/zJ) plane.

  1. Real-time dynamics of open quantum spin systems driven by dissipative processes

    NASA Astrophysics Data System (ADS)

    Hebenstreit, F.; Banerjee, D.; Hornung, M.; Jiang, F.-J.; Schranz, F.; Wiese, U.-J.

    2015-07-01

    We study the real-time evolution of large open quantum spin systems in two spatial dimensions, whose dynamics is entirely driven by a dissipative coupling to the environment. We consider different dissipative processes and investigate the real-time evolution from an ordered phase of the Heisenberg or XY model towards a disordered phase at late times, disregarding unitary Hamiltonian dynamics. The corresponding Kossakowski-Lindblad equation is solved via an efficient cluster algorithm. We find that the symmetry of the dissipative process determines the time scales, which govern the approach towards a new equilibrium phase at late times. Most notably, we find a slow equilibration if the dissipative process conserves any of the magnetization Fourier modes. In these cases, the dynamics can be interpreted as a diffusion process of the conserved quantity.

  2. Magnetization and spin dynamics of the spin S=(1)/(2) hourglass nanomagnet Cu5(OH)2(NIPA)410H2O

    NASA Astrophysics Data System (ADS)

    Nath, R.; Tsirlin, A. A.; Khuntia, P.; Janson, O.; Frster, T.; Padmanabhan, M.; Li, J.; Skourski, Yu.; Baenitz, M.; Rosner, H.; Rousochatzakis, I.

    2013-06-01

    We report a combined experimental and theoretical study of the spin S=(1)/(2) nanomagnet Cu5(OH)2(NIPA)410H2O (Cu5-NIPA). Using thermodynamic, electron spin resonance, and 1H nuclear magnetic resonance measurements on one hand, and ab initio density-functional band-structure calculations, exact diagonalizations, and a strong-coupling theory on the other, we derive a microscopic magnetic model of Cu5-NIPA and characterize the spin dynamics of this system. The elementary fivefold Cu2+ unit features an hourglass structure of two corner-sharing scalene triangles related by inversion symmetry. Our microscopic Heisenberg model comprises one ferromagnetic and two antiferromagnetic exchange couplings in each triangle, stabilizing a single spin S=(1)/(2) doublet ground state (GS), with an exactly vanishing zero-field splitting (by Kramers' theorem), and a very large excitation gap of ??68 K. Thus, Cu5-NIPA is a good candidate for achieving long electronic spin relaxation (T1) and coherence (T2) times at low temperatures, in analogy to other nanomagnets with low-spin GS's. Of particular interest is the strongly inhomogeneous distribution of the GS magnetic moment over the five Cu2+ spins. This is a purely quantum-mechanical effect since, despite the nonfrustrated nature of the magnetic couplings, the GS is far from the classical collinear ferrimagnetic configuration. Finally, Cu5-NIPA is a rare example of a S=(1)/(2) nanomagnet showing an enhancement in the nuclear spin-lattice relaxation rate 1/T1 at intermediate temperatures.

  3. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces

    NASA Astrophysics Data System (ADS)

    Lloveras, V.; Badetti, E.; Veciana, J.; Vidal-Gancedo, J.

    2016-02-01

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution, this diradical shows a strong spin exchange interaction between both radicals which is modulated by temperature, but also gold nanoparticles (AuNPs) functionalized with this diradical permit investigation of such a phenomenon in surface-grafted radicals. The spin-labelled AuNP synthesis was optimized to obtain high coverage of spin labels to lead to high spin exchange interaction. The obtained AuNPs were studied by Electron Paramagnetic Resonance (EPR), UV-Vis, and IR spectroscopies, HR-TEM microscopy, Cyclic Voltammetry (CV), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA). This inorganic-organic hybrid material also showed dipolar interactions between its radicals which were confirmed by the appearance in the EPR spectra of an |Δms| = 2 transition at half-field. This signal gives direct evidence of the presence of a high-spin state and permitted us to study the nature of the magnetic coupling between the spins which was found to be antiferromagnetic. Self-Assembled Monolayers (SAMs) of these radicals on the Au (111) substrate were also prepared and studied by contact angle, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Cyclic Voltammetry and EPR. The magnetic as well as the electrochemical properties of the hybrid surfaces were studied and compared with the properties of this diradical in solution. Analogies between the properties of AuNPs with high coverage of radicals and those of SAM were observed.In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution, this diradical shows a strong spin exchange interaction between both radicals which is modulated by temperature, but also gold nanoparticles (AuNPs) functionalized with this diradical permit investigation of such a phenomenon in surface-grafted radicals. The spin-labelled AuNP synthesis was optimized to obtain high coverage of spin labels to lead to high spin exchange interaction. The obtained AuNPs were studied by Electron Paramagnetic Resonance (EPR), UV-Vis, and IR spectroscopies, HR-TEM microscopy, Cyclic Voltammetry (CV), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA). This inorganic-organic hybrid material also showed dipolar interactions between its radicals which were confirmed by the appearance in the EPR spectra of an |Δms| = 2 transition at half-field. This signal gives direct evidence of the presence of a high-spin state and permitted us to study the nature of the magnetic coupling between the spins which was found to be antiferromagnetic. Self-Assembled Monolayers (SAMs) of these radicals on the Au (111) substrate were also prepared and studied by contact angle, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Cyclic Voltammetry and EPR. The magnetic as well as the electrochemical properties of the hybrid surfaces were studied and compared with the properties of this diradical in solution. Analogies between the properties of AuNPs with high coverage of radicals and those of SAM were observed. Electronic supplementary information (ESI) available: Experimental section, EPR spectra, further characterization of AuNPs 5, 6, and 7. See DOI: 10.1039/c5nr08824k

  4. The spin dynamics of the random transverse Ising chain with a double-Gaussian disorder

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Qiang; Jiang, Su-Rong; Kong, Xiang-Mu

    2014-08-01

    The dynamical properties of one-dimensional random transverse Ising model (RTIM) with a double-Gaussian disorder is investigated by the recursion method. Based on the first twelve recurrences derived analytically, the spin autocorrelation function (SAF) and associated spectral density at high temperature were obtained numerically. Our results indicate that when the standard deviation ?J (or ?B) of the exchange couplings Ji (or the random transverse fields Bi) is small, no long-time tail appears in the SAF. The spin system undergoes a crossover from a central-peak behavior to a collective-mode behavior, which is the dynamical characteristics of RTIM with the bimodal disorder. However, when ?J (or ?B) is large enough, the system exhibits similar dynamics behaviors to those of the RTIM with the Gaussian disorder, i.e., the system exhibits an enhanced central-peak behavior for large ?J or a disordered behavior for large ?B. In this instance, SAFs exhibit a similar long-time tail, i.e., C(t) ~ t-2 for large t. Similar properties are obtained when Ji (or Bi) satisfy the double-exponential distribution or the double-uniform distribution. Besides, when both the standard deviations and the mean values of the exchange couplings are small, the effects of the Gaussian random bonds may drive the system undergo two crossovers from a triplet state to a doublet state, and then to a collective-mode state.

  5. Optimal pulse spacing for dynamical decoupling in the presence of a purely dephasing spin bath

    SciTech Connect

    Ajoy, Ashok; Alvarez, Gonzalo A.; Suter, Dieter

    2011-03-15

    Maintaining quantum coherence is a crucial requirement for quantum computation; hence protecting quantum systems against their irreversible corruption due to environmental noise is an important open problem. Dynamical decoupling (DD) is an effective method for reducing decoherence with a low control overhead. It also plays an important role in quantum metrology, where, for instance, it is employed in multiparameter estimation. While a sequence of equidistant control pulses [the Carr-Purcell-Meiboom-Gill (CPMG) sequence] has been ubiquitously used for decoupling, Uhrig recently proposed that a nonequidistant pulse sequence [the Uhrig dynamic decoupling (UDD) sequence] may enhance DD performance, especially for systems where the spectral density of the environment has a sharp frequency cutoff. On the other hand, equidistant sequences outperform UDD for soft cutoffs. The relative advantage provided by UDD for intermediate regimes is not clear. In this paper, we analyze the relative DD performance in this regime experimentally, using solid-state nuclear magnetic resonance. Our system qubits are {sup 13}C nuclear spins and the environment consists of a {sup 1}H nuclear spin bath whose spectral density is close to a normal (Gaussian) distribution. We find that in the presence of such a bath, the CPMG sequence outperforms the UDD sequence. An analogy between dynamical decoupling and interference effects in optics provides an intuitive explanation as to why the CPMG sequence performs better than any nonequidistant DD sequence in the presence of this kind of environmental noise.

  6. Nonadiabatic dynamics of superfluid spin-orbit-coupled degenerate Fermi gas

    NASA Astrophysics Data System (ADS)

    Dzero, Maxim; Kirmani, Ammar A.; Yuzbashyan, Emil A.

    2015-11-01

    We study a problem of nonadiabatic superfluid dynamics of spin-orbit-coupled neutral fermions in two spatial dimensions. We focus on the two cases when the out-of-equilibrium conditions are initiated by either a sudden change of the pairing strength or the population imbalance. For the case of a zero-population imbalance and within the mean-field approximation, the nonadiabatic evolution of the pairing amplitude in a collisionless regime can be found exactly by employing the method of Lax vector construction. Our main finding is that the presence of the spin-orbit coupling significantly reduces the region in the parameter space where a steady state with periodically oscillating pairing amplitude is realized. For the collisionless dynamics initiated by a sudden disappearance of the population imbalance, we obtain an exact expression for the steady-state pairing amplitude. In the general case of quenches to a state with finite population imbalance, we show that there is a region in the steady-state phase diagram where at long times the pairing amplitude dynamics is governed by the reduced number of the equations of motion in full analogy with the exactly integrable case.

  7. Spin Dynamics Simulations of Multiple Echo Spacing Pulse Sequences in Grossly Inhomogeneous Fields

    SciTech Connect

    Heidler, R.; Bachman, H. N.; Johansen, Y.

    2008-12-05

    Pulse sequences with multiple lengths of echo spacings are used in oilfield NMR logging for diffusion-based NMR applications such as rock and fluid characterization. One specific implementation is the so-called diffusion editing sequence comprising two long echo spacings followed by a standard CPMG at a shorter echo spacing. The echoes in the CPMG portion contain signal from both the direct and stimulated echoes.Modern oilfield NMR logging tools are designed for continuous depth logging of earth formations by projecting both the static (B{sub 0}) and dynamic (B{sub 1}) fields into the formation. Both B{sub 0} and B{sub 1} profiles are grossly inhomogeneous which results in non-steady-state behavior in the early echoes. The spin dynamics effects present a challenge for processing the echo amplitudes to measure porosity (amplitude extrapolated to zero time) and attenuations for fluid or pore size characterization.In this work we describe a calculation of the spin dynamics of the diffusion editing sequence with two long echo spacings. The calculation takes into account full B{sub 1} and B{sub 0} field maps, and comparisons will be made for sensors and parameters typical of oilfield logging tools and environments.

  8. New tools for far-from-equilibrium quantum spin dynamics inspired by ultracold molecule experiments

    NASA Astrophysics Data System (ADS)

    Hazzard, Kaden; Foss-Feig, Michael; Gadway, Bryce; Yan, Bo; Moses, Steven; Covey, Jacob; Jin, Deborah; Ye, Jun; Rey, Ana Maria

    2014-03-01

    We describe new numerical techniques based on a type of cluster expansion and analytic solutions for treating far-from-equilibrium dynamics in quantum many-body spin models. Specifically, we apply them to dynamics following a quantum quench that is routinely implemented in experiments with Ramsey spectroscopy. For many observables, these new approaches converge extremely rapidly compared to existing techniques, which are unable to converge using any feasible computational resources. We describe the theoretical methods and our understanding of their superior convergence. These calculations are motivated by recent experiments with ultracold molecules in optical lattices [ Yan et al., Nature 501, 521 (2013) ] and trapped ions [ Britton et al., Nature 484, 489 (2012) ], which are described by spin models with long-range interactions in appropriate limits. We will compare theoretical predictions with experimental observations in these systems. We expect the novel methods developed to describe ultracold matter to also have applications to solid state systems, for example in the dynamics of nitrogen-vacancy centers in diamond or energy transfer in complicated molecules.

  9. Calibration of the spin-scan ozone imager aboard the dynamics Explorer 1 satellite

    NASA Technical Reports Server (NTRS)

    Bressette, Walter E.; Keating, Gerald M.; Young, David F.

    1987-01-01

    The calibration technique, which contains the calibrated backscattered radiance values necessary for performing the calibrations, is presented. The calibration constants for September to October 1981 to determine total columnar ozone from the Spin-Scan Ozone Imager (SOI), which is a part of the auroral imaging instrumentation aboard the Dynamics Explorer 1 Satellite, are provided. The precision of the SOI-derived total columnar ozone is estimated to be better than 2.4 percent. Linear regression analysis was used to calculate correlation coefficients between total columnar ozone obtained from Dobson ground stations and SOI which indicate that the SOI total columnar ozone determination is equally accurate for clear or cloudy weather conditions.

  10. Current induced domain wall dynamics in the presence of spin orbit torques

    SciTech Connect

    Boulle, O. Buda-Prejbeanu, L. D.; Ju, E.; Miron, I. M.; Gaudin, G.

    2014-05-07

    Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velocity depend on the relative values of the field like torque (FLT) and the Slonczewski like torques (SLT). The results are well explained by a collective coordinate model which is used to draw a phase diagram of the DW dynamics as a function of the FLT and the SLT. We show that a large increase in the DW velocity can be reached by a proper tuning of both torques.

  11. Current induced domain wall dynamics in the presence of spin orbit torques

    NASA Astrophysics Data System (ADS)

    Boulle, O.; Buda-Prejbeanu, L. D.; Jué, E.; Miron, I. M.; Gaudin, G.

    2014-05-01

    Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velocity depend on the relative values of the field like torque (FLT) and the Slonczewski like torques (SLT). The results are well explained by a collective coordinate model which is used to draw a phase diagram of the DW dynamics as a function of the FLT and the SLT. We show that a large increase in the DW velocity can be reached by a proper tuning of both torques.

  12. Quantum states, symmetry and dynamics in degenerate spin s=1 magnets

    NASA Astrophysics Data System (ADS)

    Kovalevsky, M. Y.; Glushchenko, A. V.

    2014-04-01

    The paper deals with spin s=1 magnets. The symmetry conditions for normal and degenerate equilibrium states are defined and types of magnetic ordering were found out. For each type of symmetry breaking the structure of source in the Gibbs statistical operator has been obtained and additional thermodynamic parameters have been introduced. The algebra of Poisson bracket for magnetic degrees of freedom has been established and nonlinear dynamic equations have been derived. Using the models of the exchange interaction, we have calculated the spectra of collective excitations for two degenerate states whose order parameters have different signatures under the time reversal transformation.

  13. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR.

    PubMed

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered. PMID:26920834

  14. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100 K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.

  15. Rotating Frame Spin dynamics of a Single Nitrogen Vacancy Center in Diamond Nanocrystal

    NASA Astrophysics Data System (ADS)

    Laraoui, Abdelghani; Meriles, Carlos

    2012-02-01

    We investigate the spin dynamics of a nitrogen-vacancy (NV) center contained in individual diamond nanocrystals with an average diameter of 70 20 nm in the presence of continuous microwave excitation. Upon periodic reversal of the microwave phase, we observe a train of rotary (Solomon) echoes that effectively extends the system coherence lifetime to reach several tens of microseconds, depending on the microwave power and phase inversion rate [1]. Starting from a model where the NV center interacts with a bath of paramagnetic defects on the nanocrystal surface, we use average Hamiltonian theory to compute the signal envelope from its amplitude at the echo maxima. A comparison between the effective Rabi and Solomon propagators shows that the observed response can be understood as a form of higher-order decoupling from the spin bath. The observed rotary echoes can be thought of as the rotating frame analog of Hahn's spin echoes, implying that the present scheme may find use for nanodiamond-based magnetic sensing. [1] A. Laraoui, C. A. Meriles, Phys. Rev. B 84, 161403(R) (2011).

  16. Absence of Magnetic Order and Persistent Spin Dynamics in Tb2Ge2O7

    NASA Astrophysics Data System (ADS)

    Hallas, Alannah; Arevalo-Lopez, Angel; Wilson, Murray; Liu, Lian; Attfield, J. Paul; Uemura, Yasutomo; Wiebe, Chris; Luke, Graeme

    2015-03-01

    The terbium pyrochlores exhibit many unique magnetic properties, which has generated significant interest in this family of frustrated materials. A candidate spin liquid, Tb2Ti2O7 fails to magnetically order, despite strong antiferromagnetic correlations. The application of external pressure has been found to produce partial antiferromagnetic order in Tb2Ti2O7. Recently, we synthesized a new member of this family, Tb2Ge2O7. Due to the large ionic radii decrease from titanium to germanium, Tb2Ge2O7 can be considered a chemical pressure analog of Tb2Ti2O7. However, neutron scattering measurements revealed an absence of magnetic order in Tb2Ge2O7 down to 20 mK and dominant ferromagnetic correlations. Now, we have investigated the low temperature magnetism of Tb2Ge2O7 with muon spin rotation. Our zero field ?SR measurements confirm an absence of static order in Tb2Ge2O7. We find a sharp increase in magnetic correlations below 10 K and persistent spin dynamics down to 25 mK. Our longitudinal field ?SR measurements on Tb2Ge2O7 at 25 mK are consistent with a system of fluctuating moments, with a fluctuation rate of 11 MHz. This fluctuation rate is nearly temperature independent below 2.5 K.

  17. Spin Dynamics and Quantum Tunneling in Fe8 Nanomagnet and in AFM Rings by NMR

    SciTech Connect

    Seung-Ho-Baek

    2004-12-19

    In this thesis, our main interest has been to investigate the spin dynamics and quantum tunneling in single molecule magnets (SMMs), For this we have selected two different classes of SMMs: a ferrimagnetic total high spin S = 10 cluster Fe8 and antiferromagnetic (AFM) ring-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum tunneling of magnetization in the very low temperature region. The most remarkable experimental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/T{sub l}) at low temperatures takes place via strong collision mechanism, and thus it allows to measure directly the tunneling rate vs T and H for the first time. For AFM rings, we have shown that 1/T{sub l} probes the thermal fluctuations of the magnetization in the intermediate temperature range. We find that the fluctuations are dominated by a single characteristic frequency which has a power law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions.

  18. Relativistic dynamics of half-spin particles in a homogeneous magnetic field: an atom with nucleus of spin 12.

    PubMed

    Misra, Anirban; Datta, Sambhu N

    2005-08-01

    An investigation of the relativistic dynamics of N+1 spin-12 particles placed in an external, homogeneous magnetic field is carried out. The system can represent an atom with a fermion nucleus and N electrons. Quantum electrodynamical interactions, namely, projected Briet and magnetic interactions, are chosen to formulate the relativistic Hamiltonian. The quasi-free-particle picture is retained here. The total pseudomomentum is conserved, and its components are distinct when the total charge is zero. Therefore, the center-of-mass motion can be separated from the Hamiltonian for a neutral (N+1)-fermion system, leaving behind a unitarily transformed, effective Hamiltonian H(0) at zero total pseudomomentum. The latter operator represents the complete relativistic dynamics in relative coordinates while interaction is chosen through order alpha4mc2. Each one-particle part in the effective Hamiltonian can be brought to a separable form for positive- and negative-energy states by replacing the odd operator in it through two successive unitary transformations, one due to Tsai [Phys. Rev. D 7, 1945 (1973)] and the other due to Weaver [J. Math. Phys. 18, 306 (1977)]. Consequently, the projector changes and the interaction that involves the concerned particle also becomes free from the corresponding odd operators. When this maneuver is applied only to the nucleus, and the non-Hermitian part of the transformed interaction is removed by another unitary transformation, a familiar form of the atomic relativistic Hamiltonian H(atom) emerges. This operator is equivalent to H(0). A good Hamiltonian for relativistic quantum chemical calculations, H(Qchem), is obtained by expanding the nuclear part of the atomic Hamiltonian through order alpha4mc2 for positive-energy states. The operator H(Qchem) is obviously an approximation to H(atom). When the same technique is used for all particles, and subsequently the non-Hermitian terms are removed by suitable unitary transformations, one obtains a Hamiltonian H(T) that is equivalent to H(atom) but is in a completely separable form. As the semidiscrete eigenvalues and eigenfunctions of the one-particle parts are known, the completely separable Hamiltonian can be used in computation. A little more effort leads to the derivation of the correct atomic Hamiltonian in the nonrelativistic limit, H(nonrel). The operator H(nonrel) is an approximation to H(T). It not only retains the relativistic and radiative effects, but also directly exhibits the phenomena of electron paramagnetic resonance and nuclear magnetic resonance. PMID:16122294

  19. All electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects.

    SciTech Connect

    Zhang, Wei; Jungfleisch, Matthias B.; Freimuth, Frank; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Mokrousov, Yuri; Hoffmann, Axel

    2015-10-06

    We investigate spin-orbit torques of metallic CuAu-I-type antiferromagnets using spin-torque ferromagnetic resonance tuned by a dc-bias current. The observed spin torques predominantly arise from diffusive transport of spin current generated by the spin Hall effect. We find a growth-orientation dependence of the spin torques by studying epitaxial samples, which may be correlated to the anisotropy of the spin Hall effect. The observed anisotropy is consistent with first-principles calculations on the intrinsic spin Hall effect. Our work suggests large tunable spin-orbit effects in magnetically-ordered materials.

  20. Vortex Dynamics in a Spin-Orbit-Coupled Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Fetter, Alexander L.

    2015-07-01

    Vortices in a one-component dilute atomic ultracold Bose-Einstein condensate (BEC) usually arise as a response to externally driven rotation. Apart from a few special situations, these vortices are singly quantized with unit circulation (Fetter, Rev Mod Phys 81, 647-691, 2009). Recently, the NIST group has constructed a two-component BEC with a spin-orbit-coupled Hamiltonian involving Pauli matrices (Spielman, Phys Rev A 79, 063613, 2009; Y.-J. Lin et al., Nature 462, 628-632, 2009; Y.-J. Lin et al., Nature 471, 83-87, 2011), and I here study the dynamics of a two-component vortex in such a spin-orbit-coupled condensate. These spin-orbit-coupled BECs use an applied magnetic field to split the hyperfine levels. Hence, they rely on a focused laser beam to trap the atoms. In addition, two Raman laser beams create an effective (or synthetic) gauge potential. The resulting spin-orbit Hamiltonian is discussed in some detail. The various laser beams are fixed in the laboratory, so that it is not feasible to nucleate a vortex by an applied rotation that would need to rotate all the laser beams and the magnetic field. In a one-component BEC, a vortex can also be created by a thermal quench, starting from the normal state and suddenly cooling deep into the condensed state (Freilich et al., Science 329, 1182-1185, 2010). I propose that a similar method would work for a vortex in a spin-orbit-coupled BEC. Such a vortex has two components, and each has its own circulation quantum number (typically ). If both components have the same circulation, I find that the composite vortex should execute uniform precession, like that observed in a single-component BEC (Freilich et al., Science 329, 1182-1185, 2010). In contrast, if one component has unit circulation and the other has zero circulation, then some fraction of the dynamical vortex trajectories should eventually leave the condensate, providing clear experimental evidence for this unusual vortex structure. In the context of exciton-polariton condensates, such a vortex is known as a "half-quantum vortex" (Rubo, Phys Rev Lett 99, 106401, 2007; Lagoudakis et al., Science 326, 974-976, 2009).

  1. Spin dynamics in the single molecule magnet Ni4 under microwave irradiation

    NASA Astrophysics Data System (ADS)

    de Loubens, Gregoire

    2009-03-01

    Quantum mechanical effects such as quantum tunneling of magnetization (QTM) and quantum phase interference have been intensively studied in single molecule magnets (SMMs). These materials have also been suggested as candidates for qubits and are promising for molecular spintronics. Understanding decoherence and energy relaxation mechanisms in SMMs is then both of fundamental interest and important for the use of SMMs in applications. Interestingly, the single-spin relaxation rate due to direct process of a SMM embedded in an elastic medium can be derived without any unknown coupling constant [1]. Moreover, nontrivial relaxation mechanisms are expected from collective effects in SMM single crystals, such as phonon superradiance or phonon bottleneck. In order to investigate the spin relaxation between the two lowest lying spin-states of the S=4 single molecule magnet Ni4, we have developed an integrated sensor that combines a microstrip resonator and micro-Hall effect magnetometer on a chip [2]. This sensor enables both real time studies of magnetization dynamics under pulse irradiation as well as simultaneous measurements of the absorbed power and magnetization changes under continuous microwave irradiation. The latter technique permits the study of small deviations from equilibrium under steady state conditions, i.e. small amplitude cw microwave irradiation. This has been used to determine the energy relaxation rate of a Ni4 single crystal as a function of temperature at two frequencies, 10 and 27.8 GHz. A strong temperature dependence is observed below 1.5 K, which is not consistent with a direct spin-phonon relaxation process. The data instead suggest that the spin relaxation is dominated by a phonon bottleneck at low temperatures and occurs by an Orbach process involving excited spin-levels at higher temperatures [3]. Experimental results will be compared with detailed calculations of the relaxation rate using the density matrix equation with the relaxation terms in the universal form.1. E. M. Chudnovsky, D. A. Garanin and R. Schilling, Phys. Rev. B 72, 094426 (2005)2. G. de Loubens et al., J. Appl. Phys. 101, 09E104 (2007)3. G. de Loubens, D. A. Garanin, C. C. Beedle, D. N. Hendrickson and A. D. Kent, Europhys. Lett. 83, 37006 (2008)

  2. Effect of lattice distortions and anisotropy on the magnetic ground state and spin dynamics of the multiferroic phase of doped CuFeO2

    SciTech Connect

    Haraldsen, Jason T; Fishman, Randy Scott

    2010-01-01

    We investigate the effects of lattice distortions and anisotropy on the non-collinear ground state and spin dynamics of the multiferroic phase of doped CuFeO2. Using a Holstein-Primakoff expansion, we evaluate the change in the spin dynamics as lattice distortions and anisotropy distort the simple incommensurate helix. Distinct features in the spin dynamics that are created by lattice distortions and anisotropy have recently been observed in Ga-doped CuFeO2.

  3. Proving Competence: Integrative Assessment and Web-Based Portfolio System in a Dynamic Curriculum.

    ERIC Educational Resources Information Center

    Wielenga, Douwe

    Since 1997, the Amsterdam Faculty of Education (EFA) has been officially recognized as a center for experimental teacher education. This paper describes the development of an assessment system and a World Wide Web-based portfolio system to help students take responsibility for their learning and their competence at three consecutive integrative

  4. Academic Freedom, the First Amendment and Competing Stakeholders: The Dynamics of a Changing Balance

    ERIC Educational Resources Information Center

    Jorgensen, James D.; Helms, Lelia B.

    2008-01-01

    The Supreme Court first affirmed the importance of academic freedom in 1957. Yet in subsequent cases, First Amendment precedent has displaced the concept of academic freedom to resolve disputes among competing interests on public campuses, primarily in favor of institutions. This paper draws on the concepts of path dependence and policy space to

  5. Nuclear depolarization and absolute sensitivity in magic-angle spinning cross effect dynamic nuclear polarization.

    PubMed

    Mentink-Vigier, Frédéric; Paul, Subhradip; Lee, Daniel; Feintuch, Akiva; Hediger, Sabine; Vega, Shimon; De Paëpe, Gaël

    2015-09-14

    Over the last two decades solid state Nuclear Magnetic Resonance has witnessed a breakthrough in increasing the nuclear polarization, and thus experimental sensitivity, with the advent of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). To enhance the nuclear polarization of protons, exogenous nitroxide biradicals such as TOTAPOL or AMUPOL are routinely used. Their efficiency is usually assessed as the ratio between the NMR signal intensity in the presence and the absence of microwave irradiation εon/off. While TOTAPOL delivers an enhancement εon/off of about 60 on a model sample, the more recent AMUPOL is more efficient: >200 at 100 K. Such a comparison is valid as long as the signal measured in the absence of microwaves is merely the Boltzmann polarization and is not affected by the spinning of the sample. However, recent MAS-DNP studies at 25 K by Thurber and Tycko (2014) have demonstrated that the presence of nitroxide biradicals combined with sample spinning can lead to a depolarized nuclear state, below the Boltzmann polarization. In this work we demonstrate that TOTAPOL and AMUPOL both lead to observable depolarization at ≈110 K, and that the magnitude of this depolarization is radical dependent. Compared to the static sample, TOTAPOL and AMUPOL lead, respectively, to nuclear polarization losses of up to 20% and 60% at a 10 kHz MAS frequency, while Trityl OX63 does not depolarize at all. This experimental work is analyzed using a theoretical model that explains how the depolarization process works under MAS and gives new insights into the DNP mechanism and into the spin parameters, which are relevant for the efficiency of a biradical. In light of these results, the outstanding performance of AMUPOL must be revised and we propose a new method to assess the polarization gain for future radicals. PMID:26235749

  6. Longitudinal and transverse spin dynamics of donor-bound electrons in fluorine-doped ZnSe: Spin inertia versus Hanle effect

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Zhukov, E. A.; Greilich, A.; Yakovlev, D. R.; Korenev, V. L.; Pawlis, A.; Bayer, M.

    2015-06-01

    The spin dynamics of strongly localized donor-bound electrons in fluorine-doped ZnSe epilayers is studied using pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time T1 in a wide range of magnetic fields, temperatures, and pump densities. The T1 time of the donor-bound electron spin of about 1.6 ? s remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8-45 K. These findings impose severe restrictions on possible spin relaxation mechanisms. In our opinion they allow us to rule out scattering between free and donor-bound electrons, jumping of electrons between different donor centers, scattering between phonons and donor-bound electrons, and with less certainty charge fluctuations in the environment of the donors caused by the 1.5 ps pulsed laser excitation.

  7. Cubic-order spin effects in the dynamics and gravitational wave energy flux of compact object binaries

    NASA Astrophysics Data System (ADS)

    Marsat, Sylvain

    2015-04-01

    We investigate cubic-in-spin effects for inspiralling compact object binaries, both in the dynamics and in the energy flux emitted in gravitational waves, at the leading post-Newtonian order. We use a Lagrangian formalism to implement finite-size effects, and extend it to cubic order in the spins, which corresponds to the octupolar order in a multipolar decomposition. This formalism allows us to derive the equation of motion, equations of precession for the spin, and stress-energy tensor of each body in covariant form, and admits a formal generalization to any multipolar order. For spin-induced multipoles, i.e.in the case where the rotation of the compact object is solely responsible for the additional multipole moments, we find a unique structure for the octupolar moment representing cubic-in-spin effects. We apply these results to compute the associated effects in the dynamics of compact binary systems, and deduce the corresponding terms in the energy loss rate due to gravitational waves. These effects enter at the third-and-a-half post-Newtonian order, and can be important for binaries involving rapidly spinning black holes. We provide simplified results for spin-aligned circular orbits, and discuss the quantitative importance of the new contributions.

  8. Reversal of spin dynamics in an antiferromagnetic F = 1 spinor Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Schwettmann, Arne; Summy, Gil; Pechkis, Hyewon; Wrubel, Jonathan; Barnett, Ryan; Wilson, Ryan; Tiesinga, Eite; Lett, Paul

    2014-05-01

    The antiferromagnetic F = 1 sodium spinor Bose-Einstein condensate (BEC) exhibits coherent population oscillations of the magnetic sublevels that are internally driven by spin-exchange collisions. Here, we experimentally demonstrate reversals of the collisional dynamics. The reversals are controlled with microwave pulses. We observe nearly complete reversals even after a significant amount of population oscillation has already occurred. In addition, and somewhat surprisingly, we can generate partial reversals in the cold, non-condensed normal gas. We explain our results with numerical calculations based on the truncated Wigner approximation and an analytical theory based on the Bogoliubov approximation. In the future, this type of microwave control of collisional dynamics will allow us to implement matter-wave analogs of devices known from quantum optics with photons, such as a phase-sensitive matter-wave amplifier.

  9. Application of a system modification technique to dynamic tuning of a spinning rotor blade

    NASA Technical Reports Server (NTRS)

    Spain, C. V.

    1987-01-01

    An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.

  10. Probing the physics of high-temperature superconductivity: Spin dynamics and pair-breaking effects

    NASA Astrophysics Data System (ADS)

    Kao, Ying-Jer

    In this thesis we study two important aspects of the high critical temperature cuprate superconductors: spin dynamics in the superconducting state and pair-breaking effects in the pseudogap phase. Understanding magnetic correlations in the cuprates is essential to a full understanding of the underlying physics in these materials. And our studies of pair-breaking may provide a deeper understanding of the pseudogap origin. Indeed, these very intriguing pseudogap phenomena still remain a mystery which when solved will contribute an important piece to the jigsaw puzzle of high temperature superconductivity. In our study of spin dynamics, we employ an RPA formalism with strong Coulomb repulsion. These calculations give a natural explanation of the observed evolution with frequency of neutron peaks from incommensurate to commensurate and back to incommensurate at higher frequencies found in underdoped YB 2Cu3O6+x. We also explain related phenomena such as peak sharpening, and the spin gap observed in La2-xSr xCuO4. We find these phenomena are generic manifestations of d-wave pairing symmetry, while the underlying Fermi surface topology plays a less important role. We probe the physics of the pseudogap state by studying two different pair-breaking phenomena: magnetic fields and impurities. We generalize our theory of an extended BCS superconductivity in the clean case to include the effects of a magnetic field and impurities. In our physical picture the pseudogap state derives from the same pairing interaction which leads to superconductivity. The different responses of Tc and T* to these pair-breakers are due to a normal state gap at Tc which is absent at T*. This new physics cannot be obtained from common BCS intuition. Because of the presence of a pseudogap, there exist multiple length scales in the system, which only become equivalent in the BCS (weak coupling) regime.

  11. Spin dynamics in the two-dimensional quantum antiferromagnet La2CuO4

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Kakurai, K.; Endoh, Y.; Thurston, T. R.; Kastner, M. A.; Birgeneau, R. J.; Shirane, G.; Hidaka, Y.; Murakami, T.

    1989-09-01

    Using large single crystals (~2 cm3), we have extended previous elastic and inelastic neutron scattering studies of the spin dynamics in the two-dimensional (2D) quantum antiferromagnet La2CuO4. We observe well-defined magnetic peaks for constant energy scans across the 2D magnetic rod for a wide range of temperatures and energies. The spectra are compared quantitatively with theoretical models. Simple spin-wave theory satisfactorily describes the experimental results well below TN. The thermal excitations of the low-energy (??<=3 meV) spectra, however, appear to deviate from the theory as TN is approached. The overall temperature and energy dependence of the spectra above TN (245-520 K) can be explained by the formula of Chakravarty, Halperin, Nelson, and Tyc for the dynamical structure factor S(q,?) with no adjustable parameters. We do, however, observe a 2D elastic component which grows rapidly as TN is approached; it is hypothesized that this arises primarily from magnetic defects and is analogous to the ``central peak'' observed for many structural phase transitions.

  12. The co-evolutionary dynamics of directed network of spin market agents

    NASA Astrophysics Data System (ADS)

    Horváth, Denis; Kuscsik, Zoltán; Gmitra, Martin

    2006-09-01

    The spin market model [S. Bornholdt, Int. J. Mod. Phys. C 12 (2001) 667] is generalized by employing co-evolutionary principles, where strategies of the interacting and competitive traders are represented by local and global couplings between the nodes of dynamic directed stochastic network. The co-evolutionary principles are applied in the frame of Bak-Sneppen self-organized dynamics [P. Bak, K. Sneppen, Phys. Rev. Lett. 71 (1993) 4083] that includes the processes of selection and extinction actuated by the local (node) fitness. The local fitness is related to orientation of spin agent with respect to the instant magnetization. The stationary regime is formed due to the interplay of self-organization and adaptivity effects. The fat tailed distributions of log-price returns are identified numerically. The non-trivial model consequence is the evidence of the long time market memory indicated by the power-law range of the autocorrelation function of volatility with exponent smaller than one. The simulations yield network topology with broad-scale node degree distribution characterized by the range of exponents 1.3<γin<3 coinciding with social networks.

  13. Quantum dynamics of a particle with a spin-dependent velocity

    NASA Astrophysics Data System (ADS)

    Aslangul, Claude

    2005-01-01

    We study the dynamics of a particle in continuous time and space, the displacement of which is governed by an internal degree of freedom (spin). In one definite limit, the so-called quantum random walk is recovered but, although quite simple, the model possesses a rich variety of dynamics and goes far beyond this problem. Generally speaking, our framework can describe the motion of an electron in a magnetic sea near the Fermi level when linearization of the dispersion law is possible, coupled to a transverse magnetic field. Quite unexpected behaviours are obtained. In particular, we find that when the initial wave packet is fully localized in space, the Jz angular momentum component is frozen; this is an interesting example of an observable which, although it is not a constant of motion, has a constant expectation value. For a non-completely localized wave packet, the effect still occurs although less pronounced, and the spin keeps for ever memory of its initial state. Generally speaking, as time goes on, the spatial density profile looks rather complex, as a consequence of the competition between drift and precession, and displays various shapes according to the ratio between the Larmor period and the characteristic time of flight. The density profile gradually changes from a multimodal quickly moving distribution when the scattering rate is small, to a unimodal standing but flattening distribution in the opposite case.

  14. Modeling of spin-torque driven magnetization dynamics in a spin-valve with combined in-plane and out-of-plane polarizers

    NASA Astrophysics Data System (ADS)

    Hou, Zhiwei; Zhang, Zongzhi; Zhang, Jianwei; Liu, Yaowen

    2011-11-01

    Spin-torque (ST) driven magnetization dynamics have been investigated in a spin-valve structure that consists of an in-plane (IP) free layer and two fixed polarizers [magnetized IP and out-of-plane (OP)]. Three distinct dynamics including no switching, switching, and periodic oscillation are identified in a phase diagram governed by the ST parameters. The ST strengths which are able to switch the free layer have been analytically predicted and supported by simulations, showing that the torque originated from the OP polarizer should be much smaller than that from the IP polarizer. The free layer driven by the dual polarizers could switch 10 times faster than that by a single IP polarizer.

  15. Dynamic competition between spin-density wave order and superconductivity in underdoped Ba(1-x)K(x)Fe2As2.

    PubMed

    Yi, M; Zhang, Y; Liu, Z-K; Ding, X; Chu, J-H; Kemper, A F; Plonka, N; Moritz, B; Hashimoto, M; Mo, S-K; Hussain, Z; Devereaux, T P; Fisher, I R; Wen, H H; Shen, Z-X; Lu, D H

    2014-01-01

    An intriguing aspect of unconventional superconductivity is that it always appears in the vicinity of other competing phases, whose suppression brings the full emergence of superconductivity. In the iron pnictides, these competing phases are marked by a tetragonal-to-orthorhombic structural transition and a collinear spin-density wave (SDW) transition. There has been macroscopic evidence for competition between these phases and superconductivity as the magnitude of both the orthorhombicity and magnetic moment are suppressed in the superconducting state. Here, using angle-resolved photoemission spectroscopy on detwinned underdoped Ba(1-x)K(x)Fe2As2, we observe a coexistence of both the SDW gap and superconducting gap in the same electronic structure. Furthermore, our data reveal that following the onset of superconductivity, the SDW gap decreases in magnitude and shifts in a direction consistent with a reduction of the orbital anisotropy. This observation provides direct spectroscopic evidence for the dynamic competition between superconductivity and both SDW and electronic nematic orders in these materials. PMID:24762657

  16. Protein-induced changes in DNA structure and dynamics observed with noncovalent site-directed spin labeling and PELDOR

    PubMed Central

    Reginsson, Gunnar W.; Shelke, Sandip A.; Rouillon, Christophe; White, Malcolm F.; Sigurdsson, Snorri Th.; Schiemann, Olav

    2013-01-01

    Site-directed spin labeling and pulsed electronelectron double resonance (PELDOR or DEER) have previously been applied successfully to study the structure and dynamics of nucleic acids. Spin labeling nucleic acids at specific sites requires the covalent attachment of spin labels, which involves rather complicated and laborious chemical synthesis. Here, we use a noncovalent label strategy that bypasses the covalent labeling chemistry and show that the binding specificity and efficiency are large enough to enable PELDOR or DEER measurements in DNA duplexes and a DNA duplex bound to the Lac repressor protein. In addition, the rigidity of the label not only allows resolution of the structure and dynamics of oligonucleotides but also the determination of label orientation and protein-induced conformational changes. The results prove that this labeling strategy in combination with PELDOR has a great potential for studying both structure and dynamics of oligonucleotides and their complexes with various ligands. PMID:22941643

  17. Neutron spin echo investigation of the concentration fluctuation dynamics in melts of diblock copolymers

    NASA Astrophysics Data System (ADS)

    Montes, H.; Monkenbusch, M.; Willner, L.; Rathgeber, S.; Fetters, L.; Richter, D.

    1999-05-01

    Diblock copolymers in the melt exhibit order-disorder phase transitions (ODT), which are accompanied by strong concentration fluctuations. These transitions are generally described in terms of the random phase approximation (RPA) of Leibler and Fredrickson, which is able to explain small angle scattering results in the neighborhood of the ODT, in particular around the correlation peak at q*. The RPA theory has been extended to include dynamical phenomena, predicting the short time relaxation of the dynamic structure factor in polymeric multicomponent systems. We report small angle neutron scattering and neutron spin echo experiments on polyethylene-block-polyethylethylene (PE-PEE) and poly(ethylene-propylene)-block-polyethylethylene (PEP-PEE) copolymers with molecular weights of 16.500 and 68.000 g/mol, which explore the structure and dynamics of these block copolymers. Studying melts with different hydrogen/deuterium labeling it was possible to observe experimentally the different relaxation modes of such systems separately. In particular the collective relaxation behavior as well as the single chain motion were accessed. The experimental results were quantitatively compared with the RPA predictions, which were based solely on the dynamical properties of the corresponding homopolymers and the static structure factors. The collective dynamics exhibits an unanticipated fast relaxation mode. This mode is most visible at low wave numbers (q?q*) but extends to length scales considerably shorter than the radius of gyration. Furthermore, the dynamical RPA yields expressions for the mobilities of chain segments in the block copolymer melt. These combination rules are at variance with the experimental findings for the single chain dynamics, while they hold for the collective response.

  18. Generalized mean-field approach to simulate the dynamics of large open spin ensembles with long range interactions

    NASA Astrophysics Data System (ADS)

    Krmer, Sebastian; Ritsch, Helmut

    2015-12-01

    We numerically study the collective coherent and dissipative dynamics in spin lattices with long range interactions in one, two and three dimensions. For generic geometric configurations with a small spin number, which are fully solvable numerically, we show that a dynamical mean-field approach based upon a spatial factorization of the density operator often gives a surprisingly accurate representation of the collective dynamics. Including all pair correlations at any distance in the spirit of a second order cumulant expansion improves the numerical accuracy by at least one order of magnitude. We then apply this truncated expansion method to simulate large numbers of spins from about ten in the case of the full quantum model, a few thousand, if all pair correlations are included, up to several ten-thousands in the mean-field approximation. We find collective modifications of the spin dynamics in surprisingly large system sizes. In 3D, the mutual interaction strength does not converge to a desired accuracy within the maximum system sizes we can currently implement. Extensive numerical tests help in identifying interaction strengths and geometric configurations where our approximations perform well and allow us to state fairly simple error estimates. By simulating systems of increasing size we show that in one and two dimensions we can include as many spins as needed to capture the properties of infinite size systems with high accuracy. As a practical application our approach is well suited to provide error estimates for atomic clock setups or super radiant lasers using magic wavelength optical lattices.

  19. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field.

    PubMed

    Carmelo, J M P; Sacramento, P D; Machado, J D P; Campbell, D K

    2015-10-14

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the 'pseudofermion dynamical theory' (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζ(τ)(k) controlling the singularities for both the longitudinal (τ = l) and transverse (τ = t) dynamical structure factors for the whole momentum range k ∈ ]0,π[, in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions. PMID:26403307

  20. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.

    2015-10-01

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

  1. Influence of Charge Density Waves and Spin Density Waves on Optical Absorption and Lattice Dynamics.

    NASA Astrophysics Data System (ADS)

    Xuan, Yashu

    An incommensurate charge density wave (CDW) arises from, and causes, an extra periodic potential acting on the conduction electrons. The presence of this potential in the one-electron Schrodinger equation results in energy gaps in the energy spectrum E(vec{rm k}) which, for jellium, would have been merely hbar^2k^2/2m. New optical transitions from filled states (below the Fermi level) to empty states (above) lead to a uniaxial absorption (the CDW optical conductivity). This new optical absorption, which has explained the Mayer-El Naby anomaly in metallic potassium, can also explain the anomaly (similar to the Mayer-El Naby) found in bulk metallic sodium. A generalized treatment of the ellipsometric method which recognizes the anisotropy of the CDW absorption in evaporated films can explain the excess absorption just below the Wilson -Butcher threshold for Na films. Spin density waves (SDWs) have built-in charge modulations, equal in magnitude but opposite in sign, for the two spin states. A small shift in the relative phase of the spin-up and spin-down modulations creates an additional charge response, and causes a peak in the response function Q(vec{rm q}) for vec{rm q} near +/-vec{rm Q}, where vec{rm Q} is the SDW wave vector. When this spin-split-phase contribution to Q(vec{rm q}) is incorporated into the theory for phonon spectra of metals, the anomalous depression of the two lower modes near (1/3,1/3,0) for zinc and cadmium can be understood. The dynamic pseudopotential theory for phonons in metals involving the shell model, which divides each ion into an inner core and an outermost filled electron shell, is applied to calculate the phonon spectra of the divalent hexagonal-close-packed (hcp) metals Mg, Zn, and Cd. The outermost filled L shell of sodium, set into oscillation by the electric field of a photon, leads to an extra term in the interband matrix element. This term interferes with the vec{rm A} cdotvec{rm p} term in the Wilson-Butcher tail, and explains the extra optical absorption peak in the ultra-violet.

  2. Recent NASA Research on Aerodynamic Modeling of Post-Stall and Spin Dynamics of Large Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.; Foster, John V.

    2007-01-01

    A simulation study was conducted to investigate aerodynamic modeling methods for prediction of post-stall flight dynamics of large transport airplanes. The research approach involved integrating dynamic wind tunnel data from rotary balance and forced oscillation testing with static wind tunnel data to predict aerodynamic forces and moments during highly dynamic departure and spin motions. Several state-of-the-art aerodynamic modeling methods were evaluated and predicted flight dynamics using these various approaches were compared. Results showed the different modeling methods had varying effects on the predicted flight dynamics and the differences were most significant during uncoordinated maneuvers. Preliminary wind tunnel validation data indicated the potential of the various methods for predicting steady spin motions.

  3. Soft mode characteristics of up-up-down-down spin chains: The role of exchange interactions on lattice dynamics

    SciTech Connect

    Guo, Y. J.; Gao, Y. J.; Ge, C. N; Guo, Y. Y.; Yan, Z. B.; Liu, J.-M.

    2015-05-07

    In this work, the dynamics of a diatomic chain is investigated with ↑↑↓↓ spin order in which the dispersion relation characterizes the effect of magnetic interactions on the lattice dynamics. The optical or acoustic mode softening in the center or boundary of the Brillouin zone can be observed, indicating the transitions of ferroelectric state, antiferromagnetic state, or ferroelastic state. The coexistence of the multiferroic orders related to the ↑↑↓↓ spin order represents a type of intrinsic multiferroic with strong ferroelectric order and different microscopic mechanisms.

  4. Ground state and low-energy magnetic dynamics in the frustrated magnet CoAl2O4 as revealed by local spin probes

    NASA Astrophysics Data System (ADS)

    Iakovleva, M.; Vavilova, E.; Grafe, H.-J.; Zimmermann, S.; Alfonsov, A.; Luetkens, H.; Klauss, H.-H.; Maljuk, A.; Wurmehl, S.; Bchner, B.; Kataev, V.

    2015-04-01

    We report a combined experimental study of magnetic properties of a single crystal of the frustrated diamond lattice antiferromagnet CoAl2O4 with Co2+ electron spin resonance, 27Al nuclear magnetic resonance, and muon spin rotation/relaxation techniques. With our local probes, we show that the frustration of spin interactions and the Co/Al site disorder strongly affect the spin dynamics. The experimental results evidence inhomogeneous and slow magnetic fluctuations and the occurrence of short-range electron spin correlations far above a characteristic temperature T*=8 K at which the spin system turns into in a quasistatic state. Our data indicate that this spin order is likely short range and unconventional with spin fluctuations persistent even at T ?T* . The results of three spectroscopy techniques highlight a nontrivial role of structural disorder for the magnetism of a frustrated diamond spin lattice at the proximity to the critical point.

  5. Momentum-resolved spin dynamics of bulk and surface excited States in the topological insulator Bi(2)Se(3).

    PubMed

    Cacho, C; Crepaldi, A; Battiato, M; Braun, J; Cilento, F; Zacchigna, M; Richter, M C; Heckmann, O; Springate, E; Liu, Y; Dhesi, S S; Berger, H; Bugnon, Ph; Held, K; Grioni, M; Ebert, H; Hricovini, K; Minr, J; Parmigiani, F

    2015-03-01

    The prospect of optically inducing and controlling a spin-polarized current in spintronic devices has generated wide interest in the out-of-equilibrium electronic and spin structure of topological insulators. In this Letter we show that only measuring the spin intensity signal over several orders of magnitude by spin-, time-, and angle-resolved photoemission spectroscopy can provide a comprehensive description of the optically excited electronic states in Bi_{2}Se_{3}. Our experiments reveal the existence of a surface resonance state in the second bulk band gap that is benchmarked by fully relativistic abinitio spin-resolved photoemission calculations. We propose that the newly reported state plays a major role in the ultrafast dynamics of the system, acting as a bottleneck for the interaction between the topologically protected surface state and the bulk conduction band. In fact, the spin-polarization dynamics in momentum space show that these states display macroscopically different temperatures and, more importantly, different cooling rates over several picoseconds. PMID:25793848

  6. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide

    NASA Astrophysics Data System (ADS)

    Ivdy, Viktor; Szsz, Krisztin; Falk, Abram L.; Klimov, Paul V.; Christle, David J.; Janzn, Erik; Abrikosov, Igor A.; Awschalom, David D.; Gali, Adam

    2015-09-01

    Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defect electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process.

  7. Spin-vibronic quantum dynamics for ultrafast excited-state processes.

    PubMed

    Eng, Julien; Gourlaouen, Christophe; Gindensperger, Etienne; Daniel, Chantal

    2015-03-17

    Ultrafast intersystem crossing (ISC) processes coupled to nuclear relaxation and solvation dynamics play a central role in the photophysics and photochemistry of a wide range of transition metal complexes. These phenomena occurring within a few hundred femtoseconds are investigated experimentally by ultrafast picosecond and femtosecond transient absorption or luminescence spectroscopies, and optical laser pump-X-ray probe techniques using picosecond and femtosecond X-ray pulses. The interpretation of ultrafast structural changes, time-resolved spectra, quantum yields, and time scales of elementary processes or transient lifetimes needs robust theoretical tools combining state-of-the-art quantum chemistry and developments in quantum dynamics for solving the electronic and nuclear problems. Multimode molecular dynamics beyond the Born-Oppenheimer approximation has been successfully applied to many small polyatomic systems. Its application to large molecules containing a transition metal atom is still a challenge because of the nuclear dimensionality of the problem, the high density of electronic excited states, and the spin-orbit coupling effects. Rhenium(I) α-diimine carbonyl complexes, [Re(L)(CO)3(N,N)](n+) are thermally and photochemically robust and highly flexible synthetically. Structural variations of the N,N and L ligands affect the spectroscopy, the photophysics, and the photochemistry of these chromophores easily incorporated into a complex environment. Visible light absorption opens the route to a wide range of applications such as sensors, probes, or emissive labels for imaging biomolecules. Halide complexes [Re(X)(CO)3(bpy)] (X = Cl, Br, or I; bpy = 2,2'-bipyridine) exhibit complex electronic structure and large spin-orbit effects that do not correlate with the heavy atom effects. Indeed, the (1)MLCT → (3)MLCT intersystem crossing (ISC) kinetics is slower than in [Ru(bpy)3](2+) or [Fe(bpy)3](2+) despite the presence of a third-row transition metal. Counterintuitively, singlet excited-state lifetime increases on going from Cl (85 fs) to Br (128 fs) and to I (152 fs). Moreover, correlation between the Re-X stretching mode and the rate of ISC is observed. In this Account, we emphasize on the role of spin-vibronic coupling on the mechanism of ultrafast ISC put in evidence in [Re(Br)(CO)3(bpy)]. For this purpose, we have developed a model Hamiltonian for solving an 11 electronic excited states multimode problem including vibronic and SO coupling within the linear vibronic coupling (LVC) approximation and the assumption of harmonic potentials. The presence of a central metal atom coupled to rigid ligands, such as α-diimine, ensures nuclear motion of small amplitudes and a priori justifies the use of the LVC model. The simulation of the ultrafast dynamics by wavepacket propagations using the multiconfiguration time-dependent Hartree (MCTDH) method is based on density functional theory (DFT), and its time-dependent extension to excited states (TD-DFT) electronic structure data. We believe that the interplay between time-resolved experiments and these pioneering simulations covering the first picoseconds and including spin-vibronic coupling will promote a number of quantum dynamical studies that will contribute to a better understanding of ultrafast processes in a wide range of organic and inorganic chromophores easily incorporated in biosystems or supramolecular devices for specific functions. PMID:25647179

  8. Dynamics and ordering of lipid spin-labels along the coexistence curve of two membrane phases: an ESR study.

    PubMed

    Smith, Andrew K; Freed, Jack H

    2012-04-01

    An analysis of electron spin resonance (ESR) spectra from compositions along the liquid-ordered (L(o)) and liquid-disordered (L(d)) coexistence curve from the brain-sphingomyelin/dioleoylphosphatidylcholine/cholesterol (SPM/DOPC/Chol) model lipid system was performed to characterize the dynamic structure on a molecular level of these coexisting phases. We obtained 200 continuous-wave ESR spectra from glycerophospholipid spin-labels labeled at the 5, 7, 10, 12, 14, and 16 carbon positions of the 2nd acyl chain, a sphingomyelin spin-label labeled at the 14 carbon position of the amide-linked acyl chain, a headgroup-labeled glycerophospholipid, a headgroup-labeled sphingomyelin, and the cholesterol analogue spin-label cholestane all within multi-lamellar vesicle suspensions at room temperature. The spectra were analyzed using the MOMD (microscopic-order macroscopic-disorder) model to provide the rotational diffusion rates and order parameters which characterize the local molecular dynamics in these phases. The analysis also incorporated the known critical point and invariant points of the neighboring three-phase triangle along the coexistence curve. The variation in the molecular dynamic structures of coexisting L(o) and L(d) compositions as one moves toward the critical point is discussed. Based on these results, a molecular model of the L(o) phase is proposed incorporating the "condensing effect" of cholesterol on the phospholipid acyl chain dynamics and ordering and the umbrella model of the phospholipid headgroup dynamics and ordering. PMID:22586732

  9. Using bio-functionalized magnetic nanoparticles and dynamic nuclear magnetic resonance to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection.

    PubMed

    Liao, Shu-Hsien; Chen, Kuen-Lin; Wang, Chun-Min; Chieh, Jen-Jie; Horng, Herng-Er; Wang, Li-Min; Wu, C H; Yang, Hong-Chang

    2014-01-01

    In this work, we report the use of bio-functionalized magnetic nanoparticles (BMNs) and dynamic magnetic resonance (DMR) to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection. The biomarkers are the human C-reactive protein (CRP) while the BMNs are the anti-CRP bound onto dextran-coated Fe3O4 particles labeled as Fe3O4-antiCRP. It was found the time-dependent spin-spin relaxation time, T2, of protons decreases as time evolves. Additionally, the ?T2 of of protons in BMNs increases as the concentration of CRP increases. We attribute these to the formation of the magnetic clusters that deteriorate the field homogeneity of nearby protons. A sensitivity better than 0.1 ?g/mL for assaying CRP is achieved, which is much higher than that required by the clinical criteria (0.5 mg/dL). The present MR-detection platform shows promise for further use in detecting tumors, viruses, and proteins. PMID:25397920

  10. Using Bio-Functionalized Magnetic Nanoparticles and Dynamic Nuclear Magnetic Resonance to Characterize the Time-Dependent Spin-Spin Relaxation Time for Sensitive Bio-Detection

    PubMed Central

    Liao, Shu-Hsien; Chen, Kuen-Lin; Wang, Chun-Min; Chieh, Jen-Jie; Horng, Herng-Er; Wang, Li-Min; Wu, C. H.; Yang, Hong-Chang

    2014-01-01

    In this work, we report the use of bio-functionalized magnetic nanoparticles (BMNs) and dynamic magnetic resonance (DMR) to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection. The biomarkers are the human C-reactive protein (CRP) while the BMNs are the anti-CRP bound onto dextran-coated Fe3O4 particles labeled as Fe3O4-antiCRP. It was found the time-dependent spin-spin relaxation time, T2, of protons decreases as time evolves. Additionally, the ΔT2 of of protons in BMNs increases as the concentration of CRP increases. We attribute these to the formation of the magnetic clusters that deteriorate the field homogeneity of nearby protons. A sensitivity better than 0.1 μg/mL for assaying CRP is achieved, which is much higher than that required by the clinical criteria (0.5 mg/dL). The present MR-detection platform shows promise for further use in detecting tumors, viruses, and proteins. PMID:25397920

  11. Incommensurability and spin dynamics in the low-temperature phases of Ni3V2O8

    NASA Astrophysics Data System (ADS)

    Ehlers, G.; Podlesnyak, A. A.; Hahn, S. E.; Fishman, R. S.; Zaharko, O.; Frontzek, M.; Kenzelmann, M.; Pushkarev, A. V.; Shiryaev, S. V.; Barilo, S.

    2013-06-01

    Magnetic order and low-energy spin dynamics in the zero field ground state of Ni3V2O8 are revealed in elastic and inelastic neutron scattering experiments. Neutron diffraction shows that below T=2.3 K the Ni2+ moments (spin S=1) order in a cycloid pattern with incommensurate wave vector kICM=(0,1,?), where ?=0.40300.0004, which is superimposed on a commensurate antiferromagnetic spin arrangement with kCM=(0,0,0). Three spin wave modes are discerned below E3 meV in inelastic measurements and qualitatively described by a model Hamiltonian that involves near neighbor exchange, local anisotropy, and a small biquadratic coupling between the spine and cross-tie sites. Results from both elastic and inelastic scattering experiments suggest that the two sublattices on spine and cross-tie sites are largely decoupled.

  12. Control Study for Five-axis Dynamic Spin Rig Using Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Johnson, Dexter; Provenza, Andrew; Morrison, Carlos; Montague, Gerald

    2003-01-01

    The NASA Glenn Research Center (GRC) has developed a magnetic bearing system for the Dynamic Spin Rig (DSR) with a fully suspended shaft that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust magnetic bearing and the associated control system were integrated into the DSR to provide magnetic excitation as well as non-contact mag- netic suspension of a 15.88 kg (35 lb) vertical rotor with blades to induce turbomachinery blade vibration. For rotor levitation, a proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, more blade vibration amplitude, and energy savings for the system. The test results of a variety of controllers that were demonstrated up to 10.000 rpm are shown. Furthermore, rotor excitation operation and conceptual study of active blade vibration control are addressed.

  13. Vortex dynamics in spin-orbit-coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Fetter, Alexander L.

    2014-02-01

    I use a time-dependent Lagrangian formalism and a variational trial function to study the dynamics of a two-component vortex in a spin-orbit-coupled Bose-Einstein condensate (BEC). For a single-component BEC, various experiments have validated this theoretical approach, for example a thermal quench that yields a quantized vortex in roughly 25% of trials [Freilich et al., Science 329, 1182 (2010), 10.1126/science.1191224]. To be definite, I assume the specific spin-orbit form used by Lin and coworkers [Nature (London) 462, 628 (2009), 10.1038/nature08609; Nature (London) 471, 83 (2011), 10.1038/nature09887] in recent NIST experiments, which introduces a spatial asymmetry because of the external Raman laser beams. I here generalize this formalism to include a two-component order parameter that has quantized circulation in each component but not necessarily with the same circulation. For example, a singly quantized vortex in just one component yields a BEC analog of the half-quantized vortex familiar in 3He-A and in p-wave chiral superconductors. This and other unusual two-component vortices have both periodic trajectories and unbounded trajectories that leave the condensate, depending on the initial conditions. The optimized phase of the order parameter induces a term in the particle current that cancels the contribution from the vector potential, leaving pure circulating current around the vortex.

  14. Influence of composition and particle size on spin dynamics and thermodynamic properties of magnetoresistive perovskites.

    PubMed

    Tanasescu, Speranta; Maxim, Florentina; Teodorescu, Florina; Giurgiu, Liviu

    2008-02-01

    The thermodynamic behavior and spin dynamics of the colossal magnetoresistive (CMR) perovskites of general formula La(1-x)(A)xMn(1-y)(B)yO3 (where A is an alkaline earth, and B = Al, In) have been studied in order to evidence the effect of composition and the influence of nanocrystallinity on the thermodynamic and magnetic characteristics. By using electron paramagnetic resonance (EPR) spectroscopy, the behavior of the exchange coupling integral (J) between Mn spins and the polaron activation energy (Ea) have been investigated. The thermodynamic properties represented by the relative partial molar free energies, enthalpies and entropies of oxygen dissolution in the perovskite phase, as well as the equilibrium partial pressures of oxygen have been obtained by using solid electrolyte electrochemical cells method. The influence of the oxygen stoichiometry change on the thermodynamic properties was examined using the data obtained by a coulometric titration technique coupled with measurements of the electromotive force (EMF). The results were correlated with the average Mn valence values as determined by redox titration. The properties of the rare-earth manganites are strongly affected by the A- and B-site substitution and by the oxygen nonstoichiometry. New features related to the modifications in properties connected with the nanocrystalline state were evidenced. The correlation existing between the magnetic and thermodynamic characteristics were discussed in relation to significant changes in the overall concentration of defects. PMID:18464427

  15. Short-time dynamics in dispersions with competing short-range attraction and long-range repulsion.

    PubMed

    Riest, Jonas; Ngele, Gerhard

    2015-12-01

    Dynamic clustering of globular Brownian particles in dispersions exhibiting competing short-range attraction and long-range repulsion (SALR) such as low-salinity protein solutions has gained a lot of interest over the past few years. While the structure of the various cluster phases has been intensely explored, little is known about the dynamics of SALR systems. We present the first systematic theoretical study of short-time diffusion and rheological transport properties of two-Yukawa potential SALR systems in the single-particle dominated dispersed-fluid phase, using semi-analytic methods where the salient hydrodynamic interactions are accounted for. We show that the dynamics has unusual features compared to reference systems with pure repulsion or attraction. Results are discussed for the hydrodynamic function characterizing short-time diffusion that reveals an intermediate-range-order (cluster) peak, self-diffusion and sedimentation coefficients, and high-frequency viscosity. As important applications, we discuss the applicability of two generalized Stokes-Einstein relations, and assess the wavenumber range required for the determination of self-diffusion in a dynamic scattering experiment. PMID:26426932

  16. Static and dynamic spin fluctuations in the spin glass doping regime in La sub 2-x Sr sub x CuO sub 4+y

    SciTech Connect

    Birgeneau, R.J.; Belk, N.; Kastner, M.A.; Keimer, B. . Dept. of Physics); Endoh, Y. . Dept. of Physics); Erwin, R.W. ); Shirane, G. )

    1991-01-01

    We review the results of neutron scattering studies of the static and dynamic spin fluctuations crystals of La{sub 2-x}Sr{sub x}CuO{sub 4+{delta}} in the doping regime intermediate between the Neel and superconducting regions. In this regime the in-plane resistance is linear in temperature down to {approximately}80 K with a crossover due to logarithmic conductance effects at lower temperatures. The static spin correlations are well-described by a simple model in which the inverse correlation length {kappa}(x,T) ={kappa}(x,0) + {kappa}(0,T). The most dramatic new result is the discovery by Keimer et al. that the dynamic spin fluctuations exhibit a temperature dependence which is a simple function of {omega}/T for temperatures 10 K{le}T{le}500 K for a wide range of energies. This scaling leads to a natural explanation of a variety of normal state properties of the copper oxides. 21 refs., 4 figs.

  17. Micromagnetic simulations of spin-wave normal modes and the spin-transfer-torque driven magnetization dynamics of a ferromagnetic cross

    SciTech Connect

    Pramanik, Tanmoy Roy, Urmimala; Register, Leonard F.; Banerjee, Sanjay K.; Tsoi, Maxim

    2014-05-07

    We studied spin-transfer-torque (STT) switching of a cross-shaped magnetic tunnel junction in a recent report [Roy et al., J. Appl. Phys. 113, 223904 (2013)]. In that structure, the free layer is designed to have four stable energy states using the shape anisotropy of a cross. STT switching showed different regions with increasing current density. Here, we employ the micromagnetic spectral mapping technique in an attempt to understand how the asymmetry of cross dimensions and spin polarization direction of the injected current affect the magnetization dynamics. We compute spatially averaged frequency-domain spectrum of the time-domain magnetization dynamics in the presence of the current-induced STT term. At low currents, the asymmetry of polarization direction and that of the arms are observed to cause a splitting of the excited frequency modes. Higher harmonics are also observed, presumably due to spin-wave wells caused by the regions of spatially non-uniform effective magnetic field. The results could be used towards designing a multi-bit-per-cell STT-based random access memory with an improved storage density.

  18. Micromagnetic simulations of spin-wave normal modes and the spin-transfer-torque driven magnetization dynamics of a ferromagnetic cross

    NASA Astrophysics Data System (ADS)

    Pramanik, Tanmoy; Roy, Urmimala; Tsoi, Maxim; Register, Leonard F.; Banerjee, Sanjay K.

    2014-05-01

    We studied spin-transfer-torque (STT) switching of a cross-shaped magnetic tunnel junction in a recent report [Roy et al., J. Appl. Phys. 113, 223904 (2013)]. In that structure, the free layer is designed to have four stable energy states using the shape anisotropy of a cross. STT switching showed different regions with increasing current density. Here, we employ the micromagnetic spectral mapping technique in an attempt to understand how the asymmetry of cross dimensions and spin polarization direction of the injected current affect the magnetization dynamics. We compute spatially averaged frequency-domain spectrum of the time-domain magnetization dynamics in the presence of the current-induced STT term. At low currents, the asymmetry of polarization direction and that of the arms are observed to cause a splitting of the excited frequency modes. Higher harmonics are also observed, presumably due to spin-wave wells caused by the regions of spatially non-uniform effective magnetic field. The results could be used towards designing a multi-bit-per-cell STT-based random access memory with an improved storage density.

  19. Complex ordering in spin networks: Critical role of adaptation rate for dynamically evolving interactions

    NASA Astrophysics Data System (ADS)

    Pathak, Anand; Sinha, Sitabhra

    2015-09-01

    Many complex systems can be represented as networks of dynamical elements whose states evolve in response to interactions with neighboring elements, noise and external stimuli. The collective behavior of such systems can exhibit remarkable ordering phenomena such as chimera order corresponding to coexistence of ordered and disordered regions. Often, the interactions in such systems can also evolve over time responding to changes in the dynamical states of the elements. Link adaptation inspired by Hebbian learning, the dominant paradigm for neuronal plasticity, has been earlier shown to result in structural balance by removing any initial frustration in a system that arises through conflicting interactions. Here we show that the rate of the adaptive dynamics for the interactions is crucial in deciding the emergence of different ordering behavior (including chimera) and frustration in networks of Ising spins. In particular, we observe that small changes in the link adaptation rate about a critical value result in the system exhibiting radically different energy landscapes, viz., smooth landscape corresponding to balanced systems seen for fast learning, and rugged landscapes corresponding to frustrated systems seen for slow learning.

  20. Overlap and activity glass transitions in plaquette spin models with hierarchical dynamics.

    PubMed

    Turner, Robert M; Jack, Robert L; Garrahan, Juan P

    2015-08-01

    We consider thermodynamic and dynamic phase transitions in plaquette spin models of glasses. The thermodynamic transitions involve coupled (annealed) replicas of the model. We map these coupled-replica systems to a single replica in a magnetic field, which allows us to analyze the resulting phase transitions in detail. For the triangular plaquette model (TPM), we find for the coupled-replica system a phase transition between high- and low-overlap phases, occurring at a coupling ?*(T), which vanishes in the low-temperature limit. Using computational path sampling techniques, we show that a single TPM also displays "space-time" transitions between active and inactive dynamical phases. These first-order dynamical transitions occur at a critical counting field sc(T)?0 that appears to vanish at zero temperature in a manner reminiscent of the thermodynamic overlap transition. In order to extend the ideas to three dimensions, we introduce the square pyramid model, which also displays both overlap and activity transitions. We discuss a possible common origin of these various phase transitions, based on long-lived (metastable) glassy states. PMID:26382352