Science.gov

Sample records for complement virus opsonization

  1. Complement Opsonization Promotes Herpes Simplex Virus 2 Infection of Human Dendritic Cells

    PubMed Central

    Ellegård, Rada; Nyström, Sofia; Rondahl, Elin; Serrander, Lena; Bergström, Tomas; Sjöwall, Christopher; Eriksson, Kristina

    2016-01-01

    ABSTRACT Herpes simplex virus 2 (HSV-2) is one of the most common sexually transmitted infections globally, with a very high prevalence in many countries. During HSV-2 infection, viral particles become coated with complement proteins and antibodies, both present in genital fluids, which could influence the activation of immune responses. In genital mucosa, the primary target cells for HSV-2 infection are epithelial cells, but resident immune cells, such as dendritic cells (DCs), are also infected. DCs are the activators of the ensuing immune responses directed against HSV-2, and the aim of this study was to examine the effects opsonization of HSV-2, either with complement alone or with complement and antibodies, had on the infection of immature DCs and their ability to mount inflammatory and antiviral responses. Complement opsonization of HSV-2 enhanced both the direct infection of immature DCs and their production of new infectious viral particles. The enhanced infection required activation of the complement cascade and functional complement receptor 3. Furthermore, HSV-2 infection of DCs required endocytosis of viral particles and their delivery into an acid endosomal compartment. The presence of complement in combination with HSV-1- or HSV-2-specific antibodies more or less abolished HSV-2 infection of DCs. Our results clearly demonstrate the importance of studying HSV-2 infection under conditions that ensue in vivo, i.e., conditions under which the virions are covered in complement fragments and complement fragments and antibodies, as these shape the infection and the subsequent immune response and need to be further elucidated. IMPORTANCE During HSV-2 infection, viral particles should become coated with complement proteins and antibodies, both present in genital fluids, which could influence the activation of the immune responses. The dendritic cells are activators of the immune responses directed against HSV-2, and the aim of this study was to examine the

  2. Differential activity of candidate microbicides against early steps of HIV-1 infection upon complement virus opsonization

    PubMed Central

    2010-01-01

    Background HIV-1 in genital secretions may be opsonized by several molecules including complement components. Opsonized HIV-1 by complement enhances the infection of various mucosal target cells, such as dendritic cells (DC) and epithelial cells. Results We herein evaluated the effect of HIV-1 complement opsonization on microbicide candidates' activity, by using three in vitro mucosal models: CCR5-tropic HIV-1JR-CSF transcytosis through epithelial cells, HIV-1JR-CSF attachment on immature monocyte-derived dendritic cells (iMDDC), and infectivity of iMDDC by CCR5-tropic HIV-1BaL and CXCR4-tropic HIV-1NDK. A panel of 10 microbicide candidates [T20, CADA, lectines HHA & GNA, PVAS, human lactoferrin, and monoclonal antibodies IgG1B12, 12G5, 2G12 and 2F5], were investigated using cell-free unopsonized or opsonized HIV-1 by complements. Only HHA and PVAS were able to inhibit HIV trancytosis. Upon opsonization, transcytosis was affected only by HHA, HIV-1 adsorption on iMDDC by four molecules (lactoferrin, IgG1B12, IgG2G5, IgG2G12), and replication in iMDDC of HIV-1BaL by five molecules (lactoferrin, CADA, T20, IgG1B12, IgG2F5) and of HIV-1NDK by two molecules (lactoferrin, IgG12G5). Conclusion These observations demonstrate that HIV-1 opsonization by complements may modulate in vitro the efficiency of candidate microbicides to inhibit HIV-1 infection of mucosal target cells, as well as its crossing through mucosa. PMID:20546571

  3. Complement-opsonized HIV: the free rider on its way to infection.

    PubMed

    Stoiber, Heribert; Pruenster, Monika; Ammann, Christoph G; Dierich, Manfred P

    2005-02-01

    The complement system (C) is one of the main humoral components of innate immunity. Three major tasks of C against invading pathogens are: (i) lysis of pathogens by the formation of the membrane attack complex (MAC); (ii) opsonization of pathogens with complement fragments to favor phagocytosis; and (iii) attraction of inflammatory cells by chemotaxis. Like other particles, HIV activates C and becomes opsonized. To escape complement-mediated lysis, HIV has adopted various properties, which include the acquisition of HIV-associated molecules (HAMs) belonging to the family of complement regulators, such as CD46, CD55, CD59, and the interaction with humoral regulatory factors like factor H (fH). Opsonized virus may bind to complement receptor positive cells to infect them more efficiently or to remain bound on the surface of such cells. In the latter case HIV can be transmitted to cells susceptible for infection. This review discusses several aspects of C-HIV interactions and provides a model for the dynamics of this process. PMID:15488605

  4. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1

    PubMed Central

    Ellegård, Rada; Crisci, Elisa; Andersson, Jonas; Shankar, Esaki M.; Nyström, Sofia; Hinkula, Jorma

    2015-01-01

    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection. PMID:26157174

  5. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1.

    PubMed

    Ellegård, Rada; Crisci, Elisa; Andersson, Jonas; Shankar, Esaki M; Nyström, Sofia; Hinkula, Jorma; Larsson, Marie

    2015-08-15

    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection. PMID:26157174

  6. Complement-Opsonized HIV-1 Overcomes Restriction in Dendritic Cells

    PubMed Central

    Posch, Wilfried; Steger, Marion; Knackmuss, Ulla; Blatzer, Michael; Baldauf, Hanna-Mari; Doppler, Wolfgang; White, Tommy E.; Hörtnagl, Paul; Diaz-Griffero, Felipe; Lass-Flörl, Cornelia; Hackl, Hubert; Moris, Arnaud; Keppler, Oliver T.; Wilflingseder, Doris

    2015-01-01

    DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C) efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs. Efficient DC infection by HIV-C was also observed using single-cycle HIV-C, and correlated with a remarkable elevated SAMHD1 T592 phosphorylation but not SAMHD1 degradation. If SAMHD1 phosphorylation was blocked using a CDK2-inhibitor HIV-C-induced DC infection was also significantly abrogated. Additionally, we found a higher maturation and co-stimulatory potential, aberrant type I interferon expression and signaling as well as a stronger induction of cellular immune responses in HIV-C-treated DCs. Collectively, our data highlight a novel protective mechanism mediated by complement opsonization of HIV to effectively promote DC immune functions, which might be in the future exploited to tackle HIV infection. PMID:26121641

  7. Complement-Opsonized HIV-1 Overcomes Restriction in Dendritic Cells.

    PubMed

    Posch, Wilfried; Steger, Marion; Knackmuss, Ulla; Blatzer, Michael; Baldauf, Hanna-Mari; Doppler, Wolfgang; White, Tommy E; Hörtnagl, Paul; Diaz-Griffero, Felipe; Lass-Flörl, Cornelia; Hackl, Hubert; Moris, Arnaud; Keppler, Oliver T; Wilflingseder, Doris

    2015-06-01

    DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C) efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs. Efficient DC infection by HIV-C was also observed using single-cycle HIV-C, and correlated with a remarkable elevated SAMHD1 T592 phosphorylation but not SAMHD1 degradation. If SAMHD1 phosphorylation was blocked using a CDK2-inhibitor HIV-C-induced DC infection was also significantly abrogated. Additionally, we found a higher maturation and co-stimulatory potential, aberrant type I interferon expression and signaling as well as a stronger induction of cellular immune responses in HIV-C-treated DCs. Collectively, our data highlight a novel protective mechanism mediated by complement opsonization of HIV to effectively promote DC immune functions, which might be in the future exploited to tackle HIV infection. PMID:26121641

  8. Complement opsonization of HIV-1 results in a different intracellular processing pattern and enhanced MHC class I presentation by dendritic cells

    PubMed Central

    Tjomsland, Veronica; Ellegård, Rada; Burgener, Adam; Mogk, Kenzie; Che, Karlhans F; Westmacott, Garrett; Hinkula, Jorma; Lifson, Jeffrey D; Larsson, Marie

    2013-01-01

    Induction of optimal HIV-1-specific T-cell responses, which can contribute to controlling viral infection in vivo, depends on antigen processing and presentation processes occurring in DCs. Opsonization can influence the routing of antigen processing and pathways used for presentation. We studied antigen proteolysis and the role of endocytic receptors in MHC class I (MHCI) and II (MHCII) presentation of antigens derived from HIV-1 in human monocyte-derived immature DCs (IDCs) and mature DCs, comparing free and complement opsonized HIV-1 particles. Opsonization of virions promoted MHCI presentation by DCs, indicating that complement opsonization routes more virions toward the MHCI presentation pathway. Blockade of macrophage mannose receptor (MMR) and β7-integrin enhanced MHCI and MHCII presentation by IDCs and mature DCs, whereas the block of complement receptor 3 decreased MHCI and MHCII presentation. In addition, we found that IDC and MDC proteolytic activities were modulated by HIV-1 exposure; complement-opsonized HIV-1 induced an increased proteasome activity in IDCs. Taken together, these findings indicate that endocytic receptors such as MMR, complement receptor 3, and β7-integrin can promote or disfavor antigen presentation probably by routing HIV-1 into different endosomal compartments with distinct efficiencies for degradation of viral antigens and MHCI and MHCII presentation, and that HIV-1 affects the antigen-processing machinery. PMID:23526630

  9. Direct evidence that decreased serum opsonization of Streptococcus pneumoniae via the alternative complement pathway in sickle cell disease is related to antibody deficiency.

    PubMed Central

    Bjornson, A B; Lobel, J S

    1987-01-01

    Two approaches were used to demonstrate that reduction in serum opsonization of Streptococcus pneumoniae via the alternative complement pathway in children with sickle cell disease is related to a deficiency of antibodies to pneumococcal capsular polysaccharide. First, opsonization of S. pneumoniae mediated by the alternative pathway in patients' sera was restored to normal by addition of the purified IgG or IgM fraction of goat antiserum to capsular polysaccharide of the homologous serotype. Secondly, IgG antibody titers to capsular polysaccharide in patients' sera correlated significantly with alternative pathway-mediated opsonization; the correlation between titers of IgM anticapsular antibodies and opsonization approached statistical significance. The sum of the IgG and IgM anticapsular antibody titers correlated most significantly with opsonization. Our results suggest that reduction in alternative pathway-mediated opsonization in sera from children with sickle cell disease is related to low levels of both IgG and IgM anticapsular antibodies. Images PMID:3805275

  10. Direct evidence that decreased serum opsonization of Streptococcus pneumoniae via the alternative complement pathway in sickle cell disease is related to antibody deficiency.

    PubMed

    Bjornson, A B; Lobel, J S

    1987-02-01

    Two approaches were used to demonstrate that reduction in serum opsonization of Streptococcus pneumoniae via the alternative complement pathway in children with sickle cell disease is related to a deficiency of antibodies to pneumococcal capsular polysaccharide. First, opsonization of S. pneumoniae mediated by the alternative pathway in patients' sera was restored to normal by addition of the purified IgG or IgM fraction of goat antiserum to capsular polysaccharide of the homologous serotype. Secondly, IgG antibody titers to capsular polysaccharide in patients' sera correlated significantly with alternative pathway-mediated opsonization; the correlation between titers of IgM anticapsular antibodies and opsonization approached statistical significance. The sum of the IgG and IgM anticapsular antibody titers correlated most significantly with opsonization. Our results suggest that reduction in alternative pathway-mediated opsonization in sera from children with sickle cell disease is related to low levels of both IgG and IgM anticapsular antibodies. PMID:3805275

  11. Immunoglobulin isotype isolated from human placental extract does not interfere in complement-mediated bacterial opsonization within the wound milieu

    PubMed Central

    Sharma, Kanika; Bhattacharyya, Debasish

    2015-01-01

    The wound healing potency of an aqueous extract of placenta can be evaluated through the presence of numerous regulatory components. The presence of glycans was detected by thin layer chromatography and fluorophore-assisted carbohydrate electrophoresis. Mass spectrometric analysis revealed the existence of multiple fragments of immunoglobulin G (IgG). IgG was present in the extract at a concentration of 25.2 ± 3.97 μg/ml. IgG possesses anti-complementary activity by diverting the complement activation from target surface. Thus, effect of placental IgG on complement–bacteria interaction was investigated through classical and alternative pathway and the preparation was ascertained to be safe with respect to their interference in the process of bacterial opsonization. PMID:25984442

  12. Antibody-independent activation of the classical pathway of complement by Epstein-Barr virus.

    PubMed

    Martin, H; McConnell, I; Gorick, B; Hughes-Jones, N C

    1987-03-01

    A purified preparation of Epstein-Barr virus (EBV) has been shown to activate the classical complement pathway by direct interaction with the first component of complement, C1, without the intervention of antibody. No evidence was found for activation of the alternative pathway. Following classical pathway activation the specific affinity of EBV for B cells can be presumed to be lost since the virus will become opsonized for clearance by phagocytic cells bearing complement receptors, CR1 and CR3. This activation is further evidence that complement plays a role in defence mechanisms independently of antibody activity. PMID:3038440

  13. Complement factor H allotype 402H is associated with increased C3b opsonization and phagocytosis of Streptococcus pyogenes.

    PubMed

    Haapasalo, Karita; Jarva, Hanna; Siljander, Tuula; Tewodros, Wezenet; Vuopio-Varkila, Jaana; Jokiranta, T Sakari

    2008-11-01

    The main virulence factor of group A streptococcus (GAS), M protein, binds plasma complement regulators factor H (FH) and FH-like protein 1 (FHL-1) leading to decreased opsonization. The M protein binding site on FH is within domain 7 in which also the age-related macular degeneration (AMD)-associated polymorphism Y402H is located. We studied if FH allotypes 402H and 402Y have different binding affinities to GAS. Plasma-derived FH allotype 402H and its recombinant fragment FH5-7(402H) showed decreased binding to several GAS strains. Growth of GAS in human blood taken from FH(402H) homozygous individuals was decreased when compared with blood taken from FH(402Y) homozygous individuals. The effect of the allotype 402H can be explained by combining the previous M protein mutagenesis data and the recently published crystal structure of FH6-8. In conclusion the data indicate that the AMD-associated allotype 402H leads to diminished binding of FH to GAS and increased opsonophagocytosis of the bacteria in blood. These results suggest that the homozygous presence of the allele 402H could be associated with decreased risk for severe GAS infections offering an explanation for the high frequency of the allele despite its association with visual impairment. PMID:18627465

  14. Complement regulator C4BP binds to Staphylococcus aureus surface proteins SdrE and Bbp inhibiting bacterial opsonization and killing☆

    PubMed Central

    Hair, Pamela S.; Foley, Caitlin K.; Krishna, Neel K.; Nyalwidhe, Julius O.; Geoghegan, Joan A.; Foster, Timothy J.; Cunnion, Kenji M.

    2013-01-01

    Staphylococcus aureus is a premier human pathogen and the most common cause of osteoarticular, wound, and implanted device infections. We recently demonstrated S. aureus efficiently binds the classical complement regulator C4b-binding protein (C4BP) inhibiting antibody-initiated complement-mediated opsonization. Here we identify S. aureus surface protein SdrE as a C4BP-binding protein. Recombinant SdrE and recombinant bone sialoprotein-binding protein (Bbp), an allelic variant of SdrE, both efficiently bound to C4BP in heat-inactivated human serum. We previously described SdrE as binding alternative pathway regulator factor H. Recombinant SdrE and Bbp efficiently bound C4BP and factor H in serum without apparent interference. Gain of function studies utilizing Lactococcus lactis clones expressing SdrE or Bbp increased serum C4BP and factor H binding, compared with empty-vector control (WT) approximately 2-fold. Correspondingly, classical pathway-mediated C3-fragment opsonization and bacterial killing by human neutrophils decreased by half for L. lactis clones expressing SdrE or Bbp compared with WT. In summary, we identify SdrE and allelic variant Bbp as S. aureus surface proteins that bind the complement regulator C4BP inhibiting classical pathway-mediated bacterial opsonization and killing. PMID:24600566

  15. Virus-induced gene complementation in tomato

    PubMed Central

    Kong, Jinhua; Chen, Weiwei; Shen, Jiajia; Qin, Cheng; Lai, Tongfei; Zhang, Pengcheng; Wang, Ying; Wu, Chaoqun; Yang, Xin; Hong, Yiguo

    2013-01-01

    Virus-induced gene complementation (VIGC), a plant virus technology based on Potato virus X for transient overexpression of endogenous genes complemented tomato mutants, resulting in non-ripening fruits to ripen. This efficient “gain-of-function” approach involves no stable transformation, and reveals a fruit-specific transcriptional network that may exist among key transcription factors in modulating tomato ripening. Thus, VIGC represents a novel and feasible strategy for gene functional analysis in plants. PMID:24305652

  16. TRIM21 Promotes cGAS and RIG-I Sensing of Viral Genomes during Infection by Antibody-Opsonized Virus

    PubMed Central

    Watkinson, Ruth E.; McEwan, William A.; Tam, Jerry C. H.; Vaysburd, Marina; James, Leo C.

    2015-01-01

    Encapsidation is a strategy almost universally employed by viruses to protect their genomes from degradation and from innate immune sensors. We show that TRIM21, which targets antibody-opsonized virions for proteasomal destruction, circumvents this protection, enabling the rapid detection and degradation of viral genomes before their replication. TRIM21 triggers an initial wave of cytokine transcription that is antibody, rather than pathogen, driven. This early response is augmented by a second transcriptional program, determined by the nature of the infecting virus. In this second response, TRIM21-induced exposure of the viral genome promotes sensing of DNA and RNA viruses by cGAS and RIG-I. This mechanism allows early detection of an infection event and drives an inflammatory response in mice within hours of viral challenge. PMID:26506431

  17. Impaired opsonization by serum from patients with chronic liver disease.

    PubMed Central

    Wyke, R J; Rajkovic, I A; Williams, R

    1983-01-01

    Serum opsonization of two organisms, E. coli and yeasts (S. cerivisiae), was examined in 68 patients with chronic liver disease (CLD). Impaired opsonization for yeasts was found in seven (29%) of 24 patients with chronic active hepatitis, six (27%) of 22 with alcoholic cirrhosis and five (23%) of 22 with primary biliary cirrhosis. Opsonization for E. coli was normal in patients with primary biliary cirrhosis but impaired in seven (29%) patients with chronic active hepatitis and three (14%) of those with alcoholic cirrhosis. The defect of opsonization in chronic active hepatitis was found mainly in patients with histological evidence of active disease. A deficiency, rather than antagonism or inhibition, of normal opsonization factors was responsible, but could not be related to reduced levels of serum complement factors of either the classical or the alternative pathway present in 45% of the patients with chronic active hepatitis, 71% with alcoholic cirrhosis and 18% of those with primary biliary cirrhosis. Serum from two of 11 patients with impaired opsonization antagonised the function of normal polymorphonuclear leucocytes, and polymorphonuclear leucocytes from six of seven patients had slightly reduced phagocytosis/killing of E. coli opsonized in normal serum. Defects of serum opsonization, complement activity and polymorphonuclear leucocyte function may be causes of the increased susceptibility to bacterial infection in patients with CLD. PMID:6339126

  18. Humoral response to herpes simplex virus is complement-dependent

    PubMed Central

    Da Costa, Xavier J.; Brockman, Mark A.; Alicot, Elisabeth; Ma, Minghe; Fischer, Michael B.; Zhou, Xioaning; Knipe, David M.; Carroll, Michael C.

    1999-01-01

    The complement system represents a cascade of serum proteins, which provide a major effector function in innate immunity. Recent studies have revealed that complement links innate and adaptive immunity via complement receptors CD21/CD35 in that it enhances the B cell memory response to noninfectious protein antigens introduced i.v. To examine the importance of complement for immune responses to virus infection in a peripheral tissue, we compared the B cell memory response of mice deficient in complement C3, C4, or CD21/CD35 with wild-type controls. We found that the deficient mice failed to generate a normal memory response, which is characterized by a reduction in IgG antibody and germinal centers. Thus, complement is important not only in the effector function of innate immunity but also in the stimulation of memory B cell responses to viral-infected cell antigens in both blood and peripheral tissues. PMID:10535987

  19. Complement

    MedlinePlus

    ... the suspected disease are done first. C3 and C4 are the complement components measured most often. A ... normal levels of the complement proteins C3 and C4 . Complement activity varies throughout the body. For example, ...

  20. Complement inhibition prevents oncolytic vaccinia virus neutralization in immune humans and cynomolgus macaques.

    PubMed

    Evgin, Laura; Acuna, Sergio A; Tanese de Souza, Christiano; Marguerie, Monique; Lemay, Chantal G; Ilkow, Carolina S; Findlay, C Scott; Falls, Theresa; Parato, Kelley A; Hanwell, David; Goldstein, Alyssa; Lopez, Roberto; Lafrance, Sandra; Breitbach, Caroline J; Kirn, David; Atkins, Harold; Auer, Rebecca C; Thurman, Joshua M; Stahl, Gregory L; Lambris, John D; Bell, John C; McCart, J Andrea

    2015-06-01

    Oncolytic viruses (OVs) have shown promising clinical activity when administered by direct intratumoral injection. However, natural barriers in the blood, including antibodies and complement, are likely to limit the ability to repeatedly administer OVs by the intravenous route. We demonstrate here that for a prototype of the clinical vaccinia virus based product Pexa-Vec, the neutralizing activity of antibodies elicited by smallpox vaccination, as well as the anamnestic response in hyperimmune virus treated cancer patients, is strictly dependent on the activation of complement. In immunized rats, complement depletion stabilized vaccinia virus in the blood and led to improved delivery to tumors. Complement depletion also enhanced tumor infection when virus was directly injected into tumors in immunized animals. The feasibility and safety of using a complement inhibitor, CP40, in combination with vaccinia virus was tested in cynomolgus macaques. CP40 pretreatment elicited an average 10-fold increase in infectious titer in the blood early after the infusion and prolonged the time during which infectious virus was detectable in the blood of animals with preexisting immunity. Capitalizing on the complement dependence of antivaccinia antibody with adjunct complement inhibitors may increase the infectious dose of oncolytic vaccinia virus delivered to tumors in virus in immune hosts. PMID:25807289

  1. The role of the complement system in innate immunity.

    PubMed

    Rus, Horea; Cudrici, Cornelia; Niculescu, Florin

    2005-01-01

    Complement is a major component of innate immune system involved in defending against all the foreign pathogens through complement fragments that participate in opsonization, chemotaxis, and activation of leukocytes and through cytolysis by C5b-9 membrane attack complex. Bacterias and viruses have adapted in various ways to escape the complement activation, and they take advantage of the complement system by using the host complement receptors to infect various cells. Complement activation also participates in clearance of apoptotic cells and immune complexes. Moreover, at sublytic dose, C5b-9 was shown to promote cell survival. Recently it was also recognized that complement plays a key role in adaptive immunity by modulating and modifying the T cell responses. All these data suggest that complement activation constitutes a critical link between the innate and acquired immune responses. PMID:16234578

  2. Mechanism of the serum defect in yeast opsonization in children with fulminant hepatic failure (FHF).

    PubMed Central

    Larcher, V F; Wyke, R J; Mowat, A P; Williams, R

    1981-01-01

    Defective opsonization of heat-killed baker's yeast was found in all 14 children with fulminant hepatic failure (FHF) but returned to normal in two who recovered and was normal in six mothers of patients. Yeast opsonization was significantly correlated with factor B activity of FHF serum but not with other components of classical or alternative pathways of complement. Reconstitution and family studies suggested that defective yeast opsonization in FHF is secondary and, although dependent on factor B activity, is qualitatively and quantitatively similar to that of primary yeast opsonization deficiency. These findings suggest that the factors responsible for opsonization of yeasts, or their regulation, are synthesized or controlled by the liver. PMID:7039888

  3. Trans complementation of virus-encoded replicase components of tobacco mosaic virus.

    PubMed

    Ogawa, T; Watanabe, Y; Meshi, T; Okada, Y

    1991-12-01

    We examined whether the 130K and 180K proteins of tobacco mosaic virus (TMV), the putative virus-encoded replicase components, produced by a replication-competent TMV mutant could complement a replication-defective mutant in a single cell. The replication-competent mutant (LDCS29) had a deletion in the coat protein gene and the replication-defective mutant (LDR28) had a large deletion in the gene encoding the 130K and 180K proteins. Neither the replication of LDR28 nor the production of the coat protein from LDR28 or LDCS29 was detected when the mutants were inoculated separately into tobacco protoplasts. However, when the two mutants were co-inoculated, the production of the LDR28 genomic RNA and the subgenomic RNA for the coat protein and accumulation of the coat protein were observed. These results show that the virus-encoded replicase components of TMV complemented the replication-defective mutant in trans. PMID:1962439

  4. Complement-mediated phagocytosis of herpes simplex virus by granulocytes. Binding or ingestion.

    PubMed Central

    Van Strijp, J A; Van Kessel, K P; van der Tol, M E; Verhoef, J

    1989-01-01

    The role of complement receptors in phagocytosis of herpes simplex virus (HSV) by PMN was examined. Complement components were deposited on the surface of the virus particle in the presence or absence of specific anti-HSV antibodies. Flow cytometry was used to analyze the phagocytosis of fluorescence-labeled viruses and demonstrated that although a virion is able to associate with PMN in the presence of complement alone, the granulocyte is not triggered to mount a metabolic burst. Efficient stimulation of PMN occurs when complexes are formed consisting of virus, specific antibodies, and complement. To address the question whether the viruses were inside or outside the cell, a combined enhancement/quenching method was developed using ammonium chloride as a lysosomotropic agent and trypan blue as a quenching dye. The data indicate that Fc receptor-mediated phagocytosis by PMN results in the ingestion of all cell-associated herpes virions. Interactions of virions through PMN-complement receptors CR1 and CR3 results solely in binding to the PMN but not in internalization. Interactions via both complement and Fc receptors cause synergistic stimulation of the PMN and result in very efficient association of viruses, greater than 80% of which were inside the cell. PMID:2544621

  5. Capsid is an important determinant for functional complementation of murine leukemia virus and spleen necrosis virus Gag proteins.

    PubMed

    Lee, Sook-Kyung; Boyko, Vitaly; Hu, Wei-Shau

    2007-04-10

    In this report, we examined the abilities and requirements of heterologous Gag proteins to functionally complement each other to support viral replication. Two distantly related gammaretroviruses, murine leukemia virus (MLV) and spleen necrosis virus (SNV), were used as a model system because SNV proteins can support MLV vector replication. Using chimeric or mutant Gag proteins that could not efficiently support MLV vector replication, we determined that a homologous capsid (CA) domain was necessary for the functional complementation of MLV and SNV Gag proteins. Findings from the bimolecular fluorescence complementation assay revealed that MLV and SNV Gag proteins were capable of colocalizing and interacting in cells. Taken together, our results indicated that MLV and SNV Gag proteins can interact in cells; however, a homologous CA domain is needed for functional complementation of MLV and SNV Gag proteins to complete virus replication. This requirement of homologous Gag most likely occurs at a postassembly step(s) of the viral replication. PMID:17156810

  6. Emergence of bactericidal and opsonizing antibody to Vibrio vulnificus following bacterial infection.

    PubMed Central

    Musher, D M; Hansen, M V; Goree, A; Gyorkey, F; Chapman, A J; Baughn, R E

    1986-01-01

    Virulent isolates of Vibrio vulnificus resist the bactericidal and opsonizing effects of normal human serum, in contrast to environmental isolates, which are highly serum susceptible. Immune responses to bacteremic V. vulnificus infections in human subjects have not been characterized. Serum from a patient who survived sepsis caused by V. vulnificus had substantial bactericidal and opsonizing immunoglobulin G (IgG) for his own bloodstream isolate. Killing was mediated by the classical complement pathway, whereas opsonization was effected by either the classical or the alternative pathway. IgG that reacted strongly with 55-, 58-, and 68-kilodalton outer membrane proteins was present in the patient's convalescent-phase serum but was absent from normal human serum. These findings suggest that humoral immunity to V. vulnificus, mediated by bactericidal and opsonizing antibody, emerges during infection and may be due, in part, to IgG directed against identifiable outer membrane proteins. Images PMID:3958138

  7. Differential mechanisms of complement-mediated neutralization of the closely related paramyxoviruses simian virus 5 and mumps virus

    PubMed Central

    Johnson, John B.; Capraro, Gerald A.; Parks, Griffith D.

    2008-01-01

    The complement system is an important component of the innate immune response to virus infection. The role of human complement pathways in the in vitro neutralization of three closely related paramyxoviruses, Simian Virus 5 (SV5), Mumps virus (MuV) and Human Parainfluenza virus type 2 (HPIV2) was investigated. Sera from ten donors showed high levels of neutralization against HPIV2 that was largely complement-independent, whereas nine of ten donor sera were found to neutralize SV5 and MuV only in the presence of active complement pathways. SV5 and MuV neutralization proceeded through the alternative pathway of the complement cascade. Electron microscopy studies and biochemical analyses showed that treatment of purified SV5 with human serum resulted in C3 deposition on virions and the formation of massive aggregates, but there was relatively little evidence of virion lysis. Treatment of MuV with human serum also resulted in C3 deposition on virions, however in contrast to SV5, MuV particles were lysed by serum complement and there was relatively little aggregation. Assays using serum depleted of complement factors showed that SV5 and MuV neutralization in vitro was absolutely dependent on complement factor C3, but was not dependent on downstream complement factors C5 or C8. Our results indicate that even though antibodies exist that recognize both SV5 and MuV, they are mostly non-neutralizing and viral inactivation in vitro occurs through the alternative pathway of complement. The implications of our work for development of paramyxovirus vectors and vaccines are discussed. PMID:18440578

  8. Differential mechanisms of complement-mediated neutralization of the closely related paramyxoviruses simian virus 5 and mumps virus

    SciTech Connect

    Johnson, John B.; Capraro, Gerald A.; Parks, Griffith D.

    2008-06-20

    The complement system is an important component of the innate immune response to virus infection. The role of human complement pathways in the in vitro neutralization of three closely related paramyxoviruses, Simian Virus 5 (SV5), Mumps virus (MuV) and Human Parainfluenza virus type 2 (HPIV2) was investigated. Sera from ten donors showed high levels of neutralization against HPIV2 that was largely complement-independent, whereas nine of ten donor sera were found to neutralize SV5 and MuV only in the presence of active complement pathways. SV5 and MuV neutralization proceeded through the alternative pathway of the complement cascade. Electron microscopy studies and biochemical analyses showed that treatment of purified SV5 with human serum resulted in C3 deposition on virions and the formation of massive aggregates, but there was relatively little evidence of virion lysis. Treatment of MuV with human serum also resulted in C3 deposition on virions, however in contrast to SV5, MuV particles were lysed by serum complement and there was relatively little aggregation. Assays using serum depleted of complement factors showed that SV5 and MuV neutralization in vitro was absolutely dependent on complement factor C3, but was not dependent on downstream complement factors C5 or C8. Our results indicate that even though antibodies exist that recognize both SV5 and MuV, they are mostly non-neutralizing and viral inactivation in vitro occurs through the alternative pathway of complement. The implications of our work for development of paramyxovirus vectors and vaccines are discussed.

  9. Trans-complementation of a genetic defect in the coxsackie B3 virus 2B protein.

    PubMed

    van Kuppeveld, Frank J M; van den Hurk, Patrick J J C; Schrama, Ina W J; Galama, Jochem M D; Melchers, Willem J G

    2002-02-01

    The enterovirus 2B protein contains a putative amphipathic alpha-helix that includes three positively charged and one negatively charged residue. Previously, we observed that replacement of the glutamic acid-40 residue with a lysine residue (mutation 2B-E[40]K) in the amphipathic alpha-helix of the coxsackie B3 virus 2B protein resulted in a quasi-infectious phenotype. On one occasion, however, transfection of 2B-E[40]K RNA transcripts gave rise to a virus stock in which the mutation was retained. This study was aimed at elucidating the molecular mechanism underlying this observation. Sequence analysis of the viral RNA provided no evidence for a second-site suppression mutation that rescued the defect of the 2B-E[40]K mutation in cis. Therefore, the possibility was considered that the defect caused by the 2B-E[40]K mutation was complemented in trans by viable revertants that had emerged in the virus population. The transfection-derived virus stock indeed contained a small fraction of (pseudo)revertant viruses, carrying the original glutamic acid-40, threonine-40 or asparagine-40, rather than the introduced lysine-40. Consistent with the idea that the 2B-E[40]K virus is unable to grow without the aid of trans-acting wild-type(-like) proteins, only the (pseudo)revertant viruses were able to produce individual plaques. Further support for the idea of trans-rescue was obtained using a genetic complementation assay, which revealed the occurrence of a low level of trans-complementation of the 2B-E[40]K mutation by wild-type virus. This is the first report that provides evidence that a genetic defect in the enterovirus 2B protein can be complemented in trans. PMID:11807227

  10. Glycosylated and Nonglycosylated Complement Control Protein of the Lister Strain of Vaccinia Virus

    PubMed Central

    Kuhn, Jordan; Atukorale, Vajini; Campbell, Joseph; Weir, Jerry P.

    2014-01-01

    The vaccinia virus complement control protein (VCP) is a secreted viral protein that binds the C3b and C4b complement components and inhibits the classic and alternative complement pathways. Previously, we reported that an attenuated smallpox vaccine, LC16m8, which was derived from the Lister strain of vaccinia virus (VV-Lister), expressed a glycosylated form of VCP, whereas published sequence data at that time indicated that the VV-Lister VCP has no motif for N-linked glycosylation. We were interested in determining whether the glycosylation of VCP impairs its biological activity, possibly contributing to the attenuation of LC16m8, and the likely origin of the glycosylated VCP. Expression analysis indicated that VV-Lister contains substrains expressing glycosylated VCP and substrains expressing nonglycosylated VCP. Other strains of smallpox vaccine, as well as laboratory strains of vaccinia virus, all expressed nonglycosylated VCP. Individual Lister virus clones expressing either the glycosylated VCP or the nonglycosylated species were isolated, and partially purified VCP from the isolates were found to be functional equivalents in binding human C3b and C4b complement proteins and inhibiting hemolysis and in immunogenicity. Recombinant vaccinia viruses expressing FLAG-tagged glycosylated VCP (FLAG-VCPg) and nonglycosylated VCP (FLAG-VCP) were constructed based on the Western Reserve strain. Purified FLAG-VCP and FLAG-VCPg bind human C3b and C4b and blocked complement-mediated hemolysis. Our data suggest that glycosylation did not affect the biological activity of VCP and thus may not have contributed to the attenuation of LC16m8. In addition, the LC16m8 virus likely originated from a substrain of VV-Lister that expresses glycosylated VCP. PMID:25030055

  11. Factor affecting the in vitro assessment of opsonization: a study of the kinetics of opsonization using the technique of phagocytic chemiluminescence.

    PubMed Central

    Williams, A J; Hastings, M J; Easmon, C S; Cole, P J

    1980-01-01

    The importance of several factors involved in the investigation of opsonic defects was studied using phagocytic Luminol-dependent chemiluminescence. The range for the opsonization of zymosan and bakers' yeast by serum from healthy individuals was wide and kinetic studies showed comparative differences for different periods of incubation, serum concentrations and particles. Decay in the opsonic activity of serum stored at different temperatures was demonstrated and its clinical implications emphasized. By using techniques to ablate independently the classical and alternative pathways of complement activation, the contribution of these to the opsonization of zymosan, Staphylococcus aureus (NCTC 6571), Pseudomonas aeruginosa and group B streptococcus (NCTC 11080) by normal and hypogammaglobulinaemic serum at a concentration of 7% was assessed. By comparison of the results obtained for different periods of incubation between particle and serum, the need for consideration of this parameter when assessing opsonic activity was shown. The results using the chemiluminescence assay were compared with those using other methods and were found to correlate well. PMID:7007217

  12. Bovine viral diarrhea virus structural protein E2 as a complement regulatory protein.

    PubMed

    Ostachuk, Agustín

    2016-07-01

    Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus, family Flaviviridae, and is one of the most widely distributed viruses in cattle worldwide. Approximately 60 % of cattle in endemic areas without control measures are infected with BVDV during their lifetime. This wide prevalence of BVDV in cattle populations results in significant economic losses. BVDV is capable of establishing persistent infections in its host due to its ability to infect fetuses, causing immune tolerance. However, this cannot explain how the virus evades the innate immune system. The objective of the present work was to test the potential activity of E2 as a complement regulatory protein. E2 glycoprotein, produced both in soluble and transmembrane forms in stable CHO-K1 cell lines, was able to reduce complement-mediated cell lysis up to 40 % and complement-mediated DNA fragmentation by 50 %, in comparison with cell lines not expressing the glycoprotein. This work provides the first evidence of E2 as a complement regulatory protein and, thus, the finding of a mechanism of immune evasion by BVDV. Furthermore, it is postulated that E2 acts as a self-associated molecular pattern (SAMP), enabling the virus to avoid being targeted by the immune system and to be recognized as self. PMID:27038454

  13. Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening

    PubMed Central

    Zhou, Tao; Zhang, Hang; Lai, Tongfei; Qin, Cheng; Shi, Nongnong; Wang, Huizhong; Jin, Mingfei; Zhong, Silin; Fan, Zaifeng; Liu, Yule; Wu, Zirong; Jackson, Stephen; Giovannoni, James J.; Rolin, Dominique; Gallusci, Philippe; Hong, Yiguo

    2012-01-01

    Plant virus technology, in particular virus-induced gene silencing, is a widely used reverse- and forward-genetics tool in plant functional genomics. However the potential of virus technology to express genes to induce phenotypes or to complement mutants in order to understand the function of plant genes is not well documented. Here we exploit Potato virus X as a tool for virus-induced gene complementation (VIGC). Using VIGC in tomato, we demonstrated that ectopic viral expression of LeMADS-RIN, which encodes a MADS-box transcription factor (TF), resulted in functional complementation of the non-ripening rin mutant phenotype and caused fruits to ripen. Comparative gene expression analysis indicated that LeMADS-RIN up-regulated expression of the SBP-box (SQUAMOSA promoter binding protein-like) gene LeSPL-CNR, but down-regulated the expression of LeHB-1, an HD-Zip homeobox TF gene. Our data support the hypothesis that a transcriptional network may exist among key TFs in the modulation of fruit ripening in tomato. PMID:23150786

  14. Several Human Liver Cell Expressed Apolipoproteins Complement HCV Virus Production with Varying Efficacy Conferring Differential Specific Infectivity to Released Viruses

    PubMed Central

    Doepke, Mandy; Vieyres, Gabrielle; Todt, Daniel; Wölk, Benno; Vondran, Florian W. R.; Geffers, Robert; Lauber, Chris; Kaderali, Lars; Penin, François; Pietschmann, Thomas

    2015-01-01

    Apolipoprotein E (ApoE), an exchangeable apolipoprotein, is necessary for production of infectious Hepatitis C virus (HCV) particles. However, ApoE is not the only liver-expressed apolipoprotein and the role of other apolipoproteins for production of infectious HCV progeny is incompletely defined. Therefore, we quantified mRNA expression of human apolipoproteins in primary human hepatocytes. Subsequently, cDNAs encoding apolipoproteins were expressed in 293T/miR-122 cells to explore if they complement HCV virus production in cells that are non-permissive due to limiting endogenous levels of human apolipoproteins. Primary human hepatocytes expressed high mRNA levels of ApoA1, A2, C1, C3, E, and H. ApoA4, A5, B, D, F, J, L1, L2, L3, L4, L6, M, and O were expressed at intermediate levels, and C2, C4, and L5 were not detected. All members of the ApoA and ApoC family of lipoproteins complemented HCV virus production in HCV transfected 293T/miR-122 cells, albeit with significantly lower efficacy compared with ApoE. In contrast, ApoD expression did not support production of infectious HCV. Specific infectivity of released particles complemented with ApoA family members was significantly lower compared with ApoE. Moreover, the ratio of extracellular to intracellular infectious virus was significantly higher for ApoE compared to ApoA2 and ApoC3. Since apolipoproteins complementing HCV virus production share amphipathic alpha helices as common structural features we altered the two alpha helices of ApoC1. Helix breaking mutations in both ApoC1 helices impaired virus assembly highlighting a critical role of alpha helices in apolipoproteins supporting HCV assembly. In summary, various liver expressed apolipoproteins with amphipathic alpha helices complement HCV virus production in human non liver cells. Differences in the efficiency of virus assembly, the specific infectivity of released particles, and the ratio between extracellular and intracellular infectivity point to

  15. Complement Activation Is Required for Induction of a Protective Antibody Response against West Nile Virus Infection

    PubMed Central

    Mehlhop, Erin; Whitby, Kevin; Oliphant, Theodore; Marri, Anantha; Engle, Michael; Diamond, Michael S.

    2005-01-01

    Infection with West Nile virus (WNV) causes a severe infection of the central nervous system (CNS) with higher levels of morbidity and mortality in the elderly and the immunocompromised. Experiments with mice have begun to define how the innate and adaptive immune responses function to limit infection. Here, we demonstrate that the complement system, a major component of innate immunity, controls WNV infection in vitro primarily in an antibody-dependent manner by neutralizing virus particles in solution and lysing WNV-infected cells. More decisively, mice that genetically lack the third component of complement or complement receptor 1 (CR1) and CR2 developed increased CNS virus burdens and were vulnerable to lethal infection at a low dose of WNV. Both C3-deficient and CR1- and CR2-deficient mice also had significant deficits in their humoral responses after infection with markedly reduced levels of specific anti-WNV immunoglobulin M (IgM) and IgG. Overall, these results suggest that complement controls WNV infection, in part through its ability to induce a protective antibody response. PMID:15919902

  16. Complement-mediated opsonization of invasive group A Streptococcus pyogenes strain AP53 is regulated by the bacterial two-component cluster of virulence responder/sensor (CovRS) system.

    PubMed

    Agrahari, Garima; Liang, Zhong; Mayfield, Jeffrey A; Balsara, Rashna D; Ploplis, Victoria A; Castellino, Francis J

    2013-09-20

    Group A Streptococcus pyogenes (GAS) strain AP53 is a primary isolate from a patient with necrotizing fasciitis. These AP53 cells contain an inactivating mutation in the sensor component of the cluster of virulence (cov) responder (R)/sensor (S) two-component gene regulatory system (covRS), which enhances the virulence of the primary strain, AP53/covR(+)S(-). However, specific mechanisms by which the covRS system regulates the survival of GAS in humans are incomplete. Here, we show a key role for covRS in the regulation of opsonophagocytosis of AP53 by human neutrophils. AP53/covR(+)S(-) cells displayed potent binding of host complement inhibitors of C3 convertase, viz. Factor H (FH) and C4-binding protein (C4BP), which concomitantly led to minimal C3b deposition on AP53 cells, further showing that these plasma protein inhibitors are active on GAS cells. This resulted in weak killing of the bacteria by human neutrophils and a corresponding high death rate of mice after injection of these cells. After targeted allelic alteration of covS(-) to wild-type covS (covS(+)), a dramatic loss of FH and C4BP binding to the AP53/covR(+)S(+) cells was observed. This resulted in elevated C3b deposition on AP53/covR(+)S(+) cells, a high level of opsonophagocytosis by human neutrophils, and a very low death rate of mice infected with AP53/covR(+)S(+). We show that covRS is a critical transcriptional regulator of genes directing AP53 killing by neutrophils and regulates the levels of the receptors for FH and C4BP, which we identify as the products of the fba and enn genes, respectively. PMID:23928307

  17. Complement-mediated Opsonization of Invasive Group A Streptococcus pyogenes Strain AP53 Is Regulated by the Bacterial Two-component Cluster of Virulence Responder/Sensor (CovRS) System*

    PubMed Central

    Agrahari, Garima; Liang, Zhong; Mayfield, Jeffrey A.; Balsara, Rashna D.; Ploplis, Victoria A.; Castellino, Francis J.

    2013-01-01

    Group A Streptococcus pyogenes (GAS) strain AP53 is a primary isolate from a patient with necrotizing fasciitis. These AP53 cells contain an inactivating mutation in the sensor component of the cluster of virulence (cov) responder (R)/sensor (S) two-component gene regulatory system (covRS), which enhances the virulence of the primary strain, AP53/covR+S−. However, specific mechanisms by which the covRS system regulates the survival of GAS in humans are incomplete. Here, we show a key role for covRS in the regulation of opsonophagocytosis of AP53 by human neutrophils. AP53/covR+S− cells displayed potent binding of host complement inhibitors of C3 convertase, viz. Factor H (FH) and C4-binding protein (C4BP), which concomitantly led to minimal C3b deposition on AP53 cells, further showing that these plasma protein inhibitors are active on GAS cells. This resulted in weak killing of the bacteria by human neutrophils and a corresponding high death rate of mice after injection of these cells. After targeted allelic alteration of covS− to wild-type covS (covS+), a dramatic loss of FH and C4BP binding to the AP53/covR+S+ cells was observed. This resulted in elevated C3b deposition on AP53/covR+S+ cells, a high level of opsonophagocytosis by human neutrophils, and a very low death rate of mice infected with AP53/covR+S+. We show that covRS is a critical transcriptional regulator of genes directing AP53 killing by neutrophils and regulates the levels of the receptors for FH and C4BP, which we identify as the products of the fba and enn genes, respectively. PMID:23928307

  18. Studies on Bovine Virus Diarrhea: Serum Neutralization, Complement-fixation and Immunofluorescence

    PubMed Central

    Ruckerbauer, Gerda M.; Girard, A.; Bannister, G. L.; Boulanger, P.

    1971-01-01

    The complement-fixation, the serum neutralization tests and the fluorescent-antibody technique were the serological methods applied in this laboratory for the detection of antigens for bovine virus diarrhea (BVD). As observed previously, the modified direct complement-fixation (MDCF) test was required to demonstrate antibodies against virus infections of cattle. At a certain stage of infection, the MDCF test was found to be as accurate and less time-consuming than the serum neutralization test for the detection of antibodies in bovine sera. The modified direct complement-fixing antibodies were detectable in the serum from approximately three weeks up to a few months after infection as compared to several years for the serum neutralization test. Thus, as in most other viral diseases, the MDCF test was of value for detecting recent infections while the serum neutralization test detects both recent and long-standing infections. The fluorescent antibody technique was of value to detect viral antigens of both cytopathogenic and noncytopathogenic strains of BVD in primary fetal kidney cell cultures inoculated with field specimens. In addition, the virus was detected in six of 220 fetuses collected at a local slaughter house for the preparation of primary cell cultures. The length of time required for the detection and identification of specific viral antigens by immunofluorescence was considerably reduced over that of the serum neutralization and virus interference tests. ImagesFig. 3. PMID:4254898

  19. Distinct CD55 Isoform Synthesis and Inhibition of Complement-Dependent Cytolysis by Hepatitis C Virus.

    PubMed

    Kwon, Young-Chan; Kim, Hangeun; Meyer, Keith; Di Bisceglie, Adrian M; Ray, Ranjit

    2016-08-15

    CD55/DAF, one of the regulators of complement activation, is known to limit excess complement activation on the host cell surface by accelerating the decay of C3 convertase. We reported previously that hepatitis C virus (HCV) infection or virus core protein expression upregulates CD55 expression. CD55 associates with HCV particles, potentially protecting HCV from lysis in circulation. An increase in CD55 on the surface of HCV-infected cells may inhibit complement-mediated cell killing. In this study, we show that Abs against cancer cell surface proteins induce complement-dependent cytolysis or Ab-dependent cell-mediated cytotoxicity of immortalized human hepatocytes in the presence of CD55-blocking Ab. CD55 has a secreted isoform (sCD55) that is generated by alternative splicing. We observed that sCD55 is induced in HCV-infected or HCV replicon-harboring cells, as well as in liver biopsy samples from chronically HCV-infected patients. Conditioned medium from HCV-infected hepatoma cells (Huh7.5 cells) or immortalized human hepatocytes inhibited C3 convertase activity and complement-dependent cytolysis of sheep blood erythrocytes. Chronically HCV-infected patient sera inhibited C3 convertase activity, further implicating HCV-specific impairment of complement function in infected humans. CD55-blocking Ab inhibited erythrocyte lysis by conditioned medium, suggesting that CD55/sCD55 impairs convertase activity. Together, our data show that HCV infection induces sCD55 expression in HCV-infected cell culture-conditioned medium and inhibits C3 convertase activity. This may have implications for modulating complement-mediated immune function in the microenvironment and on HCV-harboring cells. PMID:27357152

  20. Opsonic capacity of foal serum for the two neonatal pathogens Escherichia coli and Actinobacillus equuli.

    PubMed

    Gröndahl, G; Sternberg, S; Jensen-Waern, M; Johannisson, A

    2001-11-01

    Two of the most commonly isolated foal pathogens are Escherichia coli and Actinobacillus equuli. The hypothesis tested in this study was that young foals carry a lower opsonic capacity for these bacteria compared to adult horses. A flow-cytometric method for the phagocytosis of these by equine neutrophils was established. The opsonic capacity of serum from healthy foals from birth to age 6 weeks was evaluated and related to the concentrations of IgGa and IgGb. Phagocytosis of yeast was used as a control. Serum was required for phagocytosis, with higher concentrations for E. coli than for A. equuli. Ingestion of colostrum led to a significantly higher serum opsonic capacity. After that, there was no consistent age-related trend for opsonic capacity for the different microbes. Foal serum showed similar or higher opsonisation of E. coli and A. equuli compared to serum from mature individuals. During the studied period, the predominance among IgG subisotypes switched from IgGb to IgGa. Although the overall correlation between concentrations of IgG subisotypes and serum opsonic capacity was poor, sera with IgGb levels below 1.9 mg/ml induced lower opsonisation of E. coli and yeast, but not of A. equuli. Complement activation was important for opsonisation of all tested microbes. The results of this study are significant to the understanding of a key immunological facet in the pathophysiology of equine neonatal septicaemia in clinical practice. PMID:11770988

  1. Herpes simplex virus glycoprotein C: molecular mimicry of complement regulatory proteins by a viral protein.

    PubMed

    Huemer, H P; Wang, Y; Garred, P; Koistinen, V; Oppermann, S

    1993-08-01

    Herpes simplex virus (HSV) encodes a protein, glycoprotein C (gC), which binds to the third complement component, the central mediator of complement activation. In this study the structural and functional relationships of gC from HSV type 1 (HSV-1) and known human complement regulatory proteins factor H, properdin, factor B, complement receptor 1 (CR1) and 2 (CR2) were investigated. The interaction of gC with C3b was studied using purified complement components, synthetic peptides, antisera against different C3 fragments and anti-C3 monoclonal antibodies (mAb) with known inhibitory effects on C3-ligand interactions. All the mAb that inhibited gC/C3b interactions, in a differential manner, also prevented binding of C3 fragments to factors H, B, CR1 or CR2. No blocking was observed with synthetic peptides representing different C3 regions or with factor B and C3d, whereas C3b, C3c and factor H were inhibitory, as well as purified gC. There was no binding of gC to cobra venom factor (CVF), a C3c-like fragment derived from cobra gland. Purified gC bound to iC3, iC3b and C3c, but failed to bind to C3d. Glycoprotein C bound only weakly to iC3 derived from bovine and porcine plasma, thus indicating a preference of the viral protein for the appropriate host. Binding of gC was also observed to proteolytic C3 fragments, especially to the beta-chain, thus suggesting the importance of the C3 region as a binding site. Purified gC from HSV-1, but not HSV-2, inhibited the binding of factor H and properdin but not of CR1 to C3b. The binding of iC3b to CR2, a molecule involved in B-cell activation and binding of the Epstein-Barr virus, was also inhibited by the HSV-1 protein. As factor H and properdin, the binding of which was inhibited by gC, are important regulators of the alternative complement pathway, these data further support a role of gC in the evasion of HSV from a major first-line host defence mechanism, i.e. the complement system. In addition, the inhibition of the C3/CR

  2. II. Detection of the Virus in Swine Tissues by Means of the Modified Direct Complement-Fixation Test

    PubMed Central

    Boulanger, P.; Bannister, G. L.; Gray, D. P.; Ruckerbauer, G. M.; Willis, N. G.

    1967-01-01

    The modified direct complement-fixation test, supplemented with unheated normal calf serum, was used to demonstrate antibodies in sera of swine immunized to African swine fever virus. These antibodies did not react in the ordinary direct non-supplemented complement-fixation test. African swine fever complement-fixing antigen in infected swine tissue is not denatured by extraction with fat solvents. Consequently, good antigens devoid of non-specific reactivity were obtained by extraction with a mixture of acetone and ether. The virus was detected in infected swine tissue harvested one day after beginning of pyrexia. The modified direct complement-fixation test demonstrated cross-reactions between the six strains of virus studied. PMID:4291680

  3. A complement-microglial axis drives synapse loss during virus-induced memory impairment.

    PubMed

    Vasek, Michael J; Garber, Charise; Dorsey, Denise; Durrant, Douglas M; Bollman, Bryan; Soung, Allison; Yu, Jinsheng; Perez-Torres, Carlos; Frouin, Arnaud; Wilton, Daniel K; Funk, Kristen; DeMasters, Bette K; Jiang, Xiaoping; Bowen, James R; Mennerick, Steven; Robinson, John K; Garbow, Joel R; Tyler, Kenneth L; Suthar, Mehul S; Schmidt, Robert E; Stevens, Beth; Klein, Robyn S

    2016-06-23

    Over 50% of patients who survive neuroinvasive infection with West Nile virus (WNV) exhibit chronic cognitive sequelae. Although thousands of cases of WNV-mediated memory dysfunction accrue annually, the mechanisms responsible for these impairments are unknown. The classical complement cascade, a key component of innate immune pathogen defence, mediates synaptic pruning by microglia during early postnatal development. Here we show that viral infection of adult hippocampal neurons induces complement-mediated elimination of presynaptic terminals in a murine WNV neuroinvasive disease model. Inoculation of WNV-NS5-E218A, a WNV with a mutant NS5(E218A) protein leads to survival rates and cognitive dysfunction that mirror human WNV neuroinvasive disease. WNV-NS5-E218A-recovered mice (recovery defined as survival after acute infection) display impaired spatial learning and persistence of phagocytic microglia without loss of hippocampal neurons or volume. Hippocampi from WNV-NS5-E218A-recovered mice with poor spatial learning show increased expression of genes that drive synaptic remodelling by microglia via complement. C1QA was upregulated and localized to microglia, infected neurons and presynaptic terminals during WNV neuroinvasive disease. Murine and human WNV neuroinvasive disease post-mortem samples exhibit loss of hippocampal CA3 presynaptic terminals, and murine studies revealed microglial engulfment of presynaptic terminals during acute infection and after recovery. Mice with fewer microglia (Il34(-/-) mice with a deficiency in IL-34 production) or deficiency in complement C3 or C3a receptor were protected from WNV-induced synaptic terminal loss. Our study provides a new murine model of WNV-induced spatial memory impairment, and identifies a potential mechanism underlying neurocognitive impairment in patients recovering from WNV neuroinvasive disease. PMID:27337340

  4. Effects of opsonization and gamma interferon on growth of Brucella melitensis 16M in mouse peritoneal macrophages in vitro.

    PubMed

    Eze, M O; Yuan, L; Crawford, R M; Paranavitana, C M; Hadfield, T L; Bhattacharjee, A K; Warren, R L; Hoover, D L

    2000-01-01

    Entry of opsonized pathogens into phagocytes may benefit or, paradoxically, harm the host. Opsonization may trigger antimicrobial mechanisms such as reactive oxygen or nitric oxide (NO) production but may also provide a safe haven for intracellular replication. Brucellae are natural intramacrophage pathogens of rodents, ruminants, dogs, marine mammals, and humans. We evaluated the role of opsonins in Brucella-macrophage interactions by challenging cultured murine peritoneal macrophages with Brucella melitensis 16M treated with complement- and/or antibody-rich serum. Mouse serum rich in antibody against Brucella lipopolysaccharide (LPS) (aLPS) and human complement-rich serum (HCS) each enhanced the macrophage uptake of brucellae. Combinations of suboptimal levels of aLPS (0. 01%) and HCS (2%) synergistically enhanced uptake. The intracellular fate of ingested bacteria was evaluated with an optimal concentration of gentamicin (2 microg/ml) to control extracellular growth but not kill intracellular bacteria. Bacteria opsonized with aLPS and/or HCS grew equally well inside macrophages in the absence of gamma interferon (IFN-gamma). Macrophage activation with IFN-gamma inhibited replication of both opsonized and nonopsonized brucellae but was less effective in inhibiting replication of nonopsonized bacteria. IFN-gamma treatment of macrophages with opsonized or nonopsonized bacteria enhanced NO production, which was blocked by N(G)-monomethyl L-arginine (MMLA), an NO synthesis inhibitor. MMLA also partially blocked IFN-gamma-mediated bacterial growth inhibition. These studies suggest that primary murine macrophages have limited ability to control infection with B. melitensis, even when activated by IFN-gamma in the presence of highly opsonic concentrations of antibody and complement. Additional cellular immune responses, e.g., those mediated by cytotoxic T cells, may play more important roles in the control of murine brucellosis. PMID:10603396

  5. Exploring the potential benefits of vaccinia virus complement control protein in controlling complement activation in pathogenesis of the central nervous system diseases.

    PubMed

    Kotwal, Girish J; Fernando, Nilisha; Zhou, Jianhua; Valter, Krisztina

    2014-10-01

    Aging is a major risk factor for the development of diseases related to the central nervous system (CNS), such as Alzheimer's disease (AD) and age-related macular degeneration (AMD). In both cases, linkage studies and genome-wide association studies found strong links with complement regulatory genes and disease risk. In AD, both CLU and CR1 genes were implicated in the late-onset form of the disease. In AMD, polymorphisms in CFH, CFB and C2 were similarly implicated. The cost of caring for patients with AD or AMD is approaching billions of dollars, and with the baby boomers reaching their 60's, this amount is likely to increase further. Intervention using complement inhibitors for individuals in their early 50s who are at a higher risk of disease development, (testing positive for genetic risk factors), could slow the progression of AD or AMD and possibly prevent the severity of late stage symptoms. Although we have used the vaccinia virus complement control protein (VCP) to elucidate the role of complement in CNS diseases, it has merely been an investigational tool but not the only possible potential therapeutic agent. PMID:25052409

  6. Bovine leukosis. V. Epidemiological study of bovine C-type virus by the use of the complement fixation test.

    PubMed Central

    Tabel, H; Chander, S; Van Der Maaten, M J; Miller, J M

    1976-01-01

    Persistent levels of serum antibodies to bovine C-type virus were demonstrated by the complement fixation test in cattle of a leukosis herd during an observation period of one and one half years. Using the same method, no antibodies were detected in a control herd. PMID:187302

  7. Cofilin contributes to phagocytosis of IgG-opsonized particles but not non-opsonized particles in RAW264 macrophages.

    PubMed

    Lu, Yanmeng; Cao, Lei; Egami, Youhei; Kawai, Katsuhisa; Araki, Nobukazu

    2016-06-01

    Cofilin is an actin-binding protein that severs actin filaments. It plays a key role in regulating actin cytoskeletal remodeling, thereby contributing to diverse cellular functions. However, the involvement of cofilin in phagocytosis remains to be elucidated. We examined the spatiotemporal localization of cofilin during phagocytosis of IgG-opsonized erythrocytes, IgG-opsonized latex beads and non-opsonized latex beads. Live-cell imaging showed that GFP-cofilin accumulates in the sites of IgG-opsonized particle binding and in phagocytic cups. Moreover, immunofluorescence microscopy revealed that endogenous cofilin localizes to phagocytic cups engulfing IgG-opsonized particles, but not non-opsonized latex beads. Scanning electron microscopy demonstrated a notable difference in morphology between phagocytic structures in IgG-dependent and IgG-independent phagocytosis. In phagocytosis of IgG-opsonized particles, sheet-like pseudopodia extended along the surface of IgG-opsonized particles to form phagocytic cups. In contrast, in opsonin-independent phagocytosis, long finger-like filopodia captured non-opsonized latex beads. Importantly, non-opsonized beads sank into the cells without extending phagocytic cups. Our analysis of cofilin mutant expression demonstrates that phagocytosis of IgG-opsonized particles is enhanced in cells expressing wild-type cofilin or active mutant cofilin-S3A, whereas the uptake of non-opsonized latex beads is not. These data suggest that cofilin promotes actin cytoskeletal remodeling to form phagocytic cups by accelerating actin turnover and thereby facilitating phagosome formation. In contrast, cofilin is not involved in opsonin-independent phagocytosis of latex beads. PMID:26754560

  8. Effect of complement depletion by cobra venom factor on fowlpox virus infection in chickens and chicken embryos.

    PubMed Central

    Ohta, H; Yoshikawa, Y; Kai, C; Yamanouchi, K; Taniguchi, H; Komine, K; Ishijima, Y; Okada, H

    1986-01-01

    The course of infection with an attenuated strain of fowlpox virus (FPV), which is known to induce antibody-independent activation of complement via the alternative pathway, was investigated in 1- to 3-day-old chickens and 14-day-old chicken embryos by treatment with cobra venom factor (CVF). CVF was found to inhibit complement activity transiently via the alternative pathway but not via the classical pathway. In chickens treated with CVF, virus growth in the skin was enhanced, and pock lesions tended to disseminate, leading to fatal infection in some birds. Histologically, an acute inflammation at an early stage of infection (within 3 days) was inhibited, and virus content in the pock lesion was increased. In chicken embryos with immature immune capacities, CVF treatment caused changes in pock morphology from clear pocks to diffuse ones, an increase in virus content in the pock, and inhibition of cell infiltration. Thus, FPV infection was aggravated in both CVF-treated chickens and chicken embryos. These results are discussed in relation to roles of complement in the elimination of virus at an early stage of FPV infection. Images PMID:3003397

  9. Complement Factor H and Simian Virus 40 bind the GM1 ganglioside in distinct conformations.

    PubMed

    Blaum, Bärbel S; Frank, Martin; Walker, Ross C; Neu, Ursula; Stehle, Thilo

    2016-05-01

    Mammalian cell surfaces are decorated with a variety of glycan chains that orchestrate development and defense and are exploited by pathogens for cellular attachment and entry. While glycosidic linkages are, in principle, flexible, the conformational space that a given glycan can sample is subject to spatial and electrostatic restrictions imposed by its overall chemical structure. Here, we show how the glycan moiety of the GM1 ganglioside, a branched, monosialylated pentasaccharide that serves as a ligand for various proteins, undergoes differential conformational selection in its interactions with different lectins. Using STD NMR and X-ray crystallography, we found that the innate immune regulator complement Factor H (FH) binds a previously not reported GM1 conformation that is not compatible with the GM1-binding sites of other structurally characterized GM1-binding lectins such as the Simian Virus 40 (SV40) capsid. Molecular dynamics simulations of the free glycan in explicit solvent on the 10 μs timescale reveal that the FH-bound conformation nevertheless corresponds to a minimum in the Gibbs free energy plot. In contrast to the GM1 conformation recognized by SV40, the FH-bound GM1 conformation is associated with poor NOE restraints, explaining how it escaped(1)H-(1)H NOE-restrained modeling in the past and highlighting the necessity for ensemble representations of glycan structures. PMID:26715202

  10. The Neutralizing Capacity of Antibodies Elicited by Parainfluenza Virus Infection of African Green Monkeys is Dependent on Complement

    PubMed Central

    Mayer, Anne E.; Johnson, John B.; Parks, Griffith D.

    2014-01-01

    The African Green Monkey (AGM) model was used to analyze the role of complement in neutralization of parainfluenza virus. Parainfluenza virus 5 (PIV5) and human parainfluenza virus type 2 were effectively neutralized in vitro by naïve AGM sera, but neutralizing capacity was lost by heat-inactivation. The mechanism of neutralization involved formation of massive aggregates, with no evidence of virion lysis. Following inoculation of the respiratory tract with a PIV5 vector expressing HIV gp160, AGM produced high levels of serum and tracheal antibodies against gp120 and the viral F and HN proteins. However, in the absence of complement these anti-PIV5 antibodies had very poor neutralizing capacity. Virions showed extensive deposition of IgG and C1q with post- but not pre-immune sera. These results highlight the importance of complement in the initial antibody response to parainfluenza viruses, with implications for understanding infant immune responses and design of vaccine strategies for these pediatric pathogens. PMID:25010267

  11. Epstein-Barr virus regulates activation and processing of the third component of complement.

    PubMed

    Mold, C; Bradt, B M; Nemerow, G R; Cooper, N R

    1988-09-01

    Serum incubated with purified EBV was found to contain C3 cleavage fragments characteristic of C3c. Since the cofactors necessary for such cleavage of C3b by factor I are not normally present in serum, EBV was tested for factor I cofactor activity. Purified EBV from both human and marmoset EBV-producing cell lines was found to act as a cofactor for the factor I-mediated breakdown C3b to iC3b and iC3b to C3c and C3dg. EBV also acted as a cofactor for the factor I-mediated cleavage of C4b to iC4b and iC4b to C4c and C4d. EBV from both the human and marmoset cell lines accelerated the decay of the alternative pathway C3 convertase. The classical pathway C3 convertase was unaffected. Multiple lines of evidence eliminated the possibility that marmoset or human CR1 was responsible for the functional activities of EBV preparations. The spectrum of activities was different from CR1 in that EBV and EBV-expressing cell lines failed to rosette with C3b or particles bearing C3b, the primary functional assay for CR1, and EBV did not accelerate classical pathway C3 convertase decay, another property of CR1. In addition, CR1 could not be detected immunologically on marmoset or human EBV-expressing cells and mAbs to CR1 failed to alter EBV-produced decay acceleration and factor I cofactor activities, although the antibodies blocked the same CR1-dependent functional activities. The multiple complement regulatory activities exhibited by purified EBV derived from human and marmoset cells differ from those of any of the known C3 or C4 regulatory proteins. These various activities would be anticipated to provide survival value for the virus by subverting complement- and cell-dependent host defense mechanisms. PMID:2844953

  12. Antifungal activity of the local complement system in cerebral aspergillosis.

    PubMed

    Rambach, Günter; Hagleitner, Magdalena; Mohsenipour, Iradj; Lass-Flörl, Cornelia; Maier, Hans; Würzner, Reinhard; Dierich, Manfred P; Speth, Cornelia

    2005-10-01

    Dissemination of aspergillosis into the central nervous system is associated with nearly 100% mortality. To study the reasons for the antifungal immune failure we analyzed the efficacy of cerebral complement to combat the fungus Aspergillus. Incubation of Aspergillus in non-inflammatory cerebrospinal fluid (CSF) revealed that complement levels were sufficient to obtain a deposition on the surface, but opsonization was much weaker than in serum. Consequently complement deposition from normal CSF on fungal surface stimulated a very low phagocytic activity of microglia, granulocytes, monocytes and macrophages compared to stimulation by conidia opsonized in serum. Similarly, opsonization of Aspergillus by CSF was not sufficient to induce an oxidative burst in infiltrating granulocytes, whereas conidia opsonized in serum induced a clear respiratory signal. Thus, granulocytes were capable of considerably reducing the viability of serum-opsonized Aspergillus conidia, but not of conidia opsonized in CSF. The limited efficacy of antifungal attack by cerebral complement can be partly compensated by enhanced synthesis, leading to elevated complement concentrations in CSF derived from a patient with cerebral aspergillosis. This inflammatory CSF was able to induce (i) a higher complement deposition on the Aspergillus surface than non-inflammatory CSF, (ii) an accumulation of complement activation products and (iii) an increase in phagocytic and killing activity of infiltrating granulocytes. However, levels and efficacy of the serum-derived complement were not reached. These data indicate that low local complement synthesis and activation may represent a central reason for the insufficient antifungal defense in the brain and the high mortality rate of cerebral aspergillosis. PMID:16027023

  13. Strategies developed by bacteria and virus for protection from the human complement system.

    PubMed

    Blom, A M

    2004-01-01

    The complement system is an important part of innate immunity providing immediate protection against pathogens without a need for previous exposure. Its importance is clearly shown by the fact that patients lacking complement components suffer from fulminant and recurring infections. Complement is an explosive cascade, and in order to control it there are inhibitors present on every human cell and also circulating in blood. However, many infectious agents have developed strategies to prevent clearance and destruction by complement. Some pathogens simply hijack the host's complement inhibitors, while others are able to produce their own homologues of human inhibitors. Knowledge of these mechanisms on a molecular level may aid development of vaccines and novel therapeutic strategies that would be more specific than the use of antibiotics that, apart from causing resistance problems, also affect the normal flora, the outcome of which could be devastating. In this study the structural requirements and functional consequences of interactions between the major soluble inhibitor of complement C4b-binding protein and Neisseria gonorrhoeae, Bordetella pertussis, Streptococcus pyogenes, Escherichia coli K1, Moraxella catarrhalis and Candida albicans are described. Furthermore, a novel inhibitor produced by Kaposi's sarcoma-associated herpesvirus is identified and characterized in detail: KCP. It is shown that KCP inhibits classical C3-convertase and presents activated complement factors C4b and C3b for destruction by a serine proteinase, factor I. Using molecular modelling and site-directed mutagenesis, it was possible to localize sites on the surface of KCP required for complement inhibition and it is concluded that KCP uses molecular mechanisms identical to human inhibitors. PMID:15276914

  14. In vitro inactivation of complement by a serum factor present in Junin-virus infected guinea-pigs.

    PubMed Central

    Rimoldi, M T; de Bracco, M M

    1980-01-01

    A serum factor(s) of guinea-pigs infected with Junin virus, the etiological agent of Argentine haemorrhagic fever, is endowed with a potent anticomplementary activity. It is resistant to heat (56 degrees, 30 min) and elutes from a Sephadex G-200 column between albumin and haemoglobin. It is ineffective in the presence of EDTA or EGTA and does not sediment at 82,000 g. It has no direct effect on C4 unless functional Cl is present. However, it induces Cl activation that consumes C4 haemolytic activity in normal human and guinea-pig sera. The evidence presented in this report demonstrates that the complement activation observed in experimental Argentine haemorrhagic fever is at least in part due to a direct effect of this serum factor on the classical complement pathway. PMID:6247264

  15. Complement-mediated binding of naturally glycosylated and glycosylation-modified human immunodeficiency virus type 1 to human CR2 (CD21).

    PubMed Central

    Montefiori, D C; Stewart, K; Ahearn, J M; Zhou, J; Zhou, J

    1993-01-01

    Particulate glycoproteins lacking sialic acid, such as desialylated enveloped viruses, readily activate complement through the alternative pathway. Human immunodeficiency virus type 1 (HIV-1) contains two heavily glycosylated and partially sialylated envelope glycoproteins: a surface gp120 and a transmembrane gp41. The abilities of naturally glycosylated HIV-1 and glycosylation-modified HIV-1 to interact with the complement system were examined with a biological assay which measured the binding of whole virus particles to cells expressing CR2 (CD21), the complement receptor found naturally in abundance on follicular dendritic cells and immature B cells. HIV-1 IIIB was synthesized in the presence or absence of the mannosidase II inhibitor, swainsonine, to give rise to high-mannose-type, nonsialylated, nonfucosylated carbohydrate moieties. The virus also was treated with neuraminidase or endo-beta-galactosidase to remove terminal sialic acids. An enzyme immunoassay specific for HIV-1 p24 core protein was used to quantitate the amount of virus bound to cell surfaces. Virus particles incubated with 1:3-diluted, fresh HIV-1-negative human serum as a source of complement readily bound to MT-2 (CD4+ CR2+) and Raji-3 (CD4- CR2+) cells but not to CEM (CD4+ CR2-) cells, suggesting that the virus bound to CR2 independently of CD4. Compared with heat-inactivated or C3-deficient sera, fresh complement increased binding by as much as 62 times for naturally glycosylated virus, and 5 times more than this for glycosylation-modified virus. Similar observations were made with freshly isolated, non-mitogen-stimulated peripheral blood mononuclear cells. Additional evidence that HIV-1 bound to CR2 independently of CD4 was provided by the fact that binding was blocked by monoclonal antibody OKB7 (anti-CR2) but not by OKT4a (anti-CD4). Also, the virus bound to transfected K562 cells (CD4-) which expressed recombinant human CR2 but did not bind to untransfected K562 cells. Results obtained

  16. Complementation analysis of triple gene block of Potato virus S (PVS) revealed its capability to support systemic infection and aphid transmissibility of recombinant Potato virus X.

    PubMed

    Matousek, Jaroslav; Schubert, Jörg; Dedic, Petr

    2009-12-01

    Triple gene block (TGB) sequences derived from isolates of ordinary Potato virus S (PVS-O) and Chenopodium-systemic (PVS-CS) were analyzed. Although the TGB sequences did not reveal any specific difference within the 7K protein, some specific differences within the 25K and 12K ORFs were found. In order to investigate a possible functional divergence of PVS-O and PVS-CS TGB variants, these genes were propagated in chimeric Potato virus X (PVX). Both PVS TGB variants partly complemented PVX TGB in Nicotiana benthamiana. The recombinant viruses multiplied to lower titer than the wild-type PVX in N. benthamiana showed attenuated symptoms. Whereas the recombinant PVX variants were also propagated systemically in Nicotiana glutinosa, Celosia argentea, Nicotiana occidentalis and chimeric PVX bearing TGB from PVS-O in Solanum lycopersicum, neither were propagated systemically in Chenopodium quinoa nor in Nicotiana tabacum cv. Samsun nn and the PVX-resistant Solanum tuberosum cv. Szignal. The potential for recombinant viruses to be transmitted by the aphid Myzus persicae was investigated. Aphid transmission in the recombinant virus was obtained by replacing PVX TGB by TGB from the PVS-CS isolate. These results show the potential function of Carlavirus TGB in aphid transmissibility and underlines the possible biological risks from certain recombinant virus variants. PMID:19748533

  17. Efficient, trans-complementing packaging systems for chimeric, pseudoinfectious dengue 2/yellow fever viruses

    SciTech Connect

    Shustov, Alexandr V.

    2010-04-25

    In our previous studies, we have stated to build a new strategy for developing defective, pseudoinfectious flaviviruses (PIVs) and applying them as a new type of vaccine candidates. PIVs combined the efficiency of live vaccines with the safety of inactivated or subunit vaccines. The results of the present work demonstrate further development of chimeric PIVs encoding dengue virus 2 (DEN2V) glycoproteins and yellow fever virus (YFV)-derived replicative machinery as potential vaccine candidates. The newly designed PIVs have synergistically functioning mutations in the prM and NS2A proteins, which abolish processing of the latter proteins and make the defective viruses capable of producing either only noninfectious, immature and/or subviral DEN2V particles. The PIV genomes can be packaged to high titers into infectious virions in vitro using the NS1-deficient YFV helper RNAs, and both PIVs and helpers can then be passaged as two-component genome viruses at an escalating scale.

  18. Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus

    PubMed Central

    Wall, Nicholas R.; Wickersham, Ian R.; Cetin, Ali; De La Parra, Mauricio; Callaway, Edward M.

    2010-01-01

    We describe a powerful system for revealing the direct monosynaptic inputs to specific cell types in Cre-expressing transgenic mice through the use of Cre-dependent helper virus and a modified rabies virus. We generated helper viruses that target gene expression to Cre-expressing cells, allowing us to control initial rabies virus infection and subsequent monosynaptic retrograde spread. Investigators can use this system to elucidate the connections onto a desired cell type in a high-throughput manner, limited only by the availability of Cre mouse lines. This method allows for identification of circuits that would be extremely tedious or impossible to study with other methods and can be used to build subcircuit maps of inputs onto many different types of cells within the same brain region. Furthermore, by expressing various transgenes from the rabies genome, this system also has the potential to allow manipulation of targeted neuronal circuits without perturbing neighboring cells. PMID:21115815

  19. Reciprocal function of movement proteins and complementation of long-distance movement of Cymbidium mosaic virus RNA by Odontoglossum ringspot virus coat protein.

    PubMed

    Ajjikuttira, Prabha; Loh, Chiang-Shiong; Wong, Sek-Man

    2005-05-01

    Complementation of movement and coat proteins of the orchid-infecting potexvirus Cymbidium mosaic virus (CymMV) and tobamovirus Odontoglossum ringspot virus (ORSV) was investigated. Nicotiana benthamiana, which is susceptible to both CymMV and ORSV, was used as a model system. Four transgenic lines, each harbouring one of the movement protein (MP) or coat protein (CP) genes of CymMV or ORSV, were constructed. The MP of CymMV consists of three overlapping open reading frames, together called the triple-gene block (TGB). CymMV and ORSV mutants, each carrying an inactivated MP or CP, were generated from the respective biologically active full-length cDNA clones. Complementation was studied by infecting transgenic plants with in vitro transcripts generated from these mutants. The cell-to-cell movement of a movement-deficient CymMV was restored in transgenic plants carrying the ORSV MP transgene. Similarly, CymMV TGB1 transgenic plants were able to rescue the cell-to-cell movement of a movement-deficient ORSV mutant. ORSV CP transgenic plants supported systemic movement of a CymMV CP-deficient mutant. However, in these plants, neither encapsidation of CymMV RNA with ORSV CP nor CymMV CP expression was detected. Long-distance movement of an ORSV CP-deficient mutant was not supported by CymMV CP. The complementation of MPs and CPs of CymMV and ORSV facilitates movement of these viruses in plants, except for long-distance movement of ORSV RNA by CymMV CP. PMID:15831968

  20. Giant virus with a remarkable complement of genes infects marine zooplankton

    PubMed Central

    Fischer, Matthias G.; Allen, Michael J.; Wilson, William H.; Suttle, Curtis A.

    2010-01-01

    As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine virus (≈730 kb of double-stranded DNA). The central 618-kb coding part of this AT-rich genome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 and 72 of them, respectively, and at least 274 genes were expressed during infection. The diverse coding potential of CroV includes predicted translation factors, DNA repair enzymes such as DNA mismatch repair protein MutS and two photolyases, multiple ubiquitin pathway components, four intein elements, and 22 tRNAs. Many genes including isoleucyl-tRNA synthetase, eIF-2γ, and an Elp3-like histone acetyltransferase are usually not found in viruses. We also discovered a 38-kb genomic region of putative bacterial origin, which encodes several predicted carbohydrate metabolizing enzymes, including an entire pathway for the biosynthesis of 3-deoxy-d-manno-octulosonate, a key component of the outer membrane in Gram-negative bacteria. Phylogenetic analysis indicates that CroV is a nucleocytoplasmic large DNA virus, with Acanthamoeba polyphaga mimivirus as its closest relative, although less than one-third of the genes of CroV have homologs in Mimivirus. CroV is a highly complex marine virus and the only virus studied in genetic detail that infects one of the major groups of predators in the oceans. PMID:20974979

  1. Giant virus with a remarkable complement of genes infects marine zooplankton.

    PubMed

    Fischer, Matthias G; Allen, Michael J; Wilson, William H; Suttle, Curtis A

    2010-11-01

    As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine virus (≈730 kb of double-stranded DNA). The central 618-kb coding part of this AT-rich genome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 and 72 of them, respectively, and at least 274 genes were expressed during infection. The diverse coding potential of CroV includes predicted translation factors, DNA repair enzymes such as DNA mismatch repair protein MutS and two photolyases, multiple ubiquitin pathway components, four intein elements, and 22 tRNAs. Many genes including isoleucyl-tRNA synthetase, eIF-2γ, and an Elp3-like histone acetyltransferase are usually not found in viruses. We also discovered a 38-kb genomic region of putative bacterial origin, which encodes several predicted carbohydrate metabolizing enzymes, including an entire pathway for the biosynthesis of 3-deoxy-d-manno-octulosonate, a key component of the outer membrane in Gram-negative bacteria. Phylogenetic analysis indicates that CroV is a nucleocytoplasmic large DNA virus, with Acanthamoeba polyphaga mimivirus as its closest relative, although less than one-third of the genes of CroV have homologs in Mimivirus. CroV is a highly complex marine virus and the only virus studied in genetic detail that infects one of the major groups of predators in the oceans. PMID:20974979

  2. Complement-Mediated Virus Infectivity Neutralisation by HLA Antibodies Is Associated with Sterilising Immunity to SIV Challenge in the Macaque Model for HIV/AIDS

    PubMed Central

    Robinson, Mark; Hassall, Mark; Cranage, Martin; Stott, James; Almond, Neil

    2014-01-01

    Sterilising immunity is a desired outcome for vaccination against human immunodeficiency virus (HIV) and has been observed in the macaque model using inactivated simian immunodeficiency virus (SIV). This protection was attributed to antibodies specific for cell proteins including human leucocyte antigens (HLA) class I and II incorporated into virions during vaccine and challenge virus preparation. We show here, using HLA bead arrays, that vaccinated macaques protected from virus challenge had higher serum antibody reactivity compared with non-protected animals. Moreover, reactivity was shown to be directed against HLA framework determinants. Previous studies failed to correlate serum antibody mediated virus neutralisation with protection and were confounded by cytotoxic effects. Using a virus entry assay based on TZM-bl cells we now report that, in the presence of complement, serum antibody titres that neutralise virus infectivity were higher in protected animals. We propose that complement-augmented virus neutralisation is a key factor in inducing sterilising immunity and may be difficult to achieve with HIV/SIV Env-based vaccines. Understanding how to overcome the apparent block of inactivated SIV vaccines to elicit anti-envelope protein antibodies that effectively engage the complement system could enable novel anti-HIV antibody vaccines that induce potent, virolytic serological response to be developed. PMID:24551145

  3. Epstein Barr virus/complement C3d receptor is an interferon alpha receptor.

    PubMed

    Delcayre, A X; Salas, F; Mathur, S; Kovats, K; Lotz, M; Lernhardt, W

    1991-04-01

    Interferon alpha contains a sequence motif similar to the complement receptor type two (CR2/CD21) binding site on complement fragment C3d. Antibodies against a peptide with the CR2 binding sequence on C3d react with a peptide carrying the IFN alpha CR2 binding motif (residues 92-99) and with recombinant IFN alpha. The IFN alpha-derived peptide, as well as recombinant IFN alpha, inhibits C3bi/C3d interaction with CR2 on the Burkitt lymphoma Raji. The direct interaction of IFN alpha and CR2 is inhibited by polyclonal anti-IFN alpha, anti-CR2 and anti-C3d peptide antibodies as well as by C3bi/C3d, EBV coat protein gp350/220 and IFN but not by IFN gamma. [125I]IFN alpha binding to Raji cells is inhibited by polyclonal anti-IFN alpha and anti-CR2 antibodies, by peptides with the CR2 binding motif and partially by C3bi/C3d. Monoclonal anti-CR2 antibody HB5, but not OKB-7, blocks IFN alpha binding to Raji cells. CR2 or CR2-like molecules may therefore be the major IFN alpha receptors on B lymphocytes. PMID:1849076

  4. Complement-Dependent Lysis of Influenza A Virus-Infected Cells by Broadly Cross-Reactive Human Monoclonal Antibodies ▿

    PubMed Central

    Terajima, Masanori; Cruz, John; Co, Mary Dawn T.; Lee, Jane-Hwei; Kaur, Kaval; Wilson, Patrick C.; Ennis, Francis A.

    2011-01-01

    We characterized human monoclonal antibodies (MAbs) cloned from influenza virus-infected patients and from influenza vaccine recipients by complement-dependent lysis (CDL) assay. Most MAbs active in CDL were neutralizing, but not all neutralizing MAbs can mediate CDL. Two of the three stalk-specific neutralizing MAbs tested were able to mediate CDL and were more cross-reactive to temporally distant H1N1 strains than the conventional hemagglutination-inhibiting and neutralizing MAbs. One of the stalk-specific MAbs was subtype cross-reactive to H1 and H2 hemagglutinins, suggesting a role for stalk-specific antibodies in protection against influenza illness, especially by a novel viral subtype which can cause pandemics. PMID:21994454

  5. Opsonic effect of equine plasma from different donors.

    PubMed

    Gröndahl, G; Johannisson, A; Jensen-Waern, M

    1997-06-16

    The ability of equine plasma from different donors to enhance phagocytic capacity was assessed in neutrophils obtained from seven foals, aged 7-8 days (Study A), and from seven adult horses (Study B). Neutrophils were allowed to phagocytize fluorescent yeast cells opsonized with plasma from one of three donors or with pooled serum, all previously frozen (-18 degrees C) and thawed. The results were analysed by flow cytometry. In study A, fresh autologous foal serum was also used for opsonization, and in study B, heat-inactivated plasma and pooled serum were used in addition to untreated samples. The plasma from donor GN induced a higher number of truly phagocytic neutrophils (mean 78%) than did plasma from donors GD (68%), OD (66%) and pooled serum (59%) when neutrophils from foals were used (p < 0.05). Similar results were obtained when adult neutrophils were used. Phagocytosis was markedly reduced with beat-inactivated plasma as a result of there being fewer phagocytic neutrophils and less phagocytized material per cell. The opsonic capacities of the autologous foal sera were lower than that of adult donor plasma in six out of seven foals. It is concluded that there is significant individual variation in the opsonic activity amongst plasma donors with similar serum IgG concentrations. The results were consistent irrespective of whether neutrophils from adults or foals were used. PMID:9226837

  6. Influence of growth temperature of Escherichia coli on K1 capsular antigen production and resistance to opsonization.

    PubMed Central

    Bortolussi, R; Ferrieri, P; Quie, P G

    1983-01-01

    When Escherichia coli strains that produce K1 capsular polysaccharide antigen at 37 degrees C were grown at 22 degrees C, K1 antigen was not detected in the supernatant or washed-cell fraction of broth cultures. Significant amounts of K1 polysaccharide were detected only when the organism was grown at temperatures of 30 degrees C or higher. Rabbits immunized with an E. coli K1 strain (serotype O18ac:K1:H7) grown at 37 degrees C produced agglutinating antibody to somatic antigen and precipitating and agglutinating antibody to capsular K1 antigen; those immunized with this strain grown at 22 degrees C produced antibody to somatic antigen, but not to K1 antigen. Antibody to somatic antigen was markedly reduced by adsorption with the organism grown at 22 degrees C, while antibody to capsular antigen was not. E. coli K1 strains grown at 37 degrees C (K1 present) resisted phagocytosis and killing if they were opsonized solely by the alternative complement pathway (ACP) using magnesium ethylene glycol-bis(beta-aminoethyl ether)-N,N-tetraacetic acid-chelated serum. When these strains were grown at 22 degrees C (K1 absent), they were opsonized efficiently by the ACP (28 versus 94% killing, respectively; P less than 0.001). In addition, a non-K1 mutant of an E. coli K1 strain was opsonized efficiently by the ACP although its encapsulated K1 parent was not. Sensitivity of E. coli strains to the bactericidal activity of serum was observed in strains with and without K1 capsular antigen. These studies demonstrated that production of K1 polysaccharide antigen was regulated by environmental temperature and that K1 capsule plays an essential role in rendering the organism resistant to opsonization by the ACP. PMID:6341228

  7. The hemagglutinin envelope protein of canine distemper virus (CDV) confers cell tropism as illustrated by CDV and measles virus complementation analysis.

    PubMed Central

    Stern, L B; Greenberg, M; Gershoni, J M; Rozenblatt, S

    1995-01-01

    Measles virus (MV) and canine distemper virus (CDV) are morbilliviruses that cause acute illnesses and several persistent central nervous system infections in humans and in dogs, respectively. Characteristically, the cytopathic effect of these viruses is the formation of syncytia in permissive cells. In this study, a vaccinia virus expression system was used to express MV and CDV hemagglutinin (HA) and fusion (F) envelope proteins. We found that cotransfecting F and HA genes of MV or F and HA genes of CDV resulted in extensive syncytium formation in permissive cells while transfecting either F or HA alone did not. Similar experiments with heterologous pairs of proteins, CDV-F with MV-HA or MV-F with CDV-HA, caused significant cell fusion in both cases. These results indicate that in this expression system, cell fusion requires both F and HA; however, the functions of these proteins are interchangeable between the two types of morbilliviruses. Human-mouse somatic hybrids were used to determine the human chromosome conferring susceptibility to either MV and CDV. Of the 12 hybrids screened, none were sensitive to MV. Two of the hybrids containing human chromosome 19 formed syncytia following CDV infection. In addition, these two hybrids underwent cell fusion when cotransfected with CDV-F and CDV-HA (but not MV-F and MV-HA) glycoproteins by using the vaccinia virus expression system. To discover the viral component responsible for cell specificity, complementation experiments coexpressing CDV-HA with MV-F or CDV-F with MV-HA in the CDV-sensitive hybrids were performed. We found that syncytia were formed only in the presence of CDV-HA. These results support the idea that the HA protein is responsible for cell tropism. Furthermore, while the F protein is necessary for the fusion process, it is interchangeable with the F protein from other morbilliviruses. PMID:7853502

  8. Complement-mediated neutralization of canine distemper virus in vitro: cross-reaction between vaccine Onderstepoort and field KDK-1 strains with different hemagglutinin gene characteristics.

    PubMed

    Mochizuki, Masami; Motoyoshi, Megumi; Maeda, Ken; Kai, Kazunari

    2002-07-01

    The properties of neutralization of antigens of canine distemper virus Onderstepoort and a recent field isolate, KDK-1, were investigated with strain-specific dog sera. A conventional neutralization assay indicated antigenic dissimilarity between the strains; however, when guinea pig complement was included in the reaction mixture, the strains were neutralized with not only the homologous but also the heterologous antibodies. PMID:12093697

  9. Complement-mediated 'bystander' damage initiates host NLRP3 inflammasome activation.

    PubMed

    Suresh, Rahul; Chandrasekaran, Prabha; Sutterwala, Fayyaz S; Mosser, David M

    2016-05-01

    Complement activation has long been associated with inflammation, primarily due to the elaboration of the complement anaphylotoxins C5a and C3a. In this work, we demonstrate that the phagocytosis of complement-opsonized particles promotes host inflammatory responses by a new mechanism that depends on the terminal complement components (C5b-C9). We demonstrate that during the phagocytosis of complement-opsonized particles, the membrane attack complex (MAC) of complement can be transferred from the activating particle to the macrophage plasma membrane by a 'bystander' mechanism. This MAC-mediated bystander damage initiates NLRP3 inflammasome activation, resulting in caspase-1 activation and IL-1β and IL-18 secretion. Inflammasome activation is not induced when macrophages phagocytize unopsonized particles or particles opsonized with serum deficient in one of the terminal complement components. The secretion of IL-1β and IL-18 by macrophages depends on NLRP3, ASC (also known as PYCARD) and caspase-1, as macrophages deficient in any one of these components fail to secrete these cytokines following phagocytosis. The phagocytosis of complement-opsonized particles increases leukocyte recruitment and promotes T helper 17 cell (TH17) biasing. These findings reveal a new mechanism by which complement promotes inflammation and regulates innate and adaptive immunity. PMID:27006116

  10. Rhesus and Human Cytomegalovirus Glycoprotein L Are Required for Infection and Cell-to-Cell Spread of Virus but Cannot Complement Each Other▿

    PubMed Central

    Bowman, J. Jason; Lacayo, Juan C.; Burbelo, Peter; Fischer, Elizabeth R.; Cohen, Jeffrey I.

    2011-01-01

    Rhesus cytomegalovirus (RhCMV), the homolog of human cytomegalovirus (HCMV), serves as a model for understanding the pathogenesis of HCMV and for developing candidate vaccines. In order to develop a replication-defective virus as a vaccine candidate, we constructed RhCMV with glycoprotein L (gL) deleted. RhCMV gL was essential for viral replication, and virus with gL deleted could only replicate in cells expressing RhCMV gL. Noncomplementing cells infected with RhCMV with gL deleted released intact, noninfectious RhCMV particles that were indistinguishable from wild-type RhCMV by electron microscopy and could be rescued by treatment of cells with polyethylene glycol. In addition, noncomplementing cells infected with RhCMV with gL deleted produced levels of gB, the major target of neutralizing antibodies, at levels similar to those observed in cells infected with wild-type RhCMV. Since RhCMV and HCMV gL share 53% amino acid identity, we determined whether the two proteins could complement the heterologous virus. Cells transfected with an HCMV bacterial artificial chromosome with gL deleted yielded virus that could replicate in human cells expressing HCMV gL. This is the second HCMV mutant with an essential glycoprotein deleted that has been complemented in cell culture. Finally, we found that HCMV gL could not complement the replication of RhCMV with gL deleted and that RhCMV gL could not complement the replication of HCMV with gL deleted. These data indicate that RhCMV and HCMV gL are both essential for replication of their corresponding viruses and, although the two gLs are highly homologous, they are unable to complement each another. PMID:21191007

  11. Complement System Part II: Role in Immunity

    PubMed Central

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  12. Adeno-Associated Virus Mediated Delivery of An Engineered Protein that Combines the Complement Inhibitory Properties of CD46, CD55 and CD59

    PubMed Central

    Leaderer, Derek; Cashman, Siobhan M.; Kumar-Singh, Rajendra

    2015-01-01

    Background A variety of disorders are associated with the activation of complement. CD46, CD55 and CD59 are the major membrane associated regulators of complement on human cells. Previously, we have found that independent expression of CD55, CD46 or CD59 through gene transfer protects murine tissues against human complement mediated attack. Herein we investigated the potential of combining the complement regulatory properties of CD46, CD55 and CD59 into single gene products expressed from an adeno-associated virus (AAV) vector in a soluble non-membrane anchored form. Methods Minigenes encoding the complement regulatory domains from CD46, CD55 and CD59 (SACT) or CD55 and CD59 (DTAC) were cloned into an AAV vector. The specific regulatory activity of each component of SACT and DTAC was measured in vitro. The recombinant AAV vectors were injected into the peritoneum of mice and the efficacy of the transgene products for being able to protect murine liver vasculature against human complement, specifically the membrane attack complex (MAC) was measured. Results SACT and DTAC exhibited properties similar to CD46, CD55 and CD59 or CD55 and CD59 respectively in vitro. AAV mediated delivery of SACT or DTAC protected murine liver vasculature from human MAC deposition by 63.2% and 56.7% respectively. Conclusions When delivered to mice in vivo via an AAV vector, SACT and DTAC are capable of limiting human complement mediated damage. SACT and DTAC merit further study as potential therapies for complement mediated disorders when delivered via a gene therapy approach. PMID:25917932

  13. Degradation of Complement 3 by Streptococcal Pyrogenic Exotoxin B Inhibits Complement Activation and Neutrophil Opsonophagocytosis▿

    PubMed Central

    Kuo, Chih-Feng; Lin, Yee-Shin; Chuang, Woei-Jer; Wu, Jiunn-Jong; Tsao, Nina

    2008-01-01

    Streptococcal pyrogenic exotoxin B (SPE B), a cysteine protease, is an important virulence factor in group A streptococcus (GAS) infection. The inhibition of phagocytic activity by SPE B may help prevent bacteria from being ingested. In this study, we examined the mechanism SPE B uses to enable bacteria to resist opsonophagocytosis. Using an enzyme-linked immunosorbent assay, we found that SPE B-treated serum impaired the activation of the classical, the lectin, and the alternative complement pathways. In contrast, C192S, a SPE B mutant lacking protease activity, had no effect on complement activation. Further study showed that cleavage of serum C3 by SPE B, but not C192S, blocked zymosan-induced production of reactive oxygen species in neutrophils as a result of decreased deposition of C3 fragments on the zymosan surface. Reconstitution of C3 into SPE B-treated serum unblocked zymosan-mediated neutrophil activation dose dependently. SPE B-treated, but not C192S-treated, serum also impaired opsonization of C3 fragments on the surface of GAS strain A20. Moreover, the amount of C3 fragments on the A20 cell surface, a SPE B-producing strain, was less than that on its isogenic mutant strain, SW507, after opsonization with normal serum. A20 opsonized with SPE B-treated serum was more resistant to neutrophil killing than A20 opsonized with normal serum, and SPE B-mediated resistance was C3 dependent. These results suggest a novel SPE B mechanism, one which degrades serum C3 and enables GAS to resist complement damage and opsonophagocytosis. PMID:18174338

  14. Sundanese Complementation

    ERIC Educational Resources Information Center

    Kurniawan, Eri

    2013-01-01

    The focus of this thesis is the description and analysis of clausal complementation in Sundanese, an Austronesian language spoken in Indonesia. The thesis examined a range of clausal complement types in Sundanese, which consists of (i) "yen/(wi)rehna" "that" complements, (ii) "pikeun" "for" complements,…

  15. Measles virus-induced down-regulation of CD46 is associated with enhanced sensitivity to complement-mediated lysis of infected cells.

    PubMed

    Schnorr, J J; Dunster, L M; Nanan, R; Schneider-Schaulies, J; Schneider-Schaulies, S; ter Meulen, V

    1995-04-01

    CD46, the major component of the measles virus (MV) receptor complex and a member of the regulators of complement activity (RCA) gene cluster, is down-regulated in MV-infected cells. We investigated whether the reduction of surface CD46 correlates with enhanced sensitivity of lymphoid and monocytic cells to lysis by activated complement. On human U937 cells, acutely or persistently infected with MV-Edmonston (ED) vaccine strain, infection-dependent down-regulation of CD46 confers sensitivity to activated complement, regardless of the pathway of activation and the specificity of the activating antibodies. Interestingly, down-regulation of CD46 alone is sufficient to confer susceptibility of cells to complement lysis despite the continued surface expression of other RCA proteins such as CD35 and CD55. In primary cultures, both peripheral blood lymphocytes and macrophages are efficiently lysed in the presence of complement activated via the alternative pathway after MV infection. In contrast to the MV-ED infection, infection of cells with the lymphotropic MV wild-type strain WTF does not down-regulate CD46. Cells infected with MV-WTF do not exhibit enhanced susceptibility to complement lysis. These data suggest that MV strains similar to WTF that do not down-regulate CD46 may have an enhanced potential for replication and dissemination within the human host, whereas complement-mediated elimination of cells infected with CD46-down-regulating strains of MV, such as ED, may limit the spread of MV infection, and could thus represent an attenuating factor for MV. PMID:7737301

  16. Mutation of the Dominant Endocytosis Motif in Human Immunodeficiency Virus Type 1 gp41 Can Complement Matrix Mutations without Increasing Env Incorporation

    PubMed Central

    West, John T.; Weldon, Sally K.; Wyss, Stephanie; Lin, Xiaoxu; Yu, Qin; Thali, Markus; Hunter, Eric

    2002-01-01

    The human immunodeficiency virus type 1 transmembrane glycoprotein (TM) is efficiently endocytosed in a clathrin-dependent manner. Internalization is mediated by a tyrosine-containing motif within the cytoplasmic domain, and replacement of the cytoplasmic tyrosine by cysteine or phenylalanine increased expression of mutant glycoprotein on the surface of transfected cells by as much as 2.5-fold. Because interactions between the cytoplasmic domain of Env and the matrix protein (MA) have been suggested to mediate incorporation of Env in virus particles, we examined whether perturbation of endocytosis would alter incorporation. Proviruses were constructed to contain the wild-type or mutant Env in conjunction with point mutations in MA that had previously been shown to block Env incorporation. These constructs were used to evaluate the effect of glycoprotein endocytosis on incorporation into virus particles and to test the necessity for a specific interaction between Env and MA to mediate incorporation. Viruses produced from transfected 293T cells were used to infect various cell lines, including MAGI, H9, and CEMx174. Viruses encoding both a disrupted endocytosis motif signal and mutations within MA were significantly more infectious in MAGI cells than their counterparts encoding a mutant MA and wild-type Env. This complementation of infectivity for the MA incorporation mutant viruses was not due to increased glycoprotein incorporation into particles but instead reflected an enhanced fusogenicity of the mutated Env proteins. Our findings further support the concept that a specific interaction between the long cytoplasmic domain of TM and MA is required for efficient incorporation of Env into assembling virions. Alteration of the endocytosis signal of Env, and the resulting increase in cell surface glycoprotein, has no effect on incorporation despite demonstrable effects on fusion, virus entry, and infectivity. PMID:11884559

  17. Heterologous expression of viral suppressors of RNA silencing complements virulence of the HC-Pro mutant of clover yellow vein virus in pea.

    PubMed

    Atsumi, Go; Nakahara, Kenji S; Wada, Tomoko Sugikawa; Choi, Sun Hee; Masuta, Chikara; Uyeda, Ichiro

    2012-06-01

    Many plant viruses encode suppressors of RNA silencing, including the helper component-proteinase (HC-Pro) of potyviruses. Our previous studies showed that a D-to-Y mutation at amino acid position 193 in HC-Pro (HC-Pro-D193Y) drastically attenuated the virulence of clover yellow vein virus (ClYVV) in legume plants. Furthermore, RNA-silencing suppression (RSS) activity of HC-Pro-D193Y was significantly reduced in Nicotiana benthamiana. Here, we examine the effect of expression of heterologous suppressors of RNA silencing, i.e., tomato bushy stunt virus p19, cucumber mosaic virus 2b, and their mutants, on the virulence of the ClYVV point mutant with D193Y (Cl-D193Y) in pea. P19 and 2b fully and partially complemented Cl-D193Y multiplication and virulence, including lethal systemic HR in pea, respectively, but the P19 and 2b mutants with defects in their RSS activity did not. Our findings strongly suggest that the D193Y mutation exclusively affects RSS activity of HC-Pro and that RSS activity is necessary for ClYVV multiplication and virulence in pea. PMID:22398917

  18. Identification of a purified complement-fixing antigen as the Epstein-Barr-virus determined nuclear antigen (EBNA) by its binding to metaphase chromosomes.

    PubMed

    Ohno, S; Luka, J; Lindahl, T; Klein, G

    1977-04-01

    A soluble complement-fixing antigen carried by Epstein-Barr virus (EBV)-transformed human cells has been previously extracted from cell nuclei and purified by DNA-cellulose chromatography [Luka, J., Siegert, W. & Klein, G. (1977) J. Virol., in press]. On addition of this antigen to methanol/acetic acid-fixed metaphase chrmosomes, followed by exposure to human sera containing antibodies against the EBV-determined nuclear antigen (EBNA), brilliant positive staining was obtained by anti-complement immunofluorescence. There was no staining after exposure to EBV-negative sera. Moreover, a nuclear protein fraction, prepared from an EBV-negative cell line in an analogous fashion, failed to induce the staining reaction. These data identify the soluble purified antigen as the EBV-determined nuclear antigen. The purified antigen has a molecular weight of 174,000 +/- 15,000, as determined by sucrose gradient centrifugation and gel filtration experiments. In neutral buffers containing 0.5-1.0 M NaCl, the antigen dissociates into a form of approximately one-half the original molecular weight with retained complement-fixing activity. This "monomer" has a molecular weight of 98,000 +/- 8,000. PMID:67603

  19. Complement Test

    MedlinePlus

    ... helpful? Also known as: C1; C1q; C2; C3; C4; CH50; CH100 (among others) Formal name: Complement Activity; ... whether the system is functioning normally. C3 and C4 are the most frequently measured complement proteins. Total ...

  20. Porcine complement regulatory protein CD46 and heparan sulfates are the major factors for classical swine fever virus attachment in vitro.

    PubMed

    Dräger, Carolin; Beer, Martin; Blome, Sandra

    2015-03-01

    Classical swine fever virus (CSFV) is the causative agent of a severe multi-systemic disease of pigs. While several aspects of virus-host-interaction are known, the early steps of infection remain unclear. For the closely related bovine viral diarrhea virus (BVDV), a cellular receptor is known: bovine complement regulatory protein CD46. Given that these two pestiviruses are closely related, porcine CD46 is also a candidate receptor for CSFV. In addition to CD46, cell-culture-adapted CSFV strains have been shown to use heparan sulfates as an additional cellular factor. In the present study, the interaction of field-type and cell-culture-adapted CSFV with a permanent porcine cell line or primary macrophages was assessed using anti-porcine CD46 monoclonal antibodies and a heparan-sulfate-blocking compound, DSTP-27. The influence of receptor blocking was assessed using virus titration and quantitative PCR. Treatment of cells with monoclonal antibodies against porcine CD46 led to a reduction of viral growth in both cell types. The effect was most pronounced with field-type CSFV. The blocking could be enhanced by addition of DSTP-27, especially for cell-culture-adapted CSFV. The combined use of both blocking agents led to a significant reduction of viral growth but was also not able to abolish infection completely. The results obtained in this study showed that both porcine CD46 and heparan sulfates play a major role in the initial steps of CSFV infection. Additional receptors might also play a role for attachment and entry; however, their impact is obviously limited in vitro in comparison to CD46 and heparan sulfates. PMID:25559665

  1. Orientation-specific cis complementation by bulge- and loop-mutated human immunodeficiency virus type 1 TAR RNAs.

    PubMed

    Braddock, M; Powell, R; Sutton, J; Kingsman, A J; Kingsman, S M

    1994-12-01

    Tat activates human immunodeficiency type 1 gene expression by binding to TAR RNA. TAR comprises a partially base paired stem and hexanucleotide loop with a tripyrimidine bulge in the upper stem. In vitro, Tat binds to the bulge and upper stem, with no requirement for the loop. However, in vivo, loop sequences are critical for activation, implying that a loop binding cellular factor may be involved in the activation pathway. Given that activation appears to be a two-component system comprising a Tat-bulge interaction and a cellular factor-loop interaction, we considered that it might be possible to spatially separate the two components and retain activation. We have constructed a series of double TAR elements comprising various combinations of mutated TAR structures. Defective TARs with nucleotide substitutions in either the bulge or the loop complemented each other to give wild-type activation. However, the complementation was orientation specific, requiring the intact Tat binding site to reside on the 5'-proximal TAR. These data suggest that provided the wild-type orientation of the bulge and loop elements is retained, there is no requirement for them to coexist on the same TAR structure. PMID:7966633

  2. Interaction between Epstein-Barr virus and a T cell line (HSB-2) via a receptor phenotypically distinct from complement receptor type 2.

    PubMed

    Hedrick, J A; Watry, D; Speiser, C; O'Donnell, P; Lambris, J D; Tsoukas, C D

    1992-05-01

    Epstein-Barr virus (EBV), the causative agent of mononucleosis and several human cancers, infects cells via complement receptor type 2 (CR2, CD21) which also serves as the receptor for the third complement component, C3. Expression of this receptor is restricted to B lymphocytes, immature thymocytes, and certain epithelial cells. In the present investigation; we describe the presence of a seemingly novel EBV receptor which is phenotypically distinct from CR2. Among various leukemic T cells studied, one, HSB-2, demonstrates no reactivity to several anti-CR2 antibodies, yet it reacts strongly with EBV as detected by incubation with biotin-conjugated virus and streptavidin-phycoerythrin. The virus binding is specific as demonstrated by blocking with anti-EBV antibodies and with non-conjugated virus. Aggregated C3 also binds HSB-2 and is capable of partially inhibiting EBV binding. The absence of CR2 on HSB-2 is further supported by the lack of expression of specific mRNA, assessed by Northern blotting analysis and polymerase chain reaction. Viral internalization and infection is demonstrated with electron microscopy, with detection of EBV-DNA by Southern blotting, and with detection of EBNA-1 transcripts by the polymerase chain reaction. Even though HSB-2 does not express CR2, it nevertheless displays transcripts which have some homology to a CR2 cDNA probe under low stringency hybridization conditions. This probe encompasses approximately the N-terminal half of CR2 which includes the EBV-binding epitope(s). The HSB-2 message is 5.2 kb, a size distinct from the 4.7-kb message of B cell CR2s. In contrast, the 5.2-kb message in not seen, under similar hybridization conditions, with a probe comprising the C-terminal half of CR2. Collectively, the data indicate that a receptor molecule having distinct phenotypic characteristics from the known CR2 protein on B cells is utilized by EBV to target human T lymphocytes. PMID:1315687

  3. Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion

    PubMed Central

    Atanasiu, Doina; Whitbeck, J. Charles; Cairns, Tina M.; Reilly, Brigid; Cohen, Gary H.; Eisenberg, Roselyn J.

    2007-01-01

    Herpes simplex virus entry into cells requires four glycoproteins, gB, gD, gH, and gL. Binding of gD to one of its receptors triggers steps requiring the core fusion proteins, gB and the gH/gL heterodimer. There is evidence that gH/gL initiates hemifusion of cells, but whether this complex interacts physically with gB to cause complete fusion is unknown. We used bimolecular complementation (BiMC) of enhanced yellow fluorescent protein (EYFP) to detect glycoprotein interactions during cell–cell fusion. The N- or C-terminal half of EYFP was fused to the C terminus of gD, gB, and gH to form six chimeric proteins (Dn, Dc, Bn, Bc, Hn, and Hc). BiMC was detected by confocal microscopy. Receptor-bearing (C10) cells cotransfected with Dn and Bc or Dn, Hc, and untagged gL exhibited EYFP fluorescence, indicative of interactions between gD and gB and between gD and gH/gL. EYFP complementation did not occur in cells transfected with gL, Bc, and Hn. However, when gD was coexpressed with these other three proteins, cell–cell fusion occurred and the syncytia exhibited bright EYFP fluorescence. To separate glycoprotein expression from fusion, we transfected C10 cells with gL, Bc, and Hn for 20 h and then added soluble gD to trigger fusion. We detected fluorescent syncytia within 10 min, and both their number and size increased with exposure time to gD. Thus, when gD binds its receptor, the core fusion machinery is triggered to form a multiprotein complex as a step in fusion and possibly virus entry. PMID:18003913

  4. Isolating the Epstein-Barr virus gp350/220 binding site on complement receptor type 2 (CR2/CD21).

    PubMed

    Young, Kendra A; Chen, Xiaojiang S; Holers, V Michael; Hannan, Jonathan P

    2007-12-14

    Complement receptor type 2 (CR2/CD21) is essential for the attachment of Epstein-Barr virus (EBV) to the surface of B-lymphocytes in an interaction mediated by the viral envelope glycoprotein gp350. The heavily glycosylated structure of EBV gp350 has recently been elucidated by x-ray crystallography, and the CR2 binding site on this protein has been characterized. To identify the corresponding gp350 binding site on CR2, we have undertaken a site-directed mutagenesis study targeting regions of CR2 that have previously been implicated in the binding of CR2 to the C3d/C3dg fragments of complement component C3. Wild-type or mutant forms of CR2 were expressed on K562 cells, and the ability of these CR2-expressing cells to bind gp350 was measured using flow cytometry. Mutations directed toward the two N-terminal extracellular domains of CR2 (SCR1-2) reveal that a large contiguous surface of CR2 SCR1-2 is involved in gp350 binding, including a number of positively charged residues (Arg-13, (Arg-28, (Arg-36, Lys-41, Lys-57, Lys-67, and Arg-83). These data appear to complement the CR2 binding site on gp350, which is characterized by a preponderance of negative charge. In addition to identifying the importance of charge in the formation of a CR2-gp350 complex, we also provide evidence that both SCR1 and SCR2 make contact with gp350. Specifically, two anti-CR2 monoclonal antibodies, designated as monoclonal antibodies 171 and 1048 whose primary epitopes are located within SCR2, inhibit binding of wild-type CR2 to EBV gp350; with regard to SCR1, both K562 cells expressing an S15P mutation and recombinant S15P CR2 proteins exhibit diminished gp350 binding. PMID:17925391

  5. Upregulation of MicroRNA-146a by Hepatitis B Virus X Protein Contributes to Hepatitis Development by Downregulating Complement Factor H

    PubMed Central

    Li, Jun-Feng; Dai, Xiao-Peng; Zhang, Wei; Sun, Shi-Hui; Zeng, Yang; Zhao, Guang-Yu; Kou, Zhi-Hua; Guo, Yan; Yu, Hong; Du, Lan-Ying; Jiang, Shi-Bo

    2015-01-01

    ABSTRACT Hepatic injuries in hepatitis B virus (HBV) patients are caused by immune responses of the host. In our previous study, microRNA-146a (miR-146a), an innate immunity-related miRNA, and complement factor H (CFH), an important negative regulator of the alternative pathway of complement activation, were differentially expressed in HBV-expressing and HBV-free hepatocytes. Here, the roles of these factors in HBV-related liver inflammation were analyzed in detail. The expression levels of miR-146a and CFH in HBV-expressing hepatocytes were assessed via analyses of hepatocyte cell lines, transgenic mice, adenovirus-infected mice, and HBV-positive human liver samples. The expression level of miR-146a was upregulated in HBV-expressing Huh-7 hepatocytes, HBV-expressing mice, and patients with HBV infection. Further results demonstrated that the HBV X protein (HBx) was responsible for its effects on miR-146a expression through NF-κB-mediated enhancement of miR-146a promoter activity. HBV/HBx also downregulated the expression of CFH mRNA in hepatocyte cell lines and the livers of humans and transgenic mice. Furthermore, overexpression and inhibition of miR-146a in Huh-7 cells downregulated and upregulated CFH mRNA levels, respectively. Luciferase reporter assays demonstrated that miR-146a downregulated CFH mRNA expression in hepatocytes via 3′-untranslated-region (UTR) pairing. The overall effect of this process in vivo is to promote liver inflammation. These results demonstrate that the HBx–miR-146a–CFH–complement activation regulation pathway might play an important role in the immunopathogenesis of chronic HBV infection. These findings have important implications for understanding the immunopathogenesis of chronic hepatitis B and developing effective therapeutic interventions. PMID:25805734

  6. Optimal Long-Term Humoral Responses to Replication-Defective Herpes Simplex Virus Require CD21/CD35 Complement Receptor Expression on Stromal Cells

    PubMed Central

    Brockman, Mark A.; Verschoor, Admar; Zhu, Jia; Carroll, Michael C.; Knipe, David M.

    2006-01-01

    Replication-defective herpes simplex virus (HSV) strains elicit durable immune responses and protect against virulent HSV challenge in mice, despite being unable to establish latent infection in neuronal cells. Mechanisms for generating long-lived immunity in the absence of viral persistence remain uncertain. In animals immunized with replication-defective HSV, durable serum immunoglobulin G (IgG) responses were elicited. Surprisingly, Western blot analyses revealed that the specificities of antiviral IgG changed over time, and antibody reactivity to some viral proteins was detected only very late. Thus, some of the durable IgG activity appeared to be contributed by either new or significantly enhanced antibody responses at late times. Following immunization, radiation bone marrow-chimeric mice lacking complement receptors CD21 and CD35 on stromal cells elicited only short-lived serum IgG and failed to mount recall responses to subsequent HSV exposure. Our results suggest that complement-mediated retention of viral antigens by stromal cells, such as follicular dendritic cells, is critical for optimal maintenance of antibody responses and B-cell memory following vaccination with replication-defective HSV. PMID:16809316

  7. Absence of interaction of genomic components and complementation between Mungbean yellow mosaic India virus isolates in cowpea.

    PubMed

    Surendranath, B; Usharani, K S; Nagma, A; Victoria, A K; Malathi, V G

    2005-09-01

    Agroinoculations were performed with DNA A and DNA B components of Mungbean yellow mosaic India virus (MYMIV) isolates differing in their infectivity on cowpea. Exchange of genomic components of the MYMIV isolates occurred in all the leguminous species but not in cowpea. Extremely low viral DNA accumulation and atypical leaf curl symptoms produced by reassortants in cowpea suggest barriers both for replication and systemic movement despite genetic similarity. PMID:15931466

  8. Complete nucleotide sequence, genome organization, and biological properties of human immunodeficiency virus type 1 in vivo: evidence for limited defectiveness and complementation.

    PubMed Central

    Li, Y; Hui, H; Burgess, C J; Price, R W; Sharp, P M; Hahn, B H; Shaw, G M

    1992-01-01

    Previous studies of the genetic and biologic characteristics of human immunodeficiency virus type 1 (HIV-1) have by necessity used tissue culture-derived virus. We recently reported the molecular cloning of four full-length HIV-1 genomes directly from uncultured human brain tissue (Y. Li, J. C. Kappes, J. A. Conway, R. W. Price, G. M. Shaw, and B. H. Hahn, J. Virol. 65:3973-3985, 1991). In this report, we describe the biologic properties of these four clones and the complete nucleotide sequences and genome organization of two of them. Clones HIV-1YU-2 and HIV-1YU-10 were 9,174 and 9,176 nucleotides in length, differed by 0.26% in nucleotide sequence, and except for a frameshift mutation in the pol gene in HIV-1YU-10, contained open reading frames corresponding to 5'-gag-pol-vif-vpr-tat-rev-vpu-env-nef-3' flanked by long terminal repeats. HIV-1YU-2 was fully replication competent, while HIV-1YU-10 and two other clones, HIV-1YU-21 and HIV-1YU-32, were defective. All three defective clones, however, when transfected into Cos-1 cells in any pairwise combination, yielded virions that were replication competent and transmissible by cell-free passage. The cellular host range of HIV-1YU-2 was strictly limited to primary T lymphocytes and monocyte-macrophages, a property conferred by its external envelope glycoprotein. Phylogenetic analyses of HIV-1YU-2 gene sequences revealed this virus to be a member of the North American/European HIV-1 subgroup, with specific similarity to other monocyte-tropic viruses in its V3 envelope amino acid sequence. These results indicate that HIV-1 infection of brain is characterized by the persistence of mixtures of fully competent, minimally defective, and more substantially altered viral forms and that complementation among them is readily attainable. In addition, the limited degree of genotypic heterogeneity observed among HIV-1YU and other brain-derived viruses and their preferential tropism for monocyte-macrophages suggest that viral

  9. Type-Specific Opsonic Antibodies in Streptococcal Pyoderma

    PubMed Central

    Bisno, Alan L.; Nelson, Kenrad E.

    1974-01-01

    Prospective studies of streptococcal pyoderma were carried out among black children enrolled in Project Headstart centers in Holmes County, Miss. Sera collected from 28 of these children in early October were tested for opsonic antibodies to one of two prevalent skin strains of group A streptococci isolated from them on one or more occasions over the preceding 3 months. The two streptococcal strains (A and B) belong to M-types previously unrecognized. Ten subjects (36%) had antibody to their homologous serotypes detectable by the indirect bactericidal test: this included 6 of 10 subjects infected with strain B but only 4 of 18 infected with strain A (P < 0.05). Of 17 children who had strains A or B isolated from skin lesions only, 12% developed type-specific antibodies (TSA) against the infecting serotype. In contrast, 11 subjects had these strains isolated from throat cultures (either with or without associated pyoderma), and 72% had detectable TSA (P < 0.01). There was no demonstrable relationship between the development of antibodies to streptococcal extracellular products or to non-type-specific cellular antigens and the development of TSA. These results demonstrate that type-specific immune responses do occur following infection with pyoderma streptococci. The frequency with which such antibodies develop is variable and appears related to a number of factors, including the immunologic properties of the infecting strain and the site of bacterial colonization. Pharyngeal carriage may represent an important mechanism for development of acquired immunity to skin strains of group A streptococci. PMID:4435959

  10. Opsonic activity of a new intravenous immunoglobulin preparation: Pentaglobin compared with sandoglobulin.

    PubMed Central

    Garbett, N D; Munro, C S; Cole, P J

    1989-01-01

    Standard preparations of immunoglobulin for intravenous use consist predominantly of IgG (greater than 95%). We have compared the ability of a standard preparation (Sandoglobulin) with that of a new preparation (Pentaglobin, containing 12% IgM and 12% IgA) to improve the opsonic activity of antibody-deficient human sera in vitro. Panhypogammaglobulinaemic sera were poorly opsonic for five of six organisms tested, particularly Pseudomonas aeruginosa, Escherichia coli and Streptococcus pneumoniae, but opsonized Staphylococcus aureus almost normally. Both immunoglobulin preparations significantly improved the opsonic activity of the antibody-deficient sera for most organisms. The major difference between the two preparations was the ability of Pentaglobin to supply opsonins for P. aeruginosa, E. coli and Klebsiella pneumoniae, while Sandogloblin was significantly more potent in opsonins for Haemophilus influenzae. Pentaglobin demonstrates significant in vitro opsonic activity, particularly for enterobacteria (coliforms) and P. aeruginosa. Its content of IgM antibodies appears to confer special properties on Pentaglobin not seen with standard preparations of immunoglobulin for intravenous use. Its place in clinical practice remains to be determined but it may have a possible role in augmenting host defence mechanisms in Gram-negative septicaemia. PMID:2500275

  11. An AGM Model for Changes in Complement during Pregnancy: Neutralization of Influenza Virus by Serum Is Diminished in Late Third Trimester

    PubMed Central

    Mayer, Anne E.; Parks, Griffith D.

    2014-01-01

    Pregnant women in the third trimester are at increased risk of severe influenza disease relative to the general population, though mechanisms behind this are not completely understood. The immune response to influenza infection employs both complement (C′) and antibody (Ab). The relative contributions of these components to the anti-viral response are difficult to dissect because most humans have pre-existing influenza-specific Abs. We developed the African green monkey (AGM) as a tractable nonhuman primate model to study changes in systemic innate immunity to influenza during pregnancy. Because the AGMs were influenza-naïve, we were able to examine the role of C′ in influenza virus neutralization using serum from non-pregnant animals before and after influenza infection. We determined that serum from naïve AGMs neutralized influenza via C′, while post-infection neutralization did not require C′, suggesting an Ab-mediated mechanism. The latter mimicked neutralization using human serum. Further, we found that ex vivo neutralization of influenza with both naïve and influenza-immune AGM serum occurred by virus particle aggregation and lysis, with immune serum lysing virus at a much higher rate than naïve serum. We hypothesized that the anti-influenza C′ response would diminish late in AGM pregnancy, corresponding with the time when pregnant women suffer increased influenza severity. We found that influenza neutralization capacity is significantly diminished in serum collected late in the third trimester. Strikingly, we found that circulating levels of C3, C3a, and C4 are diminished late in gestation relative to nonpregnant animals, and while neutralization capacity and serum C3a return to normal shortly after parturition, C3 and C4 levels do not. This AGM model system will enable further studies of the role of physiologic and hormonal changes in downregulating C′-mediated anti-viral immunity during pregnancy, and it will permit the identification of

  12. Low-dose autologous in vitro opsonized erythrocytes. Radioimmune method and autologous opsonized erythrocytes for refractory autoimmune thrombocytopenic purpura in adults

    SciTech Connect

    Ambriz, R.; Munoz, R.; Pizzuto, J.; Quintanar, E.; Morales, M.; Aviles, A.

    1987-01-01

    Adult patients with chronic autoimmune thrombocytopenic purpura (ATP), which proved refractory to various treatments, received a single dose of autologous in vitro opsonized erythrocytes with 100 micrograms of anti-D IgG. In 1983, 30 of these patients were treated with autologous erythrocytes that had been opsonized and labeled with 25 mCi (740 MBq) of technetium Tc 99m; this treatment was designated as the radioimmune method. Favorable responses were noted in 36% of patients so treated. In 1985, another group of 16 patients with refractory ATP received therapy with autologous opsonized erythrocytes (AOPE) and 55% of these patients showed favorable responses. Five (17%) of the patients treated using the radioimmune method attained a complete, long-term (greater than 35 months) remission of their ATP, and five (31%) of the patients treated using AOPE remained in complete remission over 270 days after cessation of therapy. Major complications were not seen. We concluded that the interaction of macrophages with low-dose AOPE is a successful therapeutic approach in ATP refractory to standard treatment.

  13. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    SciTech Connect

    Chaturvedi, Sonali; Rao, A.L.N.

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.

  14. Complement activation in the context of stem cells and tissue repair

    PubMed Central

    Schraufstatter, Ingrid U; Khaldoyanidi, Sophia K; DiScipio, Richard G

    2015-01-01

    The complement pathway is best known for its role in immune surveillance and inflammation. However, its ability of opsonizing and removing not only pathogens, but also necrotic and apoptotic cells, is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation, to increased survival of various cell types in the presence of split products of complement, and to the production of trophic factors by cells activated by the anaphylatoxins C3a and C5a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3a and C5a. PMID:26435769

  15. Opsonization of Treponema pallidum is mediated by immunoglobulin G antibodies induced only by pathogenic treponemes.

    PubMed Central

    Shaffer, J M; Baker-Zander, S A; Lukehart, S A

    1993-01-01

    Rabbit antisera to Leptospira interrogans, Borrelia hermsii, and Treponema phagedenis biotype Reiter, reactive to shared spirochetal antigens, failed to enhance phagocytosis of Treponema pallidum by macrophages, while immunoglobulin G to Treponema pallidum subsp. pertenue and Treponema paraluiscuniculi promoted phagocytosis. Opsonic antibodies are directed to pathogen-restricted, not shared spirochetal, antigens. PMID:8423106

  16. Chemiluminescence of neutrophiles stimulated by opsonized Zymosan in children with bronchial asthma and pneumonia

    NASA Astrophysics Data System (ADS)

    Lewandowicz-Uszynska, A.; Jankowski, A.

    2004-08-01

    Oxygen metabolism of neutrophils after stimulation with opsonized zymosan was examined using chemiluminescence test (in the presence of the patient serum or pooled serum). Into the study 37 children aged from 2 to 12 years were enrolled (20 girls and 17 boys). 10 healthy volunteers comprised the control group (group III). Two groups of patients were established: group I -- children with bronchial asthma (without infection), group II -- children with pneumonia. The examination in both groups was performed twice -- in acute phase and in remission period. The group I in acute phase comprised 16 children and in remission phase 9 children, group II - 21 children in acute phase and 9 children in remission phase, respectively. The following parameters of CL were estimated average value of so called spontaneous CL, maximal excitation of neutrophils after stimulation by zymogen (CLmax), time of zymosan opsonization. The following results were obtained: increased spontaneous CL and CLmax (at the presence of both sera) in acute phase of bronchial asthma and pneumonia in comparison to the control group. In the period of remission both these parameters were insignificantly decreased. The longest time of zymosan opsonization in acute period of disease was observed in children with pneumonia (18 min.). This time did not change during remission phase. Only slightly longer time of opsonization was observed in the patients from group I (in exacerbation) (15 min) than in the control group (13,1 min). This time was prolonged in the clinical remission (20 min).

  17. Antigen Reversal Identifies Targets of Opsonizing IgGs against Pregnancy-Associated Malaria

    PubMed Central

    Lambert, Lester H.; Bullock, Jeanee L.; Cook, Sharma T.; Miura, Kazutoyo; Garboczi, David N.; Diakite, Mahamadou; Fairhurst, Rick M.; Singh, Kavita

    2014-01-01

    Clinical immunity to pregnancy associated-malaria (PAM) in multigravida women has been attributed to antibodies that recognize VAR2CSA on the infected erythrocyte (IE) surface. The size and complexity of VAR2CSA have focused efforts on selecting one or more of its six Duffy binding-like (DBL) domains for vaccine development. Presently, however, there is no consensus as to which DBL domain(s) would be most effective in eliciting immunity. This is because antibodies to a number of the DBL domains have been found to block the adhesion of VAR2CSA-expressing erythrocytes to chondroitin sulfate A (CSA)—a major criterion for evaluating vaccine candidacy. Opsonization of IEs by cytophilic antibodies that recognize VAR2CSA represents an important yet understudied effector mechanism in acquired immunity to PAM. To date, no studies have sought to determine the targets of those antibodies. In this study, we found that IgGs from multigravida Malian women showed (i) higher reactivity to recombinant DBL domains by enzyme-linked immunosorbent assay (ELISA), (ii) more binding to VAR2CSA-expressing IEs, and (iii) greater opsonization of these IEs by human monocytic cells than IgGs from malaria-exposed Malian men and malaria-naive American adults. Preincubation of IgGs from multigravida women with recombinant DBL2χ, DBL3χ, or DBL5ε domains significantly diminished opsonization of VAR2CSA-expressing IEs by human monocytes. These data identify the DBL2χ, DBL3χ, and DBL5ε domains as the primary targets of opsonizing IgGs for the first time. Our study introduces a new approach to determining the antigenic targets of opsonizing IgGs in phagocytosis assays. PMID:25156731

  18. Antigen reversal identifies targets of opsonizing IgGs against pregnancy-associated malaria.

    PubMed

    Lambert, Lester H; Bullock, Jeanee L; Cook, Sharma T; Miura, Kazutoyo; Garboczi, David N; Diakite, Mahamadou; Fairhurst, Rick M; Singh, Kavita; Long, Carole A

    2014-11-01

    Clinical immunity to pregnancy associated-malaria (PAM) in multigravida women has been attributed to antibodies that recognize VAR2CSA on the infected erythrocyte (IE) surface. The size and complexity of VAR2CSA have focused efforts on selecting one or more of its six Duffy binding-like (DBL) domains for vaccine development. Presently, however, there is no consensus as to which DBL domain(s) would be most effective in eliciting immunity. This is because antibodies to a number of the DBL domains have been found to block the adhesion of VAR2CSA-expressing erythrocytes to chondroitin sulfate A (CSA)-a major criterion for evaluating vaccine candidacy. Opsonization of IEs by cytophilic antibodies that recognize VAR2CSA represents an important yet understudied effector mechanism in acquired immunity to PAM. To date, no studies have sought to determine the targets of those antibodies. In this study, we found that IgGs from multigravida Malian women showed (i) higher reactivity to recombinant DBL domains by enzyme-linked immunosorbent assay (ELISA), (ii) more binding to VAR2CSA-expressing IEs, and (iii) greater opsonization of these IEs by human monocytic cells than IgGs from malaria-exposed Malian men and malaria-naive American adults. Preincubation of IgGs from multigravida women with recombinant DBL2χ, DBL3χ, or DBL5ε domains significantly diminished opsonization of VAR2CSA-expressing IEs by human monocytes. These data identify the DBL2χ, DBL3χ, and DBL5ε domains as the primary targets of opsonizing IgGs for the first time. Our study introduces a new approach to determining the antigenic targets of opsonizing IgGs in phagocytosis assays. PMID:25156731

  19. Epstein-Barr virus glycoprotein gH/gL antibodies complement IgA-viral capsid antigen for diagnosis of nasopharyngeal carcinoma

    PubMed Central

    Tang, Lin-Quan; Zhang, Hua; Li, Yan; Liu, Wan-Li; Zhong, Qian; Zeng, Mu-Sheng; Huang, Xiao-Ming

    2016-01-01

    To determine whether measuring antibodies against Epstein-Barr virus (EBV) glycoprotein gH/gL in serum could improve diagnostic accuracy in nasopharyngeal carcinoma (NPC) cases, gH/gL expressed in a recombinant baculovirus system was used in an enzyme-linked immunosorbent assay (ELISA) to detect antibodies in two independent cohorts. Binary logistic regression analyses were performed using results from a training cohort (n = 406) to establish diagnostic mathematical models, which were validated in a second independent cohort (n = 279). Levels of serum gH/gL antibodies were higher in NPC patients than in healthy controls (p < 0.001). In the training cohort, the IgA-gH/gL ELISA had a sensitivity of 83.7%, specificity of 82.3% and area under the curve (AUC) of 0.893 (95% CI, 0.862-0.924) for NPC diagnosis. Furthermore, gH/gL maintained diagnostic capacity in IgA-VCA negative NPC patients (sensitivity = 78.1%, specificity = 82.3%, AUC = 0.879 [95% CI, 0.820 - 0.937]). Combining gH/gL and viral capsid antigen (VCA) detection improved diagnostic capacity as compared to individual tests alone in both the training cohort (sensitivity = 88.5%, specificity = 97%, AUC = 0.98 [95% CI, 0.97 - 0.991]), and validation cohort (sensitivity = 91.2%, specificity = 96.5%, AUC = 0.97 [95% CI, 0.951-0.988]). These findings suggest that EBV gH/gL detection complements VCA detection in the diagnosis of NPC and aids in the identification of patients with VCA-negative NPC. PMID:27093005

  20. Deficiency of the Complement Component 3 but Not Factor B Aggravates Staphylococcus aureus Septic Arthritis in Mice.

    PubMed

    Na, Manli; Jarneborn, Anders; Ali, Abukar; Welin, Amanda; Magnusson, Malin; Stokowska, Anna; Pekna, Marcela; Jin, Tao

    2016-04-01

    The complement system plays an essential role in the innate immune response and protection against bacterial infections. However, detailed knowledge regarding the role of complement in Staphylococcus aureus septic arthritis is still largely missing. In this study, we elucidated the roles of selected complement proteins in S. aureus septic arthritis. Mice lacking the complement component 3 (C3(-/-)), complement factor B (fB(-/-)), and receptor for C3-derived anaphylatoxin C3a (C3aR(-/-)) and wild-type (WT) control mice were intravenously or intra-articularly inoculated with S. aureus strain Newman. The clinical course of septic arthritis, as well as histopathological and radiological changes in joints, was assessed. After intravenous inoculation, arthritis severity and frequency were significantly higher in C3(-/-)mice than in WT controls, whereas fB(-/-)mice displayed intermediate arthritis severity and frequency. This was in accordance with both histopathological and radiological findings. C3, but not fB, deficiency was associated with greater weight loss, more frequent kidney abscesses, and higher bacterial burden in kidneys. S. aureus opsonized with C3(-/-)sera displayed decreased uptake by mouse peritoneal macrophages compared with bacteria opsonized with WT or fB(-/-)sera. C3aR deficiency had no effect on the course of hematogenous S. aureus septic arthritis. We conclude that C3 deficiency increases susceptibility to hematogenous S. aureus septic arthritis and impairs host bacterial clearance, conceivably due to diminished opsonization and phagocytosis of S. aureus. PMID:26787717

  1. Cleavage of Complement C3b to iC3b on the Surface of Staphylococcus aureus Is Mediated by Serum Complement Factor I

    PubMed Central

    Cunnion, K. M.; Hair, P. S.; Buescher, E. S.

    2004-01-01

    Complement-mediated opsonization of Staphylococcus aureus bearing the dominant capsule serotypes, serotypes 5 and 8, remains incompletely understood. We have previously shown that complement plays a vital role in the efficient phagocytosis of a serotype 5 S. aureus strain and that the opsonic fragments of the central complement protein C3, C3b and iC3b, were present on the bacterial surface after incubation in human serum. In the present studies, C3b and iC3b were found on several serotype 5 and 8 S. aureus strains after incubation in human serum. Using purified classical activation pathway complement proteins and the Western blot assay, we showed that when C3b was generated on the S. aureus surface no iC3b fragments were found, suggesting that other serum proteins may be required for cleaving C3b to iC3b. When C3b-coated S. aureus was incubated with serum factor I, a complement regulatory protein, iC3b was generated. Purified factor H, a serum protein cofactor for factor I, did not enhance factor I-mediated cleavage of C3b. These findings suggest that C3b cleavage to iC3b on S. aureus is mediated by serum factor I and does not require factor H. PMID:15102797

  2. Hyperglycemia inhibits complement-mediated immunological control of S. aureus in a rat model of peritonitis.

    PubMed

    Mauriello, Clifford T; Hair, Pamela S; Rohn, Reuben D; Rister, Nicholas S; Krishna, Neel K; Cunnion, Kenji M

    2014-01-01

    Hyperglycemia from diabetes is associated with increased risk of infection from S. aureus and increased severity of illness. Previous work in our laboratory demonstrated that elevated glucose (>6 mM) dramatically inhibited S. aureus-initiated complement-mediated immune effectors. Here we report in vivo studies evaluating the extent to which a hyperglycemic environment alters complement-mediated control of S. aureus infection in a rat peritonitis model. Rats were treated with streptozocin to induce diabetes or sham-treated and then inoculated i.p. with S. aureus. Rats were euthanized and had peritoneal lavage at 2 or 24 hours after infection to evaluate early and late complement-mediated effects. Hyperglycemia decreased the influx of IgG and complement components into the peritoneum in response to S. aureus infection and decreased anaphylatoxin generation. Hyperglycemia decreased C4-fragment and C3-fragment opsonization of S. aureus recovered in peritoneal fluids, compared with euglycemic or insulin-rescued rats. Hyperglycemic rats showed decreased phagocytosis efficiency compared with euglycemic rats, which correlated inversely with bacterial survival. These results suggest that hyperglycemia inhibited humoral effector recruitment, anaphylatoxin generation, and complement-mediated opsonization of S. aureus, suggesting that hyperglycemic inhibition of complement effectors may contribute to the increased risk and severity of S. aureus infections in diabetic patients. PMID:25610878

  3. Hyperglycemia Inhibits Complement-Mediated Immunological Control of S. aureus in a Rat Model of Peritonitis

    PubMed Central

    Mauriello, Clifford T.; Hair, Pamela S.; Rohn, Reuben D.; Rister, Nicholas S.; Krishna, Neel K.; Cunnion, Kenji M.

    2014-01-01

    Hyperglycemia from diabetes is associated with increased risk of infection from S. aureus and increased severity of illness. Previous work in our laboratory demonstrated that elevated glucose (>6 mM) dramatically inhibited S. aureus-initiated complement-mediated immune effectors. Here we report in vivo studies evaluating the extent to which a hyperglycemic environment alters complement-mediated control of S. aureus infection in a rat peritonitis model. Rats were treated with streptozocin to induce diabetes or sham-treated and then inoculated i.p. with S. aureus. Rats were euthanized and had peritoneal lavage at 2 or 24 hours after infection to evaluate early and late complement-mediated effects. Hyperglycemia decreased the influx of IgG and complement components into the peritoneum in response to S. aureus infection and decreased anaphylatoxin generation. Hyperglycemia decreased C4-fragment and C3-fragment opsonization of S. aureus recovered in peritoneal fluids, compared with euglycemic or insulin-rescued rats. Hyperglycemic rats showed decreased phagocytosis efficiency compared with euglycemic rats, which correlated inversely with bacterial survival. These results suggest that hyperglycemia inhibited humoral effector recruitment, anaphylatoxin generation, and complement-mediated opsonization of S. aureus, suggesting that hyperglycemic inhibition of complement effectors may contribute to the increased risk and severity of S. aureus infections in diabetic patients. PMID:25610878

  4. Murine Complement Interactions with Pseudomonas aeruginosa and Their Consequences During Pneumonia

    PubMed Central

    Younger, John G.; Shankar-Sinha, Sunita; Mickiewicz, Marc; Brinkman, Adam S.; Valencia, Gabriel A.; Sarma, J. Vidya; Younkin, Ellen M.; Standiford, Theodore J.; Zetoune, Firas S.; Ward, Peter A.

    2014-01-01

    Complement is necessary for defense against lung infection with Pseudomonas aeruginosa in mice. We studied in vitro interactions between complement and P. aeruginosa and in vivo effects of complement depletion to better understand this relationship. In vitro, P. aeruginosa strain UI-18 was resistant to killing by mouse serum. However, C3 opsonized the organism (via the alternative and mannose binding lectin [MBL] pathways), and C5 convertase activity on the bacterial surface was demonstrated. In vivo, compared with normal mice, complement-deficient mice experienced higher mortality and failed to sterilize their bronchoalveolar space within 24 h of inoculation. These changes did not seem to be a result of decreased inflammation because complement-deficient mice had normal neutrophil recruitment, greater lung myeloperoxidase content, and, by 24 h, a 35-fold higher level of the CXC chemokine KC. Lung static pressure-volume curves were abnormal in infected animals but were significantly more so in complement deficient mice. These data indicate that although P. aeruginosa is resistant to serum killing, C3 opsonization and C5 convertase assembly occur on its surface. This interaction in vivo plays a central role in host survival beyond just recruitment and activation of phagocytes and may serve to limit the inflammatory response to and tissue injury resulting from bacterial infection. PMID:14500254

  5. Phylogenetic aspects of the complement system.

    PubMed

    Zarkadis, I K; Mastellos, D; Lambris, J D

    2001-01-01

    During evolution two general systems of immunity have emerged: innate or, natural immunity and adaptive (acquired), or specific immunity. The innate system is phylogenetically older and is found in some form in all multicellular organisms, whereas the adaptive system appeared about 450 million years ago and is found in all vertebrates except jawless fish. The complement system in higher vertebrates plays an important role as an effector of both the innate and the acquired immune response, and also participates in various immunoregulatory processes. In lower vertebrates complement is activated by the alternative and lectin pathways and is primarily involved in the opsonization of foreign material. The Agnatha (the most primitive vertebrate species) possess the alternative and lectin pathways while cartilaginous fish are the first species in which the classical pathway appears following the emergence of immunoglobulins. The rest of the poikilothermic species, ranging from teleosts to reptilians, appear to contain a well-developed complement system resembling that of the homeothermic vertebrates. It seems that most of the complement components have appeared after the duplication of primordial genes encoding C3/C4/C5, fB/C2, C1s/C1r/MASP-1/MASP-2, and C6/C7/C8/C9 molecules, in a process that led to the formation of distinct activation pathways. However, unlike homeotherms, several species of poikilotherms (e.g. trout) have recently been shown to possess multiple forms of complement components (C3, factor B) that are structurally and functionally more diverse than those of higher vertebrates. We hypothesize that this remarkable diversity has allowed these animals to expand their innate capacity for immune recognition and response. Recent studies have also indicated the possible presence of complement receptors in protochordates and lower vertebrates. In conclusion, there is considerable evidence suggesting that the complement system is present in the entire lineage of

  6. A complement receptor locus: genes encoding C3b/C4b receptor and C3d/Epstein-Barr virus receptor map to 1q32.

    PubMed

    Weis, J H; Morton, C C; Bruns, G A; Weis, J J; Klickstein, L B; Wong, W W; Fearon, D T

    1987-01-01

    The alternative or classical pathways for complement system component C3 may be triggered by microorganisms and antigen-antibody complexes. In particular, an activated fragment of C3, C3b, covalently attaches to microorganisms or antigen-antibody complexes, which in turn bind to the C3b receptor, also known as complement receptor 1. The genes encoding the proteins that constitute the C3-activating enzymes have been cloned and mapped to a "complement activation" locus in the major histocompatibility complex, and we demonstrate in this study such a locus on the long arm of chromosome 1 at band 1q32. PMID:3782802

  7. Self-nonself discrimination by the complement system.

    PubMed

    Meri, Seppo

    2016-08-01

    The alternative pathway (AP) of complement can recognize nonself structures by only two molecules, C3b and factor H. The AP deposits C3b covalently on nonself structures via an amplification system. The actual discrimination is performed by factor H, which has binding sites for polyanions (sialic acids, glycosaminoglycans, phospholipids). This robust recognition of 'self' protects our own intact viable cells and tissues, while activating structures are recognized by default. Foreign targets are opsonized for phagocytosis or killed. Mutations in factor H predispose to severe diseases. In hemolytic uremic syndrome, they promote complement attack against blood cells and vascular endothelial cells and lead, for example, to kidney and brain damage. Even pathogens can exploit factor H. In fact, the ability to bind factor H discriminates most pathogenic microbes from nonpathogenic ones. PMID:27393384

  8. Binding of Cryptococcus neoformans by human cultured macrophages. Requirements for multiple complement receptors and actin.

    PubMed Central

    Levitz, S M; Tabuni, A

    1991-01-01

    We studied the receptors on human cultured macrophages (MO-M phi) responsible for binding encapsulated and isogenic mutant acapsular strains of Cryptococcus neoformans, and whether such binding leads to a phagocytic event. Both strains required opsonization with complement components in normal human serum in order for binding to occur. Binding of the acapsular, but not the encapsulated, strain led to phagocytosis. MAb directed against any of the three defined complement receptors (CR) on MO-M phi (CR1, CR3, and CR4) profoundly inhibited binding of serum-opsonized encapsulated (and to a lesser extent acapsular) organisms to MO-M phi. Immunofluorescence studies demonstrated migration of CR to the area of the cryptococcal binding site. Trypsin and elastase inhibited binding of encapsulated and, to a lesser extent, acapsular yeasts to MO-M phi. Binding of encapsulated C. neoformans was profoundly inhibited by incubation in the cold or by inhibitors of receptor capping and actin microfilaments. Thus, multiple CR appear to contribute to binding of serum-opsonized encapsulated C. neoformans by MO-M phi. Binding is an energy-dependent process that requires conformational changes in actin yet does not lead to phagocytosis of the organism. In contrast, energy is not required for binding of acapsular yeasts by MO-M phi and binding triggers phagocytosis. Images PMID:1991837

  9. Secretion of a fungal protease represents a complement evasion mechanism in cerebral aspergillosis.

    PubMed

    Rambach, Günter; Dum, David; Mohsenipour, Iradj; Hagleitner, Magdalena; Würzner, Reinhard; Lass-Flörl, Cornelia; Speth, Cornelia

    2010-04-01

    Complement represents a central immune weapon in the brain, but the high lethality of cerebral aspergillosis indicates a low efficacy of the antifungal complement attack. Studies with cerebrospinal fluid (CSF) samples derived from a patient with cerebral aspergillosis showed a degradation of complement proteins, implying that Aspergillus might produce proteases to evade their antimicrobial potency. Further investigations of this hypothesis showed that Aspergillus, when cultured in CSF to simulate growth conditions in the brain, secreted a protease that can cleave various complement proteins. Aspergillus fumigatus, the most frequent cause of cerebral aspergillosis, destroyed complement activity more efficiently than other Aspergillus species. The degradation of complement in CSF resulted in a drastic reduction of the capacity to opsonize fungal hyphae. Furthermore, the Aspergillus-derived protease could diminish the amount of complement receptor CR3, a surface molecule to mediate eradication of opsonized pathogens, on granulocytes and microglia. The lack of these prerequisites caused a significant decrease in phagocytosis of primary microglia. Additional studies implied that the complement-degrading activity shares many characteristics with the previously described alkaline protease Alp1. To improve the current therapy for cerebral aspergillosis, we tried to regain the antifungal effects of complement by repressing the secretion of this degrading activity. Supplementation of CSF with nitrogen sources rescued the complement proteins and abolished any cleavage. Glutamine or arginine are of special interest for this purpose since they represent endogenous substances in the CNS and might be included in a future supportive therapy to reduce the high lethality of cerebral aspergillosis. PMID:20303595

  10. Serological and Genetic Evidence for Altered Complement System Functionality in Systemic Lupus Erythematosus: Findings of the GAPAID Consortium

    PubMed Central

    Prechl, József; Papp, Krisztián; Hérincs, Zoltán; Péterfy, Hajna; Lóránd, Veronika; Szittner, Zoltán; Estonba, Andone; Rovero, Paolo; Paolini, Ilaria; del Amo, Jokin; Uribarri, Maria; Alcaro, Maria Claudia; Ruiz-Larrañaga, Otsanda; Migliorini, Paola; Czirják, László

    2016-01-01

    Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited patients with SLE (n = 211), with other systemic autoimmune diseases (n = 65) and non-autoimmune control subjects (n = 149). Standard clinical and laboratory data were collected and serum complement levels were determined. The genotype of SNP rs1143679 in the ITGAM gene was also determined. Ex vivo formation of immune complexes, with respect to IgM, IgG, complement C4 and C3 binding, was examined using a functional immunoassay on autoantigen microarray comprising nucleic acids, proteins and lipids. Complement consumption of nucleic acids increased upon binding of IgM and IgG even when serum complement levels were decreased due to consumption in SLE patients. A negative correlation between serum complement levels and ex vivo complement deposition on nucleic acid autoantigens is demonstrated. On the contrary, complement deposition on tested protein and lipid autoantigens showed positive correlation with C4 levels. Genetic analysis revealed that the non-synonymous variant rs1143679 in complement receptor type 3 is associated with an increased production of anti-dsDNA IgG antibodies. Notwithstanding, homozygous carriers of the previously reported susceptible allele (AA) had lower levels of dsDNA specific IgM among SLE patients. Both the non-synonymous variant rs1143679 and the high ratio of nucleic acid specific IgG/IgM were associated with multiple organ involvement. In summary, secondary complement deficiency in SLE does not impair opsonization of nucleic-acid-containing autoantigens but does affect other antigens and potentially other complement dependent processes. Dysfunction of the receptor recognizing complement

  11. Serological and Genetic Evidence for Altered Complement System Functionality in Systemic Lupus Erythematosus: Findings of the GAPAID Consortium.

    PubMed

    Prechl, József; Papp, Krisztián; Hérincs, Zoltán; Péterfy, Hajna; Lóránd, Veronika; Szittner, Zoltán; Estonba, Andone; Rovero, Paolo; Paolini, Ilaria; Del Amo, Jokin; Uribarri, Maria; Alcaro, Maria Claudia; Ruiz-Larrañaga, Otsanda; Migliorini, Paola; Czirják, László

    2016-01-01

    Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited patients with SLE (n = 211), with other systemic autoimmune diseases (n = 65) and non-autoimmune control subjects (n = 149). Standard clinical and laboratory data were collected and serum complement levels were determined. The genotype of SNP rs1143679 in the ITGAM gene was also determined. Ex vivo formation of immune complexes, with respect to IgM, IgG, complement C4 and C3 binding, was examined using a functional immunoassay on autoantigen microarray comprising nucleic acids, proteins and lipids. Complement consumption of nucleic acids increased upon binding of IgM and IgG even when serum complement levels were decreased due to consumption in SLE patients. A negative correlation between serum complement levels and ex vivo complement deposition on nucleic acid autoantigens is demonstrated. On the contrary, complement deposition on tested protein and lipid autoantigens showed positive correlation with C4 levels. Genetic analysis revealed that the non-synonymous variant rs1143679 in complement receptor type 3 is associated with an increased production of anti-dsDNA IgG antibodies. Notwithstanding, homozygous carriers of the previously reported susceptible allele (AA) had lower levels of dsDNA specific IgM among SLE patients. Both the non-synonymous variant rs1143679 and the high ratio of nucleic acid specific IgG/IgM were associated with multiple organ involvement. In summary, secondary complement deficiency in SLE does not impair opsonization of nucleic-acid-containing autoantigens but does affect other antigens and potentially other complement dependent processes. Dysfunction of the receptor recognizing complement

  12. Naturally occurring anti-band-3 antibodies and complement together mediate phagocytosis of oxidatively stressed human erythrocytes

    SciTech Connect

    Lutz, H.U.; Bussolino, F.; Flepp, R.; Fasler, S.; Stammler, P.; Kazatchkine, M.D.; Arese, P.

    1987-11-01

    Treatment of erythrocytes with the thiol-specific oxidant azodicarboxylic acid bis(dimethylamide) (diamide) enhances their phagocytosis by adherent monocytes. Phagocytosis of diamide-treated erythrocytes required that the cells were opsonized with whole serum, since complement inactivation abolished phagocytosis. Opsonization with whole serum containing 20-100 times the physiological concentration of naturally occurring anti-band-3- antibodies enhanced phagocytosis of diamide-treated erythrocytes. High inputs of anti-band-3 also restored phagocytosis of erythrocytes that had been incubated with complement-inactivated serum. Elevated concentrations of anti-spectrin antibodies were ineffective in whole and complement-inactivated serum. Specific recognition of diamide-treated erythrocytes by anti-band-3 antibodies may be due to generation of anti-band-3 reactive protein oligomers on intact diamide-treated erythrocytes. Generation of such oligomers was dose-dependent with respect to diamide. Bound anti-band-3 alone was not sufficient to mediate phagocytosis. It resulted in deposition of complement component C3b on the cells through activation of the alternative complement pathway in amounts exceeding that of bound antibodies by two orders of magnitude. Thus, anti-band-3 and complement together mediate phagocytosis of oxidatively stressed erythrocytes, which simulate senescent erythrocytes with respect to bound antibody and complement.

  13. Assessment of biological activity of immunoglobulin preparations by using opsonized micro-organisms to stimulate neutrophil chemiluminescence.

    PubMed Central

    Munro, C S; Stanley, P J; Cole, P J

    1985-01-01

    We have used the ability of opsonised bacteria to stimulate luminol enhanced chemiluminescence of human neutrophils to examine the opsonic capabilities of normal and hypogammaglobulinaemic sera for four common bacterial pathogens. Preparations of human immunoglobulin modified for i.v. use have then been compared with unmodified Cohn Fraction II for their effectiveness in improving opsonization when added to antibody deficient sera in vitro. Hypogammaglobulinaemic sera exhibited impaired opsonisation of Haemophilus influenzae, and severely antibody deficient sera also opsonized Streptococcus pneumoniae and Pseudomonas aeruginosa poorly. The opsonization of these organisms was improved by Cohn Fraction II, and by pH 4 and beta-propionolactone treated immunoglobulins, in descending order of effectiveness. Pepsin digested immunoglobulin was inactive, and in some cases impaired opsonic capacity. The opsonisation of Staphylococcus aureus by hypogammaglobulinaemic sera was near normal, and was not improved by any immunoglobulin. This technique, which assesses biological activity of immunoglobulin, is useful in comparing preparations, and may help to establish appropriate dosage and frequency for intravenous immunoglobulin replacement therapy. PMID:3930107

  14. Naturally produced opsonizing antibodies restrict the survival of Mycobacterium tuberculosis in human macrophages by augmenting phagosome maturation

    PubMed Central

    Kumar, Shashi Kant; Singh, Padam; Sinha, Sudhir

    2015-01-01

    This study investigated the hypothesis that serum antibodies against Mycobacterium tuberculosis present in naturally infected healthy subjects of a tuberculosis (TB) endemic area could create and/or sustain the latent form of infection. All five apparently healthy Indian donors showed high titres of serum antibodies against M. tuberculosis cell membrane antigens, including lipoarabinomannan and alpha crystallin. Uptake and killing of bacilli by the donor macrophages was significantly enhanced following their opsonization with antibody-rich, heat-inactivated autologous sera. However, the capability to opsonize was apparent for antibodies against some and not other antigens. High-content cell imaging of infected macrophages revealed significantly enhanced colocalization of the phagosome maturation marker LAMP-1, though not of calmodulin, with antibody-opsonized compared with unopsonized M. tuberculosis. Key enablers of macrophage microbicidal action—proinflammatory cytokines (IFN-γ and IL-6), phagosome acidification, inducible NO synthase and nitric oxide—were also significantly enhanced following antibody opsonization. Interestingly, heat-killed M. tuberculosis also elevated these mediators to the levels comparable to, if not higher than, opsonized M. tuberculosis. Results of the study support the emerging view that an efficacious vaccine against TB should, apart from targeting cell-mediated immunity, also generate ‘protective’ antibodies. PMID:26674415

  15. Real-time polymerase chain reaction detection of cauliflower mosaic virus to complement the 35S screening assay for genetically modified organisms.

    PubMed

    Cankar, Katarina; Ravnikar, Maja; Zel, Jana; Gruden, Kristina; Toplak, Natasa

    2005-01-01

    Labeling of genetically modified organisms (GMOs) is now in place in many countries, including the European Union, in order to guarantee the consumer's choice between GM and non-GM products. Screening of samples is performed by polymerase chain reaction (PCR) amplification of regulatory sequences frequently introduced into genetically modified plants. Primers for the 35S promoter from Cauliflower mosaic virus (CaMV) are those most frequently used. In virus-infected plants or in samples contaminated with plant material carrying the virus, false-positive results can consequently occur. A system for real-time PCR using a TaqMan minor groove binder probe was designed that allows recognition of virus coat protein in the sample, thus allowing differentiation between transgenic and virus-infected samples. We measured the efficiency of PCR amplification, limits of detection and quantification, range of linearity, and repeatability of the assay in order to assess the applicability of the assay for routine analysis. The specificity of the detection system was tested on various virus isolates and plant species. All 8 CaMV isolates were successfully amplified using the designed system. No cross-reactivity was detected with DNA from 3 isolates of the closely related Carnation etched ring virus. Primers do not amplify plant DNA from available genetically modified maize and soybean lines or from different species of Brassicaceae or Solanaceae that are natural hosts for CaMV. We evaluated the assay for different food matrixes by spiking CaMV DNA into DNA from food samples and have successfully amplified CaMV from all samples. The assay was tested on rapeseed samples from routine GMO testing that were positive in the 35S screening assay, and the presence of the virus was confirmed. PMID:16001857

  16. Multinucleated Giant Cells Are Specialized for Complement-Mediated Phagocytosis and Large Target Destruction

    PubMed Central

    Milde, Ronny; Ritter, Julia; Tennent, Glenys A.; Loesch, Andrzej; Martinez, Fernando O.; Gordon, Siamon; Pepys, Mark B.; Verschoor, Admar; Helming, Laura

    2015-01-01

    Summary Multinucleated giant cells (MGCs) form by fusion of macrophages and are presumed to contribute to the removal of debris from tissues. In a systematic in vitro analysis, we show that IL-4-induced MGCs phagocytosed large and complement-opsonized materials more effectively than their unfused M2 macrophage precursors. MGC expression of complement receptor 4 (CR4) was increased, but it functioned primarily as an adhesion integrin. In contrast, although expression of CR3 was not increased, it became functionally activated during fusion and was located on the extensive membrane ruffles created by excess plasma membrane arising from macrophage fusion. The combination of increased membrane area and activated CR3 specifically equips MGCs to engulf large complement-coated targets. Moreover, we demonstrate these features in vivo in the recently described complement-dependent therapeutic elimination of systemic amyloid deposits by MGCs. MGCs are evidently more than the sum of their macrophage parts. PMID:26628365

  17. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies.

    PubMed

    Ricklin, Meret E; Vielle, Nathalie J; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4(+) T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value. PMID:27446083

  18. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies

    PubMed Central

    Ricklin, Meret E.; Vielle, Nathalie J.; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4+ T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value. PMID:27446083

  19. On the Functional Overlap between Complement and Anti-Microbial Peptides

    PubMed Central

    Zimmer, Jana; Hobkirk, James; Mohamed, Fatima; Browning, Michael J.; Stover, Cordula M.

    2015-01-01

    Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia). PMID:25646095

  20. On the Functional Overlap between Complement and Anti-Microbial Peptides.

    PubMed

    Zimmer, Jana; Hobkirk, James; Mohamed, Fatima; Browning, Michael J; Stover, Cordula M

    2014-01-01

    Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia). PMID:25646095

  1. Contribution of complement component C3 and complement receptor type 3 to carbohydrate-dependent uptake of oligomannose-coated liposomes by peritoneal macrophages.

    PubMed

    Abe, Yu; Kuroda, Yasuhiro; Kuboki, Noritaka; Matsushita, Misao; Yokoyama, Naoaki; Kojima, Naoya

    2008-11-01

    Peritoneal macrophages (PEMs) preferentially and rapidly take up oligomannose-coated liposomes (OMLs) and subsequently mature to induce a Th-1 immune response following administration of OMLs into the peritoneal cavity. Here, we examine the contributions of complement component C3 and complement receptor type 3 (CR3) to carbohydrate-dependent uptake of OMLs by PEMs. Effective uptake of OMLs into PEMs in vitro was observed only in the presence of peritoneal fluid (PF), and OMLs incubated with PF were incorporated by PEMs in vitro in the absence of PF. These phenomena were inhibited by methyl-alpha-mannoside, N-acetylglucosamine or EDTA, but not by galactose. Pull-down analysis followed by peptide mass fingerprinting of PF-treated OMLs indicated that the OMLs were opsonized with complement fragment iC3b. In vivo uptake of OMLs by PEMs was inhibited by intraperitoneal injection of an antibody against CR3, a receptor for iC3b, and OML uptake by PEMs in the peritoneal cavity was not observed in C3-deficient mice. Thus, our results indicate that OMLs are opsonized with iC3b in a mannose-dependent manner in the peritoneal cavity and then incorporated into PEMs via CR3. PMID:18694897

  2. Neutrophils extracellular traps damage Naegleria fowleri trophozoites opsonized with human IgG.

    PubMed

    Contis-Montes de Oca, A; Carrasco-Yépez, M; Campos-Rodríguez, R; Pacheco-Yépez, J; Bonilla-Lemus, P; Pérez-López, J; Rojas-Hernández, S

    2016-08-01

    Naegleria fowleri infects humans through the nasal mucosa causing a disease in the central nervous system known as primary amoebic meningoencephalitis (PAM). Polymorphonuclear cells (PMNs) play a critical role in the early phase of N. fowleri infection. Recently, a new biological defence mechanism called neutrophil extracellular traps (NETs) has been attracting attention. NETs are composed of nuclear DNA combined with histones and antibacterial proteins, and these structures are released from the cell to direct its antimicrobial attack. In this work, we evaluate the capacity of N. fowleri to induce the liberation of NETs by human PMN cells. Neutrophils were cocultured with unopsonized or IgG-opsonized N. fowleri trophozoites. DNA, histone, myeloperoxidase (MPO) and neutrophil elastase (NE) were stained, and the formation of NETs was evaluated by confocal microscopy and by quantifying the levels of extracellular DNA. Our results showed N. fowleri induce the liberation of NETs including release of MPO and NE by human PMN cells as exposure interaction time is increased, but N. fowleri trophozoites evaded killing. However, when trophozoites were opsonized, they were susceptible to the neutrophils activity. Therefore, our study suggests that antibody-mediated PMNs activation through NET formation may be crucial for antimicrobial responses against N. fowleri. PMID:27189133

  3. Leishmania major-human macrophage interactions: cooperation between Mac-1 (CD11b/CD18) and complement receptor type 1 (CD35) in promastigote adhesion.

    PubMed Central

    Rosenthal, L A; Sutterwala, F S; Kehrli, M E; Mosser, D M

    1996-01-01

    It has been suggested that the developmental maturation of Leishmania major promastigotes can affect their interaction with human complement receptors. To study this, we measured the adhesion of metacyclic and logarithmic-phase L. major promastigotes to complement receptors expressed on primary macrophages, to recombinant receptors expressed on transfected cells, or to purified complement receptors in a cell-free system. We demonstrate that complement-opsonized promastigotes can bind to both Mac-1 and complement receptor type 1 (CR1) and that the transition of promastigotes from the noninfectious logarithmic phase of growth to the infectious metacyclic stage does not affect this interaction. Furthermore, we show that Mac-1 and CR1 can cooperate to mediate the efficient adhesion of complement-opsonized metacyclic promastigotes to cells expressing both receptors. On human monocyte-derived macrophages, Mac-1 appears to make a quantitatively greater contribution to this adhesion than does CR1, since blocking macrophage Mac-1 diminishes metacyclic promastigote adhesion to a greater extent than does blocking CR1. In addition, bovine monocytes lacking Mac-1 exhibit a dramatic decrease in complement-dependent promastigote adhesion, relative to normal monocytes. The predominance of Mac-1 in these interactions is due, at least in part, to the factor I cofactor activity of CR1, which facilitates the conversion of C3b to iC3b. The stable adhesion of complement-opsonized metacyclic promastigotes to Mac-1 is a prerequisite for phagocytosis by human monocyte-derived macrophages. Blocking Mac-1 on macrophages abrogates the majority of the complement-dependent phagocytosis of promastigotes, whereas blocking CR1 has no detectable effect on phagocytosis. In addition, bovine monocytes lacking Mac-1 exhibit a dramatic reduction in promastigote phagocytosis relative to normal bovine monocytes. We conclude, therefore, that the two complement receptors, Mac-1 and CR1, can cooperate to

  4. Antibodies That Efficiently Form Hexamers upon Antigen Binding Can Induce Complement-Dependent Cytotoxicity under Complement-Limiting Conditions.

    PubMed

    Cook, Erika M; Lindorfer, Margaret A; van der Horst, Hilma; Oostindie, Simone; Beurskens, Frank J; Schuurman, Janine; Zent, Clive S; Burack, Richard; Parren, Paul W H I; Taylor, Ronald P

    2016-09-01

    Recently, we demonstrated that IgG Abs can organize into ordered hexamers after binding their cognate Ags expressed on cell surfaces. This process is dependent on Fc:Fc interactions, which promote C1q binding, the first step in classical pathway complement activation. We went on to engineer point mutations that stimulated IgG hexamer formation and complement-dependent cytotoxicity (CDC). The hexamer formation-enhanced (HexaBody) CD20 and CD38 mAbs support faster, more robust CDC than their wild-type counterparts. To further investigate the CDC potential of these mAbs, we used flow cytometry, high-resolution digital imaging, and four-color confocal microscopy to examine their activity against B cell lines and primary chronic lymphocytic leukemia cells in sera depleted of single complement components. We also examined the CDC activity of alemtuzumab (anti-CD52) and mAb W6/32 (anti-HLA), which bind at high density to cells and promote substantial complement activation. Although we observed little CDC for mAb-opsonized cells reacted with sera depleted of early complement components, we were surprised to discover that the Hexabody mAbs, as well as ALM and W6/32, were all quite effective at promoting CDC in sera depleted of individual complement components C6 to C9. However, neutralization studies conducted with an anti-C9 mAb verified that C9 is required for CDC activity against cell lines. These highly effective complement-activating mAbs efficiently focus activated complement components on the cell, including C3b and C9, and promote CDC with a very low threshold of MAC binding, thus providing additional insight into their enhanced efficacy in promoting CDC. PMID:27474078

  5. Antibodies That Efficiently Form Hexamers upon Antigen Binding Can Induce Complement-Dependent Cytotoxicity under Complement-Limiting Conditions

    PubMed Central

    Cook, Erika M.; Lindorfer, Margaret A.; van der Horst, Hilma; Oostindie, Simone; Beurskens, Frank J.; Schuurman, Janine; Zent, Clive S.; Burack, Richard; Parren, Paul W. H. I.

    2016-01-01

    Recently, we demonstrated that IgG Abs can organize into ordered hexamers after binding their cognate Ags expressed on cell surfaces. This process is dependent on Fc:Fc interactions, which promote C1q binding, the first step in classical pathway complement activation. We went on to engineer point mutations that stimulated IgG hexamer formation and complement-dependent cytotoxicity (CDC). The hexamer formation–enhanced (HexaBody) CD20 and CD38 mAbs support faster, more robust CDC than their wild-type counterparts. To further investigate the CDC potential of these mAbs, we used flow cytometry, high-resolution digital imaging, and four-color confocal microscopy to examine their activity against B cell lines and primary chronic lymphocytic leukemia cells in sera depleted of single complement components. We also examined the CDC activity of alemtuzumab (anti-CD52) and mAb W6/32 (anti-HLA), which bind at high density to cells and promote substantial complement activation. Although we observed little CDC for mAb-opsonized cells reacted with sera depleted of early complement components, we were surprised to discover that the Hexabody mAbs, as well as ALM and W6/32, were all quite effective at promoting CDC in sera depleted of individual complement components C6 to C9. However, neutralization studies conducted with an anti-C9 mAb verified that C9 is required for CDC activity against cell lines. These highly effective complement-activating mAbs efficiently focus activated complement components on the cell, including C3b and C9, and promote CDC with a very low threshold of MAC binding, thus providing additional insight into their enhanced efficacy in promoting CDC. PMID:27474078

  6. Human L-ficolin, a Recognition Molecule of the Lectin Activation Pathway of Complement, Activates Complement by Binding to Pneumolysin, the Major Toxin of Streptococcus pneumoniae

    PubMed Central

    Ali, Youssif M.; Kenawy, Hany I.; Muhammad, Adnan; Sim, Robert B.

    2013-01-01

    The complement system is an essential component of the immune response, providing a critical line of defense against different pathogens including S. pneumoniae. Complement is activated via three distinct pathways: the classical (CP), the alternative (AP) and the lectin pathway (LP). The role of Pneumolysin (PLY), a bacterial toxin released by S. pneumoniae, in triggering complement activation has been studied in vitro. Our results demonstrate that in both human and mouse sera complement was activated via the CP, initiated by direct binding of even non-specific IgM and IgG3 to PLY. Absence of CP activity in C1q−/− mouse serum completely abolished any C3 deposition. However, C1q depleted human serum strongly opsonized PLY through abundant deposition of C3 activation products, indicating that the LP may have a vital role in activating the human complement system on PLY. We identified that human L-ficolin is the critical LP recognition molecule that drives LP activation on PLY, while all of the murine LP recognition components fail to bind and activate complement on PLY. This work elucidates the detailed interactions between PLY and complement and shows for the first time a specific role of the LP in PLY-mediated complement activation in human serum. PMID:24349316

  7. Complementation of the Function of Glycoprotein H of Human Herpesvirus 6 Variant A by Glycoprotein H of Variant B in the Virus Life Cycle

    PubMed Central

    Oyaizu, Hiroko; Tang, Huamin; Ota, Megumi; Takenaka, Nobuyuki; Ozono, Keiichi; Yamanishi, Koichi

    2012-01-01

    Human herpesvirus 6 (HHV-6) is a T-cell-tropic betaherpesvirus. HHV-6 can be classified into two variants, HHV-6 variant A (HHV-6A) and HHV-6B, based on genetic, antigenic, and cell tropisms, although the homology of their entire genomic sequences is nearly 90%. The HHV-6A glycoprotein complex gH/gL/gQ1/gQ2 is a viral ligand that binds to the cellular receptor human CD46. Because gH has 94.3% amino acid identity between the variants, here we examined whether gH from one variant could complement its loss in the other. Recently, we successfully reconstituted HHV-6A from its cloned genome in a bacterial artificial chromosome (BAC) (rHHV-6ABAC). Using this system, we constructed HHV-6ABAC DNA containing the HHV-6B gH (BgH) gene instead of the HHV-6A gH (AgH) gene in Escherichia coli. Recombinant HHV-6ABAC expressing BgH (rHHV-6ABAC-BgH) was successfully reconstituted. In addition, a monoclonal antibody that blocks HHV-6B but not HHV-6A infection neutralized rHHV-6ABAC-BgH but not rHHV-6ABAC. These results indicate that HHV-6B gH can complement the function of HHV-6A gH in the viral infectious cycle. PMID:22647694

  8. Epitope specificity and isotype of monoclonal anti-D antibodies dictate their ability to inhibit phagocytosis of opsonized platelets.

    PubMed

    Kjaersgaard, Mimi; Aslam, Rukhsana; Kim, Michael; Speck, Edwin R; Freedman, John; Stewart, Donald I H; Wiersma, Erik J; Semple, John W

    2007-08-15

    Rh immune globulin (WinRho SDF; Cangene, Mississauga, ON, Canada) is an effective treatment for autoimmune thrombocytopenic purpura; however, maintaining a sustained supply for its use in autoimmune thrombocytopenic purpura and its primary indication, hemolytic disease of the newborn, makes the development of alternative reagents desirable. We compared Rh immune globulin and 6 human monoclonal anti-D antibodies (MoAnti-D) with differing isotypes and specificities for their ability to opsonize erythrocytes and inhibit platelet phagocytosis in an in vitro assay. Results demonstrated that opsonization of erythrocytes with Rh immune globulin significantly (P < .001) reduced phagocytosis of fluorescently labeled opsonized platelets in an Fc-dependent manner. Of the MoAnti-D that shared specificity but differed in isotype, only IgG3 antibodies could significantly (P < .001) inhibit platelet phagocytosis. In contrast, 2 MoAnti-D shared isotypes and differed in specificity; however, only one could significantly (P < .001) inhibit platelet phagocytosis. The results suggest that MoAnti-D epitope specificity and isotypes are critical requirements for optimal inhibition of opsonized platelet phagocytosis. PMID:17456719

  9. Binding and Phagocytosis by Opsonized and Nonopsonized Channel Catfish Macrophages of Viable DsRed-fluorescent-labeled Edwardsiella ictaluri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phagocyte-mediated killing of bacterial pathogens is one of the major defensive mechanisms in fish. The binding, uptake and destruction of recombinant fluorescent protein DsRed transformed Edwardsiella ictaluri by opsonized and nonopsonized channel catfish (Ictalurus punctatus) macrophages was chara...

  10. The split Renilla luciferase complementation assay is useful for identifying the interaction of Epstein-Barr virus protein kinase BGLF4 and a heat shock protein Hsp90.

    PubMed

    Wang, J; Guo, W; Long, C; Zhou, H; Wang, H; Sun, X

    2016-03-01

    Protein-protein interactions can regulate different cellular processes, such as transcription, translation, and oncogenic transformation. The split Renilla luciferase complementation assay (SRLCA) is one of the techniques that detect protein-protein interactions. The SRLCA is based on the complementation of the LN and LC non-functional halves of Renilla luciferase fused to possibly interacting proteins which after interaction form a functional enzyme and emit luminescence. The BGLF4 of Epstein-Barr virus (EBV) is a viral protein kinase that is expressed during the early and late stages of lytic cycles, which can regulate multiple cellular and viral substrates to optimize the DNA replication environment. The heat shock protein Hsp90 is a molecular chaperone that maintains the integrity of structure and function of various interacting proteins, which can form a complex with BGLF4 and stabilize its expression in cells. The interaction between BGLF4 and Hsp90 could be specifically detected through the SRLCA. The region of aa 250-295 of BGLF4 is essential for the BGLF4/Hsp90 interaction and the mutation of Phe-254, Leu-266, and Leu-267 can disrupt this interaction. These results suggest that the SRLCA can specifically detect the BGLF4/Hsp90 interaction and provide a reference to develop inhibitors that disrupt the BGLF4/Hsp90 interaction. PMID:26982469

  11. Deficiency of the Complement Component 3 but Not Factor B Aggravates Staphylococcus aureus Septic Arthritis in Mice

    PubMed Central

    Na, Manli; Jarneborn, Anders; Ali, Abukar; Welin, Amanda; Magnusson, Malin; Stokowska, Anna; Pekna, Marcela

    2016-01-01

    The complement system plays an essential role in the innate immune response and protection against bacterial infections. However, detailed knowledge regarding the role of complement in Staphylococcus aureus septic arthritis is still largely missing. In this study, we elucidated the roles of selected complement proteins in S. aureus septic arthritis. Mice lacking the complement component 3 (C3−/−), complement factor B (fB−/−), and receptor for C3-derived anaphylatoxin C3a (C3aR−/−) and wild-type (WT) control mice were intravenously or intra-articularly inoculated with S. aureus strain Newman. The clinical course of septic arthritis, as well as histopathological and radiological changes in joints, was assessed. After intravenous inoculation, arthritis severity and frequency were significantly higher in C3−/− mice than in WT controls, whereas fB−/− mice displayed intermediate arthritis severity and frequency. This was in accordance with both histopathological and radiological findings. C3, but not fB, deficiency was associated with greater weight loss, more frequent kidney abscesses, and higher bacterial burden in kidneys. S. aureus opsonized with C3−/− sera displayed decreased uptake by mouse peritoneal macrophages compared with bacteria opsonized with WT or fB−/− sera. C3aR deficiency had no effect on the course of hematogenous S. aureus septic arthritis. We conclude that C3 deficiency increases susceptibility to hematogenous S. aureus septic arthritis and impairs host bacterial clearance, conceivably due to diminished opsonization and phagocytosis of S. aureus. PMID:26787717

  12. Complement regulatory proteins are incorporated into lentiviral vectors and protect particles against complement inactivation.

    PubMed

    Schauber-Plewa, C; Simmons, A; Tuerk, M J; Pacheco, C D; Veres, G

    2005-02-01

    Lentiviral vectors pseudotyped with G glycoprotein from vesicular stomatitis virus (VSV-G) and baculovirus gp64 are inactivated by human complement. The extent of vector inactivation in serum from individual donors was examined and results showed wide donor-dependent variation in complement sensitivity for VSV-G-pseudotyped lentivectors. Amphotropic envelope (Ampho)-pseudotyped vectors were generally resistant to serum from all donors, while gp64-pseudotyped vectors were inactivated but showed less donor-to-donor variation than VSV-G. In animal sera, the vectors were mostly resistant to inactivation by rodent complement, whereas canine complement caused a moderate reduction in titer. In a novel advance for the lentiviral vector system, human complement-resistant-pseudotyped lentivector particles were produced through incorporation of complement regulatory proteins (CRPs). Decay accelerating factor (DAF)/CD55 provided the most effective protection using this method, while membrane cofactor protein (MCP)/CD46 showed donor-dependent protection and CD59 provided little or no protection against complement inactivation. Unlike previous approaches using CRPs to produce complement-resistant viral vectors, CRP-containing lentivectors particles were generated for this study without engineering the CRP molecules. Thus, through overexpression of native DAF/CD55 in the viral producer cell, an easy method was developed for generation of lentiviral vectors that are almost completely resistant to inactivation by human complement. Production of complement-resistant lentiviral particles is a critical step toward use of these vectors for in vivo gene therapy applications. PMID:15550926

  13. Adherence of Legionella pneumophila to guinea pig peritoneal macrophages, J774 mouse macrophages, and undifferentiated U937 human monocytes: role of Fc and complement receptors.

    PubMed Central

    Husmann, L K; Johnson, W

    1992-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, is a facultative intracellular pathogen of alveolar macrophages. Although previous studies have demonstrated that specific antibody facilitates uptake of L. pneumophila by phagocytic cells, the role of complement has been unclear. Thus, we have examined the relative contributions of Fc gamma- and complement receptor-mediated adherence to guinea pig peritoneal macrophages, U937 human monocytic cells, and J774 mouse macrophage cells. Opsonization of L. pneumophila (Philadelphia 2) with polyclonal immunoglobulin G promoted maximum adherence to guinea pig macrophages. In contrast, incubation in the presence of 20% fresh nonimmune human serum from a single donor did not promote adherence. The results obtained with U937 and J774 cells paralleled those obtained with guinea pig macrophages. In the absence of specific antibody, opsonization with guinea pig complement did not enhance adherence of the Philadelphia 1, Philadelphia 2, or Knoxville strain. However, when complement was added to heat-inactivated, specific antiserum, a fourfold increase in the number of adherent organisms was observed. Blocking studies utilizing membrane receptor-specific monoclonal antibodies demonstrated that both Fc and complement receptors mediated adherence of organisms treated with complement in the presence of specific antibody. These results suggest that complement augments adherence of L. pneumophila only when acting in concert with specific antibody. PMID:1452353

  14. Drugs that inhibit complement.

    PubMed

    Schrezenmeier, Hubert; Höchsmann, Britta

    2012-02-01

    The complement system is an important part of the innate immune system. Complement plays a crucial role in the pathophysiology of many disorders. Despite the pivotal role of the complement system, an approved targeted inhibitor of a complement factor became available only recently. Eculizumab is a humanized monoclonal antibody that inhibits complement factor C5. It is a targeted, disease modifying, treatment of paroxysmal nocturnal hemoglobinuria (PNH). It was approved be the US FDA and the European Commission in 2007. In this review we will update the experience with eculizumab in PNH and discuss potential use of eculizumab in other disorders (e.g. cold agglutinin disease; atypical HUS) and new approaches to complement inhibition with drugs other than eculizumab. PMID:22169380

  15. Complement and Viral Pathogenesis

    PubMed Central

    Stoermer, Kristina A.; Morrison, Thomas E.

    2011-01-01

    The complement system functions as an immune surveillance system that rapidly responds to infection. Activation of the complement system by specific recognition pathways triggers a protease cascade, generating cleavage products that function to eliminate pathogens, regulate inflammatory responses, and shape adaptive immune responses. However, when dysregulated, these powerful functions can become destructive and the complement system has been implicated as a pathogenic effector in numerous diseases, including infectious diseases. This review highlights recent discoveries that have identified critical roles for the complement system in the pathogenesis of viral infection. PMID:21292294

  16. Complement and HIV-I infection/ HIV-associated neurocognitive disorders

    PubMed Central

    Liu, Fengming; Dai, Shen; Gordon, Jennifer; Qin, Xuebin

    2014-01-01

    The various neurological complications associated with HIV-1 infection, specifically HIV-associated neurocognitive disorders (HAND) persist as a major public health burden worldwide. Despite the widespread use of anti-retroviral therapy, the prevalence of HAND is significantly high. HAND results from the direct effects of an HIV-1 infection as well as secondary effects of HIV-1-induced immune reaction and inflammatory response. Complement, a critical mediator of innate and acquired immunity, plays important roles in defeating many viral infections by the formation of a lytic pore or indirectly by opsonization and recruitment of phagocytes. While the role of complement in the pathogenesis of HIV-1 infection and HAND has been previously recognized for over fifteen years, it has been largely underestimated thus far. Complement can be activated through HIV-1 envelope proteins, mannose binding lectins (MBL) and anti-HIV-1 antibodies. Complement not only fights against HIV-1 infection but also enhances HIV-1 infection. Also, HIV-1 can hijack complement regulators such as CD59 and CD55 and can utilize these regulators and factor H to escape from complement attack. Normally, complement levels in brain are much lower than plasma levels and there is no or little complement deposition in brain cells. Interestingly, local production and deposition of complement are dramatically increased in HIV-1-infected brain, indicating that complement may contribute to the pathogenesis of HAND. Here, we review the current understanding of the role of complement in HIV-1 infection and HAND as well as potential therapeutic approaches targeting to the complement system for the treatment and eradications of HIV-1 infection. PMID:24639397

  17. Targeting complement in therapy.

    PubMed

    Kirschfink, M

    2001-04-01

    With increasing evidence that complement activation significantly contributes to the pathogenesis of a large number of inflammatory diseases, strategies that interfere with its deleterious action have become a major focus in pharmacological research. Endogenous soluble complement inhibitors (C1 inhibitor, recombinant soluble complement receptor 1, antibodies) blocking key proteins of the cascade reaction, neutralizing the action of the complement-derived anaphylatoxin C5a, or interfering with complement receptor 3 (CR3, CD18/11b)-mediated adhesion of inflammatory cells to the vascular endothelium have successfully been tested in various animal models over the past years. Promising results consequently led to clinical trials. Furthermore, incorporation of membrane-bound complement regulators (decay-accelerating factor (CD55), membrane co-factor protein (CD46), CD59) in transgenic animals has provided a major step forward in protecting xenografts from hyperacute rejection. At the same time, the poor contribution of complement to the antitumor response, which is caused by multiple resistance mechanisms that hamper the efficacy of antibody-based tumor therapy, is increasingly recognized and requires pharmacologic intervention. First attempts have now been made to interfere with the resistance mechanisms, thereby improving complement-mediated tumor cell destruction. PMID:11414360

  18. Complement in hemolytic anemia.

    PubMed

    Brodsky, Robert A

    2015-11-26

    Complement is increasingly being recognized as an important driver of human disease, including many hemolytic anemias. Paroxysmal nocturnal hemoglobinuria (PNH) cells are susceptible to hemolysis because of a loss of the complement regulatory proteins CD59 and CD55. Patients with atypical hemolytic uremic syndrome (aHUS) develop a thrombotic microangiopathy (TMA) that in most cases is attributable to mutations that lead to activation of the alternative pathway of complement. For optimal therapy, it is critical, but often difficult, to distinguish aHUS from other TMAs, such as thrombotic thrombocytopenic purpura; however, novel bioassays are being developed. In cold agglutinin disease (CAD), immunoglobulin M autoantibodies fix complement on the surface of red cells, resulting in extravascular hemolysis by the reticuloendothelial system. Drugs that inhibit complement activation are increasingly being used to treat these diseases. This article discusses the pathophysiology, diagnosis, and therapy for PNH, aHUS, and CAD. PMID:26582375

  19. Complement in hemolytic anemia.

    PubMed

    Brodsky, Robert A

    2015-01-01

    Complement is increasingly being recognized as an important driver of human disease, including many hemolytic anemias. Paroxysmal nocturnal hemoglobinuria (PNH) cells are susceptible to hemolysis because of a loss of the complement regulatory proteins CD59 and CD55. Patients with atypical hemolytic uremic syndrome (aHUS) develop a thrombotic microangiopathy (TMA) that in most cases is attributable to mutations that lead to activation of the alternative pathway of complement. For optimal therapy, it is critical, but often difficult, to distinguish aHUS from other TMAs, such as thrombotic thrombocytopenic purpura; however, novel bioassays are being developed. In cold agglutinin disease (CAD), immunoglobulin M autoantibodies fix complement on the surface of red cells, resulting in extravascular hemolysis by the reticuloendothelial system. Drugs that inhibit complement activation are increasingly being used to treat these diseases. This article discusses the pathophysiology, diagnosis, and therapy for PNH, aHUS, and CAD. PMID:26637747

  20. Role of Capsule and Suilysin in Mucosal Infection of Complement-Deficient Mice with Streptococcus suis

    PubMed Central

    Seitz, Maren; Beineke, Andreas; Singpiel, Alena; Willenborg, Jörg; Dutow, Pavel; Goethe, Ralph; Valentin-Weigand, Peter; Klos, Andreas

    2014-01-01

    Virulent Streptococcus suis serotype 2 strains are invasive extracellular bacteria causing septicemia and meningitis in piglets and humans. One objective of this study was to elucidate the function of complement in innate immune defense against S. suis. Experimental infection of wild-type (WT) and C3−/− mice demonstrated for the first time that the complement system protects naive mice against invasive mucosal S. suis infection. S. suis WT but not an unencapsulated mutant caused mortality associated with meningitis and other pathologies in C3−/− mice. The capsule contributed also substantially to colonization of the upper respiratory tract. Experimental infection of C3−/− mice with a suilysin mutant indicated that suilysin expression facilitated an early disease onset and the pathogenesis of meningitis. Flow cytometric analysis revealed C3 antigen deposition on the surface of ca. 40% of S. suis WT bacteria after opsonization with naive WT mouse serum, although to a significantly lower intensity than on the unencapsulated mutant. Ex vivo multiplication in murine WT and C3−/− blood depended on capsule but not suilysin expression. Interestingly, S. suis invasion of inner organs was also detectable in C5aR−/− mice, suggesting that chemotaxis and activation of immune cells via the anaphylatoxin receptor C5aR is, in addition to opsonization, a further important function of the complement system in defense against mucosal S. suis infection. In conclusion, we unequivocally demonstrate here the importance of complement against mucosal S. suis serotype 2 infection and that the capsule of this pathogen is also involved in escape from complement-independent immunity. PMID:24686060

  1. The Lectin Pathway of Complement and Rheumatic Heart Disease

    PubMed Central

    Beltrame, Marcia Holsbach; Catarino, Sandra Jeremias; Goeldner, Isabela; Boldt, Angelica Beate Winter; de Messias-Reason, Iara José

    2014-01-01

    The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever. PMID:25654073

  2. Monoclonal antibodies reactive with K1-encapsulated Escherichia coli lipopolysaccharide are opsonic and protect mice against lethal challenge.

    PubMed Central

    Kaufman, B M; Cross, A S; Futrovsky, S L; Sidberry, H F; Sadoff, J C

    1986-01-01

    Seven murine monoclonal antibodies (MAbs) directed against O-side-chain determinants of the K1-encapsulated Bortolussi strain of Escherichia coli (O18:K1:H7) were evaluated for their in vitro and in vivo activities. All the MAbs reacted well in Western blots against E. coli O18 lipopolysaccharide antigens. Two MAbs of the immunoglobulin G (IgG) class promoted in vitro opsonophagocytosis and protected mice lethally challenged with bacteria. Two IgM MAbs showed partial protection, although they had no in vitro opsonic activity, and the remaining three IgM MAbs showed no apparent functional activities. Monoclonal IgG antibodies against bacterial lipopolysaccharide can be opsonic and protective in spite of the presence of the K1 capsule on the bacterium. Images PMID:3516883

  3. Comparison of the composition and opsonic activities of imported and South African-manufactured intravenous and intramuscular immunoglobulin preparations.

    PubMed

    Theron, A J; Jooné, G K; Anderson, R

    1994-11-01

    We compared the composition and opsonic activities for two common microbial pathogens (Staphylococcus aureus and Streptococcus pyogenes) of various imported intravenous (IV) (Sandoglobulin, Octagam and Gammagard) and intramuscular (IM) (Beriglobin and Globuman Berna) immunoglobulin (Ig) preparations with those of the corresponding locally manufactured products, Polygam (IV) and Intragam (IM). When tested at equivalent concentrations (1 g/100 ml) the total IgG and IgG subclass concentrations of the various IV and IM preparations were similar. All the test preparations (IV and IM) possessed similar opsonic activity for S. aureus and S. pyogenes. These findings demonstrate that, in respect of IgG content and protective biological activity, Intragam and Polygam, the locally manufactured IM and IV Ig preparations, respectively, compared extremely favourably with the corresponding imported products. PMID:7495010

  4. Multi-Faceted Proteomic Characterization of Host Protein Complement of Rift Valley Fever Virus Virions and Identification of Specific Heat Shock Proteins, Including HSP90, as Important Viral Host Factors

    PubMed Central

    Nuss, Jonathan E.; Kehn-Hall, Kylene; Benedict, Ashwini; Costantino, Julie; Ward, Michael; Peyser, Brian D.; Retterer, Cary J.; Tressler, Lyal E.; Wanner, Laura M.; McGovern, Hugh F.; Zaidi, Anum; Anthony, Scott M.; Kota, Krishna P.; Bavari, Sina; Hakami, Ramin M.

    2014-01-01

    Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV). Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry) with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90), as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF. PMID:24809507

  5. Opsonization of Cryptococcus neoformans by a family of isotype-switch variant antibodies specific for the capsular polysaccharide.

    PubMed Central

    Schlageter, A M; Kozel, T R

    1990-01-01

    A family of immunoglobulin isotype-switch variants was isolated by sib selection from a murine hybridoma which produced an immunoglobulin G subclass 1 (IgG1) antibody specific for the capsular polysaccharide of Cryptococcus neoformans. Antibodies of the IgG1, IgG2a, and IgG2b isotypes had similar serotype specificity patterns in double immunodiffusion assays which used polysaccharides of the four cryptococcal serotypes as antigens. A quantitative difference in the ability of the isotypes to form a precipitate with the polysaccharide was observed in a double immunodiffusion assay and confirmed in a quantitative precipitin assay. The relative precipitating activity of the antibodies was IgG2a greater than IgG1 much greater than IgG2b. Analysis by enzyme-linked immunosorbent assay of the reactivity of the three isotypes with cryptococcal polysaccharide showed identical titers and slopes, suggesting that the variable region of the class-switch antibodies was unaltered. This system allowed us to examine the effect of the Fc portion of the antibody on opsonization of encapsulated cryptococci. Yeast cells were precoated with antibodies of each isotype and incubated with murine macrophages or cultured human monocytes. Antibodies of all three isotypes exhibited a dose-dependent opsonization for phagocytosis by both human and murine phagocytes. The relative opsonic activity of the antibodies was IgG2a greater than IgG1 greater than IgG2b. Images PMID:2187813

  6. High-Sensitivity C-Reactive Protein Complements Plasma Epstein-Barr Virus Deoxyribonucleic Acid Prognostication in Nasopharyngeal Carcinoma: A Large-Scale Retrospective and Prospective Cohort Study

    SciTech Connect

    Tang, Lin-Quan; Li, Chao-Feng; Chen, Qiu-Yan; Zhang, Lu; Lai, Xiao-Ping; He, Yun; Xu, Yun-Xiu-Xiu; Hu, Dong-Peng; Wen, Shi-Hua; Peng, Yu-Tuan; Chen, Wen-Hui; Liu, Huai; Guo, Shan-Shan; Liu, Li-Ting; Li, Jing; Zhang, Jing-Ping; and others

    2015-02-01

    Purpose: To evaluate the effects of combining the assessment of circulating high-sensitivity C-reactive protein (hs-CRP) with that of Epstein-Barr virus DNA (EBV DNA) in the pretherapy prognostication of nasopharyngeal carcinoma (NPC). Patients and Methods: Three independent cohorts of NPC patients (training set of n=3113, internal validation set of n=1556, and prospective validation set of n=1668) were studied. Determinants of disease-free survival, distant metastasis–free survival, and overall survival were assessed by multivariate analysis. Hazard ratios and survival probabilities of the patient groups, segregated by clinical stage (T1-2N0-1M0, T3-4N0-1M0, T1-2N2-3M0, and T3-4N2-3M0) and EBV DNA load (low or high) alone, and also according to hs-CRP level (low or high), were compared. Results: Elevated hs-CRP and EBV DNA levels were significantly correlated with poor disease-free survival, distant metastasis–free survival, and overall survival in both the training and validation sets. Associations were similar and remained significant after excluding patients with cardiovascular disease, diabetes, and chronic hepatitis B. Patients with advanced-stage disease were segregated by high EBV DNA levels and high hs-CRP level into a poorest-risk group, and participants with either high EBV DNA but low hs-CRP level or high hs-CRP but low EBV DNA values had poorer survival compared with the bottom values for both biomarkers. These findings demonstrate a significant improvement in the prognostic ability of conventional advanced NPC staging. Conclusion: Baseline plasma EBV DNA and serum hs-CRP levels were significantly correlated with survival in NPC patients. The combined interpretation of EBV DNA with hs-CRP levels led to refinement of the risks for the patient subsets, with improved risk discrimination in patients with advanced-stage disease.

  7. Peptide inhibitors of C3 activation as a novel strategy of complement inhibition for the treatment of paroxysmal nocturnal hemoglobinuria

    PubMed Central

    Ricklin, Daniel; Huang, Yijun; Reis, Edimara S.; Chen, Hui; Ricci, Patrizia; Lin, Zhuoer; Pascariello, Caterina; Raia, Maddalena; Sica, Michela; Del Vecchio, Luigi; Pane, Fabrizio; Lupu, Florea; Notaro, Rosario; Resuello, Ranillo R. G.; DeAngelis, Robert A.; Lambris, John D.

    2014-01-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by complement-mediated intravascular hemolysis due to the lack of CD55 and CD59 on affected erythrocytes. The anti-C5 antibody eculizumab has proven clinically effective, but uncontrolled C3 activation due to CD55 absence may result in opsonization of erythrocytes, possibly leading to clinically meaningful extravascular hemolysis. We investigated the effect of the peptidic C3 inhibitor, compstatin Cp40, and its long-acting form (polyethylene glycol [PEG]-Cp40) on hemolysis and opsonization of PNH erythrocytes in an established in vitro system. Both compounds demonstrated dose-dependent inhibition of hemolysis with IC50 ∼4 µM and full inhibition at 6 µM. Protective levels of either Cp40 or PEG-Cp40 also efficiently prevented deposition of C3 fragments on PNH erythrocytes. We further explored the potential of both inhibitors for systemic administration and performed pharmacokinetic evaluation in nonhuman primates. A single intravenous injection of PEG-Cp40 resulted in a prolonged elimination half-life of >5 days but may potentially affect the plasma levels of C3. Despite faster elimination kinetics, saturating inhibitor concentration could be reached with unmodified Cp40 through repetitive subcutaneous administration. In conclusion, peptide inhibitors of C3 activation effectively prevent hemolysis and C3 opsonization of PNH erythrocytes, and are excellent, and potentially cost-effective, candidates for further clinical investigation. PMID:24497537

  8. Stealth nanotubes: strategies of shielding carbon nanotubes to evade opsonization and improve biodistribution

    PubMed Central

    Kotagiri, Nalinikanth; Kim, Jin-Woo

    2014-01-01

    Carbon nanotubes (CNTs) have recently been in the limelight for their potential role in disease diagnostics and therapeutics, as well as in tissue engineering. Before these medical applications can be realized, there is a need to address issues like opsonization, phagocytosis by macrophages, and sequestration to the liver and spleen for eventual elimination from the body; along with equally important issues such as aqueous solubility, dispersion, biocompatibility, and biofunctionalization. CNTs have not been shown to be able to evade such biological obstacles, which include their nonspecific attachments to cells and other biological components in the bloodstream, before reaching target tissues and cells in vivo. This will eventually determine their longevity in circulation and clearance rate from the body. This review article discusses the current status, challenges, practical strategies, and implementations of coating CNTs with biocompatible and opsonin-resistant moieties, rendering CNTs transparent to opsonins and deceiving the innate immune response to make believe that the CNTs are not foreign. A holistic approach to the development of such “stealth” CNTs is presented, which encompasses not only several biophysicochemical factors that are not limited to surface treatment of CNTs, but also extraneous biological factors such as the protein corona formation that inevitably controls the in vivo fate of the particles. This review also discusses the present and potential applications, along with the future directions, of CNTs and their hybrid-based nanotheranostic agents for multiplex, multimodal molecular imaging and therapy, as well as in other applications, such as drug delivery and tissue engineering. PMID:24872705

  9. Stealth nanotubes: strategies of shielding carbon nanotubes to evade opsonization and improve biodistribution.

    PubMed

    Kotagiri, Nalinikanth; Kim, Jin-Woo

    2014-01-01

    Carbon nanotubes (CNTs) have recently been in the limelight for their potential role in disease diagnostics and therapeutics, as well as in tissue engineering. Before these medical applications can be realized, there is a need to address issues like opsonization, phagocytosis by macrophages, and sequestration to the liver and spleen for eventual elimination from the body; along with equally important issues such as aqueous solubility, dispersion, biocompatibility, and biofunctionalization. CNTs have not been shown to be able to evade such biological obstacles, which include their nonspecific attachments to cells and other biological components in the bloodstream, before reaching target tissues and cells in vivo. This will eventually determine their longevity in circulation and clearance rate from the body. This review article discusses the current status, challenges, practical strategies, and implementations of coating CNTs with biocompatible and opsonin-resistant moieties, rendering CNTs transparent to opsonins and deceiving the innate immune response to make believe that the CNTs are not foreign. A holistic approach to the development of such "stealth" CNTs is presented, which encompasses not only several biophysicochemical factors that are not limited to surface treatment of CNTs, but also extraneous biological factors such as the protein corona formation that inevitably controls the in vivo fate of the particles. This review also discusses the present and potential applications, along with the future directions, of CNTs and their hybrid-based nanotheranostic agents for multiplex, multimodal molecular imaging and therapy, as well as in other applications, such as drug delivery and tissue engineering. PMID:24872705

  10. CSF coccidioides complement fixation

    MedlinePlus

    ... eds. Henry's Clinical Diagnosis and Management by Laboratory Methods . 22nd ed. Philadelphia, PA: Elsevier Saunders; 2011:chap 61. Read More Complement Update Date 5/1/2015 Updated by: Jatin M. Vyas, MD, ...

  11. Acquisition of regulators of complement activation by Streptococcus pyogenes serotype M1.

    PubMed

    Pandiripally, Vinod; Gregory, Eugene; Cue, David

    2002-11-01

    Opsonization of bacteria by complement proteins is an important component of the immune response. The pathogenic bacterium Streptococcus pyogenes has evolved multiple mechanisms for the evasion of complement-mediated opsonization. One mechanism involves the binding of human regulators of complement activation such as factor H (FH) and FH-like protein 1 (FHL-1). Acquisition of these regulatory proteins can limit deposition of the opsonin C3b on bacteria, thus decreasing the pathogen's susceptibility to phagocytosis. Binding of complement regulatory proteins by S. pyogenes has previously been attributed to the streptococcal M and M-like proteins. Here, we report that the S. pyogenes cell surface protein Fba can mediate binding of FH and FHL-1. We constructed mutant derivatives of S. pyogenes that lack Fba, M1 protein, or both proteins and assayed the strains for FH binding, susceptibility to phagocytosis, and C3 deposition. Fba expression was found to be sufficient for binding of purified FH as well as for binding of FH and FHL-1 from human plasma. Plasma adsorption experiments also revealed that M1(+) Fba(+) streptococci preferentially bind FHL-1, whereas M1(-) Fba(+) streptococci have similar affinities for FH and FHL-1. Fba was found to contribute to the survival of streptococci incubated with human blood and to inhibit C3 deposition on bacterial cells. Streptococci harvested from log-phase cultures readily bound FH, but binding was greatly reduced for bacteria obtained from stationary-phase cultures. Bacteria cultured in the presence of the protease inhibitor E64 maintained FH binding activity in stationary phase, suggesting that Fba is removed from the cell surface via proteolysis. Western analyses confirmed that E64 stabilizes cell surface expression of Fba. These data indicate that Fba is an antiopsonic, antiphagocytic protein that may be regulated by cell surface proteolysis. PMID:12379699

  12. Acquisition of Regulators of Complement Activation by Streptococcus pyogenes Serotype M1

    PubMed Central

    Pandiripally, Vinod; Gregory, Eugene; Cue, David

    2002-01-01

    Opsonization of bacteria by complement proteins is an important component of the immune response. The pathogenic bacterium Streptococcus pyogenes has evolved multiple mechanisms for the evasion of complement-mediated opsonization. One mechanism involves the binding of human regulators of complement activation such as factor H (FH) and FH-like protein 1 (FHL-1). Acquisition of these regulatory proteins can limit deposition of the opsonin C3b on bacteria, thus decreasing the pathogen's susceptibility to phagocytosis. Binding of complement regulatory proteins by S. pyogenes has previously been attributed to the streptococcal M and M-like proteins. Here, we report that the S. pyogenes cell surface protein Fba can mediate binding of FH and FHL-1. We constructed mutant derivatives of S. pyogenes that lack Fba, M1 protein, or both proteins and assayed the strains for FH binding, susceptibility to phagocytosis, and C3 deposition. Fba expression was found to be sufficient for binding of purified FH as well as for binding of FH and FHL-1 from human plasma. Plasma adsorption experiments also revealed that M1+ Fba+ streptococci preferentially bind FHL-1, whereas M1− Fba+ streptococci have similar affinities for FH and FHL-1. Fba was found to contribute to the survival of streptococci incubated with human blood and to inhibit C3 deposition on bacterial cells. Streptococci harvested from log-phase cultures readily bound FH, but binding was greatly reduced for bacteria obtained from stationary-phase cultures. Bacteria cultured in the presence of the protease inhibitor E64 maintained FH binding activity in stationary phase, suggesting that Fba is removed from the cell surface via proteolysis. Western analyses confirmed that E64 stabilizes cell surface expression of Fba. These data indicate that Fba is an antiopsonic, antiphagocytic protein that may be regulated by cell surface proteolysis. PMID:12379699

  13. Sialylation of neurites inhibits complement-mediated macrophage removal in a human macrophage-neuron Co-Culture System.

    PubMed

    Linnartz-Gerlach, Bettina; Schuy, Christine; Shahraz, Anahita; Tenner, Andrea J; Neumann, Harald

    2016-01-01

    The complement system has been implicated in the removal of dysfunctional synapses and neurites during development and in disease processes in the mouse, but it is unclear how far the mouse data can be transferred to humans. Here, we co-cultured macrophages derived from human THP1 monocytes and neurons derived from human induced pluripotent stem cells, to study the role of the complement system in a human model. Components of the complement system were expressed by the human macrophages and human neuronal culture, while receptors of the complement cascade were expressed by human macrophages as shown via gene transcript analysis and flow cytometry. We mimicked pathological conditions leading to an altered glycocalyx by treatment of human neurons with sialidases. Desialylated human neurites were opsonized by the complement component C1q. Furthermore, human neurites with an intact sialic acid cap remained untouched, while desialylated human neurites were removed and ingested by human macrophages. While blockage of the complement receptor 1 (CD35) had no effect, blockage of CD11b as part of the complement receptor 3 (CR3) reversed the effect on macrophage phagocytosis of desialylated human neurites. Data demonstrate that in the human system sialylation of the neuronal glycocalyx serves as an inhibitory flag for complement binding and CR3-mediated phagocytosis by macrophages. PMID:26257016

  14. Complement component 3 (C3)

    MedlinePlus

    C3 and C4 are the most commonly measured complement components. A complement test may be used to monitor people with an ... normal levels of the complement proteins C3 and C4 . Complement activity varies throughout the body. For example, ...

  15. Systemic Lupus Erythematosus and Deficiencies of Early Components of the Complement Classical Pathway

    PubMed Central

    Macedo, Ana Catarina Lunz; Isaac, Lourdes

    2016-01-01

    The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the classical, alternative, or lectin pathways. Biological functions, such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, and solubilization and clearance of immune complex and cell lysis, are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in autoimmune diseases. Paradoxically, the deficiency of early complement proteins from the classical pathway (CP) is strongly associated with development of systemic lupus erythematous (SLE) – mainly C1q deficiency (93%) and C4 deficiency (75%). The aim of this review is to focus on the deficiencies of early components of the CP (C1q, C1r, C1s, C4, and C2) proteins in SLE patients. PMID:26941740

  16. Structure-activity relationships for substrate-based inhibitors of human complement factor B.

    PubMed

    Ruiz-Gómez, Gloria; Lim, Junxian; Halili, Maria A; Le, Giang T; Madala, Praveen K; Abbenante, Giovanni; Fairlie, David P

    2009-10-01

    Human complement is a cascading network of plasma proteins important in immune defense, cooperatively effecting recognition, opsonization, destruction, and removal of pathogens and infected/damaged cells. Overstimulated or unregulated complement activation can result in immunoinflammatory diseases. Key serine proteases in this cascade are difficult to study due to their multiprotein composition, short lifetimes, formation on membranes, or serum circulation as inactive zymogens. Factor B is inactive at pH 7, but a catalytically active serine protease under alkaline conditions, enabling structure-activity relationship studies for 63 substrate-based peptide inhibitors with 4-7 residues and a C-terminal aldehyde. A potent factor B inhibitor was hexpeptide Ac-RLTbaLAR-H (IC(50) 250 nM, pH 9.5), which at pH 7 also blocked formation of membrane attack complex via the "alternative pathway" of complement activation and inhibited human complement mediated lysis of rabbit erythrocytes. Inhibitors of factor B may be valuable probes and drug leads for complement mediated immunity and disease. PMID:19743866

  17. Bactericidal/permeability-increasing protein promotes complement activation for neutrophil-mediated phagocytosis on bacterial surface

    PubMed Central

    Nishimura, H; Gogami, A; Miyagawa, Y; Nanbo, A; Murakami, Y; Baba, T; Nagasawa, S

    2001-01-01

    The neutrophil bactericidal/permeability-increasing protein (BPI) has both bactericidal and lipopolysaccharide-neutralizing activities. The present study suggests that BPI also plays an important role in phagocytosis of Escherichia coli by neutrophils through promotion of complement activation on the bacterial surface. Flow cytometric analysis indicated that fluorescein-labelled E. coli treated with BPI were phagocytosed in the presence of serum at two- to five-fold higher levels than phagocytosis of the bacteria without the treatment. In contrast, phagocytosis of the fluoresceined bacteria with or without treatment by BPI did not occur at all in the absence of serum. The phagocytosis stimulated by BPI and serum was dose-dependent. The effect of BPI on phagocytosis in the presence of serum was not observed on Gram-positive bacteria (Staphylococcus aureus). Interestingly, the complement C3b/iC3b fragments were deposited onto the bacterial surface also as a function of the BPI concentration under conditions similar to those for phagocytosis. Furthermore, the BPI-promoted phagocytosis was blocked completely by anti-C3 F(ab′)2 and partially by anti-complement receptor (CR) type 1 and/or anti-CR type 3. These findings suggest that BPI accelerates complement activation to opsonize bacteria with complement-derived fragments, leading to stimulation of phagocytosis by neutrophils via CR(s). PMID:11529944

  18. Nonspecific Binding of Complement by Digestion Fragments from Antiviral Gamma Globulin.

    PubMed

    Cremer, N E; Riggs, J L; Lennette, E H; Jensen, F W

    1965-07-01

    The nonspecificity of rabbit gamma-globulin (antibody) to western equine encephalitis virus and the non-specificity of normal rabbit gamma-globulin in complement-fixation tests with anti-gens prepared from chick-embryo cells infected with this virus and normal chick-embryo cells resided primarily in Porter's fragment III. Addition of complement to fragment III from the anti-body globulin, followed by inactivation of the added complement, abolished the complement-fixing ability of fragment III with both specific and nonspecific antigens. Similar treatment of the undigested antibody abolished its complement-fixing ability with nonspecific antigen only. PMID:17737800

  19. Proteins of the cystic fibrosis respiratory tract. Fragmented immunoglobulin G opsonic antibody causing defective opsonophagocytosis.

    PubMed Central

    Fick, R B; Naegel, G P; Squier, S U; Wood, R E; Gee, J B; Reynolds, H Y

    1984-01-01

    correlated with phagocytic functional activity. Intact IgG comprised as little as 18% of the CF lavage fluid specimens. Aliquots of intact human IgG, when mixed with the CF opsonins, augmented Pseudomonas uptake and improved intracellular killing. Conversely, peptide fragments of IgG opsonins, which are proteolytically derived in vitro, duplicated in our system the defect observed with opsonins derived from CF lung fluids; bacterial uptake was inversely related to the concentration of F(ab')2 and to a greater degree, to Fc present in the opsonic mixture. We concluded that IgG respiratory opsonins are fragmented, inhibiting phagocytosis and serving a permissive role in the chronic Pseudomonas pulmonary infection in the disease CF. Images PMID:6429195

  20. Opsonic effect of jacalin and human immunoglobulin A on type II group B streptococci.

    PubMed Central

    Payne, N R; Concepcion, N F; Anthony, B F

    1990-01-01

    This study examined the effect of immunoglobulin A (IgA) and the IgA-binding lectin jacalin on the phagocytosis of type II group B streptococci (GBS). Strains possessing the trypsin-sensitive and trypsin-resistant components of the c protein (II/c) and type II GBS lacking the c protein (II) were examined by radiolabeled bacterial uptake, bactericidal assays, and electron microscopy. Type II/c GBS resisted phagocytosis by monocytes (4.9% +/- 0.8% uptake, mean +/- SE, n = 25) compared with type II GBS (8.5% +/- 1.4% uptake, n = 14, P = 0.03). Phagocytic killing by polymorphonuclear leukocytes was also less for the type II/c strain 78-471 than for the type II strain 79-176 (68% +/- 5% versus 86% +/- 4% reduction in CFU at 45 min, P = 0.03). IgA binding did not explain the resistance of type II/c GBS to phagocytosis. The uptake of type II/c GBS was not significantly different after opsonization in cord sera lacking endogenous IgA (5.93% +/- 1.4%) than in the same cord sera after addition of exogenous IgA (5.48% +/- 1.4%, P = 0.69, n = 9). Attempts to remove serum IgA with the IgA-binding lectin jacalin resulted in the binding of IgA-jacalin complexes to II/c GBS. This combination of nonspecific IgA and jacalin increased uptake of II/c GBS from 4.9% +/- 0.8% to 11.8% +/- 1.9% (P = 0.002). Jacalin also combined with specific, immune, monoclonal IgA bound to the surface of Haemophilus influenzae and promoted the uptake of these bacteria. Jacalin and IgA mediated phagocytosis of II/c GBS via receptors that were not dependent on divalent cations and that were not modulated by plating monocytes on antigen-antibody complexes. Images PMID:2228238

  1. Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity.

    PubMed

    Khoa, D V A; Wimmers, K

    2015-09-01

    The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 F2 animals of a resource population (DUMI: DU×BMP) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future. PMID:26194222

  2. Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity

    PubMed Central

    Khoa, D. V. A.; Wimmers, K.

    2015-01-01

    The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 F2 animals of a resource population (DUMI: DU×BMP) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future. PMID:26194222

  3. A Scabies Mite Serpin Interferes with Complement-Mediated Neutrophil Functions and Promotes Staphylococcal Growth

    PubMed Central

    Swe, Pearl M.; Fischer, Katja

    2014-01-01

    Background Scabies is a contagious skin disease caused by the parasitic mite Sarcoptes scabiei. The disease is highly prevalent worldwide and known to predispose to secondary bacterial infections, in particular by Streptococcus pyogenes and Staphylococcus aureus. Reports of scabies patients co-infected with methicillin resistant S. aureus (MRSA) pose a major concern for serious down-stream complications. We previously reported that a range of complement inhibitors secreted by the mites promoted the growth of S. pyogenes. Here, we show that a recently characterized mite serine protease inhibitor (SMSB4) inhibits the complement-mediated blood killing of S. aureus. Methodology/Principal Findings Blood killing of S. aureus was measured in whole blood bactericidal assays, counting viable bacteria recovered after treatment in fresh blood containing active complement and phagocytes, treated with recombinant SMSB4. SMSB4 inhibited the blood killing of various strains of S. aureus including methicillin-resistant and methicillin-sensitive isolates. Staphylococcal growth was promoted in a dose-dependent manner. We investigated the effect of SMSB4 on the complement-mediated neutrophil functions, namely phagocytosis, opsonization and anaphylatoxin release, by flow cytometry and in enzyme linked immuno sorbent assays (ELISA). SMSB4 reduced phagocytosis of S. aureus by neutrophils. It inhibited the deposition of C3b, C4b and properdin on the bacteria surface, but did not affect the depositions of C1q and MBL. SMSB4 also inhibited C5 cleavage as indicated by a reduced C5b-9 deposition. Conclusions/Significance We postulate that SMSB4 interferes with the activation of all three complement pathways by reducing the amount of C3 convertase formed. We conclude that SMSB4 interferes with the complement-dependent killing function of neutrophils, thereby reducing opsonization, phagocytosis and further recruitment of neutrophils to the site of infection. As a consequence secreted scabies

  4. Streptococcal pyrogenic exotoxin B cleaves properdin and inhibits complement-mediated opsonophagocytosis.

    PubMed

    Tsao, Nina; Tsai, Wan-Hua; Lin, Yee-Shin; Chuang, Woei-Jer; Wang, Chiou-Huey; Kuo, Chih-Feng

    2006-01-20

    Streptococcal pyrogenic exotoxin B (SPE B), a cysteine protease, is an important virulence factor in group A streptococcal (GAS) infection. The reduction of phagocytic activity by SPE B may help prevent bacteria from being ingested. In this study, we investigated the mechanism SPE B uses to enable bacteria to resist opsonophagocytosis. Using Western blotting and an affinity column immobilized with SPE B, we found that both SPE B and C192S, an SPE B mutant lacking protease activity, bound to serum properdin, and that SPE B, but not C192S, degraded serum properdin. Further study showed that SPE B-treated, but not C192S-treated, serum blocked the alternative complement pathway. Reconstitution of properdin into SPE B-treated serum unblocked the alternative pathway. GAS opsonized with SPE B-treated serum was more resistant to neutrophil killing than GAS opsonized with C192S-treated or normal serum. These results suggest that a novel SPE B mechanism, one which degrades serum properdin, enables GAS to resist opsonophagocytosis. PMID:16329996

  5. Comparison of the Kinetics of Maturation of Phagosomes Containing Apoptotic Cells and IgG-Opsonized Particles

    PubMed Central

    Viegas, Michelle S.; Estronca, Luís M. B. B.; Vieira, Otília V.

    2012-01-01

    Defective clearance of apoptotic cells has emerged as an important contributing factor to the pathogenesis of many diseases. Although many efforts have been made to understand the machinery involved in the recognition between phagocytes and potential targets, little is known about the intracellular transport of phagosomes containing apoptotic cells within mammalian cells. We have, therefore, performed a detailed study on the maturation of phagosomes containing apoptotic cells in a non-professional phagocytic cell line. This process was compared with the maturation of IgG-opsonized particles, which are internalized via the Fcγ-receptor (Fcγ-R), one of the best characterized phagocytic receptor, in the same cell line stably expressing the Fcγ-RIIA. By comparing markers from different stages of phagosome maturation, we have found that phagosomes carrying apoptotic particles reach the lysosomes with a delay compared to those containing IgG-opsonized particles. Enrichment of the apoptotic particles in phosphatidylserine (PS) neither changed the kinetics of their engulfment nor the maturation process of the phagosome. PMID:23119002

  6. Treponema pallidum Major Sheath Protein Homologue Tpr K Is a Target of Opsonic Antibody and the Protective Immune Response

    PubMed Central

    Centurion-Lara, Arturo; Castro, Christa; Barrett, Lynn; Cameron, Caroline; Mostowfi, Maryam; Van Voorhis, Wesley C.; Lukehart, Sheila A.

    1999-01-01

    We have identified a family of genes that code for targets for opsonic antibody and protective immunity in T. pallidum subspecies pallidum using two different approaches, subtraction hybridization and differential immunologic screening of a T. pallidum genomic library. Both approaches led to the identification of a polymorphic multicopy gene family with predicted amino acid homology to the major sheath protein of Treponema denticola. One of the members of this gene family, tpr K, codes for a protein that is predicted to have a cleavable signal peptide and be located in the outer membrane of the bacterium. Reverse transcription polymerase chain reaction analysis of T. pallidum reveals that Tpr K is preferentially transcribed in the Nichols strain of T. pallidum. Antibodies directed to purified recombinant variable domain of Tpr K can opsonize T. pallidum, Nichols strain, for phagocytosis, supporting the hypothesis that this portion of the protein is exposed at the surface of the treponeme. Immunization of rabbits with the purified recombinant variable domain of Tpr K provides significant protection against infection with the Nichols strain of T. pallidum. This gene family is hypothesized to be central to pathogenesis and immunity during syphilis infection. PMID:9989979

  7. A co-operative interaction between Neisseria gonorrhoeae and complement receptor 3 mediates infection of primary cervical epithelial cells.

    PubMed

    Edwards, Jennifer L; Brown, Eric J; Uk-Nham, Sang; Cannon, Janne G; Blake, Milan S; Apicella, Michael A

    2002-09-01

    Little is known about the pathogenesis of gonococcal infection within the lower female genital tract. We recently described the distribution of complement receptor 3 (CR3) on epithelia of the female genital tract. Our studies further indicate that CR3-mediated endocytosis serves as a primary mechanism by which N. gonorrhoeae elicits membrane ruffling and cellular invasion of primary, human, cervical epithelial cells. We have extended these studies to describe the nature of the gonococcus-CR3 interaction. Western Blot analysis demonstrated production of alternative pathway complement components by ecto- and endocervical cells which allows C3b deposition on gonococci and its rapid conversion to iC3b. Anti-iC3b and -factor I antibodies significantly inhibited adherence and invasion of primary cervical cells, suggesting that iC3b covalently bound to the gonococcus serves as a primary ligand for CR3 adherence. However, gonococcal porin and pili also bound to the I-domain of CR3 in a non-opsonic manner. Binding of porin and pili to CR3 were required for adherence to and invasion of cervical epithelia. Collectively, these data suggest that gonococcal adherence to CR3 occurs in a co-operative manner, which requires gonococcal iC3b-opsonization, porin and pilus. In conjunction, these molecules facilitate targeting to and successful infection of the cervical epithelium. PMID:12390350

  8. Cd47-Signal Regulatory Protein α (Sirpα) Regulates Fcγ and Complement Receptor–Mediated Phagocytosis

    PubMed Central

    Oldenborg, Per-Arne; Gresham, Hattie D.; Lindberg, Frederik P.

    2001-01-01

    In autoimmune hemolytic anemia (AIHA), circulating red blood cells (RBCs) opsonized with autoantibody are recognized by macrophage Fcγ and complement receptors. This triggers phagocytosis and elimination of RBCs from the circulation by splenic macrophages. We recently found that CD47 on unopsonized RBCs binds macrophage signal regulatory protein α (SIRPα), generating a negative signal that prevents phagocytosis of the unopsonized RBCs. We show here that clearance and phagocytosis of opsonized RBCs is also regulated by CD47-SIRPα. The inhibition generated by CD47-SIRPα interaction is strongly attenuated but not absent in mice with only residual activity of the phosphatase Src homology 2 domain–containing protein tyrosine phosphatase (SHP)-1, suggesting that most SIRPα signaling in this system is mediated by SHP-1 phosphatase activity. The macrophage phagocytic response is controlled by an integration of the inhibitory SIRPα signal with prophagocytic signals such as from Fcγ and complement receptor activation. Thus, augmentation of inhibitory CD47-SIRPα signaling may prevent or attenuate RBC clearance in AIHA. PMID:11283158

  9. Clinical significance of complement deficiencies.

    PubMed

    Pettigrew, H David; Teuber, Suzanne S; Gershwin, M Eric

    2009-09-01

    The complement system is composed of more than 30 serum and membrane-bound proteins, all of which are needed for normal function of complement in innate and adaptive immunity. Historically, deficiencies within the complement system have been suspected when young children have had recurrent and difficult-to-control infections. As our understanding of the complement system has increased, many other diseases have been attributed to deficiencies within the complement system. Generally, complement deficiencies within the classical pathway lead to increased susceptibility to encapsulated bacterial infections as well as a syndrome resembling systemic lupus erythematosus. Complement deficiencies within the mannose-binding lectin pathway generally lead to increased bacterial infections, and deficiencies within the alternative pathway usually lead to an increased frequency of Neisseria infections. However, factor H deficiency can lead to membranoproliferative glomerulonephritis and hemolytic uremic syndrome. Finally, deficiencies within the terminal complement pathway lead to an increased incidence of Neisseria infections. Two other notable complement-associated deficiencies are complement receptor 3 and 4 deficiency, which result from a deficiency of CD18, a disease known as leukocyte adhesion deficiency type 1, and CD59 deficiency, which causes paroxysmal nocturnal hemoglobinuria. Most inherited deficiencies of the complement system are autosomal recessive, but properidin deficiency is X-linked recessive, deficiency of C1 inhibitor is autosomal dominant, and mannose-binding lectin and factor I deficiencies are autosomal co-dominant. The diversity of clinical manifestations of complement deficiencies reflects the complexity of the complement system. PMID:19758139

  10. Virulence of Group A Streptococci Is Enhanced by Human Complement Inhibitors

    PubMed Central

    Ermert, David; Shaughnessy, Jutamas; Joeris, Thorsten; Kaplan, Jakub; Pang, Catherine J.; Kurt-Jones, Evelyn A.; Rice, Peter A.; Ram, Sanjay; Blom, Anna M.

    2015-01-01

    Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement and consequent phagocytosis. Several strains of GAS bind to human-specific complement inhibitors, C4b-binding protein (C4BP) and/or Factor H (FH), to curtail complement C3 (a critical opsonin) deposition. This results in diminished activation of phagocytes and clearance of GAS that may lead to the host being unable to limit the infection. Herein we describe the course of GAS infection in three human complement inhibitor transgenic (tg) mouse models that examined each inhibitor (human C4BP or FH) alone, or the two inhibitors together (C4BPxFH or ‘double’ tg). GAS infection with strains that bound C4BP and FH resulted in enhanced mortality in each of the three transgenic mouse models compared to infection in wild type mice. In addition, GAS manifested increased virulence in C4BPxFH mice: higher organism burdens and greater elevations of pro-inflammatory cytokines and they died earlier than single transgenic or wt controls. The effects of hu-C4BP and hu-FH were specific for GAS strains that bound these inhibitors because strains that did not bind the inhibitors showed reduced virulence in the ‘double’ tg mice compared to strains that did bind; mortality was also similar in wild-type and C4BPxFH mice infected by non-binding GAS. Our findings emphasize the importance of binding of complement inhibitors to GAS that results in impaired opsonization and phagocytic killing, which translates to enhanced virulence in a humanized whole animal model. This novel hu-C4BPxFH tg model may prove invaluable in studies of GAS pathogenesis and for developing vaccines and therapeutics that rely on human complement activation for efficacy. PMID:26200783

  11. Complement receptor activity of recombinant porcine CR1-like protein expressed in a eukaryotic system.

    PubMed

    Yin, Wei; Wei, Xiaoming; Jiang, Junbing; Fan, Kuohai; Zhao, Junxing; Sun, Na; Wang, Zhiwei; Sun, Yaogui; Ma, Haili; Zhao, Xin; Li, Hongquan

    2016-08-01

    Primate complement receptor type 1 (CR1) protein, a single-chain transmembrane glycoprotein, plays an important role in immune adherence and clearing complement-opsonized immune complexes. Here, the mRNA of the porcine primate-like complement receptor (CR1-like) gene was analyzed, and two domain sequences with potential functions were cloned into the pwPICZalpha vector for expression in Pichia pastoris. The recombinant proteins were purified with both Protein Pure Ni-NTA resin and strong anion exchange resin. The activities of the purified recombinant proteins were evaluated by SDS-PAGE, western blotting, and complement receptor assays. The results indicated that two domains of the CR1-like protein, CCP36 and CCP811 with molecular weights of 29.8 kDa and 30 kDa, respectively, were successfully expressed in P. pastoris. These two recombinant proteins possess some of the functions of the primate CR1 protein. Using these two proteins coupled with an antibody blocking technique, we also showed that CR1-like is expressed on natural porcine erythrocytes. PMID:26903010

  12. Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lytic bacteriophages, viruses which infect and lyse bacterial cells, can provide a natural method to reduce bacterial pathogens on produce commodities. The use of multi-phage cocktails is most likely to be effective against bacterial pathogens on produce commodities, and minimize the development of...

  13. Compstatin: a C3-targeted complement inhibitor reaching its prime for bedside intervention.

    PubMed

    Mastellos, Dimitrios C; Yancopoulou, Despina; Kokkinos, Petros; Huber-Lang, Markus; Hajishengallis, George; Biglarnia, Ali R; Lupu, Florea; Nilsson, Bo; Risitano, Antonio M; Ricklin, Daniel; Lambris, John D

    2015-04-01

    There is a growing awareness that complement plays an integral role in human physiology and disease, transcending its traditional perception as an accessory system for pathogen clearance and opsonic cell killing. As the list of pathologies linked to dysregulated complement activation grows longer, it has become clear that targeted modulation of this innate immune system opens new windows of therapeutic opportunity for anti-inflammatory drug design. Indeed, the introduction of the first complement-targeting drugs has reignited a vibrant interest in the clinical translation of complement-based inhibitors. Compstatin was discovered as a cyclic peptide that inhibits complement activation by binding C3 and interfering with convertase formation and C3 cleavage. As the convergence point of all activation pathways and a molecular hub for crosstalk with multiple pathogenic pathways, C3 represents an attractive target for therapeutic modulation of the complement cascade. A multidisciplinary drug optimization effort encompassing rational 'wet' and in silico synthetic approaches and an array of biophysical, structural and analytical tools has culminated in an impressive structure-function refinement of compstatin, yielding a series of analogues that show promise for a wide spectrum of clinical applications. These new derivatives have improved inhibitory potency and pharmacokinetic profiles and show efficacy in clinically relevant primate models of disease. This review provides an up-to-date survey of the drug design effort placed on the compstatin family of C3 inhibitors, highlighting the most promising drug candidates. It also discusses translational challenges in complement drug discovery and peptide drug development and reviews concerns related to systemic C3 interception. PMID:25678219

  14. Complement, complement activation and anaphylatoxins in human ovarian follicular fluid.

    PubMed Central

    Perricone, R; de Carolis, C; Moretti, C; Santuari, E; de Sanctis, G; Fontana, L

    1990-01-01

    Functionally active complement was sought and detected in human follicular fluids obtained during the pre-ovulatory period. All the functional complement activities tested, including total haemolytic complement, classical pathway activity and alternative pathway activity were present in nine fluids from four different donors with values within the normal serum range. The immunochemical analysis demonstrated the presence of complement factors from C1 to C9, of B and of C1 INH, H, I. Complement anaphylatoxins were found employing RIA techniques in amounts significantly higher than in human plasma, thus demonstrating that follicular fluid complement, at least during the pre-ovulatory period, is partially activated. A possible role for urokinase-like substances in such an activation was indicated by further in vitro experiments. The presence of active complement in follicular fluid can be relevant for the function of the enzymatic multi-factorial mechanism of ovulation. PMID:2242616

  15. Laboratory tests for disorders of complement and complement regulatory proteins.

    PubMed

    Shih, Angela R; Murali, Mandakolathur R

    2015-12-01

    The complement pathway is a cascade of proteases that is involved in immune surveillance and innate immunity, as well as adaptive immunity. Dysfunction of the complement cascade may be mediated by aberrations in the pathways of activation, complement regulatory proteins, or complement deficiencies, and has been linked to a number of hematologic disorders, including paroxysmal noctural hemoglobinuria (PNH), hereditary angioedema (HAE), and atypical hemolytic-uremic syndrome (aHUS). Here, current laboratory tests for disorders of the complement pathway are reviewed, and their utility and limitations in hematologic disorders and systemic diseases are discussed. Current therapeutic advances targeting the complement pathway in treatment of complement-mediated hematologic disorders are also reviewed. PMID:26437749

  16. Complement amplification revisited.

    PubMed

    Lutz, Hans U; Jelezarova, Emiliana

    2006-01-01

    Complement amplification in blood takes place not only on activating surfaces, but in plasma as well, where it is maintained primarily by C3b2-IgG complexes. Regular products of C3 activation in serum, these complexes are inherently very efficient precursors of the alternative pathway C3 convertase. Moreover, they can bind properdin bivalently, thus creating preferred sites for convertase formation. C3b2-IgG complexes have a half-life that is substantially longer than that of free C3b, since both C3b molecules are partially protected from inactivation by factor H and I. These complexes are preferentially generated on certain naturally occurring and induced antibodies that exhibit a paratope-independent affinity for C3/C3b. Such antibodies are known to stimulate alternative complement pathway activation. We have assembled the evidence for the generation and the functional potency of the C3b2-IgG complexes, which have been studied during the last two decades. We illustrate their roles in immune complex solubilization, phagocytosis, immune response, and their ability to initiate devastating effects in ischemia/reperfusion and in aggravating inflammation. PMID:16023211

  17. Role of IgG and complement component C5 in the initial course of experimental cryptococcosis.

    PubMed Central

    Dromer, F; Perronne, C; Barge, J; Vilde, J L; Yeni, P

    1989-01-01

    Although cellular immunity has a crucial role during cryptococcosis, several in vitro studies have pointed out the importance of IgG anti-Cryptococcus neoformans antibodies and complement components during phagocytosis of the yeast by polymorphonuclear leucocytes and monocytes. We investigated the role of complement and specific antibodies in host defences against experimental cryptococcosis, using a monoclonal IgG1 antibody (E1) specific for cryptococcal capsular polysaccharide, and mice congenitally sufficient or deficient in the fifth component of complement (C5). During in vitro experiments, E1 and the normal mouse serum from C5-sufficient and -deficient mice were unable to inhibit the growth of C.neoformans. However, E1 was an efficient opsonin for the ingestion of C. neoformans by mouse peritoneal macrophages, acting in synergy with normal mouse serum. In vivo, E1 was protective in heavily infected C5-deficient mice (DBA/2) dying from an early acute pneumonia, but not in C5-sufficient mice (BALB/c) and in DBA/2 mice infected with a smaller inoculum dying from a late progressive meningo-encephalitis. Although protection against pneumonia is attributed to a local recruitment of phagocytes in C5-sufficient mice, this was not observed in C5-deficient mice protected with E1. In this case, IgG anti-C. neoformans antibodies seem to be an alternative for an efficient opsonization of the yeasts. Altogether, these data suggest that two main mechanisms may protect infected mice from an early fatal pneumonia: the efficient opsonization of the yeast by complement and the recruitment of phagocytes in infected tissues. PMID:2612053

  18. Infections of People with Complement Deficiencies and Patients Who Have Undergone Splenectomy

    PubMed Central

    Ram, Sanjay; Lewis, Lisa A.; Rice, Peter A.

    2010-01-01

    Summary: The complement system comprises several fluid-phase and membrane-associated proteins. Under physiological conditions, activation of the fluid-phase components of complement is maintained under tight control and complement activation occurs primarily on surfaces recognized as “nonself” in an attempt to minimize damage to bystander host cells. Membrane complement components act to limit complement activation on host cells or to facilitate uptake of antigens or microbes “tagged” with complement fragments. While this review focuses on the role of complement in infectious diseases, work over the past couple of decades has defined several important functions of complement distinct from that of combating infections. Activation of complement in the fluid phase can occur through the classical, lectin, or alternative pathway. Deficiencies of components of the classical pathway lead to the development of autoimmune disorders and predispose individuals to recurrent respiratory infections and infections caused by encapsulated organisms, including Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae. While no individual with complete mannan-binding lectin (MBL) deficiency has been identified, low MBL levels have been linked to predisposition to, or severity of, several diseases. It appears that MBL may play an important role in children, who have a relatively immature adaptive immune response. C3 is the point at which all complement pathways converge, and complete deficiency of C3 invariably leads to severe infections, including those caused by meningococci and pneumococci. Deficiencies of the alternative and terminal complement pathways result in an almost exclusive predisposition to invasive meningococcal disease. The spleen plays an important role in antigen processing and the production of antibodies. Splenic macrophages are critical in clearing opsonized encapsulated bacteria (such as pneumococci, meningococci, and Escherichia coli

  19. Complete absence of the third component of complement in man.

    PubMed Central

    Ballow, M; Shira, J E; Harden, L; Yang, S Y; Day, N K

    1975-01-01

    A 4-yr-old female patient who has recurrent infections with encapsulated bacteria and gramnegative organisms was found to have a complete absence of total hemolytic complement and C3. Total hemolytic complement was reconstituted by the addition of functionally pure C3. With the exception of a moderately reduced homolytic C4, all other C components, measured homolytically and by radial immunodiffusion, were present in normal amounts. By Ouchterlong analysis, the patient's serum contained C3b inactivator and properdin but no antigenic C3. Activation of the alternate pathway was examined by purified cobra venom factor (CVF) and inulin. Neither of these substances led to activation of properdin factor B to B. On addition of partially purified Cordis C3, in four out of four instances and with different preparations of Cordis C3, activation of factor B to B occurred in the inulin-serum-C3 mixture. In contrast, activation of factor B to B occurred only once out of four times with CVF-serum-C3 mixtures. Immune adherence was found to be normal in the patient's serum and could be removed by anti-C4 antiserum of hydrazine treatment. A marked opsonic defect was present against Escherichia coli. Serum bactericidal activity against a rough strain of E. coli was also defective. The ability to mobilize an infalmmatory response was examined by Rebuck skin window technique. A delay in neutrophil migration occurred until the 6th h. In vitro lymphocyte transformation and serum immunoglobulins were normal. The proportion of peripheral blood T cells forming spontaneous sheep erythrocyte rosettes and the percentage of B cells forming EAC rosettes by the C3 receptor were normal. The significance of the absence of C3 in our patient is emphasized by the increased number of infections with encapsulated bacteria and the decreased functional biological activities of the C system, important in host defense mechanism(s). Images PMID:1159084

  20. Anti-Pseudomonas aeruginosa IgY antibodies promote bacterial opsonization and augment the phagocytic activity of polymorphonuclear neutrophils.

    PubMed

    Thomsen, Kim; Christophersen, Lars; Jensen, Peter Østrup; Bjarnsholt, Thomas; Moser, Claus; Høiby, Niels

    2016-07-01

    Moderation of polymorphonuclear neutrophils (PMNs) as part of a critical defense against invading pathogens may offer a promising therapeutic approach to supplement the antibiotic eradication of Pseudomonas aeruginosa infection in non-chronically infected cystic fibrosis (CF) patients. We have observed that egg yolk antibodies (IgY) harvested from White leghorn chickens that target P. aeruginosa opsonize the pathogen and enhance the PMN-mediated respiratory burst and subsequent bacterial killing in vitro. The effects on PMN phagocytic activity were observed in different Pseudomonas aeruginosa strains, including clinical isolates from non-chronically infected CF patients. Thus, oral prophylaxis with anti-Pseudomonas aeruginosa IgY may boost the innate immunity against Pseudomonas aeruginosa in the CF setting by facilitating a rapid and prompt bacterial clearance by PMNs. PMID:26901841

  1. Complementing Gender Analysis Methods.

    PubMed

    Kumar, Anant

    2016-01-01

    The existing gender analysis frameworks start with a premise that men and women are equal and should be treated equally. These frameworks give emphasis on equal distribution of resources between men and women and believe that this will bring equality which is not always true. Despite equal distribution of resources, women tend to suffer and experience discrimination in many areas of their lives such as the power to control resources within social relationships, and the need for emotional security and reproductive rights within interpersonal relationships. These frameworks believe that patriarchy as an institution plays an important role in women's oppression, exploitation, and it is a barrier in their empowerment and rights. Thus, some think that by ensuring equal distribution of resources and empowering women economically, institutions like patriarchy can be challenged. These frameworks are based on proposed equality principle which puts men and women in competing roles. Thus, the real equality will never be achieved. Contrary to the existing gender analysis frameworks, the Complementing Gender Analysis framework proposed by the author provides a new approach toward gender analysis which not only recognizes the role of economic empowerment and equal distribution of resources but suggests to incorporate the concept and role of social capital, equity, and doing gender in gender analysis which is based on perceived equity principle, putting men and women in complementing roles that may lead to equality. In this article the author reviews the mainstream gender theories in development from the viewpoint of the complementary roles of gender. This alternative view is argued based on existing literature and an anecdote of observations made by the author. While criticizing the equality theory, the author offers equity theory in resolving the gender conflict by using the concept of social and psychological capital. PMID:25941756

  2. Examining coagulation-complement crosstalk: complement activation and thrombosis.

    PubMed

    Foley, Jonathan H

    2016-05-01

    The coagulation and complement systems are ancestrally related enzymatic cascades of the blood. Although their primary purposes have diverged over the past few hundred million years, they remain inextricably connected. Both complement and coagulation systems limit infection by pathogens through innate immune mechanisms. Recently, it has been shown that hyperactive complement (in particular, elevated C5a/C5b-9) is involved in the pathogenesis (including thrombosis) of diseases such as paroxysmal nocturnal hemoglobinuria, atypical haemolytic uremic syndrome, antiphospholipid syndrome and bacteremia. Although these diseases together account for many thrombosis cases, there are many more where complement activation is not considered a causative factor leading to thrombosis. To better understand what role complement may play in the pathogenesis of thrombosis a better understanding of the mechanisms that cause over-active complement in thrombotic disease is required. PMID:27207425

  3. Complement System in Lung Disease

    PubMed Central

    Pandya, Pankita H.

    2014-01-01

    In addition to its established contribution to innate immunity, recent studies have suggested novel roles for the complement system in the development of various lung diseases. Several studies have demonstrated that complement may serve as a key link between innate and adaptive immunity in a variety of pulmonary conditions. However, the specific contributions of complement to lung diseases based on innate and adaptive immunity are just beginning to emerge. Elucidating the role of complement-mediated immune regulation in these diseases will help to identify new targets for therapeutic interventions. PMID:24901241

  4. How antibodies alter the cell entry pathway of dengue virus particles in macrophages

    PubMed Central

    Ayala-Nunez, Nilda V.; Hoornweg, Tabitha E.; van de Pol, Denise P.I.; Sjollema, Klaas A.; Flipse, Jacky; van der Schaar, Hilde M.; Smit, Jolanda M.

    2016-01-01

    Antibody-dependent enhancement of dengue virus (DENV) infection plays an important role in the exacerbation of DENV-induced disease. To understand how antibodies influence the fate of DENV particles, we explored the cell entry pathway of DENV in the absence and presence of antibodies in macrophage-like P388D1 cells. Recent studies unraveled that both mature and immature DENV particles contribute to ADE, hence, both particles were studied. We observed that antibody-opsonized DENV enters P388D1 cells through a different pathway than non-opsonized DENV. Antibody-mediated DENV entry was dependent on FcγRs, pH, Eps15, dynamin, actin, PI3K, Rab5, and Rab7. In the absence of antibodies, DENV cell entry was FcγR, PI3K, and Rab5-independent. Live-cell imaging of fluorescently-labeled particles revealed that actin-mediated membrane protrusions facilitate virus uptake. In fact, actin protrusions were found to actively search and capture antibody-bound virus particles distantly located from the cell body, a phenomenon that is not observed in the absence of antibodies. Overall, similar results were seen for antibody-opsonized standard and antibody-bound immature DENV preparations, indicating that the maturation status of the virus does not control the entry pathway. Collectively, our findings suggest that antibodies alter the cell entry pathway of DENV and trigger a novel mechanism of initial virus-cell contact. PMID:27385443

  5. Rare loss-of-function mutation in complement component C3 provides insight into molecular and pathophysiological determinants of complement activity

    PubMed Central

    Sfyroera, Georgia; Ricklin, Daniel; Reis, Edimara S.; Chen, Hui; Wu, Emilia L.; Kaznessis, Yiannis N.; Ekdahl, Kristina N.; Nilsson, Bo; Lambris, John D.

    2015-01-01

    The plasma protein C3 is a central element in the activation and effector functions of the complement system. A hereditary dysfunction of C3 that prevents complement activation via the alternative pathway (AP) was described previously in a Swedish family, but its genetic cause and molecular consequences have remained elusive. Here we provide these missing links by pinpointing the dysfunction to a point mutation in the β-chain of C3 (c.1180T>C; p.Met373Thr). In the patient’s plasma, AP activity was completely abolished and could only be reconstituted with the addition of normal C3. The M373T mutation was localized to the macroglobulin domain 4 (MG4) of C3, which contains a binding site for the complement inhibitor compstatin and is considered critical for the interaction of C3 with the AP C3 convertase. Structural analyses suggested that the mutation disturbs the integrity of MG4 and induces conformational changes that propagate into adjacent regions. Indeed, C3 M373T showed an altered binding pattern for compstatin and surface-bound C3b, and the presence of Thr-373 in either the C3 substrate or convertase-affiliated C3b impaired C3 activation and opsonization. In contrast to known gain-of-function mutations in C3, patients affected by this loss-of-function mutation did not develop familial disease, but rather showed diverse and mostly episodic symptoms. Our study therefore reveals the molecular mechanism of a relevant loss-of-function mutation in C3 and provides insight into the function of the C3 convertase, the differential involvement of C3 activity in clinical conditions, and some potential implications of therapeutic complement inhibition. PMID:25712219

  6. Complement fixation by rheumatoid factor.

    PubMed Central

    Tanimoto, K; Cooper, N R; Johnson, J S; Vaughan, J H

    1975-01-01

    The capacity for fixation and activation of hemolytic complement by polyclonal IgM rheumatoid factors (RF) isolated from sera of patients with rheumatoid arthritis and monoclonal IgM-RF isolated from the cryoprecipitates of patients with IgM-IgG mixed cryoglobulinemia was examined. RF mixed with aggregated, reduced, and alkylated human IgG (Agg-R/A-IgG) in the fluid phase failed to significantly reduce the level of total hemolytic complement, CH50, or of individual complement components, C1, C2, C3, and C5. However, sheep erythrocytes (SRC) coated with Agg-R/A-IgG or with reduced and alkylated rabbit IgG anti-SRC antibody were hemolyzed by complement in the presence of polyclonal IgM-RF. Human and guinea pig complement worked equally well. The degree of hemolysis was in direct proportion to the hemagglutination titer of the RF against the same coated cells. Monoclonal IgM-RF, normal human IgM, and purified Waldenström macroglobulins without antiglobulin activity were all inert. Hemolysis of coated SRC by RF and complement was inhibited by prior treatment of the complement source with chelating agents, hydrazine, cobra venom factor, specific antisera to C1q, CR, C5, C6, or C8, or by heating at 56 degrees C for 30 min. Purified radiolabeled C4, C3, and C8 included in the complement source were bound to hemolysed SRC in direct proportion to the degree of hemolysis. These data indicate that polyclonal IgM-RF fix and activate complement via the classic pathway. The system described for assessing complement fixation by isolated RF is readily adaptable to use with whole human serum. PMID:1078825

  7. Bimolecular fluorescence complementation.

    PubMed

    Wong, Katy A; O'Bryan, John P

    2011-01-01

    Defining the subcellular distribution of signaling complexes is imperative to understanding the output from that complex. Conventional methods such as immunoprecipitation do not provide information on the spatial localization of complexes. In contrast, BiFC monitors the interaction and subcellular compartmentalization of protein complexes. In this method, a fluororescent protein is split into amino- and carboxy-terminal non-fluorescent fragments which are then fused to two proteins of interest. Interaction of the proteins results in reconstitution of the fluorophore (Figure 1). A limitation of BiFC is that once the fragmented fluorophore is reconstituted the complex is irreversible. This limitation is advantageous in detecting transient or weak interactions, but precludes a kinetic analysis of complex dynamics. An additional caveat is that the reconstituted flourophore requires 30min to mature and fluoresce, again precluding the observation of real time interactions. BiFC is a specific example of the protein fragment complementation assay (PCA) which employs reporter proteins such as green fluorescent protein variants (BiFC), dihydrofolate reductase, b-lactamase, and luciferase to measure protein:protein interactions. Alternative methods to study protein:protein interactions in cells include fluorescence co-localization and Förster resonance energy transfer (FRET). For co-localization, two proteins are individually tagged either directly with a fluorophore or by indirect immunofluorescence. However, this approach leads to high background of non-interacting proteins making it difficult to interpret co-localization data. In addition, due to the limits of resolution of confocal microscopy, two proteins may appear co-localized without necessarily interacting. With BiFC, fluorescence is only observed when the two proteins of interest interact. FRET is another excellent method for studying protein:protein interactions, but can be technically challenging. FRET

  8. The Complement System in Schizophrenia

    PubMed Central

    Mayilyan, Karine R.; Weinberger, Daniel R.; Sim, Robert B.

    2009-01-01

    summary Several lines of evidence suggest that immunological factors contribute to schizophrenia. Since 1989, the role of complement, a major effector of innate immunity and an adjuvant of adaptive immunity, has been explored in schizophrenia. Increased activity of C1, C3, C4 complement components in schizophrenia has been reported by two or more groups. Two studies on different subject cohorts showed increased MBL-MASP-2 activity in patients versus controls. More then one report indicated a significant high frequency of FB*F allotype and low prevalence of the FS phenotype of complement factor B in schizophrenia. From the data reported, it is likely that the disorder is accompanied by alterations of the complement classical and lectin pathways, which undergo dynamic changes, depending on the illness course and the state of neuro-immune crosstalk. Recent findings, implicating complement in neurogenesis, synapse remodeling and pruning during brain development, suggest a reexamination of the potential role of complement in neurodevelopmental processes contributing to schizophrenia susceptibility. It is plausible that the multicomponent complement system has more than one dimensional association with schizophrenia susceptibility, pathopsychology and illness course, understanding of which will bring a new perspective for possible immunomodulation and immunocorrection of the disease. PMID:18560619

  9. Foal IgG and opsonizing anti-Rhodococcus equi antibodies after immunization of pregnant mares with a protective VapA candidate vaccine.

    PubMed

    Cauchard, Julien; Sevin, Corinne; Ballet, Jean-Jacques; Taouji, Saïd

    2004-11-30

    The aim of this study was to evaluate serum IgG antibody levels and opsonizing activity in foals from pregnant mares immunized with either proteins from an R. equi strain containing virulence-associated protein A (VapA), an immunodominant surface-expressed lipoprotein encoded by a virulence plasmid crucial for virulence in foals, or a whole killed virulent R. equi preparation. Forty-eight pregnant mares were distributed into three groups, i.e. 24 immunized with R. equi VapA protein antigen associated with a water-based nanoparticle adjuvant (Montanide IMS 3012), 8 immunized with whole killed R. equi, and 16 non-immunized as control. Serum IgG and opsonizing capacity were evaluated during pregnancy in mares, and up to day 45 post-delivery in foals in which R. equi infections were recorded in the first 6 months of life. Pregnant mares immunized with virulent R. equi proteins developed higher serum IgG and opsonic activity which were transferred to the foals than either in the whole R. equi immunized or the control group. Four foals developed pneumonia in the control group while none in immunized groups. Results support further evaluation of VapA protein antigen associated with a water-based nanoparticle adjuvant as a candidate vaccine for immunization of pregnant mares resulting in passive antibody-mediated protection of foals. PMID:15530741

  10. Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen.

    PubMed

    Kinzel, Silke; Lehmann-Horn, Klaus; Torke, Sebastian; Häusler, Darius; Winkler, Anne; Stadelmann, Christine; Payne, Natalie; Feldmann, Linda; Saiz, Albert; Reindl, Markus; Lalive, Patrice H; Bernard, Claude C; Brück, Wolfgang; Weber, Martin S

    2016-07-01

    In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders. PMID:27022743

  11. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs.

    PubMed

    Szebeni, Janos; Storm, Gert

    2015-12-18

    Liposomes are known to activate the complement (C) system, which can lead in vivo to a hypersensitivity syndrome called C activation-related pseudoallergy (CARPA). CARPA has been getting increasing attention as a safety risk of i.v. therapy with liposomes, whose testing is now recommended in bioequivalence evaluations of generic liposomal drug candidates. This review highlights the adverse consequences of C activation, the unique symptoms of CARPA triggered by essentially all i.v. administered liposomal drugs, and the various features of vesicles influencing this adverse immune effect. For the case of Doxil, we also address the mechanism of C activation and the opsonization vs. long circulation (stealth) paradox. In reviewing the methods of assessing C activation and CARPA, we delineate the most sensitive porcine model and an algorithm for stepwise evaluation of the CARPA risk of i.v. liposomes, which are proposed for standardization for preclinical toxicology evaluation of liposomal and other nanoparticulate drug candidates. PMID:26182876

  12. Analysis of complement C3 deposition and degradation on Klebsiella pneumoniae.

    PubMed Central

    Albertí, S; Alvarez, D; Merino, S; Casado, M T; Vivanco, F; Tomás, J M; Benedí, V J

    1996-01-01

    The majority of Klebsiella pneumoniae serum-resistant strains activate complement and bind C3b, the opsonic fragment of C3, without C5b-9 formation and bacterial killing. The mechanisms leading to C3b deposition without cell death were studied, and the results indicate that serum-resistant strains activate principally the alternative pathway and that serum-sensitive strains activate both the alternative and classical pathways. Bacterial molecules implicated in C3b deposition are the outer membrane porin proteins and smooth and rough lipopolysaccharides. Porins activate both complement pathways, and the rough lipopolysaccharide activates the classical pathway, causing deposition of C3b in serum-sensitive strains. The smooth lipopolysaccharide of serum-resistant strains activates only the alternative pathway, impeding the binding of C1q to porins (S. Albertí, G. Marqués, S. Camprubí, S. Merino, J. M. Tomás, F. Vivanco, and V. J. Benedí, Infect. Immun. 61:852-860, 1993; S. Albertí, F. Rodríguez-Quinónes, T. Schirmer, G. Rummel, J. M. Tomás, J. P. Rosenbusch, and V. J. Benedí, Infect. Immun. 63:903-910, 1995) and rough lipopolysaccharide molecules and thereby preventing activation of the classical pathway. After its deposition, C3b is quickly degraded to iC3b on both types of strains, but the higher-level deposition of C3b on serum-sensitive strains, resulting from activation of both the alternative and classical complement pathways, supports further complement activation and killing of serum-sensitive strains. PMID:8890232

  13. Intracellular sensing of complement C3 activates cell autonomous immunity

    PubMed Central

    Tam, Jerry C.H.; Bidgood, Susanna R.; McEwan, William A.; James, Leo C.

    2014-01-01

    Pathogens traverse multiple barriers during infection including cell membranes. Here we show that during this transition pathogens carry covalently attached complement C3 into the cell, triggering immediate signalling and effector responses. Sensing of C3 in the cytosol activates MAVS-dependent signalling cascades and induces proinflammatory cytokine secretion. C3 also flags viruses for rapid proteasomal degradation, thereby preventing their replication. This system can detect both viral and bacterial pathogens but is antagonized by enteroviruses, such as rhinovirus and poliovirus, which cleave C3 using their 3C protease. The antiviral Rupintrivir inhibits 3C protease and prevents C3 cleavage, rendering enteroviruses susceptible to intracellular complement sensing. Thus, complement C3 allows cells to detect and disable pathogens that have invaded the cytosol. PMID:25190799

  14. Intracellular sensing of complement C3 activates cell autonomous immunity.

    PubMed

    Tam, Jerry C H; Bidgood, Susanna R; McEwan, William A; James, Leo C

    2014-09-01

    Pathogens traverse multiple barriers during infection, including cell membranes. We found that during this transition, pathogens carried covalently attached complement C3 into the cell, triggering immediate signaling and effector responses. Sensing of C3 in the cytosol activated mitochondrial antiviral signaling (MAVS)-dependent signaling cascades and induced proinflammatory cytokine secretion. C3 also flagged viruses for rapid proteasomal degradation, preventing their replication. This system could detect both viral and bacterial pathogens but was antagonized by enteroviruses, such as rhinovirus and poliovirus, which cleave C3 using their 3C protease. The antiviral rupintrivir inhibited 3C protease and prevented C3 cleavage, rendering enteroviruses susceptible to intracellular complement sensing. Thus, complement C3 allows cells to detect and disable pathogens that have invaded the cytosol. PMID:25190799

  15. Improvisation: A Complement to Curriculum

    ERIC Educational Resources Information Center

    Ronald, Green A.

    2006-01-01

    With the growth of standardized assessment benchmarks in both the public and private paradigms, testing performance matters to institutions more than ever. In an attempt to take as many hindering variables out of this process, such as test anxiety, socioeconomic influences, and latency in cognition, Improvisation: A Complement to Curriculum seeks…

  16. Complement activation on platelets correlates with a decrease in circulating immature platelets in patients with immune thrombocytopenic purpura.

    PubMed

    Peerschke, Ellinor I B; Andemariam, Biree; Yin, Wei; Bussel, James B

    2010-02-01

    The role of the complement system in immune thrombocytopenic purpura (ITP) is not well defined. We examined plasma from 79 patients with ITP, 50 healthy volunteers, and 25 patients with non-immune mediated thrombocytopenia, to investigate their complement activation/fixation capacity (CAC) on immobilized heterologous platelets. Enhanced CAC was found in 46 plasma samples (59%) from patients with ITP, but no samples from patients with non-immune mediated thrombocytopenia. Plasma from healthy volunteers was used for comparison. In patients with ITP, an enhanced plasma CAC was associated with a decreased circulating absolute immature platelet fraction (A-IPF) (<15 x 10(9)/l) (P = 0.027) and thrombocytopenia (platelet count < 100 x 10(9)/l) (P = 0.024). The positive predictive value of an enhanced CAC for a low A-IPF was 93%, with a specificity of 77%. The specificity and positive predictive values increased to 100% when plasma CAC was defined strictly by enhanced C1q and/or C4d deposition on test platelets. Although no statistically significant correlation emerged between CAC and response to different pharmacological therapies, an enhanced response to splenectomy was noted (P < 0.063). Thus, complement fixation may contribute to the thrombocytopenia of ITP by enhancing clearance of opsonized platelets from the circulation, and/or directly damaging platelets and megakaryocytes. PMID:19925495

  17. Complement Activation on Platelets Correlates with a Decrease in Circulating Immature Platelets in Patients with Immune Thrombocytopenic Purpura

    PubMed Central

    Peerschke, Ellinor I.B.; Andemariam, Biree; Yin, Wei; Bussel, James B.

    2010-01-01

    The role of the complement system in immune thrombocytopenic purpura (ITP) is not well defined. We examined plasma from 79 patients with ITP, 50 healthy volunteers, and 25 patients with non-immune mediated thrombocytopenia, to investigate their complement activation/fixation capacity (CAC) on immobilized heterologous platelets. Enhanced CAC was found in 46 plasma samples (59%) from patients with ITP, but no samples from patients with non-immune mediated thrombocytopenia. Plasma from healthy volunteers was used for comparison. In patients with ITP, an enhanced plasma CAC was associated with a decreased circulating absolute immature platelet fraction (A-IPF) (<15 × 109/L) (p = 0.027) and thrombocytopenia (platelet count less than 100K/μl) (p= 0.024). The positive predictive value of an enhanced CAC for a low A-IPF was 93%, with a specificity of 77%. The specificity and positive predictive values increased to 100% when plasma CAC was defined strictly by enhanced C1q and/or C4d deposition on test platelets. Although no statistically significant correlation emerged between CAC and response to different pharmacologic therapies, an enhanced response to splenectomy was noted (p <0.063). Thus, complement fixation may contribute to the thrombocytopenia of ITP by enhancing clearance of opsonized platelets from the circulation, and/or directly damaging platelets and megakaryocytes. PMID:19925495

  18. CSF coccidioides complement fixation test

    MedlinePlus

    ... test that checks for infection due to the fungus Coccidioides in the cerebrospinal (CSF) fluid. This is ... Antibodies defend your body against bacteria, viruses, and fungi. If the antibodies are present, they stick, or " ...

  19. Influence of minor thermal injury on expression of complement receptor CR3 on human neutrophils.

    PubMed Central

    Nelson, R. D.; Hasslen, S. R.; Ahrenholz, D. H.; Haus, E.; Solem, L. D.

    1986-01-01

    Thermal injury is well known to inhibit functions of the circulating neutrophil related to its role in host defense against infection, but the mechanism(s) of this phenomenon are not fully understood. To gain further clues to these mechanisms, the authors have studied patients with thermal injury in terms of altered expression of neutrophil cell membrane receptors for the opsonic complement-derived ligand C3bi--complement receptor Type 3, or CR3. CR3 expression was selected for study because an increase in the number of receptors on the cell surface can be stimulated by products of complement activation known to accumulate after thermal injury and because of the role of CR3 in phagocytic and adherence functions of the neutrophil. Expression of CR3 was monitored semiquantitatively by flow cytometry with the use of a murine monoclonal antibody (OKM1) specific for an antigen (CD11) associated with this receptor. Patients evaluated were limited in this study to those with minor degrees of thermal injury (second-degree burn involving less than 20% of total body surface area) so that possible confounding effects of major injury and its complications could be eliminated. It was observed that patient neutrophil CR3 becomes significantly up-regulated during the first week, as early as 1 day after injury. The maximum level of expression of CR3 averaged greater than 150% (range, 70-314%) of the respective minimum level observed for each patient. The minimum levels of expression of CR3 on patient neutrophils, reached 11-37 days after injury for 7 of 8 patients, were comparable to the level of expression of CR3 on unstimulated control neutrophils. Such temporal up-regulation of patient neutrophil CR3 suggests the early generation of stimuli of CR3 mobilization in response to thermal injury. Increased numbers of CR3 on patient neutrophils may augment microbicidal function and enhance or inhibit delivery of cells to the burn site. PMID:3541642

  20. Microparticles Provide a Novel Biomarker To Predict Severe Clinical Outcomes of Dengue Virus Infection

    PubMed Central

    Punyadee, Nuntaya; Mairiang, Dumrong; Thiemmeca, Somchai; Komoltri, Chulaluk; Pan-ngum, Wirichada; Chomanee, Nusara; Charngkaew, Komgrid; Tangthawornchaikul, Nattaya; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida

    2014-01-01

    ABSTRACT Shedding of microparticles (MPs) is a consequence of apoptotic cell death and cellular activation. Low levels of circulating MPs in blood help maintain homeostasis, whereas increased MP generation is linked to many pathological conditions. Herein, we investigated the role of MPs in dengue virus (DENV) infection. Infection of various susceptible cells by DENV led to apoptotic death and MP release. These MPs harbored a viral envelope protein and a nonstructural protein 1 (NS1) on their surfaces. Ex vivo analysis of clinical specimens from patients with infections of different degrees of severity at multiple time points revealed that MPs generated from erythrocytes and platelets are two major MP populations in the circulation of DENV-infected patients. Elevated levels of red blood cell-derived MPs (RMPs) directly correlated with DENV disease severity, whereas a significant decrease in platelet-derived MPs was associated with a bleeding tendency. Removal by mononuclear cells of complement-opsonized NS1–anti-NS1 immune complexes bound to erythrocytes via complement receptor type 1 triggered MP shedding in vitro, a process that could explain the increased levels of RMPs in severe dengue. These findings point to the multiple roles of MPs in dengue pathogenesis. They offer a potential novel biomarker candidate capable of differentiating dengue fever from the more serious dengue hemorrhagic fever. IMPORTANCE Dengue is the most important mosquito-transmitted viral disease in the world. No vaccines or specific treatments are available. Rapid diagnosis and immediate treatment are the keys to achieve a positive outcome. Dengue virus (DENV) infection, like some other medical conditions, changes the level and composition of microparticles (MPs), tiny bag-like structures which are normally present at low levels in the blood of healthy individuals. This study investigated how MPs in culture and patients' blood are changed in response to DENV infection. Infection of cells

  1. Characterisation of murine monoclonal antibodies recognising opsonic, mouse-protective, chaining and mucosally relevant epitopes on the M protein of Streptococcus equi subspecies equi.

    PubMed

    Timoney, J F; Guan, M

    1996-01-01

    Six hybridomas secreting murine monoclonal antibodies (mAbs) specific for the M protein of Streptococcus equi subspecies equi were characterised. The mAbs recognised the major 41 and 46 kDa fragments of M protein in an acid extract of S equi and the 56 and 58 kDa dimer of the native molecule in a mutanolysin extract, but did not react with recombinant M-like protein of S equi subspecies zooepidemicus. One mAb (2A10) showed strong opsonic activity for S equi and protected mice against an experimental challenge with virulent S equi. Two other mAbs were mouse-protective but not opsonic. All the mAbs elicited a strong chaining response from S equi, but had only a weak chaining effect on a strain of S equi (19) that expressed only 4 per cent of the normal amount of M protein. Antibodies in nasopharyngeal mucus of horses recently recovered from strangles were inhibited to different extents by each mAb. These different functional behaviours and the result of inhibition ELISAs suggest that the M protein of S equi carries multiple epitopes. PMID:8745261

  2. Complement Activation in Placental Malaria

    PubMed Central

    McDonald, Chloe R.; Tran, Vanessa; Kain, Kevin C.

    2015-01-01

    Sixty percent of all pregnancies worldwide occur in malaria endemic regions. Pregnant women are at greater risk of malaria infection than their non-pregnant counterparts and have a higher risk of adverse birth outcomes including low birth weight resulting from intrauterine growth restriction and/or preterm birth. The complement system plays an essential role in placental and fetal development as well as the host innate immune response to malaria infection. Excessive or dysregulated complement activation has been associated with the pathobiology of severe malaria and with poor pregnancy outcomes, dependent and independent of infection. Here we review the role of complement in malaria and pregnancy and discuss its part in mediating altered placental angiogenesis, malaria-induced adverse birth outcomes, and disruptions to the in utero environment with possible consequences on fetal neurodevelopment. A detailed understanding of the mechanisms underlying adverse birth outcomes, and the impact of maternal malaria infection on fetal neurodevelopment, may lead to biomarkers to identify at-risk pregnancies and novel therapeutic interventions to prevent these complications. PMID:26733992

  3. Emerging concepts in dengue pathogenesis: interplay between plasmablasts, platelets, and complement in triggering vasculopathy.

    PubMed

    Nascimento, Eduardo J M; Hottz, Eugenio D; Garcia-Bates, Tatiana M; Bozza, Fernando; Marques, Ernesto T A; Barratt-Boyes, Simon M

    2014-01-01

    Dengue is a mosquito-borne disease caused by infection with dengue virus (DENV) that represents a serious and expanding global health threat. Most DENV infections are inapparent or produce mild and self-limiting illness; however a significant proportion results in severe disease characterized by vasculopathy and plasma leakage that may culminate in shock and death. The cause of dengue-associated vasculopathy is likely to be multifactorial but remains essentially unknown. Severe disease is manifest during a critical phase from 4 to 7 days after onset of symptoms, once the virus has disappeared from the circulation but before the peak of T-cell activation, suggesting that other factors mediate vasculopathy. Here, we present evidence for a combined role of plasmablasts, complement, and platelets in driving severe disease in DENV infection. Massive expansion of virus-specific plasmablasts peaks during the critical phase of infection, coincident with activation of complement and activation and depletion of platelets. We propose a step-wise model in which virus-specific antibodies produced by plasmablasts form immune complexes, leading to activation of complement and release of vasoactive anaphylatoxins. Platelets become activated through binding of complement- and antibody-coated virus, as well as direct binding of virus to DC-SIGN, leading to the release of inflammatory microparticles and cytokines and sequestration of platelets in the microvasculature. We suggest that the combined effects of anaphylatoxins, inflammatory microparticles, and platelet sequestration serve as triggers of vasculopathy in severe dengue. PMID:24941075

  4. Cigarette smoking complements the prognostic value of baseline plasma Epstein-Barr virus deoxyribonucleic acid in patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy: a large-scale retrospective cohort study.

    PubMed

    Lv, Jia-Wei; Chen, Yu-Pei; Zhou, Guan-Qun; Tang, Ling-Long; Mao, Yan-Ping; Li, Wen-Fei; Guo, Rui; Lin, Ai-Hua; Ma, Jun; Sun, Ying

    2016-03-29

    We evaluated the combined prognostic value of cigarette smoking and baseline plasma Epstein-Barr virus deoxyribonucleic acid (EBV DNA) in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Of consecutive patients, 1501 with complete data were eligible for retrospective analysis. Smoking index (SI; cigarette packs per day times smoking duration [years]), was used to evaluate the cumulative effect of smoking. Primary end-point was overall survival (OS); progression-free survival (PFS), distant metastasis-free survival (DMFS) and locoregional relapse-free survival (LRFS) were secondary end-points. Both cigarette smoking and baseline plasma EBV DNA load were associated with poorer survival (P <0.001). Patients were divided into four groups: low EBV DNA and light smoker (LL), low EBV DNA and heavy smoker (LH), high EBV DNA and light smoker (HL), and high EBV DNA and heavy smoker (HH). The respective 5-year survival rates were: OS (93.1%, 87.2%, 82.9%, and 76.3%, P<0.001), PFS (87.0%, 84.0%, 73.9%, and 64.6%, P<0.001), DMFS (94.1%, 92.1%, 82.4%, and72.5%, P<0.001), and LRFS (92.8%, 92.4%, 88.7%, and 84.0%, P=0.012).OS and PFS were significantly different between the LH and HL groups and HL and HH groups, but not LL and LH groups (pairwise comparisons). The combined risk stratification remained an independent prognostic factor for all endpoints (all Ptrend<0.001; multivariate analysis). Both cigarette smoking and baseline plasma EBV DNA were independent prognostic factors for survival outcomes. Combined interpretation of EBV DNA with smoking led to the refinement of the risks stratification for patient subsets, especially with improved risk discrimination in patients with high baseline plasma EBV DNA. PMID:26919237

  5. Cigarette smoking complements the prognostic value of baseline plasma Epstein-Barr virus deoxyribonucleic acid in patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy: a large-scale retrospective cohort study

    PubMed Central

    Tang, Ling-Long; Mao, Yan-Ping; Li, Wen-Fei; Guo, Rui; Lin, Ai-Hua; Ma, Jun; Sun, Ying

    2016-01-01

    We evaluated the combined prognostic value of cigarette smoking and baseline plasma Epstein-Barr virus deoxyribonucleic acid (EBV DNA) in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Of consecutive patients, 1501 with complete data were eligible for retrospective analysis. Smoking index (SI; cigarette packs per day times smoking duration [years]), was used to evaluate the cumulative effect of smoking. Primary endpoint was overall survival (OS); progression-free survival (PFS), distant metastasisfree survival (DMFS) and locoregional relapse-free survival (LRFS) were secondary end-points. Both cigarette smoking and baseline plasma EBV DNA load were associated with poorer survival (P<0.001). Patients were divided into four groups: low EBV DNA and light smoker (LL), low EBV DNA and heavy smoker (LH), high EBV DNA and light smoker (HL), and high EBV DNA and heavy smoker (HH). The respective 5-year survival rates were: OS (93.1%, 87.2%, 82.9%, and 76.3%, P<0.001), PFS (87.0%, 84.0%, 73.9%, and 64.6%, P<0.001), DMFS (94.1%, 92.1%, 82.4%, and72.5%, P<0.001), and LRFS (92.8%, 92.4%, 88.7%, and 84.0%, P=0.012).OS and PFS were significantly different between the LH and HL groups and HL and HH groups, but not LL and LH groups (pairwise comparisons). The combined risk stratification remained an independent prognostic factor for all endpoints (all Ptrend<0.001; multivariate analysis). Both cigarette smoking and baseline plasma EBV DNA were independent prognostic factors for survival outcomes. Combined interpretation of EBV DNA with smoking led to the refinement of the risks stratification for patient subsets, especially with improved risk discrimination in patients with high baseline plasma EBV DNA. PMID:26919237

  6. The complement system and adverse pregnancy outcomes.

    PubMed

    Regal, Jean F; Gilbert, Jeffrey S; Burwick, Richard M

    2015-09-01

    Adverse pregnancy outcomes significantly contribute to morbidity and mortality for mother and child, with lifelong health consequences for both. The innate and adaptive immune system must be regulated to insure survival of the fetal allograft, and the complement system is no exception. An intact complement system optimizes placental development and function and is essential to maintain host defense and fetal survival. Complement regulation is apparent at the placental interface from early pregnancy with some degree of complement activation occurring normally throughout gestation. However, a number of pregnancy complications including early pregnancy loss, fetal growth restriction, hypertensive disorders of pregnancy and preterm birth are associated with excessive or misdirected complement activation, and are more frequent in women with inherited or acquired complement system disorders or complement gene mutations. Clinical studies employing complement biomarkers in plasma and urine implicate dysregulated complement activation in components of each of the adverse pregnancy outcomes. In addition, mechanistic studies in rat and mouse models of adverse pregnancy outcomes address the complement pathways or activation products of importance and allow critical analysis of the pathophysiology. Targeted complement therapeutics are already in use to control adverse pregnancy outcomes in select situations. A clearer understanding of the role of the complement system in both normal pregnancy and complicated or failed pregnancy will allow a rational approach to future therapeutic strategies for manipulating complement with the goal of mitigating adverse pregnancy outcomes, preserving host defense, and improving long term outcomes for both mother and child. PMID:25802092

  7. CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor- and Complement Receptor 3-Dependent Mechanisms.

    PubMed

    Amash, Alaa; Wang, Lin; Wang, Yawen; Bhakta, Varsha; Fairn, Gregory D; Hou, Ming; Peng, Jun; Sheffield, William P; Lazarus, Alan H

    2016-04-15

    Targeting CD44, a major leukocyte adhesion molecule, using specific Abs has been shown beneficial in several models of autoimmune and inflammatory diseases. The mechanisms contributing to the anti-inflammatory effects of CD44 Abs, however, remain poorly understood. Phagocytosis is a key component of immune system function and can play a pivotal role in autoimmune states where CD44 Abs have shown to be effective. In this study, we show that the well-known anti-inflammatory CD44 Ab IM7 can inhibit murine macrophage phagocytosis of RBCs. We assessed three selected macrophage phagocytic receptor systems: Fcγ receptors (FcγRs), complement receptor 3 (CR3), and dectin-1. Treatment of macrophages with IM7 resulted in significant inhibition of FcγR-mediated phagocytosis of IgG-opsonized RBCs. The inhibition of FcγR-mediated phagocytosis was at an early stage in the phagocytic process involving both inhibition of the binding of the target RBC to the macrophages and postbinding events. This CD44 Ab also inhibited CR3-mediated phagocytosis of C3bi-opsonized RBCs, but it did not affect the phagocytosis of zymosan particles, known to be mediated by the C-type lectin dectin-1. Other CD44 Abs known to have less broad anti-inflammatory activity, including KM114, KM81, and KM201, did not inhibit FcγR-mediated phagocytosis of RBCs. Taken together, these findings demonstrate selective inhibition of FcγR and CR3-mediated phagocytosis by IM7 and suggest that this broadly anti-inflammatory CD44 Ab inhibits these selected macrophage phagocytic pathways. The understanding of the immune-regulatory effects of CD44 Abs is important in the development and optimization of therapeutic strategies for the potential treatment of autoimmune conditions. PMID:26944929

  8. Complement fixation test to C. burnetii

    MedlinePlus

    ... ency/article/003520.htm Complement fixation test to C burnetii To use the sharing features on this ... JavaScript. The complement fixation test to Coxiella burnetii ( C burnetti ) is a blood test that checks for ...

  9. Genetics Home Reference: complement component 8 deficiency

    MedlinePlus

    ... the membranes surrounding the brain and spinal cord (meningitis). Although meningitis can be life-threatening, individuals with complement component ... leaves affected individuals prone to recurrent episodes of meningitis. Learn more about the genes associated with complement ...

  10. The roles of complement receptor 3 and Fcγ receptors during Leishmania phagosome maturation

    PubMed Central

    Polando, Rachel; Dixit, Upasna Gaur; Carter, Cristina R.; Jones, Blake; Whitcomb, James P.; Ballhorn, Wibke; Harintho, Melissa; Jerde, Christopher L.; Wilson, Mary E.; McDowell, Mary Ann

    2013-01-01

    Leishmania are intracellular parasites adapted to surviving in macrophages, whose primary function is elimination of invading pathogens. Leishmania entry into host cells is receptor-mediated. These parasites are able to engage multiple host cell-surface receptors, including MR, TLRs, CR3, and FcγRs. Here, we investigated the role of CR3 and FcγR engagement on the maturation of Leishmania-containing phagosomes using CD11b−/− and FcγR−/− macrophages, and assessing EEA1 and lysosome-associated proteins is necessary for the phagosome maturation delay, characteristic of Leishmania infection. Leishmania-containing phagosomes do not fuse with lyosomes until 5 h postinfection in WT mice. Phagolysosome fusion occurs by 1 h in CD11b and FcγR common chain KO macrophages, although receptor deficiency does not influence Leishmania entry or viability. We also investigated the influence of serum components and their effects on phagosome maturation progression. Opsonization with normal mouse serum, complement-deficient serum, or serum from Leishmania-infected mice all influenced phagosome maturation progression. Our results indicate that opsonophagocytosis influences phagosomal trafficking of Leishmania without altering the intracellular fate. PMID:23543768

  11. Papillomavirus DNA Complementation in Vivo

    PubMed Central

    Hu, Jiafen; Cladel, Nancy M.; Budgeon, Lynn; Balogh, Karla K.; Christensen, Neil D.

    2009-01-01

    Recent phylogenic studies indicate that DNA recombination could have occurred in ancient papillomaviruses types. However, no experimental data is available to demonstrate this event because of the lack of human papillomavirus infection models. We have used the cottontail rabbit papillomavirus (CRPV)/rabbit model to study pathogenesis and immunogenicity of different mutant genomes in vivo. Although the domestic rabbit is not a natural host for CRPV infection, it is possible to initiate infection with naked CRPV DNA cloned into a plasmid and monitor papilloma outgrowth on these animals. Taking advantage of a large panel of mutants based on a CRPV strain (Hershey CRPV), we tested the hypothesis that two non-viable mutant genomes could induce papillomas by either recombination or complementation. We found that co-infection with a dysfunctional mutant with an E2 transactivation domain mutation and another mutant with an E7 ATG knock out generated papillomas in rabbits. DNA extracted from these papillomas contained genotypes from both parental genomes. Three additional pairs of dysfunctional mutants also showed similar results. Individual wild type genes were also shown to rescue the function of corresponding dysfunctional mutants. Therefore, we suggest that complementation occurred between these two non-viable mutant PV genomes in vivo. PMID:19379784

  12. Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity.

    PubMed Central

    Wessels, M R; Butko, P; Ma, M; Warren, H B; Lage, A L; Carroll, M C

    1995-01-01

    Group B streptococci (GBS) cause sepsis and meningitis in neonates and serious infections in adults with underlying chronic illnesses. Specific antibodies have been shown to be an important factor in protective immunity for neonates, but the role of serum complement is less well defined. To elucidate the function of the complement system in immunity to this pathogen, we have used the approach of gene targeting in embryonic stem cells to generate mice totally deficient in complement component C3. Comparison of C3-deficient mice with mice deficient in complement component C4 demonstrated that the 50% lethal dose for GBS infection was reduced by approximately 50-fold and 25-fold, respectively, compared to control mice. GBS were effectively killed in vitro by human blood leukocytes in the presence of specific antibody and C4-deficient serum but not C3-deficient serum. The defective opsonization by C3-deficient serum in vitro was corroborated by in vivo studies in which passive immunization of pregnant dams with specific antibodies conferred protection from GBS challenge to normal and C4-deficient pups but not C3-deficient pups. These results indicate that the alternative pathway is sufficient to mediate effective opsonophagocytosis and protective immunity to GBS in the presence of specific antibody. In contrast, the increased susceptibility to infection of non-immune mice deficient in either C3 or C4 implies that the classical pathway plays an essential role in host defense against GBS infection in the absence of specific immunity. Images Fig. 1 PMID:8524789

  13. Neisseria meningitidis and Escherichia coli are protected from leukocyte phagocytosis by binding to erythrocyte complement receptor 1 in human blood.

    PubMed

    Brekke, Ole-Lars; Hellerud, Bernt Christian; Christiansen, Dorte; Fure, Hilde; Castellheim, Albert; Nielsen, Erik Waage; Pharo, Anne; Lindstad, Julie Katrine; Bergseth, Grethe; Leslie, Graham; Lambris, John D; Brandtzaeg, Petter; Mollnes, Tom Eirik

    2011-09-01

    The initial interaction of Gram-negative bacteria with erythrocytes and its implications on leukocyte phagocytosis and oxidative burst in human whole blood were examined. Alexa-labeled Escherichia coli, wild-type H44/76 N. meningitidis and the H44/76lpxA lipopolysaccharide (LPS)-deficient mutant were incubated with whole blood using lepirudin as anticoagulant which has no adverse effects on complement. Bacteria free in plasma, bound to erythrocytes or phagocytized by granulocytes and monocytes were quantified using flow cytometry. The effects of the C3 inhibitor compstatin, a C5a receptor antagonist (C5aRa) and a complement receptor 1 (CR1)-blocking antibody (3D9) were examined. Most bacteria (80%) immediately bound to erythrocytes. The binding gradually declined over time, with a parallel increase in phagocytosis. Complement inhibition with compstatin reduced erythrocyte binding and bacterial C3 opsonization. In contrast, the C5aRa efficiently reduced phagocytosis, but did not affect the binding of bacteria to erythrocytes. The anti-CR1 blocking mAb dose-dependently reduced bacterial binding to erythrocytes to nil, with subsequent increased phagocytosis and oxidative burst. LPS had no effect on these processes since similar results were obtained using an LPS-deficient N. meningitidis mutant. In vivo experiments in a pig model of sepsis showed limited binding of bacteria to erythrocytes, consistent with the facts that erythrocyte CR1 receptors are absent in non-primates and that the bacteria were mainly found in the lungs. In conclusion, complement-dependent binding of Gram-negative bacteria to erythrocyte CR1 decreases phagocytosis and oxidative burst by leukocytes in human whole blood. PMID:21839519

  14. Dynamics of interaction between complement-fixing antibody/dsDNA immune complexes and erythrocytes. In vitro studies and potential general applications to clinical immune complex testing

    SciTech Connect

    Taylor, R.P.; Horgan, C.; Hooper, M.; Burge, J.

    1985-01-01

    Soluble antibody//sub 3/H-double-stranded PM2 DNA (dsDNA) immune complexes were briefly opsonized with complement and then allowed to bind to human erythrocytes (via complement receptors). The cells were washed and subsequently a volume of autologous blood in a variety of media was added, and the release of the bound immune complexes from the erythrocytes was studied as a function of temperature and time. After 1-2 h, the majority of the bound immune complexes were not released into the serum during blood clotting at either 37 degrees C or room temperature, but there was a considerably greater release of the immune complexes into the plasma of blood that was anticoagulated with EDTA. Similar results were obtained using various conditions of opsonization and also using complexes that contained lower molecular weight dsDNA. Thus, the kinetics of release of these antibody/dsDNA immune complexes differed substantially from the kinetics of release of antibody/bovine serum albumin complexes that was reported by others. Studies using the solution phase C1q immune complex binding assay confirmed that in approximately half of the SLE samples that were positive for immune complexes, there was a significantly higher level of detectable immune complexes in plasma vs. serum. Freshly drawn erythrocytes from some SLE patients exhibiting this plasma/serum discrepancy had IgG antigen on their surface that was released by incubation in EDTA plasma. Thus, the higher levels of immune complexes observed in EDTA plasma vs. serum using the C1q assay may often reflect the existence of immune complexes circulating in vivo bound to erythrocytes.

  15. Interaction of non-human primate complement and antibodies with hypermucoviscous Klebsiella pneumoniae.

    PubMed

    Soto, Esteban; Marchi, Sylvia; Beierschmitt, Amy; Kearney, Michael; Francis, Stewart; VanNess, Kimberly; Vandenplas, Michel; Thrall, MaryAnna; Palmour, Roberta

    2016-01-01

    Emergent hypermucoviscosity (HMV) phenotypes of Klebsiella pneumoniae have been associated with increased invasiveness and pathogenicity in primates. In this study, we investigated the interaction of African green monkeys (AGM) (Chlorocebus aethiops sabaeus) complement and antibody with HMV and non-HMV isolates as in vitro models of primate infection. Significantly greater survival of HMV isolates was evident after incubation in normal serum or whole blood (p < 0.05) of AGM donors when compared to non-HMV strains. Greater survival of HMV strains (p < 0.05) was found after incubation in whole blood and serum from seropositive donors when compared to seronegative donor samples. Additionally, significantly greater amounts of K. pneumoniae were phagocytozed by AGM leukocytes when complement was active (p < 0.05), but no difference in uptake was observed when serum from seropositive or seronegative animals was used in challenged cells utilizing flow cytometry. Results demonstrate that interaction of cellular and humoral immune elements play a role in the in vitro killing of K. pneumoniae, particularly HMV isolates. Neither AGM serum, nor washed whole blood effectively killed HMV isolates; however, assays using heparinized whole blood of seronegative donors significantly reduced viability of HMV and non-HMV strains. The lack of bacterial killing observed in seropositive donors treatments could be at least partially associated with low IgG2 present in these animals. A better understanding of the pathogenesis of klebsiellosis in primates and host immune response is necessary to identify surface molecules that can induce both opsonizing and bactericidal antibody facilitating killing of Klebsiella, and the development of vaccines in human and animals. PMID:26951091

  16. Meningococcal disease and the complement system

    PubMed Central

    Lewis, Lisa A; Ram, Sanjay

    2014-01-01

    Despite considerable advances in the understanding of the pathogenesis of meningococcal disease, this infection remains a major cause of morbidity and mortality globally. The role of the complement system in innate immune defenses against invasive meningococcal disease is well established. Individuals deficient in components of the alternative and terminal complement pathways are highly predisposed to invasive, often recurrent meningococcal infections. Genome-wide analysis studies also point to a central role for complement in disease pathogenesis. Here we review the pathophysiologic events pertinent to the complement system that accompany meningococcal sepsis in humans. Meningococci use several often redundant mechanisms to evade killing by human complement. Capsular polysaccharide and lipooligosaccharide glycan composition play critical roles in complement evasion. Some of the newly described protein vaccine antigens interact with complement components and have sparked considerable research interest. PMID:24104403

  17. Identification of a partial cDNA clone for the C3d/Epstein-Barr virus receptor of human B lymphocytes: homology with the receptor for fragments C3b and C4b of the third and fourth components of complement.

    PubMed

    Weis, J J; Fearon, D T; Klickstein, L B; Wong, W W; Richards, S A; de Bruyn Kops, A; Smith, J A; Weis, J H

    1986-08-01

    Human complement receptor type 2 (CR2) is the B-lymphocyte receptor both for the C3d fragment of the third component of complement and for the Epstein-Barr virus. Amino acid sequence analysis of tryptic peptides of CR2 revealed a strong degree of homology with the human C3b/C4b receptor, CR1. This homology suggested that CR1 gene sequences could be used to detect the CR2 sequences at conditions of low-stringency hybridization. Upon screening a human tonsillar cDNA library with CR1 cDNA sequences, two clones were identified that hybridized at low, but not at high, stringency. Redundant oligonucleotides specific for CR2 sequences were synthesized and used to establish that the two cDNA clones weakly hybridizing with the CR1 cDNA contained CR2 sequences. One of these CR2 cDNA clones hybridized to oligonucleotides derived from two distinct CR2 tryptic peptides, whereas the other, smaller cDNA clone hybridized to oligonucleotides derived from only one of the CR2 peptides. Nucleotide sequence analysis of the CR2 cDNA confirmed that the site of oligonucleotide hybridization was identical to that predicted from the peptide sequence, including flanking sequences not included within the oligonucleotide probes. The CR2-specific cDNA sequences identified a poly(A)+ RNA species of 5 kilobases in RNA extracted from human B cells but did not hybridize to any RNA obtained from the CR2-negative T-cell line HSB-2, thus confirming the appropriate size and tissue-specific distribution for the CR2 mRNA. The striking peptide sequence homology between CR2 and CR1 and the cross-hybridization of the CR2 cDNA with the CR1-specific sequences allow the placement of CR2 in a recently defined gene family of C3- and C4-binding proteins consisting of CR1, C4-binding protein, factor H, and now, CR2. PMID:3016712

  18. Herbal complement inhibitors in the treatment of neuroinflammation: future strategy for neuroprotection.

    PubMed

    Kulkarni, Amod P; Kellaway, Laurie A; Kotwal, Girish J

    2005-11-01

    The upregulated complement system plays a damaging role in disorders of the central nervous system (CNS). The classical and alternate pathways are two major pathways activated in neuroinflammatory disorders such as Alzheimer's disease, multiple sclerosis, traumatic brain injury, spinal cord injury, HIV-associated dementia, Parkinson's disease, and mad cow disease. Failure of currently available anti-inflammatory agents, especially cyclooxygenase inhibitors, in offering significant neuroprotection in large epidemiologic clinical trials of CNS disorders suggests an urgent need for the development of new neuroprotective agents. The positive preclinical outcomes in treating CNS disorders by complement regulatory molecules, such as vaccinia virus complement control protein, suggest the possibility of using complement-inhibitory molecules as neuroprotective agents. Several active ingredients of herbal origin are found to have complement-inhibitory activity. These herbal ingredients along with other anti-inflammatory roles might be useful in treating neuroinflammation associated with CNS disorders. Active ingredients of herbal origin with complement inhibitory ingredients are summarized and classified according to their chemical nature and specificity towards the major pathways activating the complement system. The structure activity relationship of some specific examples is also discussed in this report. This information might be helpful in formulating a natural panacea against complement-mediated neuroinflammation. PMID:16387706

  19. Complement Activation and Inhibition in Wound Healing

    PubMed Central

    Cazander, Gwendolyn; Jukema, Gerrolt N.; Nibbering, Peter H.

    2012-01-01

    Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors, are under investigation in patients with complement-mediated diseases. Although (pre)clinical research into the effects of these complement inhibitors on wound healing is limited, available data indicate that reduction of complement activation can improve wound healing. Moreover, medicine may take advantage of safe and effective agents that are produced by various microorganisms, symbionts, for example, medicinal maggots, and plants to attenuate complement activation. To conclude, for the development of new wound care strategies, (pre)clinical studies into the roles of complement and the effects of application of complement inhibitors in wound healing are required. PMID:23346185

  20. The Role of Complement in Tumor Growth

    PubMed Central

    Pio, Ruben; Corrales, Leticia; Lambris, John D.

    2015-01-01

    Complement is a central part of the immune system that has developed as a first defense against non-self cells. Neoplastic transformation is accompanied by an increased capacity of the malignant cells to activate complement. In fact, clinical data demonstrate complement activation in cancer patients. On the basis of the use of protective mechanisms by malignant cells, complement activation has traditionally been considered part of the body's immunosurveillance against cancer. Inhibitory mechanisms of complement activation allow cancer cells to escape from complement-mediated elimination and hamper the clinical efficacy of monoclonal antibody–based cancer immunotherapies. To overcome this limitation, many strategies have been developed with the goal of improving complement-mediated effector mechanisms. However, significant work in recent years has identified new and surprising roles for complement activation within the tumor microenvironment. Recent reports suggest that complement elements can promote tumor growth in the context of chronic inflammation. This chapter reviews the data describing the role of complement activation in cancer immunity, which offers insights that may aid the development of more effective therapeutic approaches to control cancer. PMID:24272362

  1. Role of Complement in Autoimmune Hemolytic Anemia.

    PubMed

    Berentsen, Sigbjørn

    2015-09-01

    The classification of autoimmune hemolytic anemias and the complement system are reviewed. In autoimmune hemolytic anemia of the warm antibody type, complement-mediated cell lysis is clinically relevant in a proportion of the patients but is hardly essential for hemolysis in most patients. Cold antibody-mediated autoimmune hemolytic anemias (primary cold agglutinin disease, secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria) are entirely complement-mediated disorders. In cold agglutinin disease, efficient therapies have been developed in order to target the pathogenic B-cell clone, but complement modulation remains promising in some clinical situations. No established therapy exists for secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria, and the possibility of therapeutic complement inhibition is interesting. Currently, complement modulation is not clinically documented in any autoimmune hemolytic anemia. The most relevant candidate drugs and possible target levels of action are discussed. PMID:26696798

  2. Role of Complement in Autoimmune Hemolytic Anemia

    PubMed Central

    Berentsen, Sigbjørn

    2015-01-01

    Summary The classification of autoimmune hemolytic anemias and the complement system are reviewed. In autoimmune hemolytic anemia of the warm antibody type, complement-mediated cell lysis is clinically relevant in a proportion of the patients but is hardly essential for hemolysis in most patients. Cold antibody-mediated autoimmune hemolytic anemias (primary cold agglutinin disease, secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria) are entirely complement-mediated disorders. In cold agglutinin disease, efficient therapies have been developed in order to target the pathogenic B-cell clone, but complement modulation remains promising in some clinical situations. No established therapy exists for secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria, and the possibility of therapeutic complement inhibition is interesting. Currently, complement modulation is not clinically documented in any autoimmune hemolytic anemia. The most relevant candidate drugs and possible target levels of action are discussed. PMID:26696798

  3. Complement (C3), nutrition, and infection*

    PubMed Central

    Kielmann, A. A.; Curcio, L. M.

    1979-01-01

    Complement (C3) was determined and related to various parameters of nutritional status and past infectious disease experience in a group of 53 rural preschool children in North India. Mean complement level was 25% lower than in an age-matched European reference population. Low complement (C3) levels were associated mainly with children who were both stunted and wasted, as well as with those who had experienced frequent purulent skin infections in the past. PMID:311708

  4. Immune Protection of Retroviral Vectors Upon Molecular Painting with the Complement Regulatory Protein CD59.

    PubMed

    Heider, Susanne; Kleinberger, Sandra; Kochan, Feliks; Dangerfield, John A; Metzner, Christoph

    2016-07-01

    Glycosylphosphatidylinositol anchoring is a type of post-translational modification that allows proteins to be presented on the exterior side of the cell membrane. Purified glycosylphosphatidylinositol-anchored protein can spontaneously re-insert into lipid bilayer membranes in a process termed Molecular Painting. Here, we demonstrate the possibility of inserting purified, recombinant CD59 into virus particles produced from a murine retroviral producer cell line. CD59 is a regulator of the complement system that helps protect healthy cells from the lytic activity of the complement cascade. In this study, we could show that Molecular Painting confers protection from complement activity upon murine retroviral vector particles. Indeed, increased infectivity of CD59-modified virus particles was observed upon challenge with human serum, indicating that Molecular Painting is suitable for modulating the immune system in gene therapy or vaccination applications. PMID:27170144

  5. Role of complement in multiorgan failure.

    PubMed

    Rittirsch, Daniel; Redl, Heinz; Huber-Lang, Markus

    2012-01-01

    Multiorgan failure (MOF) represents the leading cause of death in patients with sepsis and systemic inflammatory response syndrome (SIRS) following severe trauma. The underlying immune response is highly complex and involves activation of the complement system as a crucial entity of innate immunity. Uncontrolled activation of the complement system during sepsis and SIRS with in excessive generation of complement activation products contributes to an ensuing dysfunction of various organ systems. In the present review, mechanisms of the inflammatory response in the development of MOF in sepsis and SIRS with particular focus on the complement system are discussed. PMID:23320021

  6. Complement and dysbiosis in periodontal disease

    PubMed Central

    Hajishengallis, George; Lambris, John D.

    2012-01-01

    Signaling crosstalk between complement and Toll-like receptors (TLRs) normally serves to coordinate host immunity. However, the periodontal bacterium Porphyromonas gingivalis expresses C5 convertase-like enzymatic activity and adeptly exploits complement-TLR crosstalk to subvert host defenses and escape elimination. Intriguingly, this defective immune surveillance leads to the remodeling of the periodontal microbiota to a dysbiotic state that causes inflammatory periodontitis. Understanding the mechanisms by which P. gingivalis modulates complement function to cause dysbiosis offers new targets for complement therapeutics. PMID:22964237

  7. Human IgG is produced in a pro-form that requires clipping of C-terminal lysines for maximal complement activation

    PubMed Central

    van den Bremer, Ewald TJ; Beurskens, Frank J; Voorhorst, Marleen; Engelberts, Patrick J; de Jong, Rob N; van der Boom, Burt G; Cook, Erika M; Lindorfer, Margaret A; Taylor, Ronald P; van Berkel, Patrick HC; Parren, Paul WHI

    2015-01-01

    Human IgG is produced with C-terminal lysines that are cleaved off in circulation. The function of this modification was unknown and generally thought not to affect antibody function. We recently reported that efficient C1q binding and complement-dependent cytotoxicity (CDC) requires IgG hexamerization at the cell surface. Here we demonstrate that C-terminal lysines may interfere with this process, leading to suboptimal C1q binding and CDC of cells opsonized with C-terminal lysine-containing IgG. After we removed these lysines with a carboxypeptidase, maximal complement activation was observed. Interestingly, IgG1 mutants containing either a negative C-terminal charge or multiple positive charges lost CDC almost completely; however, CDC was fully restored by mixing C-terminal mutants of opposite charge. Our data indicate a novel post-translational control mechanism of human IgG: human IgG molecules are produced in a pro-form in which charged C-termini interfere with IgG hexamer formation, C1q binding and CDC. To allow maximal complement activation, C-terminal lysine processing is required to release the antibody's full cytotoxic potential. PMID:26037225

  8. Infectious diseases associated with complement deficiencies.

    PubMed Central

    Figueroa, J E; Densen, P

    1991-01-01

    The complement system consists of both plasma and membrane proteins. The former influence the inflammatory response, immune modulation, and host defense. The latter are complement receptors, which mediate the cellular effects of complement activation, and regulatory proteins, which protect host cells from complement-mediated injury. Complement activation occurs via either the classical or the alternative pathway, which converge at the level of C3 and share a sequence of terminal components. Four aspects of the complement cascade are critical to its function and regulation: (i) activation of the classical pathway, (ii) activation of the alternative pathway, (iii) C3 convertase formation and C3 deposition, and (iv) membrane attack complex assembly and insertion. In general, mechanisms evolved by pathogenic microbes to resist the effects of complement are targeted to these four steps. Because individual complement proteins subserve unique functional activities and are activated in a sequential manner, complement deficiency states are associated with predictable defects in complement-dependent functions. These deficiency states can be grouped by which of the above four mechanisms they disrupt. They are distinguished by unique epidemiologic, clinical, and microbiologic features and are most prevalent in patients with certain rheumatologic and infectious diseases. Ethnic background and the incidence of infection are important cofactors determining this prevalence. Although complement undoubtedly plays a role in host defense against many microbial pathogens, it appears most important in protection against encapsulated bacteria, especially Neisseria meningitidis but also Streptococcus pneumoniae, Haemophilus influenzae, and, to a lesser extent, Neisseria gonorrhoeae. The availability of effective polysaccharide vaccines and antibiotics provides an immunologic and chemotherapeutic rationale for preventing and treating infection in patients with these deficiencies. PMID

  9. Complement resistance mechanisms of Klebsiella pneumoniae.

    PubMed

    Doorduijn, Dennis J; Rooijakkers, Suzan H M; van Schaik, Willem; Bardoel, Bart W

    2016-10-01

    The current emergence of antibiotic-resistant bacteria causes major problems in hospitals worldwide. To survive within the host, bacterial pathogens exploit several escape mechanisms to prevent detection and killing by the immune system. As a major player in immune defense, the complement system recognizes and destroys bacteria via different effector mechanisms. The complement system can label bacteria for phagocytosis or directly kill Gram-negative bacteria via insertion of a pore-forming complex in the bacterial membrane. The multi-drug resistant pathogen Klebsiella pneumoniae exploits several mechanisms to resist complement. In this review, we present an overview of strategies used by K. pneumoniae to prevent recognition and killing by the complement system. Understanding these complement evasion strategies is crucial for the development of innovative strategies to combat K. pneumoniae. PMID:27364766

  10. A Homology Model Reveals Novel Structural Features and an Immunodominant Surface Loop/Opsonic Target in the Treponema pallidum BamA Ortholog TP_0326

    PubMed Central

    Luthra, Amit; Anand, Arvind; Hawley, Kelly L.; LeDoyt, Morgan; La Vake, Carson J.; Caimano, Melissa J.; Cruz, Adriana R.; Salazar, Juan C.

    2015-01-01

    ABSTRACT We recently demonstrated that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses characteristic BamA bipartite topology. Herein, we used immunofluorescence analysis (IFA) to show that only the β-barrel domain of TP_0326 contains surface-exposed epitopes in intact T. pallidum. Using the solved structure of Neisseria gonorrhoeae BamA, we generated a homology model of full-length TP_0326. Although the model predicts a typical BamA fold, the β-barrel harbors features not described in other BamAs. Structural modeling predicted that a dome comprised of three large extracellular loops, loop 4 (L4), L6, and L7, covers the barrel's extracellular opening. L4, the dome's major surface-accessible loop, contains mainly charged residues, while L7 is largely neutral and contains a polyserine tract in a two-tiered conformation. L6 projects into the β-barrel but lacks the VRGF/Y motif that anchors L6 within other BamAs. IFA and opsonophagocytosis assay revealed that L4 is surface exposed and an opsonic target. Consistent with B cell epitope predictions, immunoblotting and enzyme-linked immunosorbent assay (ELISA) confirmed that L4 is an immunodominant loop in T. pallidum-infected rabbits and humans with secondary syphilis. Antibody capture experiments using Escherichia coli expressing OM-localized TP_0326 as a T. pallidum surrogate further established the surface accessibility of L4. Lastly, we found that a naturally occurring substitution (Leu593 → Gln593) in the L4 sequences of T. pallidum strains affects antibody binding in sera from syphilitic patients. Ours is the first study to employ a “structure-to-pathogenesis” approach to map the surface topology of a T. pallidum OMP within the context of syphilitic infection. IMPORTANCE Previously, we reported that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses the bipartite topology characteristic of a BamA ortholog

  11. Molecules Great and Small: The Complement System.

    PubMed

    Mathern, Douglas R; Heeger, Peter S

    2015-09-01

    The complement cascade, traditionally considered an effector arm of innate immunity required for host defense against pathogens, is now recognized as a crucial pathogenic mediator of various kidney diseases. Complement components produced by the liver and circulating in the plasma undergo activation through the classical and/or mannose-binding lectin pathways to mediate anti-HLA antibody-initiated kidney transplant rejection and autoantibody-initiated GN, the latter including membranous glomerulopathy, antiglomerular basement membrane disease, and lupus nephritis. Inherited and/or acquired abnormalities of complement regulators, which requisitely limit restraint on alternative pathway complement activation, contribute to the pathogenesis of the C3 nephropathies and atypical hemolytic uremic syndrome. Increasing evidence links complement produced by endothelial cells and/or tubular cells to the pathogenesis of kidney ischemia-reperfusion injury and progressive kidney fibrosis. Data emerging since the mid-2000s additionally show that immune cells, including T cells and antigen-presenting cells, produce alternative pathway complement components during cognate interactions. The subsequent local complement activation yields production of the anaphylatoxins C3a and C5a, which bind to their respective receptors (C3aR and C5aR) on both partners to augment effector T-cell proliferation and survival, while simultaneously inhibiting regulatory T-cell induction and function. This immune cell-derived complement enhances pathogenic alloreactive T-cell immunity that results in transplant rejection and likely contributes to the pathogenesis of other T cell-mediated kidney diseases. C5a/C5aR ligations on neutrophils have additionally been shown to contribute to vascular inflammation in models of ANCA-mediated renal vasculitis. New translational immunology efforts along with the development of pharmacologic agents that block human complement components and receptors now permit

  12. The outer membrane protease PgtE of Salmonella enterica interferes with the alternative complement pathway by cleaving factors B and H.

    PubMed

    Riva, Rauna; Korhonen, Timo K; Meri, Seppo

    2015-01-01

    The virulence factor PgtE is an outer membrane protease (omptin) of the zoonotic pathogen Salmonella enterica that causes diseases ranging from gastroenteritis to severe enteric fever. It is surface exposed in bacteria that have a short-chain, i.e., rough LPS, as observed e.g., in bacteria residing inside macrophages or just emerging from them. We investigated whether PgtE cleaves the complement factors B (B) and H (H), key proteins controlling formation and inactivation of the complement protein C3b and thereby the activity of the complement system. S. enterica serovar Typhimurium or omptin-expressing recombinant E. coli bacteria were incubated with purified human complement proteins or recombinant H fragments. PgtE cleaved both B and H, whereas its close homolog Pla of Yersinia pestis cleaved only H. H was cleaved at both N- and C-termini, while the central region resisted proteolysis. Because of multiple effects of PgtE on complement components (cleavage of C3, C3b, B, and H) we assessed its effect on the opsonophagocytosis of Salmonella. In human serum, C3 cleavage was dependent on proteolytically active PgtE. Human neutrophils interacted less with serum-opsonized FITC-stained S. enterica 14028R than with the isogenic ΔpgtE strain, as analyzed by flow cytometry. In conclusion, cleavage of B and H by PgtE, together with C3 cleavage, affects the C3-mediated recognition of S. enterica by human neutrophils, thus thwarting the immune protection against Salmonella. PMID:25705210

  13. The outer membrane protease PgtE of Salmonella enterica interferes with the alternative complement pathway by cleaving factors B and H

    PubMed Central

    Riva, Rauna; Korhonen, Timo K.; Meri, Seppo

    2015-01-01

    The virulence factor PgtE is an outer membrane protease (omptin) of the zoonotic pathogen Salmonella enterica that causes diseases ranging from gastroenteritis to severe enteric fever. It is surface exposed in bacteria that have a short-chain, i.e., rough LPS, as observed e.g., in bacteria residing inside macrophages or just emerging from them. We investigated whether PgtE cleaves the complement factors B (B) and H (H), key proteins controlling formation and inactivation of the complement protein C3b and thereby the activity of the complement system. S. enterica serovar Typhimurium or omptin-expressing recombinant E. coli bacteria were incubated with purified human complement proteins or recombinant H fragments. PgtE cleaved both B and H, whereas its close homolog Pla of Yersinia pestis cleaved only H. H was cleaved at both N- and C-termini, while the central region resisted proteolysis. Because of multiple effects of PgtE on complement components (cleavage of C3, C3b, B, and H) we assessed its effect on the opsonophagocytosis of Salmonella. In human serum, C3 cleavage was dependent on proteolytically active PgtE. Human neutrophils interacted less with serum-opsonized FITC-stained S. enterica 14028R than with the isogenic ΔpgtE strain, as analyzed by flow cytometry. In conclusion, cleavage of B and H by PgtE, together with C3 cleavage, affects the C3-mediated recognition of S. enterica by human neutrophils, thus thwarting the immune protection against Salmonella. PMID:25705210

  14. Fc receptors for IgG (Fc gamma Rs) on human monocytes and macrophages are not infectivity receptors for human immunodeficiency virus type 1 (HIV-1): studies using bispecific antibodies to target HIV-1 to various myeloid cell surface molecules, including the Fc gamma R.

    PubMed Central

    Connor, R I; Dinces, N B; Howell, A L; Romet-Lemonne, J L; Pasquali, J L; Fanger, M W

    1991-01-01

    Fc gamma Rs (Fc gamma RI, Fc gamma RII, and Fc gamma RIII) are highly expressed on human mononuclear phagocytes and function in the clearance of immune complexes and opsonized pathogens. We have examined the role of Fc gamma R in mediating antibody-dependent clearance of HIV-1 by human monocytes and monocyte-derived macrophages by using bispecific antibodies (BsAbs) to independently target the virus to Fc gamma RI, Fc gamma RII, or Fc gamma RIII. Virus production was markedly reduced in monocytes cultured with strain HIV-1IIIB opsonized with BsAbs that target the virus to either Fc gamma RI or Fc gamma RII compared to monocytes cultured with virus in the absence of BsAbs or in the presence of BsAbs that target the virus to non-Fc gamma R surface antigens (CD33 and HLA-A,B,C). These results were confirmed using the monotropic isolate HIV-1JRFL. Interaction of HIV-1JRFL with Fc gamma RI or Fc gamma RII on human monocytes and Fc gamma RI, Fc gamma RII, or Fc gamma RIII on monocyte-derived macrophages resulted in markedly reduced levels of virus production in these cultures. Moreover, HIV-1 infection of monocytes and monocyte-derived macrophages was completely blocked by anti-CD4 monoclonal antibodies, indicating that interaction with CD4 is required for infectivity even under conditions of antibody-mediated binding of HIV-1 to Fc gamma R. Thus, we propose that highly opsonized HIV-1 initiates high-affinity multivalent interactions with Fc gamma R that trigger endocytosis and intracellular degradation of the antibody-virus complex. At lower levels of antibody opsonization, there are two few interactions with Fc gamma R to initiate endocytosis and intracellular degradation of the antibody-virus complex, but there are enough interactions to stabilize the virus at the cell surface, allowing antibody-dependent enhancement of HIV-1 infection through high-affinity CD4 interactions. However, our results suggest that interaction of highly opsonized HIV-1 with Fc gamma Rs

  15. Complement regulation: physiology and disease relevance

    PubMed Central

    2015-01-01

    The complement system is part of the innate immune response and as such defends against invading pathogens, removes immune complexes and damaged self-cells, aids organ regeneration, confers neuroprotection, and engages with the adaptive immune response via T and B cells. Complement activation can either benefit or harm the host organism; thus, the complement system must maintain a balance between activation on foreign or modified self surfaces and inhibition on intact host cells. Complement regulators are essential for maintaining this balance and are classified as soluble regulators, such as factor H, and membrane-bound regulators. Defective complement regulators can damage the host cell and result in the accumulation of immunological debris. Moreover, defective regulators are associated with several autoimmune diseases such as atypical hemolytic uremic syndrome, dense deposit disease, age-related macular degeneration, and systemic lupus erythematosus. Therefore, understanding the molecular mechanisms by which the complement system is regulated is important for the development of novel therapies for complement-associated diseases. PMID:26300937

  16. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1

    PubMed Central

    Avirutnan, Panisadee; Fuchs, Anja; Hauhart, Richard E.; Somnuke, Pawit; Youn, Soonjeon

    2010-01-01

    The complement system plays an essential protective role in the initial defense against many microorganisms. Flavivirus NS1 is a secreted nonstructural glycoprotein that accumulates in blood, is displayed on the surface of infected cells, and has been hypothesized to have immune evasion functions. Herein, we demonstrate that dengue virus (DENV), West Nile virus (WNV), and yellow fever virus (YFV) NS1 attenuate classical and lectin pathway activation by directly interacting with C4. Binding of NS1 to C4 reduced C4b deposition and C3 convertase (C4b2a) activity. Although NS1 bound C4b, it lacked intrinsic cofactor activity to degrade C4b, and did not block C3 convertase formation or accelerate decay of the C3 and C5 convertases. Instead, NS1 enhanced C4 cleavage by recruiting and activating the complement-specific protease C1s. By binding C1s and C4 in a complex, NS1 promotes efficient degradation of C4 to C4b. Through this mechanism, NS1 protects DENV from complement-dependent neutralization in solution. These studies define a novel immune evasion mechanism for restricting complement control of microbial infection. PMID:20308361

  17. Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells

    SciTech Connect

    Witasp, Erika; Kupferschmidt, Natalia; Bengtsson, Linnea; Hultenby, Kjell; Smedman, Christian; Paulie, Staffan; Garcia-Bennett, Alfonso E.; Fadeel, Bengt

    2009-09-15

    Macrophage recognition and ingestion of apoptotic cell corpses, a process referred to as programmed cell clearance, is of considerable importance for the maintenance of tissue homeostasis and in the resolution of inflammation. Moreover, macrophages are the first line of defense against microorganisms and other foreign materials including particles. However, there is sparse information on the mode of uptake of engineered nanomaterials by primary macrophages. In this study, mesoporous silica particles with cubic pore geometries and covalently fluorescein-grafted particles were synthesized through a novel route, and their interactions with primary human monocyte-derived macrophages were assessed. Efficient and active internalization of mesoporous silica particles of different sizes was observed by transmission electron microscopic and flow cytometric analysis and studies using pharmacological inhibitors suggested that uptake occurred through a process of endocytosis. Moreover, uptake of silica particles was independent of serum factors. The silica particles with very high surface areas due to their porous structure did not impair cell viability or function of macrophages, including the ingestion of different classes of apoptotic or opsonized target cells. The current findings are relevant to the development of mesoporous materials for drug delivery and other biomedical applications.

  18. Antibodies to the Plasmodium falciparum Proteins MSPDBL1 and MSPDBL2 Opsonize Merozoites, Inhibit Parasite Growth, and Predict Protection From Clinical Malaria.

    PubMed

    Chiu, Chris Y H; Hodder, Anthony N; Lin, Clara S; Hill, Danika L; Li Wai Suen, Connie S N; Schofield, Louis; Siba, Peter M; Mueller, Ivo; Cowman, Alan F; Hansen, Diana S

    2015-08-01

    Increasing evidence suggests that antibodies against merozoite surface proteins (MSPs) play an important role in clinical immunity to malaria. Two unusual members of the MSP-3 family, merozoite surface protein duffy binding-like (MSPDBL)1 and MSPDBL2, have been shown to be extrinsically associated to MSP-1 on the parasite surface. In addition to a secreted polymorphic antigen associated with merozoite (SPAM) domain characteristic of MSP-3 family members, they also contain Duffy binding-like (DBL) domain and were found to bind to erythrocytes, suggesting that they play a role in parasite invasion. Antibody responses to these proteins were investigated in a treatment-reinfection study conducted in an endemic area of Papua New Guinea to determine their contribution to naturally acquired immunity. Antibodies to the SPAM domains of MSPDBL1 and MSPDBL2 as well as the DBL domain of MSPDBL1 were found to be associated with protection from Plasmodium falciparum clinical episodes. Moreover, affinity-purified anti-MSPDBL1 and MSPDBL2 were found to inhibit in vitro parasite growth and had strong merozoite opsonizing capacity, suggesting that protection targeting these antigens results from ≥2 distinct effector mechanisms. Together these results indicate that MSPDBL1 and MSPDBL2 are important targets of naturally acquired immunity and might constitute potential vaccine candidates. PMID:25646353

  19. Human Astrovirus Coat Protein Inhibits Serum Complement Activation via C1, the First Component of the Classical Pathway▿

    PubMed Central

    Bonaparte, Rheba S.; Hair, Pamela S.; Banthia, Deepa; Marshall, Dawn M.; Cunnion, Kenji M.; Krishna, Neel K.

    2008-01-01

    Human astroviruses (HAstVs) belong to a family of nonenveloped, icosahedral RNA viruses that cause noninflammatory gastroenteritis, predominantly in infants. Eight HAstV serotypes have been identified, with a worldwide distribution. While the HAstVs represent a significant public health concern, very little is known about the pathogenesis of and host immune response to these viruses. Here we demonstrate that HAstV type 1 (HAstV-1) virions, specifically the viral coat protein (CP), suppress the complement system, a fundamental component of the innate immune response in vertebrates. HAstV-1 virions and purified CP both suppress hemolytic complement activity. Hemolytic assays utilizing sera depleted of individual complement factors as well as adding back purified factors demonstrated that HAstV CP suppresses classical pathway activation at the first component, C1. HAstV-1 CP bound the A chain of C1q and inhibited serum complement activation, resulting in decreased C4b, iC3b, and terminal C5b-9 formation. Inhibition of complement activation was also demonstrated for HAstV serotypes 2 to 4, suggesting that this phenomenon is a general feature of these human pathogens. Since complement is a major contributor to the initiation and amplification of inflammation, the observed CP-mediated inhibition of complement activity may contribute to the lack of inflammation associated with astrovirus-induced gastroenteritis. Although diverse mechanisms of inhibition of complement activation have been described for many enveloped animal viruses, this is the first report of a nonenveloped icosahedral virus CP inhibiting classical pathway activation at C1. PMID:17959658

  20. Infections Revealing Complement Deficiency in Adults

    PubMed Central

    Audemard-Verger, A.; Descloux, E.; Ponard, D.; Deroux, A.; Fantin, B.; Fieschi, C.; John, M.; Bouldouyre, A.; Karkowsi, L.; Moulis, G.; Auvinet, H.; Valla, F.; Lechiche, C.; Davido, B.; Martinot, M.; Biron, C.; Lucht, F.; Asseray, N.; Froissart, A.; Buzelé, R.; Perlat, A.; Boutboul, D.; Fremeaux-Bacchi, V.; Isnard, S.; Bienvenu, B.

    2016-01-01

    Abstract Complement system is a part of innate immunity, its main function is to protect human from bacterial infection. As genetic disorders, complement deficiencies are often diagnosed in pediatric population. However, complement deficiencies can also be revealed in adults but have been poorly investigated. Herein, we describe a case series of infections revealing complement deficiency in adults to study clinical spectrum and management of complement deficiencies. A nationwide retrospective study was conducted in French university and general hospitals in departments of internal medicine, infectious diseases enrolling patients older than 15 years old who had presented at least one infection leading to a complement deficiency diagnosis. Forty-one patients included between 2002 and 2015 in 19 different departments were enrolled in this study. The male-to-female ratio was 1.3 and the mean age at diagnosis was 28 ± 14 (15–67) years. The main clinical feature was Neisseria meningitidis meningitis 75% (n = 31/41) often involving rare serotype: Y (n = 9) and W 135 (n = 7). The main complement deficiency observed was the common final pathway deficiency 83% (n = 34/41). Half of the cohort displayed severe sepsis or septic shock at diagnosis (n = 22/41) but no patient died. No patient had family history of complement deficiency. The mean follow-up was 1.15 ± 1.95 (0.1–10) years. Half of the patients had already suffered from at least one infection before diagnosis of complement deficiency: meningitis (n = 13), pneumonia (n = 4), fulminans purpura (n = 1), or recurrent otitis (n = 1). Near one-third (n = 10/39) had received prophylactic antibiotics (cotrimoxazole or penicillin) after diagnosis of complement deficiency. The vaccination coverage rate, at the end of the follow-up, for N meningitidis, Streptococcus pneumonia, and Haemophilius influenzae were, respectively, 90% (n = 33/37), 47% (n = 17/36), and 35

  1. Genetics Home Reference: complement factor I deficiency

    MedlinePlus

    ... Page Baracho GV, Nudelman V, Isaac L. Molecular characterization of homozygous hereditary factor I deficiency. Clin Exp ... G, Sánchez-Corral P, López-Trascasa M. Molecular characterization of Complement Factor I deficiency in two Spanish ...

  2. Nomenclature for human complement component C2*

    PubMed Central

    1992-01-01

    This note describes the designations for variants of the human complement component C2, which were approved by the Nomenclature Committee of the International Union of Immunological Societies (IUIS). PMID:1394787

  3. Polyphosphate suppresses complement via the terminal pathway

    PubMed Central

    Wat, Jovian M.; Foley, Jonathan H.; Krisinger, Michael J.; Ocariza, Linnette Mae; Lei, Victor; Wasney, Gregory A.; Lameignere, Emilie; Strynadka, Natalie C.; Smith, Stephanie A.; Morrissey, James H.

    2014-01-01

    Polyphosphate, synthesized by all cells, is a linear polymer of inorganic phosphate. When released into the circulation, it exerts prothrombotic and proinflammatory activities by modulating steps in the coagulation cascade. We examined the role of polyphosphate in regulating the evolutionarily related proteolytic cascade complement. In erythrocyte lysis assays, polyphosphate comprising more than 1000 phosphate units suppressed total hemolytic activity with a concentration to reduce maximal lysis to 50% that was 10-fold lower than with monophosphate. In the ion- and enzyme-independent terminal pathway complement assay, polyphosphate suppressed complement in a concentration- and size-dependent manner. Phosphatase-treated polyphosphate lost its ability to suppress complement, confirming that polymer integrity is required. Sequential addition of polyphosphate to the terminal pathway assay showed that polyphosphate interferes with complement only when added before formation of the C5b-7 complex. Physicochemical analyses using native gels, gel filtration, and differential scanning fluorimetry revealed that polyphosphate binds to and destabilizes C5b,6, thereby reducing the capacity of the membrane attack complex to bind to and lyse the target cell. In summary, we have added another function to polyphosphate in blood, demonstrating that it dampens the innate immune response by suppressing complement. These findings further establish the complex relationship between coagulation and innate immunity. PMID:24335501

  4. Complement-fixing antibody response to rotavirus infection.

    PubMed Central

    Gust, I D; Pringle, R C; Barnes, G L; Davidson, G P; Bishop, R F

    1977-01-01

    A human rotavirus complement-fixing (CF) antigen, prepared by purification of large volumes of fluid feces collected from children with winter diarrhea, was used to study the development and persistence of antibody in children with diarrhea and the prevalence of rotavirus antibody in Melbourne. In children with diarrhea, antibody rises were detectable within 4 to 6 weeks of the onset of illness, and the titers usually remained elevated for the next 1 to 2 years. CF antibody did not develop in two children with proven rotavirus infection aged less than 6 months, an age at which poor CF responses to other viruses have also been observed. A study of CF antibody levels in the general community showed that in Melbourne, most children have been infected with human rotavirus by the age of 3 years. PMID:403196

  5. Primer Extension Reactions for the PCR- based α- complementation Assay

    PubMed Central

    Achuthan, Vasudevan; DeStefano, Jeffrey J.

    2016-01-01

    The PCR- based- α- complementation assay is an effective technique to measure the fidelity of polymerases, especially RNA-dependent RNA polymerases (RDRP) and Reverse Transcriptases (RT). It has been successfully employed to determine the fidelity of the poliovirus polymerase 3D-pol (DeStefano, 2010) as well as the human immunodeficiency virus Reverse Transcriptase (HIV RT) (Achuthan et al., 2014). A major advantage of the assay is that since the PCR step is involved, even the low yield of products obtained after two rounds of low yield of RNA synthesis (for RDRP) or reverse transcription (for RT) can be measured using the assay. The assay also mimics the reverse transcription process, since both RNA- and DNA- directed RT synthesis steps are performed. We recently used this assay to show that the HIV RT, at physiologically relevant magnesium concentration, has accuracy in the same range as other reverse transcriptases (Achuthan et al., 2014). Here, we describe in detail how to prepare the inserts using the primer extension reactions. The prepared inserts are then processed further in the PCR- based- α- complementation assay.

  6. Glucocorticoid-Dependent Complementation of a Hepatoma Cell Variant Defective in Viral Glycoprotein Sorting

    NASA Astrophysics Data System (ADS)

    John, Nancy J.; Bravo, Deborah A.; Haffar, Omar K.; Firestone, Gary L.

    1988-02-01

    We have utilized the rat hepatoma (HTC) cell sorting variant CR4 to examine the glucocorticoid-regulated pathways that localize mouse mammary tumor virus glycoproteins to the cell surface. The defective sorting of cell surface mouse mammary tumor virus glycoproteins in CR4 cells was complemented after fusion with either normal rat hepatocytes or uninfected HTC cells. Indirect immunofluorescence of transient heterokaryons revealed that the regulated localization of mouse mammary tumor virus glycoproteins was dependent upon glucocorticoid treatment and required de novo RNA and protein synthesis. Thus, a glucocorticoid-regulated trafficking activity, unrelated to mouse mammary tumor virus sequences, which is induced in both adult rat liver and cultured hepatoma cells, can act in trans to mediate an intracellular sorting pathway for membrane glycoproteins.

  7. Role of complement component C1q in phagocytosis of Listeria monocytogenes by murine macrophage-like cell lines.

    PubMed Central

    Alvarez-Dominguez, C; Carrasco-Marin, E; Leyva-Cobian, F

    1993-01-01

    Listeria monocytogenes is a facultative intracellular pathogen of a great variety of cells. Among them, macrophages constitute the major effector cells of listerial immunity during the course of an infection. Although the molecular bases of L. monocytogenes attachment and entry to phagocytes are not completely understood, it has been demonstrated that C3b significantly increases L. monocytogenes uptake by macrophages via complement receptor type 3. The first component of complement, C1q, is present in organic fluids at a relatively high concentration, and C1q receptor sites in macrophages are also abundant. In the present report, results of studies on the role of C1q in the internalization and infectivity of L. monocytogenes by macrophages are presented. L. monocytogenes uptake is enhanced by prior treatment of bacteria with normal sera. Heated serum or C1q-deficient serum abrogates this enhancement. Purified C1q specifically restored uptake. This effect was blocked by the addition of F(ab')2 anti-C1q antibody but not by an irrelevant matched antibody. Direct binding of C1q to L. monocytogenes was specific, saturable, and dose dependent with both fluorescent and radiolabeled C1q. N-Acetyl-D-alanyl-L-isoglutamine, diaminopimelic acid, and L-rhamnose caused a significant dose-dependent inhibition of C1q binding to bacteria, suggesting that these molecules, at least, are involved in the attachment of C1q to L. monocytogenes cell wall. When C1q binding structures on macrophage-like cells were blocked with saturating concentrations of C1q, the uptake of C1q-opsonized bacteria was less than in untreated cells. These experiments demonstrate that, in addition to other reported mechanisms, L. monocytogenes binds C1q, which mediates enhanced uptake by macrophages through C1q binding structures. Images PMID:8359889

  8. Translocation of annexin I to plasma membranes and phagosomes in human neutrophils upon stimulation with opsonized zymosan: possible role in phagosome function.

    PubMed Central

    Kaufman, M; Leto, T; Levy, R

    1996-01-01

    Annexin I in the cytosol of resting neutrophils was translocated to the plasma membranes upon addition of opsonized zymosan (OZ). Maximum translocation could be detected 1 min after stimulation with OZ, and decreased thereafter. Subcellular fractionation studies demonstrated that annexin I could not be detected in the granule fractions in either resting or activated cells, but was found in association with the phagosome fraction. The marked translocation of annexin I was unique to OZ, since formyl-Met-Leu-Phe induced only slight translocation of annexin I to the plasma membranes, and phorbol 12-myristate 13-acetate had no effect at all. The mechanism regulating the translocation of annexin I is not clear. Annexin I is not phosphorylated in resting or stimulated cells. The correlation between the elevation in the intracellular calcium ion concentration ([Ca2+]i) and the degree of translocation of annexin I to the plasma membranes induced by the different stimuli, together with the inhibition of these processes by the addition of EGTA, indicate that the translocation of annexin I can probably be attributed to the rise in [Ca2+]i. However, this cannot be the sole mechanism since ionomycin, which caused an increase in [CA2+]i similar to that induced by OZ, was less efficient than OZ in inducing translocation of annexin I. The induction of annexin I translocation to the plasma membrane by OZ, which was the only agent that induced phagosome formation, and the detection of annexin I in the phagosome fraction, suggest that annexin I participates in phagosome function. PMID:8645229

  9. Complement and the severity of pulmonary failure.

    PubMed

    Weigelt, J A; Chenoweth, D E; Borman, K R; Norcross, J F

    1988-07-01

    Complement-induced granulocyte aggregation is suspected as a cause of the adult respiratory distress syndrome. Quantifying the lung damage in these patients is difficult, and complement levels combined with clinical parameters of oxygenation might help define the severity of pulmonary deterioration. Forty-five high-risk patients, selected by arterial blood gas criteria, had their pulmonary insult related to C3a and C5a levels. Patients were stratified by pulmonary shunt, alveolar-arterial oxygen gradient, and radiographic findings into two categories of severity: pulmonary dysfunction, a milder insult, and ARDS, a major aberration in pulmonary function. The clinical assignment of a diagnostic category required at least 96 hours of monitoring. During this 96-hour period, multiple complement levels were obtained. These complement levels were then compared in pulmonary dysfunction and ARDS patients. ARDS patients had significantly higher C3a and C5a values after the patients were selected as high risk. These results suggest that the amount of complement activated in patients with incipient respiratory failure correlates with the severity of eventual pulmonary insult. The use of arterial blood gases and C3a and C5a levels should allow better and earlier definition of patients at risk for ARDS. PMID:3260964

  10. Platelets and the complement cascade in atherosclerosis

    PubMed Central

    Patzelt, Johannes; Verschoor, Admar; Langer, Harald F.

    2015-01-01

    Atherosclerosis and its late sequels are still the number one cause of death in western societies. Platelets are a driving force not only during the genesis of atherosclerosis, but especially in its late stages, as evidenced by complications such as arterial thrombosis, myocardial infarction, and ischemic stroke. Atherosclerosis is increasingly recognized as an inflammatory disease, influenced by various immune mechanisms. The complement system is part of our innate immune system, and its diverse roles in atherosclerosis have become evident over the past years. In this review we identify points of intersection between platelets and the complement system and discuss their relevance for atherosclerosis. Specifically, we will focus on roles for platelets in the onset as well as progression of the disease, a possible dual role for complement in the genesis and development of atherosclerosis, and review emerging literature revealing previously unrecognized cross-talk between platelets and the complement system and discuss its possible impact for atherosclerosis. Finally, we identify limitations of current research approaches and discuss perspectives of complement modulation in the control of the disease. PMID:25784879

  11. Complement factor H related proteins (CFHRs).

    PubMed

    Skerka, Christine; Chen, Qian; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T

    2013-12-15

    Factor H related proteins comprise a group of five plasma proteins: CFHR1, CFHR2, CFHR3, CFHR4 and CFHR5, and each member of this group binds to the central complement component C3b. Mutations, genetic deletions, duplications or rearrangements in the individual CFHR genes are associated with a number of diseases including atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathies (C3 glomerulonephritis (C3GN), dense deposit disease (DDD) and CFHR5 nephropathy), IgA nephropathy, age related macular degeneration (AMD) and systemic lupus erythematosus (SLE). Although complement regulatory functions were attributed to most of the members of the CFHR protein family, the precise role of each CFHR protein in complement activation and the exact contribution to disease pathology is still unclear. Recent publications show that CFHR proteins form homo- as well as heterodimers. Genetic abnormalities within the CFHR gene locus can result in hybrid proteins with affected dimerization or recognition domains which cause defective functions. Here we summarize the recent data about CFHR genes and proteins in order to better understand the role of CFHR proteins in complement activation and in complement associated diseases. PMID:23830046

  12. Supramolecular Control over Split-Luciferase Complementation.

    PubMed

    Bosmans, Ralph P G; Briels, Jeroen M; Milroy, Lech-Gustav; de Greef, Tom F A; Merkx, Maarten; Brunsveld, Luc

    2016-07-25

    Supramolecular split-enzyme complementation restores enzymatic activity and allows for on-off switching. Split-luciferase fragment pairs were provided with an N-terminal FGG sequence and screened for complementation through host-guest binding to cucurbit[8]uril (Q8). Split-luciferase heterocomplex formation was induced in a Q8 concentration dependent manner, resulting in a 20-fold upregulation of luciferase activity. Supramolecular split-luciferase complementation was fully reversible, as revealed by using two types of Q8 inhibitors. Competition studies with the weak-binding FGG peptide revealed a 300-fold enhanced stability for the formation of the ternary heterocomplex compared to binding of two of the same fragments to Q8. Stochiometric binding by the potent inhibitor memantine could be used for repeated cycling of luciferase activation and deactivation in conjunction with Q8, providing a versatile module for in vitro supramolecular signaling networks. PMID:27356091

  13. Complement activation in discordant hepatic xenotransplantation.

    PubMed

    Tector, A J; Chen, X; Soderland, C; Tchervenkov, J I

    1998-11-01

    Little is known about hyperacute rejection in hepatic xenotransplantation. Information from clinical xenoperfusions suggests that the liver may be rejected by a mechanism less vigorous than either kidney or heart xenografts. We used the in vitro model of porcine hepatic sinusoidal endothelial cells (PHEC) incubated with either complement replete or deficient human serum to determine the relative roles of the classical and alternate pathways of complement in the immediate response to hepatic xenotransplantation. Our results suggest that either the classical or alternate pathways are capable of independently activating the complement cascade upon exposure to the porcine hepatic sinusoidal endothelium. Our results also imply that either pathway alone is capable of initiating similar degrees of injury as the entire cascade. PMID:9915253

  14. Applying complement therapeutics to rare diseases.

    PubMed

    Reis, Edimara S; Mastellos, Dimitrios C; Yancopoulou, Despina; Risitano, Antonio M; Ricklin, Daniel; Lambris, John D

    2015-12-01

    Around 350 million people worldwide suffer from rare diseases. These may have a genetic, infectious, or autoimmune basis, and several include an inflammatory component. Launching of effective treatments can be very challenging when there is a low disease prevalence and limited scientific insights into the disease mechanisms. As a key trigger of inflammatory processes, complement has been associated with a variety of diseases and has become an attractive therapeutic target for conditions involving inflammation. In view of the clinical experience acquired with drugs licensed for the treatment of rare diseases such as hereditary angioedema and paroxysmal nocturnal hemoglobinuria, growing evidence supports the safety and efficacy of complement therapeutics in restoring immune balance and preventing aggravation of clinical outcomes. This review provides an overview of the candidates currently in the pharmaceutical pipeline with potential to treat orphan diseases and discusses the molecular mechanisms triggered by complement involved with the disease pathogenesis. PMID:26341313

  15. Complement inhibition in C3 glomerulopathy.

    PubMed

    Nester, Carla M; Smith, Richard J H

    2016-06-01

    C3 glomerulopathy (C3G) describes a spectrum of glomerular diseases defined by shared renal biopsy pathology: a predominance of C3 deposition on immunofluorescence with electron microscopy permitting disease sub-classification. Complement dysregulation underlies the observed pathology, a causal relationship that is supported by well described studies of genetic and acquired drivers of disease. In this article, we provide an overview of the features of C3G, including a discussion of disease definition and a review of the causal role of complement. We discuss molecular markers of disease and how biomarkers are informing our evolving understanding of underlying pathology. Research advances are laying the foundation for complement inhibition as a targeted approach to treatment of C3G. PMID:27402056

  16. The extracellular RNA complement of Escherichia coli

    PubMed Central

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-01

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. PMID:25611733

  17. Genetics Home Reference: complement component 2 deficiency

    MedlinePlus

    ... Page Jönsson G, Sjöholm AG, Truedsson L, Bengtsson AA, Braconier JH, Sturfelt G. Rheumatological manifestations, organ damage ... 31. Review. Citation on PubMed Truedsson L, Bengtsson AA, Sturfelt G. Complement deficiencies and systemic lupus erythematosus. ...

  18. How Preschool Children Understand Missing Complement Subjects.

    ERIC Educational Resources Information Center

    Maratsos, Michael P.

    Two studies investigated preschool children's comprehension of the missing subject of infinitival complement clauses. In the first study, use of a Surface Structure Minimal Distance principle of the type outlined by C. Chomsky was distinguished from use of a Semantic Role Principle. Preschoolers acted out sentences in which the use of the two…

  19. Pneumococcal psoas pyomyositis associated with complement deficiency.

    PubMed

    Tuerlinckx, David; Bodart, Eddy; de Bilderling, Georges; Nisolle, Jean-François

    2004-04-01

    A 4.5-year-old boy with complement deficiency developed infection of the psoas caused by Streptococcus pneumoniae. Pyomyositis of the psoas muscle is uncommon but should be included in the differential diagnosis of fever and lameness. The most useful diagnostic test is computed tomography guided needle aspiration, and underlying conditions should be sought. PMID:15071302

  20. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents §...

  1. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents §...

  2. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents §...

  3. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents §...

  4. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents §...

  5. Complement Constructions in English: Fairly Difficult for EFL Language Learners

    ERIC Educational Resources Information Center

    Fazeli, Fatemeh; Shokrpour, Nasrin

    2012-01-01

    Complement constructions vary significantly in English and Persian. There are more complementation structures in English than in Persian and a complement structure in Persian might have more than one equivalent in English. Producing complement structures (CSs) in English is very difficult for native speakers of Persian, especially in an EFL…

  6. Engineering of human complement component C3 for catalytic inhibition of complement.

    PubMed

    Kölln, Johanna; Bredehorst, Reinhard; Spillner, Edzard

    2005-04-15

    As a novel therapeutic approach in complement-mediated pathologies, we recently developed a human C3 derivative capable of obliterating functional complement by a catalytic, non-inhibitory mechanism. In this derivative, the C-terminal region of hC3 was substituted by a 275 amino acid sequence derived from the corresponding sequence of cobra venom factor (CVF), a complement-activating C3b homologue from snake venom. In this study, we replaced shorter C-terminal sequences of hC3 by corresponding CVF sequences to further reduce potential immunogenicity and to identify domains essential for the formation of functionally stable C3 convertases. In one of these derivatives that is still capable of obliterating functional complement in vitro, the non-human portion could be reduced to a small domain located in the C-terminus of different complement proteins. This conserved NTR/C345C motif is known to be involved in assembly of different convertases of the complement system. These results suggest a major role of the C345C domain in the regulation of the half-life of the C3 convertase. Moreover, its overall identity of 96% to human C3 renders this derivative a promising candidate for therapeutic intervention in complement-mediated pathologies. PMID:15790508

  7. Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: Lessons from the pathogenic Neisseriae.

    PubMed

    Ram, Sanjay; Shaughnessy, Jutamas; DeOliveira, Rosane B; Lewis, Lisa A; Gulati, Sunita; Rice, Peter A

    2016-10-01

    Novel therapies are urgently needed to combat the global threat of multidrug-resistant pathogens. Complement forms an important arm of innate defenses against infections. In physiological conditions, complement activation is tightly controlled by soluble and membrane-associated complement inhibitors, but must be selectively activated on invading pathogens to facilitate microbial clearance. Many pathogens, including Neisseria gonorrhoeae and N. meningitidis, express glycans, including N-acetylneuraminic acid (Neu5Ac), that mimic host structures to evade host immunity. Neu5Ac is a negatively charged 9-cabon sugar that inhibits complement, in part by enhancing binding of the complement inhibitor factor H (FH) through C-terminal domains (19 and 20) on FH. Other microbes also bind FH, in most instances through FH domains 6 and 7 or 18-20. Here we describe two strategies to target complement activation on Neisseriae. First, microbial binding domains of FH were fused to IgG Fc to create FH18-20/Fc (binds gonococci) and FH6,7/Fc (binds meningococci). A point mutation in FH domain 19 eliminated hemolysis caused by unmodified FH18-20, but retained binding to gonococci. FH18-20/Fc and FH6,7/Fc mediated complement-dependent killing in vitro and showed efficacy in animal models of gonorrhea and meningococcal bacteremia, respectively. The second strategy utilized CMP-nonulosonate (CMP-NulO) analogs of sialic acid that were incorporated into LOS and prevented complement inhibition by physiologic CMP-Neu5Ac and resulted in attenuated gonococcal infection in mice. While studies to establish the safety of these agents are needed, enhancing complement activation on microbes may represent a promising strategy to treat antimicrobial resistant organisms. PMID:27297292

  8. Microbe-specific C3b deposition in the horseshoe crab complement system in a C2/factor B-dependent or -independent manner.

    PubMed

    Tagawa, Keisuke; Yoshihara, Toyoki; Shibata, Toshio; Kitazaki, Kazuki; Endo, Yuichi; Fujita, Teizo; Koshiba, Takumi; Kawabata, Shun-ichiro

    2012-01-01

    Complement C3 plays an essential role in the opsonization of pathogens in the mammalian complement system, whereas the molecular mechanism underlying C3 activation in invertebrates remains unknown. To understand the molecular mechanism of C3b deposition on microbes, we characterized two types of C2/factor B homologs (designated TtC2/Bf-1 and TtC2/Bf-2) identified from the horseshoe crab Tachypleus tridentatus. Although the domain architectures of TtC2/Bf-1 and TtC2/Bf-2 were identical to those of mammalian homologs, they contained five-repeated and seven-repeated complement control protein domains at their N-terminal regions, respectively. TtC2/Bf-1 and TtC2/Bf-2 were synthesized and glycosylated in hemocytes and secreted to hemolymph plasma, which existed in a complex with C3 (TtC3), and their activation by microbes was absolutely Mg(2+)-dependent. Flow cytometric analysis revealed that TtC3b deposition was Mg(2+)-dependent on Gram-positive bacteria or fungi, but not on Gram-negative bacteria. Moreover, this analysis demonstrated that Ca(2+)-dependent lectins (C-reactive protein-1 and tachylectin-5A) were required for TtC3b deposition on Gram-positive bacteria, and that a Ca(2+)-independent lectin (Tachypleus plasma lectin-1) was definitely indispensable for TtC3b deposition on fungi. In contrast, a horseshoe crab lipopolysaccharide-sensitive protease factor C was necessary and sufficient to deposit TtC3b on Gram-negative bacteria. We conclude that plasma lectins and factor C play key roles in microbe-specific TtC3b deposition in a C2/factor B-dependent or -independent manner. PMID:22611464

  9. Microbe-Specific C3b Deposition in the Horseshoe Crab Complement System in a C2/Factor B-Dependent or -Independent Manner

    PubMed Central

    Tagawa, Keisuke; Yoshihara, Toyoki; Shibata, Toshio; Kitazaki, Kazuki; Endo, Yuichi; Fujita, Teizo; Koshiba, Takumi; Kawabata, Shun-ichiro

    2012-01-01

    Complement C3 plays an essential role in the opsonization of pathogens in the mammalian complement system, whereas the molecular mechanism underlying C3 activation in invertebrates remains unknown. To understand the molecular mechanism of C3b deposition on microbes, we characterized two types of C2/factor B homologs (designated TtC2/Bf-1 and TtC2/Bf-2) identified from the horseshoe crab Tachypleus tridentatus. Although the domain architectures of TtC2/Bf-1 and TtC2/Bf-2 were identical to those of mammalian homologs, they contained five-repeated and seven-repeated complement control protein domains at their N-terminal regions, respectively. TtC2/Bf-1 and TtC2/Bf-2 were synthesized and glycosylated in hemocytes and secreted to hemolymph plasma, which existed in a complex with C3 (TtC3), and their activation by microbes was absolutely Mg2+-dependent. Flow cytometric analysis revealed that TtC3b deposition was Mg2+-dependent on Gram-positive bacteria or fungi, but not on Gram-negative bacteria. Moreover, this analysis demonstrated that Ca2+-dependent lectins (C-reactive protein-1 and tachylectin-5A) were required for TtC3b deposition on Gram-positive bacteria, and that a Ca2+-independent lectin (Tachypleus plasma lectin-1) was definitely indispensable for TtC3b deposition on fungi. In contrast, a horseshoe crab lipopolysaccharide-sensitive protease factor C was necessary and sufficient to deposit TtC3b on Gram-negative bacteria. We conclude that plasma lectins and factor C play key roles in microbe-specific TtC3b deposition in a C2/factor B-dependent or -independent manner. PMID:22611464

  10. Chronic Low Level Complement Activation within the Eye Is Controlled by Intraocular Complement Regulatory Proteins

    PubMed Central

    Sohn, Jeong-Hyeon; Kaplan, Henry J.; Suk, Hye-Jung; Bora, Puran S.; Bora, Nalini S.

    2007-01-01

    Purpose To explore the role of the complement system and complement regulatory proteins in an immune-privileged organ, the eye. Methods Eyes of normal Lewis rats were analyzed for the expression of complement regulatory proteins, membrane cofactor protein (MCP), decay-acceleration factor (DAF), membrane inhibitor of reactive lysis (MIRL, CD59), and cell surface regulator of complement (Crry), using immunohistochemistry, Western blot analysis, and reverse transcription–polymerase chain reaction (RT-PCR). Zymosan, a known activator of the alternative pathway of complement system was injected into the anterior chamber of the eye of Lewis rats. Animals were also injected intracamerally with 5 μl (25 μg) of neutralizing monoclonal antibody (mAb) against rat Crry (5I2) or CD59 (6D1) in an attempt to develop antibody induced anterior uveitis; control animals received 5 μl of sterile phosphate-buffered saline (PBS), OX-18 (25 μg), G-16-510E3 (25 μg), or MOPC-21 (25 μg). The role of complement system in antibody-induced uveitis was explored by intraperitoneal injection of 35 U cobra venom factor (CVF), 24 hours before antibody injection. Immunohistochemical staining and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) with Western blot analysis were used to detect the presence of membrane attack complex (MAC) and C3 activation products, respectively, in normal and antibody-injected rat eyes. Results Complement activation product MAC was present in the normal rat eye, and intraocular injection of zymosan induced severe anterior uveitis. The complement regulatory proteins, MCP, DAF, CD59, and Crry, were identified in the normal rat eye. Soluble forms of Crry and CD59 were also detected in normal rat aqueous humor. Severe anterior uveitis developed in Lewis rats injected with a neutralizing mAb against Crry, with increased formation of C3 split products. Systemic complement depletion by CVF prevented the induction of anterior uveitis by anti

  11. The contribution of both oxygen and nitrogen intermediates to the intracellular killing mechanisms of C1q-opsonized Listeria monocytogenes by the macrophage-like IC-21 cell line.

    PubMed

    Alvarez-Domínguez, C; Carrasco-Marín, E; López-Mato, P; Leyva-Cobián, F

    2000-09-01

    Listeria monocytogenes is a facultative intracellular pathogen which is internalized by host mammalian cells upon binding to their surface. Further listerial growth occurs in the cytosol after escape from the phagosomal-endosomal compartment. We have previously reported that C1q is able to potentiate L. monocytogenes phagocytosis upon bacterial opsonization by ingestion through C1q-binding structures. In this report, we analysed the post-phagocytic events upon internalization of C1q-opsonized L. monocytogenes and found an induction of macrophage (Mphi)-like IC-21 cell bactericidal mechanisms displayed by the production of oxygen and nitrogen metabolites. Both types of molecules are effective in L. monocytogenes killing. Further analysis of the cellular responses promoted by interaction of C1q with its surface binding structures, leads us to consider C1q as a collaborative molecule involved in Mphi activation. Upon interaction with surface binding structures, C1q was able to trigger and/or amplify the production of reactive oxygen and nitrogen intermediates induced by stimuli such as interferon-gamma and L. monocytogenes phagocytosis. PMID:11012757

  12. The contribution of both oxygen and nitrogen intermediates to the intracellular killing mechanisms of C1q-opsonized Listeria monocytogenes by the macrophage-like IC-21 cell line

    PubMed Central

    Álvarez-Domínguez, C; Carrasco-Marín, E; López-Mato, P; Leyva-Cobián, F

    2000-01-01

    Listeria monocytogenes is a facultative intracellular pathogen which is internalized by host mammalian cells upon binding to their surface. Further listerial growth occurs in the cytosol after escape from the phagosomal–endosomal compartment. We have previously reported that C1q is able to potentiate L. monocytogenes phagocytosis upon bacterial opsonization by ingestion through C1q-binding structures. In this report, we analysed the post-phagocytic events upon internalization of C1q-opsonized L. monocytogenes and found an induction of macrophage (Mφ)-like IC-21 cell bactericidal mechanisms displayed by the production of oxygen and nitrogen metabolites. Both types of molecules are effective in L. monocytogenes killing. Further analysis of the cellular responses promoted by interaction of C1q with its surface binding structures, leads us to consider C1q as a collaborative molecule involved in Mφ activation. Upon interaction with surface binding structures, C1q was able to trigger and/or amplify the production of reactive oxygen and nitrogen intermediates induced by stimuli such as interferon-γ and L. monocytogenes phagocytosis. PMID:11012757

  13. Molecular nature of the complement lesion.

    PubMed Central

    Bhakdi, S; Tranum-Jensen, J

    1978-01-01

    The principle molecular event leading to membrane perturbation by complement is the assembly of the terminal five serum complement components (C5b-C9) into a macromolecular C5b-9 complex on the target membrane [Müller-Eberhard, H.-J. (1975) Ann. Rev. Biochem. 44, 697--723]. The present communication reports on the ability of purified C5b-9 complexes isolated from target membranes to become reincorporated into artificial lipid vesicles. The data indicate that the complex is a vertically oriented, hollow, cylindrical macromolecule possessing lipid-binding regions that enable one terminus to penetrate into the lipid bilayer. A transmembrane pore appears to be created at the attachment site of the C5b-9 complex. Images PMID:281714

  14. Trichinella spiralis Paramyosin Binds Human Complement C1q and Inhibits Classical Complement Activation

    PubMed Central

    Sun, Ran; Zhao, Xi; Wang, Zixia; Yang, Jing; Zhao, Limei; Zhan, Bin; Zhu, Xinping

    2015-01-01

    Background Trichinella spiralis expresses paramyosin (Ts-Pmy) as a defense mechanism. Ts-Pmy is a functional protein with binding activity to human complement C8 and C9 and thus plays a role in evading the attack of the host’s immune system. In the present study, the binding activity of Ts-Pmy to human complement C1q and its ability to inhibit classical complement activation were investigated. Methods and Findings The binding of recombinant and natural Ts-Pmy to human C1q were determined by ELISA, Far Western blotting and immunoprecipitation, respectively. Binding of recombinant Ts-Pmy (rTs-Pmy) to C1q inhibited C1q binding to IgM and consequently inhibited C3 deposition. The lysis of antibody-sensitized erythrocytes (EAs) elicited by the classical complement pathway was also inhibited in the presence of rTs-Pmy. In addition to inhibiting classical complement activation, rTs-Pmy also suppressed C1q binding to THP-1-derived macrophages, thereby reducing C1q-induced macrophages migration. Conclusion Our results suggest that T. spiralis paramyosin plays an important role in immune evasion by interfering with complement activation through binding to C1q in addition to C8 and C9. PMID:26720603

  15. Reference instrument complement for IPNS Upgrade

    SciTech Connect

    Crawford, R.K.

    1993-07-01

    A feasibility study for a new 1 MW pulsed neutron source has recently been completed at Argonne. As part of this feasibility study, an instrument package to instrument 24 of the 36 beam ports has been considered. This complement of instruments is outlined, and details of some of the instruments are discussed. Developments required before some of these instruments can be built are also indicated.

  16. Elucidating the role of the complement control protein in monkeypox pathogenicity.

    PubMed

    Hudson, Paul N; Self, Joshua; Weiss, Sonja; Braden, Zachary; Xiao, Yuhong; Girgis, Natasha M; Emerson, Ginny; Hughes, Christine; Sammons, Scott A; Isaacs, Stuart N; Damon, Inger K; Olson, Victoria A

    2012-01-01

    Monkeypox virus (MPXV) causes a smallpox-like disease in humans. Clinical and epidemiological studies provide evidence of pathogenicity differences between two geographically distinct monkeypox virus clades: the West African and Congo Basin. Genomic analysis of strains from both clades identified a ∼10 kbp deletion in the less virulent West African isolates sequenced to date. One absent open reading frame encodes the monkeypox virus homologue of the complement control protein (CCP). This modulatory protein prevents the initiation of both the classical and alternative pathways of complement activation. In monkeypox virus, CCP, also known as MOPICE, is a ∼24 kDa secretory protein with sequence homology to this superfamily of proteins. Here we investigate CCP expression and its role in monkeypox virulence and pathogenesis. CCP was incorporated into the West African strain and removed from the Congo Basin strain by homologous recombination. CCP expression phenotypes were confirmed for both wild type and recombinant monkeypox viruses and CCP activity was confirmed using a C4b binding assay. To characterize the disease, prairie dogs were intranasally infected and disease progression was monitored for 30 days. Removal of CCP from the Congo Basin strain reduced monkeypox disease morbidity and mortality, but did not significantly decrease viral load. The inclusion of CCP in the West African strain produced changes in disease manifestation, but had no apparent effect on disease-associated mortality. This study identifies CCP as an important immuno-modulatory protein in monkeypox pathogenesis but not solely responsible for the increased virulence seen within the Congo Basin clade of monkeypox virus. PMID:22496894

  17. Bacteria under stress by complement and coagulation.

    PubMed

    Berends, Evelien T M; Kuipers, Annemarie; Ravesloot, Marietta M; Urbanus, Rolf T; Rooijakkers, Suzan H M

    2014-11-01

    The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria. PMID:25065463

  18. Screening New Drugs for Immunotoxic Potential: II. Assessment of the Effects of Selective and Nonselective COX-2 Inhibitors on Complement Activation, Superoxide Anion Production and Leukocyte Chemotaxis and Migration Through Endothelial Cells.

    PubMed

    Furst, Sylvia M; Khan, K Nasir; Komocsar, Wendy J; Fan, Lian; Mennear, John

    2005-04-01

    Results from earlier experiments in our laboratories revealed that both selective and nonselective inhibitors of cyclooxygenase-2 possess little potential for decreasing in vitro phagocytosis by rat macrophages or canine neutrophils and no potential for decreasing in vivo phagocytosis by the intact murine immune system. We now report the results of studies to assess in vitro and ex vivo effects of the drugs on 1) canine complement activation, 2) generation of superoxide anion and hydrogen peroxide (oxidative burst) by canine neutrophils, and 3) leukocytic chemotaxis and transmigration through endothelial cell monolayers. In vitro concentrations of naproxen sodium, SC-236, SC-245, and SC-791 ranging from 0.1 to 10 muM were tested for their abilities to inhibit canine complement-mediated hemolysis of opsonized sheep erythrocytes and to block phorbol myristate acetate-induced oxidative burst in canine neutrophils. Both models responded to known inhibitory agents, leupeptin in the complement activation test and staurosporine in the superoxide anion assay. In contrast, tested nonsteroidal anti-inflammatory drugs produced only trivial changes in complement activation and superoxide anion production. Experiments on plasma and neutrophils isolated from dogs administered an experimental selective COX-2 inhibitor during a 28-day toxicology study revealed no evidence of drug-associated changes in complement activation or formation of superoxide anion. SC-791 reduced chemotaxis of canine leukocytes toward zymosan-activated dog plasma, but not toward leukotriene B(4). None of the other drugs tested significantly affected leukocytic chemotaxis. Ibuprofen, SC-245 and SC-791 but not SC-236, reduced transmigration of canine leukocytes through endothelial cell monolayers. Based on the results of these experiments and our earlier studies we have concluded that, although high (suprapharmacologic) concentrations of the drugs may induce in vitro evidence of apparent immunomodulation of

  19. Age-related macular degeneration: Complement in action.

    PubMed

    van Lookeren Campagne, Menno; Strauss, Erich C; Yaspan, Brian L

    2016-06-01

    The complement system plays a key role in host-defense against common pathogens but must be tightly controlled to avoid inflammation and tissue damage. Polymorphisms in genes encoding two important negative regulators of the alternative complement pathway, complement factor H (CFH) and complement factor I (CFI), are associated with the risk for Age-Related Macular Degeneration (AMD), a leading cause of vision impairment in the ageing population. In this review, we will discuss the genetic basis of AMD and the potential impact of complement de-regulation on disease pathogenesis. Finally, we will highlight recent therapeutic approaches aimed at controlling complement activation in patients with AMD. PMID:26742632

  20. Evaluation of a commercial bELISA serologic assay for avian influenza virus detection in wild birds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) virus surveillance in wild birds is predominately dependent on diagnostic assays that identify the virus, including reverse transcriptase polymerase chain reaction and virus isolation. A sensitive and specific assay to detect AI virus antibodies would complement existing survei...

  1. Vaccine-Induced Human Antibodies to PspA Augment Complement C3 Deposition on Streptococcus pneumoniae

    PubMed Central

    Ochs, Martina M.; Bartlett, William; Briles, David E.; Hicks, Bryony; Jurkuvenas, Audra; Lau, Peggy; Ren, Bing; Millar, Amanda

    2008-01-01

    Pneumococcal surface protein (PspA) is a virulence factor expressed by all clinical isolates of Streptococcus pneumoniae. PspAs are variable in structure and have been grouped into clades and cross-reacting families based on sequence similarities and immunologic cross-reactivity. At least 98 percent of PspAs are found in PspA families 1 or 2. PspA has been shown to interfere with complement deposition on pneumococci, thus reducing opsonization and clearance of bacteria by the host immune system. Prior studies using pooled human sera have shown that PspA interferes with C3 deposition on a single strain of S. pneumoniae, WU2, and that mouse antibody to PspA can enhance the deposition of C3 on WU2. The present studies have demonstrated that these previous findings are representative of most normal human sera and each of 7 different strains of S. pneumoniae. It was observed that PspAs of PspA families 1 and 2 could inhibit C3 deposition in the presence of immunoglobulin present in all but 3 of 22 normal human sera. These studies have also demonstrated that rabbit and human antibody to PspA can enhance the deposition of C3 on pneumococci expressing either family 1 or 2 PspAs and either capsular types 2, 3, or 11. A vaccine candidate that can elicit immunity that neutralizes or compensates for S. pneumoniae’s ability to thwart host immunity would be of value. PMID:18006268

  2. Complement component C3b and immunoglobulin Fc receptors on neutrophils from calves with leukocyte adhesion deficiency.

    PubMed

    Worku, M; Paape, M J; Di Carlo, A; Kehrli, M E; Marquardt, W W

    1995-04-01

    Receptors for opsonins, such as complement component C3b (CR1) and immunoglobulins, Fc receptors, interact with adhesion glycoproteins in mediating immune functions. Defects in expression of the adhesion glycoproteins CD11/CD18 results in severely hampered in vitro and in vivo adherence-related functions of leukocytes. Little is known regarding the effect of leukocyte adhesion deficiency (LAD) on ligand binding and receptor expression. We investigated the binding and expression of CR1 and Fc receptors by bovine neutrophils isolated from dairy calves suffering from LAD, compared with clinically normal (hereafter referred to as normal) age-matched calves. Neutrophils were also assayed for endogenously bound IgG and IgM and for exogenous binding of C3b, IgG1, IgG2, IgM, and aggregated IgG (aIgG), using flow cytometry. Luminol-enhanced chemiluminescence (CL) production in response to IgG2 opsonized zymosan was studied, and specific inhibition of CL was used to determine the specificity of IgG2 binding. Activation of protein kinase C with phorbol myristate acetate was used to determine the effect of cellular activation on expression of CR1. A greater percentage of neutrophils from normal calves bound C3b than did neutrophils from LAD-affected calves. Receptor expression was similar. Activation with phorbol myristate acetate resulted in increased expression of CR1 on neutrophils from normal and LAD-affected calves, but expression was almost twofold greater on neutrophils from normal calves. There was no difference between LAD-affected and normal calves in percentage of neutrophils that bound endogenous IgG and IgM. A greater percentage of neutrophils from normal calves bound exogenous IgM than did neutrophils from LAD-affected calves.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7785817

  3. Exploitation of the Complement System by Oncogenic Kaposi's Sarcoma-Associated Herpesvirus for Cell Survival and Persistent Infection

    PubMed Central

    Lee, Myung-Shin; Jones, Tiffany; Song, Dae-Yong; Jang, Jae-Hyuk; Jung, Jae U.; Gao, Shou-Jiang

    2014-01-01

    During evolution, herpesviruses have developed numerous, and often very ingenious, strategies to counteract efficient host immunity. Specifically, Kaposi's sarcoma-associated herpesvirus (KSHV) eludes host immunity by undergoing a dormant stage, called latency wherein it expresses a minimal number of viral proteins to evade host immune activation. Here, we show that during latency, KSHV hijacks the complement pathway to promote cell survival. We detected strong deposition of complement membrane attack complex C5b-9 and the complement component C3 activated product C3b on Kaposi's sarcoma spindle tumor cells, and on human endothelial cells latently infected by KSHV, TIME-KSHV and TIVE-LTC, but not on their respective uninfected control cells, TIME and TIVE. We further showed that complement activation in latently KSHV-infected cells was mediated by the alternative complement pathway through down-regulation of cell surface complement regulatory proteins CD55 and CD59. Interestingly, complement activation caused minimal cell death but promoted the survival of latently KSHV-infected cells grown in medium depleted of growth factors. We found that complement activation increased STAT3 tyrosine phosphorylation (Y705) of KSHV-infected cells, which was required for the enhanced cell survival. Furthermore, overexpression of either CD55 or CD59 in latently KSHV-infected cells was sufficient to inhibit complement activation, prevent STAT3 Y705 phosphorylation and abolish the enhanced survival of cells cultured in growth factor-depleted condition. Together, these results demonstrate a novel mechanism by which an oncogenic virus subverts and exploits the host innate immune system to promote viral persistent infection. PMID:25254972

  4. Versatile microfluidic complement fixation test for disease biomarker detection.

    PubMed

    Li, Man; Shi, ZhuanZhuan; Fang, Can; Gao, AnXiu; Li, Chang Ming; Yu, Ling

    2016-04-15

    The complement fixation test (CFT) is a serological test that can be used to detect the presence of specific antibodies or antigens to diagnose infections, particularly diseases caused by microbes that are not easily detected by standard culture methods. We report here, for the first time, a poly(dimethylsiloxane) (PDMS)/glass slide hybrid microfluidic device that was used to manipulate the solution compartment and communication within the microchannel to establish sampler and indicator systems of CFT. Two types of on-chip CFT, solution-based and solid phase agar-based assays, were successfully demonstrated for biomarker carcinoembryonic antigen (CEA) and recombinant avian influenza A (rH7N9) virus protein detection. In addition, the feasibility of the on-chip CFT in assaying real biopsy was successfully demonstrated by specifically detecting rH7N9 and CEA in human serum. The results demonstrated that the miniaturized assay format significantly reduced the assay time and sample consumption. Exemption from protein immobilization, blocking, complicated washing steps and expensive enzyme/fluorescein conjugates highlights the merits of on-chip CFT over ELISA. Most attractively, the on-chip agar-based CFT results can be imaged and analysed by smartphone, strengthening its point-of-care application potential. We anticipate that the on-chip CFT reported herein will be a useful supplemental or back-up tool for on-chip immunoassays such as ELISA for disease diagnosis and food inspection. PMID:27016440

  5. Functional anatomy of complement factor H.

    PubMed

    Makou, Elisavet; Herbert, Andrew P; Barlow, Paul N

    2013-06-11

    Factor H (FH) is a soluble regulator of the proteolytic cascade at the core of the evolutionarily ancient vertebrate complement system. Although FH consists of a single chain of similar protein modules, it has a demanding job description. Its chief role is to prevent complement-mediated injury to healthy host cells and tissues. This entails recognition of molecular patterns on host surfaces combined with control of one of nature's most dangerous examples of a positive-feedback loop. In this way, FH modulates, where and when needed, an amplification process that otherwise exponentially escalates the production of the pro-inflammatory, pro-phagocytic, and pro-cytolytic cleavage products of complement proteins C3 and C5. Mutations and single-nucleotide polymorphisms in the FH gene and autoantibodies against FH predispose individuals to diseases, including age-related macular degeneration, dense-deposit disease, and atypical hemolytic uremic syndrome. Moreover, deletions or variations of genes for FH-related proteins also influence the risk of disease. Numerous pathogens hijack FH and use it for self-defense. As reviewed herein, a molecular understanding of FH function is emerging. While its functional oligomeric status remains uncertain, progress has been achieved in characterizing its three-dimensional architecture and, to a lesser extent, its intermodular flexibility. Models are proposed, based on the reconciliation of older data with a wealth of recent evidence, in which a latent circulating form of FH is activated by its principal target, C3b tethered to a self-surface. Such models suggest hypotheses linking sequence variations to pathophysiology, but improved, more quantitative, functional assays and rigorous data analysis are required to test these ideas. PMID:23701234

  6. VISUALIZATION OF MOLECULAR INTERACTIONS BY FLUORESCENCE COMPLEMENTATION

    PubMed Central

    Kerppola, Tom K.

    2008-01-01

    The visualization of protein complexes in living cells enables validation of protein interactions in their normal environment and determination of their subcellular localization. The bimolecular fluorescence complementation (BiFC) assay has been used to visualize interactions among multiple proteins in many cell types and organisms. This assay is based on the association between two fluorescent-protein fragments when they are brought together by an interaction between proteins fused to the fragments. Modified forms of this assay have been used to visualize the competition between alternative interaction partners and the covalent modification of proteins by ubiquitin family peptides. PMID:16625152

  7. Complement sensitivity of Entamoeba histolytica and various nonpathogenic amoeba species.

    PubMed

    Förster, B; Ebert, F; Horstmann, R D

    1994-12-01

    Culture forms of the potentially pathogenic Entamoeba histolytica were compared to those of the nonpathogenic species of E. dispar, E. hartmanni, E. coli, Endolimax nana, and E. moshkovskii regarding the sensitivity to lysis by human complement activated through the alternative pathway. E. dispar was found unique in its complement resistance; all other nonpathogenic isolates resembled E. histolytica in that they were complement sensitive. Thus, a state of complement sensitivity is not a particular property of potentially pathogenic amoebae. PMID:7716404

  8. The Production of Complement Clauses in Children with Language Impairment

    ERIC Educational Resources Information Center

    Steel, Gillian; Rose, Miranda; Eadie, Patricia

    2016-01-01

    Purpose: The purpose of this research was to provide a comprehensive description of complement-clause production in children with language impairment. Complement clauses were examined with respect to types of complement structure produced, verb use, and both semantic and syntactic accuracy. Method: A group of 17 children with language impairment…

  9. False Belief, Complementation Language, and Contextual Bias in Preschoolers

    ERIC Educational Resources Information Center

    Ng, Lisa; Cheung, Him; Xiao, Wen

    2010-01-01

    In the present study, we address two questions concerning the relation between children's false belief and their understanding of complex object complements. The first question is whether the previously demonstrated association between tensed complements and false belief generalizes to infinitival complements (de Villiers & Pyers, 2002). The…

  10. Distance effects during polyprotein processing in the complementation between defective FMDV RNAs.

    PubMed

    Moreno, Elena; Perales, Celia

    2016-07-01

    Passage of foot-and-mouth disease virus (FMDV) in BHK-21 cells resulted in the segmentation of the viral genome into two defective RNAs lacking part of either the L- or the capsid-coding region. The two RNAs are infectious by complementation. Electroporation of L-defective RNA in BHK-21 cells resulted in the accumulation of the precursor P3 located away from the deleted sequence. Expression of L in trans led to the processing of P3, indicating that there is a connection between L protease activity and the secondary cleavages carried out by 3C protease within P3. These results suggest that the complementation mechanism between defective RNAs is not restricted to supplying the L and capsid proteins but that distance effects on polyprotein processing events are also implicated. PMID:27073008

  11. Complement activation induced by rabbit rheumatoid factor.

    PubMed Central

    Meyer, R R; Brown, J C

    1980-01-01

    Rabbit rheumatoid factor produced in animals by hyperimmunized with group C streptococcal vaccine activated guinea pig complement. Anti-streptococcal serum was fractionated by Sephacryl S-200 chromatography into excluded (19S) and included (7S) material and examined for hemolytic activity in a sensitive homologous hemolytic assay system. In the presence of complement, both 19S and 7S antistreptococcal serum fractions induced lysis of bovine (ox) erythrocytes coated with mildly reduced and carboxymethylated rabbit anti-erythrocyte immunoglobulin G. That rabbit rheumatoid factor was responsible for the observed hemolytic activity was substantiated by hemolytic inhibition assays. Significant inhibition of hemolysis was effected when antistreptococcal serum fractions were incubated in the presence of human immunoglobulin G, rabbit immunoglobulin G, and Fc, whereas, no inhibition was detected when the same fractions were tested in the presence of rabbit Fab or F(ab')2 fragments. Deaggregation of inhibitor preparations revealed a preferential reactivity of rheumatoid factor for rabbit immunoglobulin G. In addition to the rheumatoid factor-dependent hemolytic activity observed in humoral preparations, immunoglobulin G-specific antibody-forming cells in spleen and peripheral blood lymphocyte isolates were enumerated by plaque-forming cell assay. PMID:7399707

  12. Attenuation of Vaccinia Virus.

    PubMed

    Yakubitskiy, S N; Kolosova, I V; Maksyutov, R A; Shchelkunov, S N

    2015-01-01

    Since 1980, in the post-smallpox vaccination era the human population has become increasingly susceptible compared to a generation ago to not only the variola (smallpox) virus, but also other zoonotic orthopoxviruses. The need for safer vaccines against orthopoxviruses is even greater now. The Lister vaccine strain (LIVP) of vaccinia virus was used as a parental virus for generating a recombinant 1421ABJCN clone defective in five virulence genes encoding hemagglutinin (A56R), the IFN-γ-binding protein (B8R), thymidine kinase (J2R), the complement-binding protein (C3L), and the Bcl-2-like inhibitor of apoptosis (N1L). We found that disruption of these loci does not affect replication in mammalian cell cultures. The isogenic recombinant strain 1421ABJCN exhibits a reduced inflammatory response and attenuated neurovirulence relative to LIVP. Virus titers of 1421ABJCN were 3 lg lower versus the parent VACV LIVP when administered by the intracerebral route in new-born mice. In a subcutaneous mouse model, 1421ABJCN displayed levels of VACV-neutralizing antibodies comparable to those of LIVP and conferred protective immunity against lethal challenge by the ectromelia virus. The VACV mutant holds promise as a safe live vaccine strain for preventing smallpox and other orthopoxvirus infections. PMID:26798498

  13. Complement analysis 2016: Clinical indications, laboratory diagnostics and quality control.

    PubMed

    Prohászka, Zoltán; Nilsson, Bo; Frazer-Abel, Ashley; Kirschfink, Michael

    2016-11-01

    In recent years, complement analysis of body fluids and biopsies, going far beyond C3 and C4, has significantly enhanced our understanding of the disease process. Such expanded complement analysis allows for a more precise differential diagnosis and for critical monitoring of complement-targeted therapy. These changes are a result of the growing understanding of the involvement of complement in a diverse set of disorders. To appreciate the importance of proper complement analysis, it is important to understand the role it plays in disease. Historically, it was the absence of complement as manifested in severe infection that was noted. Since then complement has been connected to a variety of inflammatory disorders, such as autoimmune diseases and hereditary angioedema. While the role of complement in the rejection of renal grafts has been known longer, the significant impact of complement. In certain nephropathies has now led to the reclassification of some rare kidney diseases and an increased role for complement analysis in diagnosis. Even more unexpected is that complement has also been implicated in neural, ophtalmological and dermatological disorders. With this level of involvement in some varied and impactful health issues proper complement testing is clearly important; however, analysis of the complement system varies widely among laboratories. Except for a few proteins, such as C3 and C4, there are neither well-characterized standard preparations nor calibrated assays available. This is especially true for the inter-laboratory variation of tests which assess classical, alternative, or lectin pathway function. In addition, there is a need for the standardization of the measurement of complement activation products that are so critical in determining whether clinically relevant complement activation has occurred in vivo. Finally, autoantibodies to complement proteins (e.g. anti-C1q), C3 and C4 convertases (C3 and C4 nephritic factor) or to regulatory proteins

  14. Infliximab treatment reduces complement activation in patients with rheumatoid arthritis

    PubMed Central

    Familian, A; Voskuyl, A; van Mierlo, G J; Heijst, H; Twisk, J; Dijkmans, B; Hack, C

    2005-01-01

    Background: Tumour necrosis factor (TNF) blocking agents decrease C reactive protein (CRP) levels in rheumatoid arthritis (RA). It has been shown that CRP may contribute to complement activation in RA. Objective: To assess the effect of intravenous infliximab treatment on complement activation, especially that mediated by CRP, in RA. Methods: 35 patients with active RA (28 joint count Disease Activity Score (DAS28) >4.4) were treated with intravenous injections of infliximab (3 mg/kg, at weeks 0, 2, 6, 14, and 22). Clinical response and plasma levels of complement activation products, of CRP and of CRP-complement complexes, which are specific markers for CRP mediated complement activation, were assessed at the indicated time points up to 22 weeks. The relationship between CRP and CRP-complement complexes was analysed by paired t test between two time points and by generalised estimated equation, to test differences of variables over time. Results: At 2 weeks after the first dose, infliximab significantly reduced overall C3 and C4 activation and plasma levels of CRP and CRP-complement complexes were also significantly reduced at this time point. The effects of infliximab on CRP and complement continued throughout the observation period and were more pronounced in patients with a good response to infliximab treatment. Conclusion: Treatment with infliximab decreases plasma levels of CRP and CRP dependent complement activation products and concomitantly may reduce complement activation in RA. Complement activation may be among the effector mechanisms of TNF in RA. PMID:15958758

  15. H-ficolin binds Aspergillus fumigatus leading to activation of the lectin complement pathway and modulation of lung epithelial immune responses.

    PubMed

    Bidula, Stefan; Sexton, Darren W; Yates, Matthew; Abdolrasouli, Alireza; Shah, Anand; Wallis, Russell; Reed, Anna; Armstrong-James, Darius; Schelenz, Silke

    2015-10-01

    Aspergillus fumigatus is an opportunistic fungal pathogen that typically infects the lungs of immunocompromised patients leading to a high mortality. H-Ficolin, an innate immune opsonin, is produced by type II alveolar epithelial cells and could participate in lung defences against infections. Here, we used the human type II alveolar epithelial cell line, A549, to determine the involvement of H-ficolin in fungal defence. Additionally, we investigated the presence of H-ficolin in bronchoalveolar lavage fluid from transplant patients during pneumonia. H-Ficolin exhibited demonstrable binding to A. fumigatus conidia via l-fucose, d-mannose and N-acetylglucosamine residues in a calcium- and pH-dependent manner. Moreover, recognition led to lectin complement pathway activation and enhanced fungal association with A549 cells. Following recognition, H-ficolin opsonization manifested an increase in interleukin-8 production from A549 cells, which involved activation of the intracellular signalling pathways mitogen-activated protein kinase MAPK kinase 1/2, p38 MAPK and c-Jun N-terminal kinase. Finally, H-ficolin concentrations were significantly higher in bronchoalveolar lavage fluid of patients with lung infections compared with control subjects (n = 16; P = 0·00726). Receiver operating characteristics curve analysis further highlighted the potential of H-ficolin as a diagnostic marker for lung infection (area under the curve = 0·77; P < 0·0001). Hence, H-ficolin participates in A. fumigatus defence through the activation of the lectin complement pathway, enhanced fungus-host interactions and modulated immune responses. PMID:26133042

  16. The Complement System and Antibody-Mediated Transplant Rejection.

    PubMed

    Stites, Erik; Le Quintrec, Moglie; Thurman, Joshua M

    2015-12-15

    Complement activation is an important cause of tissue injury in patients with Ab-mediated rejection (AMR) of transplanted organs. Complement activation triggers a strong inflammatory response, and it also generates tissue-bound and soluble fragments that are clinically useful markers of inflammation. The detection of complement proteins deposited within transplanted tissues has become an indispensible biomarker of AMR, and several assays have recently been developed to measure complement activation by Abs reactive to specific donor HLA expressed within the transplant. Complement inhibitors have entered clinical use and have shown efficacy for the treatment of AMR. New methods of detecting complement activation within transplanted organs will improve our ability to diagnose and monitor AMR, and they will also help guide the use of complement inhibitory drugs. PMID:26637661

  17. ECHO virus

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that lead to ...

  18. Complement-activating ability of leucocytes from patients with complement factor I deficiency.

    PubMed Central

    Marquart, H V; Rasmussen, J M; Leslie, R G

    1997-01-01

    Previous studies from this laboratory have shown that normal peripheral blood B cells are capable of activating complement via the alternative pathway (AP), that the activation is associated with complement receptor type 2 (CR2) expression, and that erythrocytes at normal blood levels partially inhibit the activation. The purpose of the present study was to investigate whether factor I (FI) deficiency, which leads to continued formation of the AP convertase (C3bBb) resulting in the consumption of factor B and C3 and large scale generation of C3b fragments, affects the phenotype and/or function of the patients' B cells. Using flow cytometry, peripheral blood leucocytes (PBL) from two FI-deficient patients were investigated for expression of complement receptors and complement regulatory proteins, in vivo-deposited C3 fragments and in vitro complement-activating ability. CR1 levels on B cells were significantly lower in FI-deficient patients than in normal individuals, whereas CR2 levels were found to be reduced, although not to a significant extent. CR1 levels on monocytes and polymorphonuclear leucocytes (PMN) were found to be normal or slightly raised. All leucocyte subpopulations were found to be covered in vivo with C3b fragments. AP activation on B cells from FI-deficient patients in homologous serum was significantly reduced compared with that for normal individuals, whereas no in vitro activation was seen in autologous serum. In addition, the in vivo-bound C3b fragments were degraded to C3d,g when the patients' PBL were incubated in homologous serum containing EDTA. Finally, the patients, erythrocytes failed to exert any inhibition on AP activation in homologous serum. PMID:9301541

  19. Mitochondria and the Lectin Pathway of Complement*

    PubMed Central

    Brinkmann, Christel R.; Jensen, Lisbeth; Dagnæs-Hansen, Frederik; Holm, Ida E.; Endo, Yuichi; Fujita, Teizo; Thiel, Steffen; Jensenius, Jens C.; Degn, Søren E.

    2013-01-01

    Mitochondria, the powerhouses of our cells, are remnants of a eubacterial endosymbiont. Notwithstanding the evolutionary time that has passed since the initial endosymbiotic event, mitochondria have retained many hallmarks of their eubacterial origin. Recent studies have indicated that during perturbations of normal homeostasis, such as following acute trauma leading to massive necrosis and release of mitochondria, the immune system might mistake symbiont for enemy and initiate an inappropriate immune response. The innate immune system is the first line of defense against invading microbial pathogens, and as such is the primary suspect in the recognition of mitochondria-derived danger-associated molecular patterns and initiation of an aberrant response. Conversely, innate immune mechanisms are also central to noninflammatory clearance of innocuous agents. Here we investigated the role of a central humoral component of innate immunity, the lectin pathway of complement, in recognition of mitochondria in vitro and in vivo. We found that the soluble pattern recognition molecules, mannan-binding lectin (MBL), L-ficolin, and M-ficolin, were able to recognize mitochondria. Furthermore, MBL in complex with MBL-associated serine protease 2 (MASP-2) was able to activate the lectin pathway and deposit C4 onto mitochondria, suggesting that these molecules are involved either in homeostatic clearance of mitochondria or in induction of untoward inflammatory reactions. We found that following mitochondrial challenge, C3 was consumed in vivo in the absence of overt inflammation, indicating a potential role of complement in noninflammatory clearance of mitochondria. Thus, we report here the first indication of involvement of the lectin pathway in mitochondrial immune handling. PMID:23378531

  20. Complement inhibition: a promising concept for cancer treatment

    PubMed Central

    Pio, Ruben; Ajona, Daniel; Lambris, John D.

    2013-01-01

    For decades, complement has been recognized as an effector arm of the immune system that contributes to the destruction of tumor cells. In fact, many therapeutic strategies have been proposed that are based on the intensification of complement-mediated responses against tumors. However, recent studies have challenged this paradigm by demonstrating a tumor-promoting role for complement. Cancer cells seem to be able to establish a convenient balance between complement activation and inhibition, taking advantage of complement initiation without suffering its deleterious effects. Complement activation may support chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling pathways. In this context, inhibition of complement activation would be a therapeutic option for treating cancer. This concept is relatively novel and deserves closer attention. In this paper, we will summarize the mechanisms of complement activation on cancer cells, the cancer-promoting effect of complement initiation, and the rationale behind the use of complement inhibition as a therapeutic strategy against cancer. PMID:23706991

  1. The Expression Profile of Complement Components in Podocytes.

    PubMed

    Li, Xuejuan; Ding, Fangrui; Zhang, Xiaoyan; Li, Baihong; Ding, Jie

    2016-01-01

    Podocytes are critical for maintaining the glomerular filtration barrier and are injured in many renal diseases, especially proteinuric kidney diseases. Recently, reports suggested that podocytes are among the renal cells that synthesize complement components that mediate glomerular diseases. Nevertheless, the profile and extent of complement component expression in podocytes remain unclear. This study examined the expression profile of complement in podocytes under physiological conditions and in abnormal podocytes induced by multiple stimuli. In total, 23/32 complement component components were detected in podocyte by conventional RT-PCR. Both primary cultured podocytes and immortalized podocytes expressed the complement factors C1q, C1r, C2, C3, C7, MASP, CFI, DAF, CD59, C4bp, CD46, Protein S, CR2, C1qR, C3aR, C5aR, and Crry (17/32), whereas C4, CFB, CFD, C5, C6, C8, C9, MBL1, and MBL2 (9/32) complement factors were not expressed. C3, Crry, and C1q-binding protein were detected by tandem mass spectrometry. Podocyte complement gene expression was affected by several factors (puromycin aminonucleoside (PAN), angiotensin II (Ang II), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β)). Representative complement components were detected using fluorescence confocal microscopy. In conclusion, primary podocytes express various complement components at the mRNA and protein levels. The complement gene expressions were affected by several podocyte injury factors. PMID:27043537

  2. The Expression Profile of Complement Components in Podocytes

    PubMed Central

    Li, Xuejuan; Ding, Fangrui; Zhang, Xiaoyan; Li, Baihong; Ding, Jie

    2016-01-01

    Podocytes are critical for maintaining the glomerular filtration barrier and are injured in many renal diseases, especially proteinuric kidney diseases. Recently, reports suggested that podocytes are among the renal cells that synthesize complement components that mediate glomerular diseases. Nevertheless, the profile and extent of complement component expression in podocytes remain unclear. This study examined the expression profile of complement in podocytes under physiological conditions and in abnormal podocytes induced by multiple stimuli. In total, 23/32 complement component components were detected in podocyte by conventional RT-PCR. Both primary cultured podocytes and immortalized podocytes expressed the complement factors C1q, C1r, C2, C3, C7, MASP, CFI, DAF, CD59, C4bp, CD46, Protein S, CR2, C1qR, C3aR, C5aR, and Crry (17/32), whereas C4, CFB, CFD, C5, C6, C8, C9, MBL1, and MBL2 (9/32) complement factors were not expressed. C3, Crry, and C1q-binding protein were detected by tandem mass spectrometry. Podocyte complement gene expression was affected by several factors (puromycin aminonucleoside (PAN), angiotensin II (Ang II), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β)). Representative complement components were detected using fluorescence confocal microscopy. In conclusion, primary podocytes express various complement components at the mRNA and protein levels. The complement gene expressions were affected by several podocyte injury factors. PMID:27043537

  3. A vital role for complement in heart disease.

    PubMed

    Lappegård, Knut T; Garred, Peter; Jonasson, Lena; Espevik, Terje; Aukrust, Pål; Yndestad, Arne; Mollnes, Tom E; Hovland, Anders

    2014-10-01

    Heart diseases are common and significant contributors to worldwide mortality and morbidity. During recent years complement mediated inflammation has been shown to be an important player in a variety of heart diseases. Despite some negative results from clinical trials using complement inhibitors, emerging evidence points to an association between the complement system and heart diseases. Thus, complement seems to be important in coronary heart disease as well as in heart failure, where several studies underscore the prognostic importance of complement activation. Furthermore, patients with atrial fibrillation often share risk factors both with coronary heart disease and heart failure, and there is some evidence implicating complement activation in atrial fibrillation. Moreover, Chagas heart disease, a protozoal infection, is an important cause of heart failure in Latin America, and the complement system is crucial for the protozoa-host interaction. Thus, complement activation appears to be involved in the pathophysiology of a diverse range of cardiac conditions. Determination of the exact role of complement in the various heart diseases will hopefully help to identify patients that might benefit from therapeutic complement intervention. PMID:25037633

  4. Complement, a target for therapy in inflammatory and degenerative diseases.

    PubMed

    Morgan, B Paul; Harris, Claire L

    2015-12-01

    The complement system is a key innate immune defence against infection and an important driver of inflammation; however, these very properties can also cause harm. Inappropriate or uncontrolled activation of complement can cause local and/or systemic inflammation, tissue damage and disease. Complement provides numerous options for drug development as it is a proteolytic cascade that involves nine specific proteases, unique multimolecular activation and lytic complexes, an arsenal of natural inhibitors, and numerous receptors that bind to activation fragments. Drug design is facilitated by the increasingly detailed structural understanding of the molecules involved in the complement system. Only two anti-complement drugs are currently on the market, but many more are being developed for diseases that include infectious, inflammatory, degenerative, traumatic and neoplastic disorders. In this Review, we describe the history, current landscape and future directions for anti-complement therapies. PMID:26493766

  5. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.

    PubMed

    Hess, Christoph; Kemper, Claudia

    2016-08-16

    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. PMID:27533012

  6. The role of complement in inflammation and adaptive immunity.

    PubMed

    Barrington, R; Zhang, M; Fischer, M; Carroll, M C

    2001-04-01

    Major advances in our understanding of the immunobiology of complement were made within the past 5 years primarily due to the development of gene-targeting technology. New strains of mice bearing specific deficiencies in serum complement proteins or their receptors were developed using this approach. Characterization of these mice has provided new and exciting insights into the biology of the complement system. In this review, we discuss recent results on two important aspects of the complement system, i) host protection and inflammation, and ii) regulation of B lymphocytes of adaptive immunity. While these two roles appear distinct, they are linked. We discuss how natural antibody and classical pathway complement work together in host protection against bacterial infection on the one hand but, on the other, they co-operate to induce inflammation as observed in reperfusion injury. Significantly, the lymphocytes that produce natural antibody, the B-1 lymphocytes, are regulated in part by the complement system. PMID:11414363

  7. Complement-mediated antiinflammatory effect of bisbenzylisoquinoline alkaloid fangchinoline.

    PubMed

    Hristova, M; Istatkova, R

    1999-11-01

    Complement-mediated mode of action of bisbenzylisoquinoline alkaloid fangchinoline was investigated in vivo and in vitro. The application of fangchinoline intraperitoneally (i.p.) to complement normal mice, strain ICR, inhibited the complement activity in serum and peritoneal exudate. The substance activated serum complement of C5-deficient DBA/2 mice. Fangchinoline was able to provoke local inflammatory reaction in both strains after subcutaneous (s.c.) injection. The alkaloid suppressed paw swelling induced by live Candida albicans in ICR and DBA/2 mice. Its effect depended on the dose and time of injection prior to inflammatory reaction. The in vitro experiments proved the interference of fangchinoline action with post-C5 reactions. The substance augmented C5-convertase formation and functional activity. These results are in correspondence with our previous investigations, proving the complement-mediated action of fangchinoline. The antiinflammatory effect could be a consequence of the caused complement exhaustion. PMID:11962544

  8. Expansion of Viral Host Range through Complementation and Recombination in Transgenic Plants.

    PubMed Central

    Schoelz, JE; Wintermantel, WM

    1993-01-01

    We have shown previously that gene VI of cauliflower mosaic virus (CaMV) strain D4 governs systemic infection of Nicotiana bigelovii and that transgenic N. bigelovii expressing the D4 gene VI product can complement at least one CaMV isolate for long-distance transport. We have now found that DNA of two other isolates of CaMV recombine with the gene VI coding sequence present in the transgenic plants. The formation of recombinant viruses occurs as a consequence of CaMV replication, involving two template switches during reverse transcription of the CaMV RNA to DNA. The first template switch occurs at the 5[prime] end of the 35S RNA to the gene VI mRNA produced by the transgenic plants. A second switch occurs at the 5[prime] end of the gene VI mRNA back to the 35S RNA. We also demonstrate that CaMV can acquire sequences from transgenic plants that alter the symptomatology and host range of the virus, an observation that may have important risk assessment implications for strategies using pathogen-derived resistance to protect plants against virus diseases. PMID:12271051

  9. Complement factor H–related hybrid protein deregulates complement in dense deposit disease

    PubMed Central

    Chen, Qian; Wiesener, Michael; Eberhardt, Hannes U.; Hartmann, Andrea; Uzonyi, Barbara; Kirschfink, Michael; Amann, Kerstin; Buettner, Maike; Goodship, Tim; Hugo, Christian; Skerka, Christine; Zipfel, Peter F.

    2013-01-01

    The renal disorder C3 glomerulopathy with dense deposit disease (C3G-DDD) pattern results from complement dysfunction and primarily affects children and young adults. There is no effective treatment, and patients often progress to end-stage renal failure. A small fraction of C3G-DDD cases linked to factor H or C3 gene mutations as well as autoantibodies have been reported. Here, we examined an index family with 2 patients with C3G-DDD and identified a chromosomal deletion in the complement factor H–related (CFHR) gene cluster. This deletion resulted in expression of a hybrid CFHR2-CFHR5 plasma protein. The recombinant hybrid protein stabilized the C3 convertase and reduced factor H–mediated convertase decay. One patient was refractory to plasma replacement and exchange therapy, as evidenced by the hybrid protein quickly returning to pretreatment plasma levels. Subsequently, complement inhibitors were tested on serum from the patient for their ability to block activity of CFHR2-CFHR5. Soluble CR1 restored defective C3 convertase regulation; however, neither eculizumab nor tagged compstatin had any effect. Our findings provide insight into the importance of CFHR proteins for C3 convertase regulation and identify a genetic variation in the CFHR gene cluster that promotes C3G-DDD. Monitoring copy number and sequence variations in the CFHR gene cluster in C3G-DDD and kidney patients with C3G-DDD variations will help guide treatment strategies. PMID:24334459

  10. Expression of complement 3 and complement 5 in newt limb and lens regeneration.

    PubMed

    Kimura, Yuko; Madhavan, Mayur; Call, Mindy K; Santiago, William; Tsonis, Panagiotis A; Lambris, John D; Del Rio-Tsonis, Katia

    2003-03-01

    Some urodele amphibians possess the capacity to regenerate their body parts, including the limbs and the lens of the eye. The molecular pathway(s) involved in urodele regeneration are largely unknown. We have previously suggested that complement may participate in limb regeneration in axolotls. To further define its role in the regenerative process, we have examined the pattern of distribution and spatiotemporal expression of two key components, C3 and C5, during limb and lens regeneration in the newt Notophthalmus viridescens. First, we have cloned newt cDNAs encoding C3 and C5 and have generated Abs specifically recognizing these molecules. Using these newt-specific probes, we have found by in situ hybridization and immunohistochemical analysis that these molecules are expressed during both limb and lens regeneration, but not in the normal limb and lens. The C3 and C5 proteins were expressed in a complementary fashion during limb regeneration, with C3 being expressed mainly in the blastema and C5 exclusively in the wound epithelium. Similarly, during the process of lens regeneration, C3 was detected in the iris and cornea, while C5 was present in the regenerating lens vesicle as well as the cornea. The distinct expression profile of complement proteins in regenerative tissues of the urodele lens and limb supports a nonimmunologic function of complement in tissue regeneration and constitutes the first systematic effort to dissect its involvement in regenerative processes of lower vertebrate species. PMID:12594255

  11. Foodborne viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Testing for human pathogenic viruses in foods represents a formidable task requiring the extraction, concentration, and assay of a host of viruses from a wide range of food matrices. The enteric viruses, particularly genogroup I and II (GI and GII) noroviruses and hepatitis A virus, are the princip...

  12. Yellow Fever Virus Infection

    PubMed Central

    David-West, Tam. S.; Smith, J. A.

    1971-01-01

    A sequential and quantitative survey of brain and liver of suckling mice for infective virus and complement-fixing antigen, after infection with yellow fever virus, showed that while there was progressive increase of infective virus content in both organs, only the brain showed a corresponding rise in CF antigen. Histopathological examination revealed that the liver was not significantly involved. The target organ was the brain, where the progressive pathological changes culminated in an acute encephalitis by the 3rd day of experiment. Organ destruction began with the molecular layer of the grey matter. But by the 4th day after infection the entire cerebral cortex was involved. At the initial stages the hippocampus was particularly affected. Tissue damage did not appear to be entirely due to the differential quantitative localization of infective virus. It was hypothesized that the CF antigen acting singly or in conjunction with some hypothetical proteins may be principally involved in the pathological outcome of the disease. ImagesFigs. 7-9Figs. 3-6 PMID:5582071

  13. Initiation and Regulation of Complement during Hemolytic Transfusion Reactions

    PubMed Central

    Stowell, Sean R.; Winkler, Anne M.; Maier, Cheryl L.; Arthur, C. Maridith; Smith, Nicole H.; Girard-Pierce, Kathryn R.; Cummings, Richard D.; Zimring, James C.; Hendrickson, Jeanne E.

    2012-01-01

    Hemolytic transfusion reactions represent one of the most common causes of transfusion-related mortality. Although many factors influence hemolytic transfusion reactions, complement activation represents one of the most common features associated with fatality. In this paper we will focus on the role of complement in initiating and regulating hemolytic transfusion reactions and will discuss potential strategies aimed at mitigating or favorably modulating complement during incompatible red blood cell transfusions. PMID:23118779

  14. Vitronectin-binding staphylococci enhance surface-associated complement activation.

    PubMed Central

    Lundberg, F; Lea, T; Ljungh, A

    1997-01-01

    Coagulase-negative staphylococci are well recognized in medical device-associated infections. Complement activation is known to occur at the biomaterial surface, resulting in unspecific inflammation around the biomaterial. The human serum protein vitronectin (Vn), a potent inhibitor of complement activation by formation of an inactive terminal complement complex, adsorbs to biomaterial surfaces in contact with blood. In this report, we discuss the possibility that surface-immobilized Vn inhibits complement activation and the effect of Vn-binding staphylococci on complement activation on surfaces precoated with Vn. The extent of complement activation was measured with a rabbit anti-human C3c antibody and a mouse anti-human C9 antibody, raised against the neoepitope of C9. Our data show that Vn immobilized on a biomaterial surface retains its ability to inhibit complement activation. The additive complement activation-inhibitory effect of Vn on a heparinized surface is very small. In the presence of Vn-binding strain, Staphylococcus hemolyticus SM131, complement activation on a surface precoated with Vn occurred as it did in the absence of Vn precoating. For S. epidermidis 3380, which does not express binding of Vn, complement activation on a Vn-precoated surface was significantly decreased. The results could be repeated on heparinized surfaces. These data suggest that Vn adsorbed to a biomaterial surface may serve to protect against surface-associated complement activation. Furthermore, Vn-binding staphylococcal cells may enhance surface-associated complement activation by blocking the inhibitory effect of preadsorbed Vn. PMID:9038294

  15. Complement binding to Leishmania donovani promastigotes (LD)

    SciTech Connect

    Puentes, S.M.; Bates, P.A.; Dwyer, D.M.; Joiner, K.A.

    1986-03-01

    To study the binding and processing of C3 on LD, parasites in various phases of growth were incubated in human serum deficient in complement component 8 containing /sup 125/I-C3. Uptake of /sup 125/I-C3 is rapid, peaking at 1.7-2.1 x 10/sup 6/ C3 molecules bound per parasite at 15 minutes for all growth phases, and decreases thereafter with continued incubation. One half of total C3 bound is spontaneously released by 90 minutes of incubation with all LD phases and occurs at a similar rate for LD washed free of serum and incubated at 37/sup 0/ C in buffer. As assessed by SDS-PAGE autoradiography, C3 on the surface of LD is present as C3b (36 to 50%) and iC3b (50 to 65%), linked covalently via a bond resistant to hydroxylamine treatment, presumably an amide linkage. Immunoblot analysis of purified membranes from serum-incubated LD, using rabbit antibody to C3 and LD surface constituents, strongly suggests that a major C3 acceptor is the LD acid phosphatase (AP). These results, in conjunction with recent studies, suggest a previously unrecognized role of AP as a C3 acceptor and, thus, as a molecule potentially involved in parasite binding and uptake.

  16. Altmetrics - a complement to conventional metrics.

    PubMed

    Melero, Remedios

    2015-01-01

    Emerging metrics based on article-level does not exclude traditional metrics based on citations to the journal, but complements them. Both can be employed in conjunction to offer a richer picture of an article use from immediate to long terms. Article-level metrics (ALM) is the result of the aggregation of different data sources and the collection of content from multiple social network services. Sources used for the aggregation can be broken down into five categories: usage, captures, mentions, social media and citations. Data sources depend on the tool, but they include classic metrics indicators based on citations, academic social networks (Mendeley, CiteULike, Delicious) and social media (Facebook, Twitter, blogs, or Youtube, among others). Altmetrics is not synonymous with alternative metrics. Altmetrics are normally early available and allow to assess the social impact of scholarly outputs, almost at the real time. This paper overviews briefly the meaning of altmetrics and describes some of the existing tools used to apply this new metrics: Public Library of Science--Article-Level Metrics, Altmetric, Impactstory and Plum. PMID:26110028

  17. Altmetrics – a complement to conventional metrics

    PubMed Central

    Melero, Remedios

    2015-01-01

    Emerging metrics based on article-level does not exclude traditional metrics based on citations to the journal, but complements them. Both can be employed in conjunction to offer a richer picture of an article use from immediate to long terms. Article-level metrics (ALM) is the result of the aggregation of different data sources and the collection of content from multiple social network services. Sources used for the aggregation can be broken down into five categories: usage, captures, mentions, social media and citations. Data sources depend on the tool, but they include classic metrics indicators based on citations, academic social networks (Mendeley, CiteULike, Delicious) and social media (Facebook, Twitter, blogs, or Youtube, among others). Altmetrics is not synonymous with alternative metrics. Altmetrics are normally early available and allow to assess the social impact of scholarly outputs, almost at the real time. This paper overviews briefly the meaning of altmetrics and describes some of the existing tools used to apply this new metrics: Public Library of Science - Article-Level Metrics, Altmetric, Impactstory and Plum. PMID:26110028

  18. Inventing Viruses.

    PubMed

    Summers, William C

    2014-11-01

    In the nineteenth century, "virus" commonly meant an agent (usually unknown) that caused disease in inoculation experiments. By the 1890s, however, some disease-causing agents were found to pass through filters that retained the common bacteria. Such an agent was called "filterable virus," the best known being the virus that caused tobacco mosaic disease. By the 1920s there were many examples of filterable viruses, but no clear understanding of their nature. However, by the 1930s, the term "filterable virus" was being abandoned in favor of simply "virus," meaning an agent other than bacteria. Visualization of viruses by the electron microscope in the late 1930s finally settled their particulate nature. This article describes the ever-changing concept of "virus" and how virologists talked about viruses. These changes reflected their invention and reinvention of the concept of a virus as it was revised in light of new knowledge, new scientific values and interests, and new hegemonic technologies. PMID:26958713

  19. Complement system in dermatological diseases - fire under the skin.

    PubMed

    Panelius, Jaana; Meri, Seppo

    2015-01-01

    The complement system plays a key role in several dermatological diseases. Overactivation, deficiency, or abnormality of the control proteins are often related to a skin disease. Autoimmune mechanisms with autoantibodies and a cytotoxic effect of the complement membrane attack complex on epidermal or vascular cells can cause direct tissue damage and inflammation, e.g., in systemic lupus erythematosus (SLE), phospholipid antibody syndrome, and bullous skin diseases like pemphigoid. By evading complement attack, some microbes like Borrelia spirochetes and staphylococci can persist in the skin and cause prolonged symptoms. In this review, we present the most important skin diseases connected to abnormalities in the function of the complement system. Drugs having an effect on the complement system are also briefly described. On one hand, drugs with free hydroxyl on amino groups (e.g., hydralazine, procainamide) could interact with C4A, C4B, or C3 and cause an SLE-like disease. On the other hand, progress in studies on complement has led to novel anti-complement drugs (recombinant C1-inhibitor and anti-C5 antibody, eculizumab) that could alleviate symptoms in diseases associated with excessive complement activation. The main theme of the manuscript is to show how relevant the complement system is as an immune effector system in contributing to tissue injury and inflammation in a broad range of skin disorders. PMID:25688346

  20. Complement System in Dermatological Diseases – Fire Under the Skin

    PubMed Central

    Panelius, Jaana; Meri, Seppo

    2015-01-01

    The complement system plays a key role in several dermatological diseases. Overactivation, deficiency, or abnormality of the control proteins are often related to a skin disease. Autoimmune mechanisms with autoantibodies and a cytotoxic effect of the complement membrane attack complex on epidermal or vascular cells can cause direct tissue damage and inflammation, e.g., in systemic lupus erythematosus (SLE), phospholipid antibody syndrome, and bullous skin diseases like pemphigoid. By evading complement attack, some microbes like Borrelia spirochetes and staphylococci can persist in the skin and cause prolonged symptoms. In this review, we present the most important skin diseases connected to abnormalities in the function of the complement system. Drugs having an effect on the complement system are also briefly described. On one hand, drugs with free hydroxyl on amino groups (e.g., hydralazine, procainamide) could interact with C4A, C4B, or C3 and cause an SLE-like disease. On the other hand, progress in studies on complement has led to novel anti-complement drugs (recombinant C1-inhibitor and anti-C5 antibody, eculizumab) that could alleviate symptoms in diseases associated with excessive complement activation. The main theme of the manuscript is to show how relevant the complement system is as an immune effector system in contributing to tissue injury and inflammation in a broad range of skin disorders. PMID:25688346

  1. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... tissues. Complement is a group of serum proteins which destroy infectious agents. Measurements of these proteins aids in the diagnosis of immunologic disorders, especially those associated with deficiencies...

  2. A dual role for complement in allergic asthma.

    PubMed

    Köhl, Jörg; Wills-Karp, Marsha

    2007-06-01

    Complement is an ancient danger-sensor system of innate immunity, providing first-line defence against pathogens. Concordant with its pro-inflammatory properties, complement contributes to airway inflammation, hyperresponsiveness and mucus production during the effector phase of allergic asthma. In contrast to these pro-allergic properties, complement can also protect from the development of the maladaptive Th2-biased immune response that drives airway inflammation and hyperreactivity in allergic asthma. As such, selective targeting of pro-allergic complement pathways appears an attractive therapeutic option in allergic asthma. PMID:17475559

  3. Characterization of the Uukuniemi Virus Group (Phlebovirus: Bunyaviridae): Evidence for Seven Distinct Species

    PubMed Central

    Savji, Nazir; Travassos da Rosa, Amelia; Guzman, Hilda; Yu, Xuejie; Desai, Aaloki; Rosen, Gail Emilia; Hutchison, Stephen; Lipkin, W. Ian; Tesh, Robert

    2013-01-01

    Evolutionary insights into the phleboviruses are limited because of an imprecise classification scheme based on partial nucleotide sequences and scattered antigenic relationships. In this report, the serologic and phylogenetic relationships of the Uukuniemi group viruses and their relationships with other recently characterized tick-borne phleboviruses are described using full-length genome sequences. We propose that the viruses currently included in the Uukuniemi virus group be assigned to five different species as follows: Uukuniemi virus, EgAn 1825-61 virus, Fin V707 virus, Chizé virus, and Zaliv Terpenia virus would be classified into the Uukuniemi species; Murre virus, RML-105-105355 virus, and Sunday Canyon virus would be classified into a Murre virus species; and Grand Arbaud virus, Precarious Point virus, and Manawa virus would each be given individual species status. Although limited sequence similarity was detected between current members of the Uukuniemi group and Severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus, a clear serological reaction was observed between some of them, indicating that SFTSV and Heartland virus should be considered part of the Uukuniemi virus group. Moreover, based on the genomic diversity of the phleboviruses and given the low correlation observed between complement fixation titers and genetic distance, we propose a system for classification of the Bunyaviridae based on genetic as well as serological data. Finally, the recent descriptions of SFTSV and Heartland virus also indicate that the public health importance of the Uukuniemi group viruses must be reevaluated. PMID:23283959

  4. Characterization of the Uukuniemi virus group (Phlebovirus: Bunyaviridae): evidence for seven distinct species.

    PubMed

    Palacios, Gustavo; Savji, Nazir; Travassos da Rosa, Amelia; Guzman, Hilda; Yu, Xuejie; Desai, Aaloki; Rosen, Gail Emilia; Hutchison, Stephen; Lipkin, W Ian; Tesh, Robert

    2013-03-01

    Evolutionary insights into the phleboviruses are limited because of an imprecise classification scheme based on partial nucleotide sequences and scattered antigenic relationships. In this report, the serologic and phylogenetic relationships of the Uukuniemi group viruses and their relationships with other recently characterized tick-borne phleboviruses are described using full-length genome sequences. We propose that the viruses currently included in the Uukuniemi virus group be assigned to five different species as follows: Uukuniemi virus, EgAn 1825-61 virus, Fin V707 virus, Chizé virus, and Zaliv Terpenia virus would be classified into the Uukuniemi species; Murre virus, RML-105-105355 virus, and Sunday Canyon virus would be classified into a Murre virus species; and Grand Arbaud virus, Precarious Point virus, and Manawa virus would each be given individual species status. Although limited sequence similarity was detected between current members of the Uukuniemi group and Severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus, a clear serological reaction was observed between some of them, indicating that SFTSV and Heartland virus should be considered part of the Uukuniemi virus group. Moreover, based on the genomic diversity of the phleboviruses and given the low correlation observed between complement fixation titers and genetic distance, we propose a system for classification of the Bunyaviridae based on genetic as well as serological data. Finally, the recent descriptions of SFTSV and Heartland virus also indicate that the public health importance of the Uukuniemi group viruses must be reevaluated. PMID:23283959

  5. Regulators of complement activity mediate inhibitory mechanisms through a common C3b-binding mode.

    PubMed

    Forneris, Federico; Wu, Jin; Xue, Xiaoguang; Ricklin, Daniel; Lin, Zhuoer; Sfyroera, Georgia; Tzekou, Apostolia; Volokhina, Elena; Granneman, Joke Cm; Hauhart, Richard; Bertram, Paula; Liszewski, M Kathryn; Atkinson, John P; Lambris, John D; Gros, Piet

    2016-05-17

    Regulators of complement activation (RCA) inhibit complement-induced immune responses on healthy host tissues. We present crystal structures of human RCA (MCP, DAF, and CR1) and a smallpox virus homolog (SPICE) bound to complement component C3b. Our structural data reveal that up to four consecutive homologous CCP domains (i-iv), responsible for inhibition, bind in the same orientation and extended arrangement at a shared binding platform on C3b. Large sequence variations in CCP domains explain the diverse C3b-binding patterns, with limited or no contribution of some individual domains, while all regulators show extensive contacts with C3b for the domains at the third site. A variation of ~100° rotation around the longitudinal axis is observed for domains binding at the fourth site on C3b, without affecting the overall binding mode. The data suggest a common evolutionary origin for both inhibitory mechanisms, called decay acceleration and cofactor activity, with variable C3b binding through domains at sites ii, iii, and iv, and provide a framework for understanding RCA disease-related mutations and immune evasion. PMID:27013439

  6. The Structure-Function Relationships of Complement Receptor Type 2 (CR2; CD21).

    PubMed

    Hannan, Jonathan Paul

    2016-01-01

    Human complement receptor type 2 (CR2; CD21) is a surface-associated glycoprotein which binds to a variety of endogenous ligands, including the complement component C3 fragments iC3b, C3dg and C3d, the low-affinity IgE receptor CD23, and the type I cytokine, interferon-alpha. CR2 links the innate complement-mediated immune response to pathogens and foreign antigens with the adaptive immune response by binding to C3d that is covalently attached to targets, and which results in a cell signalling phenomenon that lowers the threshold for B cell activation. Variations or deletions of the CR2 gene in humans, or the Cr2 gene in mice associate with a variety of autoimmune and inflammatory conditions. A number of infectious agents including Epstein-Barr virus (EBV), Human Immunodeficiency Virus (HIV) and prions also bind to CR2 either directly or indirectly by means of C3d-targeted immune complexes. In this review we discuss the interactions that CR2 undertakes with its best characterized ligands C3d, CD23 and the EBV gp350/220 envelope protein. To date only a single physiologically relevant complex of CR2 with one of its ligands, C3d, has been elucidated. By contrast, the interactions with CD23 and EBV gp350/220, while being important from physiologic and disease-associated standpoints, respectively, are only incompletely understood. A detailed knowledge of the structure-function relationships that CR2 undergoes with its ligands is necessary to understand the implications of using recombinant CR2 in therapeutic or imaging agents, or alternatively targeting CR2 to down-regulate the antibody mediated immune response in cases of autoimmunity. PMID:26916158

  7. Minor Role of Plasminogen in Complement Activation on Cell Surfaces

    PubMed Central

    Hyvärinen, Satu; Jokiranta, T. Sakari

    2015-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare, but severe thrombotic microangiopathy. In roughly two thirds of the patients, mutations in complement genes lead to uncontrolled activation of the complement system against self cells. Recently, aHUS patients were described with deficiency of the fibrinolytic protein plasminogen. This zymogen and its protease form plasmin have both been shown to interact with complement proteins in the fluid phase. In this work we studied the potential of plasminogen to restrict complement propagation. In hemolytic assays, plasminogen inhibited complement activation, but only when it had been exogenously activated to plasmin and when it was used at disproportionately high concentrations compared to serum. Addition of only the zymogen plasminogen into serum did not hinder complement-mediated lysis of erythrocytes. Plasminogen could not restrict deposition of complement activation products on endothelial cells either, as was shown with flow cytometry. With platelets, a very weak inhibitory effect on deposition of C3 fragments was observed, but it was considered too weak to be significant for disease pathogenesis. Thus it was concluded that plasminogen is not an important regulator of complement on self cells. Instead, addition of plasminogen was shown to clearly hinder platelet aggregation in serum. This was attributed to plasmin causing disintegration of formed platelet aggregates. We propose that reduced proteolytic activity of plasmin on structures of growing thrombi, rather than on complement activation fragments, explains the association of plasminogen deficiency with aHUS. This adds to the emerging view that factors unrelated to the complement system can also be central to aHUS pathogenesis and suggests that future research on the mechanism of the disease should expand beyond complement dysregulation. PMID:26637181

  8. Complement-Coagulation Cross-Talk: A Potential Mediator of the Physiological Activation of Complement by Low pH

    PubMed Central

    Kenawy, Hany Ibrahim; Boral, Ismet; Bevington, Alan

    2015-01-01

    The complement system is a major constituent of the innate immune system. It not only bridges innate and adaptive arms of the immune system but also links the immune system with the coagulation system. Current understanding of the role of complement has extended far beyond fighting of infections, and now encompasses maintenance of homeostasis, tissue regeneration, and pathophysiology of multiple diseases. It has been known for many years that complement activation is strongly pH sensitive, but only relatively recently has the physiological significance of this been appreciated. Most complement assays are carried out at the physiological pH 7.4. However, pH in some extracellular compartments, for example, renal tubular fluid in parts of the tubule, and extracellular fluid at inflammation loci, is sufficiently acidic to activate complement. The exact molecular mechanism of this activation is still unclear, but possible cross-talk between the contact system (intrinsic pathway) and complement may exist at low pH with subsequent complement activation. The current article reviews the published data on the effect of pH on the contact system and complement activity, the nature of the pH sensor molecules, and the clinical implications of these effects. Of particular interest is chronic kidney disease (CKD) accompanied by metabolic acidosis, in which therapeutic alkalinization of urine has been shown significantly to reduce tubular complement activation products, an effect, which may have important implications for slowing progression of CKD. PMID:25999953

  9. Down-Regulation of Complement Receptors on the Surface of Host Monocyte Even as In Vitro Complement Pathway Blocking Interferes in Dengue Infection

    PubMed Central

    Marinho, Cintia Ferreira; Azeredo, Elzinandes Leal; Torrentes-Carvalho, Amanda; Marins-Dos-Santos, Alessandro; Kubelka, Claire Fernandes; de Souza, Luiz José; Cunha, Rivaldo Venâncio; de-Oliveira-Pinto, Luzia Maria

    2014-01-01

    In dengue virus (DENV) infection, complement system (CS) activation appears to have protective and pathogenic effects. In severe dengue fever (DF), the levels of DENV non-structural-1 protein and of the products of complement activation, including C3a, C5a and SC5b-9, are higher before vascular leakage occurs, supporting the hypothesis that complement activation contributes to unfavourable outcomes. The clinical manifestations of DF range from asymptomatic to severe and even fatal. Here, we aimed to characterise CS by their receptors or activation product, in vivo in DF patients and in vitro by DENV-2 stimulation on monocytes. In comparison with healthy controls, DF patients showed lower expression of CR3 (CD11b), CR4 (CD11c) and, CD59 on monocytes. The DF patients who were high producers of SC5b-9 were also those that showed more pronounced bleeding or vascular leakage. Those findings encouraged us to investigate the role of CS in vitro, using monocytes isolated from healthy subjects. Prior blocking with CR3 alone (CD11b) or CR3 (CD11b/CD18) reduced viral infection, as quantified by the levels of intracellular viral antigen expression and soluble DENV non-structural viral protein. However, we found that CR3 alone (CD11b) or CR3 (CD11b/CD18) blocking did not influence major histocompatibility complex presentation neither active caspase-1 on monocytes, thus probably ruling out inflammasome-related mechanisms. Although it did impair the secretion of tumour necrosis factor alpha and interferon alpha. Our data provide strategies of blocking CR3 (CD11b) pathways could have implications for the treatment of viral infection by antiviral-related mechanisms. PMID:25061945

  10. RrgB321, a Fusion Protein of the Three Variants of the Pneumococcal Pilus Backbone RrgB, Is Protective In Vivo and Elicits Opsonic Antibodies

    PubMed Central

    Harfouche, Carole; Filippini, Sara; Gianfaldoni, Claudia; Ruggiero, Paolo; Moschioni, Monica; Maccari, Silvia; Pancotto, Laura; Arcidiacono, Letizia; Galletti, Bruno; Censini, Stefano; Mori, Elena; Giuliani, Marzia; Facciotti, Claudia; Cartocci, Elena; Savino, Silvana; Doro, Francesco; Pallaoro, Michele; Nocadello, Salvatore; Mancuso, Giuseppe; Haston, Mitch; Goldblatt, David; Barocchi, Michèle A.; Pizza, Mariagrazia; Rappuoli, Rino

    2012-01-01

    Streptococcus pneumoniae pilus 1 is present in 30 to 50% of invasive disease-causing strains and is composed of three subunits: the adhesin RrgA, the major backbone subunit RrgB, and the minor ancillary protein RrgC. RrgB exists in three distinct genetic variants and, when used to immunize mice, induces an immune response specific for each variant. To generate an antigen able to protect against the infection caused by all pilus-positive S. pneumoniae strains, we engineered a fusion protein containing the three RrgB variants (RrgB321). RrgB321 elicited antibodies against proteins from organisms in the three clades and protected mice against challenge with piliated pneumococcal strains. RrgB321 antisera mediated complement-dependent opsonophagocytosis of piliated strains at levels comparable to those achieved with the PCV7 glycoconjugate vaccine. These results suggest that a vaccine composed of RrgB321 has the potential to cover 30% or more of all pneumococcal strains and support the inclusion of this fusion protein in a multicomponent vaccine against S. pneumoniae. PMID:22083702

  11. Complement activation in leprosy: a retrospective study shows elevated circulating terminal complement complex in reactional leprosy.

    PubMed

    Bahia El Idrissi, N; Hakobyan, S; Ramaglia, V; Geluk, A; Morgan, B Paul; Das, P Kumar; Baas, F

    2016-06-01

    Mycobacterium leprae infection gives rise to the immunologically and histopathologically classified spectrum of leprosy. At present, several tools for the stratification of patients are based on acquired immunity markers. However, the role of innate immunity, particularly the complement system, is largely unexplored. The present retrospective study was undertaken to explore whether the systemic levels of complement activation components and regulators can stratify leprosy patients, particularly in reference to the reactional state of the disease. Serum samples from two cohorts were analysed. The cohort from Bangladesh included multi-bacillary (MB) patients with (n = 12) or without (n = 46) reaction (R) at intake and endemic controls (n = 20). The cohort from Ethiopia included pauci-bacillary (PB) (n = 7) and MB (n = 23) patients without reaction and MB (n = 15) patients with reaction. The results showed that the activation products terminal complement complex (TCC) (P ≤ 0·01), C4d (P ≤ 0·05) and iC3b (P ≤ 0·05) were specifically elevated in Bangladeshi patients with reaction at intake compared to endemic controls. In addition, levels of the regulator clusterin (P ≤ 0·001 without R; P < 0·05 with R) were also elevated in MB patients, irrespective of a reaction. Similar analysis of the Ethiopian cohort confirmed that, irrespective of a reaction, serum TCC levels were increased significantly in patients with reactions compared to patients without reactions (P ≤ 0·05). Our findings suggests that serum TCC levels may prove to be a valuable tool in diagnosing patients at risk of developing reactions. PMID:26749503

  12. Complement inhibitors to treat IgM-mediated autoimmune hemolysis.

    PubMed

    Wouters, Diana; Zeerleder, Sacha

    2015-11-01

    Complement activation in autoimmune hemolytic anemia may exacerbate extravascular hemolysis and may occasionally result in intravascular hemolysis. IgM autoantibodies as characteristically found in cold autoantibody autoimmune hemolytic anemia, in cold agglutinin disease but also in a considerable percentage of patients with warm autoantibodies are very likely to activate complement in vivo. Therapy of IgM-mediated autoimmune hemolytic anemia mainly aims to decrease autoantibody production. However, most of these treatments require time to become effective and will not stop immediate ongoing complement-mediated hemolysis nor prevent hemolysis of transfused red blood cells. Therefore pharmacological inhibition of the complement system might be a suitable approach to halt or at least attenuate ongoing hemolysis and improve the recovery of red blood cell transfusion in autoimmune hemolytic anemia. In recent years, several complement inhibitors have become available in the clinic, some of them with proven efficacy in autoimmune hemolytic anemia. In the present review, we give a short introduction on the pathogenesis of autoimmune hemolytic anemia, followed by an overview on the complement system with a special focus on its regulation. Finally, we will discuss complement inhibitors with regard to their potential efficacy to halt or attenuate hemolysis in complement-mediated autoimmune hemolytic anemia. PMID:26521297

  13. How antibodies use complement to regulate antibody responses.

    PubMed

    Sörman, Anna; Zhang, Lu; Ding, Zhoujie; Heyman, Birgitta

    2014-10-01

    Antibodies, forming immune complexes with their specific antigen, can cause complete suppression or several 100-fold enhancement of the antibody response. Immune complexes containing IgG and IgM may activate complement and in such situations also complement components will be part of the immune complex. Here, we review experimental data on how antibodies via the complement system upregulate specific antibody responses. Current data suggest that murine IgG1, IgG2a, and IgG2b upregulate antibody responses primarily via Fc-receptors and not via complement. In contrast, IgM and IgG3 act via complement and require the presence of complement receptors 1 and 2 (CR1/2) expressed on both B cells and follicular dendritic cells. Complement plays a crucial role for antibody responses not only to antigen complexed to antibodies, but also to antigen administered alone. Lack of C1q, but not of Factor B or MBL, severely impairs antibody responses suggesting involvement of the classical pathway. In spite of this, normal antibody responses are found in mice lacking several activators of the classical pathway (complement activating natural IgM, serum amyloid P component (SAP), specific intracellular adhesion molecule-grabbing non-integrin R1 (SIGN-R1) or C-reactive protein. Possible explanations to these observations will be discussed. PMID:25001046

  14. Maximality and Idealized Cognitive Models: The Complementation of Spanish "Tener."

    ERIC Educational Resources Information Center

    Hilferty, Joseph; Valenzuela, Javier

    2001-01-01

    Discusses the bare-noun phrase (NP) complementation pattern of the Spanish verb "tener" (have). Shows that the maximality of the complement NP is dependent upon three factors: (1) idiosyncratic valence requirements; (2) encyclopedic knowledge related to possession; and (3) contextualized semantic construal. (Author/VWL)

  15. Complement inhibitors to treat IgM-mediated autoimmune hemolysis

    PubMed Central

    Wouters, Diana; Zeerleder, Sacha

    2015-01-01

    Complement activation in autoimmune hemolytic anemia may exacerbate extravascular hemolysis and may occasionally result in intravascular hemolysis. IgM autoantibodies as characteristically found in cold autoantibody autoimmune hemolytic anemia, in cold agglutinin disease but also in a considerable percentage of patients with warm autoantibodies are very likely to activate complement in vivo. Therapy of IgM-mediated autoimmune hemolytic anemia mainly aims to decrease autoantibody production. However, most of these treatments require time to become effective and will not stop immediate ongoing complement-mediated hemolysis nor prevent hemolysis of transfused red blood cells. Therefore pharmacological inhibition of the complement system might be a suitable approach to halt or at least attenuate ongoing hemolysis and improve the recovery of red blood cell transfusion in autoimmune hemolytic anemia. In recent years, several complement inhibitors have become available in the clinic, some of them with proven efficacy in autoimmune hemolytic anemia. In the present review, we give a short introduction on the pathogenesis of autoimmune hemolytic anemia, followed by an overview on the complement system with a special focus on its regulation. Finally, we will discuss complement inhibitors with regard to their potential efficacy to halt or attenuate hemolysis in complement-mediated autoimmune hemolytic anemia. PMID:26521297

  16. HIV-1 induces complement factor C3 synthesis in astrocytes and neurons by modulation of promoter activity.

    PubMed

    Bruder, Cornelia; Hagleitner, Magdalena; Darlington, Gretchen; Mohsenipour, Iradj; Würzner, Reinhard; Höllmüller, Isolde; Stoiber, Heribert; Lass-Flörl, Cornelia; Dierich, Manfred P; Speth, Cornelia

    2004-02-01

    Virus-induced complement expression and activation in the brain is hypothesized to contribute to the process of neurodegeneration in AIDS-associated neurological disorders. Previous experiments have shown that the human immunodeficiency virus (HIV) upregulates the low basal production of complement factor C3 in astrocytes and neurons. Since inhibition of complement synthesis and activation in the brain may represent a putative therapeutic goal to prevent virus-induced damage, we analysed the mechanism of the HIV-induced modulation of C3 expression. Detailed studies using different C3 promoter constructs revealed that HIV activates the synthesis of C3 by stimulation of the promoter. This HIV-induced promoter activation could be measured both in different astrocytic cell lines and in neurons. Deletion constructs of the C3 promoter defined the IL-6/IL-1beta responsive element within the promoter region as a central element for the responsiveness of the C3 promoter towards the influence of HIV. A binding site for the transcription factor C/EBPdelta was identified as important regulatory domain within the IL-6/IL-1beta responsive element, since a point mutation which eliminates the binding capacity of C/EBPdelta to this site also abolishes the induction by HIV-1. Similarly, the viral proteins Nef and gp41 which had also been shown to stimulate the synthesis of C3, exert their effect via the IL-6/IL-1beta responsive element with binding of the transcription factor C/EBPdelta representing the critical step. Our experiments clearly define the mechanism for the induction of complement factors in the HIV-infected brain and reveal a decisive role of the regulator protein C/EBPdelta for the HIV-induced increase in C3 expression. PMID:14725791

  17. The alternative pathway of complement and the thrombotic microangiopathies.

    PubMed

    Teoh, Chia Wei; Riedl, Magdalena; Licht, Christoph

    2016-04-01

    Thrombotic microangiopathies (TMA) are disorders defined by microangiopathic hemolytic anemia, non-immune thrombocytopenia and have multi-organ involvement including the kidneys, brain, gastrointestinal, respiratory tract and skin. Emerging evidence points to the central role of complement dysregulation in leading to microvascular endothelial injury which is crucial for the development of TMAs. This key insight has led to the development of complement-targeted therapy. Eculizumab is an anti-C5 monoclonal antibody, which has revolutionized the treatment of atypical hemolytic uremic syndrome. Several other anti-complement therapeutic agents are currently in development, offering a potential armamentarium of therapies available to treat complement-mediated TMAs. The development of sensitive, reliable and easy to perform assays to monitor complement activity and therapeutic efficacy will be key to devising an individualized treatment regime with the potential of safely weaning or discontinuing treatment in the appropriate clinical setting. PMID:27160864

  18. Physicochemical signatures of nanoparticle-dependent complement activation

    NASA Astrophysics Data System (ADS)

    Thomas, Dennis G.; Chikkagoudar, Satish; Heredia-Langner, Alejandro; Tardiff, Mark F.; Xu, Zhixiang; Hourcade, Dennis E.; Pham, Christine T. N.; Lanza, Gregory M.; Weinberger, Kilian Q.; Baker, Nathan A.

    2014-01-01

    Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we employed an in vitro hemolysis assay to measure the serum complement activity of perfluorocarbon nanoparticles that differed by size, surface charge, and surface chemistry, quantifying the nanoparticle-dependent complement activity using a metric called Residual Hemolytic Activity (RHA). In the present work, we have used a decision tree learning algorithm to derive the rules for estimating nanoparticle-dependent complement response based on the data generated from the hemolytic assay studies. Our results indicate that physicochemical properties of nanoparticles, namely, size, polydispersity index, zeta potential, and mole percentage of the active surface ligand of a nanoparticle, can serve as good descriptors for prediction of nanoparticle-dependent complement activation in the decision tree modeling framework.

  19. Protease-dependent mechanisms of complement evasion by bacterial pathogens

    PubMed Central

    Potempa, Michal; Potempa, Jan

    2012-01-01

    The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonisation of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host. PMID:22944688

  20. Recent Developments in Low Molecular Weight Complement Inhibitors

    PubMed Central

    Qu, Hongchang; Ricklin, Daniel; Lambris, John D.

    2009-01-01

    As a key part of the innate immune system, complement plays an important role not only in defending invading pathogens but also in many other biological processes. Inappropriate or excessive activation of complement has been linked to many autoimmune, inflammatory, and neurodegenerative diseases, as well as ischemia-reperfusion injury and cancer. A wide array of low molecular weight complement inhibitors has been developed to target various components of the complement cascade. Their efficacy has been demonstrated in numerous in vitro and in vivo experiments. Though none of these inhibitors has reached the market so far, some of them have entered clinical trials and displayed promising results. This review provides a brief overview of the currently developed low molecular weight complement inhibitors, including short peptides and synthetic small molecules, with an emphasis on those targeting components C1 and C3, and the anaphylatoxin receptors. PMID:19800693

  1. [Renal risks of dietary complements: a forgotten cause].

    PubMed

    Dori, Olympia; Humbert, Antoine; Burnier, Michel; Teta, Daniel

    2014-02-26

    The use of dietary complements like vitamins, minerals, trace elements, proteins, aminoacids and plant-derived agents is prevalent in the general population, in order to promote health and treat diseases. Dietary complements are considered as safe natural products and are easily available without prescription. However, these can lead to severe renal toxicity, especially in cases of unknown pre-existing chronic kidney disease (CKD). In particular, Chinese herbs including aristolochic acid, high doses of vitamine C, creatine and protein complements may lead to acute and chronic renal failure, sometimes irreversible. Dietary complement toxicity should be suspected in any case of unexplained renal impairement. In the case of pre-existing CKD, the use of potentially nephrotoxic dietary complements should be screened for. PMID:24665660

  2. Novel Evasion Mechanisms of the Classical Complement Pathway.

    PubMed

    Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2016-09-15

    Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules. PMID:27591336

  3. The cytolytic C5b-9 complement complex: feedback inhibition of complement activation.

    PubMed Central

    Bhakdi, S; Maillet, F; Muhly, M; Kazatchkine, M D

    1988-01-01

    We describe a regulatory function of the terminal cytolytic C5b-9 complex [C5b-9(m)] of human complement. Purified C5b-9(m) complexes isolated from target membranes, whether in solution or bound to liposomes, inhibited lysis of sensitized sheep erythrocytes by whole human serum in a dose-dependent manner. C9 was not required for the inhibitory function since C5b-7 and C5b-8 complexes isolated from membranes were also effective. No effect was found with the cytolytically inactive, fluid-phase SC5b-9 complex. However, tryptic modification of SC5b-9 conferred an inhibitory capacity to the complex, due probably to partial removal of the S protein. Experiments using purified components demonstrated that C5b-9(m) exerts a regulatory effect on the formation of the classical- and alternative-pathway C3 convertases and on the utilization of C5 by cell-bound C5 convertases. C5b-9(m) complexes were unable to inhibit the lysis of cells bearing C5b-7(m) by C8 and C9. Addition of C5b-9(m) to whole human serum abolished its bactericidal effect on the serum-sensitive Escherichia coli K-12 strain W 3110 and suppressed its hemolytic function on antibody-sensitized, autologous erythrocytes. Feedback inhibition by C5b-9(m) represents a biologically relevant mechanism through which complement may autoregulate its effector functions. Images PMID:3162317

  4. MEMBRANE ATTACK BY COMPLEMENT: THE ASSEMBLY AND BIOLOGY OF TERMINAL COMPLEMENT COMPLEXES

    PubMed Central

    Tegla, Cosmin A.; Cudrici, Cornelia; Patel, Snehal; Trippe, Richard; Rus, Violeta; Niculescu, Florin; Rus, Horea

    2013-01-01

    Complement system activation plays an important role in both innate and acquired immunity. Activation of complement and the subsequent formation of C5b-9 channels (the membrane attack complex) on cell membranes lead to cell death. However, when the number of channels assembled on the surface of nucleated cells is limited, sublytic C5b-9 can induce cell cycle progression by activating signal transduction pathways and transcription factors and inhibiting apoptosis. This induction by C5b-9 is dependent upon the activation of the phosphatidylinositol 3-kinase/Akt/FOXO1 and ERK1 pathways in a Gi protein-dependent manner. C5b-9 induces sequential activation of CDK4 and CDK2, enabling the G1/S-phase transition and cellular proliferation. In addition, it induces RGC-32, a novel gene that plays a role in cell cycle activation by interacting with Akt and the cyclin B1-CDC2 complex. C5b-9 also inhibits apoptosis by inducing the phosphorylation of Bad and blocking the activation of FLIP, caspase-8, and Bid cleavage. Thus, sublytic C5b-9 plays an important role in cell activation, proliferation, and differentiation, thereby contributing to the maintenance of cell and tissue homeostasis. PMID:21850539

  5. Herpes Simplex Virus Type 1 Glycoprotein gC Mediates Immune Evasion In Vivo

    PubMed Central

    Lubinski, John M.; Wang, Liyang; Soulika, Athena M.; Burger, Reinhard; Wetsel, Rick A.; Colten, Harvey; Cohen, Gary H.; Eisenberg, Roselyn J.; Lambris, John D.; Friedman, Harvey M.

    1998-01-01

    Many microorganisms encode proteins that interact with molecules involved in host immunity; however, few of these molecules have been proven to promote immune evasion in vivo. Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) binds complement component C3 and inhibits complement-mediated virus neutralization and lysis of infected cells in vitro. To investigate the importance of the interaction between gC and C3 in vivo, we studied the virulence of a gC-null strain in complement-intact and C3-deficient animals. Using a vaginal infection model in complement-intact guinea pigs, we showed that gC-null virus grows to lower titers and produces less severe vaginitis than wild-type or gC rescued virus, indicating a role for gC in virulence. To determine the importance of complement, studies were performed with C3-deficient guinea pigs; the results demonstrated significant increases in vaginal titers of gC-null virus, while wild-type and gC rescued viruses showed nonsignificant changes in titers. Similar findings were observed for mice where gC null virus produced significantly less disease than gC rescued virus at the skin inoculation site. Proof that C3 is important was provided by studies of C3 knockout mice, where disease scores of gC-null virus were significantly higher than in complement-intact mice. The results indicate that gC-null virus is approximately 100-fold (2 log10) less virulent that wild-type virus in animals and that gC-C3 interactions are involved in pathogenesis. PMID:9733869

  6. Zika Virus

    MedlinePlus

    ... Search The CDC Cancel Submit Search The CDC Zika Virus Note: Javascript is disabled or is not supported ... Areas with Zika Countries and territories with active Zika virus transmission... Mosquito Control Prevent mosquito bites, integrated mosquito ...

  7. Zika Virus

    MedlinePlus

    Zika is a virus that is spread by mosquitoes. A pregnant mother can pass it to her ... through blood transfusions. There have been outbreaks of Zika virus in Africa, Southeast Asia, the Pacific Islands, ...

  8. Zika Virus

    MedlinePlus

    Zika is a virus that is spread mostly by mosquitoes. A pregnant mother can pass it to ... through blood transfusions. There have been outbreaks of Zika virus in the United States, Africa, Southeast Asia, ...

  9. Chikungunya Virus

    MedlinePlus

    ... traveling to countries with chikungunya virus, use insect repellent, wear long sleeves and pants, and stay in ... Chikungunya Prevention is key! Prevent Infection. Use mosquito repellent. Chikungunya Virus Distribution Chikungunya in the U.S. What's ...

  10. Isolation of Naturally Occurring Viruses of the Murine Leukemia Virus Group in Tissue Culture

    PubMed Central

    Hartley, Janet W.; Rowe, Wallace P.; Capps, Worth I.; Huebner, Robert J.

    1969-01-01

    A tissue culture cell system for isolation and identification of members of the murine leukemia virus group (the complement fixation for murine leukemia test) was modified to permit the isolation of naturally occurring virus from leukemic and normal mice. The important factors for increasing the sensitivity of the test were the use of National Institutes of Health (NIH) strain Webster Swiss embryo cell cultures and the selection of rat-immune sera having complement-fixing antibodies to tissue culture antigens of both the Gross and FMR subgroups. In all, 163 strains of mouse leukemia virus, from 11 inbred mouse strains, have been isolated. Representative virus isolates were shown to possess the properties of the murine leukemia virus group; i.e., they were chloroform-sensitive, noncytopathic agents which replicated in mouse embryo tissue culture and produced group-reactive, complement-fixing antigen and budding C-type particles visible by electron microscopy. These viruses could serve as helpers in the rescue of Moloney sarcoma virus genome from non-producer hamster sarcoma cells, yielding pseudotypes. All of the 19 field isolates tested were neutralized by Gross passage A antiserum but not by potent antisera to the Moloney, Rauscher, and Friend strains. Virus was recovered regularly from embryos and from the plasma and spleen of adult mice of high leukemic strains. In low leukemic mouse strains, different patterns of virus detection were observed. In C3H/He mice, virus was occasionally present in embryos and was found in 40% of adult spleens. BALB/c mice were virus-negative as fetuses or weanlings, but spleens of more than half of the mice over 6 months of age yielded virus. NIH mice have never yielded virus. In reciprocal matings between AKR and BALB/c mice, virus recovery from embryos was maternally determined. The development of tissue culture isolation procedures made possible for the first time the application of classical infectious disease methods to the

  11. Hepadna viruses

    SciTech Connect

    Robinson, W.; Koike, K.; Will, H.

    1987-01-01

    This book examines the molecular biology, disease pathogenesis, epidemiology, and clinical features of hepadna and other viruses with hepatic tropism and outlines future directions and approaches for their management. The volume's six sections provide a review of the various features, mechanisms, and functions of these viruses, ranging from hepadna virus replication and regulation of gene expression to the structure and function of hepadna-virus gene products.

  12. Isolation, characterization, and genetic complementation of a cellular mutant resistant to retroviral infection

    PubMed Central

    Agarwal, Sumit; Harada, Josephine; Schreifels, Jeffrey; Lech, Patrycja; Nikolai, Bryan; Yamaguchi, Tomoyuki; Chanda, Sumit K.; Somia, Nikunj V.

    2006-01-01

    By using a genetic screen, we have isolated a mammalian cell line that is resistant to infection by retroviruses that are derived from the murine leukemia virus, human immunodeficiency virus type 1, and feline immunodeficiency virus. We demonstrate that the cell line is genetically recessive for the resistance, and hence it is lacking a factor enabling infection by retroviruses. The block to infection is early in the life cycle, at the poorly understood uncoating stage. We implicate the proteasome at uncoating by completely rescuing the resistant phenotype with the proteasomal inhibitor MG-132. We further report on the complementation cloning of a gene (MRI, modulator of retrovirus infection) that can also act to reverse the inhibition of infection in the mutant cell line. These data implicate a role for the proteasome during uncoating, and they suggest that MRI is a regulator of this activity. Finally, we reconcile our findings and other published data to suggest a model for the involvement of the proteasome in the early phase of the retroviral life cycle. PMID:17043244

  13. Complement in disease: a defence system turning offensive.

    PubMed

    Ricklin, Daniel; Reis, Edimara S; Lambris, John D

    2016-07-01

    Although the complement system is primarily perceived as a host defence system, a more versatile, yet potentially more harmful side of this innate immune pathway as an inflammatory mediator also exists. The activities that define the ability of the complement system to control microbial threats and eliminate cellular debris - such as sensing molecular danger patterns, generating immediate effectors, and extensively coordinating with other defence pathways - can quickly turn complement from a defence system to an aggressor that drives immune and inflammatory diseases. These host-offensive actions become more pronounced with age and are exacerbated by a variety of genetic factors and autoimmune responses. Complement can also be activated inappropriately, for example in response to biomaterials or transplants. A wealth of research over the past two decades has led to an increasingly finely tuned understanding of complement activation, identified tipping points between physiological and pathological behaviour, and revealed avenues for therapeutic intervention. This Review summarizes our current view of the key activating, regulatory, and effector mechanisms of the complement system, highlighting important crosstalk connections, and, with an emphasis on kidney disease and transplantation, discusses the involvement of complement in clinical conditions and promising therapeutic approaches. PMID:27211870

  14. Genomic view of the evolution of the complement system

    PubMed Central

    Kimura, Ayuko

    2006-01-01

    The recent accumulation of genomic information of many representative animals has made it possible to trace the evolution of the complement system based on the presence or absence of each complement gene in the analyzed genomes. Genome information from a few mammals, chicken, clawed frog, a few bony fish, sea squirt, fruit fly, nematoda and sea anemone indicate that bony fish and higher vertebrates share practically the same set of complement genes. This suggests that most of the gene duplications that played an essential role in establishing the mammalian complement system had occurred by the time of the teleost/mammalian divergence around 500 million years ago (MYA). Members of most complement gene families are also present in ascidians, although they do not show a one-to-one correspondence to their counterparts in higher vertebrates, indicating that the gene duplications of each gene family occurred independently in vertebrates and ascidians. The C3 and factor B genes, but probably not the other complement genes, are present in the genome of the cnidaria and some protostomes, indicating that the origin of the central part of the complement system was established more than 1,000 MYA. PMID:16896831

  15. Role of Complement Activation in Obliterative Bronchiolitis Post Lung Transplantation

    PubMed Central

    Suzuki, Hidemi; Lasbury, Mark E.; Fan, Lin; Vittal, Ragini; Mickler, Elizabeth A.; Benson, Heather L.; Shilling, Rebecca; Wu, Qiang; Weber, Daniel J.; Wagner, Sarah R.; Lasaro, Melissa; Devore, Denise; Wang, Yi; Sandusky, George E.; Lipking, Kelsey; Pandya, Pankita; Reynolds, John; Love, Robert; Wozniak, Thomas; Gu, Hongmei; Brown, Krista M.; Wilkes, David S.

    2013-01-01

    Obliterative bronchiolitis (OB) post lung transplantation involves IL-17 regulated autoimmunity to type V collagen and alloimmunity, which could be enhanced by complement activation. However, the specific role of complement activation in lung allograft pathology, IL-17 production, and OB are unknown. The current study examines the role of complement activation in OB. Complement regulatory protein (CRP) (CD55, CD46, Crry/CD46) expression was down regulated in human and murine OB; and C3a, a marker of complement activation, was up regulated locally. IL-17 differentially suppressed Crry expression in airway epithelial cells in vitro. Neutralizing IL-17 recovered CRP expression in murine lung allografts and decreased local C3a production. Exogenous C3a enhanced IL-17 production from alloantigen or autoantigen (type V collagen) reactive lymphocytes. Systemically neutralizing C5 abrogated the development of OB, reduced acute rejection severity, lowered systemic and local levels of C3a and C5a, recovered CRP expression, and diminished systemic IL-17 and IL-6 levels. These data indicated that OB induction is in part complement dependent due to IL-17 mediated down regulation of CRPs on airway epithelium. C3a and IL-17 are part of a feed forward loop that may enhance CRP down regulation, suggesting that complement blockade could be a therapeutic strategy for OB. PMID:24043901

  16. Involvement of Antilipoarabinomannan Antibodies in Classical Complement Activation in Tuberculosis

    PubMed Central

    Hetland, Geir; Wiker, Harald G.; Høgåsen, Kolbjørn; Hamasur, Beston; Svenson, Stefan B.; Harboe, Morten

    1998-01-01

    We examined alternative and classical complement activation induced by whole bacilli of Mycobacterium bovis BCG and Mycobacterium tuberculosis products. After exposure to BCG, there were higher levels of the terminal complement complex in sera from Indian tuberculosis patients than in sera from healthy controls. The addition of BCG with or without EGTA to these sera indicated that approximately 70 to 85% of the total levels of the terminal complement complex was formed by classical activation. Sera from Indian tuberculosis patients contained more antibody to lipoarabinomannan (LAM) than sera from healthy Indians. Levels of anti-LAM immunoglobulin G2 (IgG2), but not anti-LAM IgM, correlated positively with classical activation induced by BCG in the sera. By flow cytometry, deposition of C3 and terminal complement complex on bacilli incubated with normal human serum was demonstrated. The anticomplement staining was significantly reduced in the presence of EGTA and EDTA. Flow cytometry also revealed the binding of complement to BCG incubated with rabbit anti-LAM and then with factor B-depleted serum. This indicates that classical activation plays a major role in complement activation induced by mycobacteria and that anti-LAM IgG on the bacilli can mediate this response. Classical complement activation may be important for the extent of phagocytosis of M. tuberculosis by mononuclear phagocytes, which may influence the course after infection. PMID:9521145

  17. [Atypical HUS caused by complement-related abnormalities].

    PubMed

    Yoshida, Yoko; Matsumoto, Masanori

    2015-02-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare disease characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. The term aHUS was historically used to distinguish this disorder from Shiga-toxin producing Escherichia coli (STEC)-HUS. Many aHUS cases (approximately 70%) are reportedly caused by uncontrolled complement activation due to genetic mutations in the alternative pathway, including complement factor H (CFH), complement factor I (CFI), membrane cofactor protein (MCP), thrombomodulin (THBD), complement component C3 (C3), and complement factor B (CFB). Mutations in the coagulation pathway, such as diacylglycerol kinase ε (DGKE) and plasminogen, are also reported to be causes of aHUS. In this review, we have focused on aHUS due to complement dysfunction. aHUS is suspected based on plasma ADAMTS13 activity of 10% or more, and being negative for STEC-HUS, in addition to the aforementioned triad. Complement genetic studies provide a more specific diagnosis of aHUS. Plasma therapy is the first-line treatment for patients with aHUS and should be initiated as soon as the diagnosis is suspected. Recently, eculizumab, a humanized monoclonal antibody against C5, was shown to be an effective treatment for aHUS. Therefore, early diagnosis and identification of the underlying pathogenic mechanism is important for improving the outcome of aHUS. PMID:25765799

  18. Complement activation promotes muscle inflammation during modified muscle use

    NASA Technical Reports Server (NTRS)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  19. ECHO virus

    MedlinePlus

    Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that lead to gastrointestinal infection and skin rashes. ... Echovirus is one of several families of viruses that affect the ... are common. In the United States, they are most common in ...

  20. Complement Activation in Trauma Patients Alters Platelet Function.

    PubMed

    Atefi, Gelareh; Aisiku, Omozuanvbo; Shapiro, Nathan; Hauser, Carl; Dalle Lucca, Jurandir; Flaumenhaft, Robert; Tsokos, George C

    2016-09-01

    Trauma remains the main cause of death for both civilians and those in uniform. Trauma-associated coagulopathy is a complex process involving inflammation, coagulation, and platelet dysfunction. It is unknown whether activation of complement, which occurs invariably in trauma patients, is involved in the expression of trauma-associated coagulopathy. We designed a prospective study in which we enrolled 40 trauma patients and 30 healthy donors upon arrival to the emergency department of BIDMC. Platelets from healthy individuals were incubated with sera from trauma patients and their responsiveness to a thrombin receptor-activating peptide was measured using aggregometry. Complement deposition on platelets from trauma patients was measured by flow cytometry. Normal platelets displayed hypoactivity after incubation with trauma sera even though exposure to trauma sera resulted in increased agonist-induced calcium flux. Depletion of complement from sera further blocked activation of hypoactive platelets. Conversely, complement activation increased aggregation of platelets. Platelets from trauma patients were found to have significantly higher amounts of C3a and C4d on their surface compared with platelets from controls. Depletion of complement (C4d, C3a) reversed the ability of trauma sera to augment agonist-induced calcium flux in donor platelets. Our data indicate that complement enhances platelet aggregation. Despite its complement content, trauma sera render platelets hypoactive and complement depletion further blocks activation of hypoactive platelets. The defect in platelet activation induced by trauma sera is distal to receptor activation since agonist-induced Ca2+ flux is elevated in the presence of trauma sera owing to complement deposition. PMID:27355402

  1. Role of the lectin complement pathway in kidney transplantation.

    PubMed

    Farrar, Conrad A; Zhou, Wuding; Sacks, Steven H

    2016-10-01

    In the last 15 years two major advances in the role of complement in the kidney transplant have come about. The first is that ischaemia reperfusion injury and its profound effect on transplant outcome is dependent on the terminal product of complement activation, C5b-9. The second key observation relates to the function of the small biologically active fragments C3a and C5a released by complement activation in increasing antigen presentation and priming the T cell response that results in transplant rejection. In both cases local synthesis of C3 principally by the renal tubule cells plays an essential role that overshadows the role of the circulating pool of C3 generated largely by hepatocyte synthesis. More recent efforts have investigated the molecules expressed by renal tissue that can trigger complement activation. These have revealed a prominent effect of collectin-11 (CL-11), a soluble C-type lectin that is expressed in renal tissue and aligns with its major ligand L-fucose at sites of complement activation following ischaemic stress. Biochemical studies have shown that interaction between CL-11 and L-fucose results in complement activation by the lectin complement pathway, precisely targeting the innate immune response to the ischaemic tubule surface. Therapeutic approaches to reduce inflammatory and immune stimulation in ischaemic kidney have so far targeted C3 or its activation products and several are in clinical trials. The finding that lectin-fucose interaction is an important trigger of lectin pathway complement activation within the donor organ opens up further therapeutic targets where intervention could protect the donor kidney against complement. PMID:27286717

  2. Bioplastique as a complement in conventional plastic surgery.

    PubMed

    Nácul, A M; Nácul, A P; Greca de Born, A

    1998-01-01

    This research presents reports of cases where a biocompatible and alloplastic biomaterial-Bioplastique-was used, associated with conventional plastic surgery or as a complement to it, with the aim of achieving a better final aesthetic result. Four cases are presented where Bioplastique was used in association with rhytidoplasty, rhinoplasty, and other surgical techniques. This material has shown itself to be appropriate to complement surgery; achieving a final result which would not be possible without any resort to a complement or any other hard procedure by the surgeon and is not more traumatic for the patient. PMID:9852179

  3. Murine cellular cytotoxicity to syngeneic and xenogeneic herpes simplex virus-infected cells.

    PubMed Central

    Kohl, S; Drath, D B; Loo, L S

    1982-01-01

    Cellular cytotoxicity of C57BL/6 adult mice peritoneal cells to xenogeneic (Chang liver) and syngeneic (BL/6-WT3) herpes simplex virus (HSV)-infected cells was analyzed in a 6-h 51Cr release assay. There was no difference in antibody-dependent cellular cytotoxicity to either target. There was no natural killer cytotoxicity to targets with cells from uninfected mice except at very high effector cell ratios. HSV-infected (2 X 10(4) PFU intraperitoneally 1 day previously) mice mediated significantly higher antibody-dependent cellular cytotoxicity and required less antibody (10(-5) versus 10(-2) dilution), fewer cells, and less time to kill than cells from uninfected mice. HSV-infected mice mediated natural killer cytotoxicity but preferentially killed syngeneic HSV-infected cells. Stimulation of cytotoxicity was not virus specific since influenza-infected mice mediated similar levels of cytotoxicity to HSV-infected targets. There was no difference in morphology (95% macrophage) or in the percentage of FcR-positive cells, but infected mice had more peritoneal cells and generated higher levels of superoxide in response to opsonized zymosan or phorbolmyristate acetate. These data demonstrate nonspecific virus-stimulated metabolic and effector cell function which may enhance clearance of virus in an infected host. PMID:6295943

  4. Murine cellular cytotoxicity to syngeneic and xenogeneic herpes simplex virus-infected cells.

    PubMed

    Kohl, S; Drath, D B; Loo, L S

    1982-12-01

    Cellular cytotoxicity of C57BL/6 adult mice peritoneal cells to xenogeneic (Chang liver) and syngeneic (BL/6-WT3) herpes simplex virus (HSV)-infected cells was analyzed in a 6-h 51Cr release assay. There was no difference in antibody-dependent cellular cytotoxicity to either target. There was no natural killer cytotoxicity to targets with cells from uninfected mice except at very high effector cell ratios. HSV-infected (2 X 10(4) PFU intraperitoneally 1 day previously) mice mediated significantly higher antibody-dependent cellular cytotoxicity and required less antibody (10(-5) versus 10(-2) dilution), fewer cells, and less time to kill than cells from uninfected mice. HSV-infected mice mediated natural killer cytotoxicity but preferentially killed syngeneic HSV-infected cells. Stimulation of cytotoxicity was not virus specific since influenza-infected mice mediated similar levels of cytotoxicity to HSV-infected targets. There was no difference in morphology (95% macrophage) or in the percentage of FcR-positive cells, but infected mice had more peritoneal cells and generated higher levels of superoxide in response to opsonized zymosan or phorbolmyristate acetate. These data demonstrate nonspecific virus-stimulated metabolic and effector cell function which may enhance clearance of virus in an infected host. PMID:6295943

  5. Antibody-dependent enhancement of dengue virus infection is inhibited by SA-17, a doxorubicin derivative.

    PubMed

    Ayala-Nuñez, Nilda V; Jarupathirun, Patsaporn; Kaptein, Suzanne J F; Neyts, Johan; Smit, Jolanda M

    2013-10-01

    Antibody-dependent enhancement (ADE) is thought to play a critical role in the exacerbation of dengue virus (DENV)-induced disease during a heterologous re-infection. Despite ADE's clinical impact, only a few antiviral compounds have been assessed for their anti-ADE activity. We reported earlier that SA-17, a doxorubicin derivative, efficiently inhibits the in vitro infection of DENV and yellow fever virus. Here we explored SA-17's mechanism of inhibition and investigated if the compound is active against ADE of DENV infection. Since enhanced infectivity stimulated by antibodies has been observed with standard and immature DENV, both types of virions were included in the study. We observed that SA-17 (i) inhibits DENV infection by preventing binding/entry to the cell and (ii) interferes with antibody-mediated infection of both standard and immature DENV2. SA-17 markedly reduced the infectivity of DENV2 in ADE conditions, with IC50s ranging from 0.26 to 2.89μM. The compound exerted its activity when added before, during, and after antibody-opsonization of standard and immature virus. Thus, molecules with the characteristics of SA-17 may be attractive antiviral agents since they can be used both to block DENV2 entry during primary and secondary infection and to inhibit ADE of standard and immature virus. PMID:23994499

  6. Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics.

    PubMed

    Pitek, Andrzej S; Jameson, Slater A; Veliz, Frank A; Shukla, Sourabh; Steinmetz, Nicole F

    2016-05-01

    Plant virus-based nanoparticles (VNPs) are a novel class of nanocarriers with unique potential for biomedical applications. VNPs have many advantageous properties such as ease of manufacture and high degree of quality control. Their biocompatibility and biodegradability make them an attractive alternative to synthetic nanoparticles (NPs). Nevertheless, as with synthetic NPs, to be successful in drug delivery or imaging, the carriers need to overcome several biological barriers including innate immune recognition. Plasma opsonization can tag (V)NPs for clearance by the mononuclear phagocyte system (MPS), resulting in shortened circulation half lives and non-specific sequestration in non-targeted organs. PEG coatings have been traditionally used to 'shield' nanocarriers from immune surveillance. However, due to broad use of PEG in cosmetics and other industries, the prevalence of anti-PEG antibodies has been reported, which may limit the utility of PEGylation in nanomedicine. Alternative strategies are needed to tailor the in vivo properties of (plant virus-based) nanocarriers. We demonstrate the use of serum albumin (SA) as a viable alternative. SA conjugation to tobacco mosaic virus (TMV)-based nanocarriers results in a 'camouflage' effect more effective than PEG coatings. SA-'camouflaged' TMV particles exhibit decreased antibody recognition, as well as enhanced pharmacokinetics in a Balb/C mouse model. Therefore, SA-coatings may provide an alternative and improved coating technique to yield (plant virus-based) NPs with improved in vivo properties enhancing drug delivery and molecular imaging. PMID:26950168

  7. Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement Activation after Intravascular Injection in Rats

    PubMed Central

    Sharp, Julia A.; Hair, Pamela S.; Pallera, Haree K.; Kumar, Parvathi S.; Mauriello, Clifford T.; Nyalwidhe, Julius O.; Phelps, Cody A.; Park, Dalnam; Thielens, Nicole M.; Pascal, Stephen M.; Chen, Waldon; Duffy, Diane M.; Lattanzio, Frank A.; Cunnion, Kenji M.; Krishna, Neel K.

    2015-01-01

    The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1). In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases. PMID:26196285

  8. Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement Activation after Intravascular Injection in Rats.

    PubMed

    Sharp, Julia A; Hair, Pamela S; Pallera, Haree K; Kumar, Parvathi S; Mauriello, Clifford T; Nyalwidhe, Julius O; Phelps, Cody A; Park, Dalnam; Thielens, Nicole M; Pascal, Stephen M; Chen, Waldon; Duffy, Diane M; Lattanzio, Frank A; Cunnion, Kenji M; Krishna, Neel K

    2015-01-01

    The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1). In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases. PMID:26196285

  9. Complement involvement in periodontitis: molecular mechanisms and rational therapeutic approaches

    PubMed Central

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D.

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis. PMID:26306443

  10. Complementing Gaia from the ground. The DANCe survey

    NASA Astrophysics Data System (ADS)

    Bouy, H.; Bertin, E.; Sarro, L. M.; Moraux, E.; Barrado, D.; Cuillandre, J. C.; Bouvier, J.; Berihuete, A.; Wright, N.; Beletsky, Y.; Brandner, W.; Olivares, J.

    The DANCe survey aims at complementing Gaia by providing proper motion measurements with a comparable accuracy 4 magnitudes fainter. These measurements are used to identify sub-stellar members of young nearby clusters and associations down the planetary mass regime.

  11. Complement - a key system for immune surveillance and homeostasis

    PubMed Central

    Ricklin, Daniel; Hajishengallis, George; Yang, Kun; Lambris, John D.

    2010-01-01

    Nearly a century after the significance of the human complement system was recognized we have come to realize that its versatile functions extend far beyond the elimination of microbes. Indeed, complement acts as a rapid and efficient immune surveillance system that has distinct effects on healthy and altered host cells and foreign intruders. By eliminating cellular debris and infectious microbes, orchestrating immune responses, and sending `danger' signals, complement contributes substantially to homeostasis, but it may also take action against healthy cells if not properly controlled. This review describes our updated view of the function, structure, and dynamics of the complement network, highlights its interconnection with immunity at large and with other endogenous pathways, and illustrates its dual role in homeostasis and disease. PMID:20720586

  12. Complement-coagulation crosstalk on cellular and artificial surfaces.

    PubMed

    Wiegner, Rebecca; Chakraborty, Shinjini; Huber-Lang, Markus

    2016-10-01

    The humoral serine proteases of the complement system and the coagulation system play central roles during the events of an inflammatory response. While the complement system confers immunoprotective and -regulatory functions, the coagulation cascade is responsible to ensure hemostatic maintenance. Although these two systems individually unfold during inflammation, several studies have reported on the "crosstalk" between components of the complement and the coagulation system in the fluid phase. However, both cascades are usually initiated on or in close proximity to foreign or activated surfaces, and there is increasing evidence for interacting complement and coagulation proteins on various superficial areas on endothelium, circulating entities like platelets, leukocytes, microparticles and pathogens, and even on artificial surfaces. This review aims at summarizing these interactions to complete the picture. PMID:27371975

  13. Luciferase fragment complementation imaging in preclinical cancer studies

    PubMed Central

    Lake, Madryn C.; Aboagye, Eric O.

    2014-01-01

    The luciferase fragment complementation assay (LFCA) enables molecular events to be non-invasively imaged in live cells in vitro and in vivo in a comparatively cheap and safe manner. It is a development of previous enzyme complementation assays in which reporter genes are split into two, individually enzymatically inactive, fragments that are able to complement one another upon interaction. This complementation can be used to externally visualize cellular activities. In recent years, the number of studies which have used LFCAs to probe questions relevant to cancer have increased, and this review summarizes the most significant and interesting of these. In particular, it focuses on work conducted on the epidermal growth factor, nuclear and chemokine receptor families, and intracellular signaling pathways, including IP3, cAMP, Akt, cMyc, NRF2 and Rho GTPases. LFCAs which have been developed to image DNA methylation and detect RNA transcripts are also discussed. PMID:25594026

  14. Complementing T-cell Function: An Inhibitory Role of the Complement System in T-cell-Mediated Antitumor Immunity.

    PubMed

    Peng, Weiyi; McKenzie, Jodi A; Hwu, Patrick

    2016-09-01

    New data from Wang and colleagues show that complement C3 suppresses the function of CD8(+) tumor-infiltrating T cells by inhibiting IL10 production, and targeting the complement receptors C3aR and C5aR enhances the antitumor activity of immune checkpoint blockade. Their results not only define a new role of complement receptors as T-cell coinhibitory receptors, but also are useful in the development of novel strategies to improve the effectiveness of cancer immunotherapy. Cancer Discov; 6(9); 953-5. ©2016 AACR.See related article by Wang et al., p. 1022. PMID:27587467

  15. Protective responses to sublytic complement in the retinal pigment epithelium.

    PubMed

    Tan, Li Xuan; Toops, Kimberly A; Lakkaraju, Aparna

    2016-08-01

    The retinal pigment epithelium (RPE) is a key site of injury in inherited and age-related macular degenerations. Abnormal activation of the complement system is a feature of these blinding diseases, yet how the RPE combats complement attack is poorly understood. The complement cascade terminates in the cell-surface assembly of membrane attack complexes (MACs), which promote inflammation by causing aberrant signal transduction. Here, we investigated mechanisms crucial for limiting MAC assembly and preserving cellular integrity in the RPE and asked how these are compromised in models of macular degeneration. Using polarized primary RPE and the pigmented Abca4(-/-) Stargardt disease mouse model, we provide evidence for two protective responses occurring within minutes of complement attack, which are essential for maintaining mitochondrial health in the RPE. First, accelerated recycling of the membrane-bound complement regulator CD59 to the RPE cell surface inhibits MAC formation. Second, fusion of lysosomes with the RPE plasma membrane immediately after complement attack limits sustained elevations in intracellular calcium and prevents mitochondrial injury. Cholesterol accumulation in the RPE, induced by vitamin A dimers or oxidized LDL, inhibits these defense mechanisms by activating acid sphingomyelinase (ASMase), which increases tubulin acetylation and derails organelle traffic. Defective CD59 recycling and lysosome exocytosis after complement attack lead to mitochondrial fragmentation and oxidative stress in the RPE. Drugs that stimulate cholesterol efflux or inhibit ASMase restore both these critical safeguards in the RPE and avert complement-induced mitochondrial injury in vitro and in Abca4(-/-) mice, indicating that they could be effective therapeutic approaches for macular degenerations. PMID:27432952

  16. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Complement components immunological test system. 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids,...

  17. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Complement components immunological test system. 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids,...

  18. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Complement components immunological test system. 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids,...

  19. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Complement components immunological test system. 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids,...

  20. Von Willebrand factor regulates complement on endothelial cells.

    PubMed

    Noone, Damien G; Riedl, Magdalena; Pluthero, Fred G; Bowman, Mackenzie L; Liszewski, M Kathryn; Lu, Lily; Quan, Yi; Balgobin, Steve; Schneppenheim, Reinhard; Schneppenheim, Sonja; Budde, Ulrich; James, Paula; Atkinson, John P; Palaniyar, Nades; Kahr, Walter H A; Licht, Christoph

    2016-07-01

    Atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura have traditionally been considered separate entities. Defects in the regulation of the complement alternative pathway occur in atypical hemolytic uremic syndrome, and defects in the cleavage of von Willebrand factor (VWF)-multimers arise in thrombotic thrombocytopenic purpura. However, recent studies suggest that both entities are related as defects in the disease-causing pathways overlap or show functional interactions. Here we investigate the possible functional link of VWF-multimers and the complement system on endothelial cells. Blood outgrowth endothelial cells (BOECs) were obtained from 3 healthy individuals and 2 patients with Type 3 von Willebrand disease lacking VWF. Cells were exposed to a standardized complement challenge via the combination of classical and alternative pathway activation and 50% normal human serum resulting in complement fixation to the endothelial surface. Under these conditions we found the expected release of VWF-multimers causing platelet adhesion onto BOECs from healthy individuals. Importantly, in BOECs derived from patients with von Willebrand disease complement C3c deposition and cytotoxicity were more pronounced than on BOECs derived from normal individuals. This is of particular importance as primary glomerular endothelial cells display a heterogeneous expression pattern of VWF with overall reduced VWF abundance. Thus, our results support a mechanistic link between VWF-multimers and the complement system. However, our findings also identify VWF as a new complement regulator on vascular endothelial cells and suggest that VWF has a protective effect on endothelial cells and complement-mediated injury. PMID:27236750

  1. Complement and cytokine response in acute Thrombotic Thrombocytopenic Purpura

    PubMed Central

    Westwood, John-Paul; Langley, Kathryn; Heelas, Edward; Machin, Samuel J; Scully, Marie

    2014-01-01

    Complement dysregulation is key in the pathogenesis of atypical Haemolytic Uraemic Syndrome (aHUS), but no clear role for complement has been identified in Thrombotic Thrombocytopenic Purpura (TTP). We aimed to assess complement activation and cytokine response in acute antibody-mediated TTP. Complement C3a and C5a and cytokines (interleukin (IL)-2, IL-4, IL-6, IL-10, tumour necrosis factor, interferon-γ and IL-17a) were measured in 20 acute TTP patients and 49 remission cases. Anti-ADAMTS13 immunoglobulin G (IgG) subtypes were measured in acute patients in order to study the association with complement activation. In acute TTP, median C3a and C5a were significantly elevated compared to remission, C3a 63·9 ng/ml vs. 38·2 ng/ml (P < 0·001) and C5a 16·4 ng/ml vs. 9·29 ng/ml (P < 0·001), respectively. Median IL-6 and IL-10 levels were significantly higher in the acute vs. remission groups, IL-6: 8 pg/ml vs. 2 pg/ml (P = 0·003), IL-10: 6 pg/ml vs. 2 pg/ml (P < 0·001). C3a levels correlated with both anti-ADAMTS13 IgG (rs = 0·604, P = 0·017) and IL-10 (rs = 0·692, P = 0·006). No anti-ADAMTS13 IgG subtype was associated with higher complement activation, but patients with the highest C3a levels had 3 or 4 IgG subtypes present. These results suggest complement anaphylatoxin levels are higher in acute TTP cases than in remission, and the complement response seen acutely may relate to anti-ADAMTS13 IgG antibody and IL-10 levels. PMID:24372446

  2. Alteration of human erythrocyte membrane properties by complement fixation.

    PubMed Central

    Durocher, J R; Gockerman, J P; Conrad, M E

    1975-01-01

    Erythrocyte survival studies of complement-coated radiolabeled erythrocytes have shown rapid removal of these cells from the peripheral blood with a return of these cells into the circulation within a few hours. We studied complement-coated human erythrocytes and measured surface charge and deformability, two parameters believed to be important in erythrocyte survival. Erythrocytes were coated with complement by two in vitro techniques: the addition of (a) low ionic strength sucrose, and (b) IgM cold agglutinins. Erythrocytes obtained from three patients with cold agglutinin disease were used as a source of in vivo complement-coated cells. No difference was found in surface charge as measured by electrophoretic mobility between erythrocytes from normal subjects and complement-coated erythrocytes from any of the three sources. When deformability was measured by filtration through 3-mum polycarbonate sieves, marked decreases in deformability were found in complement-coated erythrocytes. The filtration returned toward control levels by incubating the complement-coated erythrocytes in serum for 1 h and correlated with decreases in immune adherence. Using screen filtration pressure as a measure of deformability, a positive correlation between number of C3 molecules per erythrocyte and decreased deformability was found. C3b appeared responsible for the decreased deformability of the erythrocytes, since conversion of C3b to C3d resulted in a return of deformability toward normal. The data suggested that the sequestration of complement-coated human erythrocytes in the microvasculature can be explained in part by decreased deformability and changes in immune adherence. PMID:1120777

  3. Legionella pneumophila lipopolysaccharide activates the classical complement pathway.

    PubMed Central

    Mintz, C S; Schultz, D R; Arnold, P I; Johnson, W

    1992-01-01

    Legionella pneumophila is a gram-negative bacterium capable of entering and growing in alveolar macrophages and monocytes. Complement and complement receptors are important in the uptake of L. pneumophila by human mononuclear phagocytes. The surface molecules of L. pneumophila that activate the complement system are unknown. To identify these factors, we investigated the effects of L. pneumophila lipopolysaccharide (LPS) on the classical and alternative complement pathways of normal human serum by functional hemolytic assays. Although incubation of LPS in normal human serum at 37 degrees C resulted in the activation of both pathways, complement activation proceeded primarily through the classical pathway. Activation of the classical pathway by LPS was dependent on natural antibodies of the immunoglobulin M class that were present in various quantities in sera from different normal individuals but were absent in an immunoglobulin-deficient serum obtained from an agammaglobulinemic patient. Additional studies using sheep erythrocytes coated with LPS suggested that the antibodies recognized antigenic sites in the carbohydrate portion of LPS. The ability of LPS to interact with the complement system suggests a role for LPS in the uptake of L. pneumophila by mononuclear phagocytes. PMID:1612744

  4. Complement involvement in kidney diseases: From physiopathology to therapeutical targeting

    PubMed Central

    Salvadori, Maurizio; Rosso, Giuseppina; Bertoni, Elisabetta

    2015-01-01

    Complement cascade is involved in several renal diseases and in renal transplantation. The different components of the complement cascade might represent an optimal target for innovative therapies. In the first section of the paper the authors review the physiopathology of complement involvement in renal diseases and transplantation. In some cases this led to a reclassification of renal diseases moving from a histopathological to a physiopathological classification. The principal issues afforded are: renal diseases with complement over activation, renal diseases with complement dysregulation, progression of renal diseases and renal transplantation. In the second section the authors discuss the several complement components that could represent a therapeutic target. Even if only the anti C5 monoclonal antibody is on the market, many targets as C1, C3, C5a and C5aR are the object of national or international trials. In addition, many molecules proved to be effective in vitro or in preclinical trials and are waiting to move to human trials in the future. PMID:25949931

  5. Antibody-Dependent Enhancement of Dengue Virus Infection in Primary Human Macrophages; Balancing Higher Fusion against Antiviral Responses

    PubMed Central

    Flipse, Jacky; Diosa-Toro, Mayra A.; Hoornweg, Tabitha E.; van de Pol, Denise P. I.; Urcuqui-Inchima, Silvio; Smit, Jolanda M.

    2016-01-01

    The dogma is that the human immune system protects us against pathogens. Yet, several viruses, like dengue virus, antagonize the hosts’ antibodies to enhance their viral load and disease severity; a phenomenon called antibody-dependent enhancement of infection. This study offers novel insights in the molecular mechanism of antibody-mediated enhancement (ADE) of dengue virus infection in primary human macrophages. No differences were observed in the number of bound and internalized DENV particles following infection in the absence and presence of enhancing concentrations of antibodies. Yet, we did find an increase in membrane fusion activity during ADE of DENV infection. The higher fusion activity is coupled to a low antiviral response early in infection and subsequently a higher infection efficiency. Apparently, subtle enhancements early in the viral life cycle cascades into strong effects on infection, virus production and immune response. Importantly, and in contrast to other studies, the antibody-opsonized virus particles do not trigger immune suppression and remain sensitive to interferon. Additionally, this study gives insight in how human macrophages interact and respond to viral infections and the tight regulation thereof under various conditions of infection. PMID:27380892

  6. Antibody-Dependent Enhancement of Dengue Virus Infection in Primary Human Macrophages; Balancing Higher Fusion against Antiviral Responses.

    PubMed

    Flipse, Jacky; Diosa-Toro, Mayra A; Hoornweg, Tabitha E; van de Pol, Denise P I; Urcuqui-Inchima, Silvio; Smit, Jolanda M

    2016-01-01

    The dogma is that the human immune system protects us against pathogens. Yet, several viruses, like dengue virus, antagonize the hosts' antibodies to enhance their viral load and disease severity; a phenomenon called antibody-dependent enhancement of infection. This study offers novel insights in the molecular mechanism of antibody-mediated enhancement (ADE) of dengue virus infection in primary human macrophages. No differences were observed in the number of bound and internalized DENV particles following infection in the absence and presence of enhancing concentrations of antibodies. Yet, we did find an increase in membrane fusion activity during ADE of DENV infection. The higher fusion activity is coupled to a low antiviral response early in infection and subsequently a higher infection efficiency. Apparently, subtle enhancements early in the viral life cycle cascades into strong effects on infection, virus production and immune response. Importantly, and in contrast to other studies, the antibody-opsonized virus particles do not trigger immune suppression and remain sensitive to interferon. Additionally, this study gives insight in how human macrophages interact and respond to viral infections and the tight regulation thereof under various conditions of infection. PMID:27380892

  7. Maternal complement C1q and increased odds for psychosis in adult offspring

    PubMed Central

    Severance, Emily G.; Gressitt, Kristin L.; Buka, Stephen L.; Cannon, Tyrone D.; Yolken, Robert H.

    2014-01-01

    The presence of maternal antibodies to food and infectious antigens may confer an increased risk of developing schizophrenia and psychosis in adult offspring. Complement factor C1q is an immune molecule with multiple functions including clearance of antigen-antibody complexes from circulation and mediation of synaptic pruning during fetal brain development. To determine if maternal C1q was associated with offspring schizophrenia and psychosis, we evaluated 55 matched case-control maternal serum pairs from the National Collaborative Perinatal Project. Sample pairs were composed of mothers whose offspring developed psychoses as adults and those whose offspring were free from psychiatric disease. Matching criteria for offspring included birth date, delivery hospital, race and gender, with further matching based on mother’s age. IgG markers of C1q, bovine milk casein, egg ovalbumin and wheat gluten were measured with enzyme-linked immunosorbent assays. C1q levels were compared to food antigen IgG and to previously generated data for C-reactive protein, adenovirus, herpes simplex viruses, influenza viruses, measles virus and Toxoplasma gondii. C1q was significantly elevated in case mothers with odds ratios of 2.66–6.31 (conditional logistic regressions, p≤0.008–0.05). In case mothers only, C1q was significantly correlated with antibodies to both food and infectious antigens: gluten (R2=0.26, p≤0.004), herpes simplex virus type 2 (R2=0.21, p≤0.02), adenovirus (R2=0.25, p≤0.006). In conclusion, exposure to maternal C1q activity during pregnancy may be a risk factor for the development of schizophrenia and psychosis in offspring. Prenatal measurement of maternal C1q may be an important and convergent screening tool to identify potentially deleterious immune activation from multiple sources. PMID:25195065

  8. CR2 is the primary acceptor site for C3 during alternative pathway activation of complement on human peripheral B lymphocytes.

    PubMed

    Marquart, H V; Svehag, S E; Leslie, R G

    1994-07-01

    Human cells infected with certain viruses acquire the ability to activate the alternative pathway (AP) of complement. Complement receptor 2 on EBV-infected lymphoblastoid cell lines has been reported to act as the covalent binding site for C3b during AP activation. Using flow cytometry, we investigated the ability of normal human peripheral blood leukocytes to activate the AP in homologous serum. Deposition of C3 fragments was determined as a measurement of complement activation on each of the subpopulations of the blood cells. Incubating human peripheral blood leukocytes with homologous or autologous serum resulted in C3 deposition on B cells and, to a lesser extent, on monocytes and polymorphonuclear leukocytes. Complement activation in the presence of Mg2+ ions and EGTA revealed major involvement of the AP in the case of B cells, and to a lesser extent for other leukocyte populations examined. Preincubation of the leukocytes with polyclonal anti-complement receptor 2 Ab markedly decreased the C3 fragment deposition, as a result of in vitro AP activation, on B cells, indicating that on normal human B cells this receptor may be involved in AP activation. Freshly isolated, normal human B cells also bear low but significant amounts of C3d,g fragments on their membranes, indicating that this AP activation also occurs in vivo. AP activation was partially decreased in the presence of autologous erythrocytes (RBC) suggesting that complement regulatory proteins on RBC play a role in limiting the AP activation in vivo. PMID:7515925

  9. Expanding the Repertoire of Modified Vaccinia Ankara-Based Vaccine Vectors via Genetic Complementation Strategies

    PubMed Central

    Garber, David A.; O'Mara, Leigh A.; Zhao, Jun; Gangadhara, Sailaja; An, InChul; Feinberg, Mark B.

    2009-01-01

    Background Modified Vaccinia virus Ankara (MVA) is a safe, highly attenuated orthopoxvirus that is being developed as a recombinant vaccine vector for immunization against a number of infectious diseases and cancers. However, the expression by MVA vectors of large numbers of poxvirus antigens, which display immunodominance over vectored antigens-of-interest for the priming of T cell responses, and the induction of vector-neutralizing antibodies, which curtail the efficacy of subsequent booster immunizations, remain as significant impediments to the overall utility of such vaccines. Thus, genetic approaches that enable the derivation of MVA vectors that are antigenically less complex may allow for rational improvement of MVA-based vaccines. Principal Findings We have developed a genetic complementation system that enables the deletion of essential viral genes from the MVA genome, thereby allowing us to generate MVA vaccine vectors that are antigenically less complex. Using this system, we deleted the essential uracil-DNA-glycosylase (udg) gene from MVA and propagated this otherwise replication-defective variant on a complementing cell line that constitutively expresses the poxvirus udg gene and that was derived from a newly identified continuous cell line that is permissive for growth of wild type MVA. The resulting virus, MVAΔudg, does not replicate its DNA genome or express late viral gene products during infection of non-complementing cells in culture. As proof-of-concept for immunological ‘focusing’, we demonstrate that immunization of mice with MVAΔudg elicits CD8+ T cell responses that are directed against a restricted repertoire of vector antigens, as compared to immunization with parental MVA. Immunization of rhesus macaques with MVAΔudg-gag, a udg− recombinant virus that expresses an HIV subtype-B consensus gag transgene, elicited significantly higher frequencies of Gag-specific CD8 and CD4 T cells following both primary (2–4-fold) and booster (2

  10. Structural Basis for Antagonism by Suramin of Heparin Binding to Vaccinia Complement Protein

    SciTech Connect

    Ganesh, Vannakambadi K.; Muthuvel, Suresh Kumar; Smith, Scott A.; Kotwal, Girish J.; Murthy, Krishna H.M.

    2010-07-19

    Suramin is a competitive inhibitor of heparin binding to many proteins, including viral envelope proteins, protein tyrosine phosphatases, and fibroblast growth factors (FGFs). It has been clinically evaluated as a potential therapeutic in treatment of cancers caused by unregulated angiogenesis, triggered by FGFs. Although it has shown clinical promise in treatment of several cancers, suramin has many undesirable side effects. There is currently no experimental structure that reveals the molecular interactions responsible for suramin inhibition of heparin binding, which could be of potential use in structure-assisted design of improved analogues of suramin. We report the structure of suramin, in complex with the heparin-binding site of vaccinia virus complement control protein (VCP), which interacts with heparin in a geometrically similar manner to many FGFs. The larger than anticipated flexibility of suramin manifested in this structure, and other details of VCP-suramin interactions, might provide useful structural information for interpreting interactions of suramin with many proteins.

  11. Complement Activation-Related Pseudoallergy Caused by Nanomedicines and its Testing In Vitro and In Vivo

    NASA Astrophysics Data System (ADS)

    Szebeni, Janos; Urbanics, Rudolf

    Nanotechnology has has been giving birth to a variety of therapeutic and diagnostic products, referred to as nanomedicines (NM), whose successes are based on improved efficacy and/or diminished toxicity. However, these benefits are not without a price. The introduction into the clinics of many NM revealed the presence of an acute immune response to the particles, manifested in hypersensitivity reactions (HSR). The phenomenon is often due to the structural similarity of reactogenic NM to viruses, which may trigger the nonspecific arm of humoral immunity, the complement (C) system to an immediate eliminatory response. The clinical manifestations of this reaction, called C activation-related pseudoallergy (CARPA), include cardiopulmonary distress, which is a safety risk for NM, particularly in the case of cardiac patients with atopic constitution. Thus, understanding CARPA and ways of its prediction and prevention represents an important challenge in NM R&D.

  12. Bisretinoid-mediated Complement Activation on Retinal Pigment Epithelial Cells Is Dependent on Complement Factor H Haplotype*

    PubMed Central

    Radu, Roxana A.; Hu, Jane; Jiang, Zhichun; Bok, Dean

    2014-01-01

    Age-related macular degeneration (AMD) is a common central blinding disease of the elderly. Homozygosity for a sequence variant causing Y402H and I62V substitutions in the gene for complement factor H (CFH) is strongly associated with risk of AMD. CFH, secreted by many cell types, including those of the retinal pigment epithelium (RPE), is a regulatory protein that inhibits complement activation. Recessive Stargardt maculopathy is another central blinding disease caused by mutations in the gene for ABCA4, a transporter in photoreceptor outer segments (OS) that clears retinaldehyde and prevents formation of toxic bisretinoids. Photoreceptors daily shed their distal OS, which are phagocytosed by the RPE cells. Here, we investigated the relationship between the CFH haplotype of human RPE (hRPE) cells, exposure to OS containing bisretinoids, and complement activation. We show that hRPE cells of the AMD-predisposing CFH haplotype (HH402/VV62) are attacked by complement following exposure to bisretinoid-containing Abca4−/− OS. This activation was dependent on factor B, indicating involvement of the alternative pathway. In contrast, hRPE cells of the AMD-protective CFH haplotype (YY402/II62) showed no complement activation following exposure to either Abca4−/− or wild-type OS. The AMD-protective YY402/II62 hRPE cells were more resistant to the membrane attack complex, whereas HH402/VV62 hRPE cells showed significant membrane attack complex deposition following ingestion of Abca4−/− OS. These results suggest that bisretinoid accumulation in hRPE cells stimulates activation and dysregulation of complement. Cells with an intact complement negative regulatory system are protected from complement attack, whereas cells with reduced CFH synthesis because of the Y402H and I62V substitutions are vulnerable to disease. PMID:24550392

  13. Complement Activation in Patients with Focal Segmental Glomerulosclerosis

    PubMed Central

    Thurman, Joshua M.; Wong, Maria; Renner, Brandon; Frazer-Abel, Ashley; Giclas, Patricia C.; Joy, Melanie S.; Jalal, Diana; Radeva, Milena K.; Gassman, Jennifer; Gipson, Debbie S.; Kaskel, Frederick; Friedman, Aaron; Trachtman, Howard

    2015-01-01

    Background Recent pre-clinical studies have shown that complement activation contributes to glomerular and tubular injury in experimental FSGS. Although complement proteins are detected in the glomeruli of some patients with FSGS, it is not known whether this is due to complement activation or whether the proteins are simply trapped in sclerotic glomeruli. We measured complement activation fragments in the plasma and urine of patients with primary FSGS to determine whether complement activation is part of the disease process. Study Design Plasma and urine samples from patients with biopsy-proven FSGS who participated in the FSGS Clinical Trial were analyzed. Setting and Participants We identified 19 patients for whom samples were available from weeks 0, 26, 52 and 78. The results for these FSGS patients were compared to results in samples from 10 healthy controls, 10 patients with chronic kidney disease (CKD), 20 patients with vasculitis, and 23 patients with lupus nephritis. Outcomes Longitudinal control of proteinuria and estimated glomerular filtration rate (eGFR). Measurements Levels of the complement fragments Ba, Bb, C4a, and sC5b-9 in plasma and urine. Results Plasma and urine Ba, C4a, sC5b-9 were significantly higher in FSGS patients at the time of diagnosis than in the control groups. Plasma Ba levels inversely correlated with the eGFR at the time of diagnosis and at the end of the study. Plasma and urine Ba levels at the end of the study positively correlated with the level of proteinuria, the primary outcome of the study. Limitations Limited number of patients with samples from all time-points. Conclusions The complement system is activated in patients with primary FSGS, and elevated levels of plasma Ba correlate with more severe disease. Measurement of complement fragments may identify a subset of patients in whom the complement system is activated. Further investigations are needed to confirm our findings and to determine the prognostic significance of

  14. Complementation for an essential ancillary nonstructural protein function across parvovirus genera

    PubMed Central

    Mihaylov, Ivailo S.; Cotmore, Susan F.; Tattersall, Peter

    2014-01-01

    Parvoviruses encode a small number of ancillary proteins that differ substantially between genera. Within the genus Protoparvovirus, minute virus of mice (MVM) encodes three isoforms of its ancillary protein NS2, while human bocavirus 1 (HBoV1), in the genus Bocaparvovirus, encodes an NP1 protein that is unrelated in primary sequence to MVM NS2. To search for functional overlap between NS2 and NP1, we generated murine A9 cell populations that inducibly express HBoV1 NP1. These were used to test whether NP1 expression could complement specific defects resulting from depletion of MVM NS2 isoforms. NP1 induction had little impact on cell viability or cell cycle progression in uninfected cells, and was unable to complement late defects in MVM virion production associated with low NS2 levels. However, NP1 did relocate to MVM replication centers, and supports both the normal expansion of these foci and overcomes the early paralysis of DNA replication in NS2-null infections. PMID:25194919

  15. Effect of beta-propiolactone treatment on the complement activation mediated by equine antisera.

    PubMed

    Guidolin, R; Morais, J F; Stephano, M A; Marcelino, J R; Yamaguchi, I K; Higashi, H G

    1997-01-01

    Reduction of complement activation through an alteration of the Fc fragment of immunoglobulins by beta-propiolactone treatment was carried out in equine antisera raised against rabies virus, Bothrops venoms and diphtherial toxin. Results were evaluated by means of an anaphylactic test performed on guinea-pigs, and compared to the ones obtained with the same sera purified by saline precipitation (ammonium sulfate), followed or not by enzymatic digestion with pepsin. Protein purity levels for antibothropic serum were 184.5 mg/g and 488.5 mg/g in beta-propiolactone treated and pepsin-digested sera, respectively. The recovery of specific activity was 100% and 62.5% when using antibothropic serum treated by beta-propiolactone and pepsin digestion, respectively. The antidiphtherial and anti-rabies sera treated with beta-propiolactone and pepsin presented protein purity levels of 5,698 and 7,179 Lf/g, 16,233 and 6,784 IU/g, respectively. The recovery of specific activity for these antisera were 88.8%, 77.7%, 100% and 36.5%, respectively. beta-propiolactone treatment induced a reduction in complement activation, tested "in vivo", without significant loss of biological activity. This treatment can be used in the preparation of heterologous immunoglobulins for human use. PMID:9394526

  16. Optimization of the virus concentration method using polyethyleneimine-conjugated magnetic beads and its application to the detection of human hepatitis A, B and C viruses.

    PubMed

    Uchida, Eriko; Kogi, Mieko; Oshizawa, Tadashi; Furuta, Birei; Satoh, Koei; Iwata, Akiko; Murata, Mitsuhiro; Hikata, Mikio; Yamaguchi, Teruhide

    2007-07-01

    To enhance the sensitivity of virus detection by polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR), a novel virus concentration method using polyethyleneimine (PEI)-conjugated magnetic beads was developed in our previous study. However, several viruses could not be concentrated by this method. In this paper, the conditions of virus concentration were optimized to concentrate a wide range of viruses more efficiently. The PEI beads adsorbed viruses more efficiently than other cationic polymers, and the optimum virus concentration was obtained under weak acidic conditions. Mass spectrometric analysis revealed that several serum proteins, such as complement type 3, complement type 4 and immunoglobulin M (IgM), were co-adsorbed by the PEI beads, suggesting that the beads may adsorb viruses not only by direct adsorption, but also via immune complex formation. This hypothesis was confirmed by the result that poliovirus, which PEI beads could not adsorb directly, could be concentrated by the beads via immune complex formation. On the other hand, hepatitis A (HAV) and hepatitis C (HCV) viruses were adsorbed directly by PEI beads almost completely. Like poliovirus, hepatitis B virus (HBV) was concentrated efficiently by the addition of anti-HBV IgM. In conclusion, virus concentration using PEI beads is a useful method to concentrate a wide range of viruses and can be used to enhance the sensitivity of detection of HAV, HBV and HCV. PMID:17433454

  17. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  18. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  19. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  20. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  1. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  2. Effects of Streptococcus pneumoniae Strain Background on Complement Resistance

    PubMed Central

    Hyams, Catherine; Opel, Sophia; Hanage, William; Yuste, Jose; Bax, Katie; Henriques-Normark, Birgitta; Spratt, Brian G.; Brown, Jeremy S.

    2011-01-01

    Background Immunity to infections caused by Streptococcus pneumoniae is dependent on complement. There are wide variations in sensitivity to complement between S. pneumoniae strains that could affect their ability to cause invasive infections. Although capsular serotype is one important factor causing differences in complement resistance between strains, there is also considerable other genetic variation between S. pneumoniae strains that may affect complement-mediated immunity. We have therefore investigated whether genetically distinct S. pneumoniae strains with the same capsular serotype vary in their sensitivity to complement mediated immunity. Methodology and Principal Findings C3b/iC3b deposition and neutrophil association were measured using flow cytometry assays for S. pneumoniae strains with different genetic backgrounds for each of eight capsular serotypes. For some capsular serotypes there was marked variation in C3b/iC3b deposition between different strains that was independent of capsule thickness and correlated closely to susceptibility to neutrophil association. C3b/iC3b deposition results also correlated weakly with the degree of IgG binding to each strain. However, the binding of C1q (the first component of the classical pathway) correlated more closely with C3b/iC3b deposition, and large differences remained in complement sensitivity between strains with the same capsular serotype in sera in which IgG had been cleaved with IdeS. Conclusions These data demonstrate that bacterial factors independent of the capsule and recognition by IgG have strong effects on the susceptibility of S. pneumoniae to complement, and could therefore potentially account for some of the differences in virulence between strains. PMID:22022358

  3. Novel Complement Inhibitor Limits Severity of Experimentally Myasthenia Gravis

    PubMed Central

    Soltys, Jindrich; Kusner, Linda L.; Young, Andrew; Richmonds, Chelliah; Hatala, Denise; Gong, Bendi; Shanmugavel, Vaithesh; Kaminski, Henry J.

    2011-01-01

    Objective Complement mediated injury of the neuromuscular junction is considered a primary disease mechanism in human myasthenia gravis and animal models of experimentally acquired myasthenia gravis (EAMG). We utilized active and passive models of EAMG to investigate the efficacy of a novel C5 complement inhibitor rEV576, recombinantly produced protein derived from tick saliva, in moderating disease severity. Methods Standardized disease severity assessment, serum complement hemolytic activity, serum cytotoxicity, acetylcholine receptor (AChR) antibody concentration, IgG subclassification, and C9 deposition at the neuromuscular junction were used to assess the effect of complement inhibition on EAMG induced by administration of AChR antibody or immunization with purified AChR. Results Administration of rEV576 in passive transfer EAMG limited disease severity as evidenced by 100% survival rate and a low disease severity score. In active EAMG, rats with severe and mild EAMG were protected from worsening of disease and had limited weight loss. Serum complement activity (CH50) in severe and mild EAMG was reduced to undetectable levels during treatment, and C9 deposition at the neuromuscular junction was reduced. Treatment with rEV576 resulted in reduction of toxicity of serum from severe and mild EAMG rats. Levels of total AChR IgG, and IgG2a antibodies were similar, but unexpectedly, the concentration of complement fixing IgG1 antibodies was lower in a group of rEV576-treated animals, suggesting an effect of rEV576 on cellular immunity. Interpretation Inhibition of complement significantly reduced weakness in two models of EAMG. C5 inhibition could prove to be of significant therapeutic value in human myasthenia gravis. PMID:19194881

  4. Zika virus.

    PubMed

    2016-02-10

    Essential facts Zika virus disease is caused by a virus that is transmitted by the Aedes mosquito. While it generally causes a mild illness, there is increasing concern that it is harmful in pregnancy and can cause congenital abnormalities in infants born to women infected with the virus. There is no antiviral treatment or vaccine currently available. The best form of prevention is protection against mosquito bites. PMID:26860150

  5. CHLORELLA VIRUSES

    PubMed Central

    Yamada, Takashi; Onimatsu, Hideki; Van Etten, James L.

    2007-01-01

    Chlorella viruses or chloroviruses are large, icosahedral, plaque‐forming, double‐stranded‐DNA—containing viruses that replicate in certain strains of the unicellular green alga Chlorella. DNA sequence analysis of the 330‐kbp genome of Paramecium bursaria chlorella virus 1 (PBCV‐1), the prototype of this virus family (Phycodnaviridae), predict ∼366 protein‐encoding genes and 11 tRNA genes. The predicted gene products of ∼50% of these genes resemble proteins of known function, including many that are completely unexpected for a virus. In addition, the chlorella viruses have several features and encode many gene products that distinguish them from most viruses. These products include: (1) multiple DNA methyltransferases and DNA site‐specific endonucleases, (2) the enzymes required to glycosylate their proteins and synthesize polysaccharides such as hyaluronan and chitin, (3) a virus‐encoded K+ channel (called Kcv) located in the internal membrane of the virions, (4) a SET domain containing protein (referred to as vSET) that dimethylates Lys27 in histone 3, and (5) PBCV‐1 has three types of introns; a self‐splicing intron, a spliceosomal processed intron, and a small tRNA intron. Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history. This review mainly deals with research on the virion structure, genome rearrangements, gene expression, cell wall degradation, polysaccharide synthesis, and evolution of PBCV‐1 as well as other related viruses. PMID:16877063

  6. Live Virus Smallpox Vaccine

    MedlinePlus

    ... Index SMALLPOX FACT SHEET The Live Virus Smallpox Vaccine The vaccinia virus is the "live virus" used ... cannot cause smallpox. What is a "live virus" vaccine? A "live virus" vaccine is a vaccine that ...

  7. Mutations participating in interallelic complementation in propionic acidemia

    SciTech Connect

    Gravel, R.A.; Akerman, B.R.; Lamhonwah, A.M.; Loyer, M.; Leon-del-Rio, A.; Italiano, I. )

    1994-07-01

    Deficiency of propionyl-CoA carboxylase (PCC; [alpha][sub 4][beta][sub 4]) results in the rare, autosomal recessive disease propionic acidemia. Cell fusion experiments have revealed two complementation groups, pccA and pccB, corresponding to defects of the PCCA ([alpha]-subunit) and PCCB ([beta]-subunit) genes, respectively. The pccBCC group includes subgroups, pccB and pccC, which are thought to reflect interallelic complementation between certain mutations of the PCCB gene. In this study, the authors have identified the mutations in two pccB, one pccC, and two pccBC cell lines and have deduced those alleles participating in interallelic complementation. One pccB line was a compound hetrozygote of Pro228Leu and Asn536Asp. The latter mutation was also detected in a noncomplementing pccBC line. This leaves Pro228Leu responsible for complementation in the pccB cells. The second pccB line contained an insertional duplication, dupKICK140-143, and a splice mutation IVS+1 G[yields]T, located after Lys466. The authors suggest that the dupKICK mutation is the complementing allele, since the second allele is incompatible with normal splicing. The pccC line studied was homozygous for Arg410Trp, which is necessarily the complementing allele in that line. For a second pccC line, they previously had proposed that [Delta]Ile408 was the complementing allele. They now show that its second allele, [open quotes]Ins[center dot]Del[close quotes], a 14-bp deletion replaced by a 12-bp insertion beginning at codon 407, fails to complement in homozygous form. The authors conclude that the interallelic complementation results from mutations in domains that can interact between [beta]-subunits in the PCC heteromer to restore enzymatic function. On the basis of sequence homology with the Propionibacterium shermanii transcarboxylase 12S subunit, they suggest that the pccC domain, defined by Ile408 and Arg410, may involve the propionyl-CoA binding site. 37 refs., 5 figs., 2 tabs.

  8. Function of Serum Complement in Drinking Water Arsenic Toxicity

    PubMed Central

    Islam, Laila N.; Zahid, M. Shamim Hasan; Nabi, A. H. M. Nurun; Hossain, Mahmud

    2012-01-01

    Serum complement function was evaluated in 125 affected subjects suffering from drinking water arsenic toxicity. Their mean duration of exposure was 7.4 ± 5.3 yrs, and the levels of arsenic in drinking water and urine samples were 216 ± 211 and 223 ± 302 μg/L, respectively. The mean bactericidal activity of complement from the arsenic patients was 92% and that in the unexposed controls was 99% (P < 0.01), but heat-inactivated serum showed slightly elevated activity than in controls. In patients, the mean complement C3 was 1.56 g/L, and C4 was 0.29 g/L compared to 1.68 g/L and 0.25 g/L, respectively, in the controls. The mean IgG in the arsenic patients was 24.3 g/L that was highly significantly elevated (P < 0.001). Arsenic patients showed a significant direct correlation between C3 and bactericidal activity (P = 0.014). Elevated levels of C4 indicated underutilization and possibly impaired activity of the classical complement pathway. We conclude reduced function of serum complement in drinking water arsenic toxicity. PMID:22545044

  9. Physicochemical signatures of nanoparticle-dependent complement activation

    SciTech Connect

    Thomas, Dennis G.; Chikkagoudar, Satish; Heredia-Langner, Alejandro; Tardiff, Mark F.; Xu, Zhixiang; Hourcade, Dennis; Pham, Christine; Lanza, Gregory M.; Weinberger, Kilian Q.; Baker, Nathan A.

    2014-03-21

    Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we developed an in vitro hemolytic assay protocol for measuring the nanoparticle-dependent complement activity of serum samples and applied this protocol to several nanoparticle formulations that differed in size, surface charge, and surface chemistry; quantifying the nanoparticle-dependent complement activity using a metric called Residual Hemolytic Activity (RHA). In the present work, we have used a decision tree learning algorithm to derive the rules for estimating nanoparticle-dependent complement response based on the data generated from the hemolytic assay studies. Our results indicate that physicochemical properties of nanoparticles, namely, size, polydispersity index, zeta potential, and mole percentage of the active surface ligand of a nanoparticle, can serve as good descriptors for prediction of nanoparticle-dependent complement activation in the decision tree modeling framework. The robustness and predictability of the model can be improved by training the model with additional data points that are uniformly distributed in the RHA/physicochemical descriptor space and by incorporating instability effects on nanoparticle physicochemical properties into the model.

  10. Complement activation by Coccidioides immitis: in vitro and clinical studies.

    PubMed Central

    Galgiani, J N; Yam, P; Petz, L D; Williams, P L; Stevens, D A

    1980-01-01

    Mycelial- or spherule-phase derivatives of Coccidioides immitis caused a decrease in vitro of total hemolytic complement in serum from a nonsensitized person. Activation involved both classic and alternative pathways as shown by deprssion of hemolytic C4 and by generation of products of activation of components C3, C4, and factor B. In addition, functional complement activity or immunoreactive levels of complement components or both were measured in 23 patients with self-limited or disseminated coccidioidomycosis. Low total hemolytic complement was found in nine, usually during the early phase of primary illness, and was transient. Hemolytic C4 was low, and the effect of inulin to decrease complement levels was blunted, suggested both classic and alternative pathways may be deficient. However, associated depression of immunoreactive levels of components assayed (C3, C4, C5, factor B, and properdin) was not consistently found. This disparity raises the possibility of enhanced in vitro inactivation analogous to activation by immune complexes. Images Fig. 2 PMID:6901703

  11. Complement-mediated adipocyte lysis by nephritic factor sera.

    PubMed

    Mathieson, P W; Würzner, R; Oliveria, D B; Lachmann, P J; Peters, D K

    1993-06-01

    Recent data indicate a previously unsuspected link between the complement system and adipocyte biology. Murine adipocytes produce key components of the alternative pathway of complement and are able to activate this pathway. This suggested to us an explanation for adipose tissue loss in partial lipodystrophy, a rare human condition usually associated with the immunoglobulin G(IgG) autoantibody nephritic factor (NeF) which leads to enhanced alternative pathway activation in vivo. We hypothesized that in the presence of NeF, there is dysregulated complement activation at the membrane of the adipocyte, leading to adipocyte lysis. Here we show that adipocytes explanted from rat epididymal fat pads are lysed by NeF-containing sera but not by control sera. A similar pattern is seen with IgG fractions of these sera. Adipocyte lysis in the presence of NeF is associated with the generation of fluid-phase terminal complement complexes, the level of which correlates closely with the level of lactate dehydrogenase, a marker of cell lysis. Lysis is abolished by ethylenediaminetetraacetic acid, which chelates divalent cations and prevents complement activation, and reduced by an antibody to factor D, a key component of the alternative pathway. These data provide an explanation for the previously obscure link between NeF and fat cell damage. PMID:8496694

  12. Anti-complement-factor H-associated glomerulopathies.

    PubMed

    Durey, Marie-Agnes Dragon; Sinha, Aditi; Togarsimalemath, Shambhuprasad Kotresh; Bagga, Arvind

    2016-09-01

    Atypical haemolytic uraemic syndrome (aHUS), an important cause of acute kidney injury, is characterized by dysregulation of the complement pathway, frequent need for dialysis, and progression to end-stage renal disease. Autoantibodies against complement factor H (FH), the main plasma regulatory protein of the alternative pathway of the complement system, account for a considerable proportion of children with aHUS. The autoantibodies are usually associated with the occurrence of a homozygous deletion in the genes encoding the FH-related proteins FHR1 and FHR3. High levels of autoantibodies, noted at the onset of disease and during relapses, induce functional deficiency of FH, whereas their decline, in response to plasma exchanges and/or immunosuppressive therapy, is associated with disease remission. Management with plasma exchange and immunosuppression is remarkably effective in inducing and maintaining remission in aHUS associated with FH autoantibodies, whereas terminal complement blockade with eculizumab is considered the most effective therapy in other forms of aHUS. Anti-FH autoantibodies are also detected in a small proportion of patients with C3 glomerulopathies, which are characterized by chronic glomerular injury mediated by activation of the alternative complement pathway and predominant C3 deposits on renal histology. PMID:27452363

  13. LPS induces pulp progenitor cell recruitment via complement activation.

    PubMed

    Chmilewsky, F; Jeanneau, C; Laurent, P; About, I

    2015-01-01

    Complement system, a major component of the natural immunity, has been recently identified as an important mediator of the dentin-pulp regeneration process through STRO-1 pulp cell recruitment by the C5a active fragment. Moreover, it has been shown recently that under stimulation with lipoteichoic acid, a complex component of the Gram-positive bacteria cell wall, human pulp fibroblasts are able to synthesize all proteins required for complement activation. However, Gram-negative bacteria, which are also involved in tooth decay, are known as powerful activators of complement system and inflammation. Here, we investigated the role of Gram-negative bacteria-induced complement activation on the pulp progenitor cell recruitment using lipopolysaccharide (LPS), a major component of all Gram-negative bacteria. Our results show that incubating pulp fibroblasts with LPS induced membrane attack complex formation and C5a release in serum-free fibroblast cultures. The produced C5a binds to the pulp progenitor cells' membrane and induces their migration toward the LPS stimulation chamber, as revealed by the dynamic transwell migration assays. The inhibition of this migration by the C5aR-specific antagonist W54011 indicates that the pulp progenitor migration is mediated by the interaction between C5a and C5aR. Our findings demonstrate, for the first time, a direct interaction between the recruitment of progenitor pulp cells and the activation of complement system generated by pulp fibroblast stimulation with LPS. PMID:25359783

  14. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... component of complement (a group of serum proteins which destroy infectious agents). Measurement of complement C1 inhibitor aids in the diagnosis of hereditary angioneurotic edema (increased blood...

  15. Complement Evasion Mediated by Enhancement of Captured Factor H: Implications for Protection of Self-Surfaces from Complement

    PubMed Central

    Herbert, Andrew P.; Makou, Elisavet; Chen, Zhuo A.; Kerr, Heather; Richards, Anna; Rappsilber, Juri

    2015-01-01

    In an attempt to evade annihilation by the vertebrate complement system, many microbes capture factor H (FH), the key soluble complement-regulating protein in human plasma. However, FH is normally an active complement suppressor exclusively on self-surfaces and this selective action of FH is pivotal to self versus non-self discrimination by the complement system. We investigated whether the bacterially captured FH becomes functionally enhanced and, if so, how this is achieved at a structural level. We found, using site-directed and truncation mutagenesis, surface plasmon resonance, nuclear magnetic resonance spectroscopy, and cross-linking and mass spectrometry, that the N-terminal domain of Streptococcus pneumoniae protein PspC (PspCN) not only binds FH extraordinarily tightly but also holds it in a previously uncharacterized conformation. Functional enhancement arises from exposure of a C-terminal cryptic second binding site in FH for C3b, the activation-specific fragment of the pivotal complement component, C3. This conformational change of FH doubles its affinity for C3b and increases 5-fold its ability to accelerate decay of the binary enzyme (C3bBb) responsible for converting C3 to C3b in an amplification loop. Despite not sharing critical FH-binding residues, PspCNs from D39 and Tigr4 S. pneumoniae exhibit similar FH-anchoring and enhancing properties. We propose that these bacterial proteins mimic molecular markers of self-surfaces, providing a compelling hypothesis for how FH prevents complement-mediated injury to host tissue while lacking efficacy on virtually all other surfaces. In hemolysis assays with 2-aminoethylisothiouronium bromide–treated erythrocytes that recapitulate paroxysmal nocturnal hemoglobinuria, PspCN enhanced protection of cells by FH, suggesting a new paradigm for therapeutic complement suppression. PMID:26459349

  16. Complement Evasion Mediated by Enhancement of Captured Factor H: Implications for Protection of Self-Surfaces from Complement.

    PubMed

    Herbert, Andrew P; Makou, Elisavet; Chen, Zhuo A; Kerr, Heather; Richards, Anna; Rappsilber, Juri; Barlow, Paul N

    2015-11-15

    In an attempt to evade annihilation by the vertebrate complement system, many microbes capture factor H (FH), the key soluble complement-regulating protein in human plasma. However, FH is normally an active complement suppressor exclusively on self-surfaces and this selective action of FH is pivotal to self versus non-self discrimination by the complement system. We investigated whether the bacterially captured FH becomes functionally enhanced and, if so, how this is achieved at a structural level. We found, using site-directed and truncation mutagenesis, surface plasmon resonance, nuclear magnetic resonance spectroscopy, and cross-linking and mass spectrometry, that the N-terminal domain of Streptococcus pneumoniae protein PspC (PspCN) not only binds FH extraordinarily tightly but also holds it in a previously uncharacterized conformation. Functional enhancement arises from exposure of a C-terminal cryptic second binding site in FH for C3b, the activation-specific fragment of the pivotal complement component, C3. This conformational change of FH doubles its affinity for C3b and increases 5-fold its ability to accelerate decay of the binary enzyme (C3bBb) responsible for converting C3 to C3b in an amplification loop. Despite not sharing critical FH-binding residues, PspCNs from D39 and Tigr4 S. pneumoniae exhibit similar FH-anchoring and enhancing properties. We propose that these bacterial proteins mimic molecular markers of self-surfaces, providing a compelling hypothesis for how FH prevents complement-mediated injury to host tissue while lacking efficacy on virtually all other surfaces. In hemolysis assays with 2-aminoethylisothiouronium bromide-treated erythrocytes that recapitulate paroxysmal nocturnal hemoglobinuria, PspCN enhanced protection of cells by FH, suggesting a new paradigm for therapeutic complement suppression. PMID:26459349

  17. Interaction of Sindbis virus glycoproteins during morphogenesis.

    PubMed Central

    Jones, K J; Scupham, R K; Pfeil, J A; Wan, K; Sagik, B P; Bose, H R

    1977-01-01

    In cells infected with the Sindbis temperature-sensitive mutants ts-23 and ts-10 (complementation group D), which contain a defect in the envelope glycoprotein E1, the precursor polypeptide PE2 is not cleaved to the envelope glycoprotein E2 at the nonpermissive temperature. This defect is phenotypically identical to the defect observed in the complementation group E mutant, ts-20. The lesion in ts-23 is reversible upon shift to permissive temperature, whereas that of ts-10 is not. Antiserum against whole virus, E1, or E2 also prevents the cleavage of PE2 in cells infected with wild-type Sindbis virus. Because the cleavage of PE2 is inhibited by the lesion in mutants that are genotypically distinct and by anti-E1 or -E2 serum, it appears that PE2 and E1 exist as a complex in the membrane of the infected cell. Images PMID:833949

  18. Role of complement in porphyrin-induced photosensitivity

    SciTech Connect

    Lim, H.W.; Gigli, I.

    1981-01-01

    Addition of porphyrins to sera of guinea pigs in vitro, followed by irradiation with 405 nm light, resulted in dose-dependent inhibitions of hemolytic activity of complement. With guinea pig as an animal model, we also found that systemically administered porphyrins, followed by irradiation with 405 nm light, resulted in dose-dependent inhibition of CH50 in vivo. The erythrocytes from porphyrin-treated guinea pigs showed an increased susceptibility to hemolysis induced by 405 nm irradiation in vitro. Clinical changes in these animals were limited to light-exposed areas and consisted of erythema, crusting, and delayed growth of hair. Histologically, dermal edema, dilation of blood vessels, and infiltration of mononuclear and polymorphonuclear cells were observed. Guinea pigs irradiated with ultraviolet-B developed erythema, but had no alteration of their complement profiles. It is suggested that complement products may play a specific role in the pathogenesis of the cutaneous lesions of some porphyrias.

  19. A generic method to identify plant viruses by high-resolution tandem mass spectrometry of their coat proteins.

    PubMed

    Blouin, Arnaud G; Greenwood, David R; Chavan, Ramesh R; Pearson, Michael N; Clover, Gerard R G; MacDiarmid, Robin M; Cohen, Daniel

    2010-01-01

    Although a number of protocols have been developed for detection of viruses at the genus or family level, universal approaches to detect and identify unknown viruses are still required. High-resolution tandem mass spectrometry was used to identify accurately peptide masses and their constituent sequences from partially purified plant virus preparations. Analysis of the peptide fragment masses against a virus database using pattern-matching algorithms identified sequences with homology to known virus peptides and also predicted peptides using de novo sequence analysis. This method provided sufficient information to confirm the identity of two known viruses that were included as controls (Cucumber mosaic virus and Tomato spotted wilt virus) and to identify unknown viruses in six viral isolates. The unknown viruses have been identified as four common viruses (Alfalfa mosaic virus, Tobacco streak virus, Citrus leaf blotch virus and Ribgrass mosaic virus), and two novel viruses (a potexvirus and a vitivirus). The identification of viruses from five distinct families by the tandem mass spectrometric determination of their coat protein demonstrates that this is a useful method for initial virus identification. This method, complemented with molecular or immunological procedures, provides a rapid and convenient way to identify both known and novel plant viruses. PMID:19712699

  20. Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy.

    PubMed

    Zhu, Li; Zhai, Ya-Ling; Wang, Feng-Mei; Hou, Ping; Lv, Ji-Cheng; Xu, Da-Min; Shi, Su-Fang; Liu, Li-Jun; Yu, Feng; Zhao, Ming-Hui; Novak, Jan; Gharavi, Ali G; Zhang, Hong

    2015-05-01

    Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1-5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3-1 deletion (CFHR3-1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype-phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3-1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN. PMID:25205734

  1. Quantitative Modeling of the Alternative Pathway of the Complement System.

    PubMed

    Zewde, Nehemiah; Gorham, Ronald D; Dorado, Angel; Morikis, Dimitrios

    2016-01-01

    The complement system is an integral part of innate immunity that detects and eliminates invading pathogens through a cascade of reactions. The destructive effects of the complement activation on host cells are inhibited through versatile regulators that are present in plasma and bound to membranes. Impairment in the capacity of these regulators to function in the proper manner results in autoimmune diseases. To better understand the delicate balance between complement activation and regulation, we have developed a comprehensive quantitative model of the alternative pathway. Our model incorporates a system of ordinary differential equations that describes the dynamics of the four steps of the alternative pathway under physiological conditions: (i) initiation (fluid phase), (ii) amplification (surfaces), (iii) termination (pathogen), and (iv) regulation (host cell and fluid phase). We have examined complement activation and regulation on different surfaces, using the cellular dimensions of a characteristic bacterium (E. coli) and host cell (human erythrocyte). In addition, we have incorporated neutrophil-secreted properdin into the model highlighting the cross talk of neutrophils with the alternative pathway in coordinating innate immunity. Our study yields a series of time-dependent response data for all alternative pathway proteins, fragments, and complexes. We demonstrate the robustness of alternative pathway on the surface of pathogens in which complement components were able to saturate the entire region in about 54 minutes, while occupying less than one percent on host cells at the same time period. Our model reveals that tight regulation of complement starts in fluid phase in which propagation of the alternative pathway was inhibited through the dismantlement of fluid phase convertases. Our model also depicts the intricate role that properdin released from neutrophils plays in initiating and propagating the alternative pathway during bacterial infection. PMID

  2. Quantitative Modeling of the Alternative Pathway of the Complement System

    PubMed Central

    Dorado, Angel; Morikis, Dimitrios

    2016-01-01

    The complement system is an integral part of innate immunity that detects and eliminates invading pathogens through a cascade of reactions. The destructive effects of the complement activation on host cells are inhibited through versatile regulators that are present in plasma and bound to membranes. Impairment in the capacity of these regulators to function in the proper manner results in autoimmune diseases. To better understand the delicate balance between complement activation and regulation, we have developed a comprehensive quantitative model of the alternative pathway. Our model incorporates a system of ordinary differential equations that describes the dynamics of the four steps of the alternative pathway under physiological conditions: (i) initiation (fluid phase), (ii) amplification (surfaces), (iii) termination (pathogen), and (iv) regulation (host cell and fluid phase). We have examined complement activation and regulation on different surfaces, using the cellular dimensions of a characteristic bacterium (E. coli) and host cell (human erythrocyte). In addition, we have incorporated neutrophil-secreted properdin into the model highlighting the cross talk of neutrophils with the alternative pathway in coordinating innate immunity. Our study yields a series of time-dependent response data for all alternative pathway proteins, fragments, and complexes. We demonstrate the robustness of alternative pathway on the surface of pathogens in which complement components were able to saturate the entire region in about 54 minutes, while occupying less than one percent on host cells at the same time period. Our model reveals that tight regulation of complement starts in fluid phase in which propagation of the alternative pathway was inhibited through the dismantlement of fluid phase convertases. Our model also depicts the intricate role that properdin released from neutrophils plays in initiating and propagating the alternative pathway during bacterial infection. PMID

  3. Decreased Membrane Complement Regulators in the RPE Contributes to AMD

    PubMed Central

    Ebrahimi, Katayoon B.; Fijalkowski, Natalia; Cano, Marisol; Handa, James T.

    2013-01-01

    Dysregulated complement is thought to play a central role in AMD pathogenesis, but the specific mechanisms have yet to be determined. In maculas of AMD specimens, we found that the complement regulatory protein, CD59, was increased in regions of uninvolved retinal pigmented epithelium (RPE) of early AMD, but decreased in the RPE overlying drusen and in geographic atrophy, an advanced form of AMD. While CD46 immunostaining was basolaterally distributed in the RPE of unaffected controls, it was decreased in diseased areas of early AMD samples. Since oxidized low density lipoproteins (oxLDL) collect in drusen of AMD and are a known complement trigger, we treated ARPE-19 cells with oxLDL and found that cellular CD46 and CD59 proteins were decreased by 2.9-fold and 9-fold (p<0.01), respectively. OxLDLs increased complement factor B mRNA and Bb protein, but not factor D, I, or H. OxLDLs increased C3b, but not C3a, C5 or C5b-9. C5b-9 was increased by 27% (p<0.01) when medium was supplemented with human serum, which was sufficient to induce poly (ADP-ribose) polymerase cleavage, a marker of apoptosis. The decreased levels of CD46 and CD59 were in part, explained by their release in exosomal and apoptotic membranous particles. In addition, CD59 was partially degraded through activation of IRE1α. Collectively, these results suggest that a combination of impaired complement regulators results in inadequately controlled complement by the RPE in AMD that induces RPE damage. PMID:23097248

  4. Inhibition of the alternative complement pathway by antisense oligonucleotides targeting complement factor B improves lupus nephritis in mice.

    PubMed

    Grossman, Tamar R; Hettrick, Lisa A; Johnson, Robert B; Hung, Gene; Peralta, Raechel; Watt, Andrew; Henry, Scott P; Adamson, Peter; Monia, Brett P; McCaleb, Michael L

    2016-06-01

    Systemic lupus erythematosus is an autoimmune disease that manifests in widespread complement activation and deposition of complement fragments in the kidney. The complement pathway is believed to play a significant role in the pathogenesis and in the development of lupus nephritis. Complement factor B is an important activator of the alternative complement pathway and increasing evidence supports reducing factor B as a potential novel therapy to lupus nephritis. Here we investigated whether pharmacological reduction of factor B expression using antisense oligonucleotides could be an effective approach for the treatment of lupus nephritis. We identified potent and well tolerated factor B antisense oligonucleotides that resulted in significant reductions in hepatic and plasma factor B levels when administered to normal mice. To test the effects of factor B antisense oligonucleotides on lupus nephritis, we used two different mouse models, NZB/W F1 and MRL/lpr mice, that exhibit lupus nephritis like renal pathology. Antisense oligonucleotides mediated reductions in circulating factor B levels were associated with significant improvements in renal pathology, reduced glomerular C3 deposition and proteinuria, and improved survival. These data support the strategy of using factor B antisense oligonucleotides for treatment of lupus nephritis in humans. PMID:26307001

  5. Gene for ataxia-telangiectasia complementation group D (ATDC)

    DOEpatents

    Murnane, J.P.; Painter, R.B.; Kapp, L.N.; Yu, L.C.

    1995-03-07

    Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for the gene are provided as well as proteins encoded by the gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of the proteins. Further disclosed are methods to detect mutations in the gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups. 30 figs.

  6. Microvascular alterations and the role of complement in dermatomyositis.

    PubMed

    Lahoria, Rajat; Selcen, Duygu; Engel, Andrew G

    2016-07-01

    Different mechanisms have been proposed to explain the pathological basis of perifascicular muscle fibre atrophy in dermatomyositis. These include ischaemia due to immune-mediated microvascular injury, enhanced expression of type 1 interferon-induced gene transcripts in perifascicular capillaries and muscle fibres, and occlusion of larger perimysial blood vessels. Microvascular complement deposition is a feature of dermatomyositis pathology but the trigger for complement activation, the predominant complement pathway involved, or its role in the pathogenesis of the disease, has not been clearly defined. In the first step of this study we examined the density of capillaries and transverse vessels and searched for occlusion or depletion of larger perimysial blood vessels in 10 patients with dermatomyositis. This revealed an invariable association of perifascicular atrophy with capillary and transverse vessel depletion. The capillary and transverse vessel densities in non-atrophic fibre regions were not significantly different from those in muscle specimens of 10 age-matched controls. Next, in the same 10, as well as in 40 additional dermatomyositis patients, we searched for vascular deposits of IgG, IgM, and the C5b-9 complement membrane attack complex. Thirty-one of 50 dermatomyositis specimens contained C5b-9 reactive endomysial microvessels but none of these or other vessels reacted for IgG. Ten of 50 specimens harboured IgM-positive capillaries but only a few of these reacted for C5b-9. Finally, we analysed and compared different pathways of complement activation in dermatomyositis, lupus nephritis, and necrotic muscle fibres in Duchenne dystrophy. In lupus nephritis, C5-b9 deposits co-localized with IgG, IgM, C1q, and C4d, consistent with immune complex dependent activation of the classical complement pathway. In both dermatomyositis and Duchenne dystrophy, C5-b9 deposits co-localized with C1q and C4d and rarely with IgM indicating activation of the classical

  7. Hypersensitivity reactions to radiocontrast media: the role of complement activation.

    PubMed

    Szebeni, Janos

    2004-01-01

    Although intravenous use of radiocontrast media (RCM) for a variety of radiographic procedures is generally safe, clinically significant acute hypersensitivity reactions still occur in a significant percentage of patients. The mechanism of these anaphylactoid, or "pseudoallergic," reactions is complex, involving complement activation, direct degranulation of mast cells and basophils, and modulation of enzymes and proteolytic cascades in plasma. In this review, basic information on different RCMs and their reactogenicity is summarized and updated, and the prevalence, pathomechanism, prediction, prevention, treatment, and economic impact of hypersensitivity reactions are discussed. Particular attention is paid to the in vitro and in vivo evidence supporting complement activation as an underlying cause of RCM reactions. PMID:14680617

  8. Complement Propriety and Conspiracy in Nanomedicine: Perspective and a Hypothesis.

    PubMed

    Moghimi, Seyed Moein

    2016-04-01

    The complement system is the first line of body's defense against intruders and it acts as a functional bridge between innate and adaptive arms of the immune system. This commentary examines the key roles of complement activation in response to nanomedicine administration, including nucleic acid complexes. These comprise beneficial (eg, adjuvanticity) as well as adverse effects (eg, infusion-related reactions). Pigs (and sheep) are often used as predictive models of nanomedicine-mediated infusion-related reactions in humans. The validity of these models in relation to human responses is questioned, and an alternative hypothesis is presented. PMID:26720796

  9. Reincarnation of ancient links between coagulation and complement.

    PubMed

    Conway, E M

    2015-06-01

    Throughout evolution, organisms have developed means to contain wounds by simultaneously limiting bleeding and eliminating pathogens and damaged host cells via the recruitment of innate defense mechanisms. Disease emerges when there is unchecked activation of innate immune and/or coagulation responses. A key component of innate immunity is the complement system. Concurrent excess activation of coagulation and complement - two major blood-borne proteolytic pathways - is evident in numerous diseases, including atherosclerosis, diabetes, venous thromboembolic disease, thrombotic microangiopathies, arthritis, cancer, and infectious diseases. Delineating the cross-talk between these two cascades will uncover novel therapeutic insights. PMID:26149013

  10. Gene for ataxia-telangiectasia complementation group D (ATDC)

    DOEpatents

    Murnane, John P.; Painter, Robert B.; Kapp, Leon N.; Yu, Loh-Chung

    1995-03-07

    Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for said gene are provided as well as proteins encoded by said gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of said proteins. Further disclosed are methods to detect mutations in said gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups.

  11. Blockade of Alternative Complement Pathway in Dense Deposit Disease

    PubMed Central

    Sacquépée, Mathieu; Fila, Marc; Peuchmaur, Michel; Perrier-Cornet, Emilia; Frémeaux-Bacchi, Véronique; Deschênes, Georges

    2014-01-01

    A patient aged 17 with dense deposit disease associated with complement activation, circulating C3 Nef, and Factor H mutation presented with nephrotic syndrome and hypertension. Steroid therapy, plasma exchange, and rituximab failed to improve proteinuria and hypertension despite a normalization of the circulating sC5b9 complex. Eculizumab, a monoclonal antibody directed against C5, was used to block the terminal product of the complement cascade. The dose was adapted to achieve a CH50 below 10%, but proteinuria and blood pressure were not improved after 3 months of treatment. PMID:24672732

  12. Blockade of alternative complement pathway in dense deposit disease.

    PubMed

    Berthe-Aucejo, Aurore; Sacquépée, Mathieu; Fila, Marc; Peuchmaur, Michel; Perrier-Cornet, Emilia; Frémeaux-Bacchi, Véronique; Deschênes, Georges

    2014-01-01

    A patient aged 17 with dense deposit disease associated with complement activation, circulating C3 Nef, and Factor H mutation presented with nephrotic syndrome and hypertension. Steroid therapy, plasma exchange, and rituximab failed to improve proteinuria and hypertension despite a normalization of the circulating sC5b9 complex. Eculizumab, a monoclonal antibody directed against C5, was used to block the terminal product of the complement cascade. The dose was adapted to achieve a CH50 below 10%, but proteinuria and blood pressure were not improved after 3 months of treatment. PMID:24672732

  13. Complement component 3 interactions with coxsackievirus B3 capsid proteins: innate immunity and the rapid formation of splenic antiviral germinal centers.

    PubMed Central

    Anderson, D R; Carthy, C M; Wilson, J E; Yang, D; Devine, D V; McManus, B M

    1997-01-01

    Innate immunity is central to the clearance of pathogens from hosts as well as to the definition of acquired immune responses (D. T. Fearon, and R. M. Locksley, Science 272:50-53, 1996). Coxsackievirus B3 (CVB3), a human cardiopathic virus, was evaluated for the ability to activate the alternative and classical pathway of complement. CVB3 proteins interact with complement component 3 (C3, a soluble protein effector of innate immunity) after either in vitro exposure to mouse serum or in vivo murine infection and activate the alternative pathway of complement. In addition, we demonstrate that viral antigen retention and localization in germinal centers is dependent on C3, while virus antigen retention in extrafollicular regions in the spleen is not. In vivo depletion of native C3 abolished the rapid formation of virus-specific germinal centers (by day 3 post-CVB3 infection) in the absence of serum anti-CVB3 antibodies. These studies demonstrate that innate immune mechanisms, such as C3 interaction with CVB3, are essential for splenic antiviral germinal center formation in naive (antigen nonsensitized) mice resistant (C57BL/6J strain) and susceptible (A/J strain) to CVB3-induced myocarditis. PMID:9343244

  14. Role of complement receptor type 2 and endogenous complement in the humoral immune response to conjugates of complement C3d and pneumococcal serotype 14 capsular polysaccharide.

    PubMed

    Mitsuyoshi, Joyce K; Hu, Yong; Test, Samuel T

    2005-11-01

    Conjugation of the complement fragment C3d to both T-cell-dependent (TD) protein and T-cell-independent type 2 (TI-2) polysaccharide antigens enhances the humoral immune response in mice immunized with either type of antigen. However, the ability of C3d-protein conjugates to enhance the antibody response in mice deficient in complement receptor types 1 and 2 (CR1 and CR2) has raised questions about the role of C3d-CR2 interactions in the adjuvant effect of C3d. In this study, we examined the role of CR2 binding and endogenous complement activation in the antibody response to conjugates of C3d and serotype 14 pneumococcal capsular polysaccharide (PPS14). To block binding of PPS14-C3d conjugates to CR2, mice were immunized with a mixture of vaccine and (CR2)2-immunoglobulin G1 (IgG1). Mice receiving (CR2)2-IgG1 at the time of primary immunization had a marked reduction in the primary anti-PPS14 antibody response but an enhanced secondary anti-PPS14 response, suggesting that C3d-CR2 interactions are required for the primary response but can have negative effects on the memory response. Further, compared with mice receiving PPS14-C3d having a high C3d/PPS14 ratio, mice immunized with PPS14-C3d with low C3d/PPS14 ratios had an enhanced secondary antibody response. Treatment of mice with cobra venom factor to deplete complement had insignificant effects on the antibody response to PPS14-C3d. Experiments with CBA/N xid mice confirmed that PPS14-C3d conjugates retain the characteristics of TI-2 rather than TD antigens. Thus, the adjuvant effect of C3d conjugated to PPS14 requires C3d-CR2 interactions, does not require activation of endogenous complement, and is not mediated by TD carrier effects. PMID:16239528

  15. An optimized mRFP-based bimolecular fluorescence complementation system for the detection of protein-protein interactions in planta.

    PubMed

    Zilian, Eva; Maiss, Edgar

    2011-06-01

    An existing bimolecular fluorescence complementation (BiFC) system, based on a monomeric red fluorescent protein (mRFP), has been optimized for the investigation of protein-protein interactions in planta. The expression plasmids, encoding the N-terminal amino acids (aa) 1-168 and the C-terminal aa 169-225 of the mRFP, allow N- or C-terminal fusion of a split mRFP, with the genes of interest. Two major improvements over the original vectors have been made. Firstly, the coding sequence of a GGGSGGG-linker has been integrated between mRFP sequences and the genes of interest. Secondly, a modified mini binary vector (∼3.5 kb) was introduced as the backbone for the plant expression plasmids. Based on the results of yeast two-hybrid studies with plant viral proteins, interaction of viral proteins was tested in Nicotiana benthamiana plants and monitored by confocal laser scanning microscopy (CLSM). Plum pox virus coat protein and mutants thereof served as controls. The system was validated using the N-protein of Capsicum chlorosis virus for which a self-interaction was shown for the first time, the Tobacco mosaic virus coat protein and BC1 and BV1 of the Tomato yellow leaf curl Thailand virus. This optimized BiFC system provides a convenient alternative to other BiFC, as well as yeast two-hybrid assays, for detecting protein-protein interactions. PMID:21473882

  16. Human Immunodeficiency Virus Infection and Host Defense in the Lungs.

    PubMed

    Charles, Tysheena P; Shellito, Judd E

    2016-04-01

    Immunosuppression associated with human immunodeficiency virus (HIV) infection impacts all components of host defense against pulmonary infection. Cells within the lung have altered immune function and are important reservoirs for HIV infection. The host immune response to infected lung cells further compromises responses to a secondary pathogenic insult. In the upper respiratory tract, mucociliary function is impaired and there are decreased levels of salivary immunoglobulin A. Host defenses in the lower respiratory tract are controlled by alveolar macrophages, lymphocytes, and polymorphonuclear leukocytes. As HIV infection progresses, lung CD4 T cells are reduced in number causing a lack of activation signals from CD4 T cells and impaired defense by macrophages. CD8 T cells, on the other hand, are increased in number and cause lymphocytic alveolitis. Specific antibody responses by B-lymphocytes are decreased and opsonization of microorganisms is impaired. These observed defects in host defense of the respiratory tract explain the susceptibility of HIV-infected persons for oropharyngeal candidiasis, bacterial pneumonia, Pneumocystis pneumonia, and other opportunistic infections. PMID:26974294

  17. Genome of Crocodilepox Virus

    PubMed Central

    Afonso, C. L.; Tulman, E. R.; Delhon, G.; Lu, Z.; Viljoen, G. J.; Wallace, D. B.; Kutish, G. F.; Rock, D. L.

    2006-01-01

    Here, we present the genome sequence, with analysis, of a poxvirus infecting Nile crocodiles (Crocodylus niloticus) (crocodilepox virus; CRV). The genome is 190,054 bp (62% G+C) and predicted to contain 173 genes encoding proteins of 53 to 1,941 amino acids. The central genomic region contains genes conserved and generally colinear with those of other chordopoxviruses (ChPVs). CRV is distinct, as the terminal 33-kbp (left) and 13-kbp (right) genomic regions are largely CRV specific, containing 48 unique genes which lack similarity to other poxvirus genes. Notably, CRV also contains 14 unique genes which disrupt ChPV gene colinearity within the central genomic region, including 7 genes encoding GyrB-like ATPase domains similar to those in cellular type IIA DNA topoisomerases, suggestive of novel ATP-dependent functions. The presence of 10 CRV proteins with similarity to components of cellular multisubunit E3 ubiquitin-protein ligase complexes, including 9 proteins containing F-box motifs and F-box-associated regions and a homologue of cellular anaphase-promoting complex subunit 11 (Apc11), suggests that modification of host ubiquitination pathways may be significant for CRV-host cell interaction. CRV encodes a novel complement of proteins potentially involved in DNA replication, including a NAD+-dependent DNA ligase and a protein with similarity to both vaccinia virus F16L and prokaryotic serine site-specific resolvase-invertases. CRV lacks genes encoding proteins for nucleotide metabolism. CRV shares notable genomic similarities with molluscum contagiosum virus, including genes found only in these two viruses. Phylogenetic analysis indicates that CRV is quite distinct from other ChPVs, representing a new genus within the subfamily Chordopoxvirinae, and it lacks recognizable homologues of most ChPV genes involved in virulence and host range, including those involving interferon response, intracellular signaling, and host immune response modulation. These data reveal

  18. Genome of crocodilepox virus.

    PubMed

    Afonso, C L; Tulman, E R; Delhon, G; Lu, Z; Viljoen, G J; Wallace, D B; Kutish, G F; Rock, D L

    2006-05-01

    Here, we present the genome sequence, with analysis, of a poxvirus infecting Nile crocodiles (Crocodylus niloticus) (crocodilepox virus; CRV). The genome is 190,054 bp (62% G+C) and predicted to contain 173 genes encoding proteins of 53 to 1,941 amino acids. The central genomic region contains genes conserved and generally colinear with those of other chordopoxviruses (ChPVs). CRV is distinct, as the terminal 33-kbp (left) and 13-kbp (right) genomic regions are largely CRV specific, containing 48 unique genes which lack similarity to other poxvirus genes. Notably, CRV also contains 14 unique genes which disrupt ChPV gene colinearity within the central genomic region, including 7 genes encoding GyrB-like ATPase domains similar to those in cellular type IIA DNA topoisomerases, suggestive of novel ATP-dependent functions. The presence of 10 CRV proteins with similarity to components of cellular multisubunit E3 ubiquitin-protein ligase complexes, including 9 proteins containing F-box motifs and F-box-associated regions and a homologue of cellular anaphase-promoting complex subunit 11 (Apc11), suggests that modification of host ubiquitination pathways may be significant for CRV-host cell interaction. CRV encodes a novel complement of proteins potentially involved in DNA replication, including a NAD(+)-dependent DNA ligase and a protein with similarity to both vaccinia virus F16L and prokaryotic serine site-specific resolvase-invertases. CRV lacks genes encoding proteins for nucleotide metabolism. CRV shares notable genomic similarities with molluscum contagiosum virus, including genes found only in these two viruses. Phylogenetic analysis indicates that CRV is quite distinct from other ChPVs, representing a new genus within the subfamily Chordopoxvirinae, and it lacks recognizable homologues of most ChPV genes involved in virulence and host range, including those involving interferon response, intracellular signaling, and host immune response modulation. These data

  19. Enhancement of complement-mediated lysis by a peptide derived from SCR 13 of complement factor H.

    PubMed

    Stoiber, H; Ammann, C; Spruth, M; Müllauer, B; Eberhart, A; Harris, C L; Huber, C G; Longhi, R; Falkensammer, B; Würzner, R; Dierich, M P

    2001-05-01

    Complement factor H (fH) is an important regulator of complement activation. It contributes to protection of cells against homologous complement attack. In this study we tested the effect of fH-depletion of normal human serum (NHS) on lysis of antibody-coated sheep and human erythrocytes (EshA and EhuA). In the absence of fH, lysis of sensitised Esh and Ehu was clearly increased. Addition of fH to fH-depleted serum re-established protection of cells against complement similar to that seen with NHS. A fH-derived peptide (pepAred), covering the N-terminal half of SCR 13 in fH, was able to enhance complement-mediated lysis of EhuA significantly. However, the oxidised form of this peptide (pepAox) had no effect. Biotinylated pepAred, but not pepAox, was able to directly bind to cells. Additionally, pepAred competed with direct fH-cell interaction which was observable only after treatment of purified fH with mercaptoethanol. Only pepAred increased the amount of C3 fragments and reduced levels of fH detectable on cells as shown by FACS analysis and radio-immuno assay. Furthermore, fH and factor I (fI)-mediated cleavage of agarose bound C3b into iC3b was decreased in the presence of pepAred. These data indicate that a fH-derived peptide can enhance complement-mediated lysis. We will continue to investigate whether the use of a fH peptide can be exploited for therapeutical purposes. PMID:11402501

  20. Complement Factor H-Related 5-Hybrid Proteins Anchor Properdin and Activate Complement at Self-Surfaces.

    PubMed

    Chen, Qian; Manzke, Melanie; Hartmann, Andrea; Büttner, Maike; Amann, Kerstin; Pauly, Diana; Wiesener, Michael; Skerka, Christine; Zipfel, Peter F

    2016-05-01

    C3 glomerulopathy (C3G) is a severe kidney disease for which no specific therapy exists. The causes of C3G are heterogeneous, and defective complement regulation is often linked to C3G pathogenesis. Copy number variations in the complement factor H-related (CFHR) gene cluster on chromosome 1q32 and CFHR5 mutant proteins associate with this disease. Here, we identified CFHR5 as a pattern recognition protein that binds to damaged human endothelial cell surfaces and to properdin, the human complement activator. We found the two N-terminal short consensus repeat domains of CFHR5 contact properdin and mediate dimer formation. These properdin-binding segments are duplicated in two mutant CFHR5 proteins, CFHR2-CFHR5Hyb from German patients with C3G and CFHR5Dup from Cypriot patients with C3G. Each of these mutated proteins assembled into large multimeric complexes and, compared to CFHR5, bound damaged human cell surfaces and properdin with greater intensity and exacerbated local complement activation. This enhanced surface binding and properdin recruitment was further evidenced in the mesangia of a transplanted and explanted kidney from a German patient with a CFHR2-CFHR5Hyb protein. Enhanced properdin staining correlated with local complement activation with C3b and C5b-9 deposition on the mesangial cell surface in vitro This gain of function in complement activation for two disease-associated CFHR5 mutants describes a new disease mechanism of C3G, which is relevant for defining appropriate treatment options for this disorder. PMID:26432903

  1. Diseases Caused by Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The symptoms, causal agents, epidemiology and management of important virus diseases in chickpea and lentil crops were reviewed in depth. The virus diseases include.Alflafa mosaic virus, Cucumber mosaiv virus, Faba bean necrotic yellows virus, Pea enation mosaic virus, Pea seed-borne mosaci virus,...

  2. Loss of Infinitival Complementation in Romanian Diachronic Syntax

    ERIC Educational Resources Information Center

    Jordan, Maria

    2009-01-01

    For the most part, my study is a descriptive analysis of infinitival complement clauses and the corresponding subjunctive clauses in Romanian, that is, obligatory control (OC) structures. OC is a relation of obligatory coreferentiality between a matrix argument (controller) and the null subject of the subordinate (controlee) of the same sentence.…

  3. Juvenile Justice and a Strengths Perspective: Complement or Clash?

    ERIC Educational Resources Information Center

    Clark, Michael D.

    2009-01-01

    Does the new realm of positive psychology and strength-based strategies complement or clash with the remedial discipline of social control traditionally practiced in juvenile justice programs? Many welcome the balance of positive psychology, the strengths perspective, and coping and resilience studies. Although emerging from different disciplines,…

  4. CHROMOSOME COMPLEMENT OF THE MARINE WORM 'NEANTHES ARENACEODENTATA' (POLYCHAETA: ANNELIDA)

    EPA Science Inventory

    The chromosome complement for the marine worm, Neanthes arenaceodentata, consists of nine pairs; one pair has a median centromere, seven pairs have submedian centromeres, and one pair is polymorphic with either a subterminal or terminal centromere. A technique for studying polych...

  5. An improved europium release assay for complement-mediated cytolysis.

    PubMed

    Cui, J; Bystryn, J C

    1992-02-14

    An improved assay for complement-mediated cytolysis is described. The target cells are labeled with europium complexed to diethylenetriaminopentaacetate (Eu-DTPA). Cytolysis caused by antibody plus complement leads to the release of the Eu-DTPA complex which is then formed into a highly fluorescent chelate by the addition of 2-naphthoyltrifluoroacetone (2-NTA). The amount of europium chelate formed--a measurement of cell death--is then quantified with a time-resolved fluorometer. The results of the assay are reproducible. Complement-mediated cytolysis when measured by europium release was five times more sensitive than when measured by conventional 51Cr release and three times than when measured by trypan blue exclusion. Because europium does not decay, target cells can be labelled in batches and stored frozen until use, which speeds and simplifies the assay. Thus, europium release assay is a simple and quantitative method to measure complement-mediated cytolysis which is sensitive and more rapid than conventional assays. PMID:1541836

  6. Mesenchymal stem cells inhibit complement activation by secreting factor H.

    PubMed

    Tu, Zhidan; Li, Qing; Bu, Hong; Lin, Feng

    2010-11-01

    Mesenchymal stem cells (MSCs) possess potent and broad immunosuppressive capabilities, and have shown promise in clinical trials treating many inflammatory diseases. Previous studies have found that MSCs inhibit dendritic cell, T-cell, and B-cell activities in the adaptive immunity; however, whether MSCs inhibit complement in the innate immunity, and if so, by which mechanism, have not been established. In this report, we found that MSCs constitutively secrete factor H, which potently inhibits complement activation. Depletion of factor H in the MSC-conditioned serum-free media abolishes their complement inhibitory activities. In addition, production of factor H by MSCs is augmented by inflammatory cytokines TNF-α and interferon-γ (IFN-γ) in dose- and time-dependent manners, while IL-6 does not have a significant effect. Furthermore, the factor H production from MSCs is significantly suppressed by the prostaglandin E2 (PGE2) synthesis inhibitor indomethacin and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyl-d-tryptophan (1-MT), both of which inhibitors are known to efficiently dampen MSCs immunosuppressive activity. These results indicate that MSCs inhibit complement activation by producing factor H, which could be another mechanism underlying MSCs broad immunosuppressive capabilities. PMID:20163251

  7. Interaction of toxic venoms with the complement system

    PubMed Central

    Birdsey, Vanessa; Lindorfer, Jean; Gewurz, H.

    1971-01-01

    Thirty-nine venoms from various vertebrate and invertebrate species were tested for their ability to consume haemolytic complement (C) activity upon incubation in fresh guinea-pig serum. Nineteen had `anti-complementary' activity, and these were provisionally sorted into the following groups: Pattern I—exemplified by the Naja haje (Egyptian cobra) and six other Elapidae species (all cobras), which induced selective consumption of C3—C9, and led to formation of a stable C3—C9-consuming intermediate; Pattern II—exemplified by the Agkistrodon rhodostoma (Malayan pit viper), Bitis arietans (puff adder), Bothrops jararaca (South American pit viper), Bothrops atrox (Fer de Lance) and three other species, which induced marked consumption of C4 and C2, as well as C3—C9, but did not form a stable C3—C9-consuming intermediate; and individual animals, e.g. the Lachesis muta (bushmaster), which induced other patterns (III—VI) of complement component consumption. Active fractions of representative venoms were partially purified by ion exchange and gel filtration chromatography and their interactions with the complement system characterized further. It is anticipated that these enzymes, with a capacity to activate the complement system in unique ways, will prove to be of further experimental usefulness. PMID:4398349

  8. Hair: A Diagnostic Tool to Complement Blood Serum and Urine.

    ERIC Educational Resources Information Center

    Maugh, Thomas H., II

    1978-01-01

    Trace elements and some drugs can be identified in hair and it seems likely that other organic chemicals will be identifiable in the future. Since hair is so easily collected, stored, and analyzed it promises to be an ideal complement to serum and urine analysis as a diagnostic tool. (BB)

  9. The Importance of Being a Complement: CED Effects Revisited

    ERIC Educational Resources Information Center

    Jurka, Johannes

    2010-01-01

    This dissertation revisits subject island effects (Ross 1967, Chomsky 1973) cross-linguistically. Controlled acceptability judgment studies in German, English, Japanese and Serbian show that extraction out of specifiers is consistently degraded compared to extraction out of complements, indicating that the Condition on Extraction domains (CED,…

  10. Do Antimicrobial Peptides and Complement Collaborate in the Intestinal Mucosa?

    PubMed Central

    Kopp, Zoë A.; Jain, Umang; Van Limbergen, Johan; Stadnyk, Andrew W.

    2015-01-01

    It is well understood that multiple antimicrobial peptides (AMPs) are constitutively deployed by the epithelium to bolster the innate defenses along the entire length of the intestines. In addition to this constitutive/homeostatic production, AMPs may be inducible and levels changed during disease. In contrast to this level of knowledge on AMP sources and roles in the intestines, our understanding of the complement cascade in the healthy and diseased intestines is rudimentary. Epithelial cells make many complement proteins and there is compelling evidence that complement becomes activated in the lumen. With the common goal of defending the host against microbes, the opportunities for cross-talk between these two processes is great, both in terms of actions on the target microbes but also on regulating the synthesis and secretion of the alternate family of molecules. This possibility is beginning to become apparent with the finding that colonic epithelial cells possess anaphylatoxin receptors. There still remains much to be learned about the possible points of collaboration between AMPs and complement, for example, whether there is reciprocal control over expression in the intestinal mucosa in homeostasis and restoring the balance following infection and inflammation. PMID:25688244

  11. Identification and characterization of complement factor H in Branchiostoma belcheri.

    PubMed

    Cai, Lu; Zhu, Jiu; Yin, Denghua; Chen, Liming; Jin, Ping; Ma, Fei

    2014-12-10

    Complement factor H (CFH) is an essential regulator of the complement system and plays very important roles in animal innate immunity. Although the complement system of amphioxus has been extensively studied, the expression in amphioxus and evolution of CFH gene remain unknown. In this study, we identified and characterized an amphioxus (Branchiostoma belcheri) CFH gene (designated as AmphiCFH). Our results showed that the full-length cDNA of AmphiCFH gene consists of 1295 bp nucleotides containing an 855 bp open reading frame (ORF) that was predicted to encode a 284 amino acid protein. The putative AmphiCFH protein possessed the characteristic of the CFH protein family, including typical CCP (complement control protein) domain. Real-time PCR analysis showed that the AmphiCFH was ubiquitously and differentially expressed in five investigated tissues (intestine, gills, notochord, muscles, and hepatic cecum). The expression level of the AmphiCFH gene was induced upon lipopolysaccharide stimulation, indicating that the AmphiCFH gene might be involved in innate immunity. In addition, phylogenetic analysis showed that the AmphiCFH gene was located between that of invertebrates and vertebrates, suggesting that the AmphiCFH gene is a member of the CFH gene family. In conclusion, our findings provided an insight into animal innate immunity and evolution of the CFH gene family. PMID:25281822

  12. Cloning of genes that complement yeast hexokinase and glucokinase mutants.

    PubMed Central

    Walsh, R B; Kawasaki, G; Fraenkel, D G

    1983-01-01

    Genes complementing the glucose-negative fructose-negative Saccharomyces cerevisiae triple mutant strain (hxkl hxk2 glk1), which lacks hexokinase PI, hexokinase PII, and glucokinase, were obtained from a pool of yeast DNA in the multicopy plasmid YEp13. Images PMID:6341351

  13. Divergent roles for Fc receptors and complement in vivo.

    PubMed

    Ravetch, J V; Clynes, R A

    1998-01-01

    Recent results obtained in mice deficient in either FcRs or complement have revealed distinct functions for these two classes of molecules. While each is capable of interacting with antibodies or immune complexes, the two systems mediate distinct biological effector responses. Complement-deficient mice are unable to mediate innate immune responses to several bacterial pathogens and bacterial toxins, yet respond normally to the presence of cytotoxic antibodies and pathogenic immune complexes. In contrast, FcR-deficient mice display no defects in innate immunity or susceptibility to a variety of pathogens, yet they are unable to mediate inflammatory responses to cytotoxic IgG antibodies or IgG immune complexes, despite the presence of a normal complement system. These results lead to the surprising conclusion that these two systems have evolved distinct functions in host immunity, with complement and its receptors mediating the interaction of natural antibodies (IgM) with pathogens to effect protection, while FcRs couple the interaction of IgG antibodies to effector cells to trigger inflammatory sequelae. These results necessitate a fundamental revision of the role of these antibody-binding systems in the immune response. PMID:9597136

  14. The Effect of Different Chunking Strategies in Complementing Animated Instruction

    ERIC Educational Resources Information Center

    Munyofu, Mine; Swain, William J.; Ausman, Bradley D.; Lin, Huifen; Kidwai, Khusro; Dwyer, Francis

    2007-01-01

    The purpose of this exploratory and small-scale study was to examine the instructional effects of different chunking strategies used to complement animated instruction in terms of facilitating achievement of higher order learning objectives. Eighty-five students were randomly assigned to three treatment groups: animated program instruction, simple…

  15. A Graphical Teaching Tool for Understanding Two's Complement.

    ERIC Educational Resources Information Center

    Luck, Carlos L.

    As part of the Electrical Engineering program at the Univesity of Southern Maine, students are typically introduced to Two's Complement algebra and representation, a method to include negative numbers in the binary representation of integers that is widely used in microprocessors and related digital systems. The traditional, procedural method to…

  16. Synthesis of classical pathway complement components by chondrocytes.

    PubMed Central

    Bradley, K; North, J; Saunders, D; Schwaeble, W; Jeziorska, M; Woolley, D E; Whaley, K

    1996-01-01

    Using immunohistochemical studies, C1q, C1s, C4 and C2 were detected in chondrocytes in normal human articular cartilage and macroscopically normal articular cartilage from the inferior surfaces of hip joints of patients with osteoarthritis. Using reverse-transcribed polymerase chain reaction (RT-PCR), mRNA for C1q, C1s, C4 and C2 was also detected in RNA extracted from articular cartilage. C1r, C3, C1-inhibitor, C4-binding protein and factor I were not detected by either technique. Articular chondrocytes cultured in vitro synthesized C1r, C1s, C4, C2, C3 and C1-inhibitor but not C1q, C4-binding protein or factor I, as assessed by enzyme-linked immunosorbent assay (ELISA) and Northern blot analysis. Thus cultured articular chondrocytes have a complement profile that is similar to that of cultured human fibroblasts rather than that of articular chondrocytes in vivo. Complement synthesis in cultured chondrocytes was modulated by the cytokines interleukin-1 beta (IL-1 beta), tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma), showing that cytokines can probably regulate complement synthesis in intact cartilage. The possible roles of local synthesis of complement components by chondrocytes in matrix turnover and the regulation chondrocyte function are discussed. Images Figure 1 Figure 2 Figure 4 PMID:8881771

  17. Immature recent thymic emigrants are eliminated by complement1

    PubMed Central

    Hsu, Fan-Chi; Shapiro, Michael J.; Chen, Meibo W.; McWilliams, Douglas C.; Seaburg, Lauren M.; Tangen, Sarah N.; Shapiro, Virginia Smith

    2014-01-01

    Recent thymic emigrants (RTEs) must undergo phenotypic and functional maturation to become long-lived mature naïve T cells. In CD4-cre NKAP conditional knockout mice, NKAP-deficient RTEs fail to complete T cell maturation. Here, we demonstrate that NKAP-deficient immature RTEs do not undergo apoptosis, but are eliminated by complement. C3, C4 and C1q are bound to NKAP-deficient peripheral T cells, demonstrating activation of the classical arm of the complement pathway. As thymocytes mature and exit to the periphery, they increase sialic acid incorporation into cell surface glycans. This is essential to peripheral lymphocyte survival, as stripping sialic acid with neuraminidase leads to the binding of natural IgM and complement fixation. NKAP-deficient T cells have a defect in sialylation on cell surface glycans, leading to IgM recruitment. We demonstrate that the defect in sialylation is due to aberrant α2,8-linked sialylation, and the expression of three genes (ST8sia1, ST8sia4 and ST8sia6) that mediate α2,8 sialylation are down regulated in NKAP-defcient RTEs. The maturation of peripheral NKAP-deficient T cells is partially rescued in a C3-deficient environment. Thus, sialylation during T cell maturation is critical to protect immature RTEs from complement in the periphery. PMID:25367120

  18. Complement profile and activation mechanisms by different LDL apheresis systems.

    PubMed

    Hovland, Anders; Hardersen, Randolf; Nielsen, Erik Waage; Enebakk, Terje; Christiansen, Dorte; Ludviksen, Judith Krey; Mollnes, Tom Eirik; Lappegård, Knut Tore

    2012-07-01

    Extracorporeal removal of low-density lipoprotein (LDL) cholesterol by means of selective LDL apheresis is indicated in otherwise uncontrolled familial hypercholesterolemia. During blood-biomaterial interaction other constituents than the LDL particles are affected, including the complement system. We set up an ex vivo model in which human whole blood was passed through an LDL apheresis system with one of three different apheresis columns: whole blood adsorption, plasma adsorption and plasma filtration. The concentrations of complement activation products revealed distinctly different patterns of activation and adsorption by the different systems. Evaluated as the final common terminal complement complex (TCC) the whole blood system was inert, in contrast to the plasma systems, which generated substantial and equal amounts of TCC. Initial classical pathway activation was revealed equally for both plasma systems as increases in the C1rs-C1inh complex and C4d. Alternative pathway activation (Bb) was most pronounced for the plasma adsorption system. Although the anaphylatoxins (C3a and C5a) were equally generated by the two plasma separation systems, they were efficiently adsorbed to the plasma adsorption column before the "outlet", whereas they were left free in the plasma in the filtration system. Consequently, during blood-biomaterial interaction in LDL apheresis the complement system is modulated in different manners depending on the device composition. PMID:22373816

  19. Computer viruses

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    The worm, Trojan horse, bacterium, and virus are destructive programs that attack information stored in a computer's memory. Virus programs, which propagate by incorporating copies of themselves into other programs, are a growing menace in the late-1980s world of unprotected, networked workstations and personal computers. Limited immunity is offered by memory protection hardware, digitally authenticated object programs,and antibody programs that kill specific viruses. Additional immunity can be gained from the practice of digital hygiene, primarily the refusal to use software from untrusted sources. Full immunity requires attention in a social dimension, the accountability of programmers.

  20. Hendra virus.

    PubMed

    Middleton, Deborah

    2014-12-01

    Hendra virus infection of horses occurred sporadically between 1994 and 2010 as a result of spill-over from the viral reservoir in Australian mainland flying-foxes, and occasional onward transmission to people also followed from exposure to affected horses. An unprecedented number of outbreaks were recorded in 2011 leading to heightened community concern. Release of an inactivated subunit vaccine for horses against Hendra virus represents the first commercially available product that is focused on mitigating the impact of a Biosafety Level 4 pathogen. Through preventing the development of acute Hendra virus disease in horses, vaccine use is also expected to reduce the risk of transmission of infection to people. PMID:25281398

  1. Complement receptors and the shaping of the natural antibody repertoire.

    PubMed

    Holers, V Michael

    2005-03-01

    Complement and complement receptors have been known for several decades to play important roles in immune effector mechanisms related to pathogen elimination and tissue inflammation. In addition, studies over the last 10 years have clearly demonstrated a key role for the complement C3d activation fragment receptor designated CR2 (complement receptor type 2) in the switched-isotype, high-affinity and memory humoral immune responses to T-dependent foreign antigens. More recent studies have extended those observations to include a key role for CR2 and C3d in the humoral immune response to T-independent foreign antigens. Conversely, as these studies have proceeded, a parallel series of analyses have linked defects in expression or function of complement C4 and other classical pathway activation pathway proteins, as well as CR2 and the closely related CR1, to the loss of self tolerance to nuclear antigens such as double-stranded DNA and chromatin in systemic lupus erythematosus. With regard to the topic of this issue, it is now becoming increasingly clear that CR2 also plays a major role in the development of the natural antibody repertoire. Specifically, in the absence of this receptor natural IgM and IgG develop in the naïve animal that demonstrate clearly altered recognition patterns for specific natural antibody targets. This repertoire change is important physiologically in at least one setting because these CR2-dependent natural antibodies are necessary for the recognition of ischemic self tissues. In addition, it is possible that certain of the phenotypes manifest by CR2-deficient mice may be strongly influenced not only by effects on later stages of B cell activation and maturation, as commonly thought, but also by alterations in the pre-existing pool of natural antibodies that are influenced by this receptor. This review will examine the evidence that has accumulated over the last few years supporting these hypotheses. PMID:15614507

  2. Structure of the extracellular portion of CD46 provides insights into its interactions with complement proteins and pathogens.

    PubMed

    Persson, B David; Schmitz, Nikolaus B; Santiago, César; Zocher, Georg; Larvie, Mykol; Scheu, Ulrike; Casasnovas, José M; Stehle, Thilo

    2010-01-01

    The human membrane cofactor protein (MCP, CD46) is a central component of the innate immune system. CD46 protects autologous cells from complement attack by binding to complement proteins C3b and C4b and serving as a cofactor for their cleavage. Recent data show that CD46 also plays a role in mediating acquired immune responses, and in triggering autophagy. In addition to these physiologic functions, a significant number of pathogens, including select adenoviruses, measles virus, human herpes virus 6 (HHV-6), Streptococci, and Neisseria, use CD46 as a cell attachment receptor. We have determined the crystal structure of the extracellular region of CD46 in complex with the human adenovirus type 11 fiber knob. Extracellular CD46 comprises four short consensus repeats (SCR1-SCR4) that form an elongated structure resembling a hockey stick, with a long shaft and a short blade. Domains SCR1, SCR2 and SCR3 are arranged in a nearly linear fashion. Unexpectedly, however, the structure reveals a profound bend between domains SCR3 and SCR4, which has implications for the interactions with ligands as well as the orientation of the protein at the cell surface. This bend can be attributed to an insertion of five hydrophobic residues in a SCR3 surface loop. Residues in this loop have been implicated in interactions with complement, indicating that the bend participates in binding to C3b and C4b. The structure provides an accurate framework for mapping all known ligand binding sites onto the surface of CD46, thereby advancing an understanding of how CD46 acts as a receptor for pathogens and physiologic ligands of the immune system. PMID:20941397

  3. Pasteurella pneumotropica Evades the Human Complement System by Acquisition of the Complement Regulators Factor H and C4BP

    PubMed Central

    Sahagún-Ruiz, Alfredo; Granados Martinez, Adriana Patricia; Breda, Leandro Carvalho Dantas; Fraga, Tatiana Rodrigues; Castiblanco Valencia, Mónica Marcela; Barbosa, Angela Silva; Isaac, Lourdes

    2014-01-01

    Pasteurella pneumotropica is an opportunist Gram negative bacterium responsible for rodent pasteurellosis that affects upper respiratory, reproductive and digestive tracts of mammals. In animal care facilities the presence of P. pneumotropica causes severe to lethal infection in immunodeficient mice, being also a potential source for human contamination. Indeed, occupational exposure is one of the main causes of human infection by P. pneumotropica. The clinical presentation of the disease includes subcutaneous abscesses, respiratory tract colonization and systemic infections. Given the ability of P. pneumotropica to fully disseminate in the organism, it is quite relevant to study the role of the complement system to control the infection as well as the possible evasion mechanisms involved in bacterial survival. Here, we show for the first time that P. pneumotropica is able to survive the bactericidal activity of the human complement system. We observed that host regulatory complement C4BP and Factor H bind to the surface of P. pneumotropica, controlling the activation pathways regulating the formation and maintenance of C3-convertases. These results show that P. pneumotropica has evolved mechanisms to evade the human complement system that may increase the efficiency by which this pathogen is able to gain access to and colonize inner tissues where it may cause severe infections. PMID:25347183

  4. The Role of Complement in Age-Related Macular Degeneration: Heparan Sulphate, a ZIP Code for Complement Factor H?

    PubMed Central

    Langford-Smith, Alex; Keenan, Tiarnan D.L.; Clark, Simon J.; Bishop, Paul N.; Day, Anthony J.

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in developed nations and has been associated with complement dysregulation in the central retina. The Y402H polymorphism in the complement regulatory protein factor H (CFH) can confer a >5-fold increased risk of developing AMD and is present in approximately 30% of people of European descent. CFH, in conjunction with other factors, regulates complement activation in host tissues, and the Y402H polymorphism has been found to alter the protein's specificity for heparan sulphate (HS) – a complex polysaccharide found ubiquitously in mammals. HS, which is present on the cell surface and also in the extracellular matrix, exhibits huge structural diversity due to variations in the level/pattern of sulphation, where particular structures may act as ‘ZIP codes’ for different tissue/cellular locations. Recent work has demonstrated that CFH contains two HS-binding domains that each recognize specific HS ZIP codes, allowing differential recognition of Bruch's membrane (in the eye) or the glomerular basement membrane (in the kidney). Importantly, the Y402H polymorphism impairs the binding of CFH to the HS in Bruch's membrane, which could result in increased complement activation and chronic local inflammation (in 402H individuals) and thereby contribute to AMD pathology. PMID:24335201

  5. Structural Basis for the Function of Complement Component C4 within the Classical and Lectin Pathways of Complement.

    PubMed

    Mortensen, Sofia; Kidmose, Rune T; Petersen, Steen V; Szilágyi, Ágnes; Prohászka, Zoltan; Andersen, Gregers R

    2015-06-01

    Complement component C4 is a central protein in the classical and lectin pathways within the complement system. During activation of complement, its major fragment C4b becomes covalently attached to the surface of pathogens and altered self-tissue, where it acts as an opsonin marking the surface for removal. Moreover, C4b provides a platform for assembly of the proteolytically active convertases that mediate downstream complement activation by cleavage of C3 and C5. In this article, we present the crystal and solution structures of the 195-kDa C4b. Our results provide the molecular details of the rearrangement accompanying C4 cleavage and suggest intramolecular flexibility of C4b. The conformations of C4b and its paralogue C3b are shown to be remarkably conserved, suggesting that the convertases from the classical and alternative pathways are likely to share their overall architecture and mode of substrate recognition. We propose an overall molecular model for the classical pathway C5 convertase in complex with C5, suggesting that C3b increases the affinity for the substrate by inducing conformational changes in C4b rather than a direct interaction with C5. C4b-specific features revealed by our structural studies are probably involved in the assembly of the classical pathway C3/C5 convertases and C4b binding to regulators. PMID:25911760

  6. Zika Virus

    MedlinePlus

    ... be at risk for developing fetal complications. Blood, organ and tissue donor screening tests are also needed to assure the safety of transfusion and transplantation in areas of active mosquito-borne virus transmission. ...

  7. Zika Virus.

    PubMed

    Phillips, Jennan A; Neyland, Anavernyel

    2016-08-01

    Zika virus (ZIKV) infections are the latest global public health emergency. Occupational health nurses can protect society by educating workers, women of childbearing age, and others traveling in ZIKV-infected areas about prevention strategies. PMID:27411846

  8. Development of Word Order in German Complement-Clause Constructions: Effects of Input Frequencies, Lexical Items, and Discourse Function

    ERIC Educational Resources Information Center

    Brandt, Silke; Lieven, Elena; Tomasello, Michael

    2010-01-01

    We investigate the development of word order in German children's spontaneous production of complement clauses. From soon after their second birthday, young German children use both verb final complements with complementizers and verb-second complements without complementizers. By their third birthday they use both kinds of complement clauses with…

  9. M. leprae components induce nerve damage by complement activation: identification of lipoarabinomannan as the dominant complement activator.

    PubMed

    Bahia El Idrissi, Nawal; Das, Pranab K; Fluiter, Kees; Rosa, Patricia S; Vreijling, Jeroen; Troost, Dirk; Morgan, B Paul; Baas, Frank; Ramaglia, Valeria

    2015-05-01

    Peripheral nerve damage is the hallmark of leprosy pathology but its etiology is unclear. We previously identified the membrane attack complex (MAC) of the complement system as a key determinant of post-traumatic nerve damage and demonstrated that its inhibition is neuroprotective. Here, we determined the contribution of the MAC to nerve damage caused by Mycobacterium leprae and its components in mouse. Furthermore, we studied the association between MAC and the key M. leprae component lipoarabinomannan (LAM) in nerve biopsies of leprosy patients. Intraneural injections of M. leprae sonicate induced MAC deposition and pathological changes in the mouse nerve, whereas MAC inhibition preserved myelin and axons. Complement activation occurred mainly via the lectin pathway and the principal activator was LAM. In leprosy nerves, the extent of LAM and MAC immunoreactivity was robust and significantly higher in multibacillary compared to paucibacillary donors (p = 0.01 and p = 0.001, respectively), with a highly significant association between LAM and MAC in the diseased samples (r = 0.9601, p = 0.0001). Further, MAC co-localized with LAM on axons, pointing to a role for this M. leprae antigen in complement activation and nerve damage in leprosy. Our findings demonstrate that MAC contributes to nerve damage in a model of M. leprae-induced nerve injury and its inhibition is neuroprotective. In addition, our data identified LAM as the key pathogen associated molecule that activates complement and causes nerve damage. Taken together our data imply an important role of complement in nerve damage in leprosy and may inform the development of novel therapeutics for patients. PMID:25772973

  10. Mortalin/GRP75 Binds to Complement C9 and Plays a Role in Resistance to Complement-dependent Cytotoxicity*

    PubMed Central

    Saar Ray, Moran; Moskovich, Oren; Iosefson, Ohad; Fishelson, Zvi

    2014-01-01

    Mortalin/GRP75, the mitochondrial heat shock protein 70, plays a role in cell protection from complement-dependent cytotoxicity (CDC). As shown here, interference with mortalin synthesis enhances sensitivity of K562 erythroleukemia cells to CDC, whereas overexpression of mortalin leads to their resistance to CDC. Quantification of the binding of the C5b-9 membrane attack complex to cells during complement activation shows an inverse correlation between C5b-9 deposition and the level of mortalin in the cell. Following transfection, mortalin-enhanced GFP (EGFP) is located primarily in mitochondria, whereas mortalinΔ51-EGFP lacking the mitochondrial targeting sequence is distributed throughout the cytoplasm. Overexpressed cytosolic mortalinΔ51-EGFP has a reduced protective capacity against CDC relative to mitochondrial mortalin-EGFP. Mortalin was previously shown by us to bind to components of the C5b-9 complex. Two functional domains of mortalin, the N-terminal ATPase domain and the C-terminal substrate-binding domain, were purified after expression in bacteria. Similar to intact mortalin, the ATPase domain, but not the substrate-binding domain, was found to bind to complement proteins C8 and C9 and to inhibit zinc-induced polymerization of C9. Binding of mortalin to complement C9 and C8 occurs through an ionic interaction that is nucleotide-sensitive. We suggest that to express its full protective effect from CDC, mortalin must first reach the mitochondria. In addition, mortalin can potentially target the C8 and C9 complement components through its ATPase domain and inhibit C5b-9 assembly and stability. PMID:24719326

  11. The role of complement in C3 glomerulopathy.

    PubMed

    Zipfel, Peter F; Skerka, Christine; Chen, Qian; Wiech, Thorsten; Goodship, Tim; Johnson, Sally; Fremeaux-Bacchi, Veronique; Nester, Clara; de Córdoba, Santiago Rodríguez; Noris, Marina; Pickering, Matthew; Smith, Richard

    2015-09-01

    C3 glomerulopathy describes a spectrum of disorders with glomerular pathology associated with C3 cleavage product deposition and with defective complement action and regulation (Fakhouri et al., 2010; Sethi et al., 2012b). Kidney biopsies from these patients show glomerular accumulation or deposition of C3 cleavage fragments, but no or minor deposition of immunoglobulins (Appel et al., 2005; D'Agati and Bomback, 2012; Servais et al., 2007; Sethi and Fervenza, 2011). At present the current situation asks for a better definition of the underlining disease mechanisms, for precise biomarkers, and for a treatment for this disease. The complement system is a self activating and propelling enzymatic cascade type system in which inactive, soluble plasma components are activated spontaneously and lead into an amplification loop (Zipfel and Skerka, 2009). Activation of the alternative pathway is spontaneous, occurs by default, and cascade progression leads to amplification by complement activators. The system however is self-controlled by multiple regulators and inhibitors, like Factor H that control cascade progression in fluid phase and on surfaces. The activated complement system generates a series of potent effector components and activation products, which damage foreign-, as well as modified self cells, recruit innate immune cells to the site of action, coordinate inflammation and the response of the adaptive immune system in form of B cells and T lymphocytes (Kohl, 2006; Medzhitov and Janeway, 2002; Ogden and Elkon, 2006; Carroll, 2004; Kemper and Atkinson, 2007; Morgan, 1999; Muller-Eberhard, 1986; Ricklin et al., 2010). Complement controls homeostasis and multiple reactions in the vertebrate organism including defense against microbial infections (Diaz-Guillen et al., 1999; Mastellos and Lambris, 2002; Nordahl et al., 2004; Ricklin et al., 2010). In consequence defective control of the spontaneous self amplifying cascade or regulation is associated with numerous

  12. Molecular ecology and emergence of tropical plant viruses.

    PubMed

    Fargette, D; Konaté, G; Fauquet, C; Muller, E; Peterschmitt, M; Thresh, J M

    2006-01-01

    An appreciation of the risks caused by emergent plant viruses is critical in tropical areas that rely heavily on agriculture for subsistence and rural livelihood. Molecular ecology, within 10 years, has unraveled the factors responsible for the emergence of several of the economically most important tropical plant viruses: Rice yellow mottle virus (RYMV), Cassava mosaic geminiviruses (CMGs), Maize streak virus (MSV), and Banana streak virus (BSV). A large range of mechanisms--most unsuspected until recently--were involved: recombination and synergism between virus species, new vector biotypes, genome integration of the virus, host adaptation, and long-distance dispersal. A complex chain of molecular and ecological events resulted in novel virus-vector-plant-environment interactions that led to virus emergence. It invariably involved a major agricultural change: crop introduction, cultural intensification, germplasm movement, and new genotypes. A current challenge is now to complement the analysis of the causes by an assessment of the risks of emergence. Recent attempts to assess the risks of emergence of virulent virus strains are described. PMID:16784403

  13. Antibody-dependent enhancement of dengue virus infection inhibits RLR-mediated Type-I IFN-independent signalling through upregulation of cellular autophagy

    PubMed Central

    Huang, Xinwei; Yue, Yaofei; Li, Duo; Zhao, Yujiao; Qiu, Lijuan; Chen, Junying; Pan, Yue; Xi, Juemin; Wang, Xiaodan; Sun, Qiangming; Li, Qihan

    2016-01-01

    Antibody dependent enhancement (ADE) of dengue virus (DENV) infection is identified as the main risk factor of severe Dengue diseases. Through opsonization by subneutralizing or non-neutralizing antibodies, DENV infection suppresses innate cell immunity to facilitate viral replication. However, it is largely unknown whether suppression of type-I IFN is necessary for a successful ADE infection. Here, we report that both DENV and DENV-ADE infection induce an early ISG (NOS2) expression through RLR-MAVS signalling axis independent of the IFNs signaling. Besides, DENV-ADE suppress this early antiviral response through increased autophagy formation rather than induction of IL-10 secretion. The early induced autophagic proteins ATG5-ATG12 participate in suppression of MAVS mediated ISGs induction. Our findings suggest a mechanism for DENV to evade the early antiviral response before IFN signalling activation. Altogether, these results add knowledge about the complexity of ADE infection and contribute further to research on therapeutic strategies. PMID:26923481

  14. Oligomerization of Mumps Virus Phosphoprotein

    PubMed Central

    Pickar, Adrian; Elson, Andrew; Yang, Yang; Xu, Pei; Luo, Ming

    2015-01-01

    ABSTRACT The mumps virus (MuV) genome encodes a phosphoprotein (P) that is important for viral RNA synthesis. P forms the viral RNA-dependent RNA polymerase with the large protein (L). P also interacts with the viral nucleoprotein (NP) and self-associates to form a homotetramer. The P protein consists of three domains, the N-terminal domain (PN), the oligomerization domain (PO), and the C-terminal domain (PC). While PN is known to relax the NP-bound RNA genome, the roles of PO and PC are not clear. In this study, we investigated the roles of PO and PC in viral RNA synthesis using mutational analysis and a minigenome system. We found that PN and PC functions can be trans-complemented. However, this complementation requires PO, indicating that PO is essential for P function. Using this trans-complementation system, we found that P forms parallel dimers (PN to PN and PC to PC). Furthermore, we found that residues R231, K238, K253, and K260 in PO are critical for P's functions. We identified PC to be the domain that interacts with L. These results provide structure-function insights into the role of MuV P. IMPORTANCE MuV, a paramyxovirus, is an important human pathogen. The P protein of MuV is critical for viral RNA synthesis. In this work, we established a novel minigenome system that allows the domains of P to be complemented in trans. Using this system, we confirmed that MuV P forms parallel dimers. An understanding of viral RNA synthesis will allow the design of better vaccines and the development of antivirals. PMID:26311887

  15. Virus meningo-encephalitis in Austria

    PubMed Central

    Verlinde, J. D.; van Tongeren, H. A. E.; Pattyn, S. R.; Rosenzweig, A.

    1955-01-01

    Two virus strains were isolated from the central nervous systems of two fatal human cases during an epidemic of encephalomyelitis in Austria. Monkeys, mice, and chick embryos proved susceptible; rabbits and guinea-pigs were refractory. The experimental disease in monkeys was characterized by acute meningo-encephalomyelitis, which was localized particularly in the grey matter of the brain stem, the cerebellum, the medulla, and the anterior horns of the spinal cord. The virus produced discrete lesions on the chorioallantoic membrane of the chick embryo. In monkeys, viraemia was demonstrated for a period of at least 6-8 days before the development of the clinical illness. The virus was shown to be closely related to that of Russian spring-summer encephalitis. Neutralizing and complement-fixing antibodies could be demonstrated in patients' sera. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8FIG. 9FIG. 10FIG. 11FIG. 12 PMID:14378999

  16. Schizophrenia risk from complex variation of complement component 4.

    PubMed

    Sekar, Aswin; Bialas, Allison R; de Rivera, Heather; Davis, Avery; Hammond, Timothy R; Kamitaki, Nolan; Tooley, Katherine; Presumey, Jessy; Baum, Matthew; Van Doren, Vanessa; Genovese, Giulio; Rose, Samuel A; Handsaker, Robert E; Daly, Mark J; Carroll, Michael C; Stevens, Beth; McCarroll, Steven A

    2016-02-11

    Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia. PMID:26814963

  17. Complement factor H polymorphism and age-related macular degeneration.

    PubMed

    Edwards, Albert O; Ritter, Robert; Abel, Kenneth J; Manning, Alisa; Panhuysen, Carolien; Farrer, Lindsay A

    2005-04-15

    Age-related macular degeneration (AMD) is a common, late-onset, and complex trait with multiple risk factors. Concentrating on a region harboring a locus for AMD on 1q25-31, the ARMD1 locus, we tested single-nucleotide polymorphisms for association with AMD in two independent case-control populations. Significant association (P = 4.95 x 10(-10)) was identified within the regulation of complement activation locus and was centered over a tyrosine-402 --> histidine-402 protein polymorphism in the gene encoding complement factor H. Possession of at least one histidine at amino acid position 402 increased the risk of AMD 2.7-fold and may account for 50% of the attributable risk of AMD. PMID:15761121

  18. Complement or competition: Latino employment in a nontraditional settlement area.

    PubMed

    Sanders, Jimy

    2012-01-01

    The migration of Latinos to nontraditional settlement areas in the United States is renewing interest in how an established low-skilled work force is affected by the inflow of a minority group whose members tend to have a weak basket of human capital. Some scholars focus on how the incoming group creates head-to-head competition with established workers. An alternative view posits that, depending on the context of the receiving labor market, incoming workers may primarily fill roles that complement preexisting labor market arrangements. I study these issues in the region of the country that has experienced the most pronounced in-migration of Latinos during the past few years. The findings indicate migrating Latinos tend to complement preexisting labor market conditions rather than spark job competition and undercut the earning power of non-Latinos. PMID:23017696

  19. Can apolipoproteins and complement factors be biomarkers of Alzheimer's disease?

    PubMed

    Manral, Pallavi; Sharma, Pratibha; Hariprasad, Gururao; Chandralekha; Tripathi, Manjari; Srinivasan, Alagiri

    2012-10-01

    Alzheimer's disease is the most common cause of dementia in elderly persons. Quick diagnosis of Alzheimer's disease will allow treatments that may help slow its progression. The correlation between cerebrospinal fluid (CSF) parameters and progression of Alzheimer's disease is higher than and independent of other risk factors. We have compared sixteen CSF samples of clinically diagnosed Alzheimer's disease patients with non demented subjects using proteomics approach. Apolipoprotein E, apolipoprotein J, complement C4b, hemopexin and complement factor B were identified as differentially expressed proteins. Pathway analyses show that these proteins have interacting partners in Alzheimer's and apoptotic pathways. The possible roles of these proteins in relation to the disease are discussed. PMID:22631439

  20. Schizophrenia risk from complex variation of complement component 4

    PubMed Central

    Sekar, Aswin; Bialas, Allison R.; de Rivera, Heather; Davis, Avery; Hammond, Timothy R.; Kamitaki, Nolan; Tooley, Katherine; Presumey, Jessy; Baum, Matthew; Van Doren, Vanessa; Genovese, Giulio; Rose, Samuel A.; Handsaker, Robert E.; Daly, Mark J.; Carroll, Michael C.; Stevens, Beth; McCarroll, Steven A.

    2016-01-01

    Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia’s strongest genetic association at a population level involves variation in the Major Histocompatibility Complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to recognize. We show here that schizophrenia’s association with the MHC locus arises in substantial part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles promoted widely varying levels of C4A and C4B expression and associated with schizophrenia in proportion to their tendency to promote greater expression of C4A in the brain. Human C4 protein localized at neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals affected with schizophrenia. PMID:26814963

  1. Extra-Renal Manifestations of Complement-Mediated Thrombotic Microangiopathies

    PubMed Central

    Hofer, Johannes; Rosales, Alejandra; Fischer, Caroline; Giner, Thomas

    2014-01-01

    Thrombotic microangiopathies (TMA) are rare but severe disorders, characterized by endothelial cell activation and thrombus formation leading to hemolytic anemia, thrombocytopenia, and organ failure. Complement over activation in combination with defects in its regulation is described in an increasing number of TMA and if primary for the disease denominated as atypical hemolytic-uremic syndrome. Although TMA predominantly affects the renal microvasculature, extra-renal manifestations are observed in 20% of patients including involvement of the central nerve system, cardiovascular system, lungs, skin, skeletal muscle, and gastrointestinal tract. Prompt diagnosis and treatment initiation are therefore crucial for the prognosis of disease acute phase and the long-term outcome. This review summarizes the available evidence on extra-renal TMA manifestations and discusses the role of acute and chronic complement activation by highlighting its complex interaction with inflammation, coagulation, and endothelial homeostasis. PMID:25250305

  2. Complement depletion aggravates Staphylococcus aureus septicaemia and septic arthritis

    PubMed Central

    Sakiniene, E; Bremell, T; Tarkowski, A

    1999-01-01

    The aim of the study was to assess the role of the complement system in Staphylococcus aureus arthritis and septicaemia. The murine model of haematogenously acquired septic arthritis was used, injecting intravenously toxic shock syndrome toxin-1 (TSST-1), producing S. aureus LS-1. Complement was depleted using cobra venom factor (CVF). Evaluation of arthritis was performed clinically and histopathologically. In addition, the effect of complement depletion on the phagocytic activity of leucocytes was assessed in vivo and in vitro. Six days after inoculation of S. aureus the prevalence of arthritis in decomplemented mice was three-fold higher than that in controls (91% versus 25%). The clinical severity of arthritis at the end of the experiment, expressed as arthritic index, was 7.3 and 1.9, respectively. These findings were confirmed by histological index of synovitis as well as of cartilage and/or bone destruction being significantly higher in decomplemented mice than in controls (9.8 ± 1.7 versus 4.9 ± 1.2, P < 0.05; and 7.9 ± 1.7 versus 3.0 ± 0.9, P < 0.05, respectively). Also, the septicaemia-induced mortality was clearly higher in decomplemented mice compared with the controls. CVF treatment significantly reduced in vivo polymorphonuclear cell-dependent inflammation induced by subcutaneous injection of olive oil and mirroring the capacity of polymorphonuclear cells (PMNC) to migrate and/or extravasate. Besides, the decomplementation procedure significantly impaired phagocytic activity of peripheral blood leucocytes in vitro, since the number of phagocytes being able to ingest bacteria decreased by 50% when the cells were maintained in decomplemented serum compared with those in intact serum. The conclusion is that complement depletion aggravates the clinical course of S. aureus arthritis and septicaemia, possibly by a combination of decreased migration/extravasation of PMNC and an impairment of phagocytosis. PMID:9933426

  3. Can Pulp Fibroblasts Kill Cariogenic Bacteria? Role of Complement Activation.

    PubMed

    Jeanneau, C; Rufas, P; Rombouts, C; Giraud, T; Dejou, J; About, I

    2015-12-01

    Complement system activation has been shown to be involved in inflammation and regeneration processes that can be observed within the dental pulp after moderate carious decay. Studies simulating carious injuries in vitro have shown that when human pulp fibroblasts are stimulated by lipoteichoic acid (LTA), they synthetize all complement components. Complement activation leads to the formation of the membrane attack complex (MAC), which is known for its bacterial lytic effect. This work was designed to find out whether human pulp fibroblasts can kill Streptococcus mutans and Streptococcus sanguinis via complement activation. First, histological staining of carious tooth sections showed that the presence of S. mutans correlated with an intense MAC staining. Next, to simulate bacterial infection in vitro, human pulp fibroblasts were incubated in serum-free medium with LTA. Quantification by an enzymatic assay showed a significant increase of MAC formation on bacteria grown in this LTA-conditioned medium. To determine whether the MAC produced by pulp fibroblasts was functional, bacteria sensitivity to LTA-conditioned medium was evaluated using agar well diffusion assay and succinyl dehydrogenase (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide [MTT]) assay. Both assays showed that S. mutans and S. sanguinis were sensitive to LTA-conditioned medium. Finally, to evaluate whether MAC formation on cariogenic bacteria, by pulp fibroblasts, can be directly induced by the presence of these bacteria, a specific coculture model of human pulp fibroblasts and bacteria was developed. Immunofluorescence revealed an intense MAC labeling on bacteria after direct contact with pulp fibroblasts. The observed MAC formation and its lethal effects were significantly reduced when CD59, an inhibitor of MAC formation, was added. Our findings demonstrate that the MAC produced by LTA-stimulated pulp fibroblasts is functional and can kill S. mutans and S. sanguinis. Taken together

  4. Generalized complement operators and applications in some semirings

    NASA Astrophysics Data System (ADS)

    Bijev, G.

    2013-12-01

    Generalized complement operators on the semiring of all Boolean matrices as semilattice homomorphisms are considered. Some applications in solving equations on the set Bn of all binary relations are developed. In particular the structure of B3 is investigated by computer methods. Specific properties of the subsemigroup generated by all irregular relations in B3 are found. Stochastic experiments on the monoid Bn were made. The frequency of irregular elements as well as those of solvable equations depending on n is examined.

  5. Absence of functional alternative complement pathway alleviates lupus cerebritis.

    PubMed

    Alexander, Jessy J; Jacob, Alexander; Vezina, Paul; Sekine, Hideharu; Gilkeson, Gary S; Quigg, Richard J

    2007-06-01

    The complement inhibitor, Crry, which blocks both the classical and alternative pathways, alleviates CNS disease in the lupus model, MRL/MpJ-Tnfrsf6lpr (MRL/lpr) mice. To understand the role of the alternative pathway, we studied mice deficient in a key alternative pathway protein, complement factor B (fB). Immune deposits (IgG and C3) were reduced in the brains of MRL/lpr fB-deficient (fB-/-MRL/lpr) compared to fB-sufficient (MRL/lpr) mice, indicating reduced complement activation. Reduced neutrophil infiltration (22% of MRL/lpr mice) and apoptosis (caspase-3 activity was reduced to 33% of MRL/lpr mice) in these mice indicates that the absence of the alternative pathway was neuroprotective. Furthermore, expression of phospho (p)-Akt (0.16+/-0.02 vs. 0.35+/-0.13, p<0.03) was increased, while expression of p-PTEN (0.40+/-0.06 vs. 0.11+/-0.07, p<0.05) was decreased in fB-/-MRL/lpr mice compared to their MRL/lpr counterparts. The expression of fibronectin, laminin and collagen IV was significantly decreased in fB-/-MRL/lpr mice compared to MRL/lpr mice, indicating that in the lupus setting, tissue integrity was maintained in the absence of the alternative pathway. Absence of fB reduced behavioral alterations in MRL/lpr mice. Our results suggest that in lupus, the alternative pathway may be the key mechanism through which complement activation occurs in brain, and therefore it might serve as a therapeutic target for lupus cerebritis. PMID:17523212

  6. Membrane protein Crry maintains homeostasis of the complement system1

    PubMed Central

    Wu, Xiaobo; Spitzer, Dirk; Mao, Dailing; Peng, Stanford L.; Molina, Hector; Atkinson, John P.

    2008-01-01

    Complement activation is tightly regulated to avoid excessive inflammatory and immune responses. Crry-/- is an embryonic lethal phenotype secondary to the maternal complement alternative pathway (AP) attacking a placenta deficient in this inhibitor. In this study, we demonstrate that Crry-/- mice could be rescued on a partial as well as on a complete factor B (fB)- or C3-deficient maternal background. The C3 and fB protein concentrations in Crry-/-C3+/- and Crry-/-fB+/- mice were substantially reduced for gene dosage secondary to enhanced AP turnover. Based on these observations, a breeding strategy featuring reduced maternal AP-activating capacity rescued the lethal phenotype. It led to a novel, stable line of Crry SKO mice carrying normal alleles for C3 and fB. Crry SKO mice also had accelerated C3 and fB turnover and therefore reduced AP-activating potential. These instructive results represent an example of a membrane regulatory protein being responsible for homeostasis of the complement system. They imply that there is constant turnover on cells of the AP pathway which functions as an immune surveillance system for pathogens and altered self. PMID:18684964

  7. Complement Membrane Attack and Tumorigenesis: A SYSTEMS BIOLOGY APPROACH.

    PubMed

    Towner, Laurence D; Wheat, Richard A; Hughes, Timothy R; Morgan, B Paul

    2016-07-15

    Tumor development driven by inflammation is now an established phenomenon, but the role that complement plays remains uncertain. Recent evidence has suggested that various components of the complement (C) cascade may influence tumor development in disparate ways; however, little attention has been paid to that of the membrane attack complex (MAC). This is despite abundant evidence documenting the effects of this complex on cell behavior, including cell activation, protection from/induction of apoptosis, release of inflammatory cytokines, growth factors, and ECM components and regulators, and the triggering of the NLRP3 inflammasome. Here we present a novel approach to this issue by using global gene expression studies in conjunction with a systems biology analysis. Using network analysis of MAC-responsive expression changes, we demonstrate a cluster of co-regulated genes known to have impact in the extracellular space and on the supporting stroma and with well characterized tumor-promoting roles. Network analysis highlighted the central role for EGF receptor activation in mediating the observed responses to MAC exposure. Overall, the study sheds light on the mechanisms by which sublytic MAC causes tumor cell responses and exposes a gene expression signature that implicates MAC as a driver of tumor progression. These findings have implications for understanding of the roles of complement and the MAC in tumor development and progression, which in turn will inform future therapeutic strategies in cancer. PMID:27226542

  8. Emerging and Novel Functions of Complement Protein C1q

    PubMed Central

    Kouser, Lubna; Madhukaran, Shanmuga Priyaa; Shastri, Abhishek; Saraon, Anuvinder; Ferluga, Janez; Al-Mozaini, Maha; Kishore, Uday

    2015-01-01

    Complement protein C1q, the recognition molecule of the classical pathway, performs a diverse range of complement and non-complement functions. It can bind various ligands derived from self, non-self, and altered self and modulate the functions of immune and non-immune cells including dendritic cells and microglia. C1q involvement in the clearance of apoptotic cells and subsequent B cell tolerance is more established now. Recent evidence appears to suggest that C1q plays an important role in pregnancy where its deficiency and dysregulation can have adverse effects, leading to preeclampsia, missed abortion, miscarriage or spontaneous loss, and various infections. C1q is also produced locally in the central nervous system, and has a protective role against pathogens and possible inflammatory functions while interacting with aggregated proteins leading to neurodegenerative diseases. C1q role in synaptic pruning, and thus CNS development, its anti-cancer effects as an immune surveillance molecule, and possibly in aging are currently areas of extensive research. PMID:26175731

  9. Pulp Fibroblasts Control Nerve Regeneration through Complement Activation.

    PubMed

    Chmilewsky, F; About, I; Chung, S-H

    2016-07-01

    Dentin-pulp regeneration is closely linked to the presence of nerve fibers in the pulp and to the healing mechanism by sprouting of the nerve fiber's terminal branches beneath the carious injury site. However, little is known about the initial mechanisms regulating this process in carious teeth. It has been recently demonstrated that the complement system activation, which is one of the first immune responses, contributes to tissue regeneration through the local production of anaphylatoxins such as C5a. While few pulp fibroblasts in intact teeth and in untreated fibroblast cultures express the C5a receptor (C5aR), here we show that all dental pulp fibroblasts, localized beneath the carious injury site, do express this receptor. This observation is consistent with our in vitro results, which showed expression of C5aR in lipoteichoic acid-stimulated pulp fibroblasts. The interaction of C5a, produced after complement synthesis and activation from pulp fibroblasts, with the C5aR of these cells mediated the local brain-derived neurotropic factor (BDNF) secretion. Overall, this activation guided the neuronal growth toward the lipoteichoic acid-stimulated fibroblasts. Thus, our findings highlight a new mechanism in one of the initial steps of the dentin-pulp regeneration process, linking pulp fibroblasts to the nerve sprouting through the complement system activation. This may provide a useful future therapeutic tool in targeting the fibroblasts in the dentin-pulp regeneration process. PMID:27053117

  10. Computer Viruses. Technology Update.

    ERIC Educational Resources Information Center

    Ponder, Tim, Comp.; Ropog, Marty, Comp.; Keating, Joseph, Comp.

    This document provides general information on computer viruses, how to help protect a computer network from them, measures to take if a computer becomes infected. Highlights include the origins of computer viruses; virus contraction; a description of some common virus types (File Virus, Boot Sector/Partition Table Viruses, Trojan Horses, and…

  11. The relative merits of therapies being developed to tackle inappropriate ('self'-directed) complement activation.

    PubMed

    Antwi-Baffour, Samuel; Kyeremeh, Ransford; Adjei, Jonathan Kofi; Aryeh, Claudia; Kpentey, George

    2016-12-01

    The complement system is an enzyme cascade that helps defend against infection. Many complement proteins occur in serum as inactive enzyme precursors or reside on cell surfaces. Complement components have many biologic functions and their activation can eventually damage the plasma membranes of cells and some bacteria. Although a direct link between complement activation and autoimmune diseases has not been found, there is increasing evidence that complement activation significantly contributes to the pathogenesis of a large number of inflammatory diseases that may have autoimmune linkage. The inhibition of complement may therefore be very important in a variety of autoimmune diseases since their activation may be detrimental to the individual involved. However, a complete and long-term inhibition of complement may have some contra side effects such as increased susceptibility to infection. The site of complement activation will, however, determine the type of inhibitor to be used, its route of application and dosage level. Compared with conventional drugs, complement inhibitors may be the best option for treatment of autoimmune diseases. The review takes a critical look at the relative merits of therapies being developed to tackle inappropriate complement activation that are likely to result in sporadic autoimmune diseases or worsen already existing one. It covers the complement system, general aspects of complement inhibition therapy, therapeutic strategies and examples of complement inhibitors. It concludes by highlighting on the possibility that a better inhibitor of complement activation when found will help provide a formidable treatment for autoimmune diseases as well as preventing one. PMID:26935316

  12. Parainfluenza Viruses

    PubMed Central

    Henrickson, Kelly J.

    2003-01-01

    Human parainfluenza viruses (HPIV) were first discovered in the late 1950s. Over the last decade, considerable knowledge about their molecular structure and function has been accumulated. This has led to significant changes in both the nomenclature and taxonomic relationships of these viruses. HPIV is genetically and antigenically divided into types 1 to 4. Further major subtypes of HPIV-4 (A and B) and subgroups/genotypes of HPIV-1 and HPIV-3 have been described. HPIV-1 to HPIV-3 are major causes of lower respiratory infections in infants, young children, the immunocompromised, the chronically ill, and the elderly. Each subtype can cause somewhat unique clinical diseases in different hosts. HPIV are enveloped and of medium size (150 to 250 nm), and their RNA genome is in the negative sense. These viruses belong to the Paramyxoviridae family, one of the largest and most rapidly growing groups of viruses causing significant human and veterinary disease. HPIV are closely related to recently discovered megamyxoviruses (Hendra and Nipah viruses) and metapneumovirus. PMID:12692097

  13. Sex chromosome complement regulates expression of mood-related genes

    PubMed Central

    2013-01-01

    Background Studies on major depressive and anxiety disorders suggest dysfunctions in brain corticolimbic circuits, including altered gamma-aminobutyric acid (GABA) and modulatory (serotonin and dopamine) neurotransmission. Interestingly, sexual dimorphisms in GABA, serotonin, and dopamine systems are also reported. Understanding the mechanisms behind these sexual dimorphisms may help unravel the biological bases of the heightened female vulnerability to mood disorders. Here, we investigate the contribution of sex-related factors (sex chromosome complement, developmental gonadal sex, or adult circulating hormones) to frontal cortex expression of selected GABA-, serotonin-, and dopamine-related genes. Methods As gonadal sex is determined by sex chromosome complement, the role of sex chromosomes cannot be investigated individually in humans. Therefore, we used the Four Core Genotypes (FCG) mouse model, in which sex chromosome complement and gonadal sex are artificially decoupled, to examine the expression of 13 GABA-related genes, 6 serotonin- and dopamine-related genes, and 8 associated signal transduction genes under chronic stress conditions. Results were analyzed by three-way ANOVA (sex chromosome complement × gonadal sex × circulating testosterone). A global perspective of gene expression changes was provided by heatmap representation and gene co-expression networks to identify patterns of transcriptional activities related to each main factor. Results We show that under chronic stress conditions, sex chromosome complement influenced GABA/serotonin/dopamine-related gene expression in the frontal cortex, with XY mice consistently having lower gene expression compared to XX mice. Gonadal sex and circulating testosterone exhibited less pronounced, more complex, and variable control over gene expression. Across factors, male conditions were associated with a tightly co-expressed set of signal transduction genes. Conclusions Under chronic stress conditions

  14. Clinical polyomavirus BK variants with agnogene deletion are non-functional but rescued by trans-complementation

    SciTech Connect

    Myhre, Marit Renee; Olsen, Gunn-Hege; Gosert, Rainer; Hirsch, Hans H.; Rinaldo, Christine Hanssen

    2010-03-01

    High-level replication of polyomavirus BK (BKV) in kidney transplant recipients is associated with the emergence of BKV variants with rearranged (rr) non-coding control region (NCCR) increasing viral early gene expression and cytopathology. Cloning and sequencing revealed the presence of a BKV quasispecies which included non-functional variants when assayed in a recombinant virus assay. Here we report that the rr-NCCR of BKV variants RH-3 and RH-12, both bearing a NCCR deletion including the 5' end of the agnoprotein coding sequence, mediated early and late viral reporter gene expression in kidney cells. However, in a recombinant virus they failed to produce infectious progeny despite large T-antigen and VP1 expression and the formation of nuclear virus-like particles. Infectious progeny was generated when the agnogene was reconstructed in cis or agnoprotein provided in trans from a co-existing BKV rr-NCCR variant. We conclude that complementation can rescue non-functional BKV variants in vitro and possibly in vivo.

  15. Viral Bimolecular Fluorescence Complementation: A Novel Tool to Study Intracellular Vesicular Trafficking Pathways

    PubMed Central

    Johnson, Aaron L.; Pawlak, Emily N.; Cavanagh, P. Craig; Van Nynatten, Logan; Haeryfar, S. M. Mansour; Dikeakos, Jimmy D.

    2015-01-01

    The Human Immunodeficiency Virus type 1 (HIV-1) accessory protein Nef interacts with a multitude of cellular proteins, manipulating the host membrane trafficking machinery to evade immune surveillance. Nef interactions have been analyzed using various in vitro assays, co-immunoprecipitation studies, and more recently mass spectrometry. However, these methods do not evaluate Nef interactions in the context of viral infection nor do they define the sub-cellular location of these interactions. In this report, we describe a novel bimolecular fluorescence complementation (BiFC) lentiviral expression tool, termed viral BiFC, to study Nef interactions with host cellular proteins in the context of viral infection. Using the F2A cleavage site from the foot and mouth disease virus we generated a viral BiFC expression vector capable of concurrent expression of Nef and host cellular proteins; PACS-1