Sample records for complex dna repair

  1. Drug-induced DNA repair: X-ray structure of a DNA-ditercalinium complex

    SciTech Connect

    Gao, Qi; Williams, L.D.; Egli, M.; Rabinovich, D.; Rich, A. (Massachusetts Inst. of Tech., Cambridge (United States)); Chen, Shunle; Quigley, G.J. (Hunter College, New York, NY (United States))

    1991-03-15

    Ditercalinium is a synthetic anticancer drug that binds to DNA by bis-intercalation and activates DNA repair processes. In prokaryotes, noncovalent DNA-ditercalinium complexes are incorrectly recognized by the uvrABC repair system as covalent lesions on DNA. In eukaryotes, mitochondrial DNA is degraded by excess and futile DNA repair. Using x-ray crystallography, the authors have determined, to 1.7 {angstrom} resolution, the three-dimensional structure of a complex of ditercalinium bound to the double-stranded DNA fragment (d(CGCG)){sub 2}. The DNA in the complex with ditercalinium is kinked (by 15{degrees}) and severely unsound (by 36{degrees}) with exceptionally wide major and minor grooves. Recognition of the DNA-ditercalinium complex by uvrABC in prokaryotes, and by mitochondrial DNA repair systems in eukaryotes, might be related to drug-induced distortion of the DNA helix.

  2. UC Davis researchers discover complexities of DNA repair:

    Cancer.gov

    An international team of scientists led by UC Davis researchers has discovered that DNA repair in cancer cells is not a one-way street as previously believed. Their findings show instead that recombination, an important DNA repair process, has a self-correcting mechanism that allows DNA to make a virtual u-turn and start over.

  3. Cryo-EM Imaging of DNA-PK DNA Damage Repair Complexes

    SciTech Connect

    Phoebe L. Stewart

    2005-06-27

    Exposure to low levels of ionizing radiation causes DNA double-strand breaks (DSBs) that must be repaired for cell survival. Higher eukaryotes respond to DSBs by arresting the cell cycle, presumably to repair the DNA lesions before cell division. In mammalian cells, the nonhomologous end-joining DSB repair pathway is mediated by the 470 kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs) together with the DNA-binding factors Ku70 and Ku80. Mouse knock-out models of these three proteins are all exquisitely sensitive to low doses of ionizing radiation. In the presence of DNA ends, Ku binds to the DNA and then recruits DNA-PKcs. After formation of the complex, the kinase activity associated with DNA-PKcs becomes activated. This kinase activity has been shown to be essential for repairing DNA DSBs in vivo since expression of a kinase-dead form of DNA-PKcs in a mammalian cell line that lacks DNA-PKcs fails to complement the radiosensitive phenotype. The immense size of DNA-PKcs suggests that it may also serve as a docking site for other DNA repair proteins. Since the assembly of the DNA-PK complex onto DNA is a prerequisite for DSB repair, it is critical to obtain structural information on the complex. Cryo-electron microscopy (cryo-EM) and single particle reconstruction methods provide a powerful way to image large macromolecular assemblies at near atomic (10-15 ?) resolution. We have already used cryo-EM methods to examine the structure of the isolated DNA-PKcs protein. This structure reveals numerous cavities throughout the protein that may allow passage of single or double-stranded DNA. Pseudo two-fold symmetry was found for the monomeric protein, suggesting that DNA-PKcs may interact with two DNA ends or two Ku heterodimers simultaneously. Here we propose to study the structure of the cross-linked DNA-PKcs/Ku/DNA complex. Difference imaging with our published DNA-PKcs structure will enable us to elucidate the architecture of the complex. A second objective is to locate the kinase domain of DNA-PKcs by determining the structure of a kinase deletion mutant both as an isolated protein and as part of a DNA-PKcs/Ku/DNA complex. A third objective is to pursue higher resolution studies of DNA-PKcs and the DNA-PKcs/Ku/DNA complex. If the crystal structure determination of DNA-PKcs is completed during the project period, the atomic coordinates of DNA-PKcs will be modeled within the cryo-EM structure of the complex. In order to achieve these goals, a collaborative effort is proposed between Dr. Phoebe Stewart at UCLA, whose laboratory has expertise in cryo-EM reconstruction methods, and Dr. David Chen at the Lawrence Berkeley National Laboratory, who has a long-standing interest in DNA repair. Advantages of the cryo-EM structural method include the fact that the sample is imaged in a frozen-hydrated and unstained state, avoiding artifacts associated with drying and staining in other EM approaches. Also crystals of the sample are not needed for the single particle reconstruction method and only microgram quantities of sample are required. Cryo-EM structural information of macromolecular assemblies is complementary to both atomic structures of individual component molecules, as well as low resolution information obtained from x-ray and neutron scattering. Knowledge of the geometrical arrangement of the complex, and the position of the essential DNA-PKcs kinase domain, should lead to a greater understanding of the molecular events in DNA double-strand break repair following exposure to low doses of radiation.

  4. Long Patch Base Excision Repair Proceeds via Coordinated Stimulation of the Multienzyme DNA Repair Complex*

    PubMed Central

    Balakrishnan, Lata; Brandt, Patrick D.; Lindsey-Boltz, Laura A.; Sancar, Aziz; Bambara, Robert A.

    2009-01-01

    Base excision repair, a major repair pathway in mammalian cells, is responsible for correcting DNA base damage and maintaining genomic integrity. Recent reports show that the Rad9-Rad1-Hus1 complex (9-1-1) stimulates enzymes proposed to perform a long patch-base excision repair sub-pathway (LP-BER), including DNA glycosylases, apurinic/apyrimidinic endonuclease 1 (APE1), DNA polymerase ? (pol ?), flap endonuclease 1 (FEN1), and DNA ligase I (LigI). However, 9-1-1 was found to produce minimal stimulation of FEN1 and LigI in the context of a complete reconstitution of LP-BER. We show here that pol ? is a robust stimulator of FEN1 and a moderate stimulator of LigI. Apparently, there is a maximum possible stimulation of these two proteins such that after responding to pol ? or another protein in the repair complex, only a small additional response to 9-1-1 is allowed. The 9-1-1 sliding clamp structure must serve primarily to coordinate enzyme actions rather than enhancing rate. Significantly, stimulation by the polymerase involves interaction of primer terminus-bound pol ? with FEN1 and LigI. This observation provides compelling evidence that the proposed LP-BER pathway is actually employed in cells. Moreover, this pathway has been proposed to function by sequential enzyme actions in a “hit and run” mechanism. Our results imply that this mechanism is still carried out, but in the context of a multienzyme complex that remains structurally intact during the repair process. PMID:19329425

  5. Cryo-EM Imaging of DNA-PK DNA Damage Repair Complexes

    Microsoft Academic Search

    Phoebe L. Stewart

    2005-01-01

    Exposure to low levels of ionizing radiation causes DNA double-strand breaks (DSBs) that must be repaired for cell survival. Higher eukaryotes respond to DSBs by arresting the cell cycle, presumably to repair the DNA lesions before cell division. In mammalian cells, the nonhomologous end-joining DSB repair pathway is mediated by the 470 kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs) together

  6. Crystal Structures of DNA-Whirly Complexes and Their Role in Arabidopsis Organelle Genome Repair

    SciTech Connect

    Cappadocia, Laurent; Maréchal, Alexandre; Parent, Jean-Sébastien; Lepage, Étienne; Sygusch, Jurgen; Brisson, Normand (Montreal)

    2010-09-07

    DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway.

  7. How to Relate Complex DNA Repair Genotypes to Pathway Function and, Ultimately, Health Risk

    SciTech Connect

    Jones, IM

    2002-01-09

    Exposure to ionizing radiation increases the incidence of cancer. However, predicting which individuals are at most risk from radiation exposure is a distant goal. Predictive ability is needed to guide policies that regulate radiation exposure and ensure that medical treatments have maximum benefit and minimum risk. Differences between people in susceptibility to radiation are largely based on their genotype, the genes inherited from their parents. Among the important genes are those that produce proteins that repair DNA damaged by radiation. Base Excision Repair (BER) proteins repair single strand breaks and oxidized bases in DNA. Double Strand Break Repair proteins repair broken chromosomes. Using technologies and information from the Human Genome Project, we have previously determined that the DNA sequence of DNA repair genes varies within the human population. An average of 3-4 different variants were found that affect the protein for each of 37 genes studied. The average frequency of these variants is 5%. Given the many genes in each DNA repair pathway and their many variants, technical ability to determine an individual's repair genotype greatly exceeds ability to interpret the information. A long-term goal is to relate DNA repair genotypes to health risk from radiation. This study focused on the BER pathway. The BER genes are known, variants of the genes have been identified at LLNL, and LLNL had recently developed an assay for BER function using white blood cells. The goal of this initial effort was to begin developing data that could be used to test the hypothesis that many different genotypes have similar DNA repair capacity phenotypes (function). Relationships between genotype and phenotype could then be used to group genotypes with similar function and ultimately test the association of groups of genotypes with health risk from radiation. Genotypes with reduced repair function are expected to increase risk of radiation-induced health effects. The goal of this pilot project was to obtain preliminary data on genetic variation in DNA repair function in human cells that might encourage our efforts to establish a research program to relate DNA repair function to complex DNA repair genotype and ultimately to cancer risk of radiation exposure.

  8. Dynamics of MutS–Mismatched DNA Complexes Are Predictive of Their Repair Phenotypes

    PubMed Central

    2015-01-01

    MutS recognizes base–base mismatches and base insertions/deletions (IDLs) in newly replicated DNA. Specific interactions between MutS and these errors trigger a cascade of protein–protein interactions that ultimately lead to their repair. The inability to explain why different DNA errors are repaired with widely varying efficiencies in vivo remains an outstanding example of our limited knowledge of this process. Here, we present single-molecule Förster resonance energy transfer measurements of the DNA bending dynamics induced by Thermus aquaticus MutS and the E41A mutant of MutS, which is known to have error specific deficiencies in signaling repair. We compared three DNA mismatches/IDLs (T-bulge, GT, and CC) with repair efficiencies ranging from high to low. We identify three dominant DNA bending states [slightly bent/unbent (U), intermediately bent (I), and significantly bent (B)] and find that the kinetics of interconverting among states varies widely for different complexes. The increased stability of MutS–mismatch/IDL complexes is associated with stabilization of U and lowering of the B to U transition barrier. Destabilization of U is always accompanied by a destabilization of B, supporting the suggestion that B is a “required” precursor to U. Comparison of MutS and MutS-E41A dynamics on GT and the T-bulge suggests that hydrogen bonding to MutS facilitates the changes in base–base hydrogen bonding that are required to achieve the U state, which has been implicated in repair signaling. Taken together with repair propensities, our data suggest that the bending kinetics of MutS–mismatched DNA complexes may control the entry into functional pathways for downstream signaling of repair. PMID:24588663

  9. Sufficient Amounts of Functional HOP2/MND1 Complex Promote Interhomolog DNA Repair but Are Dispensable for Intersister DNA Repair during Meiosis in Arabidopsis[W

    PubMed Central

    Uanschou, Clemens; Ronceret, Arnaud; Von Harder, Mona; De Muyt, Arnaud; Vezon, Daniel; Pereira, Lucie; Chelysheva, Liudmila; Kobayashi, Wataru; Kurumizaka, Hitoshi; Schlögelhofer, Peter; Grelon, Mathilde

    2013-01-01

    During meiosis, homologous recombination (HR) is essential to repair programmed DNA double-strand breaks (DSBs), and a dedicated protein machinery ensures that the homologous chromosome is favored over the nearby sister chromatid as a repair template. The HOMOLOGOUS-PAIRING PROTEIN2/MEIOTIC NUCLEAR DIVISION PROTEIN1 (HOP2/MND1) protein complex has been identified as a crucial factor of meiotic HR in Arabidopsis thaliana, since loss of either MND1 or HOP2 results in failure of DNA repair. We isolated two mutant alleles of HOP2 (hop2-2 and hop2-3) that retained the capacity to repair meiotic DSBs via the sister chromatid but failed to use the homologous chromosome. We show that in these alleles, the recombinases RADIATION SENSITIVE51 (RAD51) and DISRUPTED MEIOTIC cDNA1 (DMC1) are loaded, but only the intersister DNA repair pathway is activated. The hop2-2 phenotype is correlated with a decrease in HOP2/MND1 complex abundance. In hop2-3, a truncated HOP2 protein is produced that retains its ability to bind to DMC1 and DNA but forms less stable complexes with MND1 and fails to efficiently stimulate DMC1-driven D-loop formation. Genetic analyses demonstrated that in the absence of DMC1, HOP2/MND1 is dispensable for RAD51-mediated intersister DNA repair, while in the presence of DMC1, a minimal amount of functional HOP2/MND1 is essential to drive intersister DNA repair. PMID:24363313

  10. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    SciTech Connect

    W Joo; G Xu; n Persky; A Smogorzewska; D Rudge; O Buzovetsky; S Elledge; N Pavletich

    2011-12-31

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.

  11. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    SciTech Connect

    Joo, Woo; Xu, Guozhou; Persky, Nicole S.; Smogorzewska, Agata; Rudge, Derek G.; Buzovetsky, Olga; Elledge, Stephen J.; Pavletich, Nikola P. (Harvard-Med); (Cornell); (MSKCC)

    2011-08-29

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.

  12. The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage.

    PubMed

    Smeenk, Godelieve; Wiegant, Wouter W; Vrolijk, Hans; Solari, Aldo P; Pastink, Albert; van Attikum, Haico

    2010-09-01

    Cells respond to ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) by orchestrating events that coordinate cell cycle progression and DNA repair. How cells signal and repair DSBs is not yet fully understood. A genome-wide RNA interference screen in Caenorhabditis elegans identified egr-1 as a factor that protects worm cells against IR. The human homologue of egr-1, MTA2 (metastasis-associated protein 2), is a subunit of the nucleosome-remodeling and histone deacetylation (NuRD) chromatin-remodeling complex. We show that knockdown of MTA2 and CHD4 (chromodomain helicase DNA-binding protein 4), the catalytic subunit (adenosine triphosphatase [ATPase]) of NuRD, leads to accumulation of spontaneous DNA damage and increased IR sensitivity. MTA2 and CHD4 accumulate in DSB-containing chromatin tracks generated by laser microirradiation. Directly at DSBs, CHD4 stimulates RNF8/RNF168-dependent formation of ubiquitin conjugates to facilitate the accrual of RNF168 and BRCA1. Finally, we show that CHD4 promotes DSB repair and checkpoint activation in response to IR. Thus, the NuRD chromatin-remodeling complex is a novel regulator of DNA damage responses that orchestrates proper signaling and repair of DSBs. PMID:20805320

  13. The Arabidopsis SWR1 Chromatin-Remodeling Complex Is Important for DNA Repair, Somatic Recombination, and Meiosis[W][OPEN

    PubMed Central

    Rosa, Marisa; Von Harder, Mona; Aiese Cigliano, Riccardo; Schlögelhofer, Peter; Mittelsten Scheid, Ortrun

    2013-01-01

    All processes requiring interaction with DNA are attuned to occur within the context of the complex chromatin structure. As it does for programmed transcription and replication, this also holds true for unscheduled events, such as repair of DNA damage. Lesions such as double-strand breaks occur randomly; their repair requires that enzyme complexes access DNA at potentially any genomic site. This is achieved by chromatin remodeling factors that can locally slide, evict, or change nucleosomes. Here, we show that the Swi2/Snf2-related (SWR1 complex), known to deposit histone H2A.Z, is also important for DNA repair in Arabidopsis thaliana. Mutations in genes for Arabidopsis SWR1 complex subunits PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1, ACTIN-RELATED PROTEIN6, and SWR1 COMPLEX6 cause hypersensitivity to various DNA damaging agents. Even without additional genotoxic stress, these mutants show symptoms of DNA damage accumulation. The reduced DNA repair capacity is connected with impaired somatic homologous recombination, in contrast with the hyper-recombinogenic phenotype of yeast SWR1 mutants. This suggests functional diversification between lower and higher eukaryotes. Finally, reduced fertility and irregular gametogenesis in the Arabidopsis SWR1 mutants indicate an additional role for the chromatin-remodeling complex during meiosis. These results provide evidence for the importance of Arabidopsis SWR1 in somatic DNA repair and during meiosis. PMID:23780875

  14. Structural insights into the functions of the FANCM-FAAP24 complex in DNA repair.

    PubMed

    Yang, Hui; Zhang, Tianlong; Tao, Ye; Wang, Fang; Tong, Liang; Ding, Jianping

    2013-12-01

    Fanconi anemia (FA) is a genetically heterogeneous disorder associated with deficiencies in the FA complementation group network. FA complementation group M (FANCM) and FA-associated protein 24 kDa (FAAP24) form a stable complex to anchor the FA core complex to chromatin in repairing DNA interstrand crosslinks. Here, we report the first crystal structure of the C-terminal segment of FANCM in complex with FAAP24. The C-terminal segment of FANCM and FAAP24 both consist of a nuclease domain at the N-terminus and a tandem helix-hairpin-helix (HhH)2 domain at the C-terminus. The FANCM-FAAP24 complex exhibits a similar architecture as that of ApXPF. However, the variations of several key residues and the electrostatic property at the active-site region render a catalytically inactive nuclease domain of FANCM, accounting for the lack of nuclease activity. We also show that the first HhH motif of FAAP24 is a potential binding site for DNA, which plays a critical role in targeting FANCM-FAAP24 to chromatin. These results reveal the mechanistic insights into the functions of FANCM-FAAP24 in DNA repair. PMID:24003026

  15. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma

    PubMed Central

    Yoshimoto, Koji; Mizoguchi, Masahiro; Hata, Nobuhiro; Murata, Hideki; Hatae, Ryusuke; Amano, Toshiyuki; Nakamizo, Akira; Sasaki, Tomio

    2012-01-01

    Many conventional chemotherapeutic drugs exert their cytotoxic function by inducing DNA damage in the tumor cell. Therefore, a cell-inherent DNA repair pathway, which reverses the DNA-damaging effect of the cytotoxic drugs, can mediate therapeutic resistance to chemotherapy. The monofunctional DNA-alkylating agent temozolomide (TMZ) is a commonly used chemotherapeutic drug and the gold standard treatment for glioblastoma (GBM). Although the activity of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) has been described as the main modulator to determine the sensitivity of GBM to TMZ, a subset of GBM does not respond despite MGMT inactivation, suggesting that another DNA repair mechanism may also modulate the tolerance to TMZ. Considerable interest has focused on MGMT, mismatch repair (MMR), and the base excision repair (BER) pathway in the mechanism of mediating TMZ resistance, but emerging roles for the DNA strand-break repair pathway have been demonstrated. In the first part of this review article, we briefly review the significant role of MGMT, MMR, and the BER pathway in the tolerance to TMZ; in the last part, we review the recent publications that demonstrate possible roles of DNA strand-break repair pathways, such as single-strand break repair and double-strand break repair, as well as the Fanconi anemia pathway in the repair process after alkylating agent-based therapy. It is possible that all of these repair pathways have a potential to modulate the sensitivity to TMZ and aid in overcoming the therapeutic resistance in the clinic. PMID:23227453

  16. Optimality in DNA repair

    PubMed Central

    Richard, Morgiane; Fryett, Matthew; Miller, Samantha; Booth, Ian; Grebogi, Celso; Moura, Alessandro

    2012-01-01

    DNA within cells is subject to damage from various sources. Organisms have evolved a number of mechanisms to repair DNA damage. The activity of repair enzymes carries its own risk, however, because the repair of two nearby lesions may lead to the breakup of DNA and result in cell death. We propose a mathematical theory of the damage and repair process in the important scenario where lesions are caused in bursts. We use this model to show that there is an optimum level of repair enzymes within cells which optimises the cell's response to damage. This optimal level is explained as the best trade-off between fast repair and a low probability of causing double-stranded breaks. We derive our results analytically and test them using stochastic simulations, and compare our predictions with current biological knowledge. PMID:21945337

  17. Optimality in DNA repair.

    PubMed

    Richard, Morgiane; Fryett, Matthew; Miller, Samantha; Booth, Ian; Grebogi, Celso; Moura, Alessandro

    2012-01-01

    DNA within cells is subject to damage from various sources. Organisms have evolved a number of mechanisms to repair DNA damage. The activity of repair enzymes carries its own risk, however, because the repair of two nearby lesions may lead to the breakup of DNA and result in cell death. We propose a mathematical theory of the damage and repair process in the important scenario where lesions are caused in bursts. We use this model to show that there is an optimum level of repair enzymes within cells which optimises the cell's response to damage. This optimal level is explained as the best trade-off between fast repair and a low probability of causing double-stranded breaks. We derive our results analytically and test them using stochastic simulations, and compare our predictions with current biological knowledge. PMID:21945337

  18. Identification of a BRCA1-mRNA Splicing Complex Required for Efficient DNA Repair and Maintenance of Genomic Stability

    PubMed Central

    Savage, Kienan I.; Gorski, Julia J.; Barros, Eliana M.; Irwin, Gareth W.; Manti, Lorenzo; Powell, Alexander J.; Pellagatti, Andrea; Lukashchuk, Natalia; McCance, Dennis J.; McCluggage, W. Glenn; Schettino, Giuseppe; Salto-Tellez, Manuel; Boultwood, Jacqueline; Richard, Derek J.; McDade, Simon S.; Harkin, D. Paul

    2014-01-01

    Summary Mutations within BRCA1 predispose carriers to a high risk of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through the assembly of multiple protein complexes involved in DNA repair, cell-cycle arrest, and transcriptional regulation. Here, we report the identification of a DNA damage-induced BRCA1 protein complex containing BCLAF1 and other key components of the mRNA-splicing machinery. In response to DNA damage, this complex regulates pre-mRNA splicing of a number of genes involved in DNA damage signaling and repair, thereby promoting the stability of these transcripts/proteins. Further, we show that abrogation of this complex results in sensitivity to DNA damage, defective DNA repair, and genomic instability. Interestingly, mutations in a number of proteins found within this complex have been identified in numerous cancer types. These data suggest that regulation of splicing by the BRCA1-mRNA splicing complex plays an important role in the cellular response to DNA damage. PMID:24746700

  19. Recombinational DNA Repair in Bacteria

    E-print Network

    Cox, Michael M.

    Recombinational DNA Repair in Bacteria: Postreplication Kevin P Rice,University of Wisconsin Recombinational DNA repair represents the primary function for homologous DNA recombination in bacteria. Most of genetic diversity, primarily during conjugation, homologous DNA recombination in bacteria is now

  20. Hypoxia and DNA Repair

    PubMed Central

    Glazer, Peter M.; Hegan, Denise C.; Lu, Yuhong; Czochor, Jennifer; Scanlon, Susan E.

    2013-01-01

    Hypoxia is a characteristic feature of solid tumors and occurs very early in neoplastic development. Hypoxia transforms cell physiology in multiple ways, with profound changes in cell metabolism, cell growth, susceptibility to apoptosis, induction of angiogenesis, and increased motility. Over the past 20 years, our lab has determined that hypoxia also induces genetic instability. We have conducted a large series of experiments revealing that this instability occurs through the alteration of DNA repair pathways, including nucleotide excision repair, DNA mismatch repair, and homology dependent repair. Our work suggests that hypoxia, as a key component of solid tumors, can drive cancer progression through its impact on genomic integrity. However, the acquired changes in DNA repair that are induced by hypoxia may also render hypoxic cancer cells vulnerable to tailored strategies designed to exploit these changes. PMID:24348208

  1. The Mre11-Rad50-Xrs2 Complex Is Required for Yeast DNA Postreplication Repair

    PubMed Central

    Ball, Lindsay G.; Hanna, Michelle D.; Lambrecht, Amanda D.; Mitchell, Bryan A.; Ziola, Barry; Cobb, Jennifer A.; Xiao, Wei

    2014-01-01

    Yeast DNA postreplication repair (PRR) bypasses replication-blocking lesions to prevent damage-induced cell death. PRR employs two different mechanisms to bypass damaged DNA, namely translesion synthesis (TLS) and error-free PRR, which are regulated via sequential ubiquitination of proliferating cell nuclear antigen (PCNA). We previously demonstrated that error-free PRR utilizes homologous recombination to facilitate template switching. To our surprise, genes encoding the Mre11-Rad50-Xrs2 (MRX) complex, which are also required for homologous recombination, are epistatic to TLS mutations. Further genetic analyses indicated that two other nucleases involved in double-strand end resection, Sae2 and Exo1, are also variably required for efficient lesion bypass. The involvement of the above genes in TLS and/or error-free PRR could be distinguished by the mutagenesis assay and their differential effects on PCNA ubiquitination. Consistent with the observation that the MRX complex is required for both branches of PRR, the MRX complex was found to physically interact with Rad18 in vivo. In light of the distinct and overlapping activities of the above nucleases in the resection of double-strand breaks, we propose that the interplay between distinct single-strand nucleases dictate the preference between TLS and error-free PRR for lesion bypass. PMID:25343618

  2. Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair

    Microsoft Academic Search

    Kamila Czornak; Sanaullah Chughtai; Krystyna H. Chrzanowska

    2008-01-01

    Genomes are subject to a number of exogenous or endogenous DNA-damaging agents that cause DNA double-strand breaks (DSBs).\\u000a These critical DNA lesions can result in cell death or a wide variety of genetic alterations, including deletions, translocations,\\u000a loss of heterozygosity, chromosome loss, or chromosome fusions, which enhance genome instability and can trigger carcinogenesis.\\u000a The cells have developed an efficient mechanism

  3. Sequential and ordered assembly of a large DNA repair complex on undamaged chromatin

    PubMed Central

    Ziani, Salim; Nagy, Zita; Alekseev, Sergey; Soutoglou, Evi; Egly, Jean-Marc

    2014-01-01

    In nucleotide excision repair (NER), damage recognition by XPC-hHR23b is described as a critical step in the formation of the preincision complex (PInC) further composed of TFIIH, XPA, RPA, XPG, and ERCC1-XPF. To obtain new molecular insights into the assembly of the PInC, we analyzed its formation independently of DNA damage by using the lactose operator/repressor reporter system. We observed a sequential and ordered self-assembly of the PInC operating upon immobilization of individual NER factors on undamaged chromatin and mimicking that functioning on a bona fide NER substrate. We also revealed that the recruitment of the TFIIH subunit TTDA, involved in trichothiodystrophy group A disorder (TTD-A), was key in the completion of the PInC. TTDA recruits XPA through its first 15 amino acids, depleted in some TTD-A patients. More generally, these results show that proteins forming large nuclear complexes can be recruited sequentially on chromatin in the absence of their natural DNA target and with no reciprocity in their recruitment. PMID:25154395

  4. Both hMutS? and hMutSß DNA Mismatch Repair Complexes Participate in 5Fluorouracil Cytotoxicity

    Microsoft Academic Search

    Akihiro Tajima; Moriya Iwaizumi; Stephanie Tseng-Rogenski; Betty L. Cabrera; John M. Carethers

    2011-01-01

    BackgroundPatients with advanced microsatellite unstable colorectal cancers do not show a survival benefit from 5-fluorouracil (5-FU)-based chemotherapy. We and others have shown that the DNA mismatch repair (MMR) complex hMutS? binds 5-FU incorporated into DNA. Although hMutSß is known to interact with interstrand crosslinks (ICLs) induced by drugs such as cisplatin and psoralen, it has not been demonstrated to interact

  5. Single molecule Studies of DNA Mismatch Repair

    PubMed Central

    Erie, Dorothy A.; Weninger, Keith R.

    2015-01-01

    DNA mismatch repair involves is a widely conserved set of proteins that is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair. PMID:24746644

  6. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB

    SciTech Connect

    Yu,B.; Edstrom, W.; Benach, J.; Hamuro, Y.; Weber, P.; Gibney, B.; Hunt, J.

    2006-01-01

    Nucleic acid damage by environmental and endogenous alkylation reagents creates lesions that are both mutagenic and cytotoxic, with the latter effect accounting for their widespread use in clinical cancer chemotherapy. Escherichia coliAlkB and the homologous human proteins ABH2 and ABH3 (refs 5, 7) promiscuously repair DNA and RNA bases damaged by SN2 alkylation reagents, which attach hydrocarbons to endocyclic ring nitrogen atoms (N1 of adenine and guanine and N3 of thymine and cytosine). Although the role of AlkB in DNA repair has long been established based on phenotypic studies, its exact biochemical activity was only elucidated recently after sequence profile analysis revealed it to be a member of the Fe-oxoglutarate-dependent dioxygenase superfamily. These enzymes use an Fe(ii) cofactor and 2-oxoglutarate co-substrate to oxidize organic substrates. AlkB hydroxylates an alkylated nucleotide base to produce an unstable product that releases an aldehyde to regenerate the unmodified base. Here we have determined crystal structures of substrate and product complexes of E. coli AlkB at resolutions from 1.8 to 2.3 Angstroms. Whereas the Fe-2-oxoglutarate dioxygenase core matches that in other superfamily members, a unique subdomain holds a methylated trinucleotide substrate into the active site through contacts to the polynucleotide backbone. Amide hydrogen exchange studies and crystallographic analyses suggest that this substrate-binding 'lid' is conformationally flexible, which may enable docking of diverse alkylated nucleotide substrates in optimal catalytic geometry. Different crystal structures show open and closed states of a tunnel putatively gating O2 diffusion into the active site. Exposing crystals of the anaerobic Michaelis complex to air yields slow but substantial oxidation of 2-oxoglutarate that is inefficiently coupled to nucleotide oxidation. These observations suggest that protein dynamics modulate redox chemistry and that a hypothesized migration of the reactive oxy-ferryl ligand on the catalytic Fe ion may be impeded when the protein is constrained in the crystal lattice.

  7. Chemical trapping of the dynamic MutS-MutL complex formed in DNA mismatch repair in Escherichia coli.

    PubMed

    Winkler, Ines; Marx, Andreas D; Lariviere, Damien; Heinze, Roger J; Cristovao, Michele; Reumer, Annet; Curth, Ute; Sixma, Titia K; Friedhoff, Peter

    2011-05-13

    The ternary complex comprising MutS, MutL, and DNA is a key intermediate in DNA mismatch repair. We used chemical cross-linking and fluorescence resonance energy transfer (FRET) to study the interaction between MutS and MutL and to shed light onto the structure of this complex. Via chemical cross-linking, we could stabilize this dynamic complex and identify the structural features of key events in DNA mismatch repair. We could show that in the complex between MutS and MutL the mismatch-binding and connector domains of MutS are in proximity to the N-terminal ATPase domain of MutL. The DNA- and nucleotide-dependent complex formation could be monitored by FRET using single cysteine variants labeled in the connector domain of MutS and the transducer domain of MutL, respectively. In addition, we could trap MutS after an ATP-induced conformational change by an intramolecular cross-link between Cys-93 of the mismatch-binding domain and Cys-239 of the connector domain. PMID:21454657

  8. DNA end resection is needed for the repair of complex lesions in G1-phase human cells.

    PubMed

    Averbeck, Nicole B; Ringel, Oliver; Herrlitz, Maren; Jakob, Burkhard; Durante, Marco; Taucher-Scholz, Gisela

    2014-01-01

    Repair of DNA double strand breaks (DSBs) is influenced by the chemical complexity of the lesion. Clustered lesions (complex DSBs) are generally considered more difficult to repair and responsible for early and late cellular effects after exposure to genotoxic agents. Resection is commonly used by the cells as part of the homologous recombination (HR) pathway in S- and G2-phase. In contrast, DNA resection in G1-phase may lead to an error-prone microhomology-mediated end joining. We induced DNA lesions with a wide range of complexity by irradiation of mammalian cells with X-rays or accelerated ions of different velocity and mass. We found replication protein A (RPA) foci indicating DSB resection both in S/G2- and G1-cells, and the fraction of resection-positive cells correlates with the severity of lesion complexity throughout the cell cycle. Besides RPA, Ataxia telangiectasia and Rad3-related (ATR) was recruited to complex DSBs both in S/G2- and G1-cells. Resection of complex DSBs is driven by meiotic recombination 11 homolog A (MRE11), CTBP-interacting protein (CtIP), and exonuclease 1 (EXO1) but seems not controlled by the Ku heterodimer or by phosphorylation of H2AX. Reduced resection capacity by CtIP depletion increased cell killing and the fraction of unrepaired DSBs after exposure to densely ionizing heavy ions, but not to X-rays. We conclude that in mammalian cells resection is essential for repair of complex DSBs in all phases of the cell-cycle and targeting this process sensitizes mammalian cells to cytotoxic agents inducing clustered breaks, such as in heavy-ion cancer therapy. PMID:25486192

  9. RNA-templated DNA repair

    Microsoft Academic Search

    Francesca Storici; Katarzyna Bebenek; Thomas A. Kunkel; Dmitry A. Gordenin; Michael A. Resnick

    2007-01-01

    RNA can act as a template for DNA synthesis in the reverse transcription of retroviruses and retrotransposons and in the elongation of telomeres. Despite its abundance in the nucleus, there has been no evidence for a direct role of RNA as a template in the repair of any chromosomal DNA lesions, including DNA double-strand breaks (DSBs), which are repaired in

  10. Drug resistance and DNA repair

    Microsoft Academic Search

    Margaret Fox; John J. Roberts

    1987-01-01

    DNA repair confers resistance to anticancer drugs which kill cells by reacting with DNA. A review of our current information on the topic will be presented here. Our understanding of the molecular biology of repair of 06-alkylguanine adducts in DNA has advanced as a result of the molecular cloning of the E. coli ada gene but the precise role of

  11. Mutagenic DNA repair in enterobacteria.

    PubMed Central

    Sedgwick, S G; Ho, C; Woodgate, R

    1991-01-01

    Sixteen species of enterobacteria have been screened for mutagenic DNA repair activity. In Escherichia coli, mutagenic DNA repair is encoded by the umuDC operon. Synthesis of UmuD and UmuC proteins is induced as part of the SOS response to DNA damage, and after induction, the UmuD protein undergoes an autocatalytic cleavage to produce the carboxy-terminal UmuD' fragment needed for induced mutagenesis. The presence of a similar system in other species was examined by using a combined approach of inducible-mutagenesis assays, cross-reactivity to E. coli UmuD and UmuD' antibodies to test for induction and cleavage of UmuD-like proteins, and hybridization with E. coli and Salmonella typhimurium umu DNA probes to map umu-like genes. The results indicate a more widespread distribution of mutagenic DNA repair in other species than was previously thought. They also show that umu loci can be more complex in other species than in E. coli. Differences in UV-induced mutability of more than 200-fold were seen between different species of enteric bacteria and even between multiple natural isolates of E. coli, and yet some of the species which display a poorly mutable phenotype still have umu-like genes and proteins. It is suggested that umDC genes can be curtailed in their mutagenic activities but that they may still participate in some other, unknown process which provides the continued stimulus for their retention. Images PMID:1885540

  12. Structure of p15PAF–PCNA complex and implications for clamp sliding during DNA replication and repair

    NASA Astrophysics Data System (ADS)

    de Biasio, Alfredo; de Opakua, Alain Ibáñez; Mortuza, Gulnahar B.; Molina, Rafael; Cordeiro, Tiago N.; Castillo, Francisco; Villate, Maider; Merino, Nekane; Delgado, Sandra; Gil-Cartón, David; Luque, Irene; Diercks, Tammo; Bernadó, Pau; Montoya, Guillermo; Blanco, Francisco J.

    2015-03-01

    The intrinsically disordered protein p15PAF regulates DNA replication and repair by binding to the proliferating cell nuclear antigen (PCNA) sliding clamp. We present the structure of the human p15PAF–PCNA complex. Crystallography and NMR show the central PCNA-interacting protein motif (PIP-box) of p15PAF tightly bound to the front-face of PCNA. In contrast to other PCNA-interacting proteins, p15PAF also contacts the inside of, and passes through, the PCNA ring. The disordered p15PAF termini emerge at opposite faces of the ring, but remain protected from 20S proteasomal degradation. Both free and PCNA-bound p15PAF binds DNA mainly through its histone-like N-terminal tail, while PCNA does not, and a model of the ternary complex with DNA inside the PCNA ring is consistent with electron micrographs. We propose that p15PAF acts as a flexible drag that regulates PCNA sliding along the DNA and facilitates the switch from replicative to translesion synthesis polymerase binding.

  13. A novel interplay between the Fanconi anemia core complex and ATR-ATRIP kinase during DNA cross-link repair

    PubMed Central

    Tomida, Junya; Itaya, Akiko; Shigechi, Tomoko; Unno, Junya; Uchida, Emi; Ikura, Masae; Masuda, Yuji; Matsuda, Shun; Adachi, Jun; Kobayashi, Masahiko; Meetei, Amom Ruhikanta; Maehara, Yoshihiko; Yamamoto, Ken-ichi; Kamiya, Kenji; Matsuura, Akira; Matsuda, Tomonari; Ikura, Tsuyoshi; Ishiai, Masamichi; Takata, Minoru

    2013-01-01

    When DNA replication is stalled at sites of DNA damage, a cascade of responses is activated in the cell to halt cell cycle progression and promote DNA repair. A pathway initiated by the kinase Ataxia teleangiectasia and Rad3 related (ATR) and its partner ATR interacting protein (ATRIP) plays an important role in this response. The Fanconi anemia (FA) pathway is also activated following genomic stress, and defects in this pathway cause a cancer-prone hematologic disorder in humans. Little is known about how these two pathways are coordinated. We report here that following cellular exposure to DNA cross-linking damage, the FA core complex enhances binding and localization of ATRIP within damaged chromatin. In cells lacking the core complex, ATR-mediated phosphorylation of two functional response targets, ATRIP and FANCI, is defective. We also provide evidence that the canonical ATR activation pathway involving RAD17 and TOPBP1 is largely dispensable for the FA pathway activation. Indeed DT40 mutant cells lacking both RAD17 and FANCD2 were synergistically more sensitive to cisplatin compared with either single mutant. Collectively, these data reveal new aspects of the interplay between regulation of ATR-ATRIP kinase and activation of the FA pathway. PMID:23723247

  14. DNA repair in cultured keratinocytes

    SciTech Connect

    Liu, S.C.; Parsons, S.; Hanawalt, P.C.

    1983-07-01

    Most of our understanding of DNA repair mechanisms in human cells has come from the study of these processes in cultured fibroblasts. The unique properties of keratinocytes and their pattern of terminal differentiation led us to a comparative examination of their DNA repair properties. The relative repair capabilities of the basal cells and the differentiated epidermal keratinocytes as well as possible correlations of DNA repair capacity with respect to age of the donor have been examined. In addition, since portions of human skin are chronically exposed to sunlight, the repair response to ultraviolet (UV) irradiation (254 nm) when the cells are conditioned by chronic low-level UV irradiation has been assessed. The comparative studies of DNA repair in keratinocytes from infant and aged donors have revealed no significant age-related differences for repair of UV-induced damage to DNA. Sublethal UV conditioning of cells from infant skin had no appreciable effect on either the repair or normal replication response to higher, challenge doses of UVL. However, such conditioning resulted in attenuated repair in keratinocytes from adult skin after UV doses above 25 J/m2. In addition, a surprising enhancement in replication was seen in conditioned cells from adult following challenge UV doses.

  15. Molecular Mechanisms of the Whole DNA Repair System: A Comparison of Bacterial and Eukaryotic Systems

    PubMed Central

    Morita, Rihito; Nakane, Shuhei; Shimada, Atsuhiro; Inoue, Masao; Iino, Hitoshi; Wakamatsu, Taisuke; Fukui, Kenji; Nakagawa, Noriko; Masui, Ryoji; Kuramitsu, Seiki

    2010-01-01

    DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly in Thermus thermophilus HB8. PMID:20981145

  16. Linking transcription with DNA repair, damage tolerance, and genome duplication

    E-print Network

    Collins, James J.

    complexes mask the DNA dam- age from recognition and removal by repair systems (3) (Fig. 1A). Transcription machinery, indicates that NusA promotes lesion removal by nucleotide ex- cision repair (7). The known/sensitivity of these RNAP mutants, lending strong support to the view that NusA promotes DNA dam- age repair in addition

  17. Energy and Technology Review: Unlocking the mysteries of DNA repair

    SciTech Connect

    Quirk, W.A.

    1993-04-01

    DNA, the genetic blueprint, has the remarkable property of encoding its own repair following diverse types of structural damage induced by external agents or normal metabolism. We are studying the interplay of DNA damaging agents, repair genes, and their protein products to decipher the complex biochemical pathways that mediate such repair. Our research focuses on repair processes that correct DNA damage produced by chemical mutagens and radiation, both ionizing and ultraviolet. The most important type of DNA repair in human cells is called excision repair. This multistep process removes damaged or inappropriate pieces of DNA -- often as a string of 29 nucleotides containing the damage -- and replaces them with intact ones. We have isolated, cloned, and mapped several human repair genes associated with the nucleotide excision repair pathway and involved in the repair of DNA damage after exposure to ultraviolet light or mutagens in cooked food. We have shown that a defect in one of these repair genes, ERCC2, is responsible for the repair deficiency in one of the groups of patients with the recessive genetic disorder xeroderma pigmentosum (XP group D). We are exploring ways to purify sufficient quantities (milligrams) of the protein products of these and other repair genes so that we can understand their functions. Our long-term goals are to link defective repair proteins to human DNA repair disorders that predispose to cancer, and to produce DNA-repair-deficient mice that can serve as models for the human disorders.

  18. Structural biology of disease-associated repetitive DNA sequences and protein-DNA complexes involved in DNA damage and repair

    SciTech Connect

    Gupta, G.; Santhana Mariappan, S.V.; Chen, X.; Catasti, P.; Silks, L.A. III; Moyzis, R.K.; Bradbury, E.M.; Garcia, A.E.

    1997-07-01

    This project is aimed at formulating the sequence-structure-function correlations of various microsatellites in the human (and other eukaryotic) genomes. Here the authors have been able to develop and apply structure biology tools to understand the following: the molecular mechanism of length polymorphism microsatellites; the molecular mechanism by which the microsatellites in the noncoding regions alter the regulation of the associated gene; and finally, the molecular mechanism by which the expansion of these microsatellites impairs gene expression and causes the disease. Their multidisciplinary structural biology approach is quantitative and can be applied to all coding and noncoding DNA sequences associated with any gene. Both NIH and DOE are interested in developing quantitative tools for understanding the function of various human genes for prevention against diseases caused by genetic and environmental effects.

  19. DNA Repair Deficiency in Neurodegeneration

    PubMed Central

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A.; Stevnsner, Tinna

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington’s disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration. PMID:21550379

  20. DNA encoding a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  1. DNA demethylation by DNA repair

    E-print Network

    Gehring, Mary

    Active DNA demethylation underlies key facets of reproduction in flowering plants and mammals and serves a general genome housekeeping function in plants. A family of 5-methylcytosine DNA glycosylases catalyzes plant ...

  2. Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage

    SciTech Connect

    Noda, Taichi [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan) [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Takahashi, Akihisa [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)] [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Kondo, Natsuko [Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)] [Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Mori, Eiichiro [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)] [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Okamoto, Noritomo [Department of Otorhinolaryngology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)] [Department of Otorhinolaryngology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nakagawa, Yosuke [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)] [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ohnishi, Ken [Department of Biology, Ibaraki Prefectual University of Health Sciences, 4669-2 Ami, Ami-mati, Inasiki-gun, Ibaraki 300-0394 (Japan)] [Department of Biology, Ibaraki Prefectual University of Health Sciences, 4669-2 Ami, Ami-mati, Inasiki-gun, Ibaraki 300-0394 (Japan); Zdzienicka, Malgorzata Z. [Department of Molecular Cell Genetics, Collegium Medicum in Bydgoszcz, Nicolaus-Copernicus-University in Torun, ul. Sklodowskiej-Curie 9, 85-094 Bydgoszcz (Poland)] [Department of Molecular Cell Genetics, Collegium Medicum in Bydgoszcz, Nicolaus-Copernicus-University in Torun, ul. Sklodowskiej-Curie 9, 85-094 Bydgoszcz (Poland); Thompson, Larry H. [Biosciences and Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808 (United States)] [Biosciences and Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808 (United States); Helleday, Thomas [Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ (United Kingdom) [Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ (United Kingdom); Department of Genetics, Microbiology and Toxicology Stockholm University, SE-106 91 Stockholm (Sweden); Asada, Hideo [Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)] [Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); and others

    2011-01-07

    The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA{sup -/-}, FANCC{sup -/-}, FANCA{sup -/-}C{sup -/-}, FANCD2{sup -/-} and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical {gamma}H2AX-staining assay. Although the sensitivity of FANCA{sup -/-}, FANCC{sup -/-} and FANCA{sup -/-}C{sup -/-} cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2{sup -/-} cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, {gamma}H2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: {yields} We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). {yields} DSBs are repaired through the Fanconi anemia (FA) repair pathway. {yields} This pathway is independent of the FA nuclear core complex. {yields} We also found that homologous recombination repair was induced by formaldehyde.

  3. Smad7 enhances ATM activity by facilitating the interaction between ATM and Mre11-Rad50-Nbs1 complex in DNA double-strand break repair.

    PubMed

    Park, Sujin; Kang, Jin Muk; Kim, Staci Jakyong; Kim, Hyojung; Hong, Suntaek; Lee, Young Jae; Kim, Seong-Jin

    2015-02-01

    Genomic instability is one of the representative causes in genetic disorder, where the proper cellular response to DNA damage is essential in maintaining genomic stability. ATM and the Mre11-Rad50-Nbs1 (MRN) complex play critical roles in the cellular response to DNA damage such as DNA double-strand break (DSB). In this study, we report that Smad7 is indispensible in DNA damage response as a novel component of MRN complex. Smad7 enhances cell survival against DNA damage by accelerating ATM dependent DNA repair signaling. In Smad7-deficient mouse embryonic fibroblast cells, the loss of Smad7 decreases ATM activation and inhibits recruitment of ATM to the sites of DSBs. Smad7 interacts with Nbs1, a member of MRN complex, and enhances the interaction between ATM and Nbs1 upon DNA damage response, leading to phosphorylation of downstream substrates. Ectopic expression of Smad7 in the skin of mice enhances the phosphorylation of ATM upon X-irradiation. We found that effect of Smad7 on enhancing DNA repair is independent of its inhibitory activity of TGF-? signaling. Taken together, our results highlight a critical function of Smad7 in DSB response and establish the novel mechanism in which Smad7 facilitates the recruitment of ATM to the MRN complex through direct interaction with Nbs1. PMID:25063542

  4. DNA repair in Chromobacterium violaceum.

    PubMed

    Duarte, Fábio Teixeira; Carvalho, Fabíola Marques de; Bezerra e Silva, Uaska; Scortecci, Kátia Castanho; Blaha, Carlos Alfredo Galindo; Agnez-Lima, Lucymara Fassarella; Batistuzzo de Medeiros, Silvia Regina

    2004-01-01

    Chromobacterium violaceum is a Gram-negative beta-proteobacterium that inhabits a variety of ecosystems in tropical and subtropical regions, including the water and banks of the Negro River in the Brazilian Amazon. This bacterium has been the subject of extensive study over the last three decades, due to its biotechnological properties, including the characteristic violacein pigment, which has antimicrobial and anti-tumoral activities. C. violaceum promotes the solubilization of gold in a mercury-free process, and has been used in the synthesis of homopolyesters suitable for the production of biodegradable polymers. The complete genome sequence of this organism has been completed by the Brazilian National Genome Project Consortium. The aim of our group was to study the DNA repair genes in this organism, due to their importance in the maintenance of genomic integrity. We identified DNA repair genes involved in different pathways in C. violaceum through a similarity search against known sequences deposited in databases. The phylogenetic analyses were done using programs of the PHILYP package. This analysis revealed various metabolic pathways, including photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, recombinational repair, and the SOS system. The similarity between the C. violaceum sequences and those of Neisserie miningitidis and Ralstonia solanacearum was greater than that between the C. violaceum and Escherichia coli sequences. The peculiarities found in the C. violaceum genome were the absence of LexA, some horizontal transfer events and a large number of repair genes involved with alkyl and oxidative DNA damage. PMID:15100997

  5. REPAIRtoire—a database of DNA repair pathways

    PubMed Central

    Milanowska, Kaja; Krwawicz, Joanna; Papaj, Grzegorz; Kosi?ski, Jan; Poleszak, Katarzyna; Lesiak, Justyna; Osi?ska, Ewelina; Rother, Kristian; Bujnicki, Janusz M.

    2011-01-01

    REPAIRtoire is the first comprehensive database resource for systems biology of DNA damage and repair. The database collects and organizes the following types of information: (i) DNA damage linked to environmental mutagenic and cytotoxic agents, (ii) pathways comprising individual processes and enzymatic reactions involved in the removal of damage, (iii) proteins participating in DNA repair and (iv) diseases correlated with mutations in genes encoding DNA repair proteins. REPAIRtoire provides also links to publications and external databases. REPAIRtoire contains information about eight main DNA damage checkpoint, repair and tolerance pathways: DNA damage signaling, direct reversal repair, base excision repair, nucleotide excision repair, mismatch repair, homologous recombination repair, nonhomologous end-joining and translesion synthesis. The pathway/protein dataset is currently limited to three model organisms: Escherichia coli, Saccharomyces cerevisiae and Homo sapiens. The DNA repair and tolerance pathways are represented as graphs and in tabular form with descriptions of each repair step and corresponding proteins, and individual entries are cross-referenced to supporting literature and primary databases. REPAIRtoire can be queried by the name of pathway, protein, enzymatic complex, damage and disease. In addition, a tool for drawing custom DNA–protein complexes is available online. REPAIRtoire is freely available and can be accessed at http://repairtoire.genesilico.pl/. PMID:21051355

  6. Inhibitors of DNA Repair and Response to Ionising Radiation

    Microsoft Academic Search

    Barbara Vischioni; Nils H. Nicolay; Ricky A. Sharma; Thomas Helleday

    \\u000a Ionising radiation, and most chemotherapeutic agents currently used to treat cancer, target DNA to cause cytotoxicity. The\\u000a cellular response to DNA damage is a complex set of intra-cellular processes involving multiple DNA repair pathways, leading\\u000a either to cell death or to survival if the lesions are repaired or bypassed. Thus, the multiple and redundant pathways involved\\u000a in the repair of

  7. ZTF-8 Interacts with the 9-1-1 Complex and Is Required for DNA Damage Response and Double-Strand Break Repair in the C. elegans Germline

    PubMed Central

    Kim, Hyun-Min; Colaiácovo, Monica P.

    2014-01-01

    Germline mutations in DNA repair genes are linked to tumor progression. Furthermore, failure in either activating a DNA damage checkpoint or repairing programmed meiotic double-strand breaks (DSBs) can impair chromosome segregation. Therefore, understanding the molecular basis for DNA damage response (DDR) and DSB repair (DSBR) within the germline is highly important. Here we define ZTF-8, a previously uncharacterized protein conserved from worms to humans, as a novel factor involved in the repair of both mitotic and meiotic DSBs as well as in meiotic DNA damage checkpoint activation in the C. elegans germline. ztf-8 mutants exhibit specific sensitivity to ?-irradiation and hydroxyurea, mitotic nuclear arrest at S-phase accompanied by activation of the ATL-1 and CHK-1 DNA damage checkpoint kinases, as well as accumulation of both mitotic and meiotic recombination intermediates, indicating that ZTF-8 functions in DSBR. However, impaired meiotic DSBR progression partially fails to trigger the CEP-1/p53-dependent DNA damage checkpoint in late pachytene, also supporting a role for ZTF-8 in meiotic DDR. ZTF-8 partially co-localizes with the 9-1-1 DDR complex and interacts with MRT-2/Rad1, a component of this complex. The human RHINO protein rescues the phenotypes observed in ztf-8 mutants, suggesting functional conservation across species. We propose that ZTF-8 is involved in promoting repair at stalled replication forks and meiotic DSBs by transducing DNA damage checkpoint signaling via the 9-1-1 pathway. Our findings define a conserved function for ZTF-8/RHINO in promoting genomic stability in the germline. PMID:25329393

  8. Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex.

    PubMed

    Ekumi, Kingsley M; Paculova, Hana; Lenasi, Tina; Pospichalova, Vendula; Bösken, Christian A; Rybarikova, Jana; Bryja, Vitezslav; Geyer, Matthias; Blazek, Dalibor; Barboric, Matjaz

    2015-03-11

    The Cdk12/CycK complex promotes expression of a subset of RNA polymerase II genes, including those of the DNA damage response. CDK12 is among only nine genes with recurrent somatic mutations in high-grade serous ovarian carcinoma. However, the influence of these mutations on the Cdk12/CycK complex and their link to cancerogenesis remain ill-defined. Here, we show that most mutations prevent formation of the Cdk12/CycK complex, rendering the kinase inactive. By examining the mutations within the Cdk12/CycK structure, we find that they likely provoke structural rearrangements detrimental to Cdk12 activation. Our mRNA expression analysis of the patient samples containing the CDK12 mutations reveals coordinated downregulation of genes critical to the homologous recombination DNA repair pathway. Moreover, we establish that the Cdk12/CycK complex occupies these genes and promotes phosphorylation of RNA polymerase II at Ser2. Accordingly, we demonstrate that the mutant Cdk12 proteins fail to stimulate the faithful DNA double strand break repair via homologous recombination. Together, we provide the molecular basis of how mutated CDK12 ceases to function in ovarian carcinoma. We propose that CDK12 is a tumor suppressor of which the loss-of-function mutations may elicit defects in multiple DNA repair pathways, leading to genomic instability underlying the genesis of the cancer. PMID:25712099

  9. Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex

    PubMed Central

    Ekumi, Kingsley M.; Paculova, Hana; Lenasi, Tina; Pospichalova, Vendula; Bösken, Christian A.; Rybarikova, Jana; Bryja, Vitezslav; Geyer, Matthias; Blazek, Dalibor; Barboric, Matjaz

    2015-01-01

    The Cdk12/CycK complex promotes expression of a subset of RNA polymerase II genes, including those of the DNA damage response. CDK12 is among only nine genes with recurrent somatic mutations in high-grade serous ovarian carcinoma. However, the influence of these mutations on the Cdk12/CycK complex and their link to cancerogenesis remain ill-defined. Here, we show that most mutations prevent formation of the Cdk12/CycK complex, rendering the kinase inactive. By examining the mutations within the Cdk12/CycK structure, we find that they likely provoke structural rearrangements detrimental to Cdk12 activation. Our mRNA expression analysis of the patient samples containing the CDK12 mutations reveals coordinated downregulation of genes critical to the homologous recombination DNA repair pathway. Moreover, we establish that the Cdk12/CycK complex occupies these genes and promotes phosphorylation of RNA polymerase II at Ser2. Accordingly, we demonstrate that the mutant Cdk12 proteins fail to stimulate the faithful DNA double strand break repair via homologous recombination. Together, we provide the molecular basis of how mutated CDK12 ceases to function in ovarian carcinoma. We propose that CDK12 is a tumor suppressor of which the loss-of-function mutations may elicit defects in multiple DNA repair pathways, leading to genomic instability underlying the genesis of the cancer. PMID:25712099

  10. Chromatin dynamics in DNA double-strand break repair

    PubMed Central

    Shi, Lei; Oberdoerffer, Philipp

    2012-01-01

    DNA double-strand breaks (DSBs) occur in the context of a highly organized chromatin environment and are, thus, a significant threat to the epigenomic integrity of eukaryotic cells. Changes in break-proximal chromatin structure are thought to be a prerequisite for efficient DNA repair and may help protect the structural integrity of the nucleus. Unlike most bona fide DNA repair factors, chromatin influences the repair process at several levels: the existing chromatin context at the site of damage directly affects the access and kinetics of the repair machinery; DSB induced chromatin modifications influence the choice of repair factors, thereby modulating repair outcome; lastly, DNA damage can have a significant impact on chromatin beyond the site of damage. We will discuss recent findings that highlight both the complexity and importance of dynamic and tightly orchestrated chromatin reorganization to ensure efficient DSB repair and nuclear integrity. PMID:22285574

  11. Achaete-Scute Complex Homolog-1 Promotes DNA Repair in the Lung Carcinogenesis through Matrix Metalloproteinase-7 and O(6)-Methylguanine-DNA Methyltransferase

    PubMed Central

    Wang, Xiao-Yang; Jensen-Taubman, Sandra M.; Keefe, Kathleen M.; Yang, Danlei; Linnoila, R. Ilona

    2012-01-01

    Lung cancer is the leading cause of cancer-related deaths in the world. Achaete-scute complex homolog-1 (Ascl1) is a member of the basic helix-loop-helix (bHLH) transcription factor family that has multiple functions in the normal and neoplastic lung such as the regulation of neuroendocrine differentiation, prevention of apoptosis and promotion of tumor–initiating cells. We now show that Ascl1 directly regulates matrix metalloproteinase-7 (MMP-7) and O(6)-methylguanine-DNA methyltransferase (MGMT). Loss- and gain-of-function experiments in human bronchial epithelial and lung carcinoma cell lines revealed that Ascl1, MMP-7 and MGMT are able to protect cells from the tobacco-specific nitrosamine NNK-induced DNA damage and the alkylating agent cisplatin-induced apoptosis. We also examined the role of Ascl1 in NNK-induced lung tumorigenesis in vivo. Using transgenic mice which constitutively expressed human Ascl1 in airway lining cells, we found that there was a delay in lung tumorigenesis. We conclude that Ascl1 potentially enhances DNA repair through activation of MMP-7 and MGMT which may impact lung carcinogenesis and chemoresistance. The study has uncovered a novel and unexpected function of Ascl1 which will contribute to better understanding of lung carcinogenesis and the broad implications of transcription factors in tobacco-related carcinogenesis. PMID:23300791

  12. The carboxyl terminus of FANCE recruits FANCD2 to the Fanconi Anemia (FA) E3 ligase complex to promote the FA DNA repair pathway.

    PubMed

    Polito, David; Cukras, Scott; Wang, Xiaozhe; Spence, Paige; Moreau, Lisa; D'Andrea, Alan D; Kee, Younghoon

    2014-03-01

    Fanconi anemia (FA) is a genome instability syndrome characterized by bone marrow failure and cellular hypersensitivity to DNA cross-linking agents. In response to DNA damage, the FA pathway is activated through the cooperation of 16 FA proteins. A central player in the pathway is a multisubunit E3 ubiquitin ligase complex or the FA core complex, which monoubiquitinates its substrates FANCD2 and FANCI. FANCE, a subunit of the FA core complex, plays an essential role by promoting the integrity of the complex and by directly recognizing FANCD2. To delineate its role in substrate ubiquitination from the core complex assembly, we analyzed a series of mutations within FANCE. We report that a phenylalanine located at the highly conserved extreme C terminus, referred to as Phe-522, is a critical residue for mediating the monoubiquitination of the FANCD2-FANCI complex. Using the FANCE mutant that specifically disrupts the FANCE-FANCD2 interaction as a tool, we found that the interaction-deficient mutant conferred cellular sensitivity in reconstituted FANCE-deficient cells to a similar degree as FANCE null cells, suggesting the significance of the FANCE-FANCD2 interaction in promoting cisplatin resistance. Intriguingly, ectopic expression of the FANCE C terminus fragment alone in FA normal cells disrupts DNA repair, consolidating the importance of the FANCE-FANCD2 interaction in the DNA cross-link repair. PMID:24451376

  13. Final report [DNA Repair and Mutagenesis - 1999

    SciTech Connect

    Walker, Graham C.

    2001-05-30

    The meeting, titled ''DNA Repair and Mutagenesis: Mechanism, Control, and Biological Consequences'', was designed to bring together the various sub-disciplines that collectively comprise the field of DNA Repair and Mutagenesis. The keynote address was titled ''Mutability Doth Play Her Cruel Sports to Many Men's Decay: Variations on the Theme of Translesion Synthesis.'' Sessions were held on the following themes: Excision repair of DNA damage; Transcription and DNA excision repair; UmuC/DinB/Rev1/Rad30 superfamily of DNA polymerases; Cellular responses to DNA damage, checkpoints, and damage tolerance; Repair of mismatched bases, mutation; Genome-instability, and hypermutation; Repair of strand breaks; Replicational fidelity, and Late-breaking developments; Repair and mutation in challenging environments; and Defects in DNA repair: consequences for human disease and aging.

  14. DNA double-strand–break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice

    PubMed Central

    Schipler, Agnes; Iliakis, George

    2013-01-01

    Although the DNA double-strand break (DSB) is defined as a rupture in the double-stranded DNA molecule that can occur without chemical modification in any of the constituent building blocks, it is recognized that this form is restricted to enzyme-induced DSBs. DSBs generated by physical or chemical agents can include at the break site a spectrum of base alterations (lesions). The nature and number of such chemical alterations define the complexity of the DSB and are considered putative determinants for repair pathway choice and the probability that errors will occur during this processing. As the pathways engaged in DSB processing show distinct and frequently inherent propensities for errors, pathway choice also defines the error-levels cells opt to accept. Here, we present a classification of DSBs on the basis of increasing complexity and discuss how complexity may affect processing, as well as how it may cause lethal or carcinogenic processing errors. By critically analyzing the characteristics of DSB repair pathways, we suggest that all repair pathways can in principle remove lesions clustering at the DSB but are likely to fail when they encounter clusters of DSBs that cause a local form of chromothripsis. In the same framework, we also analyze the rational of DSB repair pathway choice. PMID:23804754

  15. The tomato DDI2, a PCNA ortholog, associating with DDB1-CUL4 complex is required for UV-damaged DNA repair and plant tolerance to UV stress.

    PubMed

    Gao, Lanyang; Yang, Shuzhang; Zhu, Yunye; Zhang, Junfang; Zhuo, Ming; Miao, Ming; Tang, Xiaofeng; Liu, Yongsheng; Wang, Songhu

    2015-06-01

    CULLIN 4 (CUL4)-DAMAGED DNA binding protein 1 (DDB1)-based ubiquitin E3 ligase modulates diverse cellular processes including repair of damaged genomic DNA. In this study, an uncharacterized gene termed as DDB1-Interacting protein 2 (DDI2) was identified in yeast two-hybrid screening with bait gene DDB1. The co-immunoprecipitation (co-IP) assays further demonstrated that DDI2 is associated with tomato DDB1-CUL4 complex in vivo. It appears that DDI2 encodes an ortholog of proliferating cell nuclear antigen (PCNA). Confocal microscope observation indicated that DDI2-GFP fusion protein was localized in nuclei. The expression of DDI2 gene is constitutive but substantially enhanced by UV-C irradiation. The transgenic tomato plants with overexpression or knockdown of DDI2 gene displayed the increased or decreased tolerance, respectively, to UV-C stress and chemical mutagen cisplatin. The quantitative analysis of UV-induced DNA lesions indicated that the dark repair of DNA damage was accelerated in DDI2 overexpression lines but delayed in knockdown lines. Conclusively, tomato DDI2 gene is required for UV-induced DNA damage repair and plant tolerance to UV stress. In addition, fruits of DDI2 transgenic plants are indistinguishable from that of wild type, regarding fresh weight and nutrient quality. Therefore, overexpression of DDI2 offers a suitable strategy for genetic manipulation of enhancing plant tolerance to UV stress. PMID:25900570

  16. Complex formation by the human Rad51B and Rad51C DNA repair proteins and their activities in vitro

    NASA Technical Reports Server (NTRS)

    Lio, Yi-Ching; Mazin, Alexander V.; Kowalczykowski, Stephen C.; Chen, David J.

    2003-01-01

    The human Rad51 protein is essential for DNA repair by homologous recombination. In addition to Rad51 protein, five paralogs have been identified: Rad51B/Rad51L1, Rad51C/Rad51L2, Rad51D/Rad51L3, XRCC2, and XRCC3. To further characterize a subset of these proteins, recombinant Rad51, Rad51B-(His)(6), and Rad51C proteins were individually expressed employing the baculovirus system, and each was purified from Sf9 insect cells. Evidence from nickel-nitrilotriacetic acid pull-down experiments demonstrates a highly stable Rad51B.Rad51C heterodimer, which interacts weakly with Rad51. Rad51B and Rad51C proteins were found to bind single- and double-stranded DNA and to preferentially bind 3'-end-tailed double-stranded DNA. The ability to bind DNA was elevated with mixed Rad51 and Rad51C, as well as with mixed Rad51B and Rad51C, compared with that of the individual protein. In addition, both Rad51B and Rad51C exhibit DNA-stimulated ATPase activity. Rad51C displays an ATP-independent apparent DNA strand exchange activity, whereas Rad51B shows no such activity; this apparent strand exchange ability results actually from a duplex DNA destabilization capability of Rad51C. By analogy to the yeast Rad55 and Rad57, our results suggest that Rad51B and Rad51C function through interactions with the human Rad51 recombinase and play a crucial role in the homologous recombinational repair pathway.

  17. DNA Repair Defects and Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of the DNA repair-defective cell lines were smaller than those of normal cells, with the DNA-PK-deficient cells having RBEs near unity. To further investigate the sensitivity differences that were observed in ATM and NBS deficient cells, chromosomal aberrations were analyzed in normal lung fibroblast cells treated with KU-55933 (a specific ATM kinase inhibitor) or Mirin (an Mre11- Rad50-Nbs1 complex inhibitor involved in activation of ATM). We also performed siRNA knockdown of these proteins. Preliminary data indicate that chromosome exchanges increase in cells treated with the specific ATM inhibitor. Possible cytogenetic signatures of acute and low dose-rate gamma irradiation in ATM or nibrin deficient and suppressed cells will be discussed.

  18. Role for the Mammalian Swi5-Sfr1 Complex in DNA Strand Break Repair through Homologous Recombination

    Microsoft Academic Search

    Yufuko Akamatsu; Maria Jasin

    2010-01-01

    In fission yeast, the Swi5-Sfr1 complex plays an important role in homologous recombination (HR), a pathway crucial for the maintenance of genomic integrity. Here we identify and characterize mammalian Swi5 and Sfr1 homologues. Mouse Swi5 and Sfr1 are nuclear proteins that form a complex in vivo and in vitro. Swi5 interacts in vitro with Rad51, the DNA strand-exchange protein which

  19. Chaperoning histones during DNA replication and repair

    PubMed Central

    Ransom, Monica; Dennehey, Briana K.; Tyler, Jessica K.

    2012-01-01

    Nuclear DNA is tightly packaged into chromatin, which profoundly influences DNA replication, transcription, repair, and recombination. The extensive interactions between the basic histones proteins and acidic DNA make the nucleosomal unit of chromatin a highly stable entity. For the cellular machinery to access the DNA, the chromatin must be unwound and the DNA cleared of histone proteins. Conversely, the DNA has to be repackaged into chromatin afterwards. This review focuses on the roles of the histone chaperones in assembling and disassembling chromatin during the processes of DNA replication and repair. PMID:20141833

  20. Recognition and repair of chemically heterogeneous structures at DNA ends.

    PubMed

    Andres, Sara N; Schellenberg, Matthew J; Wallace, Bret D; Tumbale, Percy; Williams, R Scott

    2015-01-01

    Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not "clean." Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase ? (POL?). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini. PMID:25111769

  1. The repair of DNA damage: recent developments and new insights

    SciTech Connect

    Friedberg, E.C.; Bonura, T.; Love, J.D.; McMillan, S.; Radany, E.H.; Schultz, R.A.

    1981-01-01

    This brief review presents the salient features of new developments in the enzymatic repair of base damage to DNA. DNA glycosylases and apurinic/apyrimidinic (AP) endonucleases are reviewed and evidence is presented that in at least two prokaryote systems incision of UV-irradiated DNA occurs by the sequential action of these two classes of enzymes. In contradistinction, the uvrA, uvrB, and uvrC gene products of E coli appear to function as a multi-protein complex that catalyzes hydrolysis of phosphodiester bonds in damaged DNA directly. The inducible rapid repair of O6-methylguanine in E coli is also reviewed.

  2. Molecular mechanisms of DNA repair inhibition by caffeine

    SciTech Connect

    Selby, C.P.; Sancar, A. (Univ. of North Carolina School of Medicine, Chapel Hill (USA))

    1990-05-01

    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, including acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA.

  3. Molecular mechanisms of DNA repair inhibition by caffeine.

    PubMed Central

    Selby, C P; Sancar, A

    1990-01-01

    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, including acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA. Images PMID:2185474

  4. Does DNA repair occur during somatic hypermutation?

    PubMed Central

    Saribasak, Huseyin; Gearhart, Patricia J.

    2012-01-01

    Activation-induced deaminase (AID) initiates a flood of DNA damage in the immunoglobulin loci, leading to abasic sites, single-strand breaks and mismatches. It is compelling that some proteins in the canonical base excision and mismatch repair pathways have been hijacked to increase mutagenesis during somatic hypermutation. Thus, the AID-induced mutagenic pathways involve a mix of DNA repair proteins and low fidelity DNA polymerases to create antibody diversity. In this review, we analyze the roles of base excision repair, mismatch repair, and mutagenesis during somatic hypermutation of rearranged variable genes. The emerging view is that faithful base excision repair occurs simultaneously with mutagenesis, whereas faithful mismatch repair is mostly absent. PMID:22728014

  5. Structure of the catalytic region of DNA ligase IV in complex with an Artemis fragment sheds light on double-strand break repair.

    PubMed

    Ochi, Takashi; Gu, Xiaolong; Blundell, Tom L

    2013-04-01

    Nonhomologous end joining (NHEJ) is central to the repair of double-stranded DNA breaks throughout the cell cycle and plays roles in the development of the immune system. Although three-dimensional structures of most components of NHEJ have been defined, those of the catalytic region of DNA ligase IV (LigIV), a specialized DNA ligase known to work in NHEJ, and of Artemis have remained unresolved. Here, we report the crystal structure at 2.4 Å resolution of the catalytic region of LigIV (residues 1-609) in complex with an Artemis peptide. We describe interactions of the DNA-binding domain of LigIV with the continuous epitope of Artemis, which, together, form a three-helix bundle. A kink in the first helix of LigIV introduced by a conserved VPF motif gives rise to a hydrophobic pocket, which accommodates a conserved tryptophan from Artemis. We provide structural insights into features of LigIV among human DNA ligases. PMID:23523427

  6. Coordination and Processing of DNA Ends During Double-Strand Break Repair: The Role of the Bacteriophage T4 Mre11/Rad50 (MR) Complex

    PubMed Central

    Almond, Joshua R.; Stohr, Bradley A.; Panigrahi, Anil K.; Albrecht, Dustin W.; Nelson, Scott W.; Kreuzer, Kenneth N.

    2013-01-01

    The in vivo functions of the bacteriophage T4 Mre11/Rad50 (MR) complex (gp46/47) in double-strand-end processing, double-strand break repair, and recombination-dependent replication were investigated. The complex is essential for T4 growth, but we wanted to investigate the in vivo function during productive infections. We therefore generated a suppressed triple amber mutant in the Rad50 subunit to substantially reduce the level of complex and thereby reduce phage growth. Growth-limiting amounts of the complex caused a concordant decrease in phage genomic recombination-dependent replication. However, the efficiencies of double-strand break repair and of plasmid-based recombination-dependent replication remained relatively normal. Genetic analyses of linked markers indicated that double-strand ends were less protected from nuclease erosion in the depleted infection and also that end coordination during repair was compromised. We discuss models for why phage genomic recombination-dependent replication is more dependent on Mre11/Rad50 levels when compared to plasmid recombination-dependent replication. We also tested the importance of the conserved histidine residue in nuclease motif I of the T4 Mre11 protein. Substitution with multiple different amino acids (including serine) failed to support phage growth, completely blocked plasmid recombination-dependent replication, and led to the stabilization of double-strand ends. We also constructed and expressed an Mre11 mutant protein with the conserved histidine changed to serine. The mutant protein was found to be completely defective for nuclease activities, but retained the ability to bind the Rad50 subunit and double-stranded DNA. These results indicate that the nuclease activity of Mre11 is critical for phage growth and recombination-dependent replication during T4 infections. PMID:23979587

  7. DNA Repair Pathways in Trypanosomatids: from DNA Repair to Drug Resistance

    PubMed Central

    Genois, Marie-Michelle; Paquet, Eric R.; Laffitte, Marie-Claude N.; Maity, Ranjan; Rodrigue, Amélie

    2014-01-01

    SUMMARY All living organisms are continuously faced with endogenous or exogenous stress conditions affecting genome stability. DNA repair pathways act as a defense mechanism, which is essential to maintain DNA integrity. There is much to learn about the regulation and functions of these mechanisms, not only in human cells but also equally in divergent organisms. In trypanosomatids, DNA repair pathways protect the genome against mutations but also act as an adaptive mechanism to promote drug resistance. In this review, we scrutinize the molecular mechanisms and DNA repair pathways which are conserved in trypanosomatids. The recent advances made by the genome consortiums reveal the complete genomic sequences of several pathogens. Therefore, using bioinformatics and genomic sequences, we analyze the conservation of DNA repair proteins and their key protein motifs in trypanosomatids. We thus present a comprehensive view of DNA repair processes in trypanosomatids at the crossroads of DNA repair and drug resistance. PMID:24600040

  8. Structural and Functional Interaction Between the Human DNA Repair Proteins DNA ligase IV and XRCC4

    Microsoft Academic Search

    Peï-Yu Wu; S Meesala; S Dauvillier; M Modesti; S Andres; Y Huang; J Sekiguchi; P Calsou; B Salles; M Junop

    2009-01-01

    Nonhomologous end-joining represents the major pathway used by human cells to repair DNA double-strand breaks. It relies on the XRCC4\\/DNA ligase IV complex to reseal DNA strands. Here we report the high-resolution crystal structure of human XRCC4 bound to the carboxy-terminal tandem BRCT repeat of DNA ligase IV. The structure differs from the homologous Saccharomyces cerevisiae complex and reveals an

  9. Antibody specific for a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-07-11

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  10. Mechanisms of assembly of the enzyme-ssDNA complexes required for recombination-dependent DNA synthesis and repair in bacteriophage T4

    SciTech Connect

    Morrical, S.; Hempstead, K.; Morrical, M. [Univ. of Vermont College of Medicine, Burlington, VT (United States)

    1994-12-31

    During late stages of bacteriophage T4 infection in E. coli, the initiation of phage DNA replication is dependent on the homologous recombination activity of the T4 uvsX protein. In vitro, uvsX protein initiates DNA synthesis on a duplex template by inserting the 3{prime} end of a homologous ssDNA molecule into the duplex. The resulting D-loop structure serves as a primer-template junction for the assembly of the T4 replication fork. Two key steps in this initiation process are (A) the assembly of uvsX-ssDNA complexes necessary for recombination activity and for the priming of lead-strand DNA synthesis, and (B) the assembly of the T4 primosome (gp41 helicase/gp61 primase complex) onto the single-stranded template for lagging-strand synthesis. Our laboratory is focusing on the mechanisms of these two different but related enzyme-ssDNA assembly processes. In this extended abstract, we describe recent efforts in our laboratory to elucidate the mechanism by which the gp41 helicase enzyme is assembled onto gp32-covered ssDNA, a process requiring the activity of a special helicase assembly factor, the T4 gp59 protein.

  11. International congress on DNA damage and repair: Book of abstracts

    SciTech Connect

    Not Available

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  12. Role of DNA repair protein ERCC1 in skin cancer 

    E-print Network

    Song, Liang

    2009-01-01

    Nucleotide excision repair (NER) is one of the major repair systems for removal of DNA lesions. The NER pathway has evolved mainly to repair UV-induced DNA damage and is also active against a broad range of endogenously ...

  13. Nuclear position dictates DNA repair pathway choice

    PubMed Central

    Lemaître, Charlène; Grabarz, Anastazja; Tsouroula, Katerina; Andronov, Leonid; Furst, Audrey; Pankotai, Tibor; Heyer, Vincent; Rogier, Mélanie; Attwood, Kathleen M.; Kessler, Pascal; Dellaire, Graham; Klaholz, Bruno; Reina-San-Martin, Bernardo; Soutoglou, Evi

    2014-01-01

    Faithful DNA repair is essential to avoid chromosomal rearrangements and promote genome integrity. Nuclear organization has emerged as a key parameter in the formation of chromosomal translocations, yet little is known as to whether DNA repair can efficiently occur throughout the nucleus and whether it is affected by the location of the lesion. Here, we induce DNA double-strand breaks (DSBs) at different nuclear compartments and follow their fate. We demonstrate that DSBs induced at the nuclear membrane (but not at nuclear pores or nuclear interior) fail to rapidly activate the DNA damage response (DDR) and repair by homologous recombination (HR). Real-time and superresolution imaging reveal that DNA DSBs within lamina-associated domains do not migrate to more permissive environments for HR, like the nuclear pores or the nuclear interior, but instead are repaired in situ by alternative end-joining. Our results are consistent with a model in which nuclear position dictates the choice of DNA repair pathway, thus revealing a new level of regulation in DSB repair controlled by spatial organization of DNA within the nucleus. PMID:25366693

  14. DNA Methyltransferases (DNMTs), DNA Damage Repair, and Cancer

    PubMed Central

    Jin, Bilian; Robertson, Keith D.

    2013-01-01

    The maintenance DNA methyltransferase (DNMT) 1 and the de novo methyltransferases DNMT3A and DNMT3B are all essential for mammalian development. DNA methylation, catalyzed by the DNMTs, plays an important role in maintaining genome stability. Aberrant expression of DNMTs and disruption of DNA methylation patterns are closely associated with many forms of cancer, although the exact mechanisms underlying this link remain elusive. DNA damage repair systems have evolved to act as a genome-wide surveillance mechanism to maintain chromosome integrity by recognizing & repairing both exogenous and endogenous DNA insults. Impairment of these systems gives rise to mutations and directly contributes to tumorigenesis. Evidence is mounting for a direct link between DNMTs, DNA methylation, and DNA damage repair systems, which provide new insight into the development of cancer. Like tumor suppressor genes (TSGs), an array of DNA repair genes frequently sustain promoter hypermethylation in a variety of tumors. In addition, DNMT1, but not the DNMT3’s, appear to function coordinately with DNA damage repair pathways to protect cells from sustaining mutagenic events, which is very likely through a DNA methylation-independent mechanism. This chapter is focused on reviewing the links between DNA methylation and the DNA damage response. PMID:22956494

  15. Part 1: Mechanisms of DNA Repair

    NSDL National Science Digital Library

    Jim Haber (Brandeis University; Department of Biology and Rosenstiel Basic Medical Sciences Research Center)

    2009-12-01

    The most deleterious form of DNA damage is a double-strand break (DSB), which can arise from errors in DNA replication, from the failure of topoisomerases to complete their cycles of DNA cutting and rejoining, from mechanical stress and from the action of endonucleases that cleave DNA. Here we review how DSBs can be repaired either by nonhomologous end-joining mechanisms or by several homologous recombination pathways including single-strand annealing, gene conversion and break-induced replication.

  16. B-lymphoblastic leukemia/lymphoma: overexpression of nuclear DNA repair protein PARP-1 correlates with antiapoptotic protein Bcl-2 and complex chromosomal abnormalities.

    PubMed

    Pournazari, Payam; Padmore, Ruth F; Kosari, Farid; Scalia, Peter; Shahbani-Rad, Meer-Taher; Shariff, Sami; Demetrick, Douglas J; Bosch, Mark; Mansoor, Adnan

    2014-08-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) and Bcl-2 are emerging as therapeutic targets in various cancers. The former is a DNA repair protein associated with genomic stability and apoptosis, whereas the latter is an antiapoptotic protein having a DNA repair function through inhibition of PARP-1. Because genomic stability is critical for prognosis in B-lymphoblastic leukemia/lymphoma (B-ALL), we studied the expression of PARP-1 and Bcl-2 proteins in patients with B-ALL of different ages and compared the results with cytogenetic data. The PARP-1 protein was overexpressed in about two-thirds (61%) of patients with B-ALL. It had a nuclear location, whereas Bcl-2 protein was cytosolic. Expression of the 2 proteins showed a highly positive correlation (? = 0.367; P < .001). Overexpression of PARP-1 correlated with a complex karyotype (P = .030), and this correlation remained significant for coexpression of PARP-1 and Bcl-2 proteins (?(2) = 7.498; P = .024) as well as after exclusion of pediatric patients (n = 9, P = .042). Overexpression of PARP-1 was not significantly more common in diploid versus aneuploid karyotypes (50% versus 59%, P = .610). The PARP-1 protein showed no correlation with specific chromosomal abnormalities associated with prognosis in B-ALL, as defined by the World Health Organization. In conclusion, high expression of the PARP-1 protein among patients with B-ALL is related to a complex karyotype and Bcl-2 positivity. Although these findings require validation in a larger population, the observations will be valuable in planning therapeutic trials (such as of PARP inhibitors and BH3 mimetics). PMID:24856976

  17. Site-specific DNA alkylation and repair

    SciTech Connect

    Ezaz-Nikpay, K.

    1993-01-01

    This thesis describes a general method for the site-specific insertion of modified nucleotides into DNA and the application of this method to the study of N7-methyl-2[prime]-deoxyguanosine (m[sup 7]dG) in DNA. This thesis describes the chemical basis for the gap insertion/ligation method (GIL) and the use of this method to generate circularly permuted oligonucleotides. In this method, the synthesis of a single oligonucleotide leads to the formation of a double-stranded multimer with periodically-occurring gaps upon base-pairing in solution. The sequential action of a DNA polymerase and a DNA ligase leads to the insertion of a 2[prime]-deoxynucleoside-5[prime]-triphosphate into the gap, and formation of covalently-closed DNA. Finally, restriction endonucleases are used to generate oligonucleotides which contain the introduced nucleotide at symmetrically-related positions. The author describes the use of the GIL method for the insertion of m[sup 7]dG into various oligonucleotides and the Dickerson/Drew dodecamer respectively. The Dickerson/Drew dodecamer was chosen because it has been extensively studies both in its native and adduct bearing forms. The author describes the biophysical characterization of m[sup 7]dG in DNA, and concludes that the probe moiety in dimethyl-sulfate and template-directed interference footprinting of protein-DNA complexes in m[sup 7]dG and not a product of its decomposition. Further studies of m[sub 7]dG in DNA reveal that over long periods of time, the primary product of decomposition is an apurinic site. This dissertation describes the large-scale synthesis of the Dickerson/Drew dodecamer, and the characterization of its effect on DNA structure using nuclear magnetic resonance spectroscopy. The final chapter describes the overproduction, purification and crystallization of N3-methyladenine DNA glycosylase II (AlkA). AlkA is known to repair m[sup 7]dG residues in DNA.

  18. Chromatin Remodeling, DNA Damage Repair and Aging

    PubMed Central

    Liu, Baohua; Yip, Raymond KH; Zhou, Zhongjun

    2012-01-01

    Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging. PMID:23633913

  19. Eukaryotic damaged DNA-binding proteins: DNA repair proteins or transcription factors?

    SciTech Connect

    Protic, M. [National Institutes of Health, Bethesda, MD (United States)

    1994-12-31

    Recognition and removal of structural defects in the genome, caused by diverse physical and chemical agents, are among the most important cell functions. Proteins that recognize and bind to modified DNA, and thereby initiate damage-induced recovery processes, have been identified in prokaryotic and eukaryotic cells. Damaged DNA-binding (DDB) proteins from prokaryotes are either DNA repair enzymes or noncatalytic subunits of larger DNA repair complexes that participate in excision repair, or in recombinational repair and SOS-mutagenesis. Although the methods employed may not have allowed detection of all eukaryotic DDB proteins and identification of their functions, it appears that during evolution cells have developed a wide array of DDB proteins that can discriminate among the diversity of DNA conformations found in the eukaryotic nucleus, as well as a gene-sharing feature found in DDB proteins that also act as transcription factors.

  20. DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase ?

    Microsoft Academic Search

    Sovan Sarkar; Adelina A Davies; Helle D Ulrich; Peter J McHugh

    2006-01-01

    The repair mechanisms acting on DNA interstrand cross- links (ICLs) in eukaryotes are poorly understood. Here, we provide evidence for a pathway of ICL processing that uses components from both nucleotide excision repair (NER) and translesion synthesis (TLS) and predominates during the G1 phase of the yeast cell cycle. Our results suggest that repair is initiated by the NER apparatus

  1. Preferential DNA Repair in Human Cells

    Microsoft Academic Search

    R. J. Wilkins; R. W. Hart

    1974-01-01

    EXCISION repair plays a vital role in the recovery of human cells from ultraviolet irradiation1, but it does not remove all lesions from DNA, even when they are as potent as cyclobutane pyrimidine dimers. In fact, only about 50% to 75% of the dimers produced by low fluences of ultraviolet light are excised and the remainder persist in the DNA

  2. DNA repair genes of mammalian cells

    SciTech Connect

    Thompson, L.H.; Brookman, K.W.; Salazar, E.P.; Fuscoe, J.C.; Weber, C.A.

    1986-01-01

    In the Chinese hamster ovary (CHO) cell line, various mutations affecting DNA repair have been obtained. Mutants that belong to 5 genetic complementation groups for ultraviolet (UV) sensitivity and resemble the cells from individuals having the cancer-prone genetic disorder xeroderma pigmentosum (XP) were previously identified. Each mutant is defective in the incision step of nucleotide excision repair and hypersensitive to bulky DNA lesions. These UV mutants can be divided into two subgroups; only Groups 2 and 4 are extremely sensitive to mitomycin C and other DNA cross-linking agents. The clear-cut phenotypes of the CHO mutants have allowed us to construct hybrid cells by fusion with human lymphocytes and thereby identify which human chromosomes carry genes that correct the CHO mutations. The first two mutations analyzed, UV20 (excision-repair deficient; UV Group 2) and EM9, which has a very high frequency of sister chromatid exchange (SCE), are both corrected by chromosome 19. Efforts are underway to isolate complementing repair genes by DNA-mediated gene transfer. The human gene that corrects mutant EM9 and the hamster gene that corrects UV135 (UV Group 5) have been introduced by cotransfer of genomic DNA and the dominant selectable marker gpt (guanine phosphoribosyltransferase) gene. In each case, the DNA repair function was co-selected based on resistance to 5-chlorodeoxyuridine (CldUrd) or repeated UV irradiation, respectively. The presence of a functional human repair gene in the EM9 transformants is shown by the presence of common human DNA sequences on some fragments produced by restriction enzyme cleavage. In UV135, transfer of a repair gene is indicated by a colony distribution containing jackpots and by instability of the resistant phenotype.

  3. The Awakening of DNA Repair at Yale

    PubMed Central

    Hanawalt, Philip C.

    2013-01-01

    As a graduate student with Professor Richard Setlow at Yale in the late 1950s, I studied the effects of ultraviolet and visible light on the syntheses of DNA, RNA, and protein in bacteria. I reflect upon my research in the Yale Biophysics Department, my subsequent postdoctoral experiences, and the eventual analyses in the laboratories of Setlow, Paul Howard-Flanders, and myself that constituted the discovery of the ubiquitous pathway of DNA excision repair in the early 1960s. I then offer a brief perspective on a few more recent developments in the burgeoning DNA repair field and their relationships to human disease. PMID:24348216

  4. The interaction between polynucleotide kinase phosphatase and the DNA repair protein XRCC1 is critical for repair of DNA alkylation damage and stable association at DNA damage sites.

    PubMed

    Della-Maria, Julie; Hegde, Muralidhar L; McNeill, Daniel R; Matsumoto, Yoshihiro; Tsai, Miaw-Sheue; Ellenberger, Tom; Wilson, David M; Mitra, Sankar; Tomkinson, Alan E

    2012-11-01

    XRCC1 plays a key role in the repair of DNA base damage and single-strand breaks. Although it has no known enzymatic activity, XRCC1 interacts with multiple DNA repair proteins and is a subunit of distinct DNA repair protein complexes. Here we used the yeast two-hybrid genetic assay to identify mutant versions of XRCC1 that are selectively defective in interacting with a single protein partner. One XRCC1 mutant, A482T, that was defective in binding to polynucleotide kinase phosphatase (PNKP) not only retained the ability to interact with partner proteins that bind to different regions of XRCC1 but also with aprataxin and aprataxin-like factor whose binding sites overlap with that of PNKP. Disruption of the interaction between PNKP and XRCC1 did not impact their initial recruitment to localized DNA damage sites but dramatically reduced their retention there. Furthermore, the interaction between PNKP and the DNA ligase III?-XRCC1 complex significantly increased the efficiency of reconstituted repair reactions and was required for complementation of the DNA damage sensitivity to DNA alkylation agents of xrcc1 mutant cells. Together our results reveal novel roles for the interaction between PNKP and XRCC1 in the retention of XRCC1 at DNA damage sites and in DNA alkylation damage repair. PMID:22992732

  5. The Interaction between Polynucleotide Kinase Phosphatase and the DNA Repair Protein XRCC1 Is Critical for Repair of DNA Alkylation Damage and Stable Association at DNA Damage Sites*

    PubMed Central

    Della-Maria, Julie; Hegde, Muralidhar L.; McNeill, Daniel R.; Matsumoto, Yoshihiro; Tsai, Miaw-Sheue; Ellenberger, Tom; Wilson, David M.; Mitra, Sankar; Tomkinson, Alan E.

    2012-01-01

    XRCC1 plays a key role in the repair of DNA base damage and single-strand breaks. Although it has no known enzymatic activity, XRCC1 interacts with multiple DNA repair proteins and is a subunit of distinct DNA repair protein complexes. Here we used the yeast two-hybrid genetic assay to identify mutant versions of XRCC1 that are selectively defective in interacting with a single protein partner. One XRCC1 mutant, A482T, that was defective in binding to polynucleotide kinase phosphatase (PNKP) not only retained the ability to interact with partner proteins that bind to different regions of XRCC1 but also with aprataxin and aprataxin-like factor whose binding sites overlap with that of PNKP. Disruption of the interaction between PNKP and XRCC1 did not impact their initial recruitment to localized DNA damage sites but dramatically reduced their retention there. Furthermore, the interaction between PNKP and the DNA ligase III?-XRCC1 complex significantly increased the efficiency of reconstituted repair reactions and was required for complementation of the DNA damage sensitivity to DNA alkylation agents of xrcc1 mutant cells. Together our results reveal novel roles for the interaction between PNKP and XRCC1 in the retention of XRCC1 at DNA damage sites and in DNA alkylation damage repair. PMID:22992732

  6. PP2A-B56? complex is involved in dephosphorylation of ?-H2AX in the repair process of CPT-induced DNA double-strand breaks.

    PubMed

    Li, Xiuying; Nan, Anuo; Xiao, Ying; Chen, Yongzhong; Lai, Yandong

    2015-05-01

    Phosphorylation of histone H2AX (?-H2AX) in response to DNA double-strand breaks (DSBs) should be eliminated from the sites of DNA damage to fulfill the DNA repair and release cells from the growth arrest. Previous study showed that protein phosphatase 2A (PP2A) interact with ?-H2AX that lead to the dephosphorylation of ?-H2AX. Here, we examined the effects of suppression of PP2A regulatory subunits on dephosphorylation of ?-H2AX in human embryonic kidney epithelial cells (HEK) treated by topoisomerase I inhibitor camptothecin (CPT). We found that cells with suppression of B55? or B56? were more sensitive to DNA damage agents. Suppression of B56? led to persistence of ?-H2AX, resulting in prolonged DSBs repair and increased chromatin instability measured by comet assay. In addition, the deficiency of B56? impaired the cell cycle regulation and the DNA repair pathway of homologous recombination (HR). Notably, we detected that PP2A B56? subunit was involved directly in dephosphorylation of ?-H2AX and translocated from cytoplasm to nucleus upon the treatment of CPT. Our findings demonstrate that PP2A holoenzyme containing B56? is responsible for the dephosphorylation of ?-H2AX and regulation of DNA repair of DSBs induced by CPT. PMID:25772433

  7. DNA Double-Strand Break Repair at ?15°C

    PubMed Central

    Dieser, Markus; Battista, John R.

    2013-01-01

    The survival of microorganisms in ancient glacial ice and permafrost has been ascribed to their ability to persist in a dormant, metabolically inert state. An alternative possibility, supported by experimental data, is that microorganisms in frozen matrices are able to sustain a level of metabolic function that is sufficient for cellular repair and maintenance. To examine this experimentally, frozen populations of Psychrobacter arcticus 273-4 were exposed to ionizing radiation (IR) to simulate the damage incurred from natural background IR sources in the permafrost environment from over ?225 kiloyears (ky). High-molecular-weight DNA was fragmented by exposure to 450 Gy of IR, which introduced an average of 16 double-strand breaks (DSBs) per chromosome. During incubation at ?15°C for 505 days, P. arcticus repaired DNA DSBs in the absence of net growth. Based on the time frame for the assembly of genomic fragments by P. arcticus, the rate of DNA DSB repair was estimated at 7 to 10 DSBs year?1 under the conditions tested. Our results provide direct evidence for the repair of DNA lesions, extending the range of complex biochemical reactions known to occur in bacteria at frozen temperatures. Provided that sufficient energy and nutrient sources are available, a functional DNA repair mechanism would allow cells to maintain genome integrity and augment microbial survival in icy terrestrial or extraterrestrial environments. PMID:24077718

  8. DNA repair responses in human skin cells

    SciTech Connect

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  9. DNA damage and repair after high LET radiation

    NASA Astrophysics Data System (ADS)

    O'Neill, Peter; Cucinotta, Francis; Anderson, Jennifer

    Predictions from biophysical models of interactions of radiation tracks with cellular DNA indicate that clustered DNA damage sites, defined as two or more lesions formed within one or two helical turns of the DNA by passage of a single radiation track, are formed in mammalian cells. These complex DNA damage sites are regarded as a signature of ionizing radiation exposure particularly as the likelihood of clustered damage sites arising endogenously is low. For instance, it was predicted from biophysical modelling that 30-40% of low LET-induced double strand breaks (DSB), a form of clustered damage, are complex with the yield increasing to >90% for high LET radiation, consistent with the reduced reparability of DSB with increasing ionization density of the radiation. The question arises whether the increased biological effects such as mutagenesis, carcinogenesis and lethality is in part related to DNA damage complexity and/or spatial distribution of the damage sites, which may lead to small DNA fragments. With particle radiation it is also important to consider not only delta-rays which may cause clustered damaged sites and may be highly mutagenic but the non-random spatial distribution of DSB which may lead to deletions. In this overview I will concentrate on the molecular aspects of the variation of the complexity of DNA damage on radiation quality and the challenges this complexity presents the DNA damage repair pathways. I will draw on data from micro-irradiations which indicate that the repair of DSBs by non-homologous end joining is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB. In summary the aim is to emphasis the link between the spatial distribution of energy deposition events related to the track, the molecular products formed and the consequence of damage complexity contributing to biological effects and to present some of the outstanding molecular challenges with particle radiation.

  10. Regulation of DNA repair by parkin

    SciTech Connect

    Kao, Shyan-Yuan, E-mail: shyan-yuan_kao@meei.harvard.edu [Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114 (United States)] [Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114 (United States)

    2009-05-01

    Mutation of parkin is one of the most prevalent causes of autosomal recessive Parkinson's disease (PD). Parkin is an E3 ubiquitin ligase that acts on a variety of substrates, resulting in polyubiquitination and degradation by the proteasome or monoubiquitination and regulation of biological activity. However, the cellular functions of parkin that relate to its pathological involvement in PD are not well understood. Here we show that parkin is essential for optimal repair of DNA damage. Parkin-deficient cells exhibit reduced DNA excision repair that can be restored by transfection of wild-type parkin, but not by transfection of a pathological parkin mutant. Parkin also protects against DNA damage-induced cell death, an activity that is largely lost in the pathological mutant. Moreover, parkin interacts with the proliferating cell nuclear antigen (PCNA), a protein that coordinates DNA excision repair. These results suggest that parkin promotes DNA repair and protects against genotoxicity, and implicate DNA damage as a potential pathogenic mechanism in PD.

  11. Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association

    PubMed Central

    Sarangi, Prabha; Bartosova, Zdenka; Altmannova, Veronika; Holland, Cory; Chavdarova, Melita; Lee, Sang Eun; Krejci, Lumir; Zhao, Xiaolan

    2014-01-01

    The Saccharomyces cerevisiae Rad1-Rad10 complex is a conserved, structure-specific endonuclease important for repairing multiple types of DNA lesions. Upon recruitment to lesion sites, Rad1-Rad10 removes damaged sequences, enabling subsequent gap filling and ligation. Acting at mid-steps of repair, the association and dissociation of Rad1-Rad10 with DNA can influence repair efficiency. We show that genotoxin-enhanced Rad1 sumoylation occurs after the nuclease is recruited to lesion sites. A single lysine outside Rad1's nuclease and Rad10-binding domains is sumoylated in vivo and in vitro. Mutation of this site to arginine abolishes Rad1 sumoylation and impairs Rad1-mediated repair at high doses of DNA damage, but sustains the repair of a single double-stranded break. The timing of Rad1 sumoylation and the phenotype bias toward high lesion loads point to a post-incision role for sumoylation, possibly affecting Rad1 dissociation from DNA. Indeed, biochemical examination shows that sumoylation of Rad1 decreases the complex's affinity for DNA without affecting other protein properties. These findings suggest a model whereby sumoylation of Rad1 promotes its disengagement from DNA after nuclease cleavage, allowing it to efficiently attend to large numbers of DNA lesions. PMID:24753409

  12. DNA Repair Deficiency and Neurological Disease

    PubMed Central

    McKinnon, Peter J.

    2011-01-01

    Preface Responding to genotoxic stress is a prerequisite for development of the nervous system. Mutations in a variety of DNA repair factors can lead to human diseases that are characterized by pronounced neuropathology. In many of these syndromes the neurological component is amongst the most deleterious aspects of the disease. The nervous system poses a particular challenge in terms of clinical intervention, as the neuropathology often arises during nervous system development, and can be fully penetrant by childhood. Understanding how DNA repair deficiency impacts the nervous system will provide a rationale basis for therapies targeted at ameliorating the neurological problems in these syndromes. PMID:19145234

  13. Repair of Oxidative DNA Damage and Cancer: Recent Progress in DNA Base Excision Repair

    PubMed Central

    Scott, Timothy L.; Rangaswamy, Suganya; Wicker, Christina A.

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) are generated by exogenous and environmental genotoxins, but also arise from mitochondria as byproducts of respiration in the body. ROS generate DNA damage of which pathological consequence, including cancer is well established. Research efforts are intense to understand the mechanism of DNA base excision repair, the primary mechanism to protect cells from genotoxicity caused by ROS. Recent Advances: In addition to the notion that oxidative DNA damage causes transformation of cells, recent studies have revealed how the mitochondrial deficiencies and ROS generation alter cell growth during the cancer transformation. Critical Issues: The emphasis of this review is to highlight the importance of the cellular response to oxidative DNA damage during carcinogenesis. Oxidative DNA damage, including 7,8-dihydro-8-oxoguanine, play an important role during the cellular transformation. It is also becoming apparent that the unusual activity and subcellular distribution of apurinic/apyrimidinic endonuclease 1, an essential DNA repair factor/redox sensor, affect cancer malignancy by increasing cellular resistance to oxidative stress and by positively influencing cell proliferation. Future Directions: Technological advancement in cancer cell biology and genetics has enabled us to monitor the detailed DNA repair activities in the microenvironment. Precise understanding of the intracellular activities of DNA repair proteins for oxidative DNA damage should provide help in understanding how mitochondria, ROS, DNA damage, and repair influence cancer transformation. Antioxid. Redox Signal. 20, 708–726. PMID:23901781

  14. Mutagenesis and DNA repair in mammalian cells

    SciTech Connect

    Glazer, P.M.

    1987-01-01

    Two aspects of DNA damage and repair in mammalian cells were investigated. Using a lambda phage shuttle vector, a system was developed to study mutations arising in the DNA of mammalian cells. This system was used to determine the spectrum of mutations induced in cellular DNA by ultraviolet light. Also, the repair of base pair mismatches in DNA was studied by the development of a method to detect a DNA mismatch repair activity in extracts made from cultured human cells. In order to study mutations arising in mammalian cells, stable mouse L cell lines were established with multiple copies of lambda phage vector which contains the supF gene of E. coli as a target for mutagenesis. Rescue of viable phage from high molecular weight mouse cell DNA using lambda in vitro packaging extracts was efficient and yielded a negligible background of phage with mutations in the supF gene. From mouse cells exposed to 12 J/m/sup 2/ of 254 nm ultraviolet (UV) light, 78,510 phage were rescued of which eight were found to have mutant supF genes. DNA sequence analysis of the mutants suggests that the primary site of UV mutagenesis in mammalian cells is at pyrimidine-cytosine (Py-C) sequences, and that the most frequent mutation at this site is a C to T transition.

  15. Tilting at windmills? The nucleotide excision repair of chromosomal DNA

    Microsoft Academic Search

    Raymond Waters; Yumin Teng; Yachuan Yu; Shirong Yu; Simon H. Reed

    2009-01-01

    A typical view of how DNA repair functions in chromatin usually depicts a struggle in which the DNA repair machinery battles to overcome the inhibitory effect of chromatin on the repair process. It may be that in this current interpretation the repair mechanisms are ‘tilting at windmills’, fighting an imaginary foe. An emerging picture suggests that we should not consider

  16. Databases and Bioinformatics Tools for the Study of DNA Repair

    PubMed Central

    Milanowska, Kaja; Rother, Kristian; Bujnicki, Janusz M.

    2011-01-01

    DNA is continuously exposed to many different damaging agents such as environmental chemicals, UV light, ionizing radiation, and reactive cellular metabolites. DNA lesions can result in different phenotypical consequences ranging from a number of diseases, including cancer, to cellular malfunction, cell death, or aging. To counteract the deleterious effects of DNA damage, cells have developed various repair systems, including biochemical pathways responsible for the removal of single-strand lesions such as base excision repair (BER) and nucleotide excision repair (NER) or specialized polymerases temporarily taking over lesion-arrested DNA polymerases during the S phase in translesion synthesis (TLS). There are also other mechanisms of DNA repair such as homologous recombination repair (HRR), nonhomologous end-joining repair (NHEJ), or DNA damage response system (DDR). This paper reviews bioinformatics resources specialized in disseminating information about DNA repair pathways, proteins involved in repair mechanisms, damaging agents, and DNA lesions. PMID:22091405

  17. Clinical importance of DNA repair inhibitors in cancer therapy

    Microsoft Academic Search

    N. Hosoya; K. Miyagawa

    2009-01-01

    Summary  The efficacy of cancer chemotherapy and radiotherapy relies on generation of DNA damage. Since intrinsic DNA repair pathways\\u000a enable cancer cells to survive by repairing these damaged lesions, inactivation of DNA repair coupled with chemotherapy and\\u000a radiotherapy has a potential to enhance the effect of these therapies. Small molecule compounds that inhibit specific DNA\\u000a repair proteins have been developed, and

  18. DNA repair mechanisms and human cytomegalovirus (HCMV) infection.

    PubMed

    Smolarz, Beata; Wilczy?ski, Jan; Nowakowska, Dorota

    2015-05-01

    Herpesvirus infections, such as those induced by human cytomegalovirus (HCMV), induce specific DNA damages. DNA damages can lead to cell mutation, death, apoptosis and immune system activation. Various types of DNA damage are repaired through multiple repair pathways, such as base excision, nucleotide excision, homologous recombination and nonhomologous end joining. Changes in the activity of DNA repair proteins during viral infection can cause disturbances in the DNA repair system and change its mechanisms. This report reviews results from studies, assaying a DNA repair system in HCMV infection. PMID:25366712

  19. Epidemiology of ultraviolet-DNA repair capacity and human cancer.

    PubMed Central

    Grossman, L

    1997-01-01

    The following conclusions are derived from an epidemiological study. Reduced repair of ultraviolet (UV)-induced DNA damage contributes directly to basal cell carcinoma (BCC) in individuals with prior sunlight overexposure. A family history of BCC is a predictor of low DNA repair. Repair of UV-damaged DNA declines at a fixed rate of approximately 1% per annum in noncancerous controls. The DNA repair differences between young BCC cases and their controls disappear as they age. Hence, BCC, in terms of DNA repair, is a premature aging disease. The persistence of photochemical damage because of reduced repair results in point mutations in the p53 gene and allelic loss of the nevoid BCC gene (Gorlin's syndrome) located on chromosome 9q. The fact that environmental vulnerability is gender oriented implicates hormones in regulating DNA repair. Xeroderma pigmentosum appears to be a valid paradigm for the role of DNA repair in BCC in the general population. PMID:9255582

  20. DNA Repair-Protein Relocalization After Heavy Ion Exposure

    NASA Technical Reports Server (NTRS)

    Metting, N. F.

    1999-01-01

    Ionizing radiation is good at making DNA double strand breaks, and high linear energy transfer (LET) radiations such as heavy ion particles are particularly efficient. For this reason, the proteins belonging to repair systems that deal with double strand breaks are of particular interest. One such protein is Ku, a component in the non-homologous recombination repair system. The Ku protein is an abundant, heterodimeric DNA end-binding complex, composed of one 70 and one 86 kDa subunit. Ku protein binds to DNA ends, nicks, gaps, and regions of transition between single and double-stranded structure. These binding properties suggest an important role in DNA repair. The Ku antigen is important in this study because it is present in relatively large copy numbers and it is part of a double-strand-break repair system. More importantly, we consistently measure an apparent upregulation in situ that is not verified by whole-cell-lysate immunoblot measurements. This apparent upregulation is triggered by very low doses of radiation, thus showing a potentially useful high sensitivity. However, elucidation of the mechanism underlying this phenomenon is still to be done.

  1. Repair of nonreplicating UV-irradiated DNA

    SciTech Connect

    Martin, S.J.; Hays, J.B.

    1986-05-01

    Repair of irradiated phage lambda DNA in E. coli has been studied by a repressed-infection system: superinfection of homoimmune lysogenic bacteria; assay for restoration of transcribility to phage-encoded lac genes; extraction of DNA and assay for infectivity in transfection of uvrB/sup -/ recA/sup -/ recB/sup -/ spheroplasts, and for removal of cyclobutane pyrimidine dimers (CBP-dimers) by UV-endonuclease treatment and alkaline sedimentation. In uvr/sup +/ repressed infections with 254-nm irradiated phages (60 J/m/sup 2/) lac transcription was rapidly returned to undamaged levels, concomitant with restoration of infectivity and removal of CBP-dimers. In uvrD/sup -/ cells, the frequency of phage gene inactivation corresponded to the estimated frequency of CBP-dimers per gene. In uvrA/sup -/ bacteria, however, lac expression was only 1/10 to 1/3 of that predicted by the expected frequency of gene inactivation, as if damage elsewhere affected transcription; recovery of infectivity and removal of CBP-dimers was almost completely inhibited. lac/sup +/ and lacUV5 phages, expected to respond oppositely to changes in superhelical density, were constructed as probes for topological changes during DNA repair. The assays for transfection infectivity and CBP-dimer-removal have been extended to studies of repair of UV-irradiated phage DNA injected into oocytes of the frog Xenopus laevis.

  2. Small Molecules, Inhibitors of DNA-PK, Targeting DNA Repair, and Beyond

    PubMed Central

    Davidson, David; Amrein, Lilian; Panasci, Lawrence; Aloyz, Raquel

    2012-01-01

    Many current chemotherapies function by damaging genomic DNA in rapidly dividing cells ultimately leading to cell death. This therapeutic approach differentially targets cancer cells that generally display rapid cell division compared to normal tissue cells. However, although these treatments are initially effective in arresting tumor growth and reducing tumor burden, resistance and disease progression eventually occur. A major mechanism underlying this resistance is increased levels of cellular DNA repair. Most cells have complex mechanisms in place to repair DNA damage that occurs due to environmental exposures or normal metabolic processes. These systems, initially overwhelmed when faced with chemotherapy induced DNA damage, become more efficient under constant selective pressure and as a result chemotherapies become less effective. Thus, inhibiting DNA repair pathways using target specific small molecule inhibitors may overcome cellular resistance to DNA damaging chemotherapies. Non-homologous end joining a major mechanism for the repair of double-strand breaks (DSB) in DNA is regulated in part by the serine/threonine kinase, DNA dependent protein kinase (DNA-PK). The DNA-PK holoenzyme acts as a scaffold protein tethering broken DNA ends and recruiting other repair molecules. It also has enzymatic activity that may be involved in DNA damage signaling. Because of its’ central role in repair of DSBs, DNA-PK has been the focus of a number of small molecule studies. In these studies specific DNA-PK inhibitors have shown efficacy in synergizing chemotherapies in vitro. However, compounds currently known to specifically inhibit DNA-PK are limited by poor pharmacokinetics: these compounds have poor solubility and have high metabolic lability in vivo leading to short serum half-lives. Future improvement in DNA-PK inhibition will likely be achieved by designing new molecules based on the recently reported crystallographic structure of DNA-PK. Computer based drug design will not only assist in identifying novel functional moieties to replace the metabolically labile morpholino group but will also facilitate the design of molecules to target the DNA-PKcs/Ku80 interface or one of the autophosphorylation sites. PMID:23386830

  3. After sun reversal of DNA damage: enhancing skin repair

    Microsoft Academic Search

    Daniel B. Yarosh; Matthew T. Canning; Danielle Teicher; David A. Brown

    2005-01-01

    UV-induced DNA damage has been directly linked to skin cancer, and DNA repair is an important protection against this neoplasm. This is illustrated by the genetic disease xeroderma pigmentosum wherein a serious defect in DNA repair of cyclobutane pyrimidine dimers dramatically increases the rate of skin cancer. In other instances in which skin cancer rates are elevated, deficits in DNA

  4. Repair of hydantoin lesions and their amine adducts in DNA by base and nucleotide excision repair

    PubMed Central

    McKibbin, Paige L.; Fleming, Aaron M.; Towheed, Mohammad Atif; Van Houten, Bennett; Burrows, Cynthia J.; David, Sheila S.

    2013-01-01

    An important feature of the common DNA oxidation product 8;oxo;7,8;dihydroguanine (OG) is its susceptibility to further oxidation to produce guanidinohydantion (Gh) and spiroiminodihydantoin (Sp) lesions. In the presence of amines, G or OG oxidation produces hydantoin amine adducts. Such adducts may form in cells via interception of oxidized intermediates by protein;derived nucleophiles or naturally occurring amines that are tightly associated with DNA. Gh and Sp are known to be substrates for base excision repair (BER) glycosylases; however, large Sp;amine adducts would be expected to be more readily repaired by nucleotide excision repair (NER). A series of Sp adducts differing in size of the attached amine were synthesized to evaluate the relative processing by NER and BER. The UvrABC complex excised Gh, Sp and the Sp;amine adducts from duplex DNA, with the greatest efficiency for the largest Sp;amine adducts. The affinity of UvrA with all of the lesion duplexes was found to be similar, whereas the efficiency of UvrB loading tracked with the efficiency of UvrABC excision. In contrast, the human BER glycosylase NEIL1 exhibited robust activity for all Sp;amine adducts irrespective of size. These studies suggest that both NER and BER pathways mediate repair of a diverse set of hydantoin lesions in cells. PMID:23930966

  5. Targeting DNA repair pathways for cancer treatment: what's new?

    PubMed Central

    Kelley, Mark R; Logsdon, Derek; Fishel, Melissa L

    2014-01-01

    Disruptions in DNA repair pathways predispose cells to accumulating DNA damage. A growing body of evidence indicates that tumors accumulate progressively more mutations in DNA repair proteins as cancers progress. DNA repair mechanisms greatly affect the response to cytotoxic treatments, so understanding those mechanisms and finding ways to turn dysregulated repair processes against themselves to induce tumor death is the goal of all DNA repair inhibition efforts. Inhibition may be direct or indirect. This burgeoning field of research is replete with promise and challenge, as more intricacies of each repair pathway are discovered. In an era of increasing concern about healthcare costs, use of DNA repair inhibitors can prove to be highly effective stewardship of R&D resources and patient expenses. PMID:24947262

  6. Tilting at windmills? The nucleotide excision repair of chromosomal DNA.

    PubMed

    Waters, Raymond; Teng, Yumin; Yu, Yachuan; Yu, Shirong; Reed, Simon H

    2009-02-01

    A typical view of how DNA repair functions in chromatin usually depicts a struggle in which the DNA repair machinery battles to overcome the inhibitory effect of chromatin on the repair process. It may be that in this current interpretation the repair mechanisms are 'tilting at windmills', fighting an imaginary foe. An emerging picture suggests that we should not consider chromatin as an inhibitory force to be overcome like some quixotic giant by the DNA repair processes. Instead we should now recognize that DNA repair and chromatin metabolism are inextricably and mechanistically linked. Here we discuss the latest findings which are beginning to reveal how changes in chromatin dynamics integrate with the DNA repair process in response to UV induced DNA damage, with an emphasis on events in the yeast Saccharomyces cerevisiae. PMID:19041427

  7. The emerging role of nuclear architecture in DNA repair and genome maintenance

    PubMed Central

    Misteli, Tom; Soutoglou, Evi

    2012-01-01

    DNA repair and maintenance of genome stability are crucial to cellular and organismal function, and defects in these processes have been implicated in cancer and ageing. Detailed molecular, biochemical and genetic analyses have outlined the molecular framework involved in cellular DNA-repair pathways, but recent cell-biological approaches have revealed important roles for the spatial and temporal organization of the DNA-repair machinery during the recognition of DNA lesions and the assembly of repair complexes. It has also become clear that local higher-order chromatin structure, chromatin dynamics and non-random global genome organization are key factors in genome maintenance. These cell-biological features of DNA repair illustrate an emerging role for nuclear architecture in multiple aspects of genome maintenance. PMID:19277046

  8. Single-molecule fluorescence microscopy on nucleotide excision repair complexes using GFP fusion proteins

    Microsoft Academic Search

    Ine Segers-Nolten; Suzanne Rademakers; Wim Vermeulen; Aufried Lenferink; Cees Otto; Jan Hoeijmakers; Jan Greve

    2000-01-01

    Scanning Confocal Fluorescence Microscopy is used for single molecule studies on DNA-protein complexes that occur in Nucleotide Excision Repair (NER). During DNA-damage elimination by the NER-pathway, complex protein structures assemble over DNA. It is our aim to resolve the architecture of these DNA-protein complexes and to study dynamic changes that occur in these structures. For this purpose NER- complexes are

  9. DNA repair pathways and mitochondrial DNA mutations in gastrointestinal carcinogenesis.

    PubMed

    Basso, Daniela; Navaglia, Filippo; Fogar, Paola; Zambon, Carlo-Federico; Greco, Eliana; Schiavon, Stefania; Fasolo, Michela; Stranges, Alessia; Falda, Alessandra; Padoan, Andrea; Fadi, Elisa; Pedrazzoli, Sergio; Plebani, Mario

    2007-05-01

    This work focuses on the main DNA repair pathways, highlighting their role in gastrointestinal carcinogenesis and the role of mitochondrial DNA (mtDNA), mutations being described in several tumor types, including those of the gastrointestinal tract. The mismatch repair (MMR) system is inherently altered in patients with hereditary non-polyposis colorectal cancer, and plays a role in carcinogenesis in a subset of sporadic colorectal, gastric and esophageal cancers. Alterations in homologous recombination (HR) and non-homologous end-joining (NHEJ) also contribute to the development of pancreatic cancer. Gene polymorphisms of some X-ray cross-complementing (XRCCs), cofactor proteins involved in the base excision repair pathway, have been investigated in relation to gastric, colorectal and pancreatic cancer. Yet only one polymorphism, XRCC1 Arg194Trp, appears to be involved in smoking-related cancers and in early onset pancreatic cancer. Although evidence in the literature indicates that mtDNA somatic mutations play a role in gastric and colorectal carcinogenesis, no sound conclusions have yet been drawn regarding this issue in pancreatic cancer, although an mtDNA variant at 16519 is believed to worsen the outcome of pancreatic cancer patients, possibly because it is involved in altering cellular metabolism. PMID:17397816

  10. The hMre11\\/hRad50 Protein Complex and Nijmegen Breakage Syndrome: Linkage of Double-Strand Break Repair to the Cellular DNA Damage Response

    Microsoft Academic Search

    James P. Carney; Richard S. Maser; Heidi Olivares; Elizabeth M. Davis; Michelle Le Beau; John R. Yates; Lara Hays; William F. Morgan; John H. J. Petrini

    1998-01-01

    Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder characterized by increased cancer incidence, cell cycle checkpoint defects, and ionizing radiation sensitivity. We have isolated the gene encoding p95, a member of the hMre11\\/hRad50 double-strand break repair complex. The p95 gene mapped to 8q21.3, the region that contains the NBS locus, and p95 was absent from NBS cells established from

  11. Comet assay to measure DNA repair: approach and applications

    PubMed Central

    Azqueta, Amaya; Slyskova, Jana; Langie, Sabine A. S.; O’Neill Gaivão, Isabel; Collins, Andrew

    2014-01-01

    Cellular repair enzymes remove virtually all DNA damage before it is fixed; repair therefore plays a crucial role in preventing cancer. Repair studied at the level of transcription correlates poorly with enzyme activity, and so assays of phenotype are needed. In a biochemical approach, substrate nucleoids containing specific DNA lesions are incubated with cell extract; repair enzymes in the extract induce breaks at damage sites; and the breaks are measured with the comet assay. The nature of the substrate lesions defines the repair pathway to be studied. This in vitro DNA repair assay has been modified for use in animal tissues, specifically to study the effects of aging and nutritional intervention on repair. Recently, the assay was applied to different strains of Drosophila melanogaster proficient and deficient in DNA repair. Most applications of the repair assay have been in human biomonitoring. Individual DNA repair activity may be a marker of cancer susceptibility; alternatively, high repair activity may result from induction of repair enzymes by exposure to DNA-damaging agents. Studies to date have examined effects of environment, nutrition, lifestyle, and occupation, in addition to clinical investigations. PMID:25202323

  12. DNA Repair and Resistance to UV-B Radiation in Western Spotted Frogs

    Microsoft Academic Search

    Andrew R. Blaustein; John B. Hays; Peter D. Hoffman; Douglas P. Chivers; Joseph M. Kiesecker; William P. Leonard; Adolfo Marco; Deanna H. Olson; Jamie K. Reaser; Robert G. Anthony

    1999-01-01

    We assessed DNA repair and resistance to solar radiation in eggs of members of the western spotted frog complex (Rana pretiosa and R. luteiventris), species whose populations are suffering severe range reductions and declines. Specifically, we measured the activity of photoreactivating enzyme (photolyase) in oocytes of spotted frogs. In some species, photoreactivation is the most important mechanism for repair of

  13. DNA repair in a yeast origin of replication: contributions of photolyase and nucleotide excision repair

    Microsoft Academic Search

    Bernhard Suter; Ralf-Erik Wellinger; Fritz Thoma

    2000-01-01

    DNA damage formation and repair are tightly linked to protein-DNA interactions in chromatin. We have used minichromosomes in yeast as chromatin substrates in vivo to investigate how nucleotide excision repair (NER) and repair by DNA-photolyase (photoreactivation) remove pyrimidine dimers from an origin of replication (ARS1). The ARS1 region is nuclease sensitive and flanked by nucleosomes on both sides. Photoreactivation was

  14. Nucleotide Excision Repair: from DNA Damage Processing to Human Disease

    Microsoft Academic Search

    Mischa G. Vrouwe; Leon H. F. Mullenders

    \\u000a A network of DNA damage surveillance systems warrants genomic stability under conditions where cells and organisms are continuously\\u000a exposed to DNA damaging agents. This network includes DNA repair pathways, but also signaling pathways that activate cell\\u000a cycle checkpoints, apoptosis, transcription, and chromatin remodeling. Among the various repair pathways nucleotide excision\\u000a repair (NER) is a highly versatile and evolutionary conserved pathway

  15. Mutations in Two Ku Homologs Define a DNA End-Joining Repair Pathway inSaccharomyces cerevisiae

    Microsoft Academic Search

    G. TODD MILNE; SHENGFANG JIN; KATIE B. SHANNON; ANDDAVID T. WEAVER

    1996-01-01

    DNA double-strand break (DSB) repair in mammalian cells is dependent on the Ku DNA binding protein complex. However, the mechanism of Ku-mediated repair is not understood. We discovered a Saccharomyces cerevisiaegene (KU80) that is structurally similar to the 80-kDa mammalian Ku subunit. Ku80 associates with the product of theHDF1gene, forming the major DNA end-binding complex of yeast cells. DNA end

  16. Physical and Functional Interaction between DNA Ligase III  and Poly(ADP-Ribose) Polymerase 1 in DNA Single-Strand Break Repair

    Microsoft Academic Search

    John B. Leppard; Zhiwan Dong; Zachary B. Mackey; Alan E. Tomkinson

    2003-01-01

    The repair of DNA single-strand breaks in mammalian cells is mediated by poly(ADP-ribose) polymerase 1 (PARP-1), DNA ligase III, and XRCC1. Since these proteins are not found in lower eukaryotes, this DNA repair pathway plays a unique role in maintaining genome stability in more complex organisms. XRCC1 not only forms a stable complex with DNA ligase III but also interacts

  17. DNA repair and radiation sensitivity in mammalian cells

    SciTech Connect

    Chen, D.J.C.; Stackhouse, M. [Los Alamos National Lab., NM (United States); Chen, D.S. [Rochester Univ., NY (United States). Dept. of Radiation Oncology

    1993-02-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  18. DNA repair and radiation sensitivity in mammalian cells

    SciTech Connect

    Chen, D.J.C.; Stackhouse, M. (Los Alamos National Lab., NM (United States)); Chen, D.S. (Rochester Univ., NY (United States). Dept. of Radiation Oncology)

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  19. Androgen receptor signaling regulates DNA repair in prostate cancers

    PubMed Central

    Polkinghorn, William R.; Parker, Joel S.; Lee, Man X.; Kass, Elizabeth M.; Spratt, Daniel E.; Iaquinta, Phillip J.; Arora, Vivek K.; Yen, Wei-Feng; Cai, Ling; Zheng, Deyou; Carver, Brett S.; Chen, Yu; Watson, Philip A.; Shah, Neel P.; Fujisawa, Sho; Goglia, Alexander G.; Gopalan, Anuradha; Hieronymus, Haley; Wongvipat, John; Scardino, Peter T.; Zelefsky, Michael J.; Jasin, Maria; Chaudhuri, Jayanta; Powell, Simon N.; Sawyers, Charles L.

    2013-01-01

    We demonstrate that the androgen receptor (AR) regulates a transcriptional program of DNA repair genes that promotes prostate cancer radioresistance, providing a potential mechanism by which androgen deprivation therapy (ADT) synergizes with ionizing radiation (IR). Using a model of castration-resistant prostate cancer, we show that second-generation antiandrogen therapy results in downregulation of DNA repair genes. Next, we demonstrate that primary prostate cancers display a significant spectrum of AR transcriptional output which correlates with expression of a set of DNA repair genes. Employing RNA-seq and ChIP-seq, we define which of these DNA repair genes are both induced by androgen and represent direct AR targets. We establish that prostate cancer cells treated with IR plus androgen demonstrate enhanced DNA repair and decreased DNA damage and furthermore that antiandrogen treatment causes increased DNA damage and decreased clonogenic survival. Finally, we demonstrate that antiandrogen treatment results in decreased classical non-homologous end joining. PMID:24027196

  20. Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation

    PubMed Central

    Kaina, Bernd

    2013-01-01

    DNA repair is the first barrier in the defense against genotoxic stress. In recent years, mechanisms that recognize DNA damage and activate DNA repair functions through transcriptional upregulation and post-translational modification were the focus of intensive research. Most DNA repair pathways are complex, involving many proteins working in discrete consecutive steps. Therefore, their balanced expression is important for avoiding erroneous repair that might result from excessive base removal and DNA cleavage. Amelioration of DNA repair requires both a fine-tuned system of lesion recognition and transcription factors that regulate repair genes in a balanced way. Transcriptional upregulation of DNA repair genes by genotoxic stress is counteracted by DNA damage that blocks transcription. Therefore, induction of DNA repair resulting in an adaptive response is only visible through a narrow window of dose. Here, we review transcriptional regulation of DNA repair genes in normal and cancer cells and describe mechanisms of promoter activation following genotoxic exposures through environmental carcinogens and anticancer drugs. The data available to date indicate that 25 DNA repair genes are subject to regulation following genotoxic stress in rodent and human cells, but for only a few of them, the data are solid as to the mechanism, homeostatic regulation and involvement in an adaptive response to genotoxic stress. PMID:23892398

  1. SIRT6 stabilizes DNA-dependent Protein Kinase at chromatin for DNA double-strand break repair

    PubMed Central

    McCord, Ronald A.; Michishita, Eriko; Hong, Tao; Berber, Elisabeth; Boxer, Lisa D.; Kusumoto, Rika; Guan, Shenheng; Shi, Xiaobing; Gozani, Or; Burlingame, Alma L.; Bohr, Vilhelm A.; Chua, Katrin F.

    2009-01-01

    The Sir2 chromatin regulatory factor links maintenance of genomic stability to life span extension in yeast. The mammalian Sir2 family member SIRT6 has been proposed to have analogous functions, because SIRT6-deficiency leads to shortened life span and an aging-like degenerative phenotype in mice, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the molecular mechanisms underlying these defects are not fully understood. Here, we show that SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB) repair factor DNA-PK (DNA-dependent protein kinase) and promotes DNA DSB repair. In response to DSBs, SIRT6 associates dynamically with chromatin and is necessary for an acute decrease in global cellular acetylation levels on histone H3 Lysine 9. Moreover, SIRT6 is required for mobilization of the DNA-PK catalytic subunit (DNA-PKcs) to chromatin in response to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced site-specific DSB. Abrogation of these SIRT6 activities leads to impaired resolution of DSBs. Together, these findings elucidate a mechanism whereby regulation of dynamic interaction of a DNA repair factor with chromatin impacts on the efficiency of repair, and establish a link between chromatin regulation, DNA repair, and a mammalian Sir2 factor. PMID:20157594

  2. Architecture of the Pol III–clamp–exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair

    PubMed Central

    Toste Rêgo, Ana; Holding, Andrew N; Kent, Helen; Lamers, Meindert H

    2013-01-01

    DNA polymerase III (Pol III) is the catalytic ? subunit of the bacterial DNA Polymerase III holoenzyme. To reach maximum activity, Pol III binds to the DNA sliding clamp ? and the exonuclease ? that provide processivity and proofreading, respectively. Here, we characterize the architecture of the Pol III–clamp–exonuclease complex by chemical crosslinking combined with mass spectrometry and biochemical methods, providing the first structural view of the trimeric complex. Our analysis reveals that the exonuclease is sandwiched between the polymerase and clamp and enhances the binding between the two proteins by providing a second, indirect, interaction between the polymerase and clamp. In addition, we show that the exonuclease binds the clamp via the canonical binding pocket and thus prevents binding of the translesion DNA polymerase IV to the clamp, providing a novel insight into the mechanism by which the replication machinery can switch between replication, proofreading, and translesion synthesis. PMID:23549287

  3. DNA Computing Complexity Analysis Using DNA/DNA Hybridization Kinetics

    E-print Network

    DNA Computing Complexity Analysis Using DNA/DNA Hybridization Kinetics Soo­Yong Shin 1 , Eun Jeong the complexity of DNA computing. The complexity of any computational algorithm is typically measured in terms of time and space. In DNA computing, the time complexity can be measured by the total reaction time

  4. Differential recruitment of DNA Ligase I and III to DNA repair sites

    Microsoft Academic Search

    Oliver Mortusewicz; Ulrich Rothbauer; M. Cristina Cardoso; Heinrich Leonhardt

    2006-01-01

    DNA ligation is an essential step in DNA replication, repair and recombination. Mammalian cells contain three DNA Ligases that are not interchangeable although they use the same catalytic reaction mech- anism. To compare the recruitment of the three eukaryotic DNA Ligases to repair sites in vivo we introduced DNA lesions in human cells by laser microirradiation. Time lapse microscopy of

  5. DNA-PK: a dynamic enzyme in a versatile DSB repair pathway

    PubMed Central

    Davis, Anthony J.; Chen, Benjamin P.C.; Chen, David J.

    2014-01-01

    DNA double stranded breaks (DSBs) are the most cytoxic DNA lesion as the inability to properly repair them can lead to genomic instability and tumorigenesis. The prominent DSB repair pathway in humans is non-homologous end-joining (NHEJ). In the simplest sense, NHEJ mediates the direct re-ligation of the broken DNA molecule. However, NHEJ is a complex and versatile process that can repair DSBs with a variety of damages and ends via the utilization of a significant number of proteins. In this review we will describe the important factors and mechanisms modulating NHEJ with emphasis given to the versatility of this repair process and the DNA-PK complex. PMID:24680878

  6. Structure of the DNA repair helicase XPD

    PubMed Central

    Liu, Huanting; Rudolf, Jana; Johnson, Kenneth A; McMahon, Stephen A; Oke, Muse; Carter, Lester; McRobbie, Anne-Marie; Brown, Sara E; Naismith, James H; White, Malcolm F

    2012-01-01

    Summary The XPD helicase (Rad3 in Saccharomyces cerevisiae) is a component of transcription factor IIH (TFIIH), which functions in transcription initiation and Nucleotide Excision Repair in eukaryotes, catalysing DNA duplex opening localised to the transcription start site or site of DNA damage, respectively. XPD has a 5? to 3? polarity and the helicase activity is dependent on an iron-sulfur cluster binding domain, a feature that is conserved in related helicases such as FancJ. The xpd gene is the target of mutation in patients with xeroderma pigentosum, trichothiodystrophy and Cockayne’s syndrome, characterised by a wide spectrum of symptoms ranging from cancer susceptibility to neurological and developmental defects. The 2.25 Å crystal structure of XPD from the crenarchaeon Sulfolobus tokodaii, presented here together with detailed biochemical analyses, allows a molecular understanding of the structural basis for helicase activity and explains the phenotypes of xpd mutations in humans. PMID:18510925

  7. Structure of the DNA repair helicase XPD.

    PubMed

    Liu, Huanting; Rudolf, Jana; Johnson, Kenneth A; McMahon, Stephen A; Oke, Muse; Carter, Lester; McRobbie, Anne-Marie; Brown, Sara E; Naismith, James H; White, Malcolm F

    2008-05-30

    The XPD helicase (Rad3 in Saccharomyces cerevisiae) is a component of transcription factor IIH (TFIIH), which functions in transcription initiation and Nucleotide Excision Repair in eukaryotes, catalyzing DNA duplex opening localized to the transcription start site or site of DNA damage, respectively. XPD has a 5' to 3' polarity and the helicase activity is dependent on an iron-sulfur cluster binding domain, a feature that is conserved in related helicases such as FancJ. The xpd gene is the target of mutation in patients with xeroderma pigmentosum, trichothiodystrophy, and Cockayne's syndrome, characterized by a wide spectrum of symptoms ranging from cancer susceptibility to neurological and developmental defects. The 2.25 A crystal structure of XPD from the crenarchaeon Sulfolobus tokodaii, presented here together with detailed biochemical analyses, allows a molecular understanding of the structural basis for helicase activity and explains the phenotypes of xpd mutations in humans. PMID:18510925

  8. DNA Repair and Genome Maintenance in Bacillus subtilis

    PubMed Central

    Lenhart, Justin S.; Schroeder, Jeremy W.; Walsh, Brian W.

    2012-01-01

    Summary: From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis. PMID:22933559

  9. DNA repair after X-irradiation: lessons from plants.

    PubMed

    Einset, John; Collins, Andrew R

    2015-01-01

    The effects of low-dose radiation causing DNA damage continue to be subjects of interest. Problems with existing approaches to low-dose DNA damage are that single-strand breaks (the predominant radiation-induced lesion) are very rapidly repaired and that results using current methods for measuring DNA damage can be difficult to interpret. As a novel approach, we conducted studies using plants (rye grass and the model plant Arabidopsis) exposed to X-rays and used the alkaline comet assay to measure DNA damage and repair after exposures. Consistent with previous studies, we detected so-called 'rapid' and 'slow' phases of DNA repair after acute exposures of 5 and 15 Gy. After exposures corresponding to 2 Gy and lower, 'rapid' repair was so fast that it was difficult to detect. We also found that the so-called 'slow' phase in both plants actually consisted of two components; an initial period of negligible repair lasting 80-120 min followed by a period of rapid repair lasting <30 min. Using Arabidopsis mutants homozygous for both ATM and BRCA1, we found that both of these genes are required for DNA repair during the 3-h period of our experiments, indicating that the 'slow' phase involves a homologous repair (HR) of double-strand breaks and clustered single-strand breaks. The lag of repair in the 'slow' phase presumably involves induction of expression of genes involved in HR repair such as BRCA1 and RAD51. PMID:25527727

  10. Human DNA polymerase ? grasps the primer terminus to mediate DNA repair.

    PubMed

    Zahn, Karl E; Averill, April M; Aller, Pierre; Wood, Richard D; Doublié, Sylvie

    2015-04-01

    DNA polymerase ? protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase ? is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break-inducing agents, including ionizing radiation. Reported here are crystal structures of the C-terminal polymerase domain from human polymerase ?, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase ? uses a specialized thumb subdomain to establish unique upstream contacts to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. These observations demonstrate how polymerase ? grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining. PMID:25775267

  11. DNA repair systems as targets of cadmium toxicity

    SciTech Connect

    Giaginis, Constantinos [Department of Forensic Medicine and Toxicology, University of Athens, Medical School, 75 M. Asias str., Goudi, GR11527 Athens (Greece); Gatzidou, Elisavet [Department of Forensic Medicine and Toxicology, University of Athens, Medical School, 75 M. Asias str., Goudi, GR11527 Athens (Greece); Theocharis, Stamatios [Department of Forensic Medicine and Toxicology, University of Athens, Medical School, 75 M. Asias str., Goudi, GR11527 Athens (Greece)]. E-mail: theocharis@ath.forthnet.gr

    2006-06-15

    Cadmium (Cd) is a heavy metal and a potent carcinogen implicated in tumor development through occupational and environmental exposure. Recent evidence suggests that proteins participating in the DNA repair systems, especially in excision and mismatch repair, are sensitive targets of Cd toxicity. Cd by interfering and inhibiting these DNA repair processes might contribute to increased risk for tumor formation in humans. In the present review, the information available on the interference of Cd with DNA repair systems and their inhibition is summarized. These actions could possibly explain the indirect contribution of Cd to mutagenic effects and/or carcinogenicity.

  12. DNA Computing Complexity Analysis Using DNA/DNA Hybridization Kinetics

    E-print Network

    DNA Computing Complexity Analysis Using DNA/DNA Hybridization Kinetics Soo-Yong Shin1 , Eun Jeong of DNA computing. The complexity of any computational algorithm is typically measured in terms of time and space. In DNA computing, the time complexity can be measured by the total reaction time

  13. DNA Damage and Repair in Telomeres: Relation to Aging

    Microsoft Academic Search

    Patricia A. Kruk; Nicholas J. Rampino; Vilhelm A. Bohr

    1995-01-01

    We have established a method for the detection of DNA damage and its repair in human telomeres, the natural ends of chromosomes which are necessary for replication and critical for chromosomal stability. We find that ultraviolet light-induced pyrimidine dimers in telomeric DNA are repaired less efficiently than endogenous genes but more efficiently than inactive, noncoding regions. We have also measured

  14. Alkyltransferase-like proteins: Molecular switches between DNA repair pathways

    PubMed Central

    Tubbs, Julie L.; Tainer, John A.

    2011-01-01

    Alkyltransferase-like proteins (ATLs) play a role in the protection of cells from the biological effects of DNA alkylation damage. Although ATLs share functional motifs with the DNA repair protein and cancer chemotherapy target O6-alkylguanine-DNA alkyltransferase, they lack the reactive cysteine residue required for alkyltransferase activity, so its mechanism for cell protection was previously unknown. Here, we review recent advances in unravelling the enigmatic cellular protection provided by ATLs against the deleterious effects of DNA alkylation damage. We discuss exciting new evidence that ATLs aid in the repair of DNA O6-alkylguanine lesions through a novel repair cross-talk between DNA-alkylation base damage responses and the DNA nucleotide excision repair pathway. PMID:20502938

  15. Glyceraldehyde-3-phosphate dehydrogenase is required for efficient repair of cytotoxic DNA lesions in Escherichia coli.

    PubMed

    Ferreira, Elaine; Giménez, Rosa; Cañas, María Alexandra; Aguilera, Laura; Aguilar, Juan; Badia, Josefa; Baldomà, Laura

    2015-03-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein with diverse biological functions in human cells. In bacteria, moonlighting GAPDH functions have only been described for the secreted protein in pathogens or probiotics. At the intracellular level, we previously reported the interaction of Escherichia coli GAPDH with phosphoglycolate phosphatase, a protein involved in the metabolism of the DNA repair product 2-phosphoglycolate, thus suggesting a putative role of GAPDH in DNA repair processes. Here, we provide evidence that GAPDH is required for the efficient repair of DNA lesions in E. coli. We show that GAPDH-deficient cells are more sensitive to bleomycin or methyl methanesulfonate. In cells challenged with these genotoxic agents, GAPDH deficiency results in reduced cell viability and filamentous growth. In addition, the gapA knockout mutant accumulates a higher number of spontaneous abasic sites and displays higher spontaneous mutation frequencies than the parental strain. Pull-down experiments in different genetic backgrounds show interaction between GAPDH and enzymes of the base excision repair pathway, namely the AP-endonuclease Endo IV and uracil DNA glycosylase. This finding suggests that GAPDH is a component of a protein complex dedicated to the maintenance of genomic DNA integrity. Our results also show interaction of GAPDH with the single-stranded DNA binding protein. This interaction may recruit GAPDH to the repair sites and implicates GAPDH in DNA repair pathways activated by profuse DNA damage, such as homologous recombination or the SOS response. PMID:25603270

  16. Repair of damaged DNA in vivo: Final technical report

    SciTech Connect

    Hanawalt, P.C.

    1987-09-01

    This contract was initiated in 1962 with the US Atomic Energy Commission to carry out basic research on the effects of radiation on the process of DNA replication in bacteria. Within the first contract year we discovered repair replication at the same time that Setlow and Carrier discovered pyrimidine dimer excision. These discoveries led to the elucidation of the process of excision-repair, one of the most important mechanisms by which living systems, including humans, respond to structural damage in their genetic material. We improved methodology for distinguishing repair replication from semiconservative replication and instructed others in these techniques. Painter then was the first to demonstrate repair replication in ultraviolet irradiated human cells. He, in turn, instructed James Cleaver who discovered that skin fibroblasts from patients with xeroderma pigmentosum were defective in excision-repair. People with this genetic defect are extremely sensitive to sunlight and they develop carcinomas and melanomas of the skin with high frequency. The existence of this hereditary disease attests to the importance of DNA repair in man. We certainly could not survive in the normal ultraviolet flux from the sun if our DNA were not continuously monitored for damage and repaired. Other hereditary diseases such as ataxia telangiectasia, Cockayne's syndrome, Blooms syndrome and Fanconi's anemia also involve deficiencies in DNA damage processing. The field of DNA repair has developed rapidly as we have learned that most environmental chemical carcinogens as well as radiation produce repairable damage in DNA. 251 refs.

  17. Supramolecular Complexes of DNA

    NASA Astrophysics Data System (ADS)

    Zuber, G.; Scherman, D.

    Deoxyribose nucleic acid or DNA is a linear polymer in the form of a double strand, synthesised by sequential polymerisation of a large number of units chosen from among the nucleic bases called purines (adenosine A and guanosine G) and pyrimidines (cytosine C and thymidine T). DNA contains all the genetic information required for life. It exists in the form of a limited number (a few dozen) of very big molecules, called chromosomes. This genetic information is first of all transcribed. In this process, a restricted fragment of the DNA called a gene is copied in the form of ribonucleic acid, or RNA. This RNA is itself a polymer, but with a single strand in which the sequence of nucleic acids is schematically analogous to the sequence on one of the two strands of the transcribed DNA. Finally, this RNA is translated into a protein, yet another linear polymer. The proteins make up the main part of the active constituents ensuring the survival of the cell. Any loss of information, either by mutation or by deletion of the DNA, will cause an imbalance in the cell's metabolism that may in turn lead to incurable pathologies. Several strategies have been developed to reduce the consequences of such genetic deficiencies or, more generally, to act, by amplifying or suppressing them, on the mechanisms leading from the reading of the genetic information to the production of proteins: Strategies aiming to introduce synthetic DNA or RNA, which selectively block the expression of certain genes, are now being studied by an increasing number of research scientists and pharmacologists. They use antisense oligodeoxyribonucleotides or interfering oligoribonucleotides and they already have clinical applications. This kind of therapy is often called gene pharmacology. Other, more ambitious strategies aim to repair in situ mutated or incomplete DNA within the chromosomes themselves, by introducing short sequences of DNA or RNA which recognise and take the place of mutations. This is the underlying principle of genetic correction. Yet other strategies aim to reintroduce the deficient DNA fragments into the cells in the form of genes. Indeed, in certain diseases, the only solution is to bring genetic information back into the cells by transferring exogeneous DNA into the cell nucleus. This approach goes by the name of gene therapy.

  18. Chronodisruption, cell cycle checkpoints and DNA repair.

    PubMed

    Ben-Shlomo, Rachel

    2014-05-01

    Chronodisruption, a disturbance in "natural" daily light/dark regulation, is possibly linked to disturbances in cell cycle homeostasis. The association and the synchronization between circadian rhythms and mitosis are not yet clear. The circadian oscillator is involved in the major cellular pathways of cell division. A molecular link between the circadian clock and the mammalian DNA damage checkpoints has been outlined. Analyses suggest an association between light disruption and obstruction of the cell cycle homeostasis. Disruption in the homeostatic control of the cell cycle has been associated with cancer and acceleration of malignant growth, possibly as a result of the interruption of DNA damage check-points. Studies further indicate that light signal during the dark phase affects the transcription level of a substantial number of genes that are associated with cell cycle progression, cell proliferation and tumorigenesis. Indeed, the International Agency for Research in Cancer categorized "shift work that involves circadian disruption" as possibly carcinogenic. In this review the current finding on light pollution and its potential influence on cell cycle check-points and DNA repair is presented. PMID:24851401

  19. In vivo dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair

    Microsoft Academic Search

    M. J. Mone; T. Bernas; C. Dinant; F. A. Goedvree; E. M. M. Manders; M. Volker; A. B. Houtsmuller; J. H. J. Hoeijmakers; W. Vermeulen; Driel van R

    2004-01-01

    Chromatin is the substrate for many processes in the cell nucleus, including transcription, replication, and various DNA repair systems, all of which require the formation of multiprotein machineries on the chromatin fiber. We have analyzed the kinetics of in vivo assembly of the protein complex that is responsible for nucleotide excision repair (NER) in mammalian cells. Assembly is initiated by

  20. DNA repair in C. violaceum 167 DNA repair in Chromobacterium violaceum

    E-print Network

    2003-01-01

    ABSTRACT. Chromobacterium violaceum is a Gram-negative ?-proteobacterium that inhabits a variety of ecosystems in tropical and subtropical regions, including the water and banks of the Negro River in the Brazilian Amazon. This bacterium has been the subject of extensive study over the last three decades, due to its biotechnological properties, including the characteristic violacein pigment, which has antimicrobial and anti-tumoral activities. C. violaceum promotes the solubilization of gold in a mercury-free process, and has been used in the synthesis of homopolyesters suitable for the production of biodegradable polymers. The complete genome sequence of this organism has been completed by the Brazilian National Genome Project Consortium. The aim of our group was to study the DNA repair genes in this organism, due to their importance in the maintenance of genomic integrity. We identified DNA repair genes involved in different pathways in C. violaceum through a similarity search against known sequences deposited in databases. The

  1. Structural Insights Into DNA Repair by RNase T—An Exonuclease Processing 3? End of Structured DNA in Repair Pathways

    PubMed Central

    Hsiao, Yu-Yuan; Fang, Woei-Horng; Lee, Chia-Chia; Chen, Yi-Ping; Yuan, Hanna S.

    2014-01-01

    DNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation. RNase T specifically trims the 3? end of structured DNA, including bulge, bubble, and Y-structured DNA, and it can work with Endonuclease V to restore the deaminated base in an inosine-containing heteroduplex DNA. Crystal structure analyses further reveal how RNase T recognizes the bulge DNA by inserting a phenylalanine into the bulge, and as a result the 3? end of blunt-end bulge DNA can be digested by RNase T. In contrast, the homodimeric RNase T interacts with the Y-structured DNA by a different binding mode via a single protomer so that the 3? overhang of the Y-structured DNA can be trimmed closely to the duplex region. Our data suggest that RNase T likely processes bulge and bubble DNA in the Endonuclease V–dependent DNA repair, whereas it processes Y-structured DNA in UV-induced and various other DNA repair pathways. This study thus provides mechanistic insights for RNase T and thousands of DnaQ-like exonucleases in DNA 3?-end processing. PMID:24594808

  2. DNA repair in cancer: emerging targets for personalized therapy

    PubMed Central

    Abbotts, Rachel; Thompson, Nicola; Madhusudan, Srinivasan

    2014-01-01

    Genomic deoxyribonucleic acid (DNA) is under constant threat from endogenous and exogenous DNA damaging agents. Mammalian cells have evolved highly conserved DNA repair machinery to process DNA damage and maintain genomic integrity. Impaired DNA repair is a major driver for carcinogenesis and could promote aggressive cancer biology. Interestingly, in established tumors, DNA repair activity is required to counteract oxidative DNA damage that is prevalent in the tumor microenvironment. Emerging clinical data provide compelling evidence that overexpression of DNA repair factors may have prognostic and predictive significance in patients. More recently, DNA repair inhibition has emerged as a promising target for anticancer therapy. Synthetic lethality exploits intergene relationships where the loss of function of either of two related genes is nonlethal, but loss of both causes cell death. Exploiting this approach by targeting DNA repair has emerged as a promising strategy for personalized cancer therapy. In the current review, we focus on recent advances with a particular focus on synthetic lethality targeting in cancer. PMID:24600246

  3. The Smc complexes in DNA damage response

    PubMed Central

    2012-01-01

    The structural maintenance of chromosomes (Smc) proteins regulate nearly all aspects of chromosome biology and are critical for genomic stability. In eukaryotes, six Smc proteins form three heterodimers--Smc1/3, Smc2/4, and Smc5/6--which together with non-Smc proteins form cohesin, condensin, and the Smc5/6 complex, respectively. Cohesin is required for proper chromosome segregation. It establishes and maintains sister-chromatid cohesion until all sister chromatids achieve bipolar attachment to the mitotic spindle. Condensin mediates chromosome condensation during mitosis. The Smc5/6 complex has multiple roles in DNA repair. In addition to their major functions in chromosome cohesion and condensation, cohesin and condensin also participate in the cellular DNA damage response. Here we review recent progress on the functions of all three Smc complexes in DNA repair and their cell cycle regulation by posttranslational modifications, such as acetylation, phosphorylation, and sumoylation. An in-depth understanding of the mechanisms by which these complexes promote DNA repair and genomic stability may help us to uncover the molecular basis of genomic instability in human cancers and devise ways that exploit this instability to treat cancers. PMID:22369641

  4. DNA repair: Dynamic defenders against cancer and aging

    SciTech Connect

    Fuss, Jill O.; Cooper, Priscilla K.

    2006-04-01

    You probably weren't thinking about your body's cellular DNA repair systems the last time you sat on the beach in the bright sunshine. Fortunately, however, while you were subjecting your DNA to the harmful effects of ultraviolet light, your cells were busy repairing the damage. The idea that our genetic material could be damaged by the sun was not appreciated in the early days of molecular biology. When Watson and Crick discovered the structure of DNA in 1953 [1], it was assumed that DNA is fundamentally stable since it carries the blueprint of life. However, over 50 years of research have revealed that our DNA is under constant assault by sunlight, oxygen, radiation, various chemicals, and even our own cellular processes. Cleverly, evolution has provided our cells with a diverse set of tools to repair the damage that Mother Nature causes. DNA repair processes restore the normal nucleotide sequence and DNA structure of the genome after damage [2]. These responses are highly varied and exquisitely regulated. DNA repair mechanisms are traditionally characterized by the type of damage repaired. A large variety of chemical modifications can alter normal DNA bases and either lead to mutations or block transcription if not repaired, and three distinct pathways exist to remove base damage. Base excision repair (BER) corrects DNA base alterations that do not distort the overall structure of the DNA helix such as bases damaged by oxidation resulting from normal cellular metabolism. While BER removes single damaged bases, nucleotide excision repair (NER) removes short segments of nucleotides (called oligonucleotides) containing damaged bases. NER responds to any alteration that distorts the DNA helix and is the mechanism responsible for repairing bulky base damage caused by carcinogenic chemicals such as benzo [a]pyrene (found in cigarette smoke and automobile exhaust) as well as covalent linkages between adjacent pyrimidine bases resulting from the ultraviolet (UV) component of sunlight. NER can be divided into two classes based on where the repair occurs. NER occurring in DNA that is not undergoing transcription (i.e., most of the genome) is called global genome repair (GGR or GGNER), while NER taking place in the transcribed strand of active genes is called transcription-coupled repair (TCR or TC-NER). We will explore NER in more detail below. Mismatch repair (MMR) is another type of excision repair that specifically removes mispaired bases resulting from replication errors. DNA damage can also result in breaks in the DNA backbone, in one or both strands. Single-strand breaks (SSBs) are efficiently repaired by a mechanism that shares common features with the later steps in BER. Double-strand breaks (DSBs) are especially devastating since by definition there is no intact complementary strand to serve as a template for repair, and even one unrepaired DSB can be lethal [3]. In cells that have replicated their DNA prior to cell division, the missing information can be supplied by the duplicate copy, or sister chromatid, and DSBs in these cells are faithfully repaired by homologous recombination involving the exchange of strands of DNA between the two copies. However, most cells in the body are non-dividing, and in these cells the major mechanism for repairing DSBs is by non-homologous end joining (NHEJ), which as the name implies involves joining two broken DNA ends together without a requirement for homologous sequence and which therefore has a high potential for loss of genetic information.

  5. DNA repair: counteragent in mutagenesis and carcinogenesis-- accomplice in cancer therapy resistance.

    PubMed

    Rajewsky, M F; Engelbergs, J; Thomale, J; Schweer, T

    2000-04-01

    DNA-reactive carcinogens and anticancer drugs induce many structurally distinct mutagenic and cytotoxic DNA lesions. The varying capability of normal and malignant cells to recognize and repair specific DNA lesions influences both cancer risk and the relative sensitivity or resistance of cancer cells towards cytotoxic agents. Using monoclonal antibody-based immunoanalytical assays, very low amounts of defined carcinogen-DNA adducts can be quantified in bulk genomic DNA, in individual genes, and in the nuclear DNA of single cells. DNA repair kinetics can, thus, be measured in a lesion-, gene-, and cell type-specific manner, and the DNA repair profiles of malignant cells can be monitored in individual patients. Even structurally very similar DNA lesions may be repaired with strongly differing efficiency. The miscoding DNA alkylation products O(6)-methylguanine and O(6)-ethylguanine, for example, differ only by one CH(2) group. These lesions are formed in DNA upon exposure to N-methyl-N-nitrosourea or N-ethyl-N-nitrosourea, both of which induce mammary adenocarcinomas in female rats at high yield. Unrepaired O(6)-alkylguanines in DNA cause G:C-->A:T transition mutations via mispairing during DNA replication. O(6)-methylguanines are repaired at a similar slow rate in both transcriptionally active (H-ras, beta-actin) and inactive genes (IgE heavy chain; bulk DNA) of the target mammary epithelia (which express the repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) at a very low level). In contrast, O(6)-ethylguanines are repaired approximately 20 times faster than O(6)-methylguanines in both DNA strands of the transcribed genes selectively via an AGT-independent, as yet unclarified excision mechanism. Accordingly, G:C-->A:T transitions resulting from the misreplication of an O(6)-methylated guanine at the second position of codon 12 (GGA) of H-ras represent a frequent "signature" mutation in rat mammary adenocarcinomas that develop after exposure to N-methyl-N-nitrosourea. However, this mutation is not observed when these tumors are induced by N-ethyl-N-nitrosourea, due to the fast repair of O(6)-ethylguanines in the H-ras gene. The key importance of "conventional" and "conditional" gene knockout technology for resolving the intricacies of the complex network of DNA repair pathways is briefly discussed. PMID:10767621

  6. Is Thymidine Glycol Containing DNA a Substrate of E. coli DNA Mismatch Repair System?

    PubMed Central

    Perevozchikova, Svetlana A.; Trikin, Roman M.; Heinze, Roger J.; Romanova, Elena A.; Oretskaya, Tatiana S.; Friedhoff, Peter; Kubareva, Elena A.

    2014-01-01

    The DNA mismatch repair (MMR) system plays a crucial role in the prevention of replication errors and in the correction of some oxidative damages of DNA bases. In the present work the most abundant oxidized pyrimidine lesion, 5,6-dihydro-5,6-dihydroxythymidine (thymidine glycol, Tg) was tested for being recognized and processed by the E. coli MMR system, namely complex of MutS, MutL and MutH proteins. In a partially reconstituted MMR system with MutS-MutL-MutH proteins, G/Tg and A/Tg containing plasmids failed to provoke the incision of DNA. Tg residue in the 30-mer DNA duplex destabilized double helix due to stacking disruption with neighboring bases. However, such local structural changes are not important for E. coli MMR system to recognize this lesion. A lack of repair of Tg containing DNA could be due to a failure of MutS (a first acting protein of MMR system) to interact with modified DNA in a proper way. It was shown that Tg in DNA does not affect on ATPase activity of MutS. On the other hand, MutS binding affinities to DNA containing Tg in G/Tg and A/Tg pairs are lower than to DNA with a G/T mismatch and similar to canonical DNA. Peculiarities of MutS interaction with DNA was monitored by Förster resonance energy transfer (FRET) and fluorescence anisotropy. Binding of MutS to Tg containing DNAs did not result in the formation of characteristic DNA kink. Nevertheless, MutS homodimer orientation on Tg-DNA is similar to that in the case of G/T-DNA. In contrast to G/T-DNA, neither G/Tg- nor A/Tg-DNA was able to stimulate ADP release from MutS better than canonical DNA. Thus, Tg residue in DNA is unlikely to be recognized or processed by the E. coli MMR system. Probably, the MutS transformation to active “sliding clamp” conformation on Tg-DNA is problematic. PMID:25133614

  7. The Rad9 protein enhances survival and promotes DNA repair following exposure to ionizing radiation

    SciTech Connect

    Brandt, Patrick D. [Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 (United States); Helt, Christopher E. [Department of Radiation Oncology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 (United States); Keng, Peter C. [Department of Radiation Oncology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 (United States); Bambara, Robert A. [Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 (United States)]. E-mail: robert_bambara@urmc.rochester.edu

    2006-08-18

    Following DNA damage cells initiate cell cycle checkpoints to allow time to repair sustained lesions. Rad9, Rad1, and Hus1 proteins form a toroidal complex, termed the 9-1-1 complex, that is involved in checkpoint signaling. 9-1-1 shares high structural similarity to the DNA replication protein proliferating cell nuclear antigen (PCNA) and 9-1-1 has been shown in vitro to stimulate steps of the repair process known as long patch base excision repair. Using a system that allows conditional repression of the Rad9 protein in human cell culture, we show that Rad9, and by extension, the 9-1-1 complex, enhances cell survival, is required for efficient exit from G2-phase arrest, and stimulates the repair of damaged DNA following ionizing radiation. These data provide in vivo evidence that the human 9-1-1 complex participates in DNA repair in addition to its previously described role in DNA damage sensing.

  8. Nuclear GIT2 Is an ATM Substrate and Promotes DNA Repair.

    PubMed

    Lu, Daoyuan; Cai, Huan; Park, Sung-Soo; Siddiqui, Sana; Premont, Richard T; Schmalzigaug, Robert; Paramasivam, Manikandan; Seidman, Michael; Bodogai, Ionoa; Biragyn, Arya; Daimon, Caitlin M; Martin, Bronwen; Maudsley, Stuart

    2015-04-01

    Insults to nuclear DNA induce multiple response pathways to mitigate the deleterious effects of damage and mediate effective DNA repair. G-protein-coupled receptor kinase-interacting protein 2 (GIT2) regulates receptor internalization, focal adhesion dynamics, cell migration, and responses to oxidative stress. Here we demonstrate that GIT2 coordinates the levels of proteins in the DNA damage response (DDR). Cellular sensitivity to irradiation-induced DNA damage was highly associated with GIT2 expression levels. GIT2 is phosphorylated by ATM kinase and forms complexes with multiple DDR-associated factors in response to DNA damage. The targeting of GIT2 to DNA double-strand breaks was rapid and, in part, dependent upon the presence of H2AX, ATM, and MRE11 but was independent of MDC1 and RNF8. GIT2 likely promotes DNA repair through multiple mechanisms, including stabilization of BRCA1 in repair complexes; upregulation of repair proteins, including HMGN1 and RFC1; and regulation of poly(ADP-ribose) polymerase activity. Furthermore, GIT2-knockout mice demonstrated a greater susceptibility to DNA damage than their wild-type littermates. These results suggest that GIT2 plays an important role in MRE11/ATM/H2AX-mediated DNA damage responses. PMID:25605334

  9. Transcription bypass of DNA lesions enhances cell survival but attenuates transcription coupled DNA repair

    PubMed Central

    Li, Wentao; Selvam, Kathiresan; Ko, Tengyu; Li, Shisheng

    2014-01-01

    Transcription-coupled DNA repair (TCR) is a subpathway of nucleotide excision repair (NER) dedicated to rapid removal of DNA lesions in the transcribed strand of actively transcribed genes. The precise nature of the TCR signal and how the repair machinery gains access to lesions imbedded in stalled RNA polymerase II (RNAP II) complexes in eukaryotic cells are still enigmatic. RNAP II has an intrinsic capacity for transcription bypass of DNA lesions by incorporation or misincorporation of nucleotides across the lesions. It has been suggested that transcription bypass of lesions, which exposes the lesions, may be required for TCR. Here, we show that E1103G mutation of Rpb1, the largest subunit of RNAP II, which promotes transcription bypass of UV-induced cyclobutane pyrimidine dimers (CPDs), increases survival of UV irradiated yeast cells but attenuates TCR. The increased cell survival is independent of any NER subpathways. In contrast, G730D mutation of Rpb1, which impairs transcription bypass of CPDs, enhances TCR. Our results suggest that transcription bypass of lesions attenuates TCR but enhances cell tolerance to DNA lesions. Efficient stalling of RNAP II is essential for efficient TCR. PMID:25389266

  10. Fanconi Anemia: A Signal Transduction and DNA Repair Pathway

    PubMed Central

    Kupfer, Gary M.

    2013-01-01

    Fanconi anemia (FA) is a fascinating, rare genetic disorder marked by congenital defects, bone marrow failure, and cancer susceptibility. Research in recent years has led to the elucidation of FA as a DNA repair disorder and involved multiple pathways as well as having wide applicability to common cancers, including breast, ovarian, and head and neck. This review will describe the clinical aspects of FA as well as the current state of its molecular pathophysiology. In particular, work from the Kupfer laboratory will be described that demonstrates how the FA pathway interacts with multiple DNA repair pathways, including the mismatch repair system and signal transduction pathway of the DNA damage response. PMID:24348213

  11. Recombinational Repair of DNA Damage in Escherichia coli and Bacteriophage ?

    PubMed Central

    Kuzminov, Andrei

    1999-01-01

    Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage ? recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation. PMID:10585965

  12. DNA Repair in Human/Embryonic Chick Heterokaryons

    PubMed Central

    Paterson, M. C.; Lohman, P. H. M.; Westerveld, A.; Sluyter, M. L.

    1974-01-01

    Cultured human and embryonic chick fibroblasts possess different enzyme-mediated processes to repair cyclobutyl pyrimidine dimers induced in their deoxyribonucleic acid (DNA) by ultraviolet (UV) radiation. While dimers are corrected in human cells by excision repair, a photoenzymatic repair process exists in embryonic chick cells for the removal of these potentially deleterious UV photoproducts. We have utilized a sensitive enzymatic assay to monitor the disappearance, i.e. repair, of dimer-containing sites in fused populations of human and chick cells primarily consisting of multinucleate human/chick heterokaryons. Fused cultures were constructed such that UV photoproducts were present only in chick DNA when evaluating excision repair and only in human DNA when evaluating photoenzymatic repair. Based on the kinetics of site removal observed in these cultures we are led to conclude the following: Within heterokaryons per se the photoreactivating enzyme derived from chick nuclei and at least one excision-repair enzyme (presumably a UV endonuclease) derived from human nuclei act on UV-damaged DNA in foreign nuclei with an efficiency equal to that displayed toward their own nuclear DNA. Hence, after cell fusion these chick and human repair enzymes are apparently able to diffuse into foreign nuclei and once therein competently attack UV-irradiated DNA independently of its origin. In harmony with the situation in nonfused parental cultures, in heterokaryons the chick photoenzymatic repair process rapidly removed all dimer-containing sites from human DNA including the residual fraction normally acted upon slowly by the human excision-repair process. PMID:4474028

  13. A review of DNA repair and possible DNA-repair adjuvants and selected natural anti-oxidants.

    PubMed

    Emanuel, Patrick; Scheinfeld, Noah

    2007-01-01

    Few other organs have the environmental exposure-neoplasia relationship that has been observed between epithelial cutaneous malignancy and UVB exposure. A significant DNA type of defective linking of DNA nucleotides involves pyrimidine dimers. Important insight into the molecular processes that affect the response of cells to UVB have been provided by the study of rare inherited diseases characterized by DNA repair defects. Nucleotide excision repair is the best characterized of these and its importance is illustrated by the disease, xeroderma pigmentosum. This heterogenous disorder clinically characterized by malignant tumor development and molecularly by distinct alterations in the nucleotide excision repair apparatus. More recently, other DNA mechanisms have been shown to have some role in skin cancer, such as DNA-mismatch repair and double-stranded DNA breaks. Herein, we discuss the DNA-repair adjuvants a aqueous extract of Urcaria tomentosa (AC-11, Optigenex, Inc.), and T4 endonuclease V that is prepared in a liposome lotion (Dimericine, Applied Genetics Inc. Dermatics). The positive effects on the integrity DNA of other substances (from nature, heat shock proteins and cytokines) including IL-12, Polypodium leucotomos, and ubiquitin are also reviewed. Understanding DNA repair mechanisms is far from complete; further understanding will provide insight into the pathogenesis of cancer and pave the way for efficacious therapeutic agents. PMID:18328204

  14. Radiation-Induced Survivin Nuclear Accumulation is Linked to DNA Damage Repair

    SciTech Connect

    Capalbo, Gianni [Departments of Radiation Therapy and Oncology, University of Frankfurt/Main, 60590 Frankfurt (Germany); Dittmann, Klaus [Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen (Germany); Weiss, Christian; Reichert, Sebastian [Departments of Radiation Therapy and Oncology, University of Frankfurt/Main, 60590 Frankfurt (Germany); Hausmann, Eva [Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen (Germany); Roedel, Claus [Departments of Radiation Therapy and Oncology, University of Frankfurt/Main, 60590 Frankfurt (Germany); Roedel, Franz, E-mail: franz.roedel@kgu.d [Departments of Radiation Therapy and Oncology, University of Frankfurt/Main, 60590 Frankfurt (Germany)

    2010-05-01

    Purpose: Increased expression of survivin has been identified as a negative prognostic marker in a variety of human cancers. We have previously shown that survivin is a radiation-resistance factor and that the therapeutic effect of survivin knock-down might result from an impaired DNA repair capacity. In this study, we aimed to elucidate an interrelationship between survivin's cellular localization and DNA double-strand break repair. Methods and Materials: Survivin's cellular distribution and nuclear complex formation were assayed by Western blotting of subcellular fractions, by immunofluorescence staining, and co-immunoprecipitation in SW480 colorectal cancer cells. DNA repair capacity was analyzed by kinetics of gamma-H2AX foci formation, and by DNA-dependent protein kinase (DNA-PKcs) assays in the presence of survivin-specific or nonspecific control siRNA. Results: Following irradiation, we observed a rapid nuclear accumulation of survivin and subsequent phosphorylation of the protein in the nucleus. Co-immunoprecipitation analyses from nuclear extracts revealed an interaction among survivin, Ku70, gamma-H2AX, MDC1, and DNA-PKcs that was confirmed by immunofluorescence co-localization in nuclear foci. Survivin knock down by siRNA resulted in an impaired DNA double strand break repair, as demonstrated by an increased detection of gamma-H2AX foci/nucleus at 60 min and a higher amount of residual gamma-H2AX foci at 24 hr postirradiation. Furthermore, we detected in survivin-depleted cells a hampered S2056 autophosphorylation of DNA-PKcs and a significantly decreased DNA-PKcs kinase activity. Conclusion: These data indicate that nuclear survivin is linked to DNA double-strand break repair by interaction with members of the DNA double-strand breaks repair machinery, thus regulating DNA-PKcs activity.

  15. Methods to alter levels of a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-10-17

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  16. Mechanisms of DNA damage recognition in mammalian nucleotide excision repair

    Microsoft Academic Search

    HANSPETER NAEGELI

    The ability of nucleotide excision re- pair (NER) to process multiple forms of DNA damage is highly dependent on the precision by which DNA modifications are located in the genome. Studies of mammalian NER have shown that this system elimi- nates a wide range of chemically and structurally distinct DNA lesions whereby some types of damage are repaired at higher

  17. Crosslinking of nucleotide excision repair proteins with DNA containing photoreactive damages

    Microsoft Academic Search

    Ekaterina A. Maltseva; Nadejda I. Rechkunova; Irina O. Petruseva; Wim Vermeulen; Orlando D. Schärer; Olga I. Lavrik

    2008-01-01

    Photoreactive DNA duplexes mimicking substrates of nucleotide excision repair (NER) system were used to analyze the interaction of XPC–HR23B, RPA, and XPA with damaged DNA. Photoreactive groups in one strand of DNA duplex (arylazido-dCMP or 4-thio-dUMP) were combined with anthracenyl-dCMP residue at the opposite strand to analyze contacts of NER factors with damaged and undamaged strands. Crosslinking of XPC–HR23B complex

  18. Modeling damage complexity-dependent non-homologous end-joining repair pathway.

    PubMed

    Li, Yongfeng; Reynolds, Pamela; O'Neill, Peter; Cucinotta, Francis A

    2014-01-01

    Non-homologous end joining (NHEJ) is the dominant DNA double strand break (DSB) repair pathway and involves several repair proteins such as Ku, DNA-PKcs, and XRCC4. It has been experimentally shown that the choice of NHEJ proteins is determined by the complexity of DSB. In this paper, we built a mathematical model, based on published data, to study how NHEJ depends on the damage complexity. Under an appropriate set of parameters obtained by minimization technique, we can simulate the kinetics of foci track formation in fluorescently tagged mammalian cells, Ku80-EGFP and DNA-PKcs-YFP for simple and complex DSB repair, respectively, in good agreement with the published experimental data, supporting the notion that simple DSB undergo fast repair in a Ku-dependent, DNA-PKcs-independent manner, while complex DSB repair requires additional DNA-PKcs for end processing, resulting in its slow repair, additionally resulting in slower release rate of Ku and the joining rate of complex DNA ends. Based on the numerous experimental descriptions, we investigated several models to describe the kinetics for complex DSB repair. An important prediction of our model is that the rejoining of complex DSBs is through a process of synapsis formation, similar to a second order reaction between ends, rather than first order break filling/joining. The synapsis formation (SF) model allows for diffusion of ends before the synapsis formation, which is precluded in the first order model by the rapid coupling of ends. Therefore, the SF model also predicts the higher number of chromosomal aberrations observed with high linear energy transfer (LET) radiation due to the higher proportion of complex DSBs compared to low LET radiation, and an increased probability of misrejoin following diffusion before the synapsis is formed, while the first order model does not provide a mechanism for the increased effectiveness in chromosomal aberrations observed. PMID:24520318

  19. Modeling Damage Complexity-Dependent Non-Homologous End-Joining Repair Pathway

    PubMed Central

    Li, Yongfeng; Reynolds, Pamela; O'Neill, Peter; Cucinotta, Francis A.

    2014-01-01

    Non-homologous end joining (NHEJ) is the dominant DNA double strand break (DSB) repair pathway and involves several repair proteins such as Ku, DNA-PKcs, and XRCC4. It has been experimentally shown that the choice of NHEJ proteins is determined by the complexity of DSB. In this paper, we built a mathematical model, based on published data, to study how NHEJ depends on the damage complexity. Under an appropriate set of parameters obtained by minimization technique, we can simulate the kinetics of foci track formation in fluorescently tagged mammalian cells, Ku80-EGFP and DNA-PKcs-YFP for simple and complex DSB repair, respectively, in good agreement with the published experimental data, supporting the notion that simple DSB undergo fast repair in a Ku-dependent, DNA-PKcs-independent manner, while complex DSB repair requires additional DNA-PKcs for end processing, resulting in its slow repair, additionally resulting in slower release rate of Ku and the joining rate of complex DNA ends. Based on the numerous experimental descriptions, we investigated several models to describe the kinetics for complex DSB repair. An important prediction of our model is that the rejoining of complex DSBs is through a process of synapsis formation, similar to a second order reaction between ends, rather than first order break filling/joining. The synapsis formation (SF) model allows for diffusion of ends before the synapsis formation, which is precluded in the first order model by the rapid coupling of ends. Therefore, the SF model also predicts the higher number of chromosomal aberrations observed with high linear energy transfer (LET) radiation due to the higher proportion of complex DSBs compared to low LET radiation, and an increased probability of misrejoin following diffusion before the synapsis is formed, while the first order model does not provide a mechanism for the increased effectiveness in chromosomal aberrations observed. PMID:24520318

  20. Repair of sparfloxacin-induced photochemical DNA damage in vivo.

    PubMed

    Struwe, Melanie; Greulich, Karl-Otto; Perentes, Elias; Martus, Hans-Jörg; Suter, Willi; Plappert-Helbig, Ulla

    2009-03-01

    The induction and subsequent repair of photochemically induced DNA damage by sparfloxacin was assessed in different tissues of juvenile Wistar rats. The animals were treated once orally with 500 mg kg(-1) of sparfloxacin and irradiated 3 hours later with 7 J cm(-2) UVA. Induction and repair of DNA damage was studied in the skin, retina and cornea using the alkaline comet assay. After a tissue-specific increase in the initial DNA damage (higher in the cornea than in skin and retina), an exponential decrease was found in the skin and retina, whereas in cornea a further increase of the DNA damage after 1 hour followed by an exponential decrease was observed. The half-lives for DNA repair were approximately 3 hours for skin and retina and 1 hour for cornea. After a recovery time of 6 hours, the majority of the induced DNA damage detectable with the comet assay had been removed. In conclusion, the data indicate that (1) photochemically induced DNA damage by sparfloxacin is efficiently removed in skin, retina and cornea, (2) repair of these DNA lesions follows an exponential decrease, (3) the induction and repair of sparfloxacin-mediated photochemical DNA damage might be tissue specific. PMID:18769455

  1. Molecular Regulation of UV-Induced DNA Repair.

    PubMed

    Shah, Palak; He, Yu-Ying

    2015-03-01

    Ultraviolet (UV) radiation from sunlight is a major etiologic factor for skin cancer, the most prevalent cancer in the United States, as well as premature skin aging. In particular, UVB radiation causes formation of specific DNA damage photoproducts between pyrimidine bases. These DNA damage photoproducts are repaired by a process called nucleotide excision repair, also known as UV-induced DNA repair. When left unrepaired, UVB-induced DNA damage leads to accumulation of mutations, predisposing people to carcinogenesis as well as to premature aging. Genetic loss of nucleotide excision repair leads to severe disorders, namely, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS), which are associated with predisposition to skin carcinogenesis at a young age as well as developmental and neurological conditions. Regulation of nucleotide excision repair is an attractive avenue to preventing or reversing these detrimental consequences of impaired nucleotide excision repair. Here, we review recent studies on molecular mechanisms regulating nucleotide excision repair by extracellular cues and intracellular signaling pathways, with a special focus on the molecular regulation of individual repair factors. PMID:25534312

  2. DNA damage and repair in human skin: Pathways and questions

    SciTech Connect

    Sutherland, B.M.; Hacham, H.; Sutherland, J.C. (Brookhaven National Lab., Upton, NY (USA)); Gange, R.W.; Maytum, D. (Harvard Medical School, Boston, MA (USA). Dept. of Dermatology)

    1989-01-01

    Skin is assaulted daily with physical and chemical carcinogens, promoters, and modifiers of biological responses to such agents. DNA is the principal target for most carcinogens, and DNA in skin is particularly at risk. It is subject to damage not only from ingested compounds and their metabolic products, but also from externally applied or encountered chemicals, as well as from physical carcinogens such as sunlight and cosmetic or medical source of ultraviolet radiation. Three major factors determine the balance between damage to DNA of skin and the biological consequences of that damage: the frequencies and types of lesions, the ability of the individual to repair a lesion, and the strategy that skin employs to deal with the different spectra of lesions inflicted under varying environmental conditions. Thus, cellular responses to DNA damage, including repair of DNA lesions, are critical factors in determining the final level of damage and its consequences. This paper discusses DNA damage and repair in human skin. 35 refs.

  3. Monitoring regulation of DNA repair activities of cultured cells in-gel using the comet assay

    PubMed Central

    Nickson, Catherine M.; Parsons, Jason L.

    2014-01-01

    Base excision repair (BER) is the predominant cellular mechanism by which human cells repair DNA base damage, sites of base loss, and DNA single strand breaks of various complexity, that are generated in their thousands in every human cell per day as a consequence of cellular metabolism and exogenous agents, including ionizing radiation. Over the last three decades the comet assay has been employed in scientific research to examine the cellular response to these types of DNA damage in cultured cells, therefore revealing the efficiency and capacity of BER. We have recently pioneered new research demonstrating an important role for post-translational modifications (particularly ubiquitylation) in the regulation of cellular levels of BER proteins, and that subtle changes (?20–50%) in protein levels following siRNA knockdown of E3 ubiquitin ligases or deubiquitylation enzymes can manifest in significant changes in DNA repair capacity monitored using the comet assay. For example, we have shown that the E3 ubiquitin ligase Mule, the tumor suppressor protein ARF, and the deubiquitylation enzyme USP47 modulate DNA repair by controlling cellular levels of DNA polymerase ?, and also that polynucleotide kinase phosphatase levels are controlled by ATM-dependant phosphorylation and Cul4A–DDB1–STRAP-dependent ubiquitylation. In these studies we employed a modification of the comet assay whereby cultured cells, following DNA damage treatment, are embedded in agarose and allowed to repair in-gel prior to lysis and electrophoresis. Whilst this method does have its limitations, it avoids the extensive cell culture-based processing associated with the traditional approach using attached cells and also allows for the examination of much more precise DNA repair kinetics. In this review we will describe, using this modified comet assay, our accumulating evidence that ubiquitylation-dependant regulation of BER proteins has important consequences for overall cellular DNA repair capacity. PMID:25076968

  4. Redox signaling between DNA repair proteins for efficient lesion detection

    E-print Network

    Newman, Dianne K.

    Base excision repair (BER) enzymes maintain the integrity of the genome, and in humans, BER mutations are associated with cancer. Given the remarkable sensitivity of DNA-mediated charge transport (CT) to mismatched and ...

  5. Transcript-RNA-templated DNA recombination and repair.

    PubMed

    Keskin, Havva; Shen, Ying; Huang, Fei; Patel, Mikir; Yang, Taehwan; Ashley, Katie; Mazin, Alexander V; Storici, Francesca

    2014-11-20

    Homologous recombination is a molecular process that has multiple important roles in DNA metabolism, both for DNA repair and genetic variation in all forms of life. Generally, homologous recombination involves the exchange of genetic information between two identical or nearly identical DNA molecules; however, homologous recombination can also occur between RNA molecules, as shown for RNA viruses. Previous research showed that synthetic RNA oligonucleotides can act as templates for DNA double-strand break (DSB) repair in yeast and human cells, and artificial long RNA templates injected in ciliate cells can guide genomic rearrangements. Here we report that endogenous transcript RNA mediates homologous recombination with chromosomal DNA in yeast Saccharomyces cerevisiae. We developed a system to detect the events of homologous recombination initiated by transcript RNA following the repair of a chromosomal DSB occurring either in a homologous but remote locus, or in the same transcript-generating locus in reverse-transcription-defective yeast strains. We found that RNA-DNA recombination is blocked by ribonucleases H1 and H2. In the presence of H-type ribonucleases, DSB repair proceeds through a complementary DNA intermediate, whereas in their absence, it proceeds directly through RNA. The proximity of the transcript to its chromosomal DNA partner in the same locus facilitates Rad52-driven homologous recombination during DSB repair. We demonstrate that yeast and human Rad52 proteins efficiently catalyse annealing of RNA to a DSB-like DNA end in vitro. Our results reveal a novel mechanism of homologous recombination and DNA repair in which transcript RNA is used as a template for DSB repair. Thus, considering the abundance of RNA transcripts in cells, RNA may have a marked impact on genomic stability and plasticity. PMID:25186730

  6. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair.

    PubMed

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott; Scheibye-Knudsen, Morten; Desler, Claus; Hickson, Ian D; Bohr, Vilhelm A

    2014-04-01

    Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional mitochondria by autophagy. PMID:24674627

  7. Induced DNA repair pathway in mammalian cells

    SciTech Connect

    Overberg, R.

    1985-01-01

    The survival of cultured rat kangaroo cells (PtK-2) and human xeroderma pigmentosum cells incubated with 5 ..mu..M cycloheximide subsequent to ultraviolet irradiation is lower than that of cells incubated without cycloheximide. The drop in survival is considerably larger than that produced by incubation of unirradiated cells with cycloheximide. The phenomenon was also observed when PtK-2 cells were incubated with emetine, another protein synthesis inhibitor, or with 5,6-dichloro-1-..beta..-D-ribofuranosylbenzimidazole, a RNA synthesis inhibitor. PtK cells which received a preliminary UV treatment followed by an incubation period without cycloheximide and then a second irradiation and 24 hour incubation with cycloheximide, survived the effects of the second irradiation better than cells which were incubated in the presence of cycloheximide after the first and second UV irradiation. The application of cycloheximide for 24 hours after UV irradiation of PtK cells resulted in one-half as many 6-thioguanine resistant cells as compared to the number of 6-thioguanine resistant cells found when cycloheximide was not used. These experiments indicate that a UV-inducible cycloheximide-sensitive DNA repair pathway is present in PtK and xeroderma pigmentosum cells, which is error-prone in PtK cells.

  8. Nuclear EGFR is required for cisplatin resistance and DNA repair

    PubMed Central

    Hsu, Sheng-Chieh; Miller, Stephanie A.; Wang, Yan; Hung, Mien-Chie

    2009-01-01

    The epidermal growth factor receptor (EGFR) has been shown to be able to translocate to the nucleus where it is involved in many cellular process including transcriptional regulation and DNA repair. Recently, it has been shown that the DNA damage-inducing agents ionizing radiation (IR) and cisplatin are able to induce EGFR nuclear localization, and this nuclear localization is correlated with increased DNA-PK activity, which plays an essential role in DNA double stranded repair. Here we sought to determine if there is a causal relationship between nuclear EGFR and DNA repair activity. We found that mutation in the nuclear localization signal (NLS) of EGFR (mNLS), known to be unable to translocate to the nucleus, released EGFR induced resistance to cisplatin. Re-introduction of an NLS in the C-terminal allowed EGFR to re-enter the nucleus and the cells regained resistance to cisplatin. In addition, we show that the re-expression of a functional nuclear localization sequence in EGFR (mNLS-R) is not only able to restore its resistance to cisplatin, but also reduced the DNA damage caused by cisplatin, and restored DNA repair activity. Thus, we demonstrate here that nuclear EGFR is required for DNA repair and resistance to cisplatin treatment. PMID:19956435

  9. BRG1 promotes the repair of DNA double-strand breaks by facilitating the replacement of RPA with RAD51.

    PubMed

    Qi, Wenjing; Wang, Ruoxi; Chen, Hongyu; Wang, Xiaolin; Xiao, Ting; Boldogh, Istvan; Ba, Xueqing; Han, Liping; Zeng, Xianlu

    2015-01-15

    DNA double-strand breaks (DSBs) are a type of lethal DNA damage. The repair of DSBs requires tight coordination between the factors modulating chromatin structure and the DNA repair machinery. BRG1, the ATPase subunit of the chromatin remodelling complex Switch/Sucrose non-fermentable (SWI/SNF), is often linked to tumorigenesis and genome instability, and its role in DSB repair remains largely unclear. In the present study, we show that BRG1 is recruited to DSB sites and enhances DSB repair. Using DR-GFP and EJ5-GFP reporter systems, we demonstrate that BRG1 facilitates homologous recombination repair rather than nonhomologous end-joining (NHEJ) repair. Moreover, the BRG1-RAD52 complex mediates the replacement of RPA with RAD51 on single-stranded DNA (ssDNA) to initiate DNA strand invasion. Loss of BRG1 results in a failure of RAD51 loading onto ssDNA, abnormal homologous recombination repair and enhanced DSB-induced lethality. Our present study provides a mechanistic insight into how BRG1, which is known to be involved in chromatin remodelling, plays a substantial role in the homologous recombination repair pathway in mammalian cells. PMID:25395584

  10. Xeroderma Pigmentosum: defective DNA repair causes skin cancer and neurodegeneration

    SciTech Connect

    Robbins, J.H.

    1988-07-15

    Xeroderma pigmentosum is a rare autosomal recessive disease with numerous malignancies on sun-exposed areas of the skin and eye because of an inability to repair DNA damage inflicted by harmful ultraviolet (UV) radiation of the sun. Because it is the only disease in which cancer is known to result from defective DNA repair, XP has received intense clinical and biochemical study during the last two decades. Furthermore, some patients with XP develop a primary neuronal degeneration, probably due to the inability of nerve cells to repair damage to their DNA caused by intraneuronal metabolites and physicochemical events that mimic the effects of UV radiation. Studies of XP neurodegeneration and DNA-repair defects have led to the conclusion that efficient DNA repair is required to prevent premature death of human nerve cells. Since XP neurodegeneration has similarities to premature death of nerve cells that occurs in such neurodegenerative disorders, XP may be the prototype for these more common neurodegenerations. Recent studies indicate that these degenerations also may have DNA-repair defects.

  11. DNA repair proficiency: A potential susceptibility factor for breast cancer

    SciTech Connect

    Helzlsouer, K.J.; Perry, H. [Johns Hopkins Univ. School of Public Health, Baltimore, MD (United States); Harris, E.L. [Johns Hopkins Univ. School of Public Health, Baltimore, MD (United States)]|[Howard Univ., Washington, DC (United States)] [and others

    1994-09-01

    A family study and a case-control study were conducted to examine the association between sub-optimal repair of ionizing radiation induced DNA damage and the development of breast cancer. A familial cluster of breast cancer was investigated in which breast cancer occurred in 4 of 6 sisters, some of whom were exposed to ionizing radiation from repeated chest fluoroscopic examinations during adolescence and early adulthood. DNA repair proficiency was measured among available family members and correlated with their history of radiation exposure. DNA repair proficiency was also measured among 16 breast cancer cases, 5 women with a family history of breast cancer and 12 controls. The results of the family study suggest an association between poor DNA repair proficiency and increased sensitivity to the carcinogenic effects of early radiation exposure on breast tissue. The case-control study showed that a significantly higher percentage of women with breast cancer (63%) and women with a family history of breast cancer (80%) had poor repair of ionizing radiation induced DNA damage than control women (17%) (P-value=0.02). Sub-optimal repair of DNA damage may be a host susceptibility factor predisposing individuals to breast cancer through increased sensitivity to carcinogenic damage from environmental exposures such as ionizing radiation.

  12. New approaches to biochemical radioprotection: antioxidants and DNA repair enhancement.

    PubMed

    Riklis, E; Emerit, I; Setlow, R B

    1996-01-01

    Chemical repair may be provided by radioprotective compounds present during exposure to ionizing radiation. Considering DNA as the most sensitive target it is feasible to biochemically improve protection by enhancing DNA repair mechanisms. Protection of DNA by reducing the amount of damage (by radical scavenging and chemical repair) followed by enhanced repair of DNA will provide much improved protection and recovery. Furthermore, in cases of prolonged exposure, such as is possible in prolonged space missions, or of unexpected variations in the intensity of radiation, as is possible when encountering solar flares, it is important to provide long-acting protection, and this may be provided by antioxidants and well functioning DNA repair systems. It has also become important to provide protection from the potentially damaging action of long-lived clastogenic factors which have been found in plasma of exposed persons from Hiroshima & Nagasaki, radiation accidents, radiotherapy patients and recently in "liquidators"--persons involved in salvage operations at the Chernobyl reactor. The clastogenic factor, which causes chromatid breaks in non-exposed plasma, might account for late effects and is posing a potential carcinogenic hazard. The enzyme superoxide dismutase (SOD) has been shown to eliminate the breakage factor from cultured plasma of exposed persons. Several compounds have been shown to enhance DNA repair: WR-2721, nicotinamide, glutathione monoester (Riklis et al., unpublished) and others. The right combination of such compounds may prove effective in providing protection from a wide range of radiation exposures over a long period of time. PMID:11538987

  13. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once.

    PubMed

    Tsutakawa, Susan E; Lafrance-Vanasse, Julien; Tainer, John A

    2014-07-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure twice these nucleases act as molecular level transformers that typically reshape the DNA and sometimes themselves to achieve extraordinary specificity and efficiency. PMID:24754999

  14. Heat Shock Protein 90? (Hsp90?) Is Phosphorylated in Response to DNA Damage and Accumulates in Repair Foci*

    PubMed Central

    Quanz, Maria; Herbette, Aurélie; Sayarath, Mano; de Koning, Leanne; Dubois, Thierry; Sun, Jian-Sheng; Dutreix, Marie

    2012-01-01

    DNA damage triggers a complex signaling cascade involving a multitude of phosphorylation events. We found that the threonine 7 (Thr-7) residue of heat shock protein 90? (Hsp90?) was phosphorylated immediately after DNA damage. The phosphorylated Hsp90? then accumulated at sites of DNA double strand breaks and formed repair foci with slow kinetics, matching the repair kinetics of complex DNA damage. The phosphorylation of Hsp90? was dependent on phosphatidylinositol 3-kinase-like kinases, including the DNA-dependent protein kinase (DNA-PK) in particular. DNA-PK plays an essential role in the repair of DNA double strand breaks by nonhomologous end-joining and in the signaling of DNA damage. It is also present in the cytoplasm of the cell and has been suggested to play a role in cytoplasmic signaling pathways. Using stabilized double-stranded DNA molecules to activate DNA-PK, we showed that an active DNA-PK complex could be assembled in the cytoplasm, resulting in phosphorylation of the cytoplasmic pool of Hsp90?. In vivo, reverse phase protein array data for tumors revealed that basal levels of Thr-7-phosphorylated Hsp90? were correlated with phosphorylated histone H2AX levels. The Thr-7 phosphorylation of the ubiquitously produced and secreted Hsp90? may therefore serve as a surrogate biomarker of DNA damage. These findings shed light on the interplay between central DNA repair enzymes and an essential molecular chaperone. PMID:22270370

  15. Missing piece of first-responder DNA repair machine revealed

    SciTech Connect

    None

    2009-01-01

    Scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the Scripps Research Institute have revealed the role played by the least-understood part of a first-responder molecule that rushes in to bind and repair breaks in DNA strands, a process that helps people avoid cancer. With this final piece of the puzzle in place, scientists can better understand how the repair mechanism fends off cancer in healthy people, and conversely, how it helps cancer cells resist chemotherapy. This could enable researchers to develop more effective therapies with fewer side effects. http://newscenter.lbl.gov/press-releases/2009/10/01/dna-repair-uncovered/

  16. DNA repair in human promyelocytic cell line, HL-60.

    PubMed

    Farzaneh, F; Feon, S; Lebby, R A; Brill, D; David, J C; Shall, S

    1987-04-24

    The human promyelocytic cell line, HL-60, shows large changes in endogenous poly(ADP-ribose) and in nuclear ADP-ribosyl transferase activity (ADPRT) during its induced myelocytic differentiation. DNA strand-breaks are an essential activator for this enzyme; and transient DNA strand breaks occur during the myelocytic differentiation of HL-60 cells. We have tested the hypothesis that these post-mitotic, terminally differentiating cells are less efficient in DNA repair, and specifically in DNA strand rejoining, than their proliferating precursor cells. We have found that this hypothesis is not tenable. We observe that there is no detectable reduction in the efficiency of DNA excision repair after exposure to either dimethyl sulphate or gamma-irradiation in HL-60 cells induced to differentiate by dimethyl sulphoxide. Moreover, the efficient excision repair of either dimethyl sulphate or gamma-irradiation induced lesions, both in the differentiated and undifferentiated HL-60 cells, is blocked by the inhibition of ADPRT activity. PMID:3106934

  17. DNA repair mechanisms in dividing and non-dividing cells

    PubMed Central

    Iyama, Teruaki; Wilson, David M.

    2013-01-01

    DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye towards how these pathways may regulate the development of neurological disease. PMID:23684800

  18. DNA Binding Properties of the Actin-Related Protein Arp8 and Its Role in DNA Repair

    PubMed Central

    Murakami, Hirokazu; Otawa, Kenji; Tachiwana, Hiroaki; Oma, Yukako; Nishijima, Hitoshi; Shibahara, Kei-ich; Kurumizaka, Hitoshi; Harata, Masahiko

    2014-01-01

    Actin and actin-related proteins (Arps), which are members of the actin family, are essential components of many of these remodeling complexes. Actin, Arp4, Arp5, and Arp8 are found to be evolutionarily conserved components of the INO80 chromatin remodeling complex, which is involved in transcriptional regulation, DNA replication, and DNA repair. A recent report showed that Arp8 forms a module in the INO80 complex and this module can directly capture a nucleosome. In the present study, we showed that recombinant human Arp8 binds to DNAs, and preferentially binds to single-stranded DNA. Analysis of the binding of adenine nucleotides to Arp8 mutants suggested that the ATP-binding pocket, located in the evolutionarily conserved actin fold, plays a regulatory role in the binding of Arp8 to DNA. To determine the cellular function of Arp8, we derived tetracycline-inducible Arp8 knockout cells from a cultured human cell line. Analysis of results obtained after treating these cells with aphidicolin and camptothecin revealed that Arp8 is involved in DNA repair. Together with the previous observation that Arp8, but not ?-H2AX, is indispensable for recruiting INO80 complex to DSB in human, results of our study suggest an individual role for Arp8 in DNA repair. PMID:25299602

  19. RNF4 is required for DNA double-strand break repair in vivo

    PubMed Central

    Vyas, R; Kumar, R; Clermont, F; Helfricht, A; Kalev, P; Sotiropoulou, P; Hendriks, I A; Radaelli, E; Hochepied, T; Blanpain, C; Sablina, A; van Attikum, H; Olsen, J V; Jochemsen, A G; Vertegaal, A C O; Marine, J-C

    2013-01-01

    Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signaling and repair proteins to the sites of DNA lesions. Coordinated protein SUMOylation and ubiquitylation have crucial roles in regulating the dynamic assembly of protein complexes at these sites. However, how SUMOylation influences protein ubiquitylation at DSBs is poorly understood. We show herein that Rnf4, an E3 ubiquitin ligase that targets SUMO-modified proteins, accumulates in DSB repair foci and is required for both homologous recombination (HR) and non-homologous end joining repair. To establish a link between Rnf4 and the DNA damage response (DDR) in vivo, we generated an Rnf4 allelic series in mice. We show that Rnf4-deficiency causes persistent ionizing radiation-induced DNA damage and signaling, and that Rnf4-deficient cells and mice exhibit increased sensitivity to genotoxic stress. Mechanistically, we show that Rnf4 targets SUMOylated MDC1 and SUMOylated BRCA1, and is required for the loading of Rad51, an enzyme required for HR repair, onto sites of DNA damage. Similarly to inactivating mutations in other key regulators of HR repair, Rnf4 deficiency leads to age-dependent impairment in spermatogenesis. These findings identify Rnf4 as a critical component of the DDR in vivo and support the possibility that Rnf4 controls protein localization at DNA damage sites by integrating SUMOylation and ubiquitylation events. PMID:23197296

  20. BCR-ABL down-regulates the DNA repair protein DNA-PKcs

    Microsoft Academic Search

    Eric Deutsch; Aymeric Dugray; Bassam AbdulKarim; Elisabetta Marangoni; Laurence Maggiorella; Sabine Vaganay; Radia M'Kacher; Setha Douc Rasy; Francois Eschwege; William Vainchenker; Ali G. Turhan; Jean Bourhis

    This study demonstrates in both stable and inducible BCR-ABL-expressing he- matopoietic cells a down-regulation of the major mammalian DNA repair protein DNA-PKcs by BCR-ABL. Similar results were found in BCR-ABL CD341 cells from patients with chronic myelogenous leuke- mia (CML). DNA-PKcs down-regulation is a proteasome-dependent degradation that requires tyrosine kinase activity and is associated with a marked DNA repair deficiency

  1. Physical and functional interactions between Drosophila homologue of Swc6/p18Hamlet subunit of the SWR1/SRCAP chromatin-remodeling complex with the DNA repair/transcription factor TFIIH.

    PubMed

    Herrera-Cruz, Mariana; Cruz, Grisel; Valadez-Graham, Viviana; Fregoso-Lomas, Mariana; Villicaña, Claudia; Vázquez, Martha; Reynaud, Enrique; Zurita, Mario

    2012-09-28

    The multisubunit DNA repair and transcription factor TFIIH maintains an intricate cross-talk with different factors to achieve its functions. The p8 subunit of TFIIH maintains the basal levels of the complex by interacting with the p52 subunit. Here, we report that in Drosophila, the homolog of the p8 subunit (Dmp8) is encoded in a bicistronic transcript with the homolog of the Swc6/p18(Hamlet) subunit (Dmp18) of the SWR1/SRCAP chromatin remodeling complex. The SWR1 and SRCAP complexes catalyze the exchange of the canonical histone H2A with the H2AZ histone variant. In eukaryotic cells, bicistronic transcripts are not common, and in some cases, the two encoded proteins are functionally related. We found that Dmp18 physically interacts with the Dmp52 subunit of TFIIH and co-localizes with TFIIH in the chromatin. We also demonstrated that Dmp18 genetically interacts with Dmp8, suggesting that a cross-talk might exist between TFIIH and a component of a chromatin remodeler complex involved in histone exchange. Interestingly, our results also show that when the level of one of the two proteins is decreased and the other maintained, a specific defect in the fly is observed, suggesting that the organization of these two genes in a bicistronic locus has been selected during evolution to allow co-regulation of both genes. PMID:22865882

  2. Deubiquitination of FANCD2 Is Required for DNA Crosslink Repair

    PubMed Central

    Oestergaard, Vibe H.; Langevin, Frederic; Kuiken, Hendrik J.; Pace, Paul; Niedzwiedz, Wojciech; Simpson, Laura J.; Ohzeki, Mioko; Takata, Minoru; Sale, Julian E.; Patel, Ketan J.

    2007-01-01

    Summary Monoubiquitination of FANCD2 and PCNA promotes DNA repair. It causes chromatin accumulation of FANCD2 and facilitates PCNA's recruitment of translesion polymerases to stalled replication. USP1, a protease that removes monoubiquitin from FANCD2 and PCNA, was thought to reverse the DNA damage response of these substrates. We disrupted USP1 in chicken cells to dissect its role in a stable genetic system. USP1 ablation increases FANCD2 and PCNA monoubiquitination but unexpectedly results in DNA crosslinker sensitivity. This defective DNA repair is associated with constitutively chromatin-bound, monoubiquitinated FANCD2. In contrast, persistent PCNA monoubiquitination has negligible impact on DNA repair or mutagenesis. USP1 was previously shown to autocleave after DNA damage. In DT40, USP1 autocleavage is not stimulated by DNA damage, and expressing a noncleavable mutant in the USP1 knockout strain partially rescues crosslinker sensitivity. We conclude that efficient DNA crosslink repair requires FANCD2 deubiquitination, whereas FANCD2 monoubiquitination is not dependent on USP1 autocleavage. PMID:18082605

  3. Utilizing light for repair of light-induced DNA damages: the clever mode of action of DNA photolyases

    E-print Network

    Heermann, Dieter W.

    Utilizing light for repair of light-induced DNA damages: the clever mode of action of DNA present in sunlight is responsible for the induction of most non-melanoma skin cancer in humans. When DNA of directly repairing damaged DNA for many organisms via a direct repair pathway performed by light activated

  4. DNA repair in murine embryonic stem cells and differentiated cells

    SciTech Connect

    Tichy, Elisia D. [Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, OH 45267 (United States)], E-mail: tichyed@email.uc.edu; Stambrook, Peter J. [Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2008-06-10

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells.

  5. Electron transfer mechanisms of DNA repair by photolyase.

    PubMed

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer. PMID:25830375

  6. DNA mismatch repair detected in human cell extracts.

    PubMed

    Glazer, P M; Sarkar, S N; Chisholm, G E; Summers, W C

    1987-01-01

    A system to study mismatch repair in vitro in HeLa cell extracts was developed. Preformed heteroduplex plasmid DNA containing two single base pair mismatches within the SupF gene of Escherichia coli was used as a substrate in a mismatch repair assay. Repair of one or both of the mismatches to the wild-type sequence was measured by transformation of a lac(Am) E. coli strain in which the presence of an active supF gene could be scored. The E. coli strain used was constructed to carry mutations in genes associated with mismatch repair and recombination (mutH, mutU, and recA) so that the processing of the heteroduplex DNA by the bacterium was minimal. Extract reactions were carried out by the incubation of the heteroduplex plasmid DNA in the HeLa cell extracts to which ATP, creatine phosphate, creatine kinase, deoxynucleotides, and a magnesium-containing buffer were added. Under these conditions about 1% of the mismatches were repaired. In the absence of added energy sources or deoxynucleotides, the activity in the extracts was significantly reduced. The addition of either aphidicolin or dideoxynucleotides reduced the mismatch repair activity, but only aphidicolin was effective in blocking DNA polymerization in the extracts. It is concluded that mismatch repair in these extracts is an energy-requiring process that is dependent on an adequate deoxynucleotide concentration. The results also indicate that the process is associated with some type of DNA polymerization, but the different effects of aphidicolin and dideoxynucleotides suggest that the mismatch repair activity in the extracts cannot simply be accounted for by random nick-translation activity alone. PMID:3031461

  7. The ancient and evolving roles of cohesin in DNA repair and gene expression

    PubMed Central

    Dorsett, Dale; Ström, Lena

    2012-01-01

    The cohesin complex, named for its key role in sister chromatid cohesion, also plays critical roles in DNA repair and gene regulation. It performs all three functions in single cell eukaryotes such as yeasts, and in higher organisms such as man. Minor disruption of cohesin function has significant consequences for human development, even in the absence of measurable effects on chromatid cohesion or chromosome segregation. Here we survey the roles of cohesin in DNA repair and gene regulation, and how these functions vary from yeast to man. PMID:22497943

  8. Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes

    Microsoft Academic Search

    G. M. J. Segers-Nolten; C. Wyman; N. Wijgers; W. Vermeulen; A. T. M. Lenferink; J. H. J. Hoeijmakers; J. Greve; C. Otto

    2002-01-01

    We used scanning confocal fluorescence microscopy to observe and analyze individual DNA- protein complexes formed between human nucleotide excision repair (NER) proteins and model DNA substrates. For this purpose human XPA protein was fused to EGFP, purified and shown to be functional. Binding of EGFP-labeled XPA protein to a Cy3.5-labeled DNA substrate, in the presence and absence of RPA, was

  9. The human checkpoint sensor Rad9 Rad1 Hus1 interacts with and stimulates DNA repair enzyme TDG glycosylase

    Microsoft Academic Search

    Xin Guan; Amrita Madabushi; Dau-Yin Chang; Megan E. Fitzgerald; Gouli Shi; Alexander C. Drohat; A-Lien Lu

    2007-01-01

    Human (h) DNA repair enzyme thymine DNA glycosylase (hTDG) is a key DNA glycosylase in the base excision repair (BER) pathway that repairs deaminated cytosines and 5-methyl-cytosines. The cell cycle checkpoint protein Rad9-Rad1-Hus1 (the 9-1-1 complex) is the surveillance machinery involved in the preservation of genome stability. In this study, we show that hTDG interacts with hRad9, hRad1 and hHus1

  10. Tetrameric Ctp1 coordinates DNA binding and DNA bridging in DNA double-strand-break repair.

    PubMed

    Andres, Sara N; Appel, C Denise; Westmoreland, James W; Williams, Jessica S; Nguyen, Yvonne; Robertson, Patrick D; Resnick, Michael A; Williams, R Scott

    2015-02-01

    Ctp1 (also known as CtIP or Sae2) collaborates with Mre11-Rad50-Nbs1 to initiate repair of DNA double-strand breaks (DSBs), but its functions remain enigmatic. We report that tetrameric Schizosaccharomyces pombe Ctp1 contains multivalent DNA-binding and DNA-bridging activities. Through structural and biophysical analyses of the Ctp1 tetramer, we define the salient features of Ctp1 architecture: an N-terminal interlocking tetrameric helical dimer-of-dimers (THDD) domain and a central intrinsically disordered region (IDR) linked to C-terminal 'RHR' DNA-interaction motifs. The THDD, IDR and RHR are required for Ctp1 DNA-bridging activity in vitro, and both the THDD and RHR are required for efficient DSB repair in S. pombe. Our results establish non-nucleolytic roles of Ctp1 in binding and coordination of DSB-repair intermediates and suggest that ablation of human CtIP DNA binding by truncating mutations underlie the CtIP-linked Seckel and Jawad syndromes. PMID:25580577

  11. Alkyltransferase-like proteins: molecular switches between DNA repair pathways

    Microsoft Academic Search

    Julie L. TubbsJohn; John A. Tainer

    2010-01-01

    Alkyltransferase-like proteins (ATLs) play a role in the protection of cells from the biological effects of DNA alkylation\\u000a damage. Although ATLs share functional motifs with the DNA repair protein and cancer chemotherapy target O\\u000a 6-alkylguanine-DNA alkyltransferase, they lack the reactive cysteine residue required for alkyltransferase activity, so its\\u000a mechanism for cell protection was previously unknown. Here we review recent advances

  12. Involvement of a chromatin remodeling complex in damage tolerance during DNA replication

    Microsoft Academic Search

    Karina B Falbo; Constance Alabert; Yuki Katou; Su Wu; Junhong Han; Tammy Wehr; Jing Xiao; Xiangwei He; Zhiguo Zhang; Yang Shi; Katsu Shirahige; Philippe Pasero; Xuetong Shen

    2009-01-01

    ATP-dependent chromatin remodeling complexes have been shown to participate in DNA replication in addition to transcription and DNA repair. However, the mechanisms of their involvement in DNA replication remain unclear. Here, we reveal a specific function of the yeast INO80 chromatin remodeling complex in the DNA damage tolerance pathways. Whereas INO80 is necessary for the resumption of replication at forks

  13. Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival

    PubMed Central

    Sage, Evelyne; Harrison, Lynn

    2011-01-01

    A clustered DNA lesion, also known as a multiply damaged site, is defined as ? 2 damages in the DNA within 1–2 helical turns. Only ionizing radiation and certain chemicals introduce DNA damage in the genome in this non-random way. What is now clear is that the lethality of a damaging agent is not just related to the types of DNA lesions introduced, but also to how the damage is distributed in the DNA. Clustered DNA lesions were first hypothesized to exist in the 1990’s, and work has progressed where these complex lesions have been characterized and measured in irradiated as well as in non-irradiated cells. A clustered lesion can consist of single as well as double strand breaks, base damage and abasic sites, and the damages can be situated on the same strand or opposing strands. They include tandem lesions, double strand break (DSB) clusters and non-DSB clusters, and base excision repair as well as the DSB repair pathways can be required to remove these complex lesions. Due to the plethora of oxidative damage induced by ionizing radiation, and the repair proteins involved in their removal from the DNA, it has been necessary to study how repair systems handle these lesions using synthetic DNA damage. This review focuses on the repair process and mutagenic consequences of clustered lesions in yeast and mammalian cells. By examining the studies on synthetic clustered lesions, and the effects of low vs high LET radiation on mammalian cells or tissues, it is possible to extrapolate the potential biological relevance of these clustered lesions to the killing of tumor cells by radiotherapy and chemotherapy, and to the risk of cancer in non-tumor cells, and this will be discussed. PMID:21185841

  14. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair

    Microsoft Academic Search

    Soo-Hwang Teo; Stephen P. Jackson

    1997-01-01

    DNA ligases catalyse the joining of single and double-strand DNA breaks, which is an essential final step in DNA replication, recombination and repair. Mammalian cells have four DNA ligases, termed ligases I–IV. In contrast, other than a DNA ligase I homologue (encoded by CDC9), no other DNA ligases have hitherto been identified in Saccharomyces cerevisiae. Here, we report the identification

  15. DNA Ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair

    PubMed Central

    Gao, Yankun; Katyal, Sachin; Lee, Youngsoo; Zhao, Jingfeng; Rehg, Jerold E.; Russell, Helen R.; McKinnon, Peter J.

    2011-01-01

    DNA replication and repair in mammalian cells involves three distinct DNA ligases; ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4)1. Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway2,3. Lig3 is also present in the mitochondria where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc14. However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality5. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss6, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair. PMID:21390131

  16. Thermodynamics of the DNA Damage Repair Steps of Human 8-Oxoguanine DNA Glycosylase

    PubMed Central

    Kuznetsov, Nikita A.; Kuznetsova, Alexandra A.; Vorobjev, Yuri N.; Krasnoperov, Lev N.; Fedorova, Olga S.

    2014-01-01

    Human 8-oxoguanine DNA glycosylase (hOGG1) is a key enzyme responsible for initiating the base excision repair of 7,8-dihydro-8-oxoguanosine (oxoG). In this study a thermodynamic analysis of the interaction of hOGG1 with specific and non-specific DNA-substrates is performed based on stopped-flow kinetic data. The standard Gibbs energies, enthalpies and entropies of specific stages of the repair process were determined via kinetic measurements over a temperature range using the van’t Hoff approach. The three steps which are accompanied with changes in the DNA conformations were detected via 2-aminopurine fluorescence in the process of binding and recognition of damaged oxoG base by hOGG1. The thermodynamic analysis has demonstrated that the initial step of the DNA substrates binding is mainly governed by energy due to favorable interactions in the process of formation of the recognition contacts, which results in negative enthalpy change, as well as due to partial desolvation of the surface between the DNA and enzyme, which results in positive entropy change. Discrimination of non-specific G base versus specific oxoG base is occurring in the second step of the oxoG-substrate binding. This step requires energy consumption which is compensated by the positive entropy contribution. The third binding step is the final adjustment of the enzyme/substrate complex to achieve the catalytically competent state which is characterized by large endothermicity compensated by a significant increase of entropy originated from the dehydration of the DNA grooves. PMID:24911585

  17. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV

    Microsoft Academic Search

    Susan E. Critchlow; Richard P. Bowater; Stephen P. Jackson

    1997-01-01

    Background: Mammalian cells deficient in the XRCC4 DNA repair protein are impaired in DNA double-strand break repair and are consequently hypersensitive to ionising radiation. These cells are also defective in site-specific V(D)J recombination, a process that generates the diversity of antigen receptor genes in the developing immune system. These features are shared by cells lacking components of the DNA-dependent protein

  18. Modeling DNA Repair: Approaching In Vivo Techniques in the Hyperthermophile Sulfolobus Solfataricus

    SciTech Connect

    Blanton, J.; Fuss, J.; Yannone, S.M.; Tainer, J.A.; Cooper, P.K.

    2005-01-01

    Archaea are found in some of the most extreme environments on earth and represent a third domain of life distinct from Eukarya and Eubacteria. The hyperthermophilic archaeon Sulfolobus solfataricus, isolated from acidic hot springs (80oC, pH 3) in Yellowstone National Park, has emerged as a potential model system for studying human DNA repair processes. Archaea are more closely related to Eukarya than to Eubacteria, suggesting that archaeal DNA repair machinery may model the complex human system much more closely than that of other prokaryotes. DNA repair requires coordinated protein-protein interactions that are frequently transient. Protein complexes that are transient at extreme temperatures where archaea thrive may be more stable at room temperature, allowing for the characterization of otherwise short-lived complexes. However, characterization of these systems in archaea has been limited by the absence of a stable in vivo transformation and expression system. The work presented here is a pilot study in gene cloning and recombinant protein expression in S. solfataricus. Three genes associated with DNA repair were selected for expression: MRE11, PCNA1, and a putative CSB homologue. Though preparation of these recombinant genes followed standard methods, preparation of a suitable vector proved more challenging. The shuttle vector pSSV64, derived from the SSV1 virus and the E. coli vector pBSSK+, was most successfully isolated from the DH5? E. coli strain. Currently, alternative vectors are being designed for more efficient genetic manipulations in S. solfataricus.

  19. DNA damage repair and genetic polymorphisms: Assessment of individual sensitivity and repair capacity

    SciTech Connect

    Cornetta, Tommaso [Department of Biology, Universita degli Studi 'Roma TRE', Rome (Italy); Fondazione Don Carlo Gnocchi, Rome (Italy); Festa, Fabiola [Department of Biology, Universita degli Studi 'Roma TRE', Rome (Italy); Testa, Antonella [Section of Toxicology and Biomedical Sciences, ENEA CR Casaccia, Rome (Italy); Cozzi, Renata Prof. [Department of Biology, Universita degli Studi 'Roma TRE', Rome (Italy)]. E-mail: cozzi@uniroma3.it

    2006-10-01

    Purpose: To study the repair capacity after X-ray irradiation in human peripheral blood cells of healthy subjects, in relation to their genotypes. Methods and Materials: The peripheral blood of 50 healthy subjects was irradiated in vitro with 2 Gy of X rays and the induced DNA damage was measured by Comet assay immediately after irradiation. DNA repair was detected by analyzing the cells at defined time intervals after the exposure. Furthermore, all subjects were genotyped for XRCC1, OGG1, and XPC genes. Results: After X-ray irradiation, persons bearing XRCC1 homozygous variant (codon 399) genotype exhibited significantly lower Tail DNA values than those bearing wild-type and heterozygous genotypes. These results are also confirmed at 30 and 60 min after irradiation. Furthermore, XPC heterozygous subjects (variant codon 939) showed lower residual DNA damage 60 min after irradiation compared with wild-type and homozygous genotypes. Conclusion: The results of the present study show that polymorphisms in DNA repair genes could influence individual DNA repair capacity.

  20. Charge transport-mediated recruitment of DNA repair enzymes

    E-print Network

    Pak-Wing Fok; Chin-Lin Guo; Tom Chou

    2008-11-18

    Damaged or mismatched bases in DNA can be repaired by Base Excision Repair (BER) enzymes that replace the defective base. Although the detailed molecular structures of many BER enzymes are known, how they colocalize to lesions remains unclear. One hypothesis involves charge transport (CT) along DNA [Yavin, {\\it et al.}, PNAS, {\\bf 102}, 3546, (2005)]. In this CT mechanism, electrons are released by recently adsorbed BER enzymes and travel along the DNA. The electrons can scatter (by heterogeneities along the DNA) back to the enzyme, destabilizing and knocking it off the DNA, or, they can be absorbed by nearby lesions and guanine radicals. We develop a stochastic model to describe the electron dynamics, and compute probabilities of electron capture by guanine radicals and repair enzymes. We also calculate first passage times of electron return, and ensemble-average these results over guanine radical distributions. Our statistical results provide the rules that enable us to perform implicit-electron Monte-Carlo simulations of repair enzyme binding and redistribution near lesions. When lesions are electron absorbing, we show that the CT mechanism suppresses wasteful buildup of enzymes along intact portions of the DNA, maximizing enzyme concentration near lesions.

  1. Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair

    PubMed Central

    Van Meter, Michael; Mao, Zhiyong; Gorbunova, Vera; Seluanov, Andrei

    2011-01-01

    The sirtuin gene family comprises an evolutionarily ancient set of NAD+ dependent protein deacetylase and mono-ADP ribosyltransferase enzymes. Found in all domains of life, sirtuins regulate a diverse array of biological processes, including DNA repair, gene silencing, apoptosis and metabolism. Studies in multiple model organisms have indicated that sirtuins may also function to extend lifespan and attenuate age-related pathologies. To date, most of these studies have focused on the deacetylase activity of sirtuins, and relatively little is known about the other biochemical activity of sirtuins, mono-ADP ribosylation. We recently reported that the mammalian sirtuin, SIRT6, mono-ADP ribosylates PARP1 to promote DNA repair in response to oxidative stress. In this research perspective we review the role of SIRT6 in DNA repair and discuss the emerging implications for sirtuin directed mono-ADP ribosylation in aging and age-related diseases. PMID:21946623

  2. Functional Aspects of PARP1 in DNA Repair and Transcription

    PubMed Central

    Ko, Hui Ling; Ren, Ee Chee

    2012-01-01

    Poly (ADP-ribose) polymerase 1 (PARP1) is an ADP-ribosylating enzyme essential for initiating various forms of DNA repair. Inhibiting its enzyme activity with small molecules thus achieves synthetic lethality by preventing unwanted DNA repair in the treatment of cancers. Through enzyme-dependent chromatin remodeling and enzyme-independent motif recognition, PARP1 also plays important roles in regulating gene expression. Besides presenting current findings on how each process is individually controlled by PARP1, we shall discuss how transcription and DNA repair are so intricately linked that disturbance by PARP1 enzymatic inhibition, enzyme hyperactivation in diseases, and viral replication can favor one function while suppressing the other. PMID:24970148

  3. Mitochondrial DNA replication and repair: all a flap.

    PubMed

    Holt, Ian J

    2009-07-01

    The mitochondrial genome is dwarfed by its neighbour in the nucleus, and, thus, it has been sensible for far more resources to be invested in the study of nuclear, rather than mitochondrial, DNA metabolism. Furthermore, few researchers have considered using mitochondrial DNA (mtDNA) as a model system for nuclear DNA metabolism. A quick look into the history of mtDNA provides ready answers as to why this was the case; however, recently mitochondria have been found to contain several nuclear replication and repair factors, so is there any potential to adopt the mitochondrion as a tool to unravel some of the intricacies of replication and repair in higher-order eukaryotes? Perhaps it is now time to invite the Cinderella genome to the ball. PMID:19559620

  4. Chromatin structure and DNA damage repair

    Microsoft Academic Search

    Christoffel Dinant; Adriaan B Houtsmuller; Wim Vermeulen

    2008-01-01

    The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks, single strand breaks, oxidative lesions and pyrimidine dimers. The cell has evolved intricate DNA damage response mechanisms to counteract the genotoxic effects of these lesions. The

  5. WHERE MULTIFUNCTIONAL DNA REPAIR PROTEINS MEET: MAPPING THE INTERACTION DOMAINS BETWEEN XPG AND WRN

    SciTech Connect

    Rangaraj, K.; Cooper, P.K.; Trego, K.S.

    2009-01-01

    The rapid recognition and repair of DNA damage is essential for the maintenance of genomic integrity and cellular survival. Multiple complex and interconnected DNA damage responses exist within cells to preserve the human genome, and these repair pathways are carried out by a specifi c interplay of protein-protein interactions. Thus a failure in the coordination of these processes, perhaps brought about by a breakdown in any one multifunctional repair protein, can lead to genomic instability, developmental and immunological abnormalities, cancer and premature aging. This study demonstrates a novel interaction between two such repair proteins, Xeroderma pigmentosum group G protein (XPG) and Werner syndrome helicase (WRN), that are both highly pleiotropic and associated with inherited genetic disorders when mutated. XPG is a structure-specifi c endonuclease required for the repair of UV-damaged DNA by nucleotide excision repair (NER), and mutations in XPG result in the diseases Xeroderma pigmentosum (XP) and Cockayne syndrome (CS). A loss of XPG incision activity results in XP, whereas a loss of non-enzymatic function(s) of XPG causes CS. WRN is a multifunctional protein involved in double-strand break repair (DSBR), and consists of 3’–5’ DNA-dependent helicase, 3’–5’ exonuclease, and single-strand DNA annealing activities. Nonfunctional WRN protein leads to Werner syndrome, a premature aging disorder with increased cancer incidence. Far Western analysis was used to map the interacting domains between XPG and WRN by denaturing gel electrophoresis, which separated purifi ed full length and recombinant XPG and WRN deletion constructs, based primarily upon the length of each polypeptide. Specifi c interacting domains were visualized when probed with the secondary protein of interest which was then detected by traditional Western analysis using the antibody of the secondary protein. The interaction between XPG and WRN was mapped to the C-terminal region of XPG as well as the C-terminal region of WRN. The physical interaction between XPG and WRN links NER, (made evident by the disease XP) with DSBR, which imparts additional knowledge of the overlapping nature of these two proteins and the previously distinct DNA repair pathways they are associated with. Since genomic integrity is constantly threatened by both endogenous and exogenous (internal and external) damage, understanding the roles of these proteins in coordinating DNA repair processes with replication will signifi cantly further understanding how defects instigate physiological consequences in response to various DNA damaging sources. This ultimately contributes to our understanding of cancer and premature aging.

  6. PARP1-TDP1 coupling for the repair of topoisomerase I-induced DNA damage.

    PubMed

    Das, Benu Brata; Huang, Shar-yin N; Murai, Junko; Rehman, Ishita; Amé, Jean-Christophe; Sengupta, Souvik; Das, Subhendu K; Majumdar, Papiya; Zhang, Hongliang; Biard, Denis; Majumder, Hemanta K; Schreiber, Valérie; Pommier, Yves

    2014-04-01

    Poly(ADP-ribose) polymerases (PARP) attach poly(ADP-ribose) (PAR) chains to various proteins including themselves and chromatin. Topoisomerase I (Top1) regulates DNA supercoiling and is the target of camptothecin and indenoisoquinoline anticancer drugs, as it forms Top1 cleavage complexes (Top1cc) that are trapped by the drugs. Endogenous and carcinogenic DNA lesions can also trap Top1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1), a key repair enzyme for trapped Top1cc, hydrolyzes the phosphodiester bond between the DNA 3'-end and the Top1 tyrosyl moiety. Alternative repair pathways for Top1cc involve endonuclease cleavage. However, it is unknown what determines the choice between TDP1 and the endonuclease repair pathways. Here we show that PARP1 plays a critical role in this process. By generating TDP1 and PARP1 double-knockout lymphoma chicken DT40 cells, we demonstrate that TDP1 and PARP1 are epistatic for the repair of Top1cc. The N-terminal domain of TDP1 directly binds the C-terminal domain of PARP1, and TDP1 is PARylated by PARP1. PARylation stabilizes TDP1 together with SUMOylation of TDP1. TDP1 PARylation enhances its recruitment to DNA damage sites without interfering with TDP1 catalytic activity. TDP1-PARP1 complexes, in turn recruit X-ray repair cross-complementing protein 1 (XRCC1). This work identifies PARP1 as a key component driving the repair of trapped Top1cc by TDP1. PMID:24493735

  7. Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis.

    PubMed

    Charbonnel, Cyril; Allain, Elisabeth; Gallego, Maria Eugenia; White, Charles I

    2011-06-10

    Double-strand breaks in genomic DNA (DSB) are potentially lethal lesions which separate parts of chromosome arms from their centromeres. Repair of DSB by recombination can generate mutations and further chromosomal rearrangements, making the regulation of recombination and the choice of recombination pathways of the highest importance. Although knowledge of recombination mechanisms has considerably advanced, the complex interrelationships and regulation of pathways are far from being fully understood. We analyse the different pathways of DSB repair acting in G2/M phase nuclei of irradiated plants, through quantitation of the kinetics of appearance and loss of ?-H2AX foci in Arabidopsis mutants. These analyses show the roles for the four major recombination pathways in post-S-phase DSB repair and that non-homologous recombination pathways constitute the major response. The data suggest a hierarchical organisation of DSB repair in these cells: C-NHEJ acts prior to B-NHEJ which can also inhibit MMEJ. Surprisingly the quadruple ku80 xrcc1 xrcc2 xpf mutant can repair DSB, although with severely altered kinetics. This repair leads to massive genetic instability with more than 50% of mitoses showing anaphase bridges following irradiation. This study thus clarifies the relationships between the different pathways of DSB repair in the living plant and points to the existence of novel DSB repair processes. PMID:21530420

  8. New epistasis group for the repair of DNA damage in bacteriophage T4: replication repair

    SciTech Connect

    Wachsman, J.T.; Drake, J.W.

    1987-03-01

    The gene 32 mutation amA453 sensitizes bacteriophage T4 to the lethal effects of ultraviolet (UV) irradiation, methyl methanesulfonate and angelicin-mediated photodynamic irradiation when treated particles are plated on amber-suppressing host cells. The increased UV sensitivity caused by amA453 is additive to that caused by mutations in both the T4 excision repair (denV) and recombination repair (uvsWXY) systems, suggesting the operation of third kind of repair system. The mutation uvs79, with many similarities to amA453 but mapping in gene 41, is largely epistatic to amA453. The mutation mms1, also with many similarities to amA453, maps close to amA453 within gene 32 and is largely epistatic to uvs79. Neither amA453 nor uvs79 affect the ratio of UV-induced mutational to lethal hits, nor does amA453 affect spontaneous or UV-enhanced recombination frequencies. Gene 32 encode the major T4 ssDNA-binding protein (the scaffolding of the DNA replication) and gene 41 encodes a DNA helicase, both being required for T4 DNA replication. The authors conclude that a third repair process operates in phage T4 and suggest that it acts during rather than before of after DNA replication.

  9. Methylating agents and DNA repair responses: methylated bases and sources of strand breaks

    PubMed Central

    Wyatt, Michael D.; Pittman, Douglas L.

    2008-01-01

    The chemical methylating agents methylmethane sulfonate (MMS) and N-methyl-N?-nitro-N-nitrosoguanidine (MNNG) have been used for decades as classical DNA damaging agents. These agents have been utilized to uncover and explore pathways of DNA repair, DNA damage response, and mutagenesis. MMS and MNNG modify DNA by adding methyl groups to a number of nucleophilic sites on the DNA bases, although MNNG produces a greater percentage of O-methyl adducts. There has been substantial progress elucidating direct reversal proteins that remove methyl groups and base excision repair (BER), which removes and replaces methylated bases. Direct reversal proteins and BER thus counteract the toxic, mutagenic and clastogenic effects of methylating agents. Despite recent progress, the complexity of DNA damage responses to methylating agents is still being discovered. In particular, there is growing understanding of pathways such as homologous recombination, lesion bypass, and mismatch repair that react when the response of direct reversal proteins and BER is insufficient. Furthermore, the importance of proper balance within the steps in BER has been uncovered with the knowledge that DNA structural intermediates during BER are deleterious. A number of issues complicate elucidating the downstream responses when direct reversal is insufficient or BER is imbalanced. These include inter-species differences, cell-type specific differences within mammals and between cancer cell lines, and the type of methyl damage or BER intermediate encountered. MMS also carries a misleading reputation of being a ‘radiomimetic,’ i.e., capable of directly producing strand breaks. This review focuses on the DNA methyl damage caused by MMS and MNNG for each site of potential methylation to summarize what is known about the repair of such damage and the downstream responses and consequences if not repaired. PMID:17173371

  10. DNA repair and STR PCR amplification from damaged DNA of human bloodstains.

    PubMed

    Tie, Jian; Uchigasaki, Seisaku

    2013-02-01

    Detection and identification of DNA structure from aged and damaged biological materials such as bloodstain are important for human genetic study and individual identification. However, after a long period of storage, the DNA structure of biological samples is degraded to various degrees depending on several factors including environmental condition. In this study, human bloodstains that have been stored at room temperature for one to 39 years were used to represent damaged biological samples. The numbers of apurinic/apyrimidinic sites (AP sites) were investigated by the DNA Damage Quantification Kit to evaluate the lesions in DNA structure. The damaged DNA from the stored human bloodstains was repaired using seven DNA repair enzymes. As DNA genetic marker, short tandem repeat (STR) genotypes were amplified using the non-repaired and repaired DNA preparations from the stored bloodstains. The results indicated that the number of AP sites increased as the storage time increased. While only 2 to 6 STR loci were detected in the damaged DNA of bloodstains stored for over 30 years, after DNA repair all the genotypes in the STR system could be analyzed even from bloodstains that had been stored for the longest period. PMID:23076532

  11. Ultraviolet irradiation of monkey cells enhances the repair of DNA adducts in alpha DNA

    SciTech Connect

    Leadon, S.A.; Hanawalt, P.C.

    1984-11-01

    Excision repair of bulky adducts in alpha DNA of African green monkey cells has previously been shown to be deficient relative to that in the overall genome. We have found that u.v. irradiation of these cells results in the enhanced removal of both aflatoxin B1 (AFB1) and acetylaminofluorene (AAF) adducts from the alpha DNA sequences without affecting repair in the bulk of the DNA. The degree of enhanced removal of AFB1 is dependent upon the u.v. dose and the time interval between irradiation and AFB1 treatment. The u.v. enhancement is not inhibited by cycloheximide. Exposure of the cells to dimethylsulfate or gamma-rays does not affect AFB1 adduct repair. The formation and removal of N-acetoxy-2-acetylaminofluorene (NA-AAF) adducts from alpha and bulk DNA was studied in detail. A higher initial level of the acetylated C8 adduct of guanine was found in alpha DNA than in bulk DNA. Although both the acetylated and deacetylated C8 adducts were removed from the two DNA species, the level of repair was significantly greater in the bulk DNA. Irradiation of cells with u.v. prior to treatment with NA-AAF enhanced the removal of both adducts from alpha DNA with little or no effect on repair in bulk DNA. We conclude that the presence of u.v. photoproducts or some intermediate in their processing alters the chromatin structure of alpha DNA thereby rendering bulky adducts accessible to repair enzymes. In addition, the differential formation and repair of AAF adducts in alpha DNA compared with that in the bulk of the genome supports the hypothesis of an altered chromatin structure for alpha domains.

  12. Metal Complexes for DNA-Mediated Charge Transport

    PubMed Central

    Barton, Jacqueline K.; Olmon, Eric D.; Sontz, Pamela A.

    2010-01-01

    In all organisms, oxidation threatens the integrity of the genome. DNA-mediated charge transport (CT) may play an important role in the generation and repair of this oxidative damage. In studies involving long-range CT from intercalating Ru and Rh complexes to 5?-GG-3? sites, we have examined the efficiency of CT as a function of distance, temperature, and the electronic coupling of metal oxidants bound to the base stack. Most striking is the shallow distance dependence and the sensitivity of DNA CT to how the metal complexes are stacked in the helix. Experiments with cyclopropylamine-modified bases have revealed that charge occupation occurs at all sites along the bridge. Using Ir complexes, we have seen that the process of DNA-mediated reduction is very similar to that of DNA-mediated oxidation. Studies involving metalloproteins have, furthermore, shown that their redox activity is DNA-dependent and can be DNA-mediated. Long range DNA-mediated CT can facilitate the oxidation of DNA-bound base excision repair proteins to initiate a redox-active search for DNA lesions. DNA CT can also activate the transcription factor SoxR, triggering a cellular response to oxidative stress. Indeed, these studies show that within the cell, redox-active proteins may utilize the same chemistry as that of synthetic metal complexes in vitro, and these proteins may harness DNA-mediated CT to reduce damage to the genome and regulate cellular processes. PMID:21643528

  13. Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis

    E-print Network

    Nagel, Zachary D.

    The capacity to repair different types of DNA damage varies among individuals, making them more or less susceptible to the detrimental health consequences of damage exposures. Current methods for measuring DNA repair ...

  14. Mutagenesis vol.14 no.3 pp.339347, 1999 DNA repair methyltransferase (Mgmt) knockout mice are sensitive

    E-print Network

    Engelward, Bevin

    agents used for cancer chemotherapy. Introduction DNA repair plays an important role in protecting-term clinical benefits. It is generally accepted that in cultured mammalian cells the DNA alkylation repair

  15. DNA repair in reduced genome: the Mycoplasma model.

    PubMed

    Carvalho, Fabíola Marques; Fonseca, Marbella Maria; Batistuzzo De Medeiros, Sílvia; Scortecci, Kátia Castanho; Blaha, Carlos Alfredo Galindo; Agnez-Lima, Lucymara Fassarella

    2005-11-01

    The occurrence of bacteria with a reduced genome, such as that found in Mycoplasmas, raises the question as to which genes should be enough to guarantee the genomic stability indispensable for the maintenance of life. The aim of this work was to compare nine Mycoplasma genomes in regard to DNA repair genes. An in silico analysis was done using six Mycoplasma species, whose genomes are accessible at GenBank, and M. synoviae, and two strains of M. hyopneumoniae, whose genomes were recently sequenced by The Brazilian National Genome Project Consortium and Southern Genome Investigation Program (Brazil) respectively. Considering this reduced genome model, our comparative analysis suggests that the DNA integrity necessary for life can be primarily maintained by nucleotide excision repair (NER), which is the only complete repair pathway. Furthermore, some enzymes involved with base excision repair (BER) and recombination are also present and can complement the NER activity. The absence of RecR and RecO-like ORFs was observed only in M. genitalium and M. pneumoniae, which can be involved with the conservation of gene order observed between these two species. We also obtained phylogenetic evidence for the recent acquisition of the ogt gene in M. pulmonis and M. penetrans by a lateral transference event. In general, the presence or nonexistence of repair genes is shared by all species analyzed, suggesting that the loss of the majority of repair genes was an ancestral event, which occurred before the divergence of the Mycoplasma species. PMID:16153783

  16. Identification of KIAA1018/FAN1, a DNA Repair Nuclease Recruited to DNA

    E-print Network

    Gartner, Anton

    Identification of KIAA1018/FAN1, a DNA Repair Nuclease Recruited to DNA Damage by Monoubiquitinated protein, KIAA1018/MTMR15/ FAN1, that interacts with, and is recruited to sites of DNA damage by, the monoubiquitinated form of FANCD2. FAN1 exhibits endonuclease activity toward 50 flaps and has 50 exonuclease

  17. DNA damage and repair in Stylonychia lemnae (Ciliata, Protozoa)

    SciTech Connect

    Ammermann, D.

    1988-05-01

    Irradiation with X rays, UV irradiation after incorporation of bromodeoxyuridine (BU) into the DNA, and cis-platinum (cis-Pt) treatment each cause the loss of micronuclei of Stylonychia lemnae while the macronuclei are not severely affected. The abilities of both nuclei to repair DNA were investigated. Unscheduled DNA synthesis could not be demonstrated after X-ray irradiation, but it was found after treatment with BU/UV and cis-Pt in macro- and micronuclei. The extent of the repair process in the micro- and macronuclei was alike, as indicated by grain counts of (6-/sup 3/H)thymidine-treated cells. One reason for the different sensitivity of both nuclei to DNA-damaging treatment may be the different number of gene copies in the macro- and micronuclei.

  18. Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Repairs DNA Damage Induced by Topoisomerases I and II and Base Alkylation in Vertebrate Cells*

    PubMed Central

    Murai, Junko; Huang, Shar-yin N.; Das, Benu Brata; Dexheimer, Thomas S.; Takeda, Shunichi; Pommier, Yves

    2012-01-01

    Tyrosyl-DNA phosphodiesterase 1 (Tdp1) repairs topoisomerase I cleavage complexes (Top1cc) by hydrolyzing their 3?-phosphotyrosyl DNA bonds and repairs bleomycin-induced DNA damage by hydrolyzing 3?-phosphoglycolates. Yeast Tdp1 has also been implicated in the repair of topoisomerase II-DNA cleavage complexes (Top2cc). To determine whether vertebrate Tdp1 is involved in the repair of various DNA end-blocking lesions, we generated Tdp1 knock-out cells in chicken DT40 cells (Tdp1?/?) and Tdp1-complemented DT40 cells with human TDP1. We found that Tdp1?/? cells were not only hypersensitive to camptothecin and bleomycin but also to etoposide, methyl methanesulfonate (MMS), H2O2, and ionizing radiation. We also show they were deficient in mitochondrial Tdp1 activity. In biochemical assays, recombinant human TDP1 was found to process 5?-phosphotyrosyl DNA ends when they mimic the 5?-overhangs of Top2cc. Tdp1 also processes 3?-deoxyribose phosphates generated from hydrolysis of abasic sites, which is consistent with the hypersensitivity of Tdp1?/? cells to MMS and H2O2. Because recent studies established that CtIP together with BRCA1 also repairs topoisomerase-mediated DNA damage, we generated dual Tdp1-CtIP-deficient DT40 cells. Our results show that Tdp1 and CtIP act in parallel pathways for the repair of Top1cc and MMS-induced lesions but are epistatic for Top2cc. Together, our findings reveal a broad involvement of Tdp1 in DNA repair and clarify the role of human TDP1 in the repair of Top2-induced DNA damage. PMID:22375014

  19. DNA damage-activated ABL-MyoD signaling contributes to DNA repair in skeletal myoblasts

    PubMed Central

    Simonatto, M; Marullo, F; Chiacchiera, F; Musaró, A; Wang, J Y J; Latella, L; Puri, P L

    2013-01-01

    Previous works have established a unique function of MyoD in the control of muscle gene expression during DNA damage response in myoblasts. Phosphorylation by DNA damage-activated ABL tyrosine kinase transiently inhibits MyoD-dependent activation of transcription in response to genotoxic stress. We show here that ABL-MyoD signaling is also an essential component of the DNA repair machinery in myoblasts exposed to genotoxic stress. DNA damage promoted the recruitment of MyoD to phosphorylated Nbs1 (pNbs1)-containing repair foci, and this effect was abrogated by either ABL knockdown or the ABL kinase inhibitor imatinib. Upon DNA damage, MyoD and pNbs1 were detected on the chromatin to MyoD target genes without activating transcription. DNA damage-mediated tyrosine phosphorylation was required for MyoD recruitment to target genes, as the ABL phosphorylation-resistant MyoD mutant (MyoD Y30F) failed to bind the chromatin following DNA damage, while retaining the ability to activate transcription in response to differentiation signals. Moreover, MyoD Y30F exhibited an impaired ability to promote repair in a heterologous system, as compared with MyoD wild type (WT). Consistently, MyoD-null satellite cells (SCs) displayed impaired DNA repair that was rescued by reintroduction of MyoD WT but not by MyoD Y30F. In addition, inhibition of ABL kinase prevented MyoD WT-mediated rescue of DNA repair in MyoD-null SCs. These results identify an unprecedented contribution of MyoD to DNA repair and suggest that ABL-MyoD signaling coordinates DNA repair and transcription in myoblasts. PMID:24056763

  20. Simulated microgravity decreases DNA repair capacity and induces DNA damage in human lymphocytes.

    PubMed

    Kumari, Ragini; Singh, Kamaleshwar P; Dumond, James W

    2009-07-01

    The effect of simulated microgravity on DNA damage and apoptosis is still controversial. The objective of this study was to test whether simulated microgravity conditions affect the expression of genes for DNA repair and apoptosis. To achieve this objective, human lymphocyte cells were grown in a NASA-developed rotating wall vessel (RWV) bioreactor that simulates microgravity. The same cell line was grown in parallel under normal gravitational conditions in culture flasks. The effect of microgravity on the expression of genes was measured by quantitative real-time PCR while DNA damage was examined by comet assay. The result of this study revealed that exposure to simulated microgravity condition decreases the expression of DNA repair genes. Mismatch repair (MMR) class of DNA repair pathway were more susceptible to microgravity condition-induced gene expression changes than base excision repair (BER) and nucleotide excision repair (NER) class of DNA repair genes. Downregulation of genes involved in cell proliferation (CyclinD1 and PCNA) and apoptosis (Bax) was also observed. Microgravity-induced changes in the expression of some of these genes were further verified at the protein level by Western blot analysis. The findings of this study suggest that microgravity may induce alterations in the expression of these DNA repair genes resulting in accumulation of DNA damage. Reduced expression of cell-cycle genes suggests that microgravity may cause a reduction in cell growth. Downregulation of pro-apoptotic genes further suggests that extended exposure to microgravity may result in a reduction in the cells' ability to undergo apoptosis. Any resistance to apoptosis seen in cells with damaged DNA may eventually lead to malignant transformation of those cells. PMID:19415677

  1. Base excision repair: NMR backbone assignments of Escherichia coli formamidopyrimidine-DNA glycosylase

    SciTech Connect

    Buchko, Garry W.; Wallace, Susan S.; Kennedy, Michael A.

    2002-03-01

    Oxidative damage is emerging as one of the most important mechanisms responsible for mutagenesis, carcinogenesis, aging, and various diseases (Farr and Kogma, 1991). One of the potential targets for oxidation is cellular DNA. While exposure to exogenous agents, such as ionizing radiation and chemicals, contributes to damaging DNA, the most important oxidative agents are endogenous, such as the reactive free radicals produced during normal oxidative metabolism (Adelman et., 1988). To mitigate the potentially deleterious effects of oxidative DNA damage virtually all aerobic organisms have developed complex repair mechanisms (Petit and Sancar, 1999). One repair mechanism, base excision repair (BER), appears to be responsible for replacing most oxidative DNA damage (David and Williams, 1998). Formamidopyrimidine-DNA glycosylase (Fpg), a 269-residue metalloprotein with a molecular weight of 30.2 kDa, is a key BER enzyme in prokaryotes (Boiteaux et al., 1987). Substrates recognized and released by Fpg include 7,8-dihydro-8-oxoguanine (8-oxoG), 2,6 diamino-4-hydroxy-5-formamido pyrimidine (Fapy-G), the adenine equivalents 8-oxoA and Fapy-A, 5-hydroxycytosine, 5-hydroxyuracil, B ureidoisobutiric acid, and a-R-hydroxy-B-ureidoisobutiric acid (Freidberg et al., 1995). In vitro Fpg bind double-stranded DNA and performs three catalytic activities: (i) DNA glycosylase, (ii) AP lyase, and (iii) deoxyribophosphodiesterase.

  2. DNA Replication, Repair and Stress Response

    Microsoft Academic Search

    Nianxiang Zou; Kevin Dybvig

    The genome size of most mycoplasma species is roughly 1 megabase, about a quarter the genome size of E. coli or B. subtilis. The small coding capacity of mycoplasmal genomes allows little redundancy in most cellular functions, even vital ones such\\u000a as DNA replication. The subunit composition of mycoplasmal DNA polymerase III HE is identical to that of B. subtilis

  3. DNA repair in a small yeast plasmid folded into chromatin.

    PubMed Central

    Smerdon, M J; Bedoyan, J; Thoma, F

    1990-01-01

    The question of whether excision repair of yeast plasmids accurately reflects the repair of yeast genomic chromatin has yielded conflicting answers. These conflicts could have arisen from differences in the conformation of plasmid molecules used during these studies. We have examined excision repair of UV photoproducts in a small (2619 bp) autonomously replicating plasmid (YRp-TRURAP), known to be folded into chromatin with positioned nucleosomes in vivo, in the yeast Saccharomyces cerevisiae. A quantitative assay was used to measure the yield of cyclobutane pyrimidine dimers (PD) in plasmid DNA by measuring the fraction of Form I molecules resistant to T4 endonuclease V. After a UV dose of 100 J/m2, which yields 1.2 PD/plasmid in irradiated cells, radiation insensitive (wt) cells repair approximately 70% of the PD in TRURAP chromatin in 2 hr (a rate comparable to that of genomic chromatin). On the other hand, no measurable repair occurs in TRURAP chromatin in radiation sensitive cells (rad1) during the same time period. Thus, this small plasmid contains sufficient chromatin structure in vivo to reflect the incompetent repair of genomic chromatin seen in a rad mutant, while maintaining the competent repair level in wt cells. Images PMID:2186374

  4. Involvement of DNA-PK(sub cs) in DSB Repair Following Fe-56 Ion Irradiation

    NASA Technical Reports Server (NTRS)

    O'Neill, Peter; Harper, Jane; Anderson, Jennifer a.; Cucinnota, Francis A.

    2007-01-01

    When cells are exposed to radiation, cellular lesions are induced in the DNA including double strand breaks (DSBs), single strand breaks and clustered DNA damage, which if not repaired with high fidelity may lead to detrimental biological consequences. Complex DSBs are induced by ionizing radiation and characterized by the presence of base lesions close to the break termini. They are believed to be one of the major causes of the biological effects of IR. The complexity of DSBs increases with the ionization density of the radiation and these complex DSBs are distinct from the damage induced by sparsely ionizing gamma-radiation. It has been hypothesized that complex DSBs produced by heavy ions in space pose problems to the DNA repair machinery. We have used imm uno-cyto-chemical staining of phosphorylated histone H2AX (gamma-H2AX) foci, as a marker of DSBs. We have investigated the formation and loss of gamma-H2AX foci and RAD51 foci (a protein involved in the homologous recombination pathway) in mammalian cells induced by low fluences of low-LET gamma-radiation and high-LET Fe-56 ions (1GeV/n, 151 keV/micron LET). M059J and M059K cells, which are deficient and proficient in DNA-PK(sub cs) activity respectively, were used to examine the role of DNA-PK(sub cs), a key protein in the non-homologous end joining (NHEJ) pathway of DSB repair, along with HF19 human fibroblasts. Followi ng irradiation with Fe-56 ions the rate of repair was slower in M059J cells compared with that in M059K, indicating a role for DNA-PK(sub cs) in the repair of DSB induced by Fe-56 ions. However a small percentage of DSBs induced are rejoined within 5 h although many DSBs still persist up to 24 h. When RAD51 was examined in M059J/K cells, RAD51 foci are visible 24 hours after irradiation in approximately 40% of M059J cells compared with <5% of M059K cells indicating that persistent DSBs or those formed at stalled replication forks recruit RAD51 in DNA-PK(sub cs) deficient cells. Following 1 Gy gamma-radiation the induction of gamma-H2AX foci is similar in M059J and M059K cells. However, the repair rate of DSBs is slower in M059J cells than in M059K as shown previously but faster than seen with DSB induced by 56Fe ions. Vanillin, an inhibitor of DNA-PK(sub cs), reduces significantly the rate of DSB repair in HF19 cells following 1 Gy gamma-radiation but at 0.25 Gy gamma-irradiation the rate of DSB repair is similar in the presence or absence vanillin, thus suggesting the repair of a sub-set of DSBs induced by low dose, low-LET radiation does not require DNA-PK(sub cs). This sub-set of DSBs is formed in lower yield with high LET radiation. T he complexity of DNA DSBs induced by HZE radiation will be discussed in terms of reduced repair efficiency and provide scope to model different sub-classes of DSBs as precursors that may lead to the detrimental health effects of HZE radiation.

  5. Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced DNA damage depends on functional TFIIH

    Microsoft Academic Search

    Angelika Zotter; S. M. Luijsterburg; Daniel O. Warmerdam; Shehu Ibrahim; Alex Nigg; Cappellen van W. A; Jan H. J. Hoeijmakers; Roel van Driel; Wim Vermeulen; Adriaan B. Houtsmuller

    2006-01-01

    The structure-specific endonuclease XPG is an indispensable core protein of the nucleotide excision repair (NER) machinery. XPG cleaves the DNA strand at the 3 side of the DNA damage. XPG binding stabilizes the NER preincision complex and is essential for the 5 incision by the ERCC1\\/XPF endonuclease. We have studied the dynamic role of XPG in its different cellular functions

  6. Toward Compact Inherently Self-Repairing DNA Lattices Using Reversibility

    E-print Network

    Reif, John H.

    sets of DNA tiles to be self-healing due to Winfree increased the lattice area by a significant-assembly techniques. This involves, among other things, developing self-assembly methods for patterning nano-materials: This question leads us to realize that nature's capability to self-repair still far exceeds the self-healing

  7. UV Radiation Damage and Bacterial DNA Repair Systems

    ERIC Educational Resources Information Center

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  8. Recognition of DNA alterations by the mismatch repair system.

    PubMed Central

    Marra, G; Schär, P

    1999-01-01

    Misincorporation of non-complementary bases by DNA polymerases is a major source of the occurrence of promutagenic base-pairing errors during DNA replication or repair. Base-base mismatches or loops of extra bases can arise which, if left unrepaired, will generate point or frameshift mutations respectively. To counteract this mutagenic potential, organisms have developed a number of elaborate surveillance and repair strategies which co-operate to maintain the integrity of their genomes. An important replication-associated correction function is provided by the post-replicative mismatch repair system. This system is highly conserved among species and appears to be the major pathway for strand-specific elimination of base-base mispairs and short insertion/deletion loops (IDLs), not only during DNA replication, but also in intermediates of homologous recombination. The efficiency of repair of different base-pairing errors in the DNA varies, and appears to depend on multiple factors, such as the physical structure of the mismatch and sequence context effects. These structural aspects of mismatch repair are poorly understood. In contrast, remarkable progress in understanding the biochemical role of error-recognition proteins has been made in the recent past. In eukaryotes, two heterodimers consisting of MutS-homologous proteins have been shown to share the function of mismatch recognition in vivo and in vitro. A first MutS homologue, MSH2, is present in both heterodimers, and the specificity for mismatch recognition is dictated by its association with either of two other MutS homologues: MSH6 for recognition of base-base mismatches and small IDLs, or MSH3 for recognition of IDLs only. Mismatch repair deficiency in cells can arise through mutation, transcriptional silencing or as a result of imbalanced expression of these genes. PMID:9931291

  9. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress.

    PubMed

    Yan, Shan; Sorrell, Melanie; Berman, Zachary

    2014-10-01

    To maintain genome stability, cells have evolved various DNA repair pathways to deal with oxidative DNA damage. DNA damage response (DDR) pathways, including ATM-Chk2 and ATR-Chk1 checkpoints, are also activated in oxidative stress to coordinate DNA repair, cell cycle progression, transcription, apoptosis, and senescence. Several studies demonstrate that DDR pathways can regulate DNA repair pathways. On the other hand, accumulating evidence suggests that DNA repair pathways may modulate DDR pathway activation as well. In this review, we summarize our current understanding of how various DNA repair and DDR pathways are activated in response to oxidative DNA damage primarily from studies in eukaryotes. In particular, we analyze the functional interplay between DNA repair and DDR pathways in oxidative stress. A better understanding of cellular response to oxidative stress may provide novel avenues of treating human diseases, such as cancer and neurodegenerative disorders. PMID:24947324

  10. E2F-7 couples DNA damage-dependent transcription with the DNA repair process

    PubMed Central

    Zalmas, Lykourgos-Panagiotis; Coutts, Amanda S; Helleday, Thomas; La Thangue, Nicholas B

    2013-01-01

    The cellular response to DNA damage, mediated by the DNA repair process, is essential in maintaining the integrity and stability of the genome. E2F-7 is an atypical member of the E2F family with a role in negatively regulating transcription and cell cycle progression under DNA damage. Surprisingly, we found that E2F-7 makes a transcription-independent contribution to the DNA repair process, which involves E2F-7 locating to and binding damaged DNA. Further, E2F-7 recruits CtBP and HDAC to the damaged DNA, altering the local chromatin environment of the DNA lesion. Importantly, the E2F-7 gene is a target for somatic mutation in human cancer and tumor-derived mutant alleles encode proteins with compromised transcription and DNA repair properties. Our results establish that E2F-7 participates in 2 closely linked processes, allowing it to directly couple the expression of genes involved in the DNA damage response with the DNA repair machinery, which has relevance in human malignancy. PMID:23974101

  11. DNA repair in human promyelocytic cell line, HL-60.

    PubMed Central

    Farzaneh, F; Feon, S; Lebby, R A; Brill, D; David, J C; Shall, S

    1987-01-01

    The human promyelocytic cell line, HL-60, shows large changes in endogenous poly(ADP-ribose) and in nuclear ADP-ribosyl transferase activity (ADPRT) during its induced myelocytic differentiation. DNA strand-breaks are an essential activator for this enzyme; and transient DNA strand breaks occur during the myelocytic differentiation of HL-60 cells. We have tested the hypothesis that these post-mitotic, terminally differentiating cells are less efficient in DNA repair, and specifically in DNA strand rejoining, than their proliferating precursor cells. We have found that this hypothesis is not tenable. We observe that there is no detectable reduction in the efficiency of DNA excision repair after exposure to either dimethyl sulphate or gamma-irradiation in HL-60 cells induced to differentiate by dimethyl sulphoxide. Moreover, the efficient excision repair of either dimethyl sulphate or gamma-irradiation induced lesions, both in the differentiated and undifferentiated HL-60 cells, is blocked by the inhibition of ADPRT activity. Images PMID:3106934

  12. Hypomorphic PCNA mutation underlies a human DNA repair disorder

    PubMed Central

    Baple, Emma L.; Chambers, Helen; Cross, Harold E.; Fawcett, Heather; Nakazawa, Yuka; Chioza, Barry A.; Harlalka, Gaurav V.; Mansour, Sahar; Sreekantan-Nair, Ajith; Patton, Michael A.; Muggenthaler, Martina; Rich, Phillip; Wagner, Karin; Coblentz, Roselyn; Stein, Constance K.; Last, James I.; Taylor, A. Malcolm R.; Jackson, Andrew P.; Ogi, Tomoo; Lehmann, Alan R.; Green, Catherine M.; Crosby, Andrew H.

    2014-01-01

    Numerous human disorders, including Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and trichothiodystrophy, result from the mutation of genes encoding molecules important for nucleotide excision repair. Here, we describe a syndrome in which the cardinal clinical features include short stature, hearing loss, premature aging, telangiectasia, neurodegeneration, and photosensitivity, resulting from a homozygous missense (p.Ser228Ile) sequence alteration of the proliferating cell nuclear antigen (PCNA). PCNA is a highly conserved sliding clamp protein essential for DNA replication and repair. Due to this fundamental role, mutations in PCNA that profoundly impair protein function would be incompatible with life. Interestingly, while the p.Ser228Ile alteration appeared to have no effect on protein levels or DNA replication, patient cells exhibited marked abnormalities in response to UV irradiation, displaying substantial reductions in both UV survival and RNA synthesis recovery. The p.Ser228Ile change also profoundly altered PCNA’s interaction with Flap endonuclease 1 and DNA Ligase 1, DNA metabolism enzymes. Together, our findings detail a mutation of PCNA in humans associated with a neurodegenerative phenotype, displaying clinical and molecular features common to other DNA repair disorders, which we showed to be attributable to a hypomorphic amino acid alteration. PMID:24911150

  13. p53 promotes repair of heterochromatin DNA by regulating JMJD2b and SUV39H1 expression

    PubMed Central

    Zheng, Hong; Chen, Lihong; Pledger, W. Jack; Fang, Jia; Chen, Jiandong

    2014-01-01

    Constitutive heterochromatin is important for maintaining chromosome stability but also delays the repair of DNA double strand breaks (DSB). DSB repair in complex mammalian genomes involves a fast phase (2–6 hrs) where most of the breaks are rapidly repaired, and a slow phase (up to 24 hrs) where the remaining damages in heterochromatin are repaired. We found that p53 deficiency delays the slow phase DNA repair after ionizing irradiation. P53 deficiency prevents down regulation of histone H3K9 trimethylation at pericentric heterochromatin after DNA damage. Moreover, p53 directly induces expression of the H3 K9 demethylase JMJD2b through promoter binding. P53 activation also indirectly down regulates expression of the H3 K9 methytransferase SUV39H1. Depletion of JMJD2b or sustained expression of SUV39H1 delays the repair of heterochromatin DNA and reduces clonogenic survival after ionizing irradiation. The results suggest that by regulating JMJD2b and SUV39H1 expression, p53 not only controls transcription but also promotes heterochromatin relaxation to accelerate a rate-limiting step in the repair of complex genomes. PMID:23376847

  14. Acquisition of meiotic DNA repair regulators maintain genome stability in glioblastoma.

    PubMed

    Rivera, M; Wu, Q; Hamerlik, P; Hjelmeland, A B; Bao, S; Rich, J N

    2015-01-01

    Glioblastoma (GBM), the most prevalent type of primary intrinsic brain cancer in adults, remains universally fatal despite maximal therapy, including radiotherapy and chemotherapy. Cytotoxic therapy generates double-stranded DNA breaks (DSBs), most commonly repaired by homologous recombination (HR). We hypothesized that cancer cells coopt meiotic repair machinery as DSBs are generated during meiosis and repaired by molecular complexes distinct from genotoxic responses in somatic tissues. Indeed, we found that gliomas express meiotic repair genes and their expression informed poor prognosis. We interrogated the function of disrupted meiotic cDNA1 (DMC1), a homolog of RAD51, the primary recombinase used in mitotic cells to search and recombine with the homologous DNA template. DMC1, whose only known function is as an HR recombinase, was expressed by GBM cells and induced by radiation. Although targeting DMC1 in non-neoplastic cells minimally altered cell growth, DMC1 depletion in GBM cells decreased proliferation, induced activation of CHK1 and expression of p21(CIP1/WAF1), and increased RPA foci, suggesting increased replication stress. Combining loss of DMC1 with ionizing radiation inhibited activation of DNA damage responses and increased radiosensitivity. Furthermore, loss of DMC1 reduced tumor growth and prolonged survival in vivo. Our results suggest that cancers coopt meiotic genes to augment survival under genotoxic stress, offering molecular targets with high therapeutic indices. PMID:25906155

  15. Sumoylation Influences DNA Break Repair Partly by Increasing the Solubility of a Conserved End Resection Protein

    PubMed Central

    Sarangi, Prabha; Steinacher, Roland; Altmannova, Veronika; Fu, Qiong; Paull, Tanya T.; Krejci, Lumir; Whitby, Matthew C.; Zhao, Xiaolan

    2015-01-01

    Protein modifications regulate both DNA repair levels and pathway choice. How each modification achieves regulatory effects and how different modifications collaborate with each other are important questions to be answered. Here, we show that sumoylation regulates double-strand break repair partly by modifying the end resection factor Sae2. This modification is conserved from yeast to humans, and is induced by DNA damage. We mapped the sumoylation site of Sae2 to a single lysine in its self-association domain. Abolishing Sae2 sumoylation by mutating this lysine to arginine impaired Sae2 function in the processing and repair of multiple types of DNA breaks. We found that Sae2 sumoylation occurs independently of its phosphorylation, and the two modifications act in synergy to increase soluble forms of Sae2. We also provide evidence that sumoylation of the Sae2-binding nuclease, the Mre11-Rad50-Xrs2 complex, further increases end resection. These findings reveal a novel role for sumoylation in DNA repair by regulating the solubility of an end resection factor. They also show that collaboration between different modifications and among multiple substrates leads to a stronger biological effect. PMID:25569253

  16. Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection.

    PubMed

    Gospodinov, Anastas; Vaissiere, Thomas; Krastev, Dragomir B; Legube, Gaëlle; Anachkova, Boyka; Herceg, Zdenko

    2011-12-01

    Chromatin modifications/remodeling are important mechanisms by which cells regulate various functions through providing accessibility to chromatin DNA. Recent studies implicated INO80, a conserved chromatin-remodeling complex, in the process of DNA repair. However, the precise underlying mechanism by which this complex mediates repair in mammalian cells remains enigmatic. Here, we studied the effect of silencing of the Ino80 subunit of the complex on double-strand break repair in mammalian cells. Comet assay and homologous recombination repair reporter system analyses indicated that Ino80 is required for efficient double-strand break repair. Ino80 association with chromatin surrounding double-strand breaks suggested the direct involvement of INO80 in the repair process. Ino80 depletion impaired focal recruitment of 53BP1 but did not impede Rad51 focus formation, suggesting that Ino80 is required for the early steps of repair. Further analysis by using bromodeoxyuridine (BrdU)-labeled single-stranded DNA and replication protein A (RPA) immunofluorescent staining showed that INO80 mediates 5'-3' resection of double-strand break ends. PMID:21947284

  17. Mammalian Ino80 Mediates Double-Strand Break Repair through Its Role in DNA End Strand Resection ?

    PubMed Central

    Gospodinov, Anastas; Vaissiere, Thomas; Krastev, Dragomir B.; Legube, Gaëlle; Anachkova, Boyka; Herceg, Zdenko

    2011-01-01

    Chromatin modifications/remodeling are important mechanisms by which cells regulate various functions through providing accessibility to chromatin DNA. Recent studies implicated INO80, a conserved chromatin-remodeling complex, in the process of DNA repair. However, the precise underlying mechanism by which this complex mediates repair in mammalian cells remains enigmatic. Here, we studied the effect of silencing of the Ino80 subunit of the complex on double-strand break repair in mammalian cells. Comet assay and homologous recombination repair reporter system analyses indicated that Ino80 is required for efficient double-strand break repair. Ino80 association with chromatin surrounding double-strand breaks suggested the direct involvement of INO80 in the repair process. Ino80 depletion impaired focal recruitment of 53BP1 but did not impede Rad51 focus formation, suggesting that Ino80 is required for the early steps of repair. Further analysis by using bromodeoxyuridine (BrdU)-labeled single-stranded DNA and replication protein A (RPA) immunofluorescent staining showed that INO80 mediates 5?-3? resection of double-strand break ends. PMID:21947284

  18. H-NS Regulates DNA Repair in Shigella

    PubMed Central

    Palchaudhuri, Sunil; Tominna, Brandon; Leon, Myron A.

    1998-01-01

    We report a new role for H-NS in Shigella spp.: suppression of repair of DNA damage after UV irradiation. H-NS-mediated suppression of virulence gene expression is thermoregulated in Shigella, being functional at 30°C and nonfunctional at 37 to 40°C. We find that H-NS-mediated suppression of DNA repair after UV irradiation is also thermoregulated. Thus, Shigella flexneri M90T, incubated at 37 or 40°C postirradiation, shows up to 30-fold higher survival than when incubated at 30°C postirradiation. The hns mutants BS189 and BS208, both of which lack functional H-NS, show a high rate of survival (no repression) whether incubated at 30 or 40°C postirradiation. Suppression of DNA repair by H-NS is not mediated through genes on the invasion plasmid of S. flexneri M90T, since BS176, cured of plasmid, behaves identically to the parental M90T. Thus, in Shigella the nonfunctionality of H-NS permits enhanced DNA repair at temperatures encountered in the human host. However, pathogenic Escherichia coli strains (enteroinvasive and enterohemorrhagic E. coli) show low survival whether incubated at 30 or 40°C postirradiation. E. coli K-12 shows markedly different behavior; high survival postirradiation at both 30 and 40°C. These K-12 strains were originally selected from E. coli organisms subjected to both UV and X irradiation. Therefore, our data suggest that repair processes, extensively described for laboratory strains of E. coli, require experimental verification in pathogenic strains which were not adapted to irradiation. PMID:9748466

  19. Human DNA Ligase IV and the Ligase IV\\/XRCC4 Complex:  Analysis of Nick Ligation Fidelity †

    Microsoft Academic Search

    Yu Wang; Brandon J. Lamarche; Ming-Daw Tsai

    2007-01-01

    In addition to linking nicked\\/fragmented DNA molecules back into a contiguous duplex, DNA ligases also have the capacity to influence the accuracy of DNA repair pathways via their tolerance\\/ intolerance of nicks containing mismatched base pairs. Although human DNA ligase I (Okazaki fragment processing) and the human DNA ligase III\\/XRCC1 complex (general DNA repair) have been shown to be relatively

  20. A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1

    SciTech Connect

    Sebastian, J.; Sancar, G.B. (Univ. of North Carolina, Chapel Hill (United States))

    1991-12-15

    The PHR1 gene of Saccharomyces cerevisiae encodes the DNA repair enzyme photolyase. Transcription of PHR1 increases in response to treatment of cells with 254-nm radiation and chemical agents that damage DNA. The authors here the identification of a damage-responsive DNA binding protein, termed photolyase regulatory protein (PRP), and its cognate binding site, termed the PHR1 transcription after DNA damage. PRP activity, monitored by electrophoretic-mobility-shift assay, was detected in cells during normal growth but disappeared within 30 min after irradiation. Copper-phenanthroline footprinting of PRP-DNA complexes revealed that PRP protects a 39-base-pair region of PHR1 5{prime} flanking sequence beginning 40 base pairs upstream from the coding sequence. Thus these observations establish that PRP is a damage-responsive repressor of PHR1 transcription.

  1. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End Joining Pathway

    PubMed Central

    Lieber, Michael R.

    2011-01-01

    Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination and nonhomologous DNA end joining (NHEJ). The diverse causes of DSBs result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, polymerases and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during V(D)J recombination and class switch recombination. Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation, but also severely immunodeficient. PMID:20192759

  2. Impact of DNA3?pp5?G capping on repair reactions at DNA 3? ends

    PubMed Central

    Das, Ushati; Chauleau, Mathieu; Ordonez, Heather; Shuman, Stewart

    2014-01-01

    Many biological scenarios generate “dirty” DNA 3?-PO4 ends that cannot be sealed by classic DNA ligases or extended by DNA polymerases. The noncanonical ligase RtcB can “cap” these ends via a unique chemical mechanism entailing transfer of GMP from a covalent RtcB–GMP intermediate to a DNA 3?-PO4 to form DNA3?pp5?G. Here, we show that capping protects DNA 3? ends from resection by Escherichia coli exonucleases I and III and from end-healing by T4 polynucleotide 3? phosphatase. By contrast, the cap is an effective primer for DNA synthesis. E. coli DNA polymerase I and Mycobacterium DinB1 extend the DNAppG primer to form an alkali-labile DNApp(rG)pDNA product. The addition of dNTP depends on pairing of the cap guanine with an opposing cytosine in the template strand. Aprataxin, an enzyme implicated in repair of A5?pp5?DNA ends formed during abortive ligation by classic ligases, is highly effective as a DNA 3? decapping enzyme, converting DNAppG to DNA3?p and GMP. We conclude that the biochemical impact of DNA capping is to prevent resection and healing of a 3?-PO4 end, while permitting DNA synthesis, at the price of embedding a ribonucleotide and a pyrophosphate linkage in the repaired strand. Aprataxin affords a means to counter the impact of DNA capping. PMID:25049385

  3. Low-Dose Formaldehyde Delays DNA Damage Recognition and DNA Excision Repair in Human Cells

    PubMed Central

    Luch, Andreas; Frey, Flurina C. Clement; Meier, Regula; Fei, Jia; Naegeli, Hanspeter

    2014-01-01

    Objective Formaldehyde is still widely employed as a universal crosslinking agent, preservative and disinfectant, despite its proven carcinogenicity in occupationally exposed workers. Therefore, it is of paramount importance to understand the possible impact of low-dose formaldehyde exposures in the general population. Due to the concomitant occurrence of multiple indoor and outdoor toxicants, we tested how formaldehyde, at micromolar concentrations, interferes with general DNA damage recognition and excision processes that remove some of the most frequently inflicted DNA lesions. Methodology/Principal Findings The overall mobility of the DNA damage sensors UV-DDB (ultraviolet-damaged DNA-binding) and XPC (xeroderma pigmentosum group C) was analyzed by assessing real-time protein dynamics in the nucleus of cultured human cells exposed to non-cytotoxic (<100 ?M) formaldehyde concentrations. The DNA lesion-specific recruitment of these damage sensors was tested by monitoring their accumulation at local irradiation spots. DNA repair activity was determined in host-cell reactivation assays and, more directly, by measuring the excision of DNA lesions from chromosomes. Taken together, these assays demonstrated that formaldehyde obstructs the rapid nuclear trafficking of DNA damage sensors and, consequently, slows down their relocation to DNA damage sites thus delaying the excision repair of target lesions. A concentration-dependent effect relationship established a threshold concentration of as low as 25 micromolar for the inhibition of DNA excision repair. Conclusions/Significance A main implication of the retarded repair activity is that low-dose formaldehyde may exert an adjuvant role in carcinogenesis by impeding the excision of multiple mutagenic base lesions. In view of this generally disruptive effect on DNA repair, we propose that formaldehyde exposures in the general population should be further decreased to help reducing cancer risks. PMID:24722772

  4. DNA conformations in mismatch repair probed in solution by X-ray scattering from gold nanocrystals.

    PubMed

    Hura, Greg L; Tsai, Chi-Lin; Claridge, Shelley A; Mendillo, Marc L; Smith, Jessica M; Williams, Gareth J; Mastroianni, Alexander J; Alivisatos, A Paul; Putnam, Christopher D; Kolodner, Richard D; Tainer, John A

    2013-10-22

    DNA metabolism and processing frequently require transient or metastable DNA conformations that are biologically important but challenging to characterize. We use gold nanocrystal labels combined with small angle X-ray scattering to develop, test, and apply a method to follow DNA conformations acting in the Escherichia coli mismatch repair (MMR) system in solution. We developed a neutral PEG linker that allowed gold-labeled DNAs to be flash-cooled and stored without degradation in sample quality. The 1,000-fold increased gold nanocrystal scattering vs. DNA enabled investigations at much lower concentrations than otherwise possible to avoid concentration-dependent tetramerization of the MMR initiation enzyme MutS. We analyzed the correlation scattering functions for the nanocrystals to provide higher resolution interparticle distributions not convoluted by the intraparticle distribution. We determined that mispair-containing DNAs were bent more by MutS than complementary sequence DNA (csDNA), did not promote tetramer formation, and allowed MutS conversion to a sliding clamp conformation that eliminated the DNA bends. Addition of second protein responder MutL did not stabilize the MutS-bent forms of DNA. Thus, DNA distortion is only involved at the earliest mispair recognition steps of MMR: MutL does not trap bent DNA conformations, suggesting migrating MutL or MutS/MutL complexes as a conserved feature of MMR. The results promote a mechanism of mismatch DNA bending followed by straightening in initial MutS and MutL responses in MMR. We demonstrate that small angle X-ray scattering with gold labels is an enabling method to examine protein-induced DNA distortions key to the DNA repair, replication, transcription, and packaging. PMID:24101514

  5. DNA conformations in mismatch repair probed in solution by X-ray scattering from gold nanocrystals

    PubMed Central

    Hura, Greg L.; Tsai, Chi-Lin; Claridge, Shelley A.; Mendillo, Marc L.; Smith, Jessica M.; Williams, Gareth J.; Mastroianni, Alexander J.; Alivisatos, A. Paul; Putnam, Christopher D.; Kolodner, Richard D.; Tainer, John A.

    2013-01-01

    DNA metabolism and processing frequently require transient or metastable DNA conformations that are biologically important but challenging to characterize. We use gold nanocrystal labels combined with small angle X-ray scattering to develop, test, and apply a method to follow DNA conformations acting in the Escherichia coli mismatch repair (MMR) system in solution. We developed a neutral PEG linker that allowed gold-labeled DNAs to be flash-cooled and stored without degradation in sample quality. The 1,000-fold increased gold nanocrystal scattering vs. DNA enabled investigations at much lower concentrations than otherwise possible to avoid concentration-dependent tetramerization of the MMR initiation enzyme MutS. We analyzed the correlation scattering functions for the nanocrystals to provide higher resolution interparticle distributions not convoluted by the intraparticle distribution. We determined that mispair-containing DNAs were bent more by MutS than complementary sequence DNA (csDNA), did not promote tetramer formation, and allowed MutS conversion to a sliding clamp conformation that eliminated the DNA bends. Addition of second protein responder MutL did not stabilize the MutS-bent forms of DNA. Thus, DNA distortion is only involved at the earliest mispair recognition steps of MMR: MutL does not trap bent DNA conformations, suggesting migrating MutL or MutS/MutL complexes as a conserved feature of MMR. The results promote a mechanism of mismatch DNA bending followed by straightening in initial MutS and MutL responses in MMR. We demonstrate that small angle X-ray scattering with gold labels is an enabling method to examine protein-induced DNA distortions key to the DNA repair, replication, transcription, and packaging. PMID:24101514

  6. PURINE-SPECIFIC REPAIR OF ?-PROPIOLACTONE-INDUCED DNA DAMAGE IN MOUSE SKIN CELLS

    Microsoft Academic Search

    Henry Hennings; Delores M. Michael; Sol del Ande Eaton; David L. Morgan

    1974-01-01

    The incorporation of tritiated deoxyribonucleosides into DNA was studied during DNA repair in mouse skin cells treated with the skin carcinogen ?-propiolactone. Although all four deoxyribonucleosides were utilized in DNA replication, only the purines deoxyguanosine and deoxyadenosine were incorporated in repair. Since ?-propiolactone interacts almost exclusively with purines in DNA, this result may represent insertion of a single base at

  7. Conformational Analysis of DNA Repair Intermediates by Time-Resolved Fluorescence Spectroscopy

    E-print Network

    Heller, Eric

    to their DNA modification. This included a nicked DNA backbone (NICK), a backbone with a gap of one and twoConformational Analysis of DNA Repair Intermediates by Time-Resolved Fluorescence Spectroscopy Su General Hospital, Boston, Massachusetts 02114 ReceiVed: July 16, 2009 DNA repair enzymes are essential

  8. Sp1 Facilitates DNA Double-Strand Break Repair through a Nontranscriptional Mechanism

    PubMed Central

    Beishline, Kate; Kelly, Crystal M.; Olofsson, Beatrix A.; Koduri, Sravanthi; Emrich, Jacqueline; Greenberg, Roger A.

    2012-01-01

    Sp1 is a ubiquitously expressed transcription factor that is phosphorylated by ataxia telangiectasia mutated kinase (ATM) in response to ionizing radiation and H2O2. Here, we show by indirect immunofluorescence that Sp1 phosphorylated on serine 101 (pSp1) localizes to ionizing radiation-induced foci with phosphorylated histone variant ?H2Ax and members of the MRN (Mre11, Rad50, and Nbs1) complex. More precise analysis of occupancy of DNA double-strand breaks (DSBs) by chromatin immunoprecipitation (ChIP) shows that Sp1, like Nbs1, resides within 200 bp of DSBs. Using laser microirradiation of cells, we demonstrate that pSp1 is present at DNA DSBs by 7.5 min after induction of damage and remains at the break site for at least 8 h. Depletion of Sp1 inhibits repair of site-specific DNA breaks, and the N-terminal 182-amino-acid peptide, which contains targets of ATM kinase but lacks the zinc finger DNA binding domain, is phosphorylated, localizes to DSBs, and rescues the repair defect resulting from Sp1 depletion. Together, these data demonstrate that Sp1 is rapidly recruited to the region immediately adjacent to sites of DNA DSBs and is required for DSB repair, through a mechanism independent of its sequence-directed transcriptional effects. PMID:22826432

  9. Akt-Mediated Phosphorylation of XLF Impairs Non-Homologous End-Joining DNA Repair.

    PubMed

    Liu, Pengda; Gan, Wenjian; Guo, Chunguang; Xie, Anyong; Gao, Daming; Guo, Jianping; Zhang, Jinfang; Willis, Nicholas; Su, Arthur; Asara, John M; Scully, Ralph; Wei, Wenyi

    2015-02-19

    Deficiency in repair of damaged DNA leads to genomic instability and is closely associated with tumorigenesis. Most DNA double-strand-breaks (DSBs) are repaired by two major mechanisms, homologous-recombination (HR) and non-homologous-end-joining (NHEJ). Although Akt has been reported to suppress HR, its role in NHEJ remains elusive. Here, we report that Akt phosphorylates XLF at Thr181 to trigger its dissociation from the DNA ligase IV/XRCC4 complex, and promotes its interaction with 14-3-3? leading to XLF cytoplasmic retention, where cytosolic XLF is subsequently degraded by SCF(?-TRCP) in a CKI-dependent manner. Physiologically, upon DNA damage, XLF-T181E expressing cells display impaired NHEJ and elevated cell death. Whereas a cancer-patient-derived XLF-R178Q mutant, deficient in XLF-T181 phosphorylation, exhibits an elevated tolerance of DNA damage. Together, our results reveal a pivotal role for Akt in suppressing NHEJ and highlight the tight connection between aberrant Akt hyper-activation and deficiency in timely DSB repair, leading to genomic instability and tumorigenesis. PMID:25661488

  10. Detection of the early stage of recombinational DNA repair by silicon nanowire transistors.

    PubMed

    Chiesa, Marco; Cardenas, Paula P; Otón, Francisco; Martinez, Javier; Mas-Torrent, Marta; Garcia, Fernando; Alonso, Juan C; Rovira, Concepció; Garcia, Ricardo

    2012-03-14

    A silicon nanowire-based biosensor has been designed and applied for label-free and ultrasensitive detection of the early stage of recombinational DNA repair by RecA protein. Silicon nanowires transistors were fabricated by atomic force microscopy nanolithography and integrated into a microfluidic environment. The sensor operates by measuring the changes in the resistance of the nanowire as the biomolecular reactions proceed. We show that the nanoelectronic sensor can detect and differentiate several steps in the binding of RecA to a single-stranded DNA filament taking place on the nanowire-aqueous interface. We report relative changes in the resistance of 3.5% which are related to the interaction of 250 RecA·single-stranded DNA complexes. Spectroscopy data confirm the presence of the protein-DNA complexes on the functionalized silicon surfaces. PMID:22364265

  11. Genome-wide Transcriptome Profiling of Homologous Recombination DNA Repair

    PubMed Central

    Peng, Guang; Lin, Curtis Chun-Jen; Mo, Wei; Dai, Hui; Park, Yun-Yong; Kim, Soo-Mi; Peng, Yang; Mo, Qianxing; Siwko, Stefan; Hu, Ruozhen; Lee, Ju-Seog; Hennessy, Bryan; Hanash, Samir; Mills, Gordon B.; Lin, Shiaw-Yih

    2014-01-01

    Homologous recombination (HR) repair deficiency predisposes to cancer development, but also sensitizes cancer cells to DNA-damage-inducing therapeutics. Here we identify an HR-defect (HRD) gene signature, which can be used to functionally assess HR repair status without interrogating individual genetic alterations in cells. By using this HRD gene signature as a functional network analysis tool, we discover that simultaneous loss of two major tumor suppressors BRCA1 and PTEN extensively rewire the HR repair-deficient phenotype, which is found in cells with defects in either BRCA1 or PTEN alone. Moreover, the HRD gene signature serves as an effective drug discovery platform to identify agents targeting HR repair as potential chemo/radio-sensitizers. More importantly, this HRD gene signature is able to predict clinical outcomes across multiple cancer lineages. Our findings, therefore, provide a molecular profile of HR repair to assess its status at a functional network level, which can provide both biological insights and have clinical implications in cancer. PMID:24553445

  12. Genome-wide transcriptome profiling of homologous recombination DNA repair.

    PubMed

    Peng, Guang; Chun-Jen Lin, Curtis; Mo, Wei; Dai, Hui; Park, Yun-Yong; Kim, Soo Mi; Peng, Yang; Mo, Qianxing; Siwko, Stefan; Hu, Ruozhen; Lee, Ju-Seog; Hennessy, Bryan; Hanash, Samir; Mills, Gordon B; Lin, Shiaw-Yih

    2014-01-01

    Homologous recombination (HR) repair deficiency predisposes to cancer development, but also sensitizes cancer cells to DNA damage-inducing therapeutics. Here we identify an HR defect (HRD) gene signature that can be used to functionally assess HR repair status without interrogating individual genetic alterations in cells. By using this HRD gene signature as a functional network analysis tool, we discover that simultaneous loss of two major tumour suppressors BRCA1 and PTEN extensively rewire the HR repair-deficient phenotype, which is found in cells with defects in either BRCA1 or PTEN alone. Moreover, the HRD gene signature serves as an effective drug discovery platform to identify agents targeting HR repair as potential chemo/radio sensitizers. More importantly, this HRD gene signature is able to predict clinical outcomes across multiple cancer lineages. Our findings, therefore, provide a molecular profile of HR repair to assess its status at a functional network level, which can provide both biological insights and have clinical implications in cancer. PMID:24553445

  13. Differential Temperature Dependent Multimeric Assemblies of Replication and Repair Polymerases on DNA Increase Processivity

    PubMed Central

    Lin, Hsiang-Kai; Chase, Susan F.; Laue, Thomas M.; Jen-Jacobson, Linda; Trakselis, Michael A.

    2012-01-01

    Differentiation of binding accurate DNA replication polymerases over error prone DNA lesion bypass polymerases is essential for the proper maintenance of the genome. The hyperthermophilic archaeal organism, Sulfolobus solfataricus (Sso), contains both a B-family replication (Dpo1) and a Y-family repair (Dpo4) polymerase and serves as a model system for understanding molecular mechanisms and assemblies for DNA replication and repair protein complexes. Protein crosslinking, isothermal titration calorimetry, and analytical ultracentrifugation have confirmed a previously unrecognized dimeric Dpo4 complex bound to DNA. Binding discrimination between these polymerases on model DNA templates is complicated by the fact that multiple oligomeric species are influenced by concentration and temperature. Temperature dependent fluorescence anisotropy equilibrium binding experiments were used to separate discrete binding events for formation of trimeric Dpo1 and dimeric Dpo4 complexes on DNA. The associated equilibria are found to be temperature dependent, generally leading to improved binding at higher temperatures for both polymerases. At high temperatures, DNA binding by Dpo1 monomer is favored over Dpo4 monomer, but binding of Dpo1 trimer is even more strongly favored over Dpo4 dimer, thus providing thermodynamic selection. Greater processivities of nucleotide incorporation for trimeric Dpo1 and dimeric Dpo4 are also observed at higher temperatures, providing biochemical validation for the influence of tightly bound oligomeric polymerases. These results separate, quantify, and confirm individual and sequential processes leading to formation of oligomeric Dpo1 and Dpo4 assemblies on DNA and provide for a concentration and temperature dependent discrimination of binding undamaged DNA templates at physiological temperatures. PMID:22906116

  14. Chromatin dynamics during repair of chromosomal DNA double-strand breaks

    PubMed Central

    Sinha, Manisha; Peterson, Craig L

    2010-01-01

    The integrity of a eukaryotic genome is often challenged by DNA double-strand breaks (DSBs). Even a single, unrepaired DSB can be a lethal event, or such unrepaired damage can result in chromosomal instability and loss of genetic information. Furthermore, defects in the pathways that respond to and repair DSBs can lead to the onset of several human pathologic disorders with pleiotropic clinical features, including age-related diseases and cancer. For decades, studies have focused on elucidating the enzymatic mechanisms involved in recognizing, signaling and repairing DSBs within eukaryotic cells. The majority of biochemical and genetic studies have used simple, DNA substrates, whereas only recently efforts have been geared towards understanding how the repair machinery deals with DSBs within chromatin fibers, the nucleoprotein complex that packages DNA within the eukaryotic nucleus. The aim of this review is to discuss our recent understanding of the relationship between chromatin structure and the repair of DSBs by homologous recombination. In particular, we discuss recent studies implicating specialized roles for several, distinct ATP-dependent chromatin remodeling enzymes in facilitating multiple steps within the homologous recombination process. PMID:20495614

  15. DNA Repair Decline During Mouse Spermiogenesis Results in the Accumulation of Heritable DNA Damage

    SciTech Connect

    Marchetti, Francesco; Marchetti, Francesco; Wyrobek, Andrew J.

    2007-12-01

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  16. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage

    SciTech Connect

    Marchetti, Francesco; Marchetti, Francesco; Wryobek, Andrew J

    2008-02-21

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7- 1 dbf). Analysis of chromosomalaberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  17. DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks

    Microsoft Academic Search

    Wanda M Waterworth; Jaroslav Kozak; Claire M Provost; Clifford M Bray; Karel J Angelis; Christopher E West

    2009-01-01

    BACKGROUND: DNA ligase enzymes catalyse the joining of adjacent polynucleotides and as such play important roles in DNA replication and repair pathways. Eukaryotes possess multiple DNA ligases with distinct roles in DNA metabolism, with clear differences in the functions of DNA ligase orthologues between animals, yeast and plants. DNA ligase 1, present in all eukaryotes, plays critical roles in both

  18. The Dynamics of DNA Damage Repair and Transcription

    PubMed Central

    Shanbhag, Niraj M.; Greenberg, Roger A.

    2013-01-01

    Recent advances have led to several systems to study transcription from defined loci in living cells. It has now become possible to address long-standing questions regarding the interplay between the processes of DNA damage repair and transcription—two disparate processes that can occur on the same stretch of chromatin and which both lead to extensive chromatin change. Here we describe the development of a system to create enzymatically induced DNA double-strand breaks (DSBs) at a site of inducible transcription and methods to study the interplay between these processes. PMID:23980011

  19. Studying the organization of DNA repair by single-cell and single-molecule imaging

    PubMed Central

    Uphoff, Stephan; Kapanidis, Achillefs N.

    2014-01-01

    DNA repair safeguards the genome against a diversity of DNA damaging agents. Although the mechanisms of many repair proteins have been examined separately in vitro, far less is known about the coordinated function of the whole repair machinery in vivo. Furthermore, single-cell studies indicate that DNA damage responses generate substantial variation in repair activities across cells. This review focuses on fluorescence imaging methods that offer a quantitative description of DNA repair in single cells by measuring protein concentrations, diffusion characteristics, localizations, interactions, and enzymatic rates. Emerging single-molecule and super-resolution microscopy methods now permit direct visualization of individual proteins and DNA repair events in vivo. We expect much can be learned about the organization of DNA repair by linking cell heterogeneity to mechanistic observations at the molecular level. PMID:24629485

  20. Multiple DNA Binding Domains Mediate the Function of the ERCC1-XPF Protein in Nucleotide Excision Repair*

    PubMed Central

    Su, Yan; Orelli, Barbara; Madireddy, Advaitha; Niedernhofer, Laura J.; Schärer, Orlando D.

    2012-01-01

    ERCC1-XPF is a heterodimeric, structure-specific endonuclease that cleaves single-stranded/double-stranded DNA junctions and has roles in nucleotide excision repair (NER), interstrand crosslink (ICL) repair, homologous recombination, and possibly other pathways. In NER, ERCC1-XPF is recruited to DNA lesions by interaction with XPA and incises the DNA 5? to the lesion. We studied the role of the four C-terminal DNA binding domains in mediating NER activity and cleavage of model substrates. We found that mutations in the helix-hairpin-helix domain of ERCC1 and the nuclease domain of XPF abolished cleavage activity on model substrates. Interestingly, mutations in multiple DNA binding domains were needed to significantly diminish NER activity in vitro and in vivo, suggesting that interactions with proteins in the NER incision complex can compensate for some defects in DNA binding. Mutations in DNA binding domains of ERCC1-XPF render cells more sensitive to the crosslinking agent mitomycin C than to ultraviolet radiation, suggesting that the ICL repair function of ERCC1-XPF requires tighter substrate binding than NER. Our studies show that multiple domains of ERCC1-XPF contribute to substrate binding, and are consistent with models of NER suggesting that multiple weak protein-DNA and protein-protein interactions drive progression through the pathway. Our findings are discussed in the context of structural studies of individual domains of ERCC1-XPF and of its role in multiple DNA repair pathways. PMID:22547097

  1. Mechanism of DNA substrate recognition by the mammalian DNA repair enzyme, Polynucleotide Kinase

    Microsoft Academic Search

    N. K. Bernstein; M. Hammel; R. S. Mani; M. Weinfeld; M. Pelikan; J. A. Tainer; J. N. M. Glover

    2009-01-01

    Mammalian polynucleotide kinase (mPNK) is a critical DNA repair enzyme whose 5'-kinase and 3'-phoshatase activities function with poorly understood but striking specificity to restore 5'- phosphate\\/3'-hydroxyl termini at sites of DNA damage. Here we integrated site-directed mutagen- esis and small-angle X-ray scattering (SAXS) com- bined with advanced computational approaches to characterize the conformational variability and DNA-binding properties of mPNK. The

  2. DNA repair inhibition by UVA photoactivated fluoroquinolones and vemurafenib

    PubMed Central

    Peacock, Matthew; Brem, Reto; Macpherson, Peter; Karran, Peter

    2014-01-01

    Cutaneous photosensitization is a common side effect of drug treatment and can be associated with an increased skin cancer risk. The immunosuppressant azathioprine, the fluoroquinolone antibiotics and vemurafenib—a BRAF inhibitor used to treat metastatic melanoma—are all recognized clinical photosensitizers. We have compared the effects of UVA radiation on cultured human cells treated with 6-thioguanine (6-TG, a DNA-embedded azathioprine surrogate), the fluoroquinolones ciprofloxacin and ofloxacin and vemurafenib. Despite widely different structures and modes of action, each of these drugs potentiated UVA cytotoxicity. UVA photoactivation of 6-TG, ciprofloxacin and ofloxacin was associated with the generation of singlet oxygen that caused extensive protein oxidation. In particular, these treatments were associated with damage to DNA repair proteins that reduced the efficiency of nucleotide excision repair. Although vemurafenib was also highly phototoxic to cultured cells, its effects were less dependent on singlet oxygen. Highly toxic combinations of vemurafenib and UVA caused little protein carbonylation but were nevertheless inhibitory to nucleotide excision repair. Thus, for three different classes of drugs, photosensitization by at least two distinct mechanisms is associated with reduced protection against potentially mutagenic and carcinogenic DNA damage. PMID:25414333

  3. SMC1 coordinates DNA double-strand break repair pathways

    PubMed Central

    Schär, Primo; Fäsi, Margaret; Jessberger, Rolf

    2004-01-01

    The SMC1/SMC3 heterodimer acts in sister chromatid cohesion, and recent data indicate a function in DNA double-strand break repair (DSBR). Since this role of SMC proteins has remained largely elusive, we explored interactions between SMC1 and the homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways for DSBR in Saccharomyces cerevisiae. Analysis of conditional single- and double mutants of smc1-2 with rad52?, rad54?, rad50? or dnl4? illustrates a significant contribution of SMC1 to the overall capacity of cells to repair DSBs. smc1 but not smc2 mutants show increased hypersensitivity of HR mutants to ionizing irradiation and to the DNA crosslinking agent cis-platin. Haploid, but not diploid smc1-2 mutants were severely affected in repairing multiple genomic DNA breaks, suggesting a selective role of SMC1 in sister chromatid recombination. smc1-2 mutants were also 15-fold less efficient and highly error-prone in plasmid end-joining through the NHEJ pathway. Strikingly, inactivation of RAD52 or RAD54 fully rescued efficiency and accuracy of NHEJ in the smc1 background. Therefore, we propose coordination of HR and NHEJ processes by Smc1p through interaction with the RAD52 pathway. PMID:15280507

  4. Clinical Radiation Sensitivity With DNA Repair Disorders: An Overview

    SciTech Connect

    Pollard, Julianne M. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Biomedical Physics Interdepartmental Graduate Program, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Department of Pathology and Laboratory Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Gatti, Richard A. [Department of Pathology and Laboratory Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Department of Human Genetics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States)], E-mail: rgatti@mednet.ucla.edu

    2009-08-01

    Adverse reactions to radiotherapy represent a confounding phenomenon in radiation oncology. These reactions are rare, and many have been associated with individuals with DNA repair disorders such as ataxia-telangiectasia and Nijmegen Breakage syndrome. A paucity of published data is available detailing such circumstances. This overview describes four exemplary situations, a comprehensive list of 32 additional cases, and some insights gleaned from this overall experience. Fanconi anemia was associated with more than one-half of the reports. The lowest dose given to a patient that resulted in a reaction was 3 Gy, given to an ataxia-telangiectasia patient. Most patients died within months of exposure. It is clear that the patients discussed in this report had complicated illnesses, in addition to cancer, and the radiotherapy administered was most likely their best option. However, the underlying DNA repair defects make conventional radiation doses dangerous. Our findings support previous wisdom that radiotherapy should either be avoided or the doses should be selected with great care in the case of these radiosensitive genotypes, which must be recognized by their characteristic phenotypes, until more rapid, reliable, and functional assays of DNA repair become available.

  5. Chromosome territories reposition during DNA damage-repair response

    PubMed Central

    2013-01-01

    Background Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored. Results Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells. Conclusions Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response. PMID:24330859

  6. Beyond DNA Repair: Additional Functions of PARP-1 in Cancer

    PubMed Central

    Weaver, Alice N.; Yang, Eddy S.

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) are DNA-dependent nuclear enzymes that transfer negatively charged ADP-ribose moieties from cellular nicotinamide-adenine-dinucleotide (NAD+) to a variety of protein substrates, altering protein–protein and protein-DNA interactions. The most studied of these enzymes is poly(ADP-ribose) polymerase-1 (PARP-1), which is an excellent therapeutic target in cancer due to its pivotal role in the DNA damage response. Clinical studies have shown susceptibility to PARP inhibitors in DNA repair defective cancers with only mild adverse side effects. Interestingly, additional studies are emerging which demonstrate a role for this therapy in DNA repair proficient tumors through a variety of mechanisms. In this review, we will discuss additional functions of PARP-1 – including regulation of inflammatory mediators, cellular energetics and death pathways, gene transcription, sex hormone- and ERK-mediated signaling, and mitosis – and the role these PARP-1-mediated processes play in oncogenesis, cancer progression, and the development of therapeutic resistance. As PARP-1 can act in both a pro- and anti-tumor manner depending on the context, it is important to consider the global effects of this protein in determining when, and how, to best use PARP inhibitors in anticancer therapy. PMID:24350055

  7. DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A NATURAL BIO-DEFENSE MECHANISM

    EPA Science Inventory

    DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A natural bio-defense mechanism Anuradha Mudipalli. Maintenance of genetic information, including the correct sequence of nucleotides in DNA, is essential for replication, gene expression, and protein synthesis. DNA lesions onto...

  8. Replacement of a Thiourea with an Amidine Group in a Monofunctional Platinum–acridine Antitumor Agent. Effect on DNA Interactions, DNA Adduct Recognition and Repair

    PubMed Central

    Kostrhunova, Hana; Malina, Jaroslav; Pickard, Amanda J.; Stepankova, Jana; Vojtiskova, Marie; Kašpárkova, Jana; Muchova, Tereza; Rohlfing, Matthew L.; Bierbach, Ulrich; Brabec, Viktor

    2011-01-01

    A combination of biophysical, biochemical, and computational techniques was used to delineate mechanistic differences between the platinum–acridine hybrid agent [PtCl(en)(L)](NO3)2 (complex 1, en = ethane-1,2-diamine, L = 1-[2-(acridin-9-ylamino)ethyl]-1,3- dimethylthiourea) and a considerably more potent second-generation analogue containing L? = N-[2-(acridin-9-ylamino)ethyl]-Nmethylpropionamidine (complex 2). Calculations at the density functional theory level provide a rationale for the binding preference of both complexes for guanine-N7 and the relatively high level of adenine adducts observed for compound 1. A significant rate enhancement is observed for binding of the amidine-based complex 2 with DNA compared with the thiourea-based prototype 1. Studies conducted with chemical probes and on the bending and unwinding of model duplex DNA suggest that adducts of complex 2 perturb B-form DNA more severely than complex 1, however, without denaturing the double strand and significantly less than cisplatin. Circular and linear dichroism spectroscopies and viscosity measurements suggest that subtle differences exist between the intercalation modes and adduct geometries of the two complexes. The adducts formed by complex 2 most efficiently inhibit transcription of the damaged DNA by RNA polymerase II. Not only do complexes 1 and 2 cause less distortion to DNA than cisplatin, they also do not compromise the thermodynamic stability of the modified duplex. This leads to a decreased or negligible affinity of HMG domain proteins for the adducts formed by either Pt-acridine complex. In a DNA repair synthesis assay the lesions formed by complex 2 were repaired less efficiently than those formed by complex 1. These significant differences in DNA adduct formation, structure, and recognition between the two acridine complexes and cisplatin help to elucidate why compound 2 is highly active in cisplatin-resistant, repair proficient cancer cell lines. PMID:21806015

  9. Resection is a major repair pathway of heavy ion-induced DNA lesions

    NASA Astrophysics Data System (ADS)

    Durante, Marco; Averbeck, Nicole; Taucher-Scholz, Gisela

    Space radiation include densely ionizing heavy ions, which can produce clustered DNA damage with high frequency in human cells. Repair of these complex lesions is generally assumed to be more difficult than for simple double-strand breaks. We show here that human cells use break resection with increasing frequency after exposure to heavy ions. Resection can lead to misrepair of the DNA lesion, via microhomology mediated end-joining. Resection can therefore be responsible for the increased effectiveness of heavy ions in the induction of mutations and genetic late effects.

  10. Dynamic structures of Bacillus subtilis RecN-DNA complexes.

    PubMed

    Sanchez, Humberto; Cardenas, Paula P; Yoshimura, Shige H; Takeyasu, Kunio; Alonso, Juan C

    2008-01-01

    Genetic and cytological evidences suggest that Bacillus subtilis RecN acts prior to and after end-processing of DNA double-strand ends via homologous recombination, appears to participate in the assembly of a DNA repair centre and interacts with incoming single-stranded (ss) DNA during natural transformation. We have determined the architecture of RecN-ssDNA complexes by atomic force microscopy (AFM). ATP induces changes in the architecture of the RecN-ssDNA complexes and stimulates inter-complex assembly, thereby increasing the local concentration of DNA ends. The large CII and CIII complexes formed are insensitive to SsbA (counterpart of Escherichia coli SSB or eukaryotic RPA protein) addition, but RecA induces dislodging of RecN from the overhangs of duplex DNA molecules. Reciprocally, in the presence of RecN, RecA does not form large RecA-DNA networks. Based on these results, we hypothesize that in the presence of ATP, RecN tethers the 3'-ssDNA ends, and facilitates the access of RecA to the high local concentration of DNA ends. Then, the resulting RecA nucleoprotein filaments, on different ssDNA segments, might promote the simultaneous genome-wide homology search. PMID:17999999

  11. Reading, writing, and repair: the role of ubiquitin and the ubiquitin-like proteins in DNA damage signaling and repair

    PubMed Central

    Pinder, Jordan B.; Attwood, Kathleen M.; Dellaire, Graham

    2013-01-01

    Genomic instability is both a hallmark of cancer and a major contributing factor to tumor development. Central to the maintenance of genome stability is the repair of DNA damage, and the most toxic form of DNA damage is the DNA double-strand break. As a consequence the eukaryotic cell harbors an impressive array of protein machinery to detect and repair DNA breaks through the initiation of a multi-branched, highly coordinated signaling cascade. This signaling cascade, known as the DNA damage response (DDR), functions to integrate DNA repair with a host of cellular processes including cell cycle checkpoint activation, transcriptional regulation, and programmed cell death. In eukaryotes, DNA is packaged in chromatin, which provides a mechanism to regulate DNA transactions including DNA repair through an equally impressive array of post-translational modifications to proteins within chromatin, and the DDR machinery itself. Histones, as the major protein component of chromatin, are subject to a host of post-translational modifications including phosphorylation, methylation, and acetylation. More recently, modification of both the histones and DDR machinery by ubiquitin and other ubiquitin-like proteins, such as the small ubiquitin-like modifiers, has been shown to play a central role in coordinating the DDR. In this review, we explore how ubiquitination and sumoylation contribute to the “writing” of key post-translational modifications within chromatin that are in turn “read” by the DDR machinery and chromatin-remodeling factors, which act together to facilitate the efficient detection and repair of DNA damage. PMID:23554604

  12. Reading, writing, and repair: the role of ubiquitin and the ubiquitin-like proteins in DNA damage signaling and repair.

    PubMed

    Pinder, Jordan B; Attwood, Kathleen M; Dellaire, Graham

    2013-01-01

    Genomic instability is both a hallmark of cancer and a major contributing factor to tumor development. Central to the maintenance of genome stability is the repair of DNA damage, and the most toxic form of DNA damage is the DNA double-strand break. As a consequence the eukaryotic cell harbors an impressive array of protein machinery to detect and repair DNA breaks through the initiation of a multi-branched, highly coordinated signaling cascade. This signaling cascade, known as the DNA damage response (DDR), functions to integrate DNA repair with a host of cellular processes including cell cycle checkpoint activation, transcriptional regulation, and programmed cell death. In eukaryotes, DNA is packaged in chromatin, which provides a mechanism to regulate DNA transactions including DNA repair through an equally impressive array of post-translational modifications to proteins within chromatin, and the DDR machinery itself. Histones, as the major protein component of chromatin, are subject to a host of post-translational modifications including phosphorylation, methylation, and acetylation. More recently, modification of both the histones and DDR machinery by ubiquitin and other ubiquitin-like proteins, such as the small ubiquitin-like modifiers, has been shown to play a central role in coordinating the DDR. In this review, we explore how ubiquitination and sumoylation contribute to the "writing" of key post-translational modifications within chromatin that are in turn "read" by the DDR machinery and chromatin-remodeling factors, which act together to facilitate the efficient detection and repair of DNA damage. PMID:23554604

  13. DNA repair gene polymorphisms and genetic predisposition to cutaneous melanoma.

    PubMed

    Povey, Joanne E; Darakhshan, Fatemeh; Robertson, Karen; Bisset, Yvonne; Mekky, Magda; Rees, Jonathan; Doherty, Val; Kavanagh, Gina; Anderson, Niall; Campbell, Harry; MacKie, Rona M; Melton, David W

    2007-05-01

    The incidence of cutaneous melanoma is rising rapidly in a number of countries. The key environmental risk factor is exposure to the ultraviolet (UV) component in sunlight. The nucleotide excision repair (NER) pathway deals with the main forms of UV-induced DNA damage. We have investigated the hypothesis that polymorphisms in NER genes constitute genetic susceptibility factors for melanoma. However, not all melanomas arise on sun-exposed sites and so we investigated the hypothesis that genes involved in other pathways for the repair of oxidative DNA damage may also be involved in susceptibility to melanoma. Scotland, with its high incidence of melanoma and stable homogeneous population, was ideal for this case-control study, involving 596 Scottish melanoma patients and 441 population-based controls. Significant associations were found for the NER genes ERCC1 and XPF, with the strongest associations for melanoma cases aged 50 and under [ERCC1 odds ratio (OR) 1.59, P = 0.008; XPF OR 1.69, P = 0.003]. Although an XPD haplotype was associated with melanoma, it did not contain the variant 751 Gln allele, which has been associated with melanoma in some previous studies. No associations were found for the base excision repair and DNA damage response genes investigated. An association was also found for a polymorphism in the promoter of the vitamin D receptor gene, VDR (OR 1.88, P = 0.005). The products of the two NER genes, ERCC1 and XPF, where associations with melanoma were found, act together in a rate-limiting step in the repair pathway. PMID:17210993

  14. From Breaking Bad to Worse: Exploiting Homologous DNA Repair Deficiency in Cancer

    E-print Network

    Hemann, Michael

    DNA repair deficiencies are common among cancer cells and represent a potential vulnerability that might be exploited by targeting compensatory repair pathways. However, the identification of synthetically lethal combinations ...

  15. Disruption of Maternal DNA Repair Increases Sperm-DerivedChromosomal Aberrations

    SciTech Connect

    Marchetti, Francesco; Essers, Jeroun; Kanaar, Roland; Wyrobek,Andrew J.

    2007-02-07

    The final weeks of male germ cell differentiation occur in aDNA repair-deficient environment and normal development depends on theability of the egg to repair DNA damage in the fertilizing sperm. Geneticdisruption of maternal DNA double-strand break repair pathways in micesignificantly increased the frequency of zygotes with chromosomalstructural aberrations after paternal exposure to ionizing radiation.These findings demonstrate that radiation-induced DNA sperm lesions arerepaired after fertilization by maternal factors and suggest that geneticvariation in maternal DNA repair can modulate the risk of early pregnancylosses and of children with chromosomal aberrations of paternalorigin.

  16. Pol ? associated complex and base excision repair factors in mouse fibroblasts.

    PubMed

    Prasad, Rajendra; Williams, Jason G; Hou, Esther W; Wilson, Samuel H

    2012-12-01

    During mammalian base excision repair (BER) of lesion-containing DNA, it is proposed that toxic strand-break intermediates generated throughout the pathway are sequestered and passed from one step to the next until repair is complete. This stepwise process is termed substrate channeling. A working model evaluated here is that a complex of BER factors may facilitate the BER process. FLAG-tagged DNA polymerase (pol) ? was expressed in mouse fibroblasts carrying a deletion in the endogenous pol ? gene, and the cell extract was subjected to an 'affinity-capture' procedure using anti-FLAG antibody. The pol ? affinity-capture fraction (ACF) was found to contain several BER factors including polymerase-1, X-ray cross-complementing factor1-DNA ligase III and enzymes involved in processing 3'-blocked ends of BER intermediates, e.g. polynucleotide kinase and tyrosyl-DNA phosphodiesterase 1. In contrast, DNA glycosylases, apurinic/aprymidinic endonuclease 1 and flap endonuclease 1 and several other factors involved in BER were not present. Some of the BER factors in the pol ? ACF were in a multi-protein complex as observed by sucrose gradient centrifugation. The pol ? ACF was capable of substrate channeling for steps in vitro BER and was proficient in in vitro repair of substrates mimicking a 3'-blocked topoisomerase I covalent intermediate or an oxidative stress-induced 3'-blocked intermediate. PMID:23042675

  17. Eco1 is important for DNA damage repair in S. cerevisiae

    PubMed Central

    Gard, Scarlett; Xiong, Bo; McNairn, Adrian J; Jaspersen, Sue L

    2010-01-01

    The cohesin network has an essential role in chromosome segregation, but also plays a role in DNA damage repair. Eco1 is an acetyltransferase that targets subunits of the cohesin complex and is involved in both the chromosome segregation and DNA damage repair roles of the network. Using budding yeast as a model system, we find that mutations in Eco1, including a genocopy of a human Roberts syndrome allele, do not cause gross defects in chromosome cohesion. We examined how mitotic and meiotic DNA damage repair is affected by mutations in Eco1. Strains containing mutations in Eco1 are sensitive to DNA damaging agents that cause double-strand breaks, such as X-rays and bleomycin. While meiotic crossing over is relatively unaffected in strains containing the Roberts mutation, reciprocal mitotic crossovers occur with extremely low frequency in this mutant background. Our results suggest that Eco1 promotes the reciprocal exchange of chromosome arms and maintenance of heterozygosity during mitosis. PMID:20703090

  18. A moonlighting metabolic protein influences repair at DNA double-stranded breaks.

    PubMed

    Torres-Machorro, Ana Lilia; Aris, John P; Pillus, Lorraine

    2015-02-18

    Catalytically active proteins with divergent dual functions are often described as 'moonlighting'. In this work we characterize a new, chromatin-based function of Lys20, a moonlighting protein that is well known for its role in metabolism. Lys20 was initially described as homocitrate synthase (HCS), the first enzyme in the lysine biosynthetic pathway in yeast. Its nuclear localization led to the discovery of a key role for Lys20 in DNA damage repair through its interaction with the MYST family histone acetyltransferase Esa1. Overexpression of Lys20 promotes suppression of DNA damage sensitivity of esa1 mutants. In this work, by taking advantage of LYS20 mutants that are active in repair but not in lysine biosynthesis, the mechanism of suppression of esa1 was characterized. First we analyzed the chromatin landscape of esa1 cells, finding impaired histone acetylation and eviction. Lys20 was recruited to sites of DNA damage, and its overexpression promoted enhanced recruitment of the INO80 remodeling complex to restore normal histone eviction at the damage sites. This study improves understanding of the evolutionary, structural and biological relevance of independent activities in a moonlighting protein and links metabolism to DNA damage repair. PMID:25628362

  19. Regulation of nucleotide excision repair by UV-DDB: prioritization of damage recognition to internucleosomal DNA.

    PubMed

    Fei, Jia; Kaczmarek, Nina; Luch, Andreas; Glas, Andreas; Carell, Thomas; Naegeli, Hanspeter

    2011-10-01

    How tightly packed chromatin is thoroughly inspected for DNA damage is one of the fundamental unanswered questions in biology. In particular, the effective excision of carcinogenic lesions caused by the ultraviolet (UV) radiation of sunlight depends on UV-damaged DNA-binding protein (UV-DDB), but the mechanism by which this DDB1-DDB2 heterodimer stimulates DNA repair remained enigmatic. We hypothesized that a distinctive function of this unique sensor is to coordinate damage recognition in the nucleosome repeat landscape of chromatin. Therefore, the nucleosomes of human cells have been dissected by micrococcal nuclease, thus revealing, to our knowledge for the first time, that UV-DDB associates preferentially with lesions in hypersensitive, hence, highly accessible internucleosomal sites joining the core particles. Surprisingly, the accompanying CUL4A ubiquitin ligase activity is necessary to retain the xeroderma pigmentosum group C (XPC) partner at such internucleosomal repair hotspots that undergo very fast excision kinetics. This CUL4A complex thereby counteracts an unexpected affinity of XPC for core particles that are less permissive than hypersensitive sites to downstream repair subunits. That UV-DDB also adopts a ubiquitin-independent function is evidenced by domain mapping and in situ protein dynamics studies, revealing direct but transient interactions that promote a thermodynamically unfavorable ?-hairpin insertion of XPC into substrate DNA. We conclude that the evolutionary advent of UV-DDB correlates with the need for a spatiotemporal organizer of XPC positioning in higher eukaryotic chromatin. PMID:22039351

  20. A moonlighting metabolic protein influences repair at DNA double-stranded breaks

    PubMed Central

    Torres-Machorro, Ana Lilia; Aris, John P.; Pillus, Lorraine

    2015-01-01

    Catalytically active proteins with divergent dual functions are often described as ‘moonlighting’. In this work we characterize a new, chromatin-based function of Lys20, a moonlighting protein that is well known for its role in metabolism. Lys20 was initially described as homocitrate synthase (HCS), the first enzyme in the lysine biosynthetic pathway in yeast. Its nuclear localization led to the discovery of a key role for Lys20 in DNA damage repair through its interaction with the MYST family histone acetyltransferase Esa1. Overexpression of Lys20 promotes suppression of DNA damage sensitivity of esa1 mutants. In this work, by taking advantage of LYS20 mutants that are active in repair but not in lysine biosynthesis, the mechanism of suppression of esa1 was characterized. First we analyzed the chromatin landscape of esa1 cells, finding impaired histone acetylation and eviction. Lys20 was recruited to sites of DNA damage, and its overexpression promoted enhanced recruitment of the INO80 remodeling complex to restore normal histone eviction at the damage sites. This study improves understanding of the evolutionary, structural and biological relevance of independent activities in a moonlighting protein and links metabolism to DNA damage repair. PMID:25628362

  1. Interplay between DNA repair and inflammation, and the link to cancer

    PubMed Central

    Kidane, Dawit; Chae, Wook Jin; Czochor, Jennifer; Eckert, Kristin A.; Glazer, Peter M.; Bothwell, Alfred L. M.; Sweasy, Joann B.

    2015-01-01

    DNA damage and repair are linked to cancer. DNA damage that is induced endogenously or from exogenous sources has the potential to result in mutations and genomic instability if not properly repaired, eventually leading to cancer. Inflammation is also linked to cancer. Reactive oxygen and nitrogen species (RONs) produced by inflammatory cells at sites of infection can induce DNA damage. RONs can also amplify inflammatory responses, leading to increased DNA damage. Here, we focus on the links between DNA damage, repair, and inflammation, as they relate to cancer. We examine the interplay between chronic inflammation, DNA damage and repair and review recent findings in this rapidly emerging field, including the links between DNA damage and the innate immune system, and the roles of inflammation in altering the microbiome, which subsequently leads to the induction of DNA damage in the colon. Mouse models of defective DNA repair and inflammatory control are extensively reviewed, including treatment of mouse models with pathogens, which leads to DNA damage. The roles of microRNAs in regulating inflammation and DNA repair are discussed. Importantly, DNA repair and inflammation are linked in many important ways, and in some cases balance each other to maintain homeostasis. The failure to repair DNA damage or to control inflammatory responses has the potential to lead to cancer. PMID:24410153

  2. Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways.

    PubMed

    Jaspers, Nicolaas G J; Raams, Anja; Kelner, Michael J; Ng, Jessica M Y; Yamashita, Yukiko M; Takeda, Shiunichi; McMorris, Trevor C; Hoeijmakers, Jan H J

    2002-12-01

    Illudin S is a natural sesquiterpene drug with strong anti-tumour activity. Inside cells, unstable active metabolites of illudin cause the formation of as yet poorly characterised DNA lesions. In order to identify factors involved in their repair, we have performed a detailed genetic survey of repair-defective mutants for responses to the drug. We show that 90% of illudin's lethal effects in human fibroblasts can be prevented by an active nucleotide excision repair (NER) system. Core NER enzymes XPA, XPF, XPG, and TFIIH are essential for recovery. However, the presence of global NER initiators XPC, HR23A/HR23B and XPE is not required, whereas survival, repair and recovery from transcription inhibition critically depend on CSA, CSB and UVS, the factors specific for transcription-coupled NER. Base excision repair and non-homologous end-joining of DNA breaks do not play a major role in the processing of illudin lesions. However, active RAD18 is required for optimal cell survival, indicating that the lesions also block replication forks, eliciting post-replication-repair-like responses. However, the translesion-polymerase DNA pol eta is not involved. We conclude that illudin-induced lesions are exceptional in that they appear to be ignored by all of the known global repair systems, and can only be repaired when trapped in stalled replication or transcription complexes. We show that the semisynthetic illudin derivative hydroxymethylacylfulvene (HMAF, Irofulven), currently under clinical trial for anti-tumour therapy, acts via the same mechanism. PMID:12531012

  3. Clustered Sites of DNA Repair Synthesis during Early Nucleotide Excision Repair in Ultraviolet Light-Irradiated Quiescent Human Fibroblasts

    Microsoft Academic Search

    Maria Svetlova; Lioudmila Solovjeva; Nadezhda Pleskach; Natalia Yartseva; Tatyana Yakovleva; Nikolai Tomilin; Philip Hanawalt

    2002-01-01

    The ubiquitous process of nucleotide excision repair includes an obligatory step of DNA repair synthesis (DRS) to fill the gapped heteroduplex following excision of a short (?30-nucleotide) damaged single-strand fragment. Using 5-iododeoxyuridine to label repair patches during the first 10–60 min after UV irradiation of quiescent normal human fibroblasts we have visualized a limited number of discrete foci of DRS.

  4. Resident enhanced repair: novel repair process action on plasmid DNA transformed into Escherichia coli K-12

    SciTech Connect

    Strike, P.; Roberts, R.J.

    1982-04-01

    The survival of UV-irradiated DNA of plasmid NTP16 was monitored after its transformation into recipient cells containing an essentially homologous undamaged plasmid, pLV9. The presence of pLV9 resulted in a substantial increase in the fraction of damaged NTP16 molecules which survived in the recipient cells. This enhanced survival requires the host uvrA/sup +/ and uvrB/sup +/ gene products, but not the host recA/sup +/ gene product. The requirement for both homologous DNA and the uvrA/sup +/ gene products suggests that a novel repair process may act on plasmid DNA. Possible mechanisms for this process are considered.

  5. Immunodetection of DNA repair endonuclease ERCC1-XPF in human tissue

    PubMed Central

    Bhagwat, Nikhil R.; Roginskaya, Vera Y.; Acquafondata, Marie B.; Dhir, Rajiv; Wood, Richard D.; Niedernhofer, Laura J.

    2009-01-01

    The high incidence of resistance to DNA damaging chemotherapeutic drugs and severe side effects of chemotherapy have led to a search for biomarkers able to predict which patients are most likely to respond to therapy. ERCC1-XPF nuclease is required for nucleotide excision repair of helix-distorting DNA damage and the repair of DNA interstrand crosslinks. Thus it is essential for several pathways of repair of DNA damage by cisplatin and related drugs, which are widely used in treatment of non-small cell lung carcinoma and other late stage tumors. Consequently, there is tremendous interest in measuring ERCC1-XPF expression in tumor samples. Many immunohistochemistry studies have been performed, but the antibodies for ERCC1-XPF were not been rigorously tested for antigen specificity. Herein we survey a battery of antibodies raised against human ERCC1 or XPF for their specificity, using ERCC1-XPF deficient cells as a negative control. Antibodies were tested for the following applications: immunoblotting, immunoprecipitation from cell extracts, immunofluorescence detection in fixed cells, co-localization of ERCC1-XPF with UV radiation-induced DNA damage in fixed cells, and immunohistochemistry in paraffin-embedded samples. Although several commercially available antibodies are suitable for immunodetection of ERCC1-XPF in some applications, only a select subset is appropriate for detection of this repair complex in fixed specimens. The most commonly used antibody, 8F1, is not suitable for immunodetection in tissue. The results with validated antibodies reveal marked differences in ERCC1-XPF protein levels between samples and cell types. PMID:19723666

  6. Repair-Mediated Duplication by Capture of Proximal Chromosomal DNA Has Shaped Vertebrate Genome Evolution

    Microsoft Academic Search

    John K. Pace; Shurjo K. Sen; Mark A. Batzer; Cédric Feschotte

    2009-01-01

    DNA double-strand breaks (DSBs) are a common form of cellular damage that can lead to cell death if not repaired promptly. Experimental systems have shown that DSB repair in eukaryotic cells is often imperfect and may result in the insertion of extra chromosomal DNA or the duplication of existing DNA at the breakpoint. These events are thought to be a

  7. Host DNA repair proteins in response to Pseudomonas aeruginosa in lung epitehlial cells and in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host DNA damage and DNA repair response to bacterial infections and its significance are not fully understood. Here, we demonstrate that infection by Gram-negative bacterium P. aeruginosa significantly altered the expression and enzymatic activity of base excision DNA repair protein OGG1 in lung epi...

  8. RPA Antagonizes Microhomology-Mediated Repair of DNA Double-Strand Breaks

    PubMed Central

    Deng, Sarah K; Gibb, Bryan; de Almeida, Mariana Justino; Greene, Eric C; Symington, Lorraine S

    2014-01-01

    Microhomology-mediated end joining (MMEJ) is a Ku and Ligase IV independent mechanism for repair of DNA double-strand breaks, which contributes to chromosome rearrangements. Here we used a chromosomal end-joining assay to determine the genetic requirements for MMEJ in Saccharomyces cerevisiae. We found that end resection influences the ability to expose microhomologies; however, it is not rate limiting for MMEJ in wild-type cells. The frequency of MMEJ increased by up to 350-fold in rfa1 hypomorphic mutants, suggesting that replication protein A (RPA) bound to the ssDNA overhangs formed by resection prevents spontaneous annealing between microhomologies. In vitro, the mutant RPA complexes were unable to fully extend ssDNA and were compromised in their ability to prevent spontaneous annealing. We propose the helix-destabilizing activity of RPA channels ssDNA intermediates from mutagenic MMEJ to error-free homologous recombination, thus preserving genome integrity. PMID:24608368

  9. Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation.

    PubMed

    Gong, Fade; Miller, Kyle M

    2013-10-01

    Genetic information is recorded in specific DNA sequences that must be protected to preserve normal cellular function. Genome maintenance pathways have evolved to sense and repair DNA damage. Importantly, deleterious mutations that occur from mis-repaired lesions can lead to diseases such as cancer. As eukaryotic DNA is bound by histone proteins and organized into chromatin, the true in vivo substrate of transcription, replication and DNA repair is chromatin. Almost 50 years ago, it was found that histones contained the post-translational modification (PTM), acetylation. With the cloning and identification of transcription associated histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes that write and erase the histone acetylation mark respectively, it was realized that this histone modification could be dynamically regulated. Chromatin is subjected to numerous PTMs that regulate chromatin structure and function, including DNA repair. As different organisms contain different histone modifications, chromatin-associated proteins and chromatin states, it is likely that chromatin-templated processes such as DNA repair will exhibit organismal differences. This article focuses on the DNA damage response (DDR) in mammalian cells and how the concerted activities of HAT and HDAC enzymes, and their histone acetylation targets, specifically participate in DNA double-strand break (DSB) repair. Defects in DNA repair and chromatin pathways are observed in cancer, and these pathways represent cancer therapeutic targets. Therefore, understanding the relationship between DNA repair and histone acetylations is important for providing mechanistic details of DSB repair within chromatin that has the potential to be exploited in the clinic. PMID:23927873

  10. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in primary melanocytes.

    PubMed

    Thompson, Benjamin C; Surjana, Devita; Halliday, Gary M; Damian, Diona L

    2014-07-01

    Cutaneous melanoma is a significant cause of morbidity and mortality. Nicotinamide is a safe, widely available vitamin that reduces the immune suppressive effects of UV, enhances DNA repair in keratinocytes and has shown promise in the chemoprevention of non-melanoma skin cancer. Here, we report the effect of nicotinamide on DNA damage and repair in primary human melanocytes. Nicotinamide significantly enhanced the repair of oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine) and cyclobutane pyrimidine dimers induced by UV exposure. It also enhanced the repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine induced by the culture conditions in unirradiated melanocytes. A significant increase in the percentage of melanocytes undergoing unscheduled but not scheduled DNA synthesis was observed, confirming that nicotinamide enhances DNA repair in human melanocytes. In summary, nicotinamide, by enhancing DNA repair in melanocytes, is a potential agent for the chemoprevention of cutaneous melanoma. PMID:24798949

  11. DNA interstrand cross-link repair requires replication-fork convergence.

    PubMed

    Zhang, Jieqiong; Dewar, James M; Budzowska, Magda; Motnenko, Anna; Cohn, Martin A; Walter, Johannes C

    2015-03-01

    DNA interstrand cross-links (ICLs) prevent strand separation during DNA replication and transcription and therefore are extremely cytotoxic. In metazoans, a major pathway of ICL repair is coupled to DNA replication, and it requires the Fanconi anemia pathway. In most current models, collision of a single DNA replication fork with an ICL is sufficient to initiate repair. In contrast, we show here that in Xenopus egg extracts two DNA replication forks must converge on an ICL to trigger repair. When only one fork reaches the ICL, the replicative CMG helicase fails to unload from the stalled fork, and repair is blocked. Arrival of a second fork, even when substantially delayed, rescues repair. We conclude that ICL repair requires a replication-induced X-shaped DNA structure surrounding the lesion, and we speculate on how this requirement helps maintain genomic stability in S phase. PMID:25643322

  12. DNA repair deficiency for alkylation damage in cells from Alzheimer's disease patients.

    PubMed

    Bradley, W G; Polinsky, R J; Pendlebury, W W; Jones, S K; Nee, L E; Bartlett, J D; Hartshorn, J N; Tandan, R; Sweet, L; Magin, G K

    1989-01-01

    We have shown that fibroblasts, lymphocytes and lymphoblasts from patients with Alzheimer's disease (AD) are deficient in the repair of DNA damage induced by the alkylating agents methylmethane sulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Unscheduled DNA synthesis and alkaline elution studies of DNA repair using human skin fibroblasts obtained from patients coming to autopsy have shown that the cells from autopsy confirmed cases of AD have lower levels of DNA repair synthesis after exposure to varying concentrations of either MMS or MNNG. Lymphoblasts derived from individuals with dominantly inherited AD have also been used to study DNA repair. Alkaline elution analysis of DNA repair after exposure to 200 uM MMS or 6 uM MNNG indicates that there is significantly less repair in the lymphoblasts from AD patients. When healthy control cell lines repaired and cell lines from AD patients were exposed to MMS or MNNG respectively significantly less repair occurred in the AD cells. After studying five at risk individuals results indicate that cell lines from two of these people have low levels of DNA repair and three lines have normal repair. These findings support the hypothesis of a DNA repair deficiency in familial AD. Monocytes from healthy control subjects and putative AD patients were analyzed for mutant frequency and DNA repair capacity. Results of unscheduled DNA synthesis experiments using monocytes from 7 healthy controls and 9 presumed AD patients indicates that there is a decreased ability of AD cells to repair MMS and MNNG induced DNA damage. PMID:2602434

  13. Biochemical studies of DNA strand break repair and molecular characterization of mei-41, a gene involved in DNA break repair

    SciTech Connect

    Oliveri, D.R.

    1989-01-01

    The ability to repair X-irradiation induced single-strand DNA breaks was examined in mutagen-sensitive mutants of Drosophila melanogaster. This analysis demonstrated that examined stocks possess a normal capacity to repair X-ray induced single-strand breaks. One of the mutants in this study, mei-41, has been shown to be involved in a number of DNA metabolizing functions. A molecular characterization of this mutant is presented. A cDNA hybridizing to genomic DNA both proximal and distal to a P element inducing a mei-41 mutation was isolated from both embryonic and adult female recombinant lambda phage libraries. A 2.2 kilobase embryonic cDNA clone was sequenced; the sequence of an open reading frame was identified which would predict a protein of 384 amino acids with a molecular weight of 43,132 daltons. An examination of homologies to sequences in protein and nucleic acid data bases revealed no sequences with significant homology to mei-41, however, two potential Zinc-finger domains were identified. Analysis of RNA hybridizing to the embryonic cDNA demonstrated the existence of a major 2.2 kilobase transcript expressed primarily in embryos and adult flies. An examination of the transcription of this gene in mei-41 mutants revealed significant variation from wild-type, an indication that the embryonic cDNA does represent a mei-41 transcript. Expression in tissues from adult animals demonstrated that the 2.2 kilobase RNA is expressed primarily in reproductive tissues. A 3.8kb transcript is the major species of RNA in the adult head and thorax. Evidence is presented which implies that expression of the mei-41 gene is strongly induced by exposure of certain cells to mutagens.

  14. Rational Design of Human DNA Ligase Inhibitors that Target Cellular DNA Replication and Repair

    Microsoft Academic Search

    Xi Chen; Shijun Zhong; Xiao Zhu; Barbara Dziegielewska; Tom Ellenberger; Gerald M. Wilson; Alexander D. MacKerell; Alan E. Tomkinson

    2008-01-01

    Based on the crystal structure of human DNA ligase I complexed with nicked DNA, computer-aided drug design was used to identify compounds in a database of 1.5 million commercially available low molecular weight chemicals that were predicted to bind to a DNA-binding pocket within the DNA-binding domain of DNA ligase I, thereby inhibiting DNA joining. Ten of 192 candidates specifically

  15. PTIP associates with Artemis to dictate DNA repair pathway choice.

    PubMed

    Wang, Jiadong; Aroumougame, Asaithamby; Lobrich, Markus; Li, Yujing; Chen, David; Chen, Junjie; Gong, Zihua

    2014-12-15

    PARP inhibitors (PARPis) are being used in patients with BRCA1/2 mutations. However, doubly deficient BRCA1(-/-)53BP1(-/-) cells or tumors become resistant to PARPis. Since 53BP1 or its known downstream effectors, PTIP and RIF1 (RAP1-interacting factor 1 homolog), lack enzymatic activities directly implicated in DNA repair, we decided to further explore the 53BP1-dependent pathway. In this study, we uncovered a nuclease, Artemis, as a PTIP-binding protein. Loss of Artemis restores PARPi resistance in BRCA1-deficient cells. Collectively, our data demonstrate that Artemis is the major downstream effector of the 53BP1 pathway, which prevents end resection and promotes nonhomologous end-joining and therefore directly competes with the homologous recombination repair pathway. PMID:25512557

  16. DNA DSB repair pathway choice: an orchestrated handover mechanism

    PubMed Central

    Kakarougkas, A

    2014-01-01

    DNA double strand breaks (DSBs) are potential lethal lesions but can also lead to chromosome rearrangements, a step promoting carcinogenesis. DNA non-homologous end-joining (NHEJ) is the major DSB rejoining process and occurs in all cell cycle stages. Homologous recombination (HR) can additionally function to repair irradiation-induced two-ended DSBs in G2 phase. In mammalian cells, HR predominantly uses a sister chromatid as a template for DSB repair; thus HR functions only in late S/G2 phase. Here, we review current insight into the interplay between HR and NHEJ in G2 phase. We argue that NHEJ represents the first choice pathway, repairing approximately 80% of X-ray-induced DSBs with rapid kinetics. However, a subset of DSBs undergoes end resection and repair by HR. 53BP1 restricts resection, thereby promoting NHEJ. During the switch from NHEJ to HR, 53BP1 is repositioned to the periphery of enlarged irradiation-induced foci (IRIF) via a BRCA1-dependent process. K63-linked ubiquitin chains, which also form at IRIF, are also repositioned as well as receptor-associated protein 80 (RAP80), a ubiquitin binding protein. RAP80 repositioning requires POH1, a proteasome component. Thus, the interfacing barriers to HR, 53BP1 and RAP80 are relieved by POH1 and BRCA1, respectively. Removal of RAP80 from the IRIF core is required for loss of the ubiquitin chains and 53BP1, and for efficient replication protein A foci formation. We propose that NHEJ is used preferentially to HR because it is a compact process that does not necessitate extensive chromatin changes in the DSB vicinity. PMID:24363387

  17. DNA double strand break repair enzymes function at multiple steps in retroviral infection

    Microsoft Academic Search

    Yasuteru Sakurai; Kenshi Komatsu; Kazunaga Agematsu; Masao Matsuoka

    2009-01-01

    BACKGROUND: DNA double strand break (DSB) repair enzymes are thought to be necessary for retroviral infection, especially for the post-integration repair and circularization of viral cDNA. However, the detailed roles of DSB repair enzymes in retroviral infection remain to be elucidated. RESULTS: A GFP reporter assay showed that the infectivity of an HIV-based vector decreased in ATM- and DNA-PKcs-deficient cells

  18. Cellular Pathways for DNA Repair and Damage Tolerance of Formaldehyde-Induced DNA-Protein Crosslinks

    PubMed Central

    de Graaf, Bendert; Clore, Adam; McCullough, Amanda K.

    2009-01-01

    Although it is well established that DNA-protein crosslinks are formed as a consequence of cellular exposure to agents such as formaldehyde, transplatin, ionizing and ultraviolet radiation, the biochemical pathways that promote cellular survival via repair or tolerance of these lesions are poorly understood. To investigate the mechanisms that function to limit DNA-protein crosslink-induced cytotoxicity, the Saccharomyces cerevisiae non-essential gene deletion library was screened for increased sensitivity to formaldehyde exposure. Following low-dose, chronic exposure, strains containing deletions in genes mediating homologous recombination showed the greatest sensitivity, while under the same exposure conditions, deletions in genes associated with nucleotide excision repair conferred only low to moderate sensitivities. However, when the exposure regime was changed to a high-dose acute (short-term) formaldehyde treatment, the genes that conferred maximal survival switched to the nucleotide excision repair pathway, with little contribution of the homologous recombination genes. Data are presented which suggest that following acute formaldehyde exposure, repair and/or tolerance of DNA-protein crosslinks proceeds via formation of nucleotide excision repair-dependent single-strand break intermediates and without a detectable accumulation of double-strand breaks. These data clearly demonstrate a differential pathway response to chronic versus acute formaldehyde exposures and may have significance and implications for risk extrapolation in human exposure studies. PMID:19625222

  19. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair.

    PubMed

    Morales, Julio C; Richard, Patricia; Rommel, Amy; Fattah, Farjana J; Motea, Edward A; Patidar, Praveen L; Xiao, Ling; Leskov, Konstantin; Wu, Shwu-Yuan; Hittelman, Walter N; Chiang, Cheng-Ming; Manley, James L; Boothman, David A

    2014-04-01

    Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed ?-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair. PMID:24589584

  20. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair

    PubMed Central

    Morales, Julio C.; Richard, Patricia; Rommel, Amy; Fattah, Farjana J.; Motea, Edward A.; Patidar, Praveen L.; Xiao, Ling; Leskov, Konstantin; Wu, Shwu-Yuan; Hittelman, Walter N.; Chiang, Cheng-Ming; Manley, James L.; Boothman, David A.

    2014-01-01

    Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed ?-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair. PMID:24589584

  1. Nucleotide excision repair DNA synthesis by excess DNA polymerase b: a potential source of genetic instability in cancer cells

    Microsoft Academic Search

    YVAN CANITROT; JEAN-SEBASTIEN HOFFMANN; PATRICK CALSOU; HIROSHI HAYAKAWA; BERNARD SALLES; CHRISTOPHE CAZAUX

    The nucleotide excision repair path- way contributes to genetic stability by removing a wide range of DNA damage through an error-free reaction. When the lesion is located, the altered strand is incised on both sides of the lesion and a damaged oligonucleotide excised. A repair patch is then synthesized and the repaired strand is ligated. It is assumed that only

  2. Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton

    SciTech Connect

    Malloy, K.D.; Holman, M.A. [Northeastern Univ., Boston, MA (United States)] [Northeastern Univ., Boston, MA (United States); Mitchell, D. [Univ. of Texas, Smithville, TX (United States)] [and others] [Univ. of Texas, Smithville, TX (United States); and others

    1997-02-18

    The detrimental effects of elevated intensities of mid-UV radiation (UVB), a result of stratospheric ozone depletion during the austral spring, on the primary producers of the Antarctic marine ecosystem have been well documented. Here we report that natural populations of Antarctic zooplankton also sustain significant DNA damage [measured as cyclobutane pyrimidine dimers (CPDs)] during periods of increased UVB flux. This is the first direct evidence that increased solar UVB may result in damage to marine organisms other than primary producers in Antarctica. The extent of DNA damage in pelagic icefish eggs correlated with daily incident UVB irradiance, reflecting the difference between acquisition and repair of CPDs. Patterns of DNA damage in fish larvae did not correlated with daily UVB flux, possibly due to different depth distributions and/or different capacities for DNA repair. Clearance of CPDs by Antarctic fish and krill was mediated primarily by the photoenzymatic repair system. Although repair rates were large for all species evaluated, they were apparently inadequate to prevent the transient accumulation of substantial CPD burdens. The capacity for DNA repair in Antarctic organisms was highest in those species whose early life history stages occupy the water column during periods of ozone depletion (austral spring) and lowest in fish species whose eggs and larvae are abundant during winter. Although the potential reduction in fitness of Antarctic zooplankton resulting from DNA damage is unknown, we suggest that increased solar UV may reduce recruitment and adversely affect trophic transfer of productivity by affecting heterotrophic species as well as primary producers. 54 refs., 4 figs., 2 tabs.

  3. Repair of a synthetic abasic site in DNA in a Xenopus laevis oocyte extract.

    PubMed Central

    Matsumoto, Y; Bogenhagen, D F

    1989-01-01

    Covalently closed circular DNA containing a synthetic analog of an abasic site at a unique position was used as a substrate to study DNA repair. Incubation of this DNA in Xenopus laevis oocyte extracts resulted in rapid cleavage of the DNA at the abasic site by a class II apurinic-apyrimidinic endonuclease, followed by complete repair within 40 min. Nicked circular DNAs persisted for several minutes before repair by an ATP-dependent DNA synthesis reaction. The repair-related DNA synthesis was localized within 3 or 4 nucleotides surrounding the abasic site. These results are consistent with the short-patch repair reported for DNA damage at heterogeneous sites in human cells (J. D. Regan and R. B. Setlow, Cancer Res. 34:3318-3325, 1974). Images PMID:2779565

  4. C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency

    PubMed Central

    Meier, Bettina; Cooke, Susanna L.; Weiss, Joerg; Bailly, Aymeric P.; Alexandrov, Ludmil B.; Marshall, John; Raine, Keiran; Maddison, Mark; Anderson, Elizabeth; Stratton, Michael R.; Campbell, Peter J.

    2014-01-01

    Mutation is associated with developmental and hereditary disorders, aging, and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used Caenorhabditis elegans whole-genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was approximately one per genome per generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage–fusion–bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin B1 induced substitutions of guanines in a GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions, and rearrangements. Strikingly, both agents induced clustered rearrangements resembling “chromoanasynthesis,” a replication-based mutational signature seen in constitutional genomic disorders, suggesting that interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting that this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease. PMID:25030888

  5. Reptin Regulates DNA Double Strand Breaks Repair in Human Hepatocellular Carcinoma

    PubMed Central

    Raymond, Anne-Aurélie; Di Martino, Julie; Javary, Joaquim; Rosenbaum, Jean

    2015-01-01

    Reptin/RUVBL2 is overexpressed in most hepatocellular carcinomas and is required for the growth and viability of HCC cells. Reptin is involved in several chromatin remodeling complexes, some of which are involved in the detection and repair of DNA damage, but data on Reptin involvement in the repair of DNA damage are scarce and contradictory. Our objective was to study the effects of Reptin silencing on the repair of DNA double-strand breaks (DSB) in HCC cells. Treatment of HuH7 cells with etoposide (25 ?M, 30 min) or ? irradiation (4 Gy) increased the phosphorylation of H2AX by 1.94 ± 0.13 and 2.0 ± 0.02 fold, respectively. These values were significantly reduced by 35 and 65 % after Reptin silencing with inducible shRNA. Irradiation increased the number of BRCA1 (3-fold) and 53BP1 foci (7.5 fold). Depletion of Reptin reduced these values by 62 and 48%, respectively. These defects in activation and/or recruitment of repair proteins were not due to a decreased number of DSBs as measured by the COMET assay. All these results were confirmed in the Hep3B cell line. Protein expression of ATM and DNA-PKcs, the major H2AX kinases, was significantly reduced by 52 and 61 % after Reptin depletion whereas their mRNA level remained unchanged. Phosphorylation of Chk2, another ATM target, was not significantly altered. Using co-immunoprecipitation, we showed an interaction between Reptin and DNA-PKcs. The half-life of newly-synthesized DNA-PKcs was reduced when Reptin was silenced. Finally, depletion of Reptin was synergistic with etoposide or ? irradiation to reduce cell growth and colony formation. In conclusion, Reptin is an important cofactor for the repair of DSBs. Our data, combined with those of the literature suggests that it operates at least in part by regulating the expression of DNA-PKcs by a stabilization mechanism. Overexpression of Reptin in HCC could be a factor of resistance to treatment, consistent with the observed overexpression of Reptin in subgroups of chemo-resistant breast and ovarian cancers. PMID:25875766

  6. In vivo dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair.

    PubMed

    Moné, Martijn J; Bernas, Tytus; Dinant, Christoffel; Goedvree, Feliks A; Manders, Erik M M; Volker, Marcel; Houtsmuller, Adriaan B; Hoeijmakers, Jan H J; Vermeulen, Wim; van Driel, Roel

    2004-11-01

    Chromatin is the substrate for many processes in the cell nucleus, including transcription, replication, and various DNA repair systems, all of which require the formation of multiprotein machineries on the chromatin fiber. We have analyzed the kinetics of in vivo assembly of the protein complex that is responsible for nucleotide excision repair (NER) in mammalian cells. Assembly is initiated by UV irradiation of a small area of the cell nucleus, after which the accumulation of GFP-tagged NER proteins in the DNA-damaged area is measured, reflecting the establishment of the dual-incision complex. The dynamic behavior of two NER proteins, ERCC1-XPF and TFIIH, was studied in detail. Results show that the repair complex is assembled with a rate of approximately 30 complexes per second and is not diffusion limited. Furthermore, we provide in vivo evidence that not only binding of TFIIH, but also its helicase activity, is required for the recruitment of ERCC1-XPF. These studies give quantitative insight into the de novo assembly of a chromatin-associated protein complex in living cells. PMID:15520397

  7. Exploration of methods to identify polymorphisms associated with variation in DNA repair capacity phenotypes

    SciTech Connect

    Jones, I M; Thomas, C B; Xi, T; Mohrenweiser, H W; Nelson, D O

    2006-07-03

    Elucidating the relationship between polymorphic sequences and risk of common disease is a challenge. For example, although it is clear that variation in DNA repair genes is associated with familial cancer, aging and neurological disease, progress toward identifying polymorphisms associated with elevated risk of sporadic disease has been slow. This is partly due to the complexity of the genetic variation, the existence of large numbers of mostly low frequency variants and the contribution of many genes to variation in susceptibility. There has been limited development of methods to find associations between genotypes having many polymorphisms and pathway function or health outcome. We have explored several statistical methods for identifying polymorphisms associated with variation in DNA repair phenotypes. The model system used was 80 cell lines that had been resequenced to identify variation; 191 single nucleotide substitution polymorphisms (SNPs) are included, of which 172 are in 31 base excision repair pathway genes, 19 in 5 anti-oxidation genes, and DNA repair phenotypes based on single strand breaks measured by the alkaline Comet assay. Univariate analyses were of limited value in identifying SNPs associated with phenotype variation. Of the multivariable model selection methods tested: the easiest that provided reduced error of prediction of phenotype was simple counting of the variant alleles predicted to encode proteins with reduced activity, which led to a genotype including 52 SNPs; the best and most parsimonious model was achieved using a two-step analysis without regard to potential functional relevance: first SNPs were ranked by importance determined by Random Forests Regression (RFR), followed by cross-validation in a second round of RFR modeling that included ever more SNPs in declining order of importance. With this approach 6 SNPs were found to minimize prediction error. The results should encourage research into utilization of multivariate analytical methods for epidemiological studies of the association of genetic variation in complex genotypes with risk of common diseases.

  8. What structural features determine repair enzyme specificity and mechanism in chemically modified DNA?

    PubMed

    Singer, B; Hang, B

    1997-07-01

    A crucial question in repair is how do enzymes recognize substrates. In surveying the relevant literature, it becomes evident that there are no rules which can be clearly applied. At this time it appears that uracil glycosylase is the only repair enzyme for which all the known substrates can be rationalized on the basis of chemical structure. When surveying the multiplicity of substrates for m3A-DNA glycosylase, it is difficult, on the basis of present knowledge, to explain why 1,N6-etheno-A (epsilon A) is as good a substrate, if not better, than m3A for which the enzyme is named. There is no apparent unifying chemical structure which is required for recognition. It should also be noted that many studies of the mechanism of m3A-DNA glycosylase only utilized-N-3- and N-7-alkylpurines. On this basis, an electron-deficient purine, and later pyrimidine, was considered to be the recognition signal. Since epsilon A and Hx do not fall in this class, this is one illustration of why exploring new substrates becomes important in elucidating enzyme mechanisms. Ubiquitous enzymes, such as 5'-AP endonucleases, are present in both prokaryotes and eukaryotes. The primary function is the same, i.e., repair of an AP site which occurs through natural processes or from the action of DNA glycosylases. There are, however, completely unrelated substrates such as the exocyclic adducts pBQ-dC and pBQ-dG. pBQ-dC is repaired by both the human HAP1 and E. coli Exo III and Endo IV, while pBQ-dG is only repaired by the E. coli enzymes. Yet, when repair of these adducts occurs, it is by the same unusual pathway which differs from the usual base excision repair mechanism. This finding may ultimately not be as unusual as it now seems. The understanding of substrate recognition by repair enzymes, which can have different repair pathways, is complex. For example, three exocyclic derivatives which each have either the same modification (1,N4-epsilon dA and 3,N4-epsilon dC) or the same base with different modifying groups (3,N4-epsilon dC and 3,N4-pBQ-dC) are repaired by three separate enzymes and two mechanism (Figure 9). Investigators have also reported that two separate enzymes and pathways can be found for simple adducts such as m6G and O4T. It is not clear why, for these adducts, both MGMT and excision repair can be utilized. This could be visualized as a "backup" system and may be more common than now known. We cannot think like an enzyme or vice versa. In the absence of enough necessary information, we can only be descriptive. What information is necessary for further understanding? (1) More detailed structural studies of adducts in defined oligonucleotides would be useful. (2) New substrates should be explored. For example, is the mechanism for PBQ-dC (and pBQ-dG) repair unique? This involves guesswork and intuition. (3) For the adducts mentioned in this Perspective and others, understanding enzyme/substrate recognition will be facilitated by cocrystallography and site-directed mutagenesis. (4) Genetic approaches, such as knockouts or targeted mutations in repair genes, should be expanded in order to focus on the physiological role of a specific enzyme. Above all: structure, structure, structure! Enzymologists, organic chemists, physical chemiste, X-ray crystallographers, and others must combine forces if the fundamental problems addressed here are to be understood. PMID:9250405

  9. ATM-mediated phosphorylation of the chromatin remodeling enzyme BRG1 modulates DNA double-strand break repair.

    PubMed

    Kwon, S-J; Park, J-H; Park, E-J; Lee, S-A; Lee, H-S; Kang, S W; Kwon, J

    2015-01-15

    ATP-dependent chromatin remodeling complexes such as SWI/SNF (SWItch/Sucrose NonFermentable) have been implicated in DNA double-strand break (DSB) repair and damage responses. However, the regulatory mechanisms that control the function of chromatin remodelers in DNA damage response are largely unknown. Here, we show that ataxia telangiectasia mutated (ATM) mediates the phosphorylation of BRG1, the catalytic ATPase of the SWI/SNF complex that contributes to DSB repair by binding ?-H2AX-containing nucleosomes via interaction with acetylated histone H3 and stimulating ?-H2AX formation, at Ser-721 in response to DNA damage. ATM-mediated phosphorylation of BRG1 occurs rapidly and transiently after DNA damage. Phosphorylated BRG1 binds ?-H2AX-containing nucleosomes to form the repair foci. The Ser-721 phosphorylation of BRG1 is critical for binding ?-H2AX-containing nucleosomes and stimulating ?-H2AX formation and DSB repair. BRG1 binds to acetylated H3 peptides much better after phosphorylation at Ser-721 by DNA damage. However, the phosphorylation of Ser-721 does not significantly affect the ATPase and transcriptional activities of BRG1. These results, establishing BRG1 as a novel and functional ATM substrate, suggest that the ATM-mediated phosphorylation of BRG1 facilitates DSB repair by stimulating the association of this remodeler with ?-H2AX nucleosomes via enhancing the affinity to acetylated H3. Our work also suggests that the mechanism of BRG1 stimulation of DNA repair is independent of the remodeler's enzymatic or transcriptional activities. PMID:24413084

  10. Antimutagenesis by factors affecting DNA repair in bacteria.

    PubMed

    Kuroda, Y; Inoue, T

    1988-12-01

    The term 'antimutagen' was originally used to describe an agent that reduces the apparent yield of spontaneous and/or induced mutations, regardless of the mechanisms involved. The 'antimutagens' include 'desmutagens' and 'bio-antimutagens'. In this article, our attention was focused on the bio-antimutagens affecting DNA repair in bacteria. Cobaltous chloride reduced the frequency of mutations in Escherichia coli induced by MNNG. The possibility that metal compound inhibits the growth of mutagen-treated cells was examined. The results clearly showed that the antimutagen surely reduces the mutation rate. The target of cobaltous chloride was found to be cellular factors including Rec A. Vanillin and cinnamaldehyde had strong antimutagenic activities against UV, 4NQO and AF-2. They stimulated Rec A-dependent recombination repair functions in the mutagen-treated cells. Among plant materials, tannins possess antimutagenic activity against UV-induced mutations in E. coli. It has been found that tannic acid stimulates the excision repair encoded by the uvrA gene thereby reducing the yield of mutants. Substances which are antimutagenic in bacterial systems also had antimutagenic activity in cultured mammalian cell systems. Vanillin reduced the frequency of mutagen-induced chromosomal aberrations. PMID:3057369

  11. Role of the translationally controlled tumor protein in DNA damage sensing and repair.

    PubMed

    Zhang, Jie; de Toledo, Sonia M; Pandey, Badri N; Guo, Guozheng; Pain, Debkumar; Li, Hong; Azzam, Edouard I

    2012-04-17

    The translationally controlled tumor protein (TCTP) is essential for survival by mechanisms that as yet are incompletely defined. Here we describe an important role of TCTP in response to DNA damage. Upon exposure of normal human cells to low-dose ? rays, the TCTP protein level was greatly increased, with a significant enrichment in nuclei. TCTP up-regulation occurred in a manner dependent on ataxia-telangiectasia mutated (ATM) kinase and the DNA-dependent protein kinase and was associated with protective effects against DNA damage. In chromatin of irradiated cells, coimmunoprecipitation experiments showed that TCTP forms a complex with ATM and ?H2A.X, in agreement with its distinct localization with the foci of the DNA damage-marker proteins ?H2A.X, 53BP1, and P-ATM. In cells lacking TCTP, repair of chromosomal damage induced by ? rays was compromised significantly. TCTP also was shown to interact with p53 and the DNA-binding subunits, Ku70 and Ku80, of DNA-dependent protein kinase. TCTP knockdown led to decreased levels of Ku70 and Ku80 in nuclei of irradiated cells and attenuated their DNA-binding activity. It also attenuated the radiation-induced G(1) delay but prolonged the G(2) delay. TCTP therefore may play a critical role in maintaining genomic integrity in response to DNA-damaging agents. PMID:22451927

  12. Complex reconfiguration of DNA nanostructures.

    PubMed

    Wei, Bryan; Ong, Luvena L; Chen, Jeffrey; Jaffe, Alexander S; Yin, Peng

    2014-07-14

    Nucleic acids have been used to create diverse synthetic structural and dynamic systems. Toehold-mediated strand displacement has enabled the construction of sophisticated circuits, motors, and molecular computers. Yet it remains challenging to demonstrate complex structural reconfiguration in which a structure changes from a starting shape to another arbitrarily prescribed shape. To address this challenge, we have developed a general structural-reconfiguration method that utilizes the modularly interconnected architecture of single-stranded DNA tile and brick structures. The removal of one component strand reveals a newly exposed toehold on a neighboring strand, thus enabling us to remove regions of connected component strands without the need to modify the strands with predesigned external toeholds. By using this method, we reconfigured a two-dimensional rectangular DNA canvas into diverse prescribed shapes. We also used this method to reconfigure a three-dimensional DNA cuboid. PMID:24899518

  13. Damage-induced reactivation of cohesin in postreplicative DNA repair

    PubMed Central

    Ball, Alexander R.; Yokomori, Kyoko

    2014-01-01

    Summary Cohesin establishes sister-chromatid cohesion during S phase to ensure proper chromosome segregation in mitosis. It also facilitates postreplicative homologous recombination repair of DNA double-strand breaks by promoting local pairing of damaged and intact sister chromatids. In G2 phase, cohesin that is not bound to chromatin is inactivated, but its reactivation can occur in response to DNA damage. Recent papers by Koshland’s and Sjögren’s groups describe the critical role of the known cohesin cofactor Eco1 (Ctf7) and ATR checkpoint kinase in damage-induced reactivation of cohesin, revealing an intricate mechanism that regulates sister-chromatid pairing to maintain genome integrity.(1,2) PMID:18081005

  14. Human MutL-complexes monitor homologous recombination independently of mismatch repair

    PubMed Central

    Siehler, Simone Yasmin; Schrauder, Michael; Gerischer, Ulrike; Cantor, Sharon; Marra, Giancarlo; Wiesmüller, Lisa

    2010-01-01

    The role of mismatch repair proteins has been well studied in the context of DNA repair following DNA polymerase errors. Particularly in yeast, MSH2 and MSH6 have also been implicated in the regulation of genetic recombination, whereas MutL homologs appeared to be less important. So far, little is known about the role of the human MutL homolog hMLH1 in recombination, but recently described molecular interactions suggest an involvement. To identify activities of hMLH1 in this process, we applied an EGFP-based assay for the analysis of different mechanisms of DNA repair, initiated by a targeted double-stranded DNA break. We analysed 12 human cellular systems, differing in the hMLH1 and concomitantly in the hPMS1 and hPMS2 status via inducible protein expression, genetic reconstitution, or RNA interference. We demonstrate that hMLH1 and its complex partners hPMS1 and hPMS2 downregulate conservative homologous recombination (HR), particularly when involving DNA sequences with only short stretches of uninterrupted homology. Unexpectedly, hMSH2 is dispensable for this effect. Moreover, the damage-signaling kinase ATM and its substrates BLM and BACH1 are not strictly required, but the combined effect of ATM/ATR-signaling components may mediate the anti-recombinogenic effect. Our data indicate a protective role of hMutL-complexes in a process which may lead to detrimental genome rearrangements, in a manner which does not depend on mismatch repair. PMID:19022408

  15. Complexation of aluminum with DNA.

    PubMed

    Dyrssen, D; Haraldsson, C; Nyberg, E; Wedborg, M

    1987-01-01

    The extent of complexation of aluminum(III) with DNA (Calf thymus, Sigma type I) was estimated by means of two experimental techniques: potentiometric titration with a fluoride selective indicator electrode and dialysis followed by aluminum determination by graphite furnace AAS. Both types of experiments indicate that aluminum(III) is bound to DNA. The data are treated by assuming an ion exchange reaction with the phosphate diester groups. Using Rt to denote the concentration of these groups the values of log [AlMn-3R]/(Rt-3[AlMn-3R])[Al3+] decrease from approx. 7.6 to 5.6 when the concentration of sodium chloride is increased from 1 to 100 mM. In the pH range 4.5-5.5 the ion exchange constant increases approximately 0.5 log units. Dialysis gives lower values for the complex formation constant than potentiometry. PMID:3559548

  16. Mechanism of Cluster DNA Damage Repair in Response to High-Atomic Number and Energy Particles Radiation

    PubMed Central

    Asaithamby, Aroumougame; Chen, David J.

    2012-01-01

    Low-linear energy transfer (LET) radiation (i.e., ?- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles are slowly repaired or are irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure. PMID:21126526

  17. Repair of uv damaged DNA: Genes and proteins of yeast and human

    SciTech Connect

    Prakash, L.

    1992-04-01

    Our objectives are to determine the molecular mechanism of the incision step of excision repair of ultraviolet (UV) light damaged DNA in eukaryotic organisms, using the yeast Saccharomyces cerevisiae as a model system, and to study the human homologs of yeast excision repair and postreplication repair proteins progress is described.

  18. Correction of liver dysfunction in DNA repair-deficient mice with an ERCC1 transgene

    Microsoft Academic Search

    Jim Selfridge; Kan-Tai Hsia; Nicola J. Redhead; David W. Melton

    2001-01-01

    The ERCC1 gene is essential for the repair of UV- induced DNA damage. Unlike most genes in the nucleotide excision repair (NER) pathway, ERCC1 is also involved in recombinational repair. Perhaps for this reason, ERCC1 knockout mice are not a model for the human NER deficiency disorder, xeroderma pigmentosum. Instead, ERCC1 null mice are severely runted and die before weaning

  19. Structural Complexity of DNA Sequence

    PubMed Central

    Liou, Cheng-Yuan; Cheng, Wei-Chen; Tsai, Huai-Ying

    2013-01-01

    In modern bioinformatics, finding an efficient way to allocate sequence fragments with biological functions is an important issue. This paper presents a structural approach based on context-free grammars extracted from original DNA or protein sequences. This approach is radically different from all those statistical methods. Furthermore, this approach is compared with a topological entropy-based method for consistency and difference of the complexity results. PMID:23662161

  20. In TFIIH, XPD Helicase Is Exclusively Devoted to DNA Repair

    PubMed Central

    Kuper, Jochen; Braun, Cathy; Elias, Agnes; Michels, Gudrun; Sauer, Florian; Schmitt, Dominik R.; Poterszman, Arnaud; Egly, Jean-Marc; Kisker, Caroline

    2014-01-01

    The eukaryotic XPD helicase is an essential subunit of TFIIH involved in both transcription and nucleotide excision repair (NER). Mutations in human XPD are associated with several inherited diseases such as xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. We performed a comparative analysis of XPD from Homo sapiens and Chaetomium thermophilum (a closely related thermostable fungal orthologue) to decipher the different molecular prerequisites necessary for either transcription or DNA repair. In vitro and in vivo assays demonstrate that mutations in the 4Fe4S cluster domain of XPD abrogate the NER function of TFIIH and do not affect its transcriptional activity. We show that the p44-dependent activation of XPD is promoted by the stimulation of its ATPase activity. Furthermore, we clearly demonstrate that XPD requires DNA binding, ATPase, and helicase activity to function in NER. In contrast, these enzymatic properties are dispensable for transcription initiation. XPD helicase is thus exclusively devoted to NER and merely acts as a structural scaffold to maintain TFIIH integrity during transcription. PMID:25268380

  1. A rapid, comprehensive system for assaying DNA repair activity and cytotoxic effects of DNA-damaging reagents.

    PubMed

    Jia, Nan; Nakazawa, Yuka; Guo, Chaowan; Shimada, Mayuko; Sethi, Mieran; Takahashi, Yoshito; Ueda, Hiroshi; Nagayama, Yuji; Ogi, Tomoo

    2015-01-01

    DNA repair systems protect cells from genomic instability and carcinogenesis. Therefore, assays for measuring DNA repair activity are valuable, not only for clinical diagnoses of DNA repair deficiency disorders but also for basic research and anticancer drug development. Two commonly used assays are UDS (unscheduled DNA synthesis, requiring a precise measurement of an extremely small amount of repair DNA synthesis) and RRS (recovery of RNA synthesis after DNA damage). Both UDS and RRS are major endpoints for assessing the activity of nucleotide excision repair (NER), the most versatile DNA repair process. Conventional UDS and RRS assays are laborious and time-consuming, as they measure the incorporation of radiolabeled nucleosides associated with NER. Here we describe a comprehensive protocol for monitoring nonradioactive UDS and RRS by studying the incorporation of alkyne-conjugated nucleoside analogs followed by a fluorescent azide-coupling click-chemistry reaction. The system is also suitable for quick measurement of cell sensitivity to DNA-damaging reagents and for lentivirus-based complementation assays, which can be used to systematically determine the pathogenic genes associated with DNA repair deficiency disorders. A typical UDS or RRS assay using primary fibroblasts, including a virus complementation test, takes 1 week to complete. PMID:25474029

  2. Repair of HZE-particle-induced DNA double-strand breaks in normal human fibroblasts.

    PubMed

    Asaithamby, Aroumougame; Uematsu, Naoya; Chatterjee, Aloke; Story, Michael D; Burma, Sandeep; Chen, David J

    2008-04-01

    DNA damage generated by high-energy and high-Z (HZE) particles is more skewed toward multiply damaged sites or clustered DNA damage than damage induced by low-linear energy transfer (LET) X and gamma rays. Clustered DNA damage includes abasic sites, base damages and single- (SSBs) and double-strand breaks (DSBs). This complex DNA damage is difficult to repair and may require coordinated recruitment of multiple DNA repair factors. As a consequence of the production of irreparable clustered lesions, a greater biological effectiveness is observed for HZE-particle radiation than for low-LET radiation. To understand how the inability of cells to rejoin DSBs contributes to the greater biological effectiveness of HZE particles, the kinetics of DSB rejoining and cell survival after exposure of normal human skin fibroblasts to a spectrum of HZE particles was examined. Using gamma-H2AX as a surrogate marker for DSB formation and rejoining, the ability of cells to rejoin DSBs was found to decrease with increasing Z; specifically, iron-ion-induced DSBs were repaired at a rate similar to those induced by silicon ions, oxygen ions and gamma radiation, but a larger fraction of iron-ion-induced damage was irreparable. Furthermore, both DNA-PKcs (DSB repair factor) and 53BP1 (DSB sensing protein) co-localized with gamma-H2AX along the track of dense ionization produced by iron and silicon ions and their focus dissolution kinetics was similar to that of gamma-H2AX. Spatial co-localization analysis showed that unlike gamma-H2AX and 53BP1, phosphorylated DNA-PKcs was localized only at very specific regions, presumably representing the sites of DSBs within the tracks. Examination of cell survival by clonogenic assay indicated that cell killing was greater for iron ions than for silicon and oxygen ions and gamma rays. Collectively, these data demonstrate that the inability of cells to rejoin DSBs within clustered DNA lesions likely contributes to the greater biological effectiveness of HZE particles. PMID:18363429

  3. Repair of DNA Strand Breaks in a Minichromosome In Vivo: Kinetics, Modeling, and Effects of Inhibitors

    PubMed Central

    Kumala, Slawomir; Fujarewicz, Krzysztof; Jayaraju, Dheekollu; Rzeszowska-Wolny, Joanna; Hancock, Ronald

    2013-01-01

    To obtain an overall picture of the repair of DNA single and double strand breaks in a defined region of chromatin in vivo, we studied their repair in a ?170 kb circular minichromosome whose length and topology are analogous to those of the closed loops in genomic chromatin. The rate of repair of single strand breaks in cells irradiated with ? photons was quantitated by determining the sensitivity of the minichromosome DNA to nuclease S1, and that of double strand breaks by assaying the reformation of supercoiled DNA using pulsed field electrophoresis. Reformation of supercoiled DNA, which requires that all single strand breaks have been repaired, was not slowed detectably by the inhibitors of poly(ADP-ribose) polymerase-1 NU1025 or 1,5-IQD. Repair of double strand breaks was slowed by 20–30% when homologous recombination was supressed by KU55933, caffeine, or siRNA-mediated depletion of Rad51 but was completely arrested by the inhibitors of nonhomologous end-joining wortmannin or NU7441, responses interpreted as reflecting competition between these repair pathways similar to that seen in genomic DNA. The reformation of supercoiled DNA was unaffected when topoisomerases I or II, whose participation in repair of strand breaks has been controversial, were inhibited by the catalytic inhibitors ICRF-193 or F11782. Modeling of the kinetics of repair provided rate constants and showed that repair of single strand breaks in minichromosome DNA proceeded independently of repair of double strand breaks. The simplicity of quantitating strand breaks in this minichromosome provides a usefull system for testing the efficiency of new inhibitors of their repair, and since the sequence and structural features of its DNA and its transcription pattern have been studied extensively it offers a good model for examining other aspects of DNA breakage and repair. PMID:23382828

  4. Advances in Brief The DNA Repair Activity of Human Redox/Repair Protein APE/Ref-1 Is

    E-print Network

    Adly Yacoub; Mark R. Kelley; Walter A. Deutsch; Cancer Res; Contact The Aacr Publications; Inactivated Phosphorylation; Adly Yacoub; Mark R. Kelley; Walter A. Deutsch

    The human DNA repair protein apurinic/apyrimidinic endonuclease (APE) is a dual-function protein that has important roles in both the repair of baseless sites that arise in DNA and in regulating the redox state of a number of proteins (Ref-1). Although previous attention has been focused on how the human APE/Ref-1 gene may be regulated at the DNA level, we have instead examined if APE/Ref-1 is phosphorylated, and if so how it may affect DNA repair activity. We demonstrate here that APE/ Ref-1 is indeed a substrate for phosphorylation by the serine/threonine casein kinases (CK) I and II and protein kinase C. Notably, although phosphorylation by CKI and protein kinase C had no effect whatsoever on the ability of APE/Ref-1 to act at abasic sites in DNA, phosphorylation by CKII completely abolished DNA repair activity. That phosphorylation was responsible for the loss of abasic repair activity was concluded from experiments showing that inactive APE/Ref-1 could be reversed to an

  5. A novel bisindole-PBD conjugate causes DNA damage induced apoptosis via inhibition of DNA repair pathway.

    PubMed

    Sarma, Pranjal; Ramaiah, M Janaki; Kamal, Ahmed; Bhadra, Utpal; Bhadra, Manika Pal

    2014-10-01

    DNA damage response (DDR) that includes cell cycle check points, DNA repair, apoptosis, and senescence is intimately linked with cancer. It shields an organism against cancer development when genomic integrity fails. DNA repair pathways protect the cells from tumor progression caused as a result of DNA damage induced by irradiation or due to chemotherapeutic treatment. Many promising anticancer agents have been identified that target specific DNA repair pathways in response to DNA damage thereby leading to apoptosis. Here we identified a novel bisindole-PBD conjugate that possess potent anticancer activity in breast cancer cells. Further studies aimed at understanding the mechanism of action of the molecule showed its role in DNA damage induced apoptosis via inhibition of DNA repair pathway. Trypan blue and BrdU assay exhibited a dose-dependent effect. Single-stranded DNA damage was observed by COMET assay. In addition DNA damage induced ROS generation with simultaneous activation of ATM and ATR upon compound treatment was observed. Further downregulation of Bcl-XL and activation of Bax showed DNA damage induced apoptosis in MCF-7 and MDAMB-231 cells. In conclusion, it can be summarized that bisindole-PBD conjugate induces DNA damage in a dose dependent (2, 4, and 8 ?M) manner by inhibiting the DNA repair genes. PMID:25010292

  6. Atomic force microscopy captures MutS tetramers initiating DNA mismatch repair

    PubMed Central

    Jiang, Yong; Marszalek, Piotr E

    2011-01-01

    In spite of extensive research, the mechanism by which MutS initiates DNA mismatch repair (MMR) remains controversial. We use atomic force microscopy (AFM) to capture how MutS orchestrates the first step of E. coli MMR. AFM images captured two types of MutS/DNA complexes: single-site binding and loop binding. In most of the DNA loops imaged, two closely associated MutS dimers formed a tetrameric complex in which one of the MutS dimers was located at or near the mismatch. Surprisingly, in the presence of ATP, one MutS dimer remained at or near the mismatch site and the other, while maintaining contact with the first dimer, relocated on the DNA by reeling in DNA, thereby producing expanding DNA loops. Our results indicate that MutS tetramers composed of two non-equivalent MutS dimers drive E. coli MMR, and these new observations now reconcile the apparent contradictions of previous ‘sliding' and ‘bending/looping' models of interaction between mismatch and strand signal. PMID:21666597

  7. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more

    PubMed Central

    Marinus, Martin G.; Casadesus, Josep

    2010-01-01

    The Dam methylase of gamma-proteobacteria and the CcrM methylase of alpha-proteobacteria catalyze an identical reaction (methylation of adenosine moieties using S-adenosyl-methionine as methyl donor) at similar DNA targets (GATC and GANTC, respectively). Dam and CcrM are of independent evolutionary origin. Each may have evolved from an ancestral restriction-modification system that lost its restriction component, leaving an “orphan” methylase devoted solely to epigenetic genome modification. Formation of 6-methyladenine lowers the thermodynamic stability of DNA and changes DNA curvature. As a consequence, the methylation state of specific adenosine moieties can affect DNA-protein interactions. Well known examples include binding of the replication initiation complex to the methylated oriC, recognition of hemimethylated GATCs in newly replicated DNA by the MutHLS mismatch repair complex, and discrimination of methylation states in promoters and regulatory DNA motifs by RNA polymerase and transcription factors. In recent years, Dam and CcrM have been shown to play roles in host-pathogen interactions. These roles are diverse and only partially understood. Especially intriguing is the evidence that Dam methylation regulates virulence genes in E. coli, Salmonella, and Yersinia at the postranscriptional level. PMID:19175412

  8. A genetic screen identifies FAN1, a Fanconi anemia associated nuclease necessary for DNA interstrand crosslink repair

    PubMed Central

    Smogorzewska, Agata; Desetty, Rohini; Saito, Takamune T.; Schlabach, Michael; Lach, Francis P.; Sowa, Mathew E.; Clark, Alan B.; Kunkel, Thomas A.; Harper, J. Wade; Colaiácovo, Monica P.; Elledge, Stephen J.

    2010-01-01

    Summary The Fanconi Anemia (FA) pathway is responsible for interstrand crosslink repair. At the heart of this pathway is the FANCI-FAND2 (ID) complex, which, upon ubiquitination by the FA core complex, travels to sites of damage to coordinate repair that includes nucleolytic modification of the DNA surrounding the lesion and translesion synthesis. How the ID complex regulates these events is unknown. Here we describe a shRNA screen that led to the identification of two nucleases necessary for crosslink repair, FAN1 and EXDL2. FAN1 co-localizes at sites of DNA damage with the ID complex in a manner dependent on FAN1’s ubiquitin binding domain (UBZ), the ID complex, and monoubiquitination of FANCD2. FAN1 possesses intrinsic 5?-3? exonuclease activity and endonuclease activity that cleaves nicked and branched structures. We propose that FAN1 is a repair nuclease that is recruited to sites of crosslink damage in part through binding the ubiquitinated ID complex through its UBZ domain. PMID:20603073

  9. Structure of the Uncomplexed DNA Repair Enzyme Interdomain Flexibility

    SciTech Connect

    Golan,G.; Zharkov, D.; Feinberg, H.; Fernandes, A.; Zaika, E.; Kycia, J.; Grollman, A.; Shoham, G.; et al.

    2005-01-01

    Escherichia coli endonuclease VIII (Nei) excises oxidized pyrimidines from DNA. It shares significant sequence homology and similar mechanism with Fpg, a bacterial 8-oxoguanine glycosylase. The structure of a covalent Nei-DNA complex has been recently determined, revealing critical amino acid residues which are important for DNA binding and catalysis. Several Fpg structures have also been reported; however, analysis of structural dynamics of Fpg/Nei family proteins has been hindered by the lack of structures of uncomplexed and DNA-bound enzymes from the same source. We report a 2.8 Angstrom resolution structure of free wild-type Nei and two structures of its inactive mutants, Nei-E2A (2.3 Angstrom) and Nei-R252A (2.05 Angstrom). All three structures are virtually identical, demonstrating that the mutations did not affect the overall conformation of the protein in its free state. The structures show a significant conformational change compared with the Nei structure in its complex with DNA, reflecting a {approx}50 degree rotation of the two main domains of the enzyme. Such interdomain flexibility has not been reported previously for any DNA glycosylase and may present the first evidence for a global DNA-induced conformational change in this class of enzymes. Several local but functionally relevant structural changes are also evident in other parts of the enzyme.

  10. Replication-coupled DNA Interstrand Crosslink repair in Xenopus egg extracts

    PubMed Central

    Knipscheer, Puck; Räschle, Markus; Schärer, Orlando D.; Walter, Johannes C.

    2014-01-01

    Summary Interstrand crosslinks (ICL) are one of the most hazardous types of DNA damage as they form a roadblock to all processes that involve strand separation. Repair of these lesions involves several different DNA repair pathways but the molecular mechanism is unclear. Here we describe a system that allows the examination of ICL repair, via a physiological mechanism, in vitro. This system, which uses Xenopus egg extracts in combination with a DNA template that contains a site-specific ICL, represents a unique tool to study the molecular mechanism of ICL repair. PMID:22941607

  11. Emergence of rationally designed therapeutic strategies for breast cancer targeting DNA repair mechanisms.

    PubMed

    Rowe, Bryan P; Glazer, Peter M

    2010-01-01

    Accumulating evidence suggests that many cancers, including BRCA1- and BRCA2-associated breast cancers, are deficient in DNA repair processes. Both hereditary and sporadic breast cancers have been found to have significant downregulation of repair factors. This has provided opportunities to exploit DNA repair deficiencies, whether acquired or inherited. Here, we review efforts to exploit DNA repair deficiencies in tumors, with a focus on breast cancer. A variety of agents, including PARP (poly [ADP-ribose] polymerase) inhibitors, are currently under investigation in clinical trials and available results will be reviewed. PMID:20459590

  12. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further investigate the sensitivity differences for low and low high doses, we performed chronic low dose-rate irradiation, and have begun studies with ATM and Nibrin inhibitors and siRNA knockout of these proteins. Results support the conclusion that for the endpoint of simple chromosomal aberrations (translocation or dicentrics), the increased radiation sensitivity of AT cells found at high doses (>1 Gy) does not carry over to low doses or doserates, while NBS cells show increased sensitivity for both high and low dose exposures.

  13. The role of DNA damage repair in aging of adult stem cells

    PubMed Central

    Kenyon, Jonathan; Gerson, Stanton L.

    2007-01-01

    DNA repair maintains genomic stability and the loss of DNA repair capacity results in genetic instability that may lead to a decline of cellular function. Adult stem cells are extremely important in the long-term maintenance of tissues throughout life. They regenerate and renew tissues in response to damage and replace senescent terminally differentiated cells that no longer function. Oxidative stress, toxic byproducts, reduced mitochondrial function and external exposures all damage DNA through base modification or mis-incorporation and result in DNA damage. As in most cells, this damage may limit the survival of the stem cell population affecting tissue regeneration and even longevity. This review examines the hypothesis that an age-related loss of DNA damage repair pathways poses a significant threat to stem cell survival and longevity. Normal stem cells appear to have strict control of gene expression and DNA replication whereas stem cells with loss of DNA repair may have altered patterns of proliferation, quiescence and differentiation. Furthermore, stem cells with loss of DNA repair may be susceptible to malignant transformation either directly or through the emergence of cancer-prone stem cells. Human diseases and animal models of loss of DNA repair provide longitudinal analysis of DNA repair processes in stem cell populations and may provide links to the physiology of aging. PMID:18160407

  14. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair

    SciTech Connect

    Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; Tsai, Miaw-Sheue; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.

    2009-05-11

    The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII{beta} and the hLigIII{alpha}/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.

  15. Accelerated Search Kinetics Mediated by Redox Reactions of DNA Repair Enzymes

    E-print Network

    Chou, Tom

    Accelerated Search Kinetics Mediated by Redox Reactions of DNA Repair Enzymes Pak-Wing Fok and Tom to explain the localization of base excision repair (BER) enzymes to lesions on DNA. The CT mechanism relies on redox reactions of iron-sulfur cofactors that modify the enzyme's binding affinity. These redox

  16. RNA editing changes the lesion specificity for the DNA repair enzyme NEIL1

    E-print Network

    Beal, Peter A.

    -mRNA for the DNA repair enzyme NEIL1 causes a lysine to arginine change in the lesion recognition loop can lead to codon changes (recoding) and the introduction of amino acids into a gene product in nonrepeat sequences, including a site predicted to cause recoding in the mRNA for the DNA repair enzyme NEIL

  17. Paradoxical DNA Repair and Peroxide Resistance Gene Conservation in Bacillus pumilus SAFR-032

    E-print Network

    Fox, George

    Paradoxical DNA Repair and Peroxide Resistance Gene Conservation in Bacillus pumilus SAFR-032 Jason-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard al (2007) Paradoxical DNA Repair and Peroxide Resistance Gene Conservation in Bacillus pumilus SAFR

  18. Analysis of nucleotide excision repair by detection of single- stranded DNA transients

    Microsoft Academic Search

    Carlos P. Rubbi; Jo Milner

    Nucleotide excision repair (NER) removes bulky DNA lesions and is thus crucial for the protection against environmental carcinogens and UV light exposure. Defi- ciencies in NER cause increased mutation rates and chro- mosomal aberrations. Current methods for studying NER are mostly based on either quantitation of lesion removal or detection of repair DNA synthesis. Both have their limitations: lesion removal

  19. Variation in DNA repair genes XRCC3, XRCC4, XRCC5 and susceptibility to myeloma

    Microsoft Academic Search

    Patrick J. Hayden; Prerna Tewari; Derek W. Morris; Anthony Staines; Dominique Crowley; Alexandra Nieters; Nikolaus Becker; Silvia de Sanjose; Lenka Foretova; Marc Maynadie; Pier Luigi Cocco; Paolo Boffetta; Paul Brennan; Stephen J. Chanock; Paul V. Browne; Mark Lawler

    2007-01-01

    Cytogenetic analysis in myeloma reveals marked chromosomal instability. Both widespread genomic altera- tions and evidence of aberrant class switch recombination, the physiological process that regulates matu- ration of the antibody response, implicate the DNA repair pathway in disease pathogenesis. We therefore assessed 27 SNPs in three genes (XRCC3, XRCC4 and XRCC5) central to DNA repair in patients with myeloma and

  20. Polymorphisms in DNA repair genes in the molecular pathogenesis of esophageal (Barrett) adenocarcinoma

    Microsoft Academic Search

    Alan G. Casson; Zuoyu Zheng; Susan C. Evans; Paul J. Veugelers; Geoffrey A. Porter; Duane L. Guernsey

    To test the hypothesis that aberrations of DNA repair contribute to susceptibility for the progression of gastro- esophageal reflux disease (GERD) into Barrett esophagus (BE) and esophageal adenocarcinoma (EADC), we studied the frequency of polymorphisms of selected DNA repair genes in patients with GERD (n ¼ 126), BE (n ¼ 125) and EADC (n ¼ 56) enrolled in a 2-year

  1. RecBCD Enzyme and the Repair of Double-Stranded DNA Breaks

    PubMed Central

    Dillingham, Mark S.; Kowalczykowski, Stephen C.

    2008-01-01

    Summary: The RecBCD enzyme of Escherichia coli is a helicase-nuclease that initiates the repair of double-stranded DNA breaks by homologous recombination. It also degrades linear double-stranded DNA, protecting the bacteria from phages and extraneous chromosomal DNA. The RecBCD enzyme is, however, regulated by a cis-acting DNA sequence known as Chi (crossover hotspot instigator) that activates its recombination-promoting functions. Interaction with Chi causes an attenuation of the RecBCD enzyme's vigorous nuclease activity, switches the polarity of the attenuated nuclease activity to the 5? strand, changes the operation of its motor subunits, and instructs the enzyme to begin loading the RecA protein onto the resultant Chi-containing single-stranded DNA. This enzyme is a prototypical example of a molecular machine: the protein architecture incorporates several autonomous functional domains that interact with each other to produce a complex, sequence-regulated, DNA-processing machine. In this review, we discuss the biochemical mechanism of the RecBCD enzyme with particular emphasis on new developments relating to the enzyme's structure and DNA translocation mechanism. PMID:19052323

  2. The HhH domain of the human DNA repair protein XPF forms stable homodimers.

    PubMed

    Das, Devashish; Tripsianes, Konstantinos; Jaspers, Nicolaas G J; Hoeijmakers, Jan H J; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2008-03-01

    The human XPF-ERCC1 protein complex plays an essential role in nucleotide excision repair by catalysing positioned nicking of a DNA strand at the 5' side of the damage. We have recently solved the structure of the heterodimeric complex of the C-terminal domains of XPF and ERCC1 (Tripsianes et al., Structure 2005;13:1849-1858). We found that this complex comprises a pseudo twofold symmetry axis and that the helix-hairpin-helix motif of ERCC1 is required for DNA binding, whereas the corresponding domain of XPF is functioning as a scaffold for complex formation with ERCC1. Despite the functional importance of heterodimerization, the C-terminal domain of XPF can also form homodimers in vitro. We here compare the stabilities of homodimeric and heterodimeric complexes of the C-terminal domains of XPF and ERCC1. The higher stability of the XPF HhH complexes under various experimental conditions, determined using CD and NMR spectroscopy and mass spectrometry, is well explained by the structural differences that exist between the HhH domains of the two complexes. The XPF HhH homodimer has a larger interaction interface, aromatic stacking interactions, and additional hydrogen bond contacts as compared to the XPF/ERCC1 HhH complex, which accounts for its higher stability. PMID:17912758

  3. A matter of life or death: modeling DNA damage and repair in bacteria.

    PubMed

    Karschau, Jens; de Almeida, Camila; Richard, Morgiane C; Miller, Samantha; Booth, Ian R; Grebogi, Celso; de Moura, Alessandro P S

    2011-02-16

    DNA damage is a hazard all cells must face, and evolution has created a number of mechanisms to repair damaged bases in the chromosome. Paradoxically, many of these repair mechanisms can create double-strand breaks in the DNA molecule which are fatal to the cell. This indicates that the connection between DNA repair and death is far from straightforward, and suggests that the repair mechanisms can be a double-edged sword. In this report, we formulate a mathematical model of the dynamics of DNA damage and repair, and we obtain analytical expressions for the death rate. We predict a counterintuitive relationship between survival and repair. We can discriminate between two phases: below a critical threshold in the number of repair enzymes, the half-life decreases with the number of repair enzymes, but becomes independent of the number of repair enzymes above the threshold. We are able to predict quantitatively the dependence of the death rate on the damage rate and other relevant parameters. We verify our analytical results by simulating the stochastic dynamics of DNA damage and repair. Finally, we also perform an experiment with Escherichia coli cells to test one of the predictions of our model. PMID:21320424

  4. A Matter of Life or Death: Modeling DNA Damage and Repair in Bacteria

    PubMed Central

    Karschau, Jens; de Almeida, Camila; Richard, Morgiane C.; Miller, Samantha; Booth, Ian R.; Grebogi, Celso; de Moura, Alessandro P.S.

    2011-01-01

    DNA damage is a hazard all cells must face, and evolution has created a number of mechanisms to repair damaged bases in the chromosome. Paradoxically, many of these repair mechanisms can create double-strand breaks in the DNA molecule which are fatal to the cell. This indicates that the connection between DNA repair and death is far from straightforward, and suggests that the repair mechanisms can be a double-edged sword. In this report, we formulate a mathematical model of the dynamics of DNA damage and repair, and we obtain analytical expressions for the death rate. We predict a counterintuitive relationship between survival and repair. We can discriminate between two phases: below a critical threshold in the number of repair enzymes, the half-life decreases with the number of repair enzymes, but becomes independent of the number of repair enzymes above the threshold. We are able to predict quantitatively the dependence of the death rate on the damage rate and other relevant parameters. We verify our analytical results by simulating the stochastic dynamics of DNA damage and repair. Finally, we also perform an experiment with Escherichia coli cells to test one of the predictions of our model. PMID:21320424

  5. Laser microbeam - kinetic studies combined with molecule - structures reveal mechanisms of DNA repair

    NASA Astrophysics Data System (ADS)

    Altenberg, B.; Greulich, K. O.

    2011-10-01

    Kinetic studies on double strand DNA damages induced by a laser microbeam have allowed a precise definition of the temporal order of recruitment of repair molecules. The order is KU70 / KU80 - XRCC4 --NBS1 -- RAD51. These kinetic studies are now complemented by studies on molecular structures of the repair proteins, using the program YASARA which does not only give molecular structures but also physicochemical details on forces involved in binding processes. It turns out that the earliest of these repair proteins, the KU70 / KU80 heterodimer, has a hole with high DNA affinity. The next molecule, XRCC4, has a body with two arms, the latter with extremely high DNA affinity at their ends and a binding site for Ligase 4. Together with the laser microbeam results this provides a detailed view on the early steps of DNA double strand break repair. The sequence of DNA repair events is presented as a movie.

  6. The Bright and the Dark Sides of DNA Repair in Stem Cells

    PubMed Central

    Frosina, Guido

    2010-01-01

    DNA repair is a double-edged sword in stem cells. It protects normal stem cells in both embryonic and adult tissues from genetic damage, thus allowing perpetuation of intact genomes into new tissues. Fast and efficient DNA repair mechanisms have evolved in normal stem and progenitor cells. Upon differentiation, a certain degree of somatic mutations becomes more acceptable and, consequently, DNA repair dims. DNA repair turns into a problem when stem cells transform and become cancerous. Transformed stem cells drive growth of a number of tumours (e.g., high grade gliomas) and being particularly resistant to chemo- and radiotherapeutic agents often cause relapses. The contribution of DNA repair to resistance of these tumour-driving cells is the subject of intense research, in order to find novel agents that may sensitize them to chemotherapy and radiotherapy. PMID:20396397

  7. Toll-Like Receptor-4 deficiency enhances repair of ultraviolet radiation induced cutaneous DNA damage by nucleotide excision repair mechanism

    PubMed Central

    Ahmad, Israr; Simanyi, Eva; Guroji, Purushotham; Tamimi, Iman A; delaRosa, Hillary J; Nagar, Anusuiya; Nagar, Priyamvada; Katiyar, Santosh K; Elmets, Craig A; Yusuf, Nabiha

    2014-01-01

    UVB-induced DNA damage plays a critical role in development of photoimmunosuppression. The purpose of this study was to determine whether repair of UVB-induced DNA damage is regulated by Toll-like receptor-4 (TLR4). When TLR4 gene knockout (TLR4-/-) and TLR4 competent (TLR4+/+) mice were subjected to 90 mJ/cm2 UVB radiation locally, DNA damage in the form of CPD, were repaired more efficiently in the skin and bone marrow dendritic cells (BMDC) of TLR4-/- mice in comparison to TLR4+/+ mice. Expression of DNA repair gene XPA (Xeroderma pigmentosum complementation group A) was significantly lower in skin and BMDC of TLR4+/+ mice than TLR4-/- mice after UVB exposure. When cytokine levels were compared in these strains after UVB exposure, BMDC from UV-irradiated TLR4-/- mice produced significantly more interleukin (IL)-12 and IL-23 cytokines (p<0.05) than BMDC from TLR4+/+ mice. Addition of anti-IL-12 and anti-IL-23 antibodies to BMDC of TLR4-/- mice (before UVB exposure) inhibited repair of CPD, with a concomitant decrease in XPA expression. Addition of TLR4 agonist to TLR4+/+ BMDC cultures decreased XPA expression and inhibited CPD repair. Thus, strategies to inhibit TLR4 may allow for immunopreventive and immunotherapeutic approaches for managing UVB-induced cutaneous DNA damage and skin cancer. PMID:24326454

  8. Toll-like receptor-4 deficiency enhances repair of UVR-induced cutaneous DNA damage by nucleotide excision repair mechanism.

    PubMed

    Ahmad, Israr; Simanyi, Eva; Guroji, Purushotham; Tamimi, Iman A; delaRosa, Hillary J; Nagar, Anusuiya; Nagar, Priyamvada; Katiyar, Santosh K; Elmets, Craig A; Yusuf, Nabiha

    2014-06-01

    UVB-induced DNA damage has a critical role in the development of photoimmunosuppression. The purpose of this study was to determine whether repair of UVB-induced DNA damage is regulated by Toll-like receptor-4 (TLR4). When TLR4 gene knockout (TLR4(-/-)) and TLR4-competent (TLR4(+/+)) mice were subjected to 90?mJ?cm(-2) UVB radiation locally, DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) was repaired more efficiently in the skin and bone marrow-derived dendritic cells (BMDCs) of TLR4(-/-) mice in comparison to TLR4(+/+) mice. Expression of DNA repair gene XPA (xeroderma pigmentosum complementation group A) was significantly lower in skin and BMDCs of TLR4(+/+) mice than TLR4(-/-) mice after UVB exposure. When cytokine levels were compared in these strains after UVB exposure, BMDCs from UV-irradiated TLR4(-/-) mice produced significantly more interleukin (IL)-12 and IL-23 cytokines (P<0.05) than BMDCs from TLR4(+/+) mice. Addition of anti-IL-12 and anti-IL-23 antibodies to BMDCs of TLR4(-/-) mice (before UVB exposure) inhibited repair of CPDs, with a concomitant decrease in XPA expression. Addition of TLR4 agonist to TLR4(+/+) BMDC cultures decreased XPA expression and inhibited CPD repair. Thus, strategies to inhibit TLR4 may allow for immunopreventive and immunotherapeutic approaches for managing UVB-induced cutaneous DNA damage and skin cancer. PMID:24326454

  9. DNA base excision repair activities and pathway function in mitochondrial and cellular lysates from

    E-print Network

    Stuart, Jeffrey A.

    DNA base excision repair activities and pathway function in mitochondrial and cellular lysates from cells lacking mitochondrial DNA J.A. Stuart, K. Hashiguchi, D.M. Wilson III, W.C. Copeland1 , N.C. Souza Received December 31, 2003; Revised and Accepted March 21, 2004 ABSTRACT Mitochondrial DNA (mtDNA) contains

  10. Conformational Analysis of DNA Repair Intermediates by Time-Resolved Fluorescence Spectroscopy

    PubMed Central

    2009-01-01

    DNA repair enzymes are essential for maintaining the integrity of the DNA sequence. Unfortunately, very little is known about how these enzymes recognize damaged regions along the helix. Structural analysis of cellular repair enzymes bound to DNA reveals that these enzymes are able to recognize DNA in a variety of conformations. However, the prevalence of these deformations in the absence of enzymes remains unclear, as small populations of DNA conformations are often difficult to detect by NMR and X-ray crystallography. Here, we used time-resolved fluorescence spectroscopy to examine the conformational dynamics of linear, nicked, gapped, and bulged DNA in the absence of protein enzymes. This analysis reveals that damaged DNA is polymorphic in nature and able to adopt multiple individual conformations. We show that DNA repair intermediates that contain a one-nucleotide gap and bulge have a significant propensity to adopt conformations in which the orphan base resides outside the DNA helix, while DNA structures damaged by a nick or two-nucleotide gap favor intrahelical conformations. Because changes in DNA conformation appear to guide the recognition of DNA repair enzymes, we suggest that the current approach could be used to study the mechanism of DNA repair. PMID:19673467

  11. DNA repair and the evolution of transformation in the bacterium Bacillus subtilis

    SciTech Connect

    Michod, R.E.; Wojciechowski, M.F.; Hoelzer, M.A.

    1988-01-01

    The purpose of the work reported here is to test the hypothesis that natural genetic transformation in the bacterium Bacillus subtilis has evolved as a DNA repair system. Specifically, tests were made to determine whether transformation functions to provide DNA template for the bacterial cell to use in recombinational repair. The survivorship and the homologous transformation rate as a function of dose of ultraviolet irradiation (UV) was studied in two experimental treatments, in which cells were either transformed before (DNA-UV), or after (UV-DNA), treatment with UV. The results show that there is a qualitative difference in the relationship between the survival of transformed cells (sexual cells) and total cells (primarily asexual cells) in the two treatments. As predicted by the repair hypothesis, in the UV-DNA treatment, transformed cells had greater average survivorship than total cells, while in the DNA-UV treatment this relationship was reversed. There was also a consistent and qualitative difference between the UV-DNA and DNA-UV treatments in the relationship between the homologous transformation rate (transformed cells/total cells) and UV dosage. As predicted by the repair hypothesis, the homologous transformation rate increases with UV dose in the UV-DNA experiments but decreases with UV dose in the DNA-UV treatments. However, the transformation rate for plasmid DNA does not increase in a UV-DNA treatment. These results support the DNA repair hypothesis for the evolution of transformation in particular, and sex generally.

  12. DNA Damage Response Factors from Diverse Pathways, Including DNA Crosslink Repair, Mediate Alternative End Joining

    PubMed Central

    Howard, Sean M.; Yanez, Diana A.; Stark, Jeremy M.

    2015-01-01

    Alternative end joining (Alt-EJ) chromosomal break repair involves bypassing classical non-homologous end joining (c-NHEJ), and such repair causes mutations often with microhomology at the repair junction. Since the mediators of Alt-EJ are not well understood, we have sought to identify DNA damage response (DDR) factors important for this repair event. Using chromosomal break reporter assays, we surveyed an RNAi library targeting known DDR factors for siRNAs that cause a specific decrease in Alt-EJ, relative to an EJ event that is a composite of Alt-EJ and c-NHEJ (Distal-EJ between two tandem breaks). From this analysis, we identified several DDR factors that are specifically important for Alt-EJ relative to Distal-EJ. While these factors are from diverse pathways, we also found that most of them also promote homologous recombination (HR), including factors important for DNA crosslink repair, such as the Fanconi Anemia factor, FANCA. Since bypass of c-NHEJ is likely important for both Alt-EJ and HR, we disrupted the c-NHEJ factor Ku70 in Fanca-deficient mouse cells and found that Ku70 loss significantly diminishes the influence of Fanca on Alt-EJ. In contrast, an inhibitor of poly ADP-ribose polymerase (PARP) causes a decrease in Alt-EJ that is enhanced by Ku70 loss. Additionally, the helicase/nuclease DNA2 appears to have distinct effects from FANCA and PARP on both Alt-EJ, as well as end resection. Finally, we found that the proteasome inhibitor Bortezomib, a cancer therapeutic that has been shown to disrupt FANC signaling, causes a significant reduction in both Alt-EJ and HR, relative to Distal-EJ, as well as a substantial loss of end resection. We suggest that several distinct DDR functions are important for Alt-EJ, which include promoting bypass of c-NHEJ and end resection. PMID:25629353

  13. Open, repair and close again: chromatin dynamics and the response to UV-induced DNA damage.

    PubMed

    Palomera-Sanchez, Zoraya; Zurita, Mario

    2011-02-01

    Due to its link with human pathologies, including cancer, the mechanism of Nucleotide Excision Repair (NER) has been extensively studied. Most of the pathway and players have been defined using in vitro reconstitution experiments. However, in vivo, the NER machinery must deal with the presence of organized chromatin, which in some regions, such as heterochromatin, is highly condensed but still susceptible to DNA damage. A series of events involving different chromatin-remodeling factors and histone-modifying enzymes target chromatin regions that contain DNA lesions. CPDs change the structure of the nucleosome, allowing access to factors that can recognize the lesion. Next, DDB1-DDB2 protein complexes, which mono-ubiquitinate histones H2A, H3, and H4, recognize nucleosomes containing DNA lesions. The ubiquitinated nucleosome facilitates the recruitment of ATP-dependent chromatin-remodeling factors and the XPC-HR23B-Centrin 2 complex to the target region. Different ATP-dependent chromatin-remodeling factors, such as SWI/SNF and INO80, have been identified as having roles in the UV irradiation response prior to the action of the NER machinery. Subsequently, remodeling of the nucleosome allows enzymatic reactions by histone-modifying factors that may acetylate, methylate or demethylate specific histone residues. Intriguingly, some of these histone modifications are dependent on p53. These histone modifications and the remodeling of the nucleosome allow the entrance of TFIIH, XPC and other NER factors that remove the damaged strand; then, gap-filling DNA synthesis and ligation reactions are carried out after excision of the oligonucleotide with the lesion. Finally, after DNA repair, the initial chromatin structure has to be reestablished. Therefore, factors that modulate chromatin dynamics contribute to the NER mechanism, and they are significant in the future design of treatments for human pathologies related to genome instability and the appearance of drug-resistant tumors. PMID:21130713

  14. Insights into protein -- DNA interactions, stability and allosteric communications: A computational study of MutS-DNA recognition complexes

    NASA Astrophysics Data System (ADS)

    Negureanu, Lacramioara; Salsbury, Freddie

    2012-02-01

    DNA mismatch repair proteins (MMR) maintain genetic stability by recognizing and repairing mismatched bases and insertion/deletion loops mistakenly incorporated during DNA replication, and initiate cellular response to certain types of DNA damage. The most abundant MMR mismatch-binding factor in eukaryotes, MutS, recognizes and initiates the repair of base-base mismatches and small insertion/deletions. We performed molecular dynamics simulations on mismatched and damaged MutS-DNA complexes. A comprehensive DNA binding site analysis of relevant conformations shows that MutS proteins recognize the mismatched and platinum cross-linked DNA substrates in significantly different modes. Distinctive conformational changes associated with MutS binding to mismatched and damaged DNA have been identified and they provide insight into the involvement of MMR proteins in DNA-repair and DNA-damage pathways. Stability and allosteric interactions at the heterodimer interface associated with the mismatch and damage recognition step allow for prediction of key residues in MMR cancer-causing mutations. A rigorous hydrogen bonding analysis for ADP molecules at the ATPase binding sites is also presented. A large number of known MMR cancer causing mutations among the residues were found.

  15. Temple scientists target DNA repair to eradicate leukemia stem cells

    Cancer.gov

    Despite treatment with imatinib, a successful drug that targets chronic myeloid leukemia (CML), a deadly type of cancer, some patients may continue to be at risk for relapse because a tiny pool of stem cells is resistant to treatment and may even accumulate additional genetic aberrations, eventually leading to disease progression and relapse. These leukemia stem cells are full of genetic errors, loaded with potentially lethal breaks in DNA, and are in a state of constant self-repair. Now, scientists at Temple University School of Medicine (home to the Fox Chase Cancer Center) may have figured out a way to corral this stem cell activity and stunt further cancer development. In a series of experiments in mice with cancer and in cancer cells, they have shown that they can block the process by which leukemia stem cells repair themselves by targeting a particular protein, RAD52, which the cells depend on to fix genetic mistakes. The findings may lead to a new strategy to help overcome drug resistance that hinges on cancer stem cells gone awry.

  16. UV-inducible DNA repair in the cyanobacteria Anabaena spp

    SciTech Connect

    Levine, E.; Thiel, T.

    1987-09-01

    Strains of the filamentous cyanobacteria Anabaena spp. were capable of very efficient photoreactivation of UV irradiation-induced damage to DNA. Cells were resistant to several hundred joules of UV irradiation per square meter under conditions that allowed photoreactivation, and they also photoreactivated UV-damaged cyanophage efficiently. Reactivation of UV-irradiated cyanophage (Weigle reactivation) also occurred; UV irradiation of host cells greatly enhanced the plaque-forming ability of irradiated phage under nonphotoreactivating conditions. Postirradiation incubation of the host cells under conditions that allowed photoreactivation abolished the ability of the cells to perform Weigle reactivation of cyanophage N-1. Mitomycin C also induced Weigle reactivation of cyanophage N-1, but nalidixic acid did not. The inducible repair system (defined as the ability to perform Weigle reactivation of cyanophages) was relatively slow and inefficient compared with photoreactivation.

  17. SMCHD1 accumulates at DNA damage sites and facilitates the repair of DNA double-strand breaks

    PubMed Central

    Coker, Heather; Brockdorff, Neil

    2014-01-01

    ABSTRACT SMCHD1 is a structural maintenance of chromosomes (SMC) family protein involved in epigenetic gene silencing and chromosome organisation on the female inactive X chromosome and at a limited number of autosomal loci. Here, we demonstrate that SMCHD1 also has a role in DNA repair of double-strand breaks; SMCHD1 is recruited to sites of laser micro-irradiated damage along with other DNA repair factors, including Ku80 (also known as XRCC5 in mammals) and RAD51. Cells deficient in SMCHD1 show evidence of decreased efficiency of repair and cell viability after DNA damage. We suggest that SMCHD1 responds to DNA double-strand breaks in a manner that is likely to involve its ability to alter chromatin states to facilitate DNA repair. PMID:24790221

  18. Exo1 independent DNA mismatch repair involves multiple compensatory nucleases.

    PubMed

    Desai, Amar; Gerson, Stanton

    2014-09-01

    Functional DNA mismatch repair (MMR) is essential for maintaining the fidelity of DNA replication and genetic stability. In hematopoiesis, loss of MMR results in methylating agent resistance and a hematopoietic stem cell (HSC) repopulation defect. Additionally MMR failure is associated with a variety of human malignancies, notably Lynch syndrome. We focus on the 5'?3' exonuclease Exo1, the primary enzyme excising the nicked strand during MMR, preceding polymerase synthesis. We found that nuclease dead Exo1 mutant cells are sensitive to the O6-methylguanine alkylating agent temozolomide when given with the MGMT inactivator, O6benzylguanine (BG). Additionally we used an MMR reporter plasmid to verify that Exo1(mut) MEFs were able to repair G:T base mismatches in vitro. We showed that unlike other MMR deficient mouse models, Exo1(mut) mouse HSC did not gain a competitive survival advantage post temozolomide/BG treatment in vivo. To determine potential nucleases implicated in MMR in the absence of Exo1 nuclease activity, but in the presence of the inactive protein, we performed gene expression analyses of several mammalian nucleases in WT and Exo1(mut) MEFs before and after temozolomide treatment and identified upregulation of Artemis, Fan1, and Mre11. Partial shRNA mediated silencing of each of these in Exo1(mut) cells resulted in decreased MMR capacity and increased resistance to temozolomide/BG. We propose that nuclease function is required for fully functional MMR, but a portfolio of nucleases is able to compensate for loss of Exo1 nuclease activity to maintain proficiency. PMID:25037770

  19. New Tools to Study DNA Double-Strand Break Repair Pathway Choice

    PubMed Central

    Gomez-Cabello, Daniel; Jimeno, Sonia; Fernández-Ávila, María Jesús; Huertas, Pablo

    2013-01-01

    A broken DNA molecule is difficult to repair, highly mutagenic, and extremely cytotoxic. Such breaks can be repaired by homology-independent or homology-directed mechanisms. Little is known about the network that controls the repair pathway choice except that a licensing step for homology-mediated repair exists, called DNA-end resection. The choice between these two repair pathways is a key event for genomic stability maintenance, and an imbalance of the ratio is directly linked with human diseases, including cancer. Here we present novel reporters to study the balance between both repair options in human cells. In these systems, a double-strand break can be alternatively repaired by homology-independent or -dependent mechanisms, leading to the accumulation of distinct fluorescent proteins. These reporters thus allow the balance between both repair pathways to be analyzed in different experimental setups. We validated the reporters by analyzing the effect of protein downregulation of the DNA end resection and non-homologous end-joining pathways. Finally, we analyzed the role of the DNA damage response on double-strand break (DSB) repair mechanism selection. Our reporters could be used in the future to understand the roles of specific factors, whole pathways, or drugs in DSB repair pathway choice, or for genome-wide screening. Moreover, our findings can be applied to increase gene-targeting efficiency, making it a beneficial tool for a broad audience in the biological sciences. PMID:24155929

  20. DNA base excision repair of uracil residues in reconstituted nucleosome core particles.

    PubMed

    Nilsen, Hilde; Lindahl, Tomas; Verreault, Alain

    2002-11-01

    The human base excision repair machinery must locate and repair DNA base damage present in chromatin, of which the nucleosome core particle is the basic repeating unit. Here, we have utilized fragments of the Lytechinus variegatus 5S rRNA gene containing site-specific U:A base pairs to investigate the base excision repair pathway in reconstituted nucleosome core particles in vitro. The human uracil-DNA glycosylases, UNG2 and SMUG1, were able to remove uracil from nucleosomes. Efficiency of uracil excision from nucleosomes was reduced 3- to 9-fold when compared with naked DNA, and was essentially uniform along the length of the DNA substrate irrespective of rotational position on the core particle. Furthermore, we demonstrate that the excision repair pathway of an abasic site can be reconstituted on core particles using the known repair enzymes, AP-endonuclease 1, DNA polymerase beta and DNA ligase III. Thus, base excision repair can proceed in nucleosome core particles in vitro, but the repair efficiency is limited by the reduced activity of the uracil-DNA glycosylases and DNA polymerase beta on nucleosome cores. PMID:12411511

  1. GENETIC AND MOLECULAR ANALYSIS OF DNA DAMAGE REPAIR AND TOLERANCE PATHWAYS.

    SciTech Connect

    SUTHERLAND, B.M.

    2001-07-26

    Radiation can damage cellular components, including DNA. Organisms have developed a panoply of means of dealing with DNA damage. Some repair paths have rather narrow substrate specificity (e.g. photolyases), which act on specific pyrimidine photoproducts in a specific type (e.g., DNA) and conformation (double-stranded B conformation) of nucleic acid. Others, for example, nucleotide excision repair, deal with larger classes of damages, in this case bulky adducts in DNA. A detailed discussion of DNA repair mechanisms is beyond the scope of this article, but one can be found in the excellent book of Friedberg et al. [1] for further detail. However, some DNA damages and paths for repair of those damages important for photobiology will be outlined below as a basis for the specific examples of genetic and molecular analysis that will be presented below.

  2. Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice

    PubMed Central

    Jimeno, Sonia; Fernández-Ávila, María Jesús; Cruz-García, Andrés; Cepeda-García, Cristina; Gómez-Cabello, Daniel; Huertas, Pablo

    2015-01-01

    DNA double strand breaks are the most cytotoxic lesions that can occur on the DNA. They can be repaired by different mechanisms and optimal survival requires a tight control between them. Here we uncover protein deneddylation as a major controller of repair pathway choice. Neddylation inhibition changes the normal repair profile toward an increase on homologous recombination. Indeed, RNF111/UBE2M-mediated neddylation acts as an inhibitor of BRCA1 and CtIP-mediated DNA end resection, a key process in repair pathway choice. By controlling the length of ssDNA produced during DNA resection, protein neddylation not only affects the choice between NHEJ and homologous recombination but also controls the balance between different recombination subpathways. Thus, protein neddylation status has a great impact in the way cells respond to DNA breaks. PMID:25567988

  3. The Apollo 5' exonuclease functions together with TRF2 to protect telomeres from DNA repair.

    PubMed

    Lenain, Christelle; Bauwens, Serge; Amiard, Simon; Brunori, Michele; Giraud-Panis, Marie-Josèphe; Gilson, Eric

    2006-07-11

    A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several pathways that prevent checkpoint activation and chromosome fusions. In this work, we identified hSNM1B, here named Apollo, as a novel TRF2-interacting factor. Interestingly, the N-terminal domain of Apollo is closely related to that of Artemis, a factor involved in V(D)J recombination and DNA repair. Both proteins belong to the beta-CASP metallo-beta-lactamase family of DNA caretaker proteins. Apollo appears preferentially localized at telomeres in a TRF2-dependent manner. Reduced levels of Apollo exacerbate the sensitivity of cells to TRF2 inhibition, resulting in severe growth defects and an increased number of telomere-induced DNA-damage foci and telomere fusions. Purified Apollo protein exhibits a 5'-to-3' DNA exonuclease activity. We conclude that Apollo is a novel component of the human telomeric complex and works together with TRF2 to protect chromosome termini from being recognized and processed as DNA damage. These findings unveil a previously undescribed telomere-protection mechanism involving a DNA 5'-to-3' exonuclease. PMID:16730175

  4. Emerging roles of Jab1/CSN5 in DNA damage response, DNA repair, and cancer

    PubMed Central

    Pan, Yunbao; Yang, Huiling; Claret, Francois X

    2014-01-01

    Jab1/CSN5 is a multifunctional protein that plays an important role in integrin signaling, cell proliferation, apoptosis, and the regulation of genomic instability and DNA repair. Dysregulation of Jab1/CSN5 activity has been shown to contribute to oncogenesis by functionally inactivating several key negative regulatory proteins and tumor suppressors. In this review, we discuss our current understanding of the relationship between Jab1/CSN5 and DNA damage and summarize recent findings regarding opportunities for and challenges to therapeutic intervention. PMID:24495954

  5. DNA repair and the evolution of transformation in Bacillus subtilis. 3. Sex with damaged DNA

    SciTech Connect

    Hoelzer, M.A.; Michod, R.E. (Department of Ecology and Evolutionary Biology, University of Arizona, Tucson (USA))

    1991-06-01

    Natural genetic transformation in the bacterium Bacillus subtilis provides an experimental system for studying the evolutionary function of sexual recombination. The repair hypothesis proposes that during transformation the exogenous DNA taken up by cells is used as template for recombinational repair of damages in the recipient cell's genome. Earlier results demonstrated that the population density of transformed cells (i.e., sexual cells) increases, relative to nontransformed cells (primarily asexual cells), with increasing dosage of ultraviolet irradiation, provided that the cells are transformed with undamaged homologous DNA after they have become damaged. In nature, however, donor DNA for transformation is likely to come from cells that are as damaged as the recipient cells. In order to better simulate the effects of transformation in natural populations we conducted similar experiments as those just described using damaged donor DNA. The authors document in this report that transformants continue to increase in relative density even if they are transformed with damaged donor DNA. These results suggest that sites of transformation are often damaged sites in the recipient cell's genome.

  6. DNA clustering and genome complexity.

    PubMed

    Dios, Francisco; Barturen, Guillermo; Lebrón, Ricardo; Rueda, Antonio; Hackenberg, Michael; Oliver, José L

    2014-12-01

    Early global measures of genome complexity (power spectra, the analysis of fluctuations in DNA walks or compositional segmentation) uncovered a high degree of complexity in eukaryotic genome sequences. The main evolutionary mechanisms leading to increases in genome complexity (i.e. gene duplication and transposon proliferation) can all potentially produce increases in DNA clustering. To quantify such clustering and provide a genome-wide description of the formed clusters, we developed GenomeCluster, an algorithm able to detect clusters of whatever genome element identified by chromosome coordinates. We obtained a detailed description of clusters for ten categories of human genome elements, including functional (genes, exons, introns), regulatory (CpG islands, TFBSs, enhancers), variant (SNPs) and repeat (Alus, LINE1) elements, as well as DNase hypersensitivity sites. For each category, we located their clusters in the human genome, then quantifying cluster length and composition, and estimated the clustering level as the proportion of clustered genome elements. In average, we found a 27% of elements in clusters, although a considerable variation occurs among different categories. Genes form the lowest number of clusters, but these are the longest ones, both in bp and the average number of components, while the shortest clusters are formed by SNPs. Functional and regulatory elements (genes, CpG islands, TFBSs, enhancers) show the highest clustering level, as compared to DNase sites, repeats (Alus, LINE1) or SNPs. Many of the genome elements we analyzed are known to be composed of clusters of low-level entities. In addition, we found here that the clusters generated by GenomeCluster can be in turn clustered into high-level super-clusters. The observation of 'clusters-within-clusters' parallels the 'domains within domains' phenomenon previously detected through global statistical methods in eukaryotic sequences, and reveals a complex human genome landscape dominated by hierarchical clustering. PMID:25182383

  7. TAp63? enhances nucleotide excision repair through transcriptional regulation of DNA repair genes

    PubMed Central

    Liu, Juan; Lin, Meihua; Zhang, Cen; Wang, Duoduo; Feng, Zhaohui; Hu, Wenwei

    2012-01-01

    p63 and p73, two p53 family members, play crucial roles in development and tumor suppression. p63 and p73 have multiple isoforms, which have similar or distinct biological functions. Transactivation (TA) isoforms of p63 and p73 have high similarity with p53 and often have biological functions similar to p53. p53 plays an important role in nucleotide excision repair (NER) through transcriptional regulation of target genes involved in NER, including DDB2, XPC and GADD45. To investigate whether TAp63 and TAp73 play a similar role in NER, Saos2 cells with inducible expression of specific isoforms of TAp63 and TAp73, including TAp63?/?/? and TAp73?/?/? isoforms, were employed. Overexpression of TAp63? significantly enhances NER of ultraviolet (UV)-induced DNA damage, including cyclobutane pyrimidine dimers (CPDs) and 6–4 photoproducts, and enhances cell survival after UV irradiation in Soas2 cells. The enhancement of NER of UV-induced DNA damage by TAp63? was also confirmed in H1299 cells with overexpression of TAp63?. Consistently, knockdown of endogenous TAp63 decreases NER of UV-induced DNA damage in H1299 cells. TAp63?/? and TAp73?/?/? isoforms do not have a clear effect on NER in Saos2 or H1299 cells. TAp63? overexpression clearly induces the expression of DDB2, XPC and GADD45 at both RNA and protein levels. Furthermore, luciferase reporter assays show that TAp63? transcriptionally activates DDB2, XPC and GADD45 genes through the regulation of the p53 binding elements in these genes. These results demonstrate that TAp63? enhances NER to remove UV-induced DNA damage and maintain genomic stability through transcriptional induction of a set of NER proteins, which provides an additional important mechanism that contributes to the function of TAp63 in tumor suppression. PMID:22056305

  8. Differential effect of adriamycin on DNA replicative and repair synthesis in cultured neonatal rat cardiac cells.

    PubMed

    Fialkoff, H; Goodman, M F; Seraydarian, M W

    1979-04-01

    The effect of the potent antitumor antiobiotic Adriamycin (ADM) on DNA replication and unscheduled DNA synthesis in cultured rat cardiac cells was investigated. Autoradiography and [3H]thymidine incorporation studies were carried out on parallel cultures. DNA replication was depressed for up to 6 days following a 3-hr pulse of ADM administration. An ADM concentration of 1 microgram/ml which was effective in reducing replicative DNA synthesis by as much as 75% did not reduce the ability of cardiac cells to repair UV-damaged DNA. However, cells exposed to higher ADM concentrations failed to undergo significant UV-induced repair. In the absence of UV treatment, ADM did not stimulate unscheduled DNA synthesis. To account for the differential response of the cardiac cell cultures to replicate and repair DNA, we propose that ADM exerts a localized effect on DNA synthesis covering a region proximal to its primary intercalation site. PMID:421215

  9. Mechanistic Comparison of High-Fidelity and Error-Prone DNA Polymerases and Ligases Involved in DNA Repair

    E-print Network

    Tsai, Ming-Daw

    Mechanistic Comparison of High-Fidelity and Error-Prone DNA Polymerases and Ligases Involved in DNA for the DNA-Repairing Enzyme Pol 348 2.8. Is the Mechanism of Pol an Anomaly? 348 3. Mammalian Error-Prone DNA Polymerases 349 3.1. Background 349 3.2. Kinetic Mechanism of Error-Prone DNA Polymerases 349 3.3. Structures

  10. 8-Oxoguanine causes neurodegeneration during MUTYH-mediated DNA base excision repair.

    PubMed

    Sheng, Zijing; Oka, Sugako; Tsuchimoto, Daisuke; Abolhassani, Nona; Nomaru, Hiroko; Sakumi, Kunihiko; Yamada, Hidetaka; Nakabeppu, Yusaku

    2012-12-01

    8-Oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species, is associated with carcinogenesis and neurodegeneration. Although the mechanism by which 8-oxoG causes carcinogenesis is well understood, the mechanism by which it causes neurodegeneration is unknown. Here, we report that neurodegeneration is triggered by MUTYH-mediated excision repair of 8-oxoG-paired adenine. Mutant mice lacking 8-oxo-2'-deoxyguanosine triphosphate-depleting (8-oxo-dGTP-depleting) MTH1 and/or 8-oxoG-excising OGG1 exhibited severe striatal neurodegeneration, whereas mutant mice lacking MUTYH or OGG1/MUTYH were resistant to neurodegeneration under conditions of oxidative stress. These results indicate that OGG1 and MTH1 are protective, while MUTYH promotes neurodegeneration. We observed that 8-oxoG accumulated in the mitochondrial DNA of neurons and caused calpain-dependent neuronal loss, while delayed nuclear accumulation of 8-oxoG in microglia resulted in PARP-dependent activation of apoptosis-inducing factor and exacerbated microgliosis. These results revealed that neurodegeneration is a complex process caused by 8-oxoG accumulation in the genomes of neurons and microglia. Different signaling pathways were triggered by the accumulation of single-strand breaks in each type of DNA generated during base excision repair initiated by MUTYH, suggesting that suppression of MUTYH may protect the brain under conditions of oxidative stress. PMID:23143307

  11. Comparative DNA damage and repair induced by misonidazole, CB 1954 and RSU 1069

    SciTech Connect

    Dale, L.D.; Widdick, D.A.; Edwards, D.I.; Biol, G.I.

    1989-04-01

    We have studied the ability of CB 1954, misonidazole, and RSU 1069 to induce biologically relevant DNA damage in single- and double-stranded phi X174 DNA under oxic, anoxic, and anoxic reductive conditions using a double transfection technique. In addition, the ability of the three drugs to induce the SOS repair response in E. coli under the same conditions was measured. Whereas the relative order of DNA damage was RSU 1069 greater than CB 1954 greater than misonidazole the order in inducing SOS repair was RSU 1069 greater than misonidazole greater than CB 1954. Drug-induced damage by RSU 1069 involves enhanced damage by endonuclease III suggesting drug-induced pyrimidine damage. There appears to be no correlation between drug-induced damage and the degree of SOS repair induction. Thus it appears that enzymes other than, or in addition to, those of the SOS repair system are involved in the repair of DNA damage induced by these drugs.

  12. ATPase-Dependent Control of the Mms21 SUMO Ligase during DNA Repair.

    PubMed

    Bermúdez-López, Marcelino; Pociño-Merino, Irene; Sánchez, Humberto; Bueno, Andrés; Guasch, Clàudia; Almedawar, Seba; Bru-Virgili, Sergi; Garí, Eloi; Wyman, Claire; Reverter, David; Colomina, Neus; Torres-Rosell, Jordi

    2015-03-01

    Modification of proteins by SUMO is essential for the maintenance of genome integrity. During DNA replication, the Mms21-branch of the SUMO pathway counteracts recombination intermediates at damaged replication forks, thus facilitating sister chromatid disjunction. The Mms21 SUMO ligase docks to the arm region of the Smc5 protein in the Smc5/6 complex; together, they cooperate during recombinational DNA repair. Yet how the activity of the SUMO ligase is controlled remains unknown. Here we show that the SUMO ligase and the chromosome disjunction functions of Mms21 depend on its docking to an intact and active Smc5/6 complex, indicating that the Smc5/6-Mms21 complex operates as a large SUMO ligase in vivo. In spite of the physical distance separating the E3 and the nucleotide-binding domains in Smc5/6, Mms21-dependent sumoylation requires binding of ATP to Smc5, a step that is part of the ligase mechanism that assists Ubc9 function. The communication is enabled by the presence of a conserved disruption in the coiled coil domain of Smc5, pointing to potential conformational changes for SUMO ligase activation. In accordance, scanning force microscopy of the Smc5-Mms21 heterodimer shows that the molecule is physically remodeled in an ATP-dependent manner. Our results demonstrate that the ATP-binding activity of the Smc5/6 complex is coordinated with its SUMO ligase, through the coiled coil domain of Smc5 and the physical remodeling of the molecule, to promote sumoylation and chromosome disjunction during DNA repair. PMID:25764370

  13. ATPase-Dependent Control of the Mms21 SUMO Ligase during DNA Repair

    PubMed Central

    Sánchez, Humberto; Bueno, Andrés; Guasch, Clàudia; Almedawar, Seba; Bru-Virgili, Sergi; Garí, Eloi; Wyman, Claire; Reverter, David; Colomina, Neus; Torres-Rosell, Jordi

    2015-01-01

    Modification of proteins by SUMO is essential for the maintenance of genome integrity. During DNA replication, the Mms21-branch of the SUMO pathway counteracts recombination intermediates at damaged replication forks, thus facilitating sister chromatid disjunction. The Mms21 SUMO ligase docks to the arm region of the Smc5 protein in the Smc5/6 complex; together, they cooperate during recombinational DNA repair. Yet how the activity of the SUMO ligase is controlled remains unknown. Here we show that the SUMO ligase and the chromosome disjunction functions of Mms21 depend on its docking to an intact and active Smc5/6 complex, indicating that the Smc5/6-Mms21 complex operates as a large SUMO ligase in vivo. In spite of the physical distance separating the E3 and the nucleotide-binding domains in Smc5/6, Mms21-dependent sumoylation requires binding of ATP to Smc5, a step that is part of the ligase mechanism that assists Ubc9 function. The communication is enabled by the presence of a conserved disruption in the coiled coil domain of Smc5, pointing to potential conformational changes for SUMO ligase activation. In accordance, scanning force microscopy of the Smc5-Mms21 heterodimer shows that the molecule is physically remodeled in an ATP-dependent manner. Our results demonstrate that the ATP-binding activity of the Smc5/6 complex is coordinated with its SUMO ligase, through the coiled coil domain of Smc5 and the physical remodeling of the molecule, to promote sumoylation and chromosome disjunction during DNA repair. PMID:25764370

  14. The comet assay, DNA damage, DNA repair and cytotoxicity: hedgehogs are not always dead.

    PubMed

    Lorenzo, Yolanda; Costa, Solange; Collins, Andrew R; Azqueta, Amaya

    2013-07-01

    DNA damage is commonly measured at the level of individual cells using the so-called comet assay (single-cell gel electrophoresis). As the frequency of DNA breaks increases, so does the fraction of the DNA extending towards the anode, forming the comet tail. Comets with almost all DNA in the tail are often referred to as 'hedgehog' comets and are widely assumed to represent apoptotic cells. We review the literature and present theoretical and empirical arguments against this interpretation. The level of DNA damage in these comets is far less than the massive fragmentation that occurs in apoptosis. 'Hedgehog' comets are formed after moderate exposure of cells to, for example, H2O2, but if the cells are incubated for a short period, 'hedgehogs' are no longer seen. We confirm that this is not because DNA has degraded further and been lost from the gel, but because the DNA is repaired. The comet assay may detect the earliest stages of apoptosis, but as it proceeds, comets disappear in a smear of unattached DNA. It is clear that 'hedgehogs' can correspond to one level on a continuum of genotoxic damage, are not diagnostic of apoptosis and should not be regarded as an indicator of cytotoxicity. PMID:23630247

  15. DNA repair in bacterial cultures and plasmid DNA exposed to infrared laser for treatment of pain

    NASA Astrophysics Data System (ADS)

    Canuto, K. S.; Sergio, L. P. S.; Marciano, R. S.; Guimarães, O. R.; Polignano, G. A. C.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2013-06-01

    Biostimulation of tissues by low intensity lasers has been described on a photobiological basis and clinical protocols are recommended for treatment of various diseases, but their effects on DNA are controversial. The objective of this work was to evaluate effects of low intensity infrared laser exposure on survival and bacterial filamentation in Escherichia coli cultures, and induction of DNA lesions in bacterial plasmids. In E. coli cultures and plasmids exposed to an infrared laser at fluences used to treat pain, bacterial survival and filamentation and DNA lesions in plasmids were evaluated by electrophoretic profile. Data indicate that the infrared laser (i) increases survival of E. coli wild type in 24 h of stationary growth phase, (ii) induces bacterial filamentation, (iii) does not alter topological forms of plasmids and (iv) does not alter the electrophoretic profile of plasmids incubated with exonuclease III or formamidopyrimidine DNA glycosylase. A low intensity infrared laser at the therapeutic fluences used to treat pain can alter survival of E. coli wild type, induce filamentation in bacterial cells, depending on physiologic conditions and DNA repair, and induce DNA lesions other than single or double DNA strand breaks or alkali-labile sites, which are not targeted by exonuclease III or formamidopyrimidine DNA glycosylase.

  16. Cetuximab Induces Eme1-Mediated DNA Repair: a Novel Mechanism for Cetuximab Resistance12

    PubMed Central

    Weinandy, Agnieszka; Piroth, Marc D.; Goswami, Anand; Nolte, Kay; Sellhaus, Bernd; Gerardo-Nava, Jose; Eble, Michael; Weinandy, Stefan; Cornelissen, Christian; Clusmann, Hans; Lüscher, Bernhard; Weis, Joachim

    2014-01-01

    Overexpression of the epidermal growth factor receptor (EGFR) is observed in a large number of neoplasms. The monoclonal antibody cetuximab/Erbitux is frequently applied to treat EGFR-expressing tumors. However, the application of cetuximab alone or in combination with radio- and/or chemotherapy often yields only little benefit for patients. In the present study, we describe a mechanism that explains resistance of both tumor cell lines and cultured primary human glioma cells to cetuximab. Treatment of these cells with cetuximab promoted DNA synthesis in the absence of increased proliferation, suggesting that DNA repair pathways were activated. Indeed, we observed that cetuximab promoted the activation of the DNA damage response pathway and prevented the degradation of essential meiotic endonuclease 1 homolog 1 (Eme1), a heterodimeric endonuclease involved in DNA repair. The increased levels of Eme1 were necessary for enhanced DNA repair, and the knockdown of Eme1 was sufficient to prevent efficient DNA repair in response to ultraviolet-C light or megavoltage irradiation. These treatments reduced the survival of tumor cells, an effect that was reversed by cetuximab application. Again, this protection was dependent on Eme1. Taken together, these results suggest that cetuximab initiates pathways that result in the stabilization of Eme1, thereby resulting in enhanced DNA repair. Accordingly, cetuximab enhances DNA repair, reducing the effectiveness of DNA-damaging therapies. This aspect should be considered when using cetuximab as an antitumor agent and suggests that Eme1 is a negative predictive marker. PMID:24731284

  17. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways.

    PubMed Central

    Boulton, S J; Jackson, S P

    1996-01-01

    Ku, a heterodimer of polypeptides of approximately 70 kDa and 80 kDa (Ku70 and Ku80, respectively), binds avidly to DNA double-strand breaks (DSBs). Mammalian cells defective in Ku are hypersensitive to ionizing radiation due to a deficiency in DSB repair. Here, we show that the simple inactivation of the Saccharomyces cerevisiae Ku70 homologue (Yku70p), does not lead to increased radiosensitivity. However, yku70 mutations enhance the radiosensitivity of rad52 strains, which are deficient in homologous recombination. Through establishing a rapid and reproducible in vivo plasmid rejoining assay, we show that Yku70p plays a crucial role in the repair of DSBs bearing cohesive termini. Whereas this damage is repaired accurately in YKU70 backgrounds, in yku70 mutant strains terminal deletions of up to several hundred bp occur before ligation ensues. Interestingly, this error-prone DNA repair pathway utilizes short homologies between the two recombining molecules and is thus highly reminiscent of a predominant form of DSB repair that operates in vertebrates. These data therefore provide evidence for two distinct and evolutionarily conserved illegitimate recombination pathways. One of these is accurate and Yku70p-dependent, whereas the other is error-prone and Yku70-independent. Furthermore, our studies suggest that Yku70 promotes genomic stability both by promoting accurate DNA repair and by serving as a barrier to error-prone repair processes. Images PMID:8890183

  18. XRCC1 deficiency increased the DNA damage induced by ?-ray in HepG2 cell: Involvement of DSB repair and cell cycle arrest.

    PubMed

    Niu, Yujie; Zhang, Xing; Zheng, Yuxin; Zhang, Rong

    2013-09-01

    ?-ray irradiation can induce DNA damages which include base damages, single-strand breaks and double-strand breaks in various type cells. The DNA repair protein XRCC1, as a part of the BER pathway, forms complexes with DNA polymerase beta, DNA ligase III and poly-ADP-ribose polymerase (PARP) in the repair of DNA single strand breaks and also affects the repair of double strand breaks. However, it is still not known well whether XRCC1 contributes to affect the irradiation sensitivity and DNA damage in HepG2 cell and the potential mechanism. Hence, the purpose of this study was to explore whether abrogation of XRCC1 gene expression by shRNA could reduce DNA repair and thus sensitize HepG2 cells to ?-ray. Cell viability was measured by Trypan blue staining and cloning efficiency assay. The DNA damage was detected by Comet assay. Apoptosis and cell cycle were detected by flow cytometry. The DNA-PKcs and gadd153 mRNA expression were determined by Real-time PCR. Our results showed that abrogation of XRCC 1 could sensitize HepG2 cells to ?-ray. This enhanced sensitivity could be attributed to the increased DNA damage and increased cell cycle arrest, which might be related with the increasing of DNA-PKcs and gadd153 mRNA expression. Therefore, our results suggested that the ?-ray irradiation sensitivity could be increased by targeting inhibition of XRCC1 in HepG2 cell. PMID:23708312

  19. Quantifying clustered DNA damage induction and repair by gel electrophoresis, electronic imaging and number average length analysis

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)

    2003-01-01

    Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.

  20. FUS-regulated RNA metabolism and DNA damage repair

    PubMed Central

    Zhou, Yueqin; Liu, Songyan; Öztürk, Arzu; Hicks, Geoffrey G

    2014-01-01

    Cytoplasmic inclusion of RNA binding protein FUS/TLS in neurons and glial cells is a characteristic pathology of a subgroup of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Dysregulation of RNA metabolism caused by FUS cytoplasmic inclusion emerges to be a key event in FUS-associated ALS/FTD pathogenesis. Our recent discovery of a FUS autoregulatory mechanism and its dysregulation in ALS-FUS mutants demonstrated that dysregulated alternative splicing can directly exacerbate the pathological FUS accumulation. We show here that FUS targets RNA for pre-mRNA alternative splicing and for the processing of long intron-containing transcripts, and that these targets are enriched for genes in neurogenesis and gene expression regulation. We also identify that FUS RNA targets are enriched for genes in the DNA damage response pathway. Together, the data support a model in which dysregulated RNA metabolism and DNA damage repair together may render neurons more vulnerable and accelerate neurodegeneration in ALS and FTD. PMID:25083344

  1. Impact of Age-Associated Cyclopurine Lesions on DNA Repair Helicases

    PubMed Central

    Banerjee, Taraswi; Sommers, Joshua A.; Kaplan, Daniel L.; Kuper, Jochen; Kisker, Caroline; Brosh, Robert M.

    2014-01-01

    8,5? cyclopurine deoxynucleosides (cPu) are locally distorting DNA base lesions corrected by nucleotide excision repair (NER) and proposed to play a role in neurodegeneration prevalent in genetically defined Xeroderma pigmentosum (XP) patients. In the current study, purified recombinant helicases from different classifications based on sequence homology were examined for their ability to unwind partial duplex DNA substrates harboring a single site-specific cPu adduct. Superfamily (SF) 2 RecQ helicases (RECQ1, BLM, WRN, RecQ) were inhibited by cPu in the helicase translocating strand, whereas helicases from SF1 (UvrD) and SF4 (DnaB) tolerated cPu in either strand. SF2 Fe-S helicases (FANCJ, DDX11 (ChlR1), DinG, XPD) displayed marked differences in their ability to unwind the cPu DNA substrates. Archaeal Thermoplasma acidophilum XPD (taXPD), homologue to the human XPD helicase involved in NER DNA damage verification, was impeded by cPu in the non-translocating strand, while FANCJ was uniquely inhibited by the cPu in the translocating strand. Sequestration experiments demonstrated that FANCJ became trapped by the translocating strand cPu whereas RECQ1 was not, suggesting the two SF2 helicases interact with the cPu lesion by distinct mechanisms despite strand-specific inhibition for both. Using a protein trap to simulate single-turnover conditions, the rate of FANCJ or RECQ1 helicase activity was reduced 10-fold and 4.5-fold, respectively, by cPu in the translocating strand. In contrast, single-turnover rates of DNA unwinding by DDX11 and UvrD helicases were only modestly affected by the cPu lesion in the translocating strand. The marked difference in effect of the translocating strand cPu on rate of DNA unwinding between DDX11 and FANCJ helicase suggests the two Fe-S cluster helicases unwind damaged DNA by distinct mechanisms. The apparent complexity of helicase encounters with an unusual form of oxidative damage is likely to have important consequences in the cellular response to DNA damage and DNA repair. PMID:25409515

  2. Homologous recombination is a primary pathway to repair DNA double-strand breaks generated during DNA rereplication.

    PubMed

    Truong, Lan N; Li, Yongjiang; Sun, Emily; Ang, Katrina; Hwang, Patty Yi-Hwa; Wu, Xiaohua

    2014-10-17

    Re-initiation of DNA replication at origins within a given cell cycle would result in DNA rereplication, which can lead to genome instability and tumorigenesis. DNA rereplication can be induced by loss of licensing control at cellular replication origins, or by viral protein-driven multiple rounds of replication initiation at viral origins. DNA double-strand breaks (DSBs) are generated during rereplication, but the mechanisms of how these DSBs are repaired to maintain genome stability and cell viability are poorly understood in mammalian cells. We generated novel EGFP-based DSB repair substrates, which specifically monitor the repair of rereplication-associated DSBs. We demonstrated that homologous recombination (HR) is an important mechanism to repair rereplication-associated DSBs, and sister chromatids are used as templates for such HR-mediated DSB repair. Micro-homology-mediated non-homologous end joining (MMEJ) can also be used but to a lesser extent compared to HR, whereas Ku-dependent classical non-homologous end joining (C-NHEJ) has a minimal role to repair rereplication-associated DSBs. In addition, loss of HR activity leads to severe cell death when rereplication is induced. Therefore, our studies identify HR, the most conservative repair pathway, as the primary mechanism to repair DSBs upon rereplication. PMID:25160628

  3. Crosslinking of DNA repair and replication proteins to DNA in cells treated with 6-thioguanine and UVA

    PubMed Central

    Gueranger, Quentin; Kia, Azadeh; Frith, David; Karran, Peter

    2011-01-01

    The DNA of patients taking immunosuppressive and anti-inflammatory thiopurines contains 6-thioguanine (6-TG) and their skin is hypersensitive to ultraviolet A (UVA) radiation. DNA 6-TG absorbs UVA and generates reactive oxygen species that damage DNA and proteins. Here, we show that the DNA damage includes covalent DNA–protein crosslinks. An oligonucleotide containing a single 6-TG is photochemically crosslinked to cysteine-containing oligopeptides by low doses of UVA. Crosslinking is significantly more efficient if guanine sulphonate (GSO3)—an oxidized 6-TG and a previously identified UVA photoproduct—replaces 6-TG, suggesting that GSO3 is an important reaction intermediate. Crosslinking occurs via oligopeptide sulphydryl and free amino groups. The oligonucleotide–oligopeptide adducts are heat stable but are partially reversed by reducing treatments. UVA irradiation of human cells containing DNA 6-TG induces extensive heat- and reducing agent-resistant covalent DNA–protein crosslinks and diminishes the recovery of some DNA repair and replication proteins from nuclear extracts. DNA–protein crosslinked material has an altered buoyant density and can be purified by banding in cesium chloride (CsCl) gradients. PCNA, the MSH2 mismatch repair protein and the XPA nucleotide excision repair (NER) factor are among the proteins detectable in the DNA-crosslinked material. These findings suggest that the 6-TG/UVA combination might compromise DNA repair by sequestering essential proteins. PMID:21398635

  4. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells.

    PubMed

    Ganesan, Shanthi; Keating, Aileen F

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6?M) for 24 or 48h. Cell viability was reduced (P<0.05) after 48h of exposure to 3 or 6?M PM. The NOR-G-OH DNA adduct was detected after 24h of 6?M PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48h by exposure to both PM concentrations. Phosphorylated H2AX (?H2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, ?H2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. PMID:25497287

  5. Metabolic modulation of chromatin: implications for DNA repair and genomic integrity

    PubMed Central

    Liu, Jinping; Kim, Jeongkyu; Oberdoerffer, Philipp

    2013-01-01

    The maintenance of genomic integrity in response to DNA damage is tightly linked to controlled changes in the damage-proximal chromatin environment. Many of the chromatin modifying enzymes involved in DNA repair depend on metabolic intermediates as cofactors, suggesting that changes in cellular metabolism can have direct consequences for repair efficiency and ultimately, genome stability. Here, we discuss how metabolites may contribute to DNA double-strand break repair, and how alterations in cellular metabolism associated with both aging and tumorigenesis may affect the integrity of our genomes. PMID:24065984

  6. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    SciTech Connect

    Thompson, L.H.; Salazar, E.P.; Brookman, K.W.; Collins, C.C.; Stewart, S.A.; Busch, D.B.; Weber, C.A.

    1986-04-02

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs.

  7. Elevated Level of DNA Damage and Impaired Repair of Oxidative DNA Damage in Patients with Recurrent Depressive Disorder

    PubMed Central

    Czarny, Piotr; Kwiatkowski, Dominik; Kacperska, Dagmara; Kawczy?ska, Daria; Talarowska, Monika; Orzechowska, Agata; Bielecka-Kowalska, Anna; Szemraj, Janusz; Gaandlstrokecki, Piotr; ?liwi?ski, Tomasz

    2015-01-01

    Background Depressive disorder (DD), including recurrent DD (rDD), is a severe psychological disease, which affects a large percentage of the world population. Although pathogenesis of the disease is not known, a growing body of evidence shows that inflammation together with oxidative stress may contribute to development of DD. Since reactive oxygen species produced during stress may damage DNA, we wanted to evaluate the extent of DNA damage and efficiency of DNA repair in patients with depression. Material/Methods We measured and compared the extent of endogenous DNA damage – single- and double-strand breaks, alkali-labile sites, and oxidative damage of the pyrimidines and purines – in peripheral blood mononuclear cells isolated from rDD patients (n=40) and healthy controls (n=46) using comet assay. We also measured DNA damage evoked by hydrogen peroxide and monitored changes in DNA damage during repair incubation. Results We found an increased number DNA breaks, alkali-labile sites, and oxidative modification of DNA bases in the patients compared to the controls. Exposure to hydrogen peroxide evoked the same increased damage in both groups. Examination of the repair kinetics of both groups revealed that the lesions were more efficiently repaired in the controls than in the patients. Conclusions For the first time we showed that patients with depression, compared with non-depresses individuals, had more DNA breaks, alkali-labile sites, and oxidative DNA damage, and that those lesions may be accumulated by impairments of the DNA repair systems. More studies must be conducted to elucidate the role of DNA damage and repair in depression. PMID:25656523

  8. Elevated level of DNA damage and impaired repair of oxidative DNA damage in patients with recurrent depressive disorder.

    PubMed

    Czarny, Piotr; Kwiatkowski, Dominik; Kacperska, Dagmara; Kawczy?ska, Daria; Talarowska, Monika; Orzechowska, Agata; Bielecka-Kowalska, Anna; Szemraj, Janusz; Ga?ecki, Piotr; ?liwi?ski, Tomasz

    2015-01-01

    Background Depressive disorder (DD), including recurrent DD (rDD), is a severe psychological disease, which affects a large percentage of the world population. Although pathogenesis of the disease is not known, a growing body of evidence shows that inflammation together with oxidative stress may contribute to development of DD. Since reactive oxygen species produced during stress may damage DNA, we wanted to evaluate the extent of DNA damage and efficiency of DNA repair in patients with depression. Material and Methods We measured and compared the extent of endogenous DNA damage - single- and double-strand breaks, alkali-labile sites, and oxidative damage of the pyrimidines and purines - in peripheral blood mononuclear cells isolated from rDD patients (n=40) and healthy controls (n=46) using comet assay. We also measured DNA damage evoked by hydrogen peroxide and monitored changes in DNA damage during repair incubation. Results We found an increased number DNA breaks, alkali-labile sites, and oxidative modification of DNA bases in the patients compared to the controls. Exposure to hydrogen peroxide evoked the same increased damage in both groups. Examination of the repair kinetics of both groups revealed that the lesions were more efficiently repaired in the controls than in the patients. Conclusions For the first time we showed that patients with depression, compared with non-depresses individuals, had more DNA breaks, alkali-labile sites, and oxidative DNA damage, and that those lesions may be accumulated by impairments of the DNA repair systems. More studies must be conducted to elucidate the role of DNA damage and repair in depression. PMID:25656523

  9. Overview of DNA Repair in Trypanosoma cruzi, Trypanosoma brucei, and Leishmania major

    PubMed Central

    Passos-Silva, Danielle Gomes; Rajão, Matheus Andrade; Nascimento de Aguiar, Pedro Henrique; Vieira-da-Rocha, João Pedro; Machado, Carlos Renato; Furtado, Carolina

    2010-01-01

    A wide variety of DNA lesions arise due to environmental agents, normal cellular metabolism, or intrinsic weaknesses in the chemical bonds of DNA. Diverse cellular mechanisms have evolved to maintain genome stability, including mechanisms to repair damaged DNA, to avoid the incorporation of modified nucleotides, and to tolerate lesions (translesion synthesis). Studies of the mechanisms related to DNA metabolism in trypanosomatids have been very limited. Together with recent experimental studies, the genome sequencing of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major, three related pathogens with different life cycles and disease pathology, has revealed interesting features of the DNA repair mechanism in these protozoan parasites, which will be reviewed here. PMID:20976268

  10. RPA antagonizes microhomology-mediated repair of DNA double-strand breaks.

    PubMed

    Deng, Sarah K; Gibb, Bryan; de Almeida, Mariana Justino; Greene, Eric C; Symington, Lorraine S

    2014-04-01

    Microhomology-mediated end joining (MMEJ) is a Ku- and ligase IV-independent mechanism for the repair of DNA double-strand breaks that contributes to chromosome rearrangements. Here we used a chromosomal end-joining assay to determine the genetic requirements for MMEJ in Saccharomyces cerevisiae. We found that end resection influences the ability to expose microhomologies; however, it is not rate limiting for MMEJ in wild-type cells. The frequency of MMEJ increased by up to 350-fold in rfa1 hypomorphic mutants, suggesting that replication protein A (RPA) bound to the single-stranded DNA (ssDNA) overhangs formed by resection prevents spontaneous annealing between microhomologies. In vitro, the mutant RPA complexes were unable to fully extend ssDNA and were compromised in their ability to prevent spontaneous annealing. We propose that the helix-destabilizing activity of RPA channels ssDNA intermediates from mutagenic MMEJ to error-free homologous recombination, thus preserving genome integrity. PMID:24608368

  11. DNA damage action spectroscopy and DNA repair in intact organisms: Alfalfa seedlings

    SciTech Connect

    Sutherland, B.M.; Quaite, F.E.; Sutherland, J.C.

    1993-12-31

    Understanding the effects of UV, and increased levels of UV, on DNA in living organisms requires knowledge of both the frequency of damages induced by the quantities and quality (wavelength composition) of the damaging radiation, and of the capacity of the organisms to carry out efficient and accurate repair. The major levels of uncertainty in understanding the responses of intact organisms, both plant and animal, to UV indicates that we cannot assess accurately the impact of stratospheric ozone depletion without major increases in knowledge of DNA damage and repair. What repair paths does alfalfa use for dealing with UV damages? The rate of pyrimidine dimers induced at a low exposure of 280 nm radiation to alfalfa seedlings, was observed to be about 8 dimers/million bases. After UV exposure, the seedlings were kept in the dark or exposed to blue light filtered by a yellow. filter which excluded wavelengths shorter than about 405 nm. Seedlings so exposed carry out photorepair, but do not seem to remove dimers by excision.

  12. Chromatin acetylation, ?-amyloid precursor protein and its binding partner FE65 in DNA double strand break repair.

    PubMed

    Szumiel, Irena; Foray, Nicolas

    2011-01-01

    Among post-translational modifications of chromatin proteins taking place in DNA double strand break (DSB) repair, acetylation plays a prominent role. This review lists several facts and hypotheses concerning this process. Lack of acetyltransferase TIP60 (HIV-Tat interacting protein of 60 kDa) activity results in cells with defective DSB repair. The enzyme is present in the nucleus in a multimeric protein complex. TIP60 dependent activation of ATM (ataxia telangiectasia mutated kinase) is an early event in the response to DNA breakage. Other important acetylations are those of histones H4 and ?H2AX. Correct reconstruction of the damaged site is critical for survival and prevention of genetic and epigenetic changes in the cell that may affect the function of its daughter cells. Recently, two proteins with previously unsuspected functions in DSB repair have been identified as active in this process: Alzheimer ?-amyloid precursor protein (APP) and its binding partner FE65, ?-amyloid precursor binding protein. Their participation in DSB repair in both neuronal and non-neuronal cells is related to acetylation carried out by the acetyltransferase complex. The same function is ascribed to heterochromatin protein 1 (HP1). So far, the relations (if any) between TIP60 activation by HP1 and by the FE65 complex remain unidentified. PMID:21403922

  13. Molecular targets, DNA breakage, DNA repair: Their roles in mutation induction in mammalian germ cells

    SciTech Connect

    Sega, G.A.

    1989-01-01

    Variability in genetic sensitivity among different germ-cell stages in the mammal to various mutagens could be the result of how much chemical reaches the different stages, what molecular targets may be affected in the different stages and whether or not repair of lesions occurs. Several chemicals have been found to bind very strongly to protamine in late-spermatid and early-spermatozoa stages in the mouse. The chemicals also produce their greatest genetic damage in these same germ-cell stages. While chemical binding to DNA has not been correlated with the level of induced genetic damage, DNA breakage in the sensitive stages has been shown to increase. This DNA breakage is believed to indirectly result from chemical binding to sulfhydryl groups in protamine which prevents normal chromatin condensation within the sperm nucleus. 22 refs., 5 figs.

  14. Novel DNA mismatch repair activity involving YB-1 in human mitochondria

    PubMed Central

    de Souza-Pinto, Nadja C.; Mason, Penelope A.; Hashiguchi, Kazunari; Weissman, Lior; Tian, Jingyan; Guay, David; Lebel, Michel; Stevnsner, Tinna V.; Rasmussen, Lene Juel; Bohr, Vilhelm A.

    2009-01-01

    Maintenance of the mitochondrial genome (mtDNA) is essential for proper cellular function. The accumulation of damage and mutations in the mtDNA leads to diseases, cancer, and aging. Mammalian mitochondria have proficient base excision repair, but the existence of other DNA repair pathways is still unclear. Deficiencies in DNA mismatch repair (MMR), which corrects base mismatches and small loops, are associated with DNA microsatellite instability, accumulation of mutations, and cancer. MMR proteins have been identified in yeast and coral mitochondria; however, MMR proteins and function have not yet been detected in human mitochondria. Here we show that human mitochondria have a robust mismatch-repair activity, which is distinct from nuclear MMR. Key nuclear MMR factors were not detected in mitochondria, and similar mismatch-binding activity was observed in mitochondrial extracts from cells lacking MSH2, suggesting distinctive pathways for nuclear and mitochondrial MMR. We identified the repair factor YB-1 as a key candidate for a mitochondrial mismatch-binding protein. This protein localizes to mitochondria in human cells, and contributes significantly to the mismatch-binding and mismatch-repair activity detected in HeLa mitochondrial extracts, which are significantly decreased when the intracellular levels of YB-1 are diminished. Moreover, YB-1 depletion in cells increases mitochondrial DNA mutagenesis. Our results show that human mitochondria contain a functional MMR repair pathway in which YB-1 participates, likely in the mismatch binding and recognition steps. PMID:19272840

  15. The Friedreich's ataxia protein frataxin modulates DNA base excision repair in prokaryotes and mammals

    PubMed Central

    Thierbach, René; Drewes, Gunnar; Fusser, Markus; Voigt, Anja; Kuhlow, Doreen; Blume, Urte; Schulz, Tim J.; Reiche, Carina; Glatt, Hansruedi; Epe, Bernd; Steinberg, Pablo; Ristow, Michael

    2010-01-01

    DNA-repair mechanisms enable cells to maintain their genetic information by protecting it from mutations that may cause malignant growth. Recent evidence suggests that specific DNA-repair enzymes contain ISCs (iron–sulfur clusters). The nuclearencoded protein frataxin is essential for the mitochondrial biosynthesis of ISCs. Frataxin deficiency causes a neurodegenerative disorder named Friedreich's ataxia in humans. Various types of cancer occurring at young age are associated with this disease, and hence with frataxin deficiency. Mice carrying a hepatocyte-specific disruption of the frataxin gene develop multiple liver tumours for unresolved reasons. In the present study, we show that frataxin deficiency in murine liver is associated with increased basal levels of oxidative DNA base damage. Accordingly, eukaryotic V79 fibroblasts overexpressing human frataxin show decreased basal levels of these modifications, while prokaryotic Salmonella enterica serotype Typhimurium TA104 strains transformed with human frataxin show decreased mutation rates. The repair rates of oxidative DNA base modifications in V79 cells overexpressing frataxin were significantly higher than in control cells. Lastly, cleavage activity related to the ISC-independent repair enzyme 8-oxoguanine glycosylase was found to be unaltered by frataxin overexpression. These findings indicate that frataxin modulates DNA-repair mechanisms probably due to its impact on ISC-dependent repair proteins, linking mitochondrial dysfunction to DNA repair and tumour initiation. PMID:20819074

  16. Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity.

    PubMed

    Balestrazzi, Alma; Confalonieri, Massimo; Macovei, Anca; Donà, Mattia; Carbonera, Daniela

    2011-03-01

    Crop productivity is strictly related to genome stability, an essential requisite for optimal plant growth/development. Genotoxic agents (e.g., chemical agents, radiations) can cause both chemical and structural damage to DNA. In some cases, they severely affect the integrity of plant genome by inducing base oxidation, which interferes with the basal processes of replication and transcription, eventually leading to cell death. The cell response to oxidative stress includes several DNA repair pathways, which are activated to remove the damaged bases and other lesions. Information concerning DNA repair in plants is still limited, although results from gene profiling and mutant analysis suggest possible differences in repair mechanisms between plants and other eukaryotes. The present review focuses on the base- and nucleotide excision repair (BER, NER) pathways, which operate according to the most common DNA repair rule (excision of damaged bases and replacement by the correct nucleotide), highlighting the most recent findings in plants. An update on DNA repair in organelles, chloroplasts and mitochondria is also provided. Finally, it is generally acknowledged that DNA repair plays a critical role during seed imbibition, preserving seed vigor. Despite this, only a limited number of studies, described here, dedicated to seeds are currently available. PMID:21170715

  17. [DNA repair pathways and non-small cell lung cancer: clinical perspectives].

    PubMed

    Olaussen, Ken André; Planchard, David; Adam, Julien; Soria, Jean-Charles

    2011-03-01

    The role of DNA repair pathways is to maintain cellular integrity. However, genetic instability is a driving force in the development of tumor cells and many tumors are characterized by the loss of functionality in one or several DNA repair pathways. However, if genetic instability trespasses a certain point, it will induce cell death. Therefore, the dysfunctionality of several DNA repair pathways could represent an Achille's heel for the tumor, if such pathways could be pharmacologically targeted. For instance, the inhibition of PARP1, a protein in the base excision repair pathway (BER) is sufficient to induce cell death in cancer cells bearing BRCA1 or BRCA2 mutations, which are essential proteins in the homologous recombination repair pathway (HR). This phenomenon called "synthetic letality" constitutes recent knowledge and we discuss here the possibility that this strategy might be applied to innovative treatment options in lung cancer. Further, several DNA repair proteins could be used in lung cancer as prognostic and/or predictive biomarkers of response to chemotherapy or radiation. Indeed, specific biomarkers of each DNA repair pathway do exist and could guide oncologists in therapeutic decisions (e.g. ERCC1 and cisplatin). Finally, pharmacologic modulation of DNA repair proteins might also be interesting as it might increase therapeutic efficacy of anticancer strategies (DNA-interacting chemotherapy and radiotherapy). Here, we will present the principal DNA repair pathways and associated biomarkers (ERCC1, MSH2, PARP1 and BRCA1/2), and discuss their status in non-small call lung cancer (NSCLC). PMID:21459711

  18. Analysis of Actively Transcribed DNA Repair Using a Transfection-Based System

    PubMed Central

    Latimer, Jean J.

    2015-01-01

    Host cell reactivation (HCR) is a transfection-based assay in which intact cells repair damage localized to exogenous DNA. This chapter provides instructions for the application of this technique, using as an exemplar UV irradiation as a source of damage to a luciferase reporter plasmid. Through measurement of the activity of a successfully transcribed and translated reporter enzyme, the amount of damaged plasmid that a cell can “reactivate” or repair and express can be quantitated. Different DNA repair pathways can be analyzed by this technique by damaging the reporter plasmid in different ways. Since it involves repair of a transcriptionally active gene, when applied to UV damage the HCR assay measures the capacity of the host cells to perform transcription-coupled repair, a subset of the overall nucleotide excision repair pathway that specifically targets transcribed gene sequences. PMID:24623251

  19. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  20. Elucidating the digital control mechanism for DNA damage repair with the

    E-print Network

    Elucidating the digital control mechanism for DNA damage repair with the p53­Mdm2 system: single a dilemma about the underlying control system mechanism. Specifically, in response to DNA damage)? The more funda- mental issue concerning the underlying DNA damage response mechanism is captured

  1. Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC

    Microsoft Academic Search

    Deborah Hoogstraten; Steven Bergink; Vincent H. M. Verbiest; Martijn S. Luijsterburg; Bart Geverts; Christoffel Dinant; Jan H. J. Hoeijmakers; Adriaan B. Houtsmuller

    2008-01-01

    To investigate how the nucleotide excision repair initiator XPC locates DNA damage in mammalian cell nuclei we analyzed the dynamics of GFP-tagged XPC. Photobleaching experiments showed that XPC constantly associates with and dissociates from chromatin in the absence of DNA damage. DNA-damaging agents retard the mobility of XPC, and UV damage has the most pronounced effect on the mobility of

  2. DNA Repair Activity for Oxidative Damage and Risk of Lung Cancer

    Microsoft Academic Search

    Tamar Paz-Elizur; Meir Krupsky; Sara Blumenstein; Dalia Elinger; Edna Schechtman; Zvi Livneh

    2003-01-01

    Background: Although smoking is a major cause of lung cancer, only a proportion of smokers develop lung cancer, suggesting a genetic predisposition in some individuals. Be- cause tobacco smoking is associated with the increased for- mation of DNA lesions, including those induced from oxida- tive damage, we investigated whether the activity of the DNA repair enzyme 8-oxoguanine DNA N-glycosylase (OGG),

  3. A universal sensing platform based on the repair ligation-mediated light-producing DNA machine.

    PubMed

    Xu, Qinfeng; Zhang, Yan; Zhang, Chun-Yang

    2015-03-17

    The repair ligation-mediated light-producing DNA machine can produce light through transforming the repetitive DNA cleavage/ligation motions into optical energy without the requirement of either external reporting reagents or excitation light, and it can be applied for sensitive and selective detection of DNA, thrombin, adenosine, potassium ions (K(+)) and endonuclease even in human serum. PMID:25714986

  4. Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast

    Microsoft Academic Search

    Ran Tao; Hua Chen; Chan Gao; Peng Xue; Fuquan Yang; Jing-Dong J Han; Bing Zhou; Ye-Guang Chen

    2011-01-01

    Xbp1 has been shown to regulate the cell cycle as a transcriptional repressor in budding yeast Saccharomyces cerevisiae. In this study, we demonstrated that Xbp1 regulates DNA double-strand break (DSB) repair in S. cerevisiae. Xbp1 physically and genetically interacts with the histone deacetylase Rpd3 complex. Chromatin immunoprecipitation revealed that Xbp1 is required for efficient deacetylation of histone H4 flanking DSBs

  5. Regulation of NuA4 Histone Acetyltransferase Activity in Transcription and DNA Repair by Phosphorylation of Histone H4

    Microsoft Academic Search

    Rhea T. Utley; Nicolas Lacoste; Olivier Jobin-Robitaille; Stephane Allard; Jacques Cote ´

    2005-01-01

    The NuA4 complex is a histone H4\\/H2A acetyltransferase involved in transcription and DNA repair. While histone acetylation is important in many processes, it has become increasingly clear that additional histone modifications also play a crucial interrelated role. To understand how NuA4 action is regulated, we tested various H4 tail peptides harboring known modifications in HAT assays. While dimethylation at arginine

  6. Meiotic and mitotic functions of mammalian RAD 18 in DNA double-strand break repair

    Microsoft Academic Search

    A. Inagaki

    2010-01-01

    This thesis focuses on the role of RAD 18 in DNA double-strand break (DSB ) repair.\\u000aMuch is known about the role of RAD 18, and its critical substrate PCNA in replication\\u000adamage bypass (RDB ) repair. However, the roles of RAD 18 in DSB repair are still\\u000aelusive, although several interaction partners of RAD 18 have been identified, and

  7. DNA Damage Binding Protein Component DDB1 Participates in Nucleotide Excision Repair through DDB2 DNA-binding and Cullin 4A Ubiquitin Ligase Activity

    Microsoft Academic Search

    Jinyou Li; Qi-En Wang; Qianzheng Zhu; Mohamed A. El-Mahdy; Gulzar Wani

    Functional defect in DNA damage binding (DDB) activity has a direct relationship to decreased nucleotide excision repair (NER) and increased susceptibility to cancer. DDB forms a complex with cullin 4A (Cul4A), which is now known to ubiquitylate DDB2, XPC, and histone H2A. However, the exact role of DDB1 in NER is unclear. In this study, we show that DDB1 knockdown

  8. Age-related increase in mitochondrial DNA damage and loss of DNA repair capacity in the neural retina.

    PubMed

    Wang, Ai Ling; Lukas, Thomas J; Yuan, Ming; Neufeld, Arthur H

    2010-11-01

    With age, there is increased mitochondrial DNA (mtDNA) damage in the central nervous system (CNS) that may underlie, contribute or increase the susceptibility to certain neurodegenerative diseases. We examined retinas from the eyes of young and old rodents for mtDNA damage and for changes in selected DNA repair enzymes. We found increased levels of 8-hydroxy-2'-deoxy-guanosine (8-OHdG) by immunohistochemical labeling for the oxidative DNA damage marker in aged rodent retinas, which was confirmed by quantitative ELISA. 8-OHdG co-localized with the mitochondrial enzyme superoxide dismutase (MnSOD), suggesting damage to mtDNA. Most of the damaged mtDNA was in the photoreceptors and retinal ganglion cells. Measurements of nuclear DNA (nDNA) and mtDNA lesions indicated that DNA damage was primarily in mtDNA in aged retinas. The increased damage to mtDNA may be due to decreased levels of DNA repair enzymes in the aged retina. Using qPCR, Western blots and immunohistochemistry, we determined the levels of DNA repair enzymes for oxidative damage. In retinas from old eyes compared to retinas from young eyes, we found decreased levels of poly (ADP-ribose) polymerase 1 (PARP1), mutY homolog (MYH) and endonuclease III homologue 1 (NTH1). Our results suggest that normal, age-related, increased mtDNA damage, likely due to decreased repair capacity in aged retinas, may be a susceptibility factor that underlies age-related retinal diseases. PMID:19084291

  9. The Yin and Yang of Repair Mechanisms in DNA Structure-induced Genetic Instability

    PubMed Central

    Vasquez, Karen M.; Wang, Guliang

    2013-01-01

    DNA can adopt a variety of secondary structures that deviate from the canonical Watson-Crick B-DNA form. More than 10 types of non-canonical or non-B DNA secondary structures have been characterized, and the sequences that have the capacity to adopt such structures are very abundant in the human genome. Non-B DNA structures have been implicated in many important biological processes and can serve as sources of genetic instability, implicating them in disease and evolution. Non-B DNA conformations interact with a wide variety of proteins involved in replication, transcription, DNA repair, and chromatin architectural regulation. In this review, we will focus on the interactions of DNA repair proteins with non-B DNA and their roles in genetic instability, as the proteins and DNA involved in such interactions may represent plausible targets for selective therapeutic intervention. PMID:23219604

  10. DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes.

    PubMed

    Bailey, S M; Meyne, J; Chen, D J; Kurimasa, A; Li, G C; Lehnert, B E; Goodwin, E H

    1999-12-21

    Recent findings intriguingly place DNA double-strand break repair proteins at chromosome ends in yeast, where they help maintain normal telomere length and structure. In the present study, an essential telomere function, the ability to cap and thereby protect chromosomes from end-to-end fusions, was assessed in repair-deficient mouse cell lines. By using fluorescence in situ hybridization with a probe to telomeric DNA, spontaneously occurring chromosome aberrations were examined for telomere signal at the points of fusion, a clear indication of impaired end-capping. Telomeric fusions were not observed in any of the repair-proficient controls and occurred only rarely in a p53 null mutant. In striking contrast, chromosomal end fusions that retained telomeric sequence were observed in nontransformed DNA-PK(cs)-deficient cells, where they were a major source of chromosomal instability. Metacentric chromosomes created by telomeric fusion became even more abundant in these cells after spontaneous immortalization. Restoration of repair proficiency through transfection with a functional cDNA copy of the human DNA-PK(cs) gene reduced the number of fusions compared with a negative transfection control. Virally transformed cells derived from Ku70 and Ku80 knockout mice also displayed end-to-end fusions. These studies demonstrate that DNA double-strand break repair genes play a dual role in maintaining chromosomal stability in mammalian cells, the known role in repairing incidental DNA damage, as well as a new protective role in telomeric end-capping. PMID:10611310

  11. Statistical mechanics of topologically constrained DNA and nucleoprotein complexes

    NASA Astrophysics Data System (ADS)

    Giovan, Stefan Michael

    A complex connection exists between the 3 dimensional topological state of DNA in living organisms and biological processes including gene expression, DNA replication, recombination and repair. A significant limitation in developing a detailed, quantitative understanding of this connection is due to a lack of rigorous methods to calculate statistical mechanical properties of DNA molecules with complex topologies, including supercoiling, looping and knotting. This dissertation's main focus is on developing such methods and applying them to realistic DNA and nucleoprotein models. In chapter 2, a method is presented to calculate free energies and J factors of protein mediated DNA loops by normal mode analysis (NMA). This method is similar to calculations performed previously but with several significant advances. We apply the method to the specific case of DNA looping mediated by Cre recombinase protein. J factors calculated by our method are compared to experimental measurements to extract geometric and elastic properties of the Cre-DNA synaptic complex. In particular, the results suggest the existence of a synaptic complex that is more flexible than previously expected and may be explained by a stable intermediate in the reaction pathway that deviates significantly from the planar crystal structure. Calculating free energies of DNA looping is difficult in general, especially when considering intermediate length scales such as plasmid sized DNA which may readily adopt multiple topological states. In chapter 3, a novel method is presented to obtain free energies of semiflexible biopolymers with fixed topologies and arbitrary ratios of contour length L to persistence length P. High accuracy is demonstrated by calculating free energies of specific DNA knots with L/P = 20 and L/P = 40, corresponding to DNA lengths of 3000 and 6000 base pairs, respectively. We then apply the method to study the free-energy landscape for a model of a synaptic nucleoprotein complex containing a pair of looped domains, revealing a bifurcation in the location of optimal synapse (crossover) sites. This transition is relevant to target-site selection by DNA-binding proteins that occupy multiple DNA sites separated by large linear distances along the genome, a problem that arises naturally in gene regulation, DNA recombination, and the action of type-II topoisomerases.

  12. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair.

    PubMed

    Ochi, Takashi; Blackford, Andrew N; Coates, Julia; Jhujh, Satpal; Mehmood, Shahid; Tamura, Naoka; Travers, Jon; Wu, Qian; Draviam, Viji M; Robinson, Carol V; Blundell, Tom L; Jackson, Stephen P

    2015-01-01

    XRCC4 and XLF are two structurally related proteins that function in DNA double-strand break (DSB) repair. Here, we identify human PAXX (PAralog of XRCC4 and XLF, also called C9orf142) as a new XRCC4 superfamily member and show that its crystal structure resembles that of XRCC4. PAXX interacts directly with the DSB-repair protein Ku and is recruited to DNA-damage sites in cells. Using RNA interference and CRISPR-Cas9 to generate PAXX(-/-) cells, we demonstrate that PAXX functions with XRCC4 and XLF to mediate DSB repair and cell survival in response to DSB-inducing agents. Finally, we reveal that PAXX promotes Ku-dependent DNA ligation in vitro and assembly of core nonhomologous end-joining (NHEJ) factors on damaged chromatin in cells. These findings identify PAXX as a new component of the NHEJ machinery. PMID:25574025

  13. Enhancement of repair of radiation induced DNA strand breaks in human cells by Ganoderma mushroom polysaccharides

    Microsoft Academic Search

    Thulasi G. Pillai; C. K. K. Nair; K. K. Janardhanan

    2010-01-01

    The DNA repair ability of a cell is vital to the integrity of its genome and thus to its normal functioning and that of the organism. The repair-enhancing property of polysaccharides isolated from Ganoderma lucidum which belongs to the polyporaceae family was determined by comet assay in human peripheral blood leukocytes. Comet parameters were studied at 2Gy gamma irradiation with

  14. DNA Repair Capacity of Lymphoblastoid Cell Lines From Sisters Discordant for Breast Cancer

    Microsoft Academic Search

    David O. Kennedy; Meenakshi Agrawal; Jing Shen; Mary Beth Terry; Fang Fang Zhang; Ruby T. Senie; Grazyna Motykiewicz; Regina M. Santella

    2005-01-01

    Background: Interindividual differences in DNA repair ca- pacity may influence cancer risk. We tested whether the nucleotide excision repair pathway was deficient in breast cancer case patients by analyzing sister pairs. Methods: Cell lines derived from sisters discordant for breast cancer (137 families containing 158 case patients and 154 control sisters) were obtained from the Metropolitan New York Registry of

  15. Meiosis: early DNA double-strand breaks pave the way for inter-homolog repair.

    PubMed

    Borde, Valérie; de Massy, Bernard

    2015-03-23

    During meiotic prophase, the repair of induced DNA double-strand breaks (DSBs) promotes interactions between homologous chromosomes (homologs). A study by Joshi et al. (2015) now highlights how the global DSB activity in a nucleus influences the choice between the homolog and the sister chromatid for DSB repair. PMID:25805132

  16. Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis.

    PubMed

    Nagel, Zachary D; Margulies, Carrie M; Chaim, Isaac A; McRee, Siobhan K; Mazzucato, Patrizia; Ahmad, Anwaar; Abo, Ryan P; Butty, Vincent L; Forget, Anthony L; Samson, Leona D

    2014-05-01

    The capacity to repair different types of DNA damage varies among individuals, making them more or less susceptible to the detrimental health consequences of damage exposures. Current methods for measuring DNA repair capacity (DRC) are relatively labor intensive, often indirect, and usually limited to a single repair pathway. Here, we describe a fluorescence-based multiplex flow-cytometric host cell reactivation assay (FM-HCR) that measures the ability of human cells to repair plasmid reporters, each bearing a different type of DNA damage or different doses of the same type of DNA damage. FM-HCR simultaneously measures repair capacity in any four of the following pathways: nucleotide excision repair, mismatch repair, base excision repair, nonhomologous end joining, homologous recombination, and methylguanine methyltransferase. We show that FM-HCR can measure interindividual DRC differences in a panel of 24 cell lines derived from genetically diverse, apparently healthy individuals, and we show that FM-HCR may be used to identify inhibitors or enhancers of DRC. We further develop a next-generation sequencing-based HCR assay (HCR-Seq) that detects rare transcriptional mutagenesis events due to lesion bypass by RNA polymerase, providing an added dimension to DRC measurements. FM-HCR and HCR-Seq provide powerful tools for exploring relationships among global DRC, disease susceptibility, and optimal treatment. PMID:24757057

  17. Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis

    PubMed Central

    Nagel, Zachary D.; Margulies, Carrie M.; Chaim, Isaac A.; McRee, Siobhan K.; Mazzucato, Patrizia; Ahmad, Anwaar; Abo, Ryan P.; Butty, Vincent L.; Forget, Anthony L.; Samson, Leona D.

    2014-01-01

    The capacity to repair different types of DNA damage varies among individuals, making them more or less susceptible to the detrimental health consequences of damage exposures. Current methods for measuring DNA repair capacity (DRC) are relatively labor intensive, often indirect, and usually limited to a single repair pathway. Here, we describe a fluorescence-based multiplex flow-cytometric host cell reactivation assay (FM-HCR) that measures the ability of human cells to repair plasmid reporters, each bearing a different type of DNA damage or different doses of the same type of DNA damage. FM-HCR simultaneously measures repair capacity in any four of the following pathways: nucleotide excision repair, mismatch repair, base excision repair, nonhomologous end joining, homologous recombination, and methylguanine methyltransferase. We show that FM-HCR can measure interindividual DRC differences in a panel of 24 cell lines derived from genetically diverse, apparently healthy individuals, and we show that FM-HCR may be used to identify inhibitors or enhancers of DRC. We further develop a next-generation sequencing-based HCR assay (HCR-Seq) that detects rare transcriptional mutagenesis events due to lesion bypass by RNA polymerase, providing an added dimension to DRC measurements. FM-HCR and HCR-Seq provide powerful tools for exploring relationships among global DRC, disease susceptibility, and optimal treatment. PMID:24757057

  18. Xeroderma Pigmentosum Group F Caused by a Defect in a Structure-Specific DNA Repair Endonuclease

    Microsoft Academic Search

    Anneke M Sijbers; Wouter L de Laat; Rafael R Ariza; Maureen Biggerstaff; Ying-Fei Wei; Jonathan G Moggs; Kenneth C Carter; Brenda K Shell; Elizabeth Evans; Mariska C de Jong; Suzanne Rademakers; Johan de Rooij; Nicolaas G. J Jaspers; Jan H. J Hoeijmakers; Richard D Wood

    1996-01-01

    Nucleotide excision repair, which is defective in xeroderma pigmentosum (XP), involves incision of a DNA strand on each side of a lesion. We isolated a human gene homologous to yeast Rad1 and found that it corrects the repair defects of XP group F as well as rodent groups 4 and 11. Causative mutations and strongly reduced levels of encoded protein

  19. Evolutionary patterns of DNA base composition and correlation to polymorphisms in DNA repair systems.

    PubMed

    Li, Xianran; Scanlon, Michael J; Yu, Jianming

    2015-04-20

    DNA base composition is a fundamental genome feature. However, the evolutionary pattern of base composition and its potential causes have not been well understood. Here, we report findings from comparative analysis of base composition at the whole-genome level across 2210 species, the polymorphic-site level across eight population comparison sets, and the mutation-site level in 12 mutation-tracking experiments. We first demonstrate that base composition follows the individual-strand base equality rule at the genome, chromosome and polymorphic-site levels. More intriguingly, clear separation of base-composition values calculated across polymorphic sites was consistently observed between basal and derived groups, suggesting common underlying mechanisms. Individuals in the derived groups show an A&T-increase/G&C-decrease pattern compared with the basal groups. Spontaneous and induced mutation experiments indicated these patterns of base composition change can emerge across mutation sites. With base-composition across polymorphic sites as a genome phenotype, genome scans with human 1000 Genomes and HapMap3 data identified a set of significant genomic regions enriched with Gene Ontology terms for DNA repair. For three DNA repair genes (BRIP1, PMS2P3 and TTDN), ENCODE data provided evidence for interaction between genomic regions containing these genes and regions containing the significant SNPs. Our findings provide insights into the mechanisms of genome evolution. PMID:25765652

  20. Cisplatin-DNA damage and repair in peripheral blood leukocytes in vivo and in vitro.

    PubMed Central

    Dabholkar, M; Bradshaw, L; Parker, R J; Gill, I; Bostick-Bruton, F; Muggia, F M; Reed, E

    1992-01-01

    We have extended our studies on the relationship between cisplatin/carboplatin-induced DNA damage in readily accessible tissue(s) and clinical response to therapy. Such an approach may assist in the study of cancer drug resistance and in establishing parameters for assessing human populations for sensitivity to DNA damaging agents in the environment. Platinum-DNA adduct levels were measured by atomic absorbance spectrometry. DNA repair capacity was assessed in human T-lymphocytes by the ability to repair cisplatin lesions in cellular DNA or in transfected plasmid DNA. In a "blinded" study of 21 patients receiving combination cisplatin/carboplatin drug therapy, there was a direct relationship between DNA damage in leukocytes and disease response (summary two-sided p = 0.00011). The cohort of patients had 15 different tumor types, suggesting that blood tissue and tumor tissue of an individual may process platinum-DNA damage similarly regardless of the tissue of origin of the tumor. In leukocytes in vivo, persistence and accumulation were prominent features of the cisplatin-DNA adduct profile. Functional DNA repair capacity has been studied in eight human leukocyte cell lines in vitro (three, T-cells; three, B-cells; one, monocytic; one, promyelocytic), using a host cell reactivation assay with cisplatin-damaged pRSVcat. In the three T cell lines studied, host cell reactivation efficiency was directly related to the cells' abilities to repair cisplatin-damaged cellular DNA (correlation coefficient = 0.993).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1486863

  1. DNA repair and resistance to UV-B radiation in western spotted frogs

    USGS Publications Warehouse

    Blaustein, A.R.; Hays, J.B.; Hoffman, P.D.; Chivers, D.P.; Kiesecker, J.M.; Leonard, W.P.; Marco, A.; Olson, D.H.; Reaser, J.K.; Anthony, R.G.

    1999-01-01

    We assessed DNA repair and resistance to solar radiation in eggs of members of the western spotted frog complex (Rana pretiosa and R. luteiventris), species whose populations are suffering severe range reductions and declines. Specifically, we measured the activity of photoreactivating enzyme (photolyase) in oocytes of spotted frogs. In some species, photoreactivation is the most important mechanism for repair of UV-damaged DNA. Using field experiments, we also compared the hatching success of spotted frog embryos at natural oviposition sites at three elevations, where some embryos were subjected to ambient levels of UV-B radiation and others were shielded from UV-B radiation. Compared with other amphibians, photolyase activities in spotted frogs were relatively high. At all sites, hatching success was unaffected by UV-B. Our data support the interpretation that amphibian embryos with relatively high levels of photolyase are more resistant to UV-B radiation than those with lower levels of photolyase. At the embryonic stage, UV-B radiation does not presently seem to be contributing to the population declines of spotted frogs.

  2. 55K isoform of CDK9 associates with Ku70 and is involved in DNA repair

    SciTech Connect

    Liu, Hongbing; Herrmann, Christine H.; Chiang, Karen; Sung, Tzu-Ling [Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030 (United States)] [Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030 (United States); Moon, Sung-Hwan [Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States)] [Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Donehower, Lawrence A. [Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030 (United States) [Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030 (United States); Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Rice, Andrew P., E-mail: arice@bcm.edu [Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030 (United States)

    2010-06-25

    Positive elongation factor b (P-TEFb) is a cellular protein kinase that is required for RNA polymerase II (RNAP II) transcriptional elongation of protein coding genes. P-TEFb is a set of different molecular complexes, each containing CDK9 as the catalytic subunit. There are two isoforms of the CDK9 protein - the major 42 KDa CDK9 isoform and the minor 55KDa isoform that is translated from an in-frame mRNA that arises from an upstream transcriptional start site. We found that shRNA depletion of the 55K CDK9 protein in HeLa cells induces apoptosis and double-strand DNA breaks (DSBs). The levels of apoptosis and DSBs induced by the depletion were reduced by expression of a 55K CDK9 protein variant resistant to the shRNA, indicating that these phenotypes are the consequence of depletion of the 55K protein and not off-target effects. We also found that the 55K CDK9 protein, but not the 42K CDK9 protein, specifically associates with Ku70, a protein involved in DSB repair. Our findings suggest that the 55K CDK9 protein may function in repair of DNA through an association with Ku70.

  3. The Involvement of DNA-Damage and -Repair Defects in Neurological Dysfunction

    PubMed Central

    Kulkarni, Avanti; Wilson, David M.

    2008-01-01

    A genetic link between defects in DNA repair and neurological abnormalities has been well established through studies of inherited disorders such as ataxia telangiectasia and xeroderma pigmentosum. In this review, we present a comprehensive summary of the major types of DNA damage, the molecular pathways that function in their repair, and the connection between defective DNA-repair responses and specific neurological disease. Particular attention is given to describing the nature of the repair defect and its relationship to the manifestation of the associated neurological dysfunction. Finally, the review touches upon the role of oxidative stress, a leading precursor to DNA damage, in the development of certain neurodegenerative pathologies, such as Alzheimer's and Parkinson's. PMID:18319069

  4. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens.

    PubMed

    van der Veen, Stijn; Tang, Christoph M

    2015-02-01

    During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host. PMID:25578955

  5. The Modified Human DNA Repair Enzyme O6-Methylguanine-DNA Methyltransferase Is a Negative Regulator of Estrogen Receptor-Mediated Transcription upon Alkylation DNA Damage

    Microsoft Academic Search

    ALVIN K. C. TEO; HUE KIAN OH; RAHMEN B. ALI; BENJAMIN F. L. LI

    2001-01-01

    Cell proliferation requires precise control to prevent mutations from replication of (unrepaired) damaged DNA in cells exposed spontaneously to mutagens. Here we show that the modified human DNA repair enzyme O6-methylguanine-DNA methyltransferase (R-MGMT), formed from the suicidal repair of the mutagenic O6-alkylguanine (6RG) lesions by MGMT in the cells exposed to alkylating carcinogens, functions in such control by preventing the

  6. Interspecies comparisons of tissue DNA damage, repair, fixation, and replication.

    PubMed Central

    Slaga, T J

    1988-01-01

    The many anatomical, physiological, and biochemical differences among various mammalian species make it difficult to extrapolate carcinogenic potency data from animals to humans. The process is further complicated by the multistep origin of most malignant tumors in animals and humans due to the interaction of target cells with both endogenous and exogenous factors. Species differences in these aspects of carcinogenesis must also be considered when attempting to evaluate the carcinogenic risks of chemicals to humans. Cancer development in animals involves at least three distinct stages: initiation, promotion, and progression. Intra- and interspecies differences in susceptibility to carcinogenesis may be related to any one or a combination of these stages. Variation in species susceptibility to tumor initiation may result from differences in the abilities of various species to metabolize a potential carcinogen to an ultimate carcinogenic form and/or to detoxify the carcinogen. Most comparative studies among species have only revealed subtle differences in metabolism. DNA adducts from several activated carcinogens have been found to be the same in a number of tissues from various species, including humans. Capacity for DNA repair is apparently a critical factor in the initiation of carcinogenesis in target cells of different species but is less critical among mice that differ in susceptibility to two-stage carcinogenesis of the skin and liver. Susceptibility variations among stocks and strains to such carcinogenesis appear to be related to alterations in tumor promotion. Additional comparative studies are critically needed on all aspects of carcinogenesis to permit effective extrapolation of carcinogenic potency data from animals to humans. PMID:3289910

  7. Noncoding RNAs in DNA Repair and Genome Integrity

    PubMed Central

    Wan, Guohui; Liu, Yunhua; Han, Cecil; Zhang, Xinna

    2014-01-01

    Abstract Significance: The well-studied sequences in the human genome are those of protein-coding genes, which account for only 1%–2% of the total genome. However, with the advent of high-throughput transcriptome sequencing technology, we now know that about 90% of our genome is extensively transcribed and that the vast majority of them are transcribed into noncoding RNAs (ncRNAs). It is of great interest and importance to decipher the functions of these ncRNAs in humans. Recent Advances: In the last decade, it has become apparent that ncRNAs play a crucial role in regulating gene expression in normal development, in stress responses to internal and environmental stimuli, and in human diseases. Critical Issues: In addition to those constitutively expressed structural RNA, such as ribosomal and transfer RNAs, regulatory ncRNAs can be classified as microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), and long noncoding RNAs (lncRNAs). However, little is known about the biological features and functional roles of these ncRNAs in DNA repair and genome instability, although a number of miRNAs and lncRNAs are regulated in the DNA damage response. Future Directions: A major goal of modern biology is to identify and characterize the full profile of ncRNAs with regard to normal physiological functions and roles in human disorders. Clinically relevant ncRNAs will also be evaluated and targeted in therapeutic applications. Antioxid. Redox Signal. 20, 655–677. PMID:23879367

  8. Protective effects of mate tea (Ilex paraguariensis) on H2O2-induced DNA damage and DNA repair in mice.

    PubMed

    Miranda, Daniel D C; Arçari, Demétrius P; Pedrazzoli, José; Carvalho, Patrícia de O; Cerutti, Suzete M; Bastos, Deborah H M; Ribeiro, Marcelo L

    2008-07-01

    Yerba mate (Ilex paraguariensis) is rich in several bioactive compounds that can act as free radical scavengers. Since oxidative DNA damage is involved in various pathological states such as cancer, the aim of this study was to evaluate the antioxidant activity of mate tea as well as the ability to influence DNA repair in male Swiss mice. Forty animals were randomly assigned to four groups. The animals received three different doses of mate tea aqueous extract, 0.5, 1.0 or 2.0 g/kg, for 60 days. After intervention, the liver, kidney and bladder cells were isolated and the DNA damage induced by H(2)O(2) was investigated by the comet assay. The DNA repair process was also investigated for its potential to protect the cells from damage by the same methodology. The data presented here show that mate tea is not genotoxic in liver, kidney and bladder cells. The regular ingestion of mate tea increased the resistance of DNA to H(2)O(2)-induced DNA strand breaks and improved the DNA repair after H(2)O(2) challenge in liver cells, irrespective of the dose ingested. These results suggest that mate tea could protect against DNA damage and enhance the DNA repair activity. Protection may be afforded by the antioxidant activity of the mate tea's bioactive compounds. PMID:18308716

  9. [The effect of so-called basic therapeutics and symptomatically effective antirheumatic drugs on the enzymes of DNA synthesis and DNA repair].

    PubMed

    Klein, G; Wottawa, A

    1975-01-01

    Investigation of DNA-synthesis and DNA-repair are important for evaluating mutagenic effects of drugs. Among the tested non steroidal antirheumatic drugs metiacinic acid, ketoprofene, and azapropazone do not show any effect on these mechanisms. Tolmetin and indometacine, however, inhibit DNA-synthesis only, whereas naproxene, oxyphenylbutazone, and flufenamic acid inhibit both DNA synthesis and repair. Gold does not influence DNA synthesis or repair, D-penicillamine inhibits DNA-synthesis only. However, Chloroquine and metabolised cyclophosphamide respecitvely impair both DNA-synthesis and repair. This effect may be also caused by azathioprine in high dosage. Application of two repair- inhibitors or of one DNA-repair-inhibitor and one directly mutagenic acting drug, e.g. cyclophosphamide, should therefore be avoided. PMID:1243806

  10. The complexity of DNA double strand breaks is a critical factor enhancing end-resection.

    PubMed

    Yajima, Hirohiko; Fujisawa, Hiroshi; Nakajima, Nakako Izumi; Hirakawa, Hirokazu; Jeggo, Penelope A; Okayasu, Ryuichi; Fujimori, Akira

    2013-11-01

    DNA double strand breaks (DSBs) induced by ionizing radiation (IR) are deleterious damages. Two major pathways repair DSBs in human cells, DNA non-homologous end-joining (NHEJ) and homologous recombination (HR). It has been suggested that the balance between the two repair pathways varies depending on the chromatin structure surrounding the damage site and/or the complexity of damage at the DNA break ends. Heavy ion radiation is known to induce complex-type DSBs, and the efficiency of NHEJ in repairing these DSBs was shown to be diminished. Taking advantage of the ability of high linear energy transfer (LET) radiation to produce complex DSBs effectively, we investigated how the complexity of DSB end structure influences DNA damage responses. An early step in HR is the generation of 3'-single strand DNA (SSD) via a process of DNA end resection that requires CtIP. To assess this process, we analyzed the level of phosphorylated CtIP, as well as RPA phosphorylation and focus formation, which occur on the exposed SSD. We show that complex DSBs efficiently activate DNA end resection. After heavy ion beam irradiation, resection signals appear both in the vicinity of heterochromatic areas, which is also observed after X-irradiation, and additionally in euchromatic areas. Consequently, ~85% of complex DSBs are subjected to resection in heavy ion particle tracks. Furthermore, around 20-40% of G1 cells exhibit resection signals. Taken together, our observations reveal that the complexity of DSB ends is a critical factor regulating the choice of DSB repair pathway and drastically alters the balance toward resection-mediated rejoining. As demonstrated here, studies on DNA damage responses induced by heavy ion radiation provide an important tool to shed light on mechanisms regulating DNA end resection. PMID:24041488

  11. The DNA Single-Strand Break Repair Machinery Facilitates CAF-1-Mediated Histone Deposition at Oxidative DNA Strand Breaks

    E-print Network

    Arman Nabatiyan; Zhihong Zeng; Keith W. Caldecott

    2012-02-01

    Oxidative DNA single strand breaks arise continuously in cells and defects in their repair have been implicated in neurological disease. While much progress has been made in understanding how chromosomal single strand breaks are repaired little is known about the changes chromatin structure that accompany this process. Here, we show that nascent recombinant histone H3.1 protein accumulates and is deposited into chromatin at sites of DNA strand breakage in quiescent human cells following oxidative stress, and that core components of the single-strand break repair machinery are required for this process. We show that the SSBR sensor and scaffold proteins poly (ADP-ribose) polymerase and XRCC1 facilitate accumulation of chromatin assembly factor-1 (CAF-1) at sites of oxidative DNA strand breakage, which in turn mediates the deposition of Histone H3.1. We also demonstrate that depletion of CAF-1 slows global rates of DNA strand break repair in quiescent cells following oxidative stress, demonstrating that single-strand break repair and histone deposition are tightly coordinated processes. These data describe a novel role for the DNA singlestrand break repair machinery and implicate histone turnover as a core component of the cellular response of quiescent cells to oxidative damage.

  12. Unstable DNA Repair Genes Shaped by Their Own Sequence Modifying Phenotypes

    Microsoft Academic Search

    Daniel S. Falster; Sigve Nakken; Marie Bergem-Ohr; Einar Andreas Rødland; Jarle Breivik

    2010-01-01

    The question of whether natural selection favors genetic stability or genetic variability is a fundamental problem in evolutionary\\u000a biology. Bioinformatic analyses demonstrate that selection favors genetic stability by avoiding unstable nucleotide sequences\\u000a in protein encoding DNA. Yet, such unstable sequences are maintained in several DNA repair genes, thereby promoting breakdown\\u000a of repair and destabilizing the genome. Several studies have therefore

  13. Emerging models for DNA repair: Dictyostelium discoideum as a model for nonhomologous end-joining.

    PubMed

    Pears, Catherine J; Lakin, Nicholas D

    2014-05-01

    DNA double strand breaks (DSBs) are a particularly cytotoxic variety of DNA lesion that can be repaired by homologous recombination (HR) or nonhomologous end-joining (NHEJ). HR utilises sequences homologous to the damage DNA template to facilitate repair. In contrast, NHEJ does not require homologous sequences for repair but instead functions by directly re-joining DNA ends. These pathways are critical to resolve DSBs generated intentionally during processes such as meiotic and site-specific recombination. However, they are also utilised to resolve potentially pathological DSBs generated by mutagens and errors during DNA replication. The importance of DSB repair is underscored by the findings that defects in these pathways results in chromosome instability that contributes to a variety of disease states including malignancy. The general principles of NHEJ are conserved in eukaryotes. As such, relatively simple model organisms have been instrumental in identifying components of these pathways and providing a mechanistic understanding of repair that has subsequently been applied to vertebrates. However, certain components of the NHEJ pathway are absent or show limited conservation in the most commonly used invertebrate models exploited to study DNA repair. Recently, however, it has become apparent that vertebrate DNA repair pathway components, including those involved in NHEJ, are unusually conserved in the amoeba Dictyostelium discoideum. Traditionally, this genetically tractable organism has been exploited to study the molecular basis of cell type specification, cell motility and chemotaxis. Here we discuss the use of this organism as an additional model to study DNA repair, with specific reference to NHEJ. PMID:24548787

  14. DNA Repair Systems in Archaea: Mementos from the Last Universal Common Ancestor?

    Microsoft Academic Search

    Jocelyne DiRuggiero; James R. Brown; Allison P. Bogert; Frank T. Robb

    1999-01-01

    .   DNA repair in the Archaea is relevant to the consideration of genome maintenance and replication fidelity in the last universal\\u000a common ancestor (LUCA) from two perspectives. First, these prokaryotes embody a mix of bacterial and eukaryal molecular features.\\u000a Second, DNA repair proteins would have been essential in LUCA to maintain genome integrity, regardless of the environmental\\u000a temperature. Yet we

  15. Altered DNA repair and dysregulation of p53 in IRF-1 null hepatocytes

    Microsoft Academic Search

    S. PROST; C. O. C. BELLAMY; D. S. CUNNINGHAM; D. J. HARRISON

    The tumor suppressor proteins IRF-1 and p53 are involved in response pathways after DNA damage. In different cell types, IRF-1 and p53 can cooperate to produce cell cycle arrest (embryo fibro- blasts) or can independently trigger apoptosis (lym- phoid cells). p53 may also regulate DNA repair, but there is no information on IRF-1 and repair. The cell lineage dependency of

  16. Thrombopoietin promotes NHEJ DNA repair in hematopoietic stem cells through specific activation of Erk and NF-?B pathways and their target, IEX-1.

    PubMed

    de Laval, Bérengère; Pawlikowska, Patrycja; Barbieri, Daniela; Besnard-Guerin, Corinne; Cico, Alba; Kumar, Rajiv; Gaudry, Murielle; Baud, Véronique; Porteu, Françoise

    2014-01-23

    Loss of hematopoietic stem cell (HSC) function and increased risk of developing hematopoietic malignancies are severe and concerning complications of anticancer radiotherapy and chemotherapy. We have previously shown that thrombopoietin (TPO), a critical HSC regulator, ensures HSC chromosomal integrity and function in response to ?-irradiation by regulating their DNA-damage response. TPO directly affects the double-strand break (DSB) repair machinery through increased DNA-protein kinase (DNA-PK) phosphorylation and nonhomologous end-joining (NHEJ) repair efficiency and fidelity. This effect is not shared by other HSC growth factors, suggesting that TPO triggers a specific signal in HSCs facilitating DNA-PK activation upon DNA damage. The discovery of these unique signaling pathways will provide a means of enhancing TPO-desirable effects on HSCs and improving the safety of anticancer DNA agents. We show here that TPO specifically triggers Erk and nuclear factor ?B (NF-?B) pathways in mouse hematopoietic stem and progenitor cells (HSPCs). Both of these pathways are required for a TPO-mediated increase in DSB repair. They cooperate to induce and activate the early stress-response gene, Iex-1 (ier3), upon DNA damage. Iex-1 forms a complex with pERK and the catalytic subunit of DNA-PK, which is necessary and sufficient to promote TPO-increased DNA-PK activation and NHEJ DSB repair in both mouse and human HSPCs. PMID:24184684

  17. A mathematical model for intracellular effects of toxins on DNA adduction and repair

    SciTech Connect

    Gaver, D.P.; Jacobs, P.A. [Naval Postgraduate School, Monterey, CA (United States). Dept. of Operations Research] [Naval Postgraduate School, Monterey, CA (United States). Dept. of Operations Research; Carpenter, R.L. [Naval Medical Research Inst., Dayton, OH (United States)] [Naval Medical Research Inst., Dayton, OH (United States); Burkhart, J.G. [NIEHS, Research Triangle Park, NC (United States)] [NIEHS, Research Triangle Park, NC (United States)

    1997-01-01

    The processes by which certain classes of toxic compounds or their metabolites may react with DNA to alter the genetic information contained in subsequent generations of cells or organisms are a major component of hazard associated with exposure to chemicals in the environment. Many classes of chemicals may form DNA adducts and there may or may not be a defined mechanism to remove a particular adduct from DNA independent of replication. Many compounds and metabolites that bind DNA also readily bind existing proteins; some classes of toxins and DNA adducts have the capacity to inactive a repair enzyme and divert the repair process competitively. This paper formulates an intracellular dynamic model for one aspect of the action of toxins that form DNA adducts, recognizing a capacity for removal of those adducts by a repair enzyme combined with reaction of the toxin and/or the DNA adduct to inactive the repair enzyme. This particular model illustrates the possible saturation of repair enzyme capacity by the toxin dosage and shows that bistable behavior can occur, with the potential to induce abrupt shifts away from steady-state equilibria. The model suggests that bistable behavior, dose and variation between individuals or tissues may combine under certain conditions to amplify the biological effect of dose observed as DNA adduction and its consequences as mutation. A model recognizing stochastic phenomena also indicates that variation in within-cell toxin concentration may promote jumps between stable equilibria.

  18. 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways.

    PubMed

    Fortini, P; Pascucci, B; Parlanti, E; D'Errico, M; Simonelli, V; Dogliotti, E

    2003-10-29

    Radical oxygen species (ROS) generate various modified DNA bases. Among them 8-oxo-7,8-dihydroguanine (8oxoG) is the most abundant and seems to play a major role in mutagenesis and in carcinogenesis. 8oxoG is removed from DNA by the specific glycosylase OGG1. An additional post-replication repair is needed to correct the 8oxoG/A mismatches that are produced by persistent 8oxoG residues. This review is focused on the mechanisms of base excision repair (BER) of this oxidized base. It is shown that, in vitro, efficient and complete repair of 8oxoG/C pairs requires a core of four proteins, namely OGG1, APE1, DNA polymerase (Pol) beta, and DNA ligase I. Repair occurs predominantly by one nucleotide replacement reactions (short-patch BER) and Pol beta is the polymerase of election for the resynthesis step. However, alternative mechanisms can act on 8oxoG residues since Pol beta-null cells are able to repair these lesions. 8oxoG/A mismatches are repaired by human cell extracts via two BER events which occur sequentially on the two strands. The removal of the mismatched adenine is followed by preferential insertion of a cytosine leading to the formation of 8oxoG/C pairs which are then corrected by OGG1-mediated BER. Both repair events are inhibited by aphidicolin, suggesting that a replicative DNA polymerase is involved in the repair synthesis step. We propose that Pol delta/epsilon-mediated BER (long-patch BER) is the mode of repair when lesions persist or are formed at replication. Finally, we address the issues of the relative contribution of the two BER pathways to oxidative damage repair in vivo and the possible role of BER gene variants as cancer susceptibility genes. PMID:14637250

  19. Repair of nonreplicating UV-irradiated DNA: cooperative dark repair by Escherichia coli uvr and phr functions

    SciTech Connect

    Hays, J.B.; Martin, S.J.; Bhatia, K.

    1985-02-01

    The system previously used to study recombination of nonreplicating UV-irradiated phage lambda DNA was adapted to study UV repair. Irradiated phages infected undamaged homoimmune lysogens. Pyrimidine dimer content (by treatment with Micrococcus luteus UV endonuclease and alkaline sucrose sedimentation) and a biological activity endpoint (infectivity in transfection of uvrB recA recB spheroplasts) were followed. Unless room light was excluded during DNA extraction procedures, photoreactivation (Phr function) was significant. In uvr ..delta..phr bacteria, repair, by both assays, was very low but not zero. Even when light was totally excluded, Phr function appeared to play a role in Uvr-mediated excision repair: both dimer removal and restoration of infectivity were two to five times as efficient in uvr/sup +/ phr/sup +/ bacteria as in uvr/sup +/ ..delta..phr bacteria. Similarly, UV-irradiated phages plated with higher efficiencies on phr/sup +/ than ..delta..phr bacteria even under totally dark conditions. In uvr phr/sup +/ repressed infections, removal of dimers from nonreplicating DNA did not increase infectivity as much as in uvr2= infections, suggesting a requirement for repair of nondimer photoproducts by the uvrABC system.

  20. Exome-Wide Somatic Microsatellite Variation Is Altered in Cells with DNA Repair Deficiencies

    PubMed Central

    Vaksman, Zalman; Fonville, Natalie C.; Tae, Hongseok; Garner, Harold R.

    2014-01-01

    Microsatellites (MST), tandem repeats of 1–6 nucleotide motifs, are mutational hot-spots with a bias for insertions and deletions (INDELs) rather than single nucleotide polymorphisms (SNPs). The majority of MST instability studies are limited to a small number of loci, the Bethesda markers, which are only informative for a subset of colorectal cancers. In this paper we evaluate non-haplotype alleles present within next-gen sequencing data to evaluate somatic MST variation (SMV) within DNA repair proficient and DNA repair defective cell lines. We confirm that alleles present within next-gen data that do not contribute to the haplotype can be reliably quantified and utilized to evaluate the SMV without requiring comparisons of matched samples. We observed that SMV patterns found in DNA repair proficient cell lines without DNA repair defects, MCF10A, HEK293 and PD20 RV:D2, had consistent patterns among samples. Further, we were able to confirm that changes in SMV patterns in cell lines lacking functional BRCA2, FANCD2 and mismatch repair were consistent with the different pathways perturbed. Using this new exome sequencing analysis approach we show that DNA instability can be identified in a sample and that patterns of instability vary depending on the impaired DNA repair mechanism, and that genes harboring minor alleles are strongly associated with cancer pathways. The MST Minor Allele Caller used for this study is available at https://github.com/zalmanv/MST_minor_allele_caller. PMID:25402475

  1. Histone H3K56 acetylation, Rad52, and non-DNA repair factors control double-strand break repair choice with the sister chromatid.

    PubMed

    Muñoz-Galván, Sandra; Jimeno, Sonia; Rothstein, Rodney; Aguilera, Andrés

    2013-01-01

    DNA double-strand breaks (DSBs) are harmful lesions that arise mainly during replication. The choice of the sister chromatid as the preferential repair template is critical for genome integrity, but the mechanisms that guarantee this choice are unknown. Here we identify new genes with a specific role in assuring the sister chromatid as the preferred repair template. Physical analyses of sister chromatid recombination (SCR) in 28 selected mutants that increase Rad52 foci and inter-homolog recombination uncovered 8 new genes required for SCR. These include the SUMO/Ub-SUMO protease Wss1, the stress-response proteins Bud27 and Pdr10, the ADA histone acetyl-transferase complex proteins Ahc1 and Ada2, as well as the Hst3 and Hst4 histone deacetylase and the Rtt109 histone acetyl-transferase genes, whose target is histone H3 Lysine 56 (H3K56). Importantly, we use mutations in H3K56 residue to A, R, and Q to reveal that H3K56 acetylation/deacetylation is critical to promote SCR as the major repair mechanism for replication-born DSBs. The same phenotype is observed for a particular class of rad52 alleles, represented by rad52-C180A, with a DSB repair defect but a spontaneous hyper-recombination phenotype. We propose that specific Rad52 residues, as well as the histone H3 acetylation/deacetylation state of chromatin and other specific factors, play an important role in identifying the sister as the choice template for the repair of replication-born DSBs. Our work demonstrates the existence of specific functions to guarantee SCR as the main repair event for replication-born DSBs that can occur by two pathways, one Rad51-dependent and the other Pol32-dependent. A dysfunction can lead to genome instability as manifested by high levels of homolog recombination and DSB accumulation. PMID:23357952

  2. Structural basis for a novel mechanism of DNA bridging and alignment in eukaryotic DSB DNA repair.

    PubMed

    Gouge, Jérôme; Rosario, Sandrine; Romain, Félix; Poitevin, Frédéric; Béguin, Pierre; Delarue, Marc

    2015-04-15

    Eukaryotic DNA polymerase mu of the PolX family can promote the association of the two 3'-protruding ends of a DNA double-strand break (DSB) being repaired (DNA synapsis) even in the absence of the core non-homologous end-joining (NHEJ) machinery. Here, we show that terminal deoxynucleotidyltransferase (TdT), a closely related PolX involved in V(D)J recombination, has the same property. We solved its crystal structure with an annealed DNA synapsis containing one micro-homology (MH) base pair and one nascent base pair. This structure reveals how the N-terminal domain and Loop 1 of Tdt cooperate for bridging the two DNA ends, providing a templating base in trans and limiting the MH search region to only two base pairs. A network of ordered water molecules is proposed to assist the incorporation of any nucleotide independently of the in trans templating base. These data are consistent with a recent model that explains the statistics of sequences synthesized in vivo by Tdt based solely on this dinucleotide step. Site-directed mutagenesis and functional tests suggest that this structural model is also valid for Pol mu during NHEJ. PMID:25762590

  3. Human in vitro skin organ culture as a model system for evaluating DNA repair

    PubMed Central

    Liu, Hannah; Tuchinda, Papapit; Fishelevich, Rita; Harberts, Erin; Gaspari, Anthony A.

    2015-01-01

    Background UV-exposures result in accumulation of genetic lesions that facilitate the development of skin cancer. Numerous pharmacologic agents are currently under development to both inhibit formation of DNA lesions and enhance repair. Drugs must be evaluated in vitro, currently performed in cell culture systems, before being tested on humans. Current systems do not account for the architecture and diverse cellularity of intact human skin. Objective To establish a novel, functionally viable, and reproducible in vitro skin organ culture system for studying the effects of various pharmacologic agents on DNA repair. Methods Human skin was obtained from neonatal foreskins. Intact skin punches derived from foreskins were cultured in vitro prior to exposure to UV-irradiation, and evaluated for DNA-damage using a DNA dot blot. Serial skin biopsies were obtained from patients with actinic keratoses treated with topical imiquimod. Expression of immune-stimulating and DNA repair genes was evaluated in ex vivo and in vitro samples. Results DNA dot blots revealed active repair of UV induced lesions in our in vitro skin organ culture. The photo-protective effect of sunscreen was detected, while imiquimod treatment did not enhance DNA repair in vitro. The DNA repair molecules XPA and XPF were up-regulated in the skin of imiquimod treated patients with actinic keratoses and imiquimod treated bone marrow-derived cell lines, but not keratinocytes. Conclusion Our in vitro human skin organ culture model detected repair of UV-induced DNA lesions, and may be easily adapted to investigate various photo-protective drugs intended to prevent or treat skin cancer. PMID:24636351

  4. Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6-alkylguanine-DNA alkyltransferase

    PubMed Central

    Hellman, Lance M.; Spear, Tyler J.; Koontz, Colton J.; Melikishvili, Manana; Fried, Michael G.

    2014-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ?5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs. PMID:25080506

  5. Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair

    Microsoft Academic Search

    Rong Li; Shou Waga; Gregory J. Hannon; David Beach; Bruce Stillman

    1994-01-01

    IN mammalian cells, DNA damage increases the levels of the nuclear tumour-suppressor p53, resulting in elevated synthesis of p21, an inhibitor of cyclin-dependent kinases (CDK)1-6. p21 may also directly block DNA replication by inhibiting the proliferating-cell nuclear antigen (PCNA)7, an essential DNA replication protein. However, PCNA is also required for nucleotide-excision repair of DNA8, an intrinsic part of the cellular

  6. Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair.

    PubMed Central

    Matsumoto, Y; Kim, K; Bogenhagen, D F

    1994-01-01

    DNA damage frequently leads to the production of apurinic/apyrimidinic (AP) sites, which are presumed to be repaired through the base excision pathway. For detailed analyses of this repair mechanism, a synthetic analog of an AP site, 3-hydroxy-2-hydroxymethyltetrahydrofuran (tetrahydrofuran), has been employed in a model system. Tetrahydrofuran residues are efficiently repaired in a Xenopus laevis oocyte extract in which most repair events involve ATP-dependent incorporation of no more than four nucleotides (Y. Matsumoto and D. F. Bogenhagen, Mol. Cell. Biol. 9:3750-3757, 1989; Y. Matsumoto and D. F. Bogenhagen, Mol. Cell. Biol. 11:4441-4447, 1991). Using a series of column chromatography procedures to fractionate X. laevis ovarian extracts, we developed a reconstituted system of tetrahydrofuran repair with five fractions, three of which were purified to near homogeneity: proliferating cell nuclear antigen (PCNA), AP endonuclease, and DNA polymerase delta. This PCNA-dependent system repaired natural AP sites as well as tetrahydrofuran residues. DNA polymerase beta was able to replace DNA polymerase delta only for repair of natural AP sites in a reaction that did not require PCNA. DNA polymerase alpha did not support repair of either type of AP site. This result indicates that AP sites can be repaired by two distinct pathways, the PCNA-dependent pathway and the DNA polymerase beta-dependent pathway. Images PMID:7915006

  7. Hepatitis C virus induces oxidative stress, DNA damage and modulates the DNA repair enzyme NEIL1

    PubMed Central

    Pal, Sampa; Polyak, Stephen J; Bano, Nazneen; Qiu, Wan Chong; Carithers, Robert L; Shuhart, Margaret; Gretch, David R; Das, Aditi

    2013-01-01

    Background and Aims Hepatitis C virus (HCV)-induced chronic inflammation may induce oxidative stress which could compromise the repair of damaged DNA, rendering cells more susceptible to spontaneous or mutagen-induced alterations, the underlying cause of liver cirrhosis and hepatocellular carcinoma. In the current study we examined the induction of reactive oxygen species (ROS) resulting from HCV infection and evaluated its effect on the host DNA damage and repair machinery. Methods HCV infected human hepatoma cells were analyzed to determine (i) ROS, (ii) 8-oxoG and (iii) DNA glycosylases NEIL1, NEIL2, OGG1. Liver biopsies were analyzed for NEIL1. Results Human hepatoma cells infected with HCV JFH-1 showed 30–60-fold increases in ROS levels compared to uninfected cells. Levels of the oxidatively modified guanosine base 8-oxoguanine (8-oxoG) were significantly increased sixfold in the HCV-infected cells. Because DNA glycosylases are the enzymes that remove oxidized nucleotides, their expression in HCV-infected cells was analyzed. NEIL1 but not OGG1 or NEIL2 gene expression was impaired in HCV-infected cells. In accordance, we found reduced glycosylase (NEIL1-specific) activity in HCV-infected cells. The antioxidant N-acetyl cystein (NAC) efficiently reversed the NEIL1 repression by inhibiting ROS induction by HCV. NEIL1 expression was also partly restored when virus-infected cells were treated with interferon (IFN). HCV core and to a lesser extent NS3-4a and NS5A induced ROS, and downregulated NEIL1 expression. Liver biopsy specimens showed significant impairment of NEIL1 levels in HCV-infected patients with advanced liver disease compared to patients with no disease. Conclusion Collectively, the data indicate that HCV induction of ROS and perturbation of NEIL1 expression may be mechanistically involved in progression of liver disease and suggest that antioxidant and antiviral therapies can reverse these deleterious effects of HCV in part by restoring function of the DNA repair enzyme/s. PMID:20074151

  8. Genetic characterization of cells of homocystinuria patients with disrupted DNA repair system

    SciTech Connect

    Sinel'shchikova, T.A.; L'vova, G.N.; Shoniya, N.N.; Zasukhina, G.D.

    1986-08-01

    Fibroblasts obtained from biopsy material and lymphocytes of patients with homocystinuria were investigated for repair activity according to the following criteria: rejoined DNA breaks, induced by 4-nitroquinoline-1-oxide and ..gamma..-radiation; indices of reactivation and induced mutagenesis of smallpox vaccine virus treated with these mutagens. In lymphocytes a defect of DNA repair was observed according to all criteria investigated. During passage of fibroblast cultures, inhibition of repair activity of cells was preserved according to ..gamma..-type. Increase in the number of spontaneous and ..gamma..-induced mutations of virus was noted according to degree of passage of fibroblasts.

  9. Requirement for PBAF in Transcriptional Repression and Repair at DNA Breaks in Actively Transcribed Regions of Chromatin

    PubMed Central

    Kakarougkas, Andreas; Ismail, Amani; Chambers, Anna L.; Riballo, Enriqueta; Herbert, Alex D.; Künzel, Julia; Löbrich, Markus; Jeggo, Penny A.; Downs, Jessica A.

    2014-01-01

    Summary Actively transcribed regions of the genome are vulnerable to genomic instability. Recently, it was discovered that transcription is repressed in response to neighboring DNA double-strand breaks (DSBs). It is not known whether a failure to silence transcription flanking DSBs has any impact on DNA repair efficiency or whether chromatin remodelers contribute to the process. Here, we show that the PBAF remodeling complex is important for DSB-induced transcriptional silencing and promotes repair of a subset of DNA DSBs at early time points, which can be rescued by inhibiting transcription globally. An ATM phosphorylation site on BAF180, a PBAF subunit, is required for both processes. Furthermore, we find that subunits of the PRC1 and PRC2 polycomb group complexes are similarly required for DSB-induced silencing and promoting repair. Cancer-associated BAF180 mutants are unable to restore these functions, suggesting PBAF's role in repressing transcription near DSBs may contribute to its tumor suppressor activity. PMID:25066234

  10. The Intertwined Roles of Transcription and Repair Proteins

    PubMed Central

    Fong, Yick W.; Cattoglio, Claudia; Tjian, Robert

    2014-01-01

    Transcription is apparently risky business. Its intrinsic mutagenic potential must be kept in check by networks of DNA repair factors that monitor the transcription process to repair DNA lesions that could otherwise compromise transcriptional fidelity and genome integrity. Intriguingly, recent studies point to an even more direct function of DNA repair complexes as co-activators of transcription and the unexpected role of “scheduled” DNA damage/repair at gene promoters. Paradoxically, spontaneous DNA double-strand breaks also induce ectopic transcription that is essential for repair. Thus, transcription, DNA damage and repair may be more physically and functionally intertwined than previously appreciated. PMID:24207023

  11. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    PubMed

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-05-24

    Although there are few reports regarding ?-phellandrene (?-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that ?-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of ?-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of ?-PA on total cell viability and the results indicated that ?-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that ?-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that ?-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that ?-PA increased p-p53, p-H2A.X, 14-3-3-?, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. © 2014 Wiley Periodicals, Inc. Environ Toxicol, 2014. PMID:24861204

  12. Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes.

    PubMed Central

    Verhage, R A; Van de Putte, P; Brouwer, J

    1996-01-01

    Removal of UV-induced pyrimidine dimers from the individual strands of the rDNA locus in Saccharomyces cerevisiae was studied. Yeast rDNA, that is transcribed by RNA polymerase I(RNA pol I), is repaired efficiently, slightly strand-specific and independently of RAD26, which has been implicated in transcription-coupled repair of the RNA pol II transcribed RPB2 gene. No repair of rDNA is observed in rad1,2,3 and 14 mutants, demonstrating that dimer removal from this highly repetitive DNA is accomplished by nucleotide excision repair (NER). In rad7 and rad16 mutants, which are specifically deficient in repair of non-transcribed DNA, there is a clear preferential repair of the transcribed strand of rDNA, indicating that strand-specific and therefore probably transcription-coupled repair of RNA pol I transcribed genes does exist in yeast. Unexpectedly, the transcribed but not the non-transcribed strand of rDNA can be repaired in rad4 mutants, which seem otherwise completely NER-deficient. PMID:8604332

  13. Assessment of DNA damage and repair in specific genomic regions by quantitative immuno-coupled PCR.

    PubMed Central

    Denissenko, M F; Venkatachalam, S; Yamasaki, E F; Wani, A A

    1994-01-01

    Fine analysis of DNA damage and repair at the subgenomic level has indicated a microheterogeneity of DNA repair in mammalian cells, including human. In addition to the well established Southern hybridization-based approach to investigate gene-specific DNA damage and repair, alternative methods utilizing the sensitivity of PCR have been evaluated. The latter technique has relied on decreased PCR amplification due to damage in template DNA. We have developed a novel quantitative assay combining the selective recovery of DNA damage containing genomic fragments with the PCR amplification. DNA isolated from 7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE) treated human skin fibroblasts was immunoprecipitated with polyclonal antibody BP-1. Recovered target sequences were amplified by PCR using primers encompassing a 149 bp target region around codon 12 of the H-ras proto-oncogene. Quantitative DNA damage specific response was observed with nanogram amounts of genomic DNA. This approach allowed analysis of the initial DNA damage at a level less than 1 anti-BPDE adduct per 6.4 kbp ras gene fragment. Repair proficient GM637 cells exposed to 2 microM anti-BPDE showed a faster removal of the adducts from the H-ras gene segment than from the genome overall. Gene-specific repair was not apparent in GM4429 xeroderma pigmentosum (complementation group A) cells. The established technique could be extended to the quantitative measurement of the repair of diverse DNA base lesions in any genomic region of known sequence. Images PMID:8036163

  14. Role of ATP in UV-induced DNA excision repair in human cells

    SciTech Connect

    Dresler, S.L.

    1986-05-01

    In permeable human fibroblasts, UV-induced DNA excision repair is dependent on ATP, with a K/sub m/ of approximately 1 mM. Omission of ATP from the reaction mix completely inhibits damage-specific incision of DNA, but has little effect on repair patch synthesis proceeding from previously incised sites. UV-induced excision repair in permeable xeroderma pigmentosum (XP) cells complemented with T4 UV endonuclease is also totally dependent on ATP. Because the T4 enzyme is not ATP-dependent, ATP must be required for an endogenous activity other than the incision of damaged DNA. Alkaline elution reveals that, in the absence of ATP, T4 UV endonuclease does incise the DNA of permeable UV-irradiated XP cells, but that the incision rate is stimulated approximately 2-fold by the addition of ATP. This 2-fold stimulation of incision can not, however, be responsible for the absolute ATP dependence of excision repair in UV endonuclease-complemented XP cells. Apparently, although T4 UV endonuclease can incise damaged nuclear DNA in the absence of ATP, the incised sites must also be altered in an ATP-dependent reaction before subsequent steps of the repair process can proceed. This conclusion, coupled with the fact that ATP stimulates incision of damaged nuclear DNA by T4 UV endonuclease and is absolutely required for incision of damaged nuclear DNA by the endogenous human UV endonuclease, suggests that an important function of the early ATP-dependent step in UV-induced excision repair is to make damaged sites in DNA accessible to repair enzymes.

  15. DNA damage response and repair: insights into strategies for radiation sensitization of gliomas

    PubMed Central

    Kesari, Santosh; Advani, Sunil J; Lawson, Joshua D; Kahle, Kristopher T; Ng, Kimberly; Carter, Bob; Chen, Clark C

    2011-01-01

    The incorporation of radiotherapy into multimodality treatment plans has led to significant improvements in glioma patient survival. However, local recurrence from glioma resistance to ionizing radiation remains a therapeutic challenge. The tumoricidal effect of radiation therapy is largely attributed to the induction of dsDNA breaks (DSBs). In the past decade, there have been tremendous strides in understanding the molecular mechanisms underlying DSB repair. The identification of gene products required for DSB repair has provided novel therapeutic targets. Recent studies revealed that many US FDA-approved cancer agents inhibit DSB repair by interacting with repair proteins. This article will aim to provide discussion of DSB repair mechanisms to provide molecular targets for radiation sensitization of gliomas and a discussion of FDA-approved cancer therapies that modulate DSB repair to highlight opportunities for combination therapy with radiotherapy for glioma therapy. PMID:22044206

  16. DNA replication meets genetic exchange: Chromosomal damage and its repair by homologous recombination

    PubMed Central

    Kuzminov, Andrei

    2001-01-01

    Proceedings of the National Academy of Sciences Colloquium on the roles of homologous recombination in DNA replication are summarized. Current findings in experimental systems ranging from bacteriophages to mammalian cell lines substantiate the idea that homologous recombination is a system supporting DNA replication when either the template DNA is damaged or the replication machinery malfunctions. There are several lines of supporting evidence: (i) DNA replication aggravates preexisting DNA damage, which then blocks subsequent replication; (ii) replication forks abandoned by malfunctioning replisomes become prone to breakage; (iii) mutants with malfunctioning replisomes or with elevated levels of DNA damage depend on homologous recombination; and (iv) homologous recombination primes DNA replication in vivo and can restore replication fork structures in vitro. The mechanisms of recombinational repair in bacteriophage T4, Escherichia coli, and Saccharomyces cerevisiae are compared. In vitro properties of the eukaryotic recombinases suggest a bigger role for single-strand annealing in the eukaryotic recombinational repair. PMID:11459990

  17. STRUCTURE OF THE DNA REPAIR HELICASE HEL308 REVEALS DNA BINDING AND AUTOINHIBITORY DOMAINS

    PubMed Central

    Richards, Jodi; Johnson, Ken; Liu, Huanting; Oke, Stephen McMahon. Muse; Carter, Lester; Naismith, James H; White, Malcolm F

    2012-01-01

    Hel308 is a superfamily 2 helicase conserved in eukaryotes and archaea. It is thought to function in the early stages of recombination following replication fork arrest, and has a specificity for removal of the lagging strand in model replication forks. A homologous helicase constitutes the N-terminal domain of human DNA polymerase Q. The Drosophila homologue mus301 is implicated in double strand break repair and meiotic recombination. We have solved the high-resolution crystal structure of Hel308 from the crenarchaeon Sulfolobus solfataricus, revealing a five-domain structure with a central pore lined with essential DNA binding residues. The fifth domain is shown to act as a molecular brake, clamping the ssDNA extruded through the central pore of the helicase structure to limit the enzyme’s helicase activity. This provides an elegant mechanism to tune the enzyme’s processivity to its functional role. Hel308 can displace streptavidin from a biotinylated DNA molecule, suggesting that one function of the enzyme may be in the removal of bound proteins at stalled replication forks and recombination intermediates. PMID:18056710

  18. FISH comets show that the salvage enzyme TK1 contributes to gene-specific DNA repair

    PubMed Central

    McAllister, Katherine A.; Yasseen, Akeel A.; McKerr, George; Downes, C. S.; McKelvey-Martin, Valerie J.

    2014-01-01

    Thymidine kinase 1 (TK1) is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1+ and TK1- clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumor suppressor (TP53) and human telomerase reverse transcriptase (hTERT) gene regions, over 1 h after 5Gy ?-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1+ compared to TK1- cells, a trend also reflected to a lesser degree in genomic DNA repair between the cell-lines. The targeted gene-specific repair in TK+ cells occurred rapidly, mainly over the first 15 min repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1+ cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents. PMID:25152750

  19. Pathways for Repairing and Tolerating the Spectrum of Oxidative DNA Lesions

    PubMed Central

    Berquist, Brian R.; Wilson, David M.

    2012-01-01

    Reactive oxygen species (ROS) arise from both endogenous and exogenous sources. These reactive molecules possess the ability to damage both the DNA nucleobases and the sugar phosphate backbone, leading to a wide spectrum of lesions, including non-bulky (8-oxoguanine and formamidopyrimidine) and bulky (cyclopurine and etheno adducts) base modifications, abasic sites, non-conventional single-strand breaks, protein-DNA adducts, and intra/interstrand DNA crosslinks. Unrepaired oxidative DNA damage can result in bypass mutagenesis during genome copying or gene expression, or blockage of the essential cellular processes of DNA replication or transcription. Such outcomes underlie numerous pathologies, including, but not limited to, carcinogenesis and neurodegeneration, as well as the aging process. Cells have adapted and evolved defense systems against the deleterious effects of ROS, and specifically devote a number of cellular DNA repair and tolerance pathways to combat oxidative DNA damage. Defects in these protective pathways trigger hereditary human diseases that exhibit increased cancer incidence, developmental defects, neurological abnormalities, and/or premature aging. We review herein classic and atypical oxidative DNA lesions, outcomes of encountering these damages during DNA replication and transcription, and the consequences of losing the ability to repair the different forms of oxidative DNA damage. We particularly focus on the hereditary human diseases Xeroderma Pigmentosum, Cockayne Syndrome and Fanconi Anemia, which may involve defects in the efficient repair of oxidative modifications to chromosomal DNA. PMID:22353689

  20. Combined Haploinsufficiency for ATM and RAD9 as a Factor in Cell Transformation, Apoptosis, and DNA Lesion Repair Dynamics

    E-print Network

    Combined Haploinsufficiency for ATM and RAD9 as a Factor in Cell Transformation, Apoptosis, and DNA to transformation by radiation, have different DNA double-strand break repair dynamics and are less apoptotic when conclusions are that under stress conditions, the efficiency and capacity for DNA repair mediated by the ATM

  1. Telomere Regulation in Arabidopsis thaliana by the CST Capping Complex and DNA Damage Response Proteins

    E-print Network

    Boltz, Kara A.

    2013-09-11

    The ends of chormosomes are capped by telomeres, which distinguish the termini from damaged DNA. Paradoxically, DNA repair proteins are also required for telomere maintenance. How DNA repair pathways are regulated to maintain telomeres while...

  2. DNA damage and repair of human skin keratinocytes concurrently exposed to pyrene derivatives and UVA light.

    PubMed

    Fullove, Tracie Perkins; Yu, Hongtao

    2013-05-01

    Polycyclic aromatic hydrocarbons (PAHs), a class of mutagenic environmental contaminants, insert toxicity through both metabolic activation and light irradiation. Pyrene, one of the most widely studied PAHs, along with its mono-substituted derivatives, 1-amino, 1-bromo, 1-hydroxy, and 1-nitropyrene, were chosen to study the effect of substituents on their phototoxicity, DNA damage and repair. Both alkaline Comet assay, which detects direct DNA damages, and Fpg endonuclease Comet assay, which detects oxidative DNA damages, were conducted at 0, 2, 4, 8, and 24 h of incubation of the cells in minimal growth medium after concomitant exposure to pyrene derivatives and UVA light. All these compounds are photocytotoxic and the phototoxicity is both incubation time and PAH dose dependent; whereas, those without light are not toxic. The LC50 obtained are in the range of 3.5 - 9.3 µM. Cellular DNA damages, both direct and oxidative, are observed immediately after the cells are treated with UVA light and the pyrene derivatives at a concentration of 1.0 µM. The amount of DNA damages (both direct and oxidative) increase from 0 to 4 h of incubation. After 4 hours, subsequent damage induction declines, and this is perceived to be mainly through DNA repair. After longer incubation of 8 h, the damaged cellular DNA start to be repaired, resulting in greatly reduced amount of DNA damages, and the DNA damage reaches the minimum at 24 h of incubation. 1-Amopyrene and 1-hydroxypyrene cause more DNA oxidative damages immediately after the exposure (0 h of incubation), and these damages are repaired within the same timeframe as the other tested compounds. The oxidative DNA damages caused by 1-bromopyrene are repaired starting at 2 h of incubation, earlier than the damages caused by all the other compounds. PMID:24900910

  3. [SOS response of DNA repair and genetic cell instability under hypoxic conditions].

    PubMed

    Vasil'eva, S V; Strel'tsova, D A

    2011-01-01

    The SOS DNA repair pathway is induced in E. coli as a multifunctional cell response to a wide variety of signals: UV, X or gamma-irradiation, mitomycin C or nalidixic acid treatment, thymine starvation, etc. Triggering of the system can be used as a general and early sign of DNA damage. Additionally, the SOS-response is known to be an "error-prone" DNA repair pathway and one of the sources of genetic instability. Hypoxic conditions are established to be the major factor of genetic instability as well. In this paper we for the first time studied the SOS DNA repair response under hypoxic conditions induced by the well known aerobic SOS-inducers. The SOS DNA repair response was examined as a reaction of E. coli PQ37 [sfiA::lacZ] cells to UVC, NO-donating agents and 4NQO. Here we provide evidence that those agents were able to induce the SOS DNA repair response in E. coli at anaerobic growth conditions. The process does not depend on the transcriptional activity of the universal protein of E. col anaerobic growth Fnr [4Fe-4S]2+ or can not be referred to as an indicator of genetic instability in hypoxic conditions. PMID:21866831

  4. Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction1

    E-print Network

    Stuart, Jeffrey A.

    . Caloric restriction lowers DNA repair activity in brain and kidney but not liver mitochondria Most DNA was assessed by measuring BER activity in mito- chondrial extracts prepared from liver, brain, and kidney and kidney mitochon- dria, CR resulted in 30% reductions of BER activity (t test; P 0.06) compared with PF

  5. The role of WRN in DNA repair is affected by post-translational modifications

    Microsoft Academic Search

    Rika Kusumoto; Meltem Muftuoglu; Vilhelm A. Bohr

    2007-01-01

    Werner syndrome (WS) is an autosomal recessive progeroid disease characterized by genomic instability. WRN gene encodes one of the RecQ helicase family proteins, WRN, which has ATPase, helicase, exonuclease and single stranded DNA annealing activities. There is accumulating evidence suggesting that WRN contributes to the maintenance of genomic integrity through its involvement in DNA repair, replication and recombination. The role

  6. Assays for chromatin remodeling during nucleotide excision repair in Saccharomyces cerevisiae

    Microsoft Academic Search

    Ling Zhang; Kristi Jones; Michael J. Smerdon; Feng Gong

    2009-01-01

    How DNA repair proteins interact with the dynamic structure of chromatin is an emerging question. Chromatin structure impedes the access of repair proteins to sites of DNA damage. Several recent studies have implicated chromatin remodeling complexes in DNA repair. In this report we summarize the methods we used to investigate chromatin remodeling during nucleotide excision repair (NER) in vivo. We

  7. Inhibition of polymerases-alpha and -beta completely blocks DNA repair induced by UV irradiation in cultured mouse neuronal cells

    SciTech Connect

    Licastro, F.; Sarafian, T.; Verity, A.M.; Walford, R.L.

    1985-11-15

    The effects of hydroxyurea, aphidicolin and dideoxythymidine on UV-induced DNA repair of mouse neuronal granular cells were studied. Aphidicolin, which is considered a specific inhibitor of polymerase-alpha, decreased spontaneous DNA synthesis by 93% and totally suppressed DNA repair. Dideoxythymidine, an inhibitor of polymerase-beta, was more potent in decreasing scheduled DNA synthesis than aphidicolin, and also completely blocked the UV-induced DNA repair. Hydroxyurea, a specific inhibitor of ribonucleotide reductase, inhibited scheduled DNA synthesis, but unscheduled DNA synthesis after UV irradiation was always well detectable. Our data suggest that in neuronal cells from 5 to 10 days old mice both polymerases-alpha and -beta are required for both DNA synthesis and repair. These two enzymes may act jointly in filling up the gaps along the DNA molecule and elongating the DNA chain.

  8. Lung cancer and DNA repair genes: multilevel association analysis from the International Lung Cancer Consortium

    PubMed Central

    Kazma, Rémi; Babron, Marie-Claude; Gaborieau, Valérie; Génin, Emmanuelle; Brennan, Paul; Hung, Rayjean J.; McLaughlin, John R.; Krokan, Hans E.; Elvestad, Maiken B.; Skorpen, Frank; Anderssen, Endre; Vooder, Tõnu; Välk, Kristjan; Metspalu, Andres; Field, John K.; Lathrop, Mark; Sarasin, Alain; Benhamou, Simone

    2012-01-01

    Lung cancer (LC) is the leading cause of cancer-related death worldwide and tobacco smoking is the major associated risk factor. DNA repair is an important process, maintaining genome integrity and polymorphisms in DNA repair genes may contribute to susceptibility to LC. To explore the role of DNA repair genes in LC, we conducted a multilevel association study with 1655 single nucleotide polymorphisms (SNPs) in 211 DNA repair genes using 6911 individuals pooled from four genome-wide case–control studies. Single SNP association corroborates previous reports of association with rs3131379, located on the gene MSH5 (P = 3.57 × 10-5) and returns a similar risk estimate. The effect of this SNP is modulated by histological subtype. On the log-additive scale, the odds ratio per allele is 1.04 (0.84–1.30) for adenocarcinomas, 1.52 (1.28–1.80) for squamous cell carcinomas and 1.31 (1.09–1.57) for other histologies (heterogeneity test: P = 9.1 × 10?3). Gene-based association analysis identifies three repair genes associated with LC (P < 0.01): UBE2N, structural maintenance of chromosomes 1L2 and POLB. Two additional genes (RAD52 and POLN) are borderline significant. Pathway-based association analysis identifies five repair pathways associated with LC (P < 0.01): chromatin structure, DNA polymerases, homologous recombination, genes involved in human diseases with sensitivity to DNA-damaging agents and Rad6 pathway and ubiquitination. This first international pooled analysis of a large dataset unravels the role of specific DNA r