Science.gov

Sample records for complex exciton-phonon coupling

  1. Optical properties of MgZnO alloys: Excitons and exciton-phonon complexes

    SciTech Connect

    Neumann, M. D.; Cobet, C.; Esser, N.; Laumer, B.; Wassner, T. A.; Eickhoff, M.; Feneberg, M.; Goldhahn, R.

    2011-07-01

    The characteristics of the excitonic absorption and emission around the fundamental bandgap of wurtzite Mg{sub x}Zn{sub 1-x}O grown on c-plane sapphire substrates by plasma assisted molecular beam epitaxy with Mg contents between x = 0 and x = 0.23 are studied using spectroscopic ellipsometry and photoluminescence (PL) measurements. The ellipsometric data were analyzed using a multilayer model yielding the dielectric function (DF). The imaginary part of the DF for the alloys exhibits a pronounced feature which is attributed to exciton-phonon coupling (EPC) similar to the previously reported results for ZnO. Thus, in order to determine reliable transition energies, the spectral dependence is analyzed by a model which includes free excitonic lines, the exciton continuum, and the enhanced absorption due to EPC. A line shape analysis of the temperature-dependent PL spectra yielded in particular the emission-related free excitonic transition energies, which are compared to the results from the DF line-shape analysis. The PL linewidth is discussed within the framework of an alloy disorder model.

  2. Communication: Exciton-phonon information flow in the energy transfer process of photosynthetic complexes

    SciTech Connect

    Rebentrost, P.; Aspuru-Guzik, Alan

    2011-03-14

    Non-Markovian and nonequilibrium phonon effects are believed to be key ingredients in the energy transfer in photosynthetic complexes, especially in complexes which exhibit a regime of intermediate exciton–phonon coupling. In this work, we utilize a recently developed measure for non-Markovianity to elucidate the exciton–phonon dynamics in terms of the information flow between electronic and vibrational degrees of freedom. We study the measure in the hierarchical equation of motion approach which captures strong coupling effects and nonequilibrium molecular reorganization. We propose an additional trace distance measure for the information flow that could be extended to other master equations. We find that for a model dimer system and for the Fenna–Matthews–Olson complex the non-Markovianity is significant under physiological conditions.

  3. Surface strain engineering through Tb doping to study the pressure dependence of exciton-phonon coupling in ZnO nanoparticles

    SciTech Connect

    Sharma, A.; Dhar, S. Singh, B. P.; Nayak, C.; Bhattacharyya, D.; Jha, S. N.

    2013-12-07

    A compressive hydrostatic strain has been found to develop in the ZnO lattice as a result of accumulation of Tb ions on the surface of the nanoparticles for Tb mole-fraction less than 0.04. This hydrostatic strain can be controlled up to ≈14 GPa by varying the Tb mole-fraction. Here, we have utilized this novel technique of surface strain engineering through Tb doping for introducing hydrostatic compressive strain in the lattice to study the pressure dependent electronic and vibrational properties of ZnO nanoparticles. Our study reveals that when subjected to pressure, nanoparticles of ZnO behave quite differently than bulk in many aspects. Unlike bulk ZnO, which is reported to go through a wurtzite to rock-salt structural phase transition at ≈8 GPa, ZnO nanoparticles do not show such transition and remain in wurtzite phase even at 14 GPa of pressure. Furthermore, the Grüneisen parameters for the optical phonon modes are found to be order of magnitude smaller in ZnO nanoparticles as compared to bulk. Our study also suggests an increase of the dielectric constant with pressure, which is opposite to what has been reported for bulk ZnO. Interestingly, it has also been found that the exciton-phonon interaction depends strongly upon pressure in this system. The exciton-phonon coupling has been found to decrease as pressure increases. A variational technique has been adopted to theoretically calculate the exciton-LO phonon coupling coefficient in ZnO nanoparticles as a function of pressure, which shows a good agreement with the experimental results. These findings imply that surface engineering of ZnO nanoparticles with Tb could indeed be an efficient tool to enhance and control the optical performance of this material.

  4. Low Exciton-Phonon Coupling, High Charge Carrier Mobilities, and Multiexciton Properties in Two-Dimensional Lead, Silver, Cadmium, and Copper Chalcogenide Nanostructures.

    PubMed

    Ding, Yuchen; Singh, Vivek; Goodman, Samuel M; Nagpal, Prashant

    2014-12-18

    The development of two-dimensional (2D) nanomaterials has revealed novel physical properties, like high carrier mobilities and the tunable coupling of charge carriers with phonons, which can enable wide-ranging applications in optoelectronic and thermoelectric devices. While mechanical exfoliation of graphene and some transition metal dichalcogenides (e.g., MoS2, WSe2) has enabled their fabrication as 2D semiconductors and integration into devices, lack of similar syntheses for other 2D semiconductor materials has hindered further progress. Here, we report measurements of fundamental charge carrier interactions and optoelectronic properties of 2D nanomaterials made from two-monolayers-thick PbX, CdX, Cu2X, and Ag2X (X = S, Se) using colloidal syntheses. Extremely low coupling of charge carriers with phonons (2-6-fold lower than bulk and other low-dimensional semiconductors), high carrier mobilities (0.2-1.2 cm(2) V(-1) s(-1), without dielectric screening), observation of infrared surface plasmons in ultrathin 2D semiconductor nanostructures, strong quantum-confinement, and other multiexcitonic properties (different phonon coupling and photon-to-charge collection efficiencies for band-edge and higher-energy excitons) can pave the way for efficient solution-processed devices made from these 2D nanostructured semiconductors. PMID:26273976

  5. Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy.

    PubMed

    Del Corro, E; Botello-Méndez, A; Gillet, Y; Elias, A L; Terrones, H; Feng, S; Fantini, C; Rhodes, Daniel; Pradhan, N; Balicas, L; Gonze, X; Charlier, J-C; Terrones, M; Pimenta, M A

    2016-04-13

    Resonant Raman spectroscopy is a powerful tool for providing information about excitons and exciton-phonon coupling in two-dimensional materials. We present here resonant Raman experiments of single-layered WS2 and WSe2 using more than 25 laser lines. The Raman excitation profiles of both materials show unexpected differences. All Raman features of WS2 monolayers are enhanced by the first-optical excitations (with an asymmetric response for the spin-orbit related XA and XB excitons), whereas Raman bands of WSe2 are not enhanced at XA/B energies. Such an intriguing phenomenon is addressed by DFT calculations and by solving the Bethe-Salpeter equation. These two materials are very similar. They prefer the same crystal arrangement, and their electronic structure is akin, with comparable spin-orbit coupling. However, we reveal that WS2 and WSe2 exhibit quite different exciton-phonon interactions. In this sense, we demonstrate that the interaction between XC and XA excitons with phonons explains the different Raman responses of WS2 and WSe2, and the absence of Raman enhancement for the WSe2 modes at XA/B energies. These results reveal unusual exciton-phonon interactions and open new avenues for understanding the two-dimensional materials physics, where weak interactions play a key role coupling different degrees of freedom (spin, optic, and electronic). PMID:26998817

  6. Energy transfer in finite-size exciton-phonon systems: Confinement-enhanced quantum decoherence

    NASA Astrophysics Data System (ADS)

    Pouthier, Vincent

    2012-09-01

    Based on the operatorial formulation of the perturbation theory, the exciton-phonon problem is revisited for investigating exciton-mediated energy flow in a finite-size lattice. Within this method, the exciton-phonon entanglement is taken into account through a dual dressing mechanism so that exciton and phonons are treated on an equal footing. In a marked contrast with what happens in an infinite lattice, it is shown that the dynamics of the exciton density is governed by several time scales. The density evolves coherently in the short-time limit, whereas a relaxation mechanism occurs over intermediated time scales. Consequently, in the long-time limit, the density converges toward a nearly uniform distributed equilibrium distribution. Such a behavior results from quantum decoherence that originates in the fact that the phonons evolve differently depending on the path followed by the exciton to tunnel along the lattice. Although the relaxation rate increases with the temperature and with the coupling, it decreases with the lattice size, suggesting that the decoherence is inherent to the confinement.

  7. Observations of exciton-surface plasmon polariton coupling and exciton-phonon coupling in InGaN/GaN quantum wells covered with Au, Ag, and Al films

    NASA Astrophysics Data System (ADS)

    Estrin, Y.; Rich, D. H.; Keller, S.; DenBaars, S. P.

    2015-07-01

    The coupling of excitons to surface plasmon polaritons (SPPs) and longitudinal optical (LO) phonons in Au-, Ag-, and Al-coated InxGa1-xN/GaN multiple and single quantum wells (SQWs) was studied with time-resolved cathodoluminescence (CL) and CL wavelength imaging techniques. Excitons were generated in the metal-coated SQWs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures which are opaque to laser/light excitation. The Purcell enhancement factor (Fp) at low temperatures was obtained by the direct measurement of changes in the carrier lifetime caused by the SQW excitonSPP coupling. The deposition of thin films of Al, Ag, and Au on an InGaN/GaN QW enabled a comparison of excitonSPP coupling for energy ranges in which the surface plasmon energy is greater than, approximately equal to, and less than the QW excitonic transition energy. We investigated the temperature dependence of the Huang-Rhys factors for exciton-to-LO phonon coupling for the metal-covered and bare samples. CL imaging and spectroscopy with variable excitation densities are used to examine the spatial correlations between CL emission intensity, carrier lifetime, QW excitonic emission energy, and the Huang-Rhys factor, all of which are strongly influenced by local fluctuations in the In composition and formation of InN-rich centers.

  8. Observations of exciton-surface plasmon polariton coupling and exciton-phonon coupling in InGaN/GaN quantum wells covered with Au, Ag, and Al films.

    PubMed

    Estrin, Y; Rich, D H; Keller, S; DenBaars, S P

    2015-07-01

    The coupling of excitons to surface plasmon polaritons (SPPs) and longitudinal optical (LO) phonons in Au-, Ag-, and Al-coated InxGa1-xN/GaN multiple and single quantum wells (SQWs) was studied with time-resolved cathodoluminescence (CL) and CL wavelength imaging techniques. Excitons were generated in the metal-coated SQWs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures which are opaque to laser/light excitation. The Purcell enhancement factor (Fp) at low temperatures was obtained by the direct measurement of changes in the carrier lifetime caused by the SQW exciton-SPP coupling. The deposition of thin films of Al, Ag, and Au on an InGaN/GaN QW enabled a comparison of exciton-SPP coupling for energy ranges in which the surface plasmon energy is greater than, approximately equal to, and less than the QW excitonic transition energy. We investigated the temperature dependence of the Huang-Rhys factors for exciton-to-LO phonon coupling for the metal-covered and bare samples. CL imaging and spectroscopy with variable excitation densities are used to examine the spatial correlations between CL emission intensity, carrier lifetime, QW excitonic emission energy, and the Huang-Rhys factor, all of which are strongly influenced by local fluctuations in the In composition and formation of InN-rich centers. PMID:26076324

  9. Exciton-phonon system on a star graph: A perturbative approach

    NASA Astrophysics Data System (ADS)

    Yalouz, Saad; Pouthier, Vincent

    2016-05-01

    Based on the operatorial formulation of the perturbation theory, the properties of an exciton coupled with optical phonons on a star graph are investigated. Within this method, the dynamics is governed by an effective Hamiltonian, which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud whereas the phonons are clothed by virtual excitonic transitions. In spite of the coupling with the phonons, it is shown that the energy spectrum of the dressed exciton resembles that of a bare exciton. The only differences originate in a polaronic mechanism that favors an energy shift and a decay of the exciton hopping constant. By contrast, the motion of the exciton allows the phonons to propagate over the graph so that the dressed normal modes drastically differ from the localized modes associated to bare phonons. They define extended vibrations whose properties depend on the state occupied by the exciton that accompanies the phonons. It is shown that the phonon frequencies, either red shifted or blue shifted, are very sensitive to the model parameter in general, and to the size of the graph in particular.

  10. Influence of Effects of Self-Polarization and Exciton-Phonon Interactions on the Exciton Energy in Lead Iodide Nanofilms

    NASA Astrophysics Data System (ADS)

    Kramar, V. M.; Pugantseva, O. V.

    2014-08-01

    In the approximation of effective masses for electronic and phononic - dielectric continuum - systems, the influence of spatial bounding, self-polarization, and exciton-phonon interactions on the exciton state in a flat double nanoheterostructure (a nanofilm) - lead iodide in a polymer matrix -is theoretically investigated for the model of a single infinitely deep quantum well. It is demonstrated that the dominating factor determining the energy of the bottom of the ground exciton band and its binding energy is spatial bounding. The relationship between two other effects depends on the nanofilm thickness, namely, the influence of the self-polarization effect in ultrathin films significantly exceeds that of exciton-phonon interaction.

  11. Theory of femtosecond coherent double-pump single-molecule spectroscopy: Application to light harvesting complexes

    SciTech Connect

    Chen, Lipeng; Zhao, Yang; Gelin, Maxim F.; Domcke, Wolfgang

    2015-04-28

    We develop a first principles theoretical description of femtosecond double-pump single-molecule signals of molecular aggregates. We incorporate all singly excited electronic states and vibrational modes with significant exciton-phonon coupling into a system Hamiltonian and treat the ensuing system dynamics within the Davydov D{sub 1} Ansatz. The remaining intra- and inter-molecular vibrational modes are treated as a heat bath and their effect is accounted for through lineshape functions. We apply our theory to simulate single-molecule signals of the light harvesting complex II. The calculated signals exhibit pronounced oscillations of mixed electron-vibrational (vibronic) origin. Their periods decrease with decreasing exciton-phonon coupling.

  12. Energetic pulses in exciton-phonon molecular chains and conservative numerical methods for quasilinear Hamiltonian systems.

    PubMed

    Lemesurier, Brenton

    2013-09-01

    The phenomenon of coherent energetic pulse propagation in exciton-phonon molecular chains such as α-helix protein is studied using an ODE system model of Davydov-Scott type, both with numerical studies using a new unconditionally stable fourth-order accurate energy-momentum conserving time discretization and with analytical explanation of the main numerical observations. Impulsive initial data associated with initial excitation of a single amide-I vibration by the energy released by ATP hydrolysis are used as well as the best current estimates of physical parameter values. In contrast to previous studies based on a proposed long-wave approximation by the nonlinear Schrödinger (NLS) equation and focusing on initial data resembling the soliton solutions of that equation, the results here instead lead to approximation by the third derivative nonlinear Schrödinger equation, giving a far better fit to observed behavior. A good part of the behavior is indeed explained well by the linear part of that equation, the Airy PDE, while other significant features do not fit any PDE approximation but are instead explained well by a linearized analysis of the ODE system. A convenient method is described for construction of the highly stable, accurate conservative time discretizations used, with proof of its desirable properties for a large class of Hamiltonian systems, including a variety of molecular models. PMID:24125294

  13. Excitons and exciton-phonon interactions in 2D MoS2 , WS2 and WSe2 studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pimenta, Marcos; Del Corro, Elena; Carvalho, Bruno; Malard, Leandro; Alves, Juliana; Fantini, Cristiano; Terrones, Humberto; Elias, Ana Laura; Terrones, Mauricio

    The 2D materials exhibit a very strong exciton binding energy, and the exciton-phonon coupling plays an important role in their optical properties. Resonance Raman spectroscopy (RRS) is a very useful tool to provide information about excitons and their couplings with phonons. We will present in this work a RRS study of different samples of 2D transition metal dichalcogenides (MoS2, WS2 and WSe2) with one, two and three layers (1L, 2L, 3L) and bulk samples, using more than 30 different laser excitation lines covering the visible range. We have observed that all Raman features are enhanced by resonances with excitonic transitions. From the laser energy dependence of the Raman excitation profile (REP) we obtained the energies of the excitonic states and their dependence with the number of atomic layers.. In the case of MoS2, we observed that the electron-phonon coupling is symmetry dependent, and our results provide experimental evidence of the C exciton recently predicted theoretically. The RRS results WSe2 show that the Raman modes are enhanced by the excited excitonic states and we will present the dependence of the excited states energies on the number of layers.

  14. Exciton-phonon interaction and Raman spectra of [(CH3)2NH2]5Cd2CuCl11 crystals

    NASA Astrophysics Data System (ADS)

    Kapustianik, V.; Batiuk, A.; Czapla, Z.; Podsiada, D.; Czupiski, O.; Eliyachevskyy, Yu.; Rudyk, V.

    2004-09-01

    Temperature evolution of the exciton-phonon interaction (EPI) in ((CH3)2NH2)5Cd2CuCl11 solid solution was studied on the basis of absorption spectroscopy data. The obtained values of effective phonon energies were compared with the data of Raman spectroscopy. It is shown that the (T) and E parameters of Urbach's rule show the continuous anomalous change characteristic of the second-order phase transition at T1 = 176 K. The anomalous behaviour of the EPI and other spectral parameters at T0 = 310-315 K was related to the complex co-operative effect involving weakening of the hydrogen bonds and variation of the Jahn-Teller distortion of metal-halogen polyhedra with temperature. This process takes place only within the copper-chlorine sublattice and due to this would be hardly related to the usual phase transition. At the same time, the considered temperature change of the tetragonal distortion of the metal-halogen octahedra is followed by nonfulfillment of Urbach's rule in the temperature range T T0.

  15. Spatial confinement, self-polarization and exciton-phonon interaction effect on the location of exciton line in lead iodide nanofilms

    NASA Astrophysics Data System (ADS)

    Kramar, V. M.; Pugantseva, O. V.; Derevyanchuk, A. V.

    2014-08-01

    Theoretical investigation of the spatial confinement, self-polarization and exciton-phonon interaction influence on the exciton state in plane double nanoheterostructure (nanofilm)-lead iodide in polymeric matrix is performed within the effective mass approximation for the electron and dielectric continuum for the phonons in the framework of infinitely deep single quantum well. It is shown that spatial confinement is the dominating feature determining the energy of the bottom of exciton ground band and its binding energy. The relationship of two others depends on nanofilm thickness: in ultrathin films the influence of self-polarization effect is essentially bigger than the role of exciton-phonon interaction.

  16. Role of exciton-phonon interactions and disordering processes in the formation of the absorption edge in Cu6P(S1- x Sex)5Br crystals

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Kranjcec, M.; Suslikov, L. M.; Kovacs, D. Sh.; Pan'ko, V. V.

    2002-04-01

    The absorption edge in Cu6P(S1- x Sex)5Br crystals has been studied for strong absorption in the temperature range of 77 330 K. The parameters of the Urbach absorption edge and exciton-phonon interactions in Cu6P(S1- x Sex)5Br crystals are determined and their effect on the composition disorder is studied.

  17. Parametric resonance-induced time-convolutionless master equation breakdown in finite size exciton-phonon systems.

    PubMed

    Pouthier, Vincent

    2010-09-29

    A detailed analysis is performed to show that the second order time-convolutionless master equation fails to describe the exciton-phonon dynamics in a finite size lattice. To proceed, special attention is paid to characterizing the coherences of the exciton reduced density matrix. These specific elements measure the ability of the exciton to develop superimpositions involving the vacuum and the one-exciton states. It is shown that the coherences behave as wavefunctions whose dynamics is governed by a time-dependent effective Hamiltonian defined in terms of the so-called time-dependent relaxation operator. Due to the confinement, quantum recurrences provide to the relaxation operator an almost periodic nature, so the master equation reduces to a linear system of differential equations with almost periodic coefficients. We show that, in accordance with the Floquet theory, unstable solutions emerge due to parametric resonances involving specific frequencies of the relaxation operator and specific excitonic eigenfrequencies. These resonances give rise to an unphysical exponential growth of the coherences, indicating the breakdown of the second order master equation. PMID:21386551

  18. Transport of quantum excitations coupled to spatially extended nonlinear many-body systems

    NASA Astrophysics Data System (ADS)

    Iubini, Stefano; Boada, Octavi; Omar, Yasser; Piazza, Francesco

    2015-11-01

    The role of noise in the transport properties of quantum excitations is a topic of great importance in many fields, from organic semiconductors for technological applications to light-harvesting complexes in photosynthesis. In this paper we study a semi-classical model where a tight-binding Hamiltonian is fully coupled to an underlying spatially extended nonlinear chain of atoms. We show that the transport properties of a quantum excitation are subtly modulated by (i) the specific type (local versus non-local) of exciton-phonon coupling and by (ii) nonlinear effects of the underlying lattice. We report a non-monotonic dependence of the exciton diffusion coefficient on temperature, in agreement with earlier predictions, as a direct consequence of the lattice-induced fluctuations in the hopping rates due to long-wavelength vibrational modes. A standard measure of transport efficiency confirms that both nonlinearity in the underlying lattice and off-diagonal exciton-phonon coupling promote transport efficiency at high temperatures, preventing the Zeno-like quench observed in other models lacking an explicit noise-providing dynamical system.

  19. Probing ultrafast excitation energy transfer of the chlorosome with exciton-phonon variational dynamics.

    PubMed

    Somoza Márquez, Alejandro; Chen, Lipeng; Sun, Kewei; Zhao, Yang

    2016-07-27

    The chlorosome antenna complex is a fascinating structure which due to its immense scale, accurate simulation of excitation energy transfer (EET) dynamics supposes a genuine computational challenge. Resonant vibronic modes have been recently identified in 2D spectra of the chlorosome which motivates our present endeavour of modelling electronic and vibrational degrees of freedom on an equal footing. Following the Dirac-Frenkel time-dependent variational principle, we exploit a general theory of polaron dynamics in two-dimensional lattices based on the Holstein molecular crystal model and investigate a single rod model of pigment aggregates. Unlike reduced formalisms, explicit integration of the degrees of freedom of both the system and the bath requires extensive computational resources. We exploit the architecture of graphic processor units (GPUs) by implementing our simulations on this platform. The simulation of dynamic properties of hundreds or even thousands of pigments is thus achievable in just a few hours. The potential investigation and design of natural or engineered two-dimensional pigment networks can thus be accommodated. Due to the lack of consensus regarding the precise arrangement of chromophores in the chlorosome, helicity and dimerization are investigated independently, extracting their contributions to both optical and EET properties. The presence of dimerization is found to slow down the delocalization process. Exciton delocalization is completed in 100 fs in a single rod aggregate whose dimensions (20 nm) fairly exceed the estimated extent of a coherent domain. Ultrafast energy relaxation in the exciton manifold occurs in 50 fs and the duration of super-diffusive transport is found to last for about 80 fs. PMID:26792106

  20. Coupled adaptive complex networks

    NASA Astrophysics Data System (ADS)

    Shai, S.; Dobson, S.

    2013-04-01

    Adaptive networks, which combine topological evolution of the network with dynamics on the network, are ubiquitous across disciplines. Examples include technical distribution networks such as road networks and the internet, natural and biological networks, and social science networks. These networks often interact with or depend upon other networks, resulting in coupled adaptive networks. In this paper we study susceptible-infected-susceptible (SIS) epidemic dynamics on coupled adaptive networks, where susceptible nodes are able to avoid contact with infected nodes by rewiring their intranetwork connections. However, infected nodes can pass the disease through internetwork connections, which do not change with time: The dependencies between the coupled networks remain constant. We develop an analytical formalism for these systems and validate it using extensive numerical simulation. We find that stability is increased by increasing the number of internetwork links, in the sense that the range of parameters over which both endemic and healthy states coexist (both states are reachable depending on the initial conditions) becomes smaller. Finally, we find a new stable state that does not appear in the case of a single adaptive network but only in the case of weakly coupled networks, in which the infection is endemic in one network but neither becomes endemic nor dies out in the other. Instead, it persists only at the nodes that are coupled to nodes in the other network through internetwork links. We speculate on the implications of these findings.

  1. In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence

    SciTech Connect

    Yang, Shize; Tian, Xuezeng; Wang, Lifen; Wei, Jiake; Qi, Kuo; Li, Xiaomin; Xu, Zhi E-mail: xdbai@iphy.ac.cn Wang, Wenlong; Zhao, Jimin; Bai, Xuedong E-mail: xdbai@iphy.ac.cn; Wang, Enge E-mail: xdbai@iphy.ac.cn

    2014-08-18

    The cathodoluminescence spectrum of single zinc oxide (ZnO) nanowires is measured by in-situ optical Transmission Electron Microscope. The coupling between exciton and longitudinal optical phonon is studied. The band edge emission varies for different excitation spots. This effect is attributed to the exciton propagation along the c axis of the nanowire. Contrary to free exciton emission, the phonon replicas are well confined in ZnO nanowire. They travel along the c axis and emit at the end surface. Bending strain increases the relative intensity of second order phonon replicas when excitons travel along the c-axis.

  2. Synchronization in complex dynamical networks coupled with complex chaotic system

    NASA Astrophysics Data System (ADS)

    Wei, Qiang; Xie, Cheng-Jun; Wang, Bo

    2015-11-01

    This paper investigates synchronization in complex dynamical networks with time delay and perturbation. The node of complex dynamical networks is composed of complex chaotic system. A complex feedback controller is designed to realize different component of complex state variable synchronize up to different scaling complex function when complex dynamical networks realize synchronization. The synchronization scaling function is changed from real field to complex field. Synchronization in complex dynamical networks with constant delay and time-varying coupling delay are investigated, respectively. Numerical simulations show the effectiveness of the proposed method.

  3. Unified analysis of ensemble and single-complex optical spectral data from light-harvesting complex-2 chromoproteins for gaining deeper insight into bacterial photosynthesis

    NASA Astrophysics Data System (ADS)

    Pajusalu, Mihkel; Kunz, Ralf; Rätsep, Margus; Timpmann, Kõu; Köhler, Jürgen; Freiberg, Arvi

    2015-11-01

    Bacterial light-harvesting pigment-protein complexes are very efficient at converting photons into excitons and transferring them to reaction centers, where the energy is stored in a chemical form. Optical properties of the complexes are known to change significantly in time and also vary from one complex to another; therefore, a detailed understanding of the variations on the level of single complexes and how they accumulate into effects that can be seen on the macroscopic scale is required. While experimental and theoretical methods exist to study the spectral properties of light-harvesting complexes on both individual complex and bulk ensemble levels, they have been developed largely independently of each other. To fill this gap, we simultaneously analyze experimental low-temperature single-complex and bulk ensemble optical spectra of the light-harvesting complex-2 (LH2) chromoproteins from the photosynthetic bacterium Rhodopseudomonas acidophila in order to find a unique theoretical model consistent with both experimental situations. The model, which satisfies most of the observations, combines strong exciton-phonon coupling with significant disorder, characteristic of the proteins. We establish a detailed disorder model that, in addition to containing a C2-symmetrical modulation of the site energies, distinguishes between static intercomplex and slow conformational intracomplex disorders. The model evaluations also verify that, despite best efforts, the single-LH2-complex measurements performed so far may be biased toward complexes with higher Huang-Rhys factors.

  4. Resonant energy transfer assisted by off-diagonal coupling.

    PubMed

    Wu, Ning; Sun, Ke-Wei; Chang, Zhe; Zhao, Yang

    2012-03-28

    Dynamics of resonant energy transfer of a single excitation in a molecular dimer system are studied in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. It is found that, at given temperatures, the off-diagonal coupling can enhance both the coherence of the resonant energy transfer and the net quantity of energy transferred from an initially excited monomer to the other. Also studied is the dynamics of entanglement between the dimer system and the phonon bath as measured by the von Neumann entanglement entropy, and the inter-monomer entanglement dynamics for the excitonic system. PMID:22462880

  5. Exciton Scattering approach for conjugated macromolecules: from electronic spectra to electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Tretiak, Sergei

    2014-03-01

    The exciton scattering (ES) technique is a multiscale approach developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, the electronic excitations in the molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph. The exciton propagation on the linear segments is characterized by the exciton dispersion, whereas the exciton scattering on the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized ``particle in a box'' problems on the graph that represents the molecule. All parameters can be extracted from quantum-chemical computations of small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within considered molecular family could be performed with negligible numerical effort. The exciton scattering properties of molecular vertices can be further described by tight-binding or equivalently lattice models. The on-site energies and hopping constants are obtained from the exciton dispersion and scattering matrices. Such tight-binding model approach is particularly useful to describe the exciton-phonon coupling, energetic disorder and incoherent energy transfer in large branched conjugated molecules. Overall the ES applications accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  6. Same-Sex Couples: Legal Complexities

    ERIC Educational Resources Information Center

    Oswald, Ramona Faith; Kuvalanka, Katherine A.

    2008-01-01

    In this article, the authors present a typology for organizing our current knowledge regarding same-sex couples in the United States who have and have not established legal ties between partners. This framework is complemented by a discussion of key rulings that define what is legally possible as well as the introduction of "legal consciousness,"…

  7. Electromagnetic coupling on complex systems - Topological approach

    NASA Astrophysics Data System (ADS)

    Parmantier, J. P.; Labaume, G.; Alliot, J. C.; Degauque, P.

    The principles of electromagnetic topology, developed by Baum, are reviewed. The method involves breaking a complex electromagnetic problem down into several small ones that are easier to solve. An example is used to illustrate the advantages of the approach.

  8. Sparse repulsive coupling enhances synchronization in complex networks.

    PubMed

    Leyva, I; Sendiña-Nadal, I; Almendral, J A; Sanjuán, M A F

    2006-11-01

    Through the last years, different strategies to enhance synchronization in complex networks have been proposed. In this work, we show that synchronization of nonidentical dynamical units that are attractively coupled in a small-world network is strongly improved by just making phase-repulsive a tiny fraction of the couplings. By a purely topological analysis that does not depend on the dynamical model, we link the emerging dynamical behavior with the structural properties of the sparsely coupled repulsive network. PMID:17279973

  9. Exciton coupling of surface complexes on a nanocrystal surface.

    PubMed

    Xu, Xiangxing; Ji, Jianwei; Wang, Guan; You, Xiaozeng

    2014-08-25

    Exciton coupling may arise when chromophores are brought into close spatial proximity. Herein the intra-nanocrystal exciton coupling of the surface complexes formed by coordination of 8-hydroxyquinoline to ZnS nanocrystals (NCs) is reported. It is studied by absorption, photoluminescence (PL), PL excitation (PLE), and PL lifetime measurements. The exciton coupling of the surface complexes tunes the PL color and broadens the absorption and PLE windows of the NCs, and thus is a potential strategy for improving the light-harvesting efficiency of NC solar cells and photocatalysts. PMID:24863364

  10. Mode-coupling instability of monolayer complex (dusty) plasmas

    NASA Astrophysics Data System (ADS)

    Zhdanov, Sergey; Ivlev, Alexei; Morfill, Gregor

    2010-05-01

    Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids, in regimes ranging from the onset of cooperative phenomena to large strongly coupled systems at the most detailed kinetic (atomistic) level. On the other hand, there is certain peculiarity of the interparticle interactions in complex plasmas. This can be easily understood if we divide the complete set of elementary charges in complex plasmas into two distinct categories - a subsystem of charges bound to the microparticles, and a subsystem of free plasma charges in the surrounding wakes. Plasma wakes play the role of a "third body" in the mutual particle-particle interaction and, hence, make the pair interaction nonreciprocal. We carried out rigorous theoretical investigation of the DL wave mode coupling occurring in 2D complex plasmas due to particle-wake interactions. The analysis of the mode coupling shows that if the strength of the vertical confinement is below a certain critical value, then resonance coupling between the longitudinal in-plane mode and out-of-plane mode sets in. This results in the emergence of a hybrid mode and drives the mode-coupling instability. The universal dependence of the critical confinement frequency on plasma parameters is calculated, which allows us to specify the conditions when stable 2D highly ordered complex plasma can be formed in experiments.

  11. Complex network synchronization of chaotic systems with delay coupling

    SciTech Connect

    Theesar, S. Jeeva Sathya Ratnavelu, K.

    2014-03-05

    The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology.

  12. Anticipated synchronization in coupled complex Ginzburg-Landau systems.

    PubMed

    Ciszak, Marzena; Mayol, Catalina; Mirasso, Claudio R; Toral, Raul

    2015-09-01

    We study the occurrence of anticipated synchronization in two complex Ginzburg-Landau systems coupled in a master-slave configuration. Master and slave systems are ruled by the same autonomous function, but the slave system receives the injection from the master and is subject to a negative delayed self-feedback loop. We give evidence that the magnitude of the largest anticipation time, obtained for complex-valued coupling constants, depends on the dynamical regime where the system operates (defect turbulence, phase turbulence, or bichaos) and scales with the linear autocorrelation time of the system. We also provide analytical conditions for the stability of the anticipated synchronization manifold that are in qualitative agreement with those obtained numerically. Finally, we report on the existence of anticipated synchronization in coupled two-dimensional complex Ginzburg-Landau systems. PMID:26465544

  13. Anticipated synchronization in coupled complex Ginzburg-Landau systems

    NASA Astrophysics Data System (ADS)

    Ciszak, Marzena; Mayol, Catalina; Mirasso, Claudio R.; Toral, Raul

    2015-09-01

    We study the occurrence of anticipated synchronization in two complex Ginzburg-Landau systems coupled in a master-slave configuration. Master and slave systems are ruled by the same autonomous function, but the slave system receives the injection from the master and is subject to a negative delayed self-feedback loop. We give evidence that the magnitude of the largest anticipation time, obtained for complex-valued coupling constants, depends on the dynamical regime where the system operates (defect turbulence, phase turbulence, or bichaos) and scales with the linear autocorrelation time of the system. We also provide analytical conditions for the stability of the anticipated synchronization manifold that are in qualitative agreement with those obtained numerically. Finally, we report on the existence of anticipated synchronization in coupled two-dimensional complex Ginzburg-Landau systems.

  14. Distributed coupling complexity in a weakly coupled oscillatory network with associative properties

    NASA Astrophysics Data System (ADS)

    Kostorz, Kathrin; Hölzel, Robert W.; Krischer, Katharina

    2013-08-01

    We present a novel architecture of an oscillatory neural network capable of performing pattern recognition tasks. Two established strategies for obtaining associative properties in oscillatory networks invoke either a physical, time constant or a global, dynamical all-to-all coupling. Our network distributes the complexity of the coupling between the spatial and the temporal domain. Instead of {O}(N^2) physical connections or a global connection with {O}(N^2) frequency components, each of the N oscillators receives an individual coupling signal which is composed of N - 1 frequency components. We demonstrate that such a network can be built with analog electronic oscillators and possesses reliable pattern recognition properties. Theoretical analysis shows that the scalability is in fact superior to the dynamic global coupling approach, while its physical complexity is greatly reduced compared to the individual time constant coupling.

  15. Synchronization of complex networks coupled by periodically intermittent noise

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Yan, Huiyun; Li, Jiaorui

    2016-04-01

    Noise is ubiquitous in real systems, so it is important to investigate the effects of noise on the network system. In this paper, the synchronization of complex network coupled by periodically intermittent noise is investigated and a sufficient condition of noise-induced synchronization is obtained analytically via stability theory of stochastic differential equation. The sufficient condition provides a theoretical reference for the analysis of the impact of coupling noise intensity, duration, coupled oscillator number and other parameters on the synchronization behavior. As examples, Rossler-like and Lorenz network systems are presented to verify the theoretical result.

  16. Magnetoelectric coupling effects in multiferroic complex oxide composite structures.

    PubMed

    Vaz, Carlos A F; Hoffman, Jason; Ahn, Charles H; Ramesh, Ramamoorthy

    2010-07-20

    The study of magnetoelectric materials has recently received renewed interest, in large part stimulated by breakthroughs in the controlled growth of complex materials and by the search for novel materials with functionalities suitable for next generation electronic devices. In this Progress Report, we present an overview of recent developments in the field, with emphasis on magnetoelectric coupling effects in complex oxide multiferroic composite materials. PMID:20414887

  17. Modeling of Emission Spectra for Molecular Rings - LH2 And LH4 Complexes

    NASA Astrophysics Data System (ADS)

    Horák, Milan; Hĕrman, Pavel; Zapletal, David

    Computer simulation of steady state fluorescence spectra of the ring molecular systems (resembling, e.g. the light harvesting rings from LH2 and LH4 photosynthetic complexes of purple bacteria) is presented in this paper. The general organization of the LH2 and LH4 complexes is the same: identical subunits are repeated cyclically in such a way that a ring-shaped structure is formed. However, the symmetries of these rings are different: LH2 is usually nonameric but LH4 is octameric. The other difference is the presence of four bacteriochlorophyll molecules per repeating unit in LH4 rather than three ones found in LH2. Transi- tion dipole moments of bacteriochlorophylls in B850 ring of LH2 have nearly tangential orientation whereas in LH4 they are organized in a more radial fashion. The dynamical aspects in ensemble of rings are reflected in optical line shapes of electronic transitions. The observed linewidths reflect the combined influence of different types of static and dynamic disorder. To avoid the broadening of lines due to ensemble averaging one uses the single-molecule spectroscopy technique to obtain a fluorescence-excitation spectrum. For our simulations we have used the ring of tightly bound two-level systems. Static disorder is taken into account simultaneously with dynamic disorder in Markovian approximation. The cumulant-expansion method of Mukamel et al. is used for the calculation of spectral responses of the system with exciton-phonon coupling. Comparison of steady state fluorescence spectra for B850 ring from LH2 and LH4 ring is done.

  18. Ultrafast Polariton-Phonon Dynamics of Strongly Coupled Quantum Dot-Nanocavity Systems

    NASA Astrophysics Data System (ADS)

    Müller, Kai; Fischer, Kevin A.; Rundquist, Armand; Dory, Constantin; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Kelaita, Yousif A.; Borish, Victoria; Vučković, Jelena

    2015-07-01

    We investigate the influence of exciton-phonon coupling on the dynamics of a strongly coupled quantum dot-photonic crystal cavity system and explore the effects of this interaction on different schemes for nonclassical light generation. By performing time-resolved measurements, we map out the detuning-dependent polariton lifetime and extract the spectrum of the polariton-to-phonon coupling with unprecedented precision. Photon-blockade experiments for different pulse-length and detuning conditions (supported by quantum optical simulations) reveal that achieving high-fidelity photon blockade requires an intricate understanding of the phonons' influence on the system dynamics. Finally, we achieve direct coherent control of the polariton states of a strongly coupled system and demonstrate that their efficient coupling to phonons can be exploited for novel concepts in high-fidelity single-photon generation.

  19. From globally coupled maps to complex-systems biology

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko

    2015-09-01

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  20. From globally coupled maps to complex-systems biology

    SciTech Connect

    Kaneko, Kunihiko

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  1. Structural Assembly of Molecular Complexes Based on Residual Dipolar Couplings

    PubMed Central

    Berlin, Konstantin; O’Leary, Dianne P.; Fushman, David

    2010-01-01

    We present and evaluate a rigid-body molecular docking method, called PATIDOCK, that relies solely on the three-dimensional structure of the individual components and the experimentally derived residual dipolar couplings (RDC) for the complex. We show that, given an accurate ab initio predictor of the alignment tensor from a protein structure, it is possible to accurately assemble a protein-protein complex by utilizing the RDC’s sensitivity to molecular shape to guide the docking. The proposed docking method is robust against experimental errors in the RDCs and computationally efficient. We analyze the accuracy and efficiency of this method using experimental or synthetic RDC data for several proteins, as well as synthetic data for a large variety of protein-protein complexes. We also test our method on two protein systems for which the structure of the complex and steric-alignment data are available (Lys48-linked diubiquitin and a complex of ubiquitin and a ubiquitin-associated domain) and analyze the effect of flexible unstructured tails on the outcome of docking. The results demonstrate that it is fundamentally possible to assemble a protein-protein complex based solely on experimental RDC data and the prediction of the alignment tensor from three-dimensional structures. Thus, despite the purely angular nature of residual dipolar couplings, they can be converted into intermolecular distance/translational constraints. Additionally we show a method for combining RDCs with other experimental data, such as ambiguous constraints from interface mapping, to further improve structure characterization of the protein complexes. PMID:20550109

  2. Coupled disease-behavior dynamics on complex networks: A review.

    PubMed

    Wang, Zhen; Andrews, Michael A; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years. PMID:26211717

  3. Coupled disease-behavior dynamics on complex networks: A review

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  4. Numerical Experiments In Strongly Coupled Complex (Dusty) Plasmas

    NASA Astrophysics Data System (ADS)

    Hou, L. J.; Ivlev A.; Hubertus M. T.; Morfill, G. E.

    2010-07-01

    Complex (dusty) plasma is a suspension of micron-sized charged dust particles in a weakly ionized plasma with electrons, ions, and neutral atoms or molecules. Therein, dust particles acquire a few thousand electron charges by absorbing surrounding electrons and ions, and consequently interact with each other via a dynamically screened Coulomb potential while undergoing Brownian motion due primarily to frequent collisions with the neutral molecules. When the interaction potential energy between charged dust particles significantly exceeds their kinetic energy, they become strongly coupled and can form ordered structures comprising liquid and solid states. Since the motion of charged dust particles in complex (dusty) plasmas can be directly observed in real time by using a video camera, such systems have been generally regarded as a promising model system to study many phenomena occurring in solids, liquids and other strongly-coupled systems at the kinetic level, such as phase transitions, transport processes, and collective dynamics. Complex plasma physics has now grown into a mature research field with a very broad range of interdisciplinary facets. In addition to usual experimental and theoretical study, computer simulation in complex plasma plays an important role in bridging experimental observations and theories and in understanding many interesting phenomena observed in laboratory. The present talk will focus on a class of computer simulations that are usually non-equilibrium ones with external perturbation and that mimic the real complex plasma experiments (i. e., numerical experiment). The simulation method, i. e., the so-called Brownian Dynamics methods, will be firstly reviewed and then examples, such as simulations of heat transfer and shock wave propagation, will be present.

  5. Coupling Through Tortuous Path Narrow Slot Apertures into Complex Cavitivies

    SciTech Connect

    Jedlicka, Russell P.; Castillo, Steven P.; Warne, Larry K.

    1999-07-26

    A hybrid FEM/MoM model has been implemented to compute the coupling of fields into a cavity through narrow slot apertures having depth. The model utilizes the slot model of Warne and Chen [23]-[29] which takes into account the depth of the slot, wall losses, and inhomogeneous dielectrics in the slot region. The cavity interior is modeled with the mixed-order, covariant-projection hexahedral elements of Crowley [32]. Results are given showing the accuracy and generality of the method for modeling geometrically complex slot-cavity combinations.

  6. Oxidative coupling of rhodium phenyl imido/amido complexes

    SciTech Connect

    Ge, Y.W.; Ye, Y.; Sharp, P.R.

    1994-09-07

    In previous work, we found that tautomeric mixtures of the late transition metal imido and amido complexes Rh{sub 2}({mu}-NPh)(CO){sub 2} ({mu}-dppm){sub 2} (1) and Rh{sub 2}({mu}-NHPh)(CO){sub 2}({mu}-dppm)({mu}-dppm-H){sup 2} (2) (hereafter designated as 1/2) undergo electrophilic ring addition reactions at the NPh group. A single electron transfer mechanism was considered. Such a mechanism would require oxidation of the imido/amido complex to a radical cation. To establish this possibility, we investigated the oxidation chemistry of this system. We found a rich chemistry consistent with formation and coupling of an amido radical cation. This chemistry, described here, is closely related to the well-studied oxidation chemistry of aniline and its derivatives. 16 refs.

  7. Emission lineshapes of the B850 band of light-harvesting 2 (LH2) complex in purple bacteria: A second order time-nonlocal quantum master equation approach

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Jang, Seogjoo

    2013-04-01

    The emission lineshape of the B850 band in the light harvesting complex 2 of purple bacteria is calculated by extending the approach of 2nd order time-nonlocal quantum master equation [S. Jang and R. J. Silbey, J. Chem. Phys. 118, 9312 (2003), 10.1063/1.1569239]. The initial condition for the emission process corresponds to the stationary excited state density where exciton states are entangled with the bath modes in equilibrium. This exciton-bath coupling, which is not diagonal in either site excitation or exciton basis, results in a new inhomogeneous term that is absent in the expression for the absorption lineshape. Careful treatment of all the 2nd order terms are made, and explicit expressions are derived for both full 2nd order lineshape expression and the one based on secular approximation that neglects off-diagonal components in the exciton basis. Numerical results are presented for a few representative cases of disorder and temperature. Comparison of emission line shape with the absorption line shape is also made. It is shown that the inhomogeneous term coming from the entanglement of the system and bath degrees of freedom makes significant contributions to the lineshape. It is also found that the perturbative nature of the theory can result in negative portion of lineshape in some situations, which can be removed significantly by inclusion of the inhomogeneous term and completely by using the secular approximation. Comparison of the emission and absorption lineshapes at different temperatures demonstrates the role of thermal population of different exciton states and exciton-phonon couplings.

  8. Magnetic Exchange Couplings in Transition Metal Complexes from DFT

    NASA Astrophysics Data System (ADS)

    Peralta, Juan

    In this talk I will review our current efforts for the evaluation of magnetic exchange couplings in transition metal complexes from density functional theory. I will focus on the performance of different DFT approximations, including a variety of hybrid density functionals, and show that hybrid density functionals containing approximately 30% Hartree-Fock type exchange are in general among the best choice in terms of accuracy. I will also describe a novel computational method to evaluate exchange coupling parameters using analytic self-consistent linear response theory. This method avoids the explicit evaluation of energy differences, which can become impractical for large systems. Our approach is based on the evaluation of the transversal magnetic torque between two magnetic centers for a given spin configuration using explicit constraints of the local magnetization direction via Lagrange multipliers. This method is applicable in combination with any modern density functional with a noncollinear spin generalization and can be utilized as a ``black-box''. I will show proof-of-concept calculations in frustrated Fe7IIIdisk-shaped clusters, and dinuclear CuII, FeIII, and heteronuclear complexes. NSF DMR-1206920.

  9. The complex choreography of transcription-coupled repair.

    PubMed

    Spivak, Graciela; Ganesan, Ann K

    2014-07-01

    A quarter of a century has elapsed since the discovery of transcription-coupled repair (TCR), and yet our fascination with this process has not diminished. Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. TCR, defined as a subpathway of NER, is dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, we will report on newly identified proteins, protein modifications, and protein complexes that participate in TCR in Escherichia coli and in human cells. We will discuss general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations. PMID:24751236

  10. Proton-coupled electron transfer with photoexcited metal complexes.

    PubMed

    Wenger, Oliver S

    2013-07-16

    Proton-coupled electron transfer (PCET) plays a crucial role in many enzymatic reactions and is relevant for a variety of processes including water oxidation, nitrogen fixation, and carbon dioxide reduction. Much of the research on PCET has focused on transfers between molecules in their electronic ground states, but increasingly researchers are investigating PCET between photoexcited reactants. This Account describes recent studies of excited-state PCET with d(6) metal complexes emphasizing work performed in my laboratory. Upon photoexcitation, some complexes release an electron and a proton to benzoquinone reaction partners. Others act as combined electron-proton acceptors in the presence of phenols. As a result, we can investigate photoinduced PCET involving electron and proton transfer in a given direction, a process that resembles hydrogen-atom transfer (HAT). In other studies, the photoexcited metal complexes merely serve as electron donors or electron acceptors because the proton donating and accepting sites are located on other parts of the molecular PCET ensemble. We and others have used this multisite design to explore so-called bidirectional PCET which occurs in many enzymes. A central question in all of these studies is whether concerted proton-electron transfer (CPET) can compete kinetically with sequential electron and proton transfer steps. Short laser pulses can trigger excited-state PCET, making it possible to investigate rapid reactions. Luminescence spectroscopy is a convenient tool for monitoring PCET, but unambiguous identification of reaction products can require a combination of luminescence spectroscopy and transient absorption spectroscopy. Nevertheless, in some cases, distinguishing between PCET photoproducts and reaction products formed by simple photoinduced electron transfer (ET) (reactions that don't include proton transfer) is tricky. Some of the studies presented here deal directly with this important problem. In one case study we

  11. Exciton-phonon interaction in crystals and quantum size structures

    NASA Astrophysics Data System (ADS)

    Yaremko, A. M.; Yukhymchuk, V. O.; Dzhagan, V. M.; Valakh, M. Ya; Baran, J.; Ratajczak, H.

    2007-12-01

    In this report, the problem of electron-phonon interaction (EPI) in bulk semiconductors and quantum dots (QDs) is considered. It is shown that the model of strong EPI developed for organic molecular crystals can be successfully applied to bulk and nano-sized semiconductors. The idea of the approach proposed is to describe theoretically the experimental Raman (IR) spectra, containing the phonon replicas, by varying the EPI constant. The main parameter of the theoretical expression (βS) is the ratio of EPI constant (χS) to the frequency of the corresponding phonon mode (ΩS). The theoretical results show that variation of the QD size can change the value of χS.

  12. The use of real or complex coupling coefficients for lossy piezoelectric materials.

    PubMed

    Piquette, Jean C; McLaughlin, Elizabeth A

    2009-04-01

    Two competing approaches for calculating coupling coefficients for lossy piezoelectric materials, one producing a real result and the other a complex result, are compared and analyzed. It is found that the complex coupling coefficient suffers from mathematical difficulties, which the real coupling coefficient does not exhibit. Moreover, it is pointed out that a prediction made by the complex coupling coefficient theory conflicts with experiment while the corresponding real coupling coefficient theory prediction does not. When a coupling coefficient of interest has been computed from the real coupling coefficient theory using piezoelectric equations having intensive independent variables, the resulting expression has the same algebraic form as the corresponding static coupling coefficient formula. Moreover, only the real parts of the piezoelectric, elastic, and dielectric material properties appear. PMID:19406711

  13. Coupled Dust-Lattice Modes in Magnetized Complex Plasmas

    SciTech Connect

    Farokhi, B.; Shahmansouri, M.

    2008-09-07

    Dust lattice wave modes in a one dimensional plasma crystal (formed by paramagnetic dust particles) suspended in the plasma sheath are studied. The ion flow in the sheath introduces 'ion wakes' below the crystal particles. The wave dispersion relations are found under the influence of inhomogeneous magnetic field, wake charge effect and equilibrium charge gradient. The expression for the wave dispersion relations clearly show that three branches exist as a result of the coupling of longitudinal and transverse modes due to the Lorenz forces, charge gradient and wake charge effect. We observe a new coupling between the dust lattice modes, which have not reported so far.

  14. Coupling protein complex analysis to peptide based proteomics.

    PubMed

    Gao, Qiang; Madian, Ashraf G; Liu, Xiuping; Adamec, Jiri; Regnier, Fred E

    2010-12-01

    Proteolysis is a central component of most proteomics methods. Unfortunately much of the information relating to the structural diversity of proteins is lost during digestion. This paper describes a method in which the native proteome of yeast was subjected to preliminary fractionation by size exclusion chromatography (SEC) prior to trypsin digestion of SEC fractions and reversed phase chromatography-mass spectral analysis to identify tryptic peptides thus generated. Through this approach proteins associated with other proteins in high molecular mass complexes were recognized and identified. A focus of this work was on the identification of Hub proteins that associate with multiple interaction partners. A critical component of this strategy is to choose methods and conditions that maximize retention of native structure during the various stages of analysis prior to proteolysis, especially during cell lysis. Maximum survival of protein complexes during lysis was obtained with the French press and bead-beater methods of cell disruption at approximately pH 8 with 200 mM NaCl in the lysis buffer. Structure retention was favored by higher ionic strength, suggesting that hydrophobic effects are important in maintaining the structure of protein complexes. Recovery of protein complexes declined substantially with storage at any temperature, but storage at -20°C was best when low temperature storage was necessary. Slightly lower recovery was obtained with storage at -80°C while lowest recovery was achieved at 4°C. It was concluded that initial fractionation of native proteins in cell lysates by SEC prior to RPC-MS/MS of tryptic digests can be used to recognize and identify proteins in complexes along with their interaction partners in known protein complexes. PMID:21036361

  15. Understanding Complexity: Pattern Recognitions, Emergent Phenomena and Causal Coupling

    NASA Astrophysics Data System (ADS)

    Raia, F.

    2010-12-01

    In teaching and learning complex systems we face a fundamental issue: Simultaneity of causal interactions -where effects are at the same time causes of systems’ behavior. Complex systems’ behavior and evolution are controlled by negative and positive feedback processes, continually changing boundary conditions and complex interaction between systems levels (emergence). These processes cannot be described and understood in a mechanistic framework where causality is conceived of being mostly of cause-effect nature or a linear chain of causes and effects. Mechanist causality by definition is characterized by the assumption that an earlier phenomenon A has a causal effect on the development of a phenomenon B. Since this concept also assumes unidirectional time, B cannot have an effect on A. Since students study science mostly in the lingering mechanistic framework, they have problems understanding complex systems. Specifically, our research on students understanding of complexity indicates that our students seem to have great difficulties in explaining mechanisms underlying natural processes within the current paradigm. Students tend to utilize simple linear model of causality and establish a one-to-one correspondence between cause and effect describing phenomena such as emergence and self-organization as being mechanistically caused. Contrary to experts, when presented with data distribution -spatial and/or temporal-, students first consider or search for a unique cause without describing the distribution or a recognized pattern. Our research suggests that students do not consider a pattern observed as an emergent phenomenon and therefore a causal determinant influencing and controlling the evolution of the system. Changes in reasoning have been observed when students 1) are iteratively asked to recognize and describe patterns in data distribution and 2) subsequently learn to identify these patterns as emergent phenomena and as fundamental causal controls over

  16. Wind-Wave Coupling in a Complex Coastal Environment

    NASA Astrophysics Data System (ADS)

    Haus, B. K.; Laxague, N.; Ortiz-Suslow, D. G.; Graber, H. C.; Romeiser, R.

    2014-12-01

    The University of Miami's air-sea interaction research team has acquired, tested and successfully deployed polarimetric cameras on a variety of shipboard platforms. This has opened up a wide range of studies of processes at the air-sea interface that are critical for interpretation of remote sensing imagery in coastal regions. We can now resolve short wave spectra in the field fast enough to capture the wave growth and relaxation as the local wind gusts and wanes, the phase dependence short waves on longer waves and the effects of rain, wave breaking and surfactants on the ocean surface. Here we will present results from shipboard experiments in the Columbia River mouth and corresponding laboratory observations in the University of Miami's new Surge-Structure ATmosphere INteraction (SUSTAIN) laboratory that demonstrate the effects of topography and currents on surface waves and the corresponding air-sea coupling as observed in SAR imagery.

  17. Symmetrized complex amplitudes for He double photoionization from the time-dependent close coupling and exterior complex scaling methods

    SciTech Connect

    Horner, D.A.; Colgan, J.; Martin, F.; McCurdy, C.W.; Pindzola, M.S.; Rescigno, T.N.

    2004-06-01

    Symmetrized complex amplitudes for the double photoionization of helium are computed by the time-dependent close-coupling and exterior complex scaling methods, and it is demonstrated that both methods are capable of the direct calculation of these amplitudes. The results are found to be in excellent agreement with each other and in very good agreement with results of other ab initio methods and experiment.

  18. Towards quantification of vibronic coupling in photosynthetic antenna complexes.

    PubMed

    Singh, V P; Westberg, M; Wang, C; Dahlberg, P D; Gellen, T; Gardiner, A T; Cogdell, R J; Engel, G S

    2015-06-01

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency--by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime. PMID:26049466

  19. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    PubMed Central

    Singh, V. P.; Westberg, M.; Wang, C.; Dahlberg, P. D.; Gellen, T.; Gardiner, A. T.; Cogdell, R. J.

    2015-01-01

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime. PMID:26049466

  20. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    NASA Astrophysics Data System (ADS)

    Singh, V. P.; Westberg, M.; Wang, C.; Dahlberg, P. D.; Gellen, T.; Gardiner, A. T.; Cogdell, R. J.; Engel, G. S.

    2015-06-01

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  1. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    SciTech Connect

    Singh, V. P.; Westberg, M.; Wang, C.; Gellen, T.; Engel, G. S.; Dahlberg, P. D.; Gardiner, A. T.; Cogdell, R. J.

    2015-06-07

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  2. Complex (dusty) plasmas-kinetic studies of strong coupling phenomena

    SciTech Connect

    Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.

    2012-05-15

    'Dusty plasmas' can be found almost everywhere-in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and-at the fundamental level-in the physics of strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10{sup -12}to10{sup -9}g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.

  3. Complex (dusty) plasmas—kinetic studies of strong coupling phenomenaa)

    NASA Astrophysics Data System (ADS)

    Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.

    2012-05-01

    "Dusty plasmas" can be found almost everywhere—in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and—at the fundamental level—in the physics of strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10-12to10-9g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.

  4. Synchronization Experiments With A Global Coupled Model of Intermediate Complexity

    NASA Astrophysics Data System (ADS)

    Selten, Frank; Hiemstra, Paul; Shen, Mao-Lin

    2013-04-01

    In the super modeling approach an ensemble of imperfect models are connected through nudging terms that nudge the solution of each model to the solution of all other models in the ensemble. The goal is to obtain a synchronized state through a proper choice of connection strengths that closely tracks the trajectory of the true system. For the super modeling approach to be successful, the connections should be dense and strong enough for synchronization to occur. In this study we analyze the behavior of an ensemble of connected global atmosphere-ocean models of intermediate complexity. All atmosphere models are connected to the same ocean model through the surface fluxes of heat, water and momentum, the ocean is integrated using weighted averaged surface fluxes. In particular we analyze the degree of synchronization between the atmosphere models and the characteristics of the ensemble mean solution. The results are interpreted using a low order atmosphere-ocean toy model.

  5. Handling Qualities of Model Reference Adaptive Controllers with Varying Complexity for Pitch-Roll Coupled Failures

    NASA Technical Reports Server (NTRS)

    Schaefer, Jacob; Hanson, Curt; Johnson, Marcus A.; Nguyen, Nhan

    2011-01-01

    Three model reference adaptive controllers (MRAC) with varying levels of complexity were evaluated on a high performance jet aircraft and compared along with a baseline nonlinear dynamic inversion controller. The handling qualities and performance of the controllers were examined during failure conditions that induce coupling between the pitch and roll axes. Results from flight tests showed with a roll to pitch input coupling failure, the handling qualities went from Level 2 with the baseline controller to Level 1 with the most complex MRAC tested. A failure scenario with the left stabilator frozen also showed improvement with the MRAC. Improvement in performance and handling qualities was generally seen as complexity was incrementally added; however, added complexity usually corresponds to increased verification and validation effort required for certification. The tradeoff between complexity and performance is thus important to a controls system designer when implementing an adaptive controller on an aircraft. This paper investigates this relation through flight testing of several controllers of vary complexity.

  6. Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin

    2009-01-01

    Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.

  7. Comment on the relation between the nonadiabatic coupling and the complex intersection of potential energy curves

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1977-01-01

    Simple relations are discussed that provide a correspondence between the complex intersection of two potential surfaces and the nonadiabatic coupling matrix element between those surfaces. These are key quantities in semiclassical and quantum mechanical theories of collision induced electronic transitions. Within the two state approximation, the complex intersection is shown to be directly related to the location and magnitude of the peak in the nonadiabatic coupling. Two cases are considered: the avoided crossing between two potential surfaces; and the spin orbit interaction due to a P-2 halogen atom. Comparisons are made between the results of the two-state model and the results of ab initio quantum chemical calculations.

  8. Mode-Coupling Instability in a Fluid Two-Dimensional Complex Plasma

    NASA Astrophysics Data System (ADS)

    Ivlev, A. V.; Zhdanov, S. K.; Lampe, M.; Morfill, G. E.

    2014-09-01

    A theory of the mode-coupling instability (MCI) in a fluid two-dimensional complex plasma is developed. In analogy to the point-wake model of the wake-mediated interactions commonly used to describe MCI in two-dimensional crystals, the layer-wake model is employed for fluids. It is demonstrated that the wake-induced coupling of wave modes occurs in both crystalline and fluid complex plasmas, but the confinement-density threshold, which determines the MCI onset in crystals, virtually disappears in fluids. The theory shows excellent qualitative agreement with available experiments and provides certain predictions to be verified.

  9. A coupled multi-block solution procedure for spray combustion in complex geometries

    NASA Technical Reports Server (NTRS)

    Chen, Kuo-Huey; Shuen, Jian-Shun

    1993-01-01

    Turbulent spray-combusting flow in complex geometries is presently treated by a coupled implicit procedure that employs finite-rate chemistry and real gas properties for combustion, as well as the stochastic separated model for spray and a multiblock treatment for complex geometries. Illustrative numerical tests conducted encompass a steady-state nonreacting backward-facing step flow, a premixed single-phase combustion flow, and spray combustion flow in a gas turbine combustor.

  10. J(Si,H) Coupling Constants in Nonclassical Transition-Metal Silane Complexes.

    PubMed

    Scherer, Wolfgang; Meixner, Petra; Batke, Kilian; Barquera-Lozada, José E; Ruhland, Klaus; Fischer, Andreas; Eickerling, Georg; Eichele, Klaus

    2016-09-12

    We will outline that the sign and magnitude of J(Si,H) coupling constants provide a highly sensitive tool to measure the extent of Si-H bond activation in nonclassical silane complexes. Up to now, this structure-property relationship was obscured by erroneous J(Si,H) sign determinations in the literature. These new findings also help to identify the salient control parameters of the Si-H bond activation process in nonclassical silane complexes. PMID:27503583

  11. The mechanism of coupling between electron transfer and proton translocation in respiratory complex I.

    PubMed

    Sazanov, Leonid A

    2014-08-01

    NADH-ubiquinone oxidoreductase (complex I) is the first and largest enzyme in the respiratory chain of mitochondria and many bacteria. It couples the transfer of two electrons between NADH and ubiquinone to the translocation of four protons across the membrane. Complex I is an L-shaped assembly formed by the hydrophilic (peripheral) arm, containing all the redox centres performing electron transfer and the membrane arm, containing proton-translocating machinery. Mitochondrial complex I consists of 44 subunits of about 1 MDa in total, whilst the prokaryotic enzyme is simpler and generally consists of 14 conserved "core" subunits. Recently we have determined the first atomic structure of the entire complex I, using the enzyme from Thermus thermophilus (536 kDa, 16 subunits, 9 Fe-S clusters, 64 TM helices). Structure suggests a unique coupling mechanism, with redox energy of electron transfer driving proton translocation via long-range (up to ~200 Å) conformational changes. It resembles a steam engine, with coupling elements (akin to coupling rods) linking parts of this molecular machine. PMID:24943718

  12. Solution of coupled integral equations for quantum scattering in the presence of complex potentials

    SciTech Connect

    Franz, Jan

    2015-01-15

    In this paper, we present a method to compute solutions of coupled integral equations for quantum scattering problems in the presence of a complex potential. We show how the elastic and absorption cross sections can be obtained from the numerical solution of these equations in the asymptotic region at large radial distances.

  13. Coupling centrality and authority of co-processing model on complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhanli; Li, Huibin

    2016-04-01

    Coupling centrality and authority of co-processing model on complex networks are investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are obtained to disclose the formation. Considering the influence of a node to the global dynamical behavior, coupling centrality and authority are introduced for each node, which determine the relative importance and authority of nodes in the diffusion process. Furthermore, the experimental results on large-scale complex networks confirm our analytical prediction.

  14. Magnetic Exchange Couplings in Heterodinuclear Complexes Based on Differential Local Spin Rotations.

    PubMed

    Joshi, Rajendra P; Phillips, Jordan J; Peralta, Juan E

    2016-04-12

    We analyze the performance of a new method for the calculation of magnetic exchange coupling parameters for the particular case of heterodinuclear transition metals complexes of Cu, Ni, and V. This method is based on a generalized perturbative approach which uses differential local spin rotations via formal Lagrange multipiers (Phillips, J. J.; Peralta, J. E. J. Chem. Phys. 2013, 138, 174115). The reliability of the calculated couplings has been assessed by comparing with results from traditional energy differences with different density functional approximations and with experimental values. Our results show that this method to calculate magnetic exchange couplings can be reliably used for heteronuclear transition metal complexes, and at the same time, that it is independent from the different mapping schemes used in energy difference methods. PMID:26953521

  15. Electrostatic effects on proton coupled electron transfer in oxomanganese complexes inspired by the oxygen-evolving complex of photosystem II.

    PubMed

    Amin, Muhamed; Vogt, Leslie; Vassiliev, Serguei; Rivalta, Ivan; Sultan, Mohammad M; Bruce, Doug; Brudvig, Gary W; Batista, Victor S; Gunner, M R

    2013-05-23

    The influence of electrostatic interactions on the free energy of proton coupled electron transfer in biomimetic oxomanganese complexes inspired by the oxygen-evolving complex (OEC) of photosystem II (PSII) are investigated. The reported study introduces an enhanced multiconformer continuum electrostatics (MCCE) model, parametrized at the density functional theory (DFT) level with a classical valence model for the oxomanganese core. The calculated pKa's and oxidation midpoint potentials (E(m)'s) match experimental values for eight complexes, indicating that purely electrostatic contributions account for most of the observed couplings between deprotonation and oxidation state transitions. We focus on pKa's of terminal water ligands in [Mn(II/III)(H2O)6](2+/3+) (1), [Mn(III)(P)(H2O)2](3-) (2, P = 5,10,15,20-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrinato), [Mn2(IV,IV)(μ-O)2(terpy)2(H2O)2](4+) (3, terpy = 2,2':6',2″-terpyridine), and [Mn3(IV,IV,IV)(μ-O)4(phen)4(H2O)2](4+) (4, phen = 1,10-phenanthroline) and the pKa's of μ-oxo bridges and Mn E(m)'s in [Mn2(μ-O)2(bpy)4] (5, bpy = 2,2'-bipyridyl), [Mn2(μ-O)2(salpn)2] (6, salpn = N,N'-bis(salicylidene)-1,3-propanediamine), [Mn2(μ-O)2(3,5-di(Cl)-salpn)2] (7), and [Mn2(μ-O)2(3,5-di(NO2)-salpn)2] (8). The analysis of complexes 6-8 highlights the strong coupling between electron and proton transfers, with any Mn oxidation lowering the pKa of an oxo bridge by 10.5 ± 0.9 pH units. The model also accounts for changes in the E(m)'s by ligand substituents, such as found in complexes 6-8, due to the electron withdrawing Cl (7) and NO2 (8). The reported study provides the foundation for analysis of electrostatic effects in other oxomanganese complexes and metalloenzymes, where proton coupled electron transfer plays a fundamental role in redox-leveling mechanisms. PMID:23570540

  16. π-π Stacking and ferromagnetic coupling mechanism on a binuclear Cu(II) complex.

    PubMed

    Chi, Yan-Hui; Yu, Li; Shi, Jing-Min; Zhang, Yi-Quan; Hu, Tai-Qiu; Zhang, Gui-Qiu; Shi, Wei; Cheng, Peng

    2011-02-21

    The ferromagnetic couplings were observed in an unpublished crystal that consists of binuclear copper(II) complexes, namely, [Cu(2)(μ(1,3)-SCN)(2)(PhenOH)(OCH(3))(2)(HOCH(3))(2)] (PhenOH = 2-hydroxy-1,10-phenanthroline), and in the binuclear complex Cu(ii) ion assumes a distorted octahedral geometry and thiocyanate anion functions as a μ(1,3)-SCN(-) equatorial-axial (EA) bridging ligand. The analysis for the crystal structure indicates that there are three types of magnetic coupling pathways, in which two pathways involve π-π stacking between the adjacent complexes and the third one is the μ(1,3)-SCN(-) bridged pathway. The fitting for the data of the variable-temperature magnetic susceptibilities shows that there is a ferromagnetic coupling between adjacent Cu(II) ions with J = 50.02 cm(-1). Theoretical calculations reveal that the two types of π-π stacking resulted in ferromagnetic couplings with J = 4.16 cm(-1) and J = 2.75 cm(-1), respectively, and the bridged thiocyanate anions pathway led to a weaker ferromagnetic interaction with J = 0.88 cm(-1). The theoretical calculations also indicate that the ferromagnetic coupling sign from the two types of π-π stacking does not accord with McConnell I spin-polarization mechanism. The analysis for the Wiberg bond indexes that originate from the π-π stacking atoms indicates that the Wiberg bond indexes are relevant to the associated magnetic coupling magnitude and the Wiberg bond index is one of the key factors that dominates the associated magnetic coupling magnitude. PMID:21212898

  17. Spin Adapted versus Broken Symmetry Approaches in the Description of Magnetic Coupling in Heterodinuclear Complexes.

    PubMed

    Costa, Ramon; Valero, Rosendo; Reta Mañeru, Daniel; Moreira, Ibério de P R; Illas, Francesc

    2015-03-10

    The performance of a series of wave function and density functional theory based methods in predicting the magnetic coupling constant of a family of heterodinuclear magnetic complexes has been studied. For the former, the accuracy is similar to other simple cases involving homodinuclear complexes, the main limitation being a sufficient inclusion of dynamical correlation effects. Nevertheless, these series of calculations provide an appropriate benchmark for density functional theory based methods. Here, the usual broken symmetry approach provides a convenient framework to predict the magnetic coupling constants but requires deriving the appropriate mapping. At variance with simple dinuclear complexes, spin projection based techniques cannot recover the corresponding (approximate) spin adapted solution. Present results also show that current implementation of spin flip techniques leads to unphysical results. PMID:26579753

  18. Characterizing and Modeling the Noise and Complex Impedance of Feedhorn-Coupled TES Polarimeters

    SciTech Connect

    Appel, J. W.; Beall, J. A.; Essinger-Hileman, T.; Parker, L. P.; Staggs, S. T.; Visnjic, C.; Zhao, Y.; Austermann, J. E.; Halverson, N. W.; Henning, J. W.; Simon, S. M.; Becker, D.; Britton, J.; Cho, H. M.; Hilton, G. C.; Irwin, K. D.; Niemack, M. D.; Yoon, K. W.; Benson, B. A.; Bleem, L. E.

    2009-12-16

    We present results from modeling the electrothermal performance of feedhorn-coupled transition edge sensor (TES) polarimeters under development for use in cosmic microwave background (CMB) polarization experiments. Each polarimeter couples radiation from a corrugated feedhorn through a planar orthomode transducer, which transmits power from orthogonal polarization modes to two TES bolometers. We model our TES with two- and three-block thermal architectures. We fit the complex impedance data at multiple points in the TES transition. From the fits, we predict the noise spectra. We present comparisons of these predictions to the data for two TESes on a prototype polarimeter.

  19. Efficient oxidative coupling of 2,6-disubstituted phenol catalyzed by a dicopper(II) complex.

    PubMed

    Liao, Bei-Sih; Liu, Yi-Hung; Peng, Shei-Ming; Liu, Shiuh-Tzung

    2012-01-28

    Complexation of a rigid multi-pyridine ligand bis(2-pyridyl)-1,8-naphthyridine (bpnp) with [Cu(2)(TFA)(4)] (TFA = trifluoroacetate) resulted in the formation of a dinuclear copper(II) complex, namely [Cu(2)(bpnp)(μ-OH)(TFA)(3)] (1). This complex has been characterized by X-ray crystallographic, spectroscopic and elemental analyses. Complex 1 is an efficient catalyst for the oxidative coupling of various 2,6-disubstituted phenols with molecular oxygen. Yields and selectivity depend on the reaction conditions employed, the best results being obtained in isopropanol or dioxane at 90 °C with yields of >99%. Mechanistic pathway of the catalysis is discussed. PMID:22116574

  20. anQCD: Fortran programs for couplings at complex momenta in various analytic QCD models

    NASA Astrophysics Data System (ADS)

    Ayala, César; Cvetič, Gorazd

    2016-02-01

    We provide three Fortran programs which evaluate the QCD analytic (holomorphic) couplings Aν(Q2) for complex or real squared momenta Q2. These couplings are holomorphic analogs of the powers a(Q2)ν of the underlying perturbative QCD (pQCD) coupling a(Q2) ≡αs(Q2) / π, in three analytic QCD models (anQCD): Fractional Analytic Perturbation Theory (FAPT), Two-delta analytic QCD (2 δanQCD), and Massive Perturbation Theory (MPT). The index ν can be noninteger. The provided programs do basically the same job as the Mathematica package anQCD.m published by us previously (Ayala and Cvetič, 2015), but are now written in Fortran.

  1. Application of coupled-channel Complex Scaling Method to {Lambda}(1405)

    SciTech Connect

    Dote, Akinobu; Myo, Takayuki

    2011-10-21

    We have applied the coupled-channel Complex Scaling Method (ccCSM) to the excited baryon {Lambda}(1405) which is the important building block of kaonic nuclei. {Lambda}(1405) is treated as a resonant state of the meson-baryon coupled system, K-barN and {pi}{Sigma}. In this article, it is reported that the ccCSM works well even with an energy-dependent K-barN potential such as a chiral SU(3)-based potential. We have tested two cases: the self-consistency condition is imposed on I) real energy and II) complex energy. Then, the self-consistent solutions are obtained in both cases in the framework of the ccCSM.

  2. Assessing spatial coupling in complex population dynamics using mutual prediction and continuity statistics

    USGS Publications Warehouse

    Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.

    2005-01-01

    A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.

  3. Studying Arsenite-Humic Acid Complexation Using Size Exclusion Chromatography-Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Liu, Guangliang; Cai, Yong

    2012-01-01

    Arsenic (As) can form complexes with dissolved organic matter (DOM), which affects the fate of arsenic in waste sites and natural environments. It remains a challenge to analyze DOM-bound As, in particular by using a direct chromatographic separation method. Size exclusion chromatography (SEC) hyphenated with UV spectrophotometer and inductively coupled plasma mass spectrometry (ICP-MS) was developed to characterize the complexation of arsenite (AsIII) with DOM. This SEC-UV-ICP-MS method is able to differentiate AsIII-DOM complexes from free As species and has the advantage of direct determination of both free and DOM-bound AsIII through mild separation. The suitability of this method for studying AsIII-DOM complexation was demonstrated by its application, in combination with the Scatchard plot and nonlinear regression of ligand binding model, for characterizing AsIII complexation with humic acid (HA) in the absence or presence of natural sand. The results suggest that, consistent with polyelectrolytic nature of HA, the AsIII-HA complexation should be accounted for by multiple classes of binding sites. By loosely classifying the binding sites into strong (S1) and weak (S2) sites, the apparent stability constants (Ks) of the resulting As-DOM complexes were calculated as log Ks1 = 6.5–7.1 while log Ks2 = 4.7–5.0. PMID:22664255

  4. Flexible simulation framework to couple processes in complex 3D models for subsurface utilization assessment

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Nakaten, Benjamin; De Lucia, Marco; Nakaten, Natalie; Otto, Christopher; Pohl, Maik; Tillner, Elena; Kühn, Michael

    2016-04-01

    Utilization of the geological subsurface for production and storage of hydrocarbons, chemical energy and heat as well as for waste disposal requires the quantification and mitigation of environmental impacts as well as the improvement of georesources utilization in terms of efficiency and sustainability. The development of tools for coupled process simulations is essential to tackle these challenges, since reliable assessments are only feasible by integrative numerical computations. Coupled processes at reservoir to regional scale determine the behaviour of reservoirs, faults and caprocks, generally demanding for complex 3D geological models to be considered besides available monitoring and experimenting data in coupled numerical simulations. We have been developing a flexible numerical simulation framework that provides efficient workflows for integrating the required data and software packages to carry out coupled process simulations considering, e.g., multiphase fluid flow, geomechanics, geochemistry and heat. Simulation results are stored in structured data formats to allow for an integrated 3D visualization and result interpretation as well as data archiving and its provision to collaborators. The main benefits in using the flexible simulation framework are the integration of data geological and grid data from any third party software package as well as data export to generic 3D visualization tools and archiving formats. The coupling of the required process simulators in time and space is feasible, while different spatial dimensions in the coupled simulations can be integrated, e.g., 0D batch with 3D dynamic simulations. User interaction is established via high-level programming languages, while computational efficiency is achieved by using low-level programming languages. We present three case studies on the assessment of geological subsurface utilization based on different process coupling approaches and numerical simulations.

  5. COUPLING

    DOEpatents

    Hawke, B.C.

    1963-02-26

    This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

  6. Ruthenium tris(bipyridine) complexes with sulfur substituents: model studies for PEG coupling.

    PubMed

    Fiore, Gina L; Goguen, Brenda N; Klinkenberg, Jessica L; Payne, Sarah J; Demas, J N; Fraser, Cassandra L

    2008-07-21

    Ruthenium polypyridyl complexes are incorporated into polymers for sensing and light emitting materials applications. Coupling reactions between metal complexes and polymers are one route to polymeric metal complexes. In an effort to increase conjugation efficiency, tune materials properties, and introduce a responsive crosslink, ruthenium tris(bipyridine) derivatives with sulfur substituents were synthesized and compared to oxygen analogues. Difunctional thiols, thioesters, thioethers, and disulfides, as well as hexafunctional nonpolymeric model systems, were explored. Upon exposure to oxygen, the thiol derivative was readily oxidized. These studies guided Ru(bpy)3 PEG coupling reactions with disulfide and thioether linkages, which proceeded to approximately 80% and approximately 60% yield, respectively. The luminescence properties of the Ru PEG derivatives and model systems were investigated. The emission spectra and lifetimes for all complexes in CH3CN under an inert atmosphere are comparable to [Ru(bpy)3]Cl2. Lifetime data for nonpolymeric analogues fit to a single exponential decay indicating heterogeneity, suggesting sample homogeneity, whereas data for polymers fit to a multiexponential decay. In contrast to certain [Ru(bpy)3](2+)/thiol mixtures, no intramolecular quenching by the sulfide is observed for [Ru(bpy)2{bpy(CH2SH)2}](PF6)2. Emission spectra red shift and multiexponential decay are noted for the oxidized Ru thiol product. The rates of oxygen quenching are slower for Ru PEG derivatives than those for nonpolymeric analogues, which may be attributed to shielding effects of the polymer chain. PMID:18563893

  7. Robust synchronization of complex networks with uncertain couplings and incomplete information

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Liang, Jinling; Wang, Zidong; Alsaadi, Fuad E.

    2016-07-01

    The mean square exponential (MSE) synchronization problem is investigated in this paper for complex networks with simultaneous presence of uncertain couplings and incomplete information, which comprise both the randomly occurring delay and the randomly occurring non-linearities. The network considered is uncertain with time-varying stochastic couplings. The randomly occurring delay and non-linearities are modelled by two Bernoulli-distributed white sequences with known probabilities to better describe realistic complex networks. By utilizing the coordinate transformation, the addressed complex network can be exponentially synchronized in the mean square if the MSE stability of a transformed subsystem can be assured. The stability problem is studied firstly for the transformed subsystem based on the Lyapunov functional method. Then, an easy-to-verify sufficient criterion is established by further decomposing the transformed system, which embodies the joint impacts of the single-node dynamics, the network topology and the statistical quantities of the uncertainties on the synchronization of the complex network. Numerical examples are exploited to illustrate the effectiveness of the proposed methods.

  8. Semiquinone intermediates are involved in the energy coupling mechanism of E. coli complex I.

    PubMed

    Narayanan, Madhavan; Leung, Steven A; Inaba, Yuta; Elguindy, Mahmoud M; Nakamaru-Ogiso, Eiko

    2015-08-01

    Complex I (NADH:quinone oxidoreductase) is central to cellular aerobic energy metabolism, and its deficiency is involved in many human mitochondrial diseases. Complex I translocates protons across the membrane using electron transfer energy. Semiquinone (SQ) intermediates appearing during catalysis are suggested to be key for the coupling mechanism in complex I. However, the existence of SQ has remained controversial due to the extreme difficulty in detecting unstable and low intensity SQ signals. Here, for the first time with Escherichia coli complex I reconstituted in proteoliposomes, we successfully resolved and characterized three distinct SQ species by EPR. These species include: fast-relaxing SQ (SQNf) with P1/2 (half-saturation power level)>50mW and a wider linewidth (12.8 G); slow-relaxing SQ (SQNs) with P1/2=2-3mW and a 10G linewidth; and very slow-relaxing SQ (SQNvs) with P1/2= ~0.1mW and a 7.5G linewidth. The SQNf signals completely disappeared in the presence of the uncoupler gramicidin D or squamotacin, a potent E. coli complex I inhibitor. The pH dependency of the SQNf signals correlated with the proton-pumping activities of complex I. The SQNs signals were insensitive to gramicidin D, but sensitive to squamotacin. The SQNvs signals were insensitive to both gramicidin D and squamotacin. Our deuterium exchange experiments suggested that SQNf is neutral, while SQNs and SQNvs are anion radicals. The SQNs signals were lost in the ΔNuoL mutant missing transporter module subunits NuoL and NuoM. The roles and relationships of the SQ intermediates in the coupling mechanism are discussed. PMID:25868873

  9. Complex spectrum of finite-density lattice QCD with static quarks at strong coupling

    NASA Astrophysics Data System (ADS)

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    2016-05-01

    We calculate the spectrum of transfer matrix eigenvalues associated with Polyakov loops in finite-density lattice QCD with static quarks. These eigenvalues determine the spatial behavior of Polyakov loop correlation functions. Our results are valid for all values of the gauge coupling in 1 +1 dimensions and in the strong-coupling region for any number of dimensions. When the quark chemical potential μ is nonzero, the spatial transfer matrix Ts is non-Hermitian. The appearance of complex eigenvalues in Ts is a manifestation of the sign problem in finite-density QCD. The invariance of finite-density QCD under the combined action of charge conjugation C and complex conjugation K implies that the eigenvalues of Ts are either real or part of a complex pair. Calculation of the spectrum confirms the existence of complex pairs in much of the temperature-chemical potential plane. Many features of the spectrum for static quarks are determined by a particle-hole symmetry. For μ that is small compared to the quark mass M , we typically find real eigenvalues for the lowest-lying states. At somewhat larger values of μ , pairs of eigenvalues may form complex-conjugate pairs, leading to damped oscillatory behavior in Polyakov loop correlation functions. However, near μ =M , the low-lying spectrum becomes real again. This is a direct consequence of the approximate particle-hole symmetry at μ =M for heavy quarks. This behavior of the eigenvalues should be observable in lattice simulations and can be used as a test of lattice algorithms. Our results provide independent confirmation of results we have previously obtained in Polyakov-Nambu-Jona-Lasinio models using complex saddle points.

  10. Complex dynamics analysis of impulsively coupled Duffing oscillators with ring structure

    NASA Astrophysics Data System (ADS)

    Jiang, Hai-Bo; Zhang, Li-Ping; Yu, Jian-Jiang

    2015-02-01

    Impulsively coupled systems are high-dimensional non-smooth systems that can exhibit rich and complex dynamics. This paper studies the complex dynamics of a non-smooth system which is unidirectionally impulsively coupled by three Duffing oscillators in a ring structure. By constructing a proper Poincaré map of the non-smooth system, an analytical expression of the Jacobian matrix of Poincaré map is given. Two-parameter Hopf bifurcation sets are obtained by combining the shooting method and the Runge-Kutta method. When the period is fixed and the coupling strength changes, the system undergoes stable, periodic, quasi-periodic, and hyper-chaotic solutions, etc. Floquet theory is used to study the stability of the periodic solutions of the system and their bifurcations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11402224, 11202180, 61273106, and 11171290), the Qing Lan Project of the Jiangsu Higher Educational Institutions of China, and the Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and Presidents.

  11. Substrate-Na{sup +} complex formation: Coupling mechanism for {gamma}-aminobutyrate symporters

    SciTech Connect

    Pallo, Anna; Simon, Agnes; Bencsura, Akos; Heja, Laszlo; Kardos, Julianna

    2009-07-24

    Crystal structures of transmembrane transport proteins belonging to the important families of neurotransmitter-sodium symporters reveal how they transport neurotransmitters across membranes. Substrate-induced structural conformations of gated neurotransmitter-sodium symporters have been in the focus of research, however, a key question concerning the mechanism of Na{sup +} ion coupling remained unanswered. Homology models of human glial transporter subtypes of the major inhibitory neurotransmitter {gamma}-aminobutyric acid were built. In accordance with selectivity data for subtype 2 vs. 3, docking and molecular dynamics calculations suggest similar orthosteric substrate (inhibitor) conformations and binding crevices but distinguishable allosteric Zn{sup 2+} ion binding motifs. Considering the occluded conformational states of glial human {gamma}-aminobutyric acid transporter subtypes, we found major semi-extended and minor ring-like conformations of zwitterionic {gamma}-aminobutyric acid in complex with Na{sup +} ion. The existence of the minor ring-like conformation of {gamma}-aminobutyric acid in complex with Na{sup +} ion may be attributed to the strengthening of the intramolecular H-bond by the electrostatic effect of Na{sup +} ion. Coupling substrate uptake into cells with the thermodynamically favorable Na{sup +} ion movement through substrate-Na{sup +} ion complex formation may be a mechanistic principle featuring transmembrane neurotransmitter-sodium symporter proteins.

  12. The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement

    PubMed Central

    Tooley, John G.; Miller, Stephanie A.; Stukenberg, P. Todd

    2011-01-01

    In kinetochores, the Ndc80 complex couples the energy in a depolymerizing microtubule to perform the work of moving chromosomes. The complex directly binds microtubules using an unstructured, positively charged N-terminal tail located on Hec1/Ndc80. Hec1/Ndc80 also contains a calponin homology domain (CHD) that increases its affinity for microtubules in vitro, yet whether it is required in cells and how the tail and CHD work together are critical unanswered questions. Human kinetochores containing Hec1/Ndc80 with point mutations in the CHD fail to align chromosomes or form productive microtubule attachments. Kinetochore architecture and spindle checkpoint protein recruitment are unaffected in these mutants, and the loss of CHD function cannot be rescued by removing Aurora B sites from the tail. The interaction between the Hec1/Ndc80 CHD and a microtubule is facilitated by positively charged amino acids on two separate regions of the CHD, and both are required for kinetochores to make stable attachments to microtubules. Chromosome congression in cells also requires positive charge on the Hec1 tail to facilitate microtubule contact. In vitro binding data suggest that charge on the tail regulates attachment by directly increasing microtubule affinity as well as driving cooperative binding of the CHD. These data argue that in vertebrates there is a tripartite attachment point facilitating the interaction between Hec1/Ndc80 and microtubules. We discuss how such a complex microtubule-binding interface may facilitate the coupling of depolymerization to chromosome movement. PMID:21325630

  13. Proton coupled electron transfer from the excited state of a ruthenium(II) pyridylimidazole complex.

    PubMed

    Pannwitz, Andrea; Wenger, Oliver S

    2016-04-28

    Proton coupled electron transfer (PCET) from the excited state of [Ru(bpy)2pyimH](2+) (bpy = 2,2'-bipyridine; pyimH = 2-(2'-pyridyl)imidazole) to N-methyl-4,4'-bipyridinium (monoquat, MQ(+)) was studied. While this complex has been investigated previously, our study is the first to show that the formal bond dissociation free energy (BDFE) of the imidazole-N-H bond decreases from (91 ± 1) kcal mol(-1) in the electronic ground state to (43 ± 5) kcal mol(-1) in the lowest-energetic (3)MLCT excited state. This makes the [Ru(bpy)2pyimH](2+) complex a very strong (formal) hydrogen atom donor even when compared to metal hydride complexes, and this is interesting for light-driven (formal) hydrogen atom transfer (HAT) reactions with a variety of different substrates. Mechanistically, formal HAT between (3)MLCT excited [Ru(bpy)2pyimH](2+) and monoquat in buffered 1 : 1 (v : v) CH3CN/H2O was found to occur via a sequence of reaction steps involving electron transfer from Ru(ii) to MQ(+) coupled to release of the N-H proton to buffer base, followed by protonation of reduced MQ(+) by buffer acid. Our study is relevant in the larger contexts of photoredox catalysis and light-to-chemical energy conversion. PMID:27094541

  14. Higher spin gravitational couplings: Ghosts in the Yang-Mills detour complex

    SciTech Connect

    Gover, A. R.; Hallowell, K.; Waldron, A.

    2007-01-15

    Gravitational interactions of higher spin fields are generically plagued by inconsistencies. There exists however, a simple framework that couples higher spins to a broad class of gravitational backgrounds (including Ricci flat and Einstein) consistently at the classical level. The model is the simplest example of a Yang-Mills detour complex and has broad mathematical applications, especially to conformal geometry. Even the simplest version of the theory, which couples gravitons, vectors and scalar fields in a flat background is rather rich, providing an explicit setting for detailed analysis of ghost excitations. Its asymptotic scattering states consist of a physical massless graviton, scalar, and massive vector along with a degenerate pair of zero norm photon excitations. Coherent states of the unstable sector do have positive norms, but their evolution is no longer unitary and amplitudes grow with time. The class of models proposed is extremely general and of considerable interest for ghost condensation and invariant theory.

  15. Ruthenium Carbon-Rich Complexes as Redox Switchable Metal Coupling Units.

    PubMed

    Di Piazza, Emmanuel; Merhi, Areej; Norel, Lucie; Choua, Sylvie; Turek, Philippe; Rigaut, Stéphane

    2015-07-01

    With the help of EPR spectroscopy, we show that the diamagnetic [Ru(dppe)2(-C≡C-R)2] system sets up a magnetic coupling between two organic radicals R, i.e., two nitronyl nitroxide or two verdazyl units, which is stronger than that of related platinum organometallic systems. Surprisingly, further oxidation of the ruthenium redox-active metal coupling unit (MCU), which introduces an additional spin unit on the carbon-rich part, leads to the switching off of this interaction. On the contrary, in simpler complexes bearing only one of the organic radical ligands [C6H5-C≡C-Ru(dppe)2-C≡C-R], one-electron oxidation of the transition metal unit generates an interaction between the two spin carriers of comparable magnitude to that observed in the above corresponding neutral systems. PMID:26068041

  16. Direct C-C coupling of two Ni-salphen complexes to yield dinickel-disalphen complexes with symmetric and non-symmetric substitution-patterns.

    PubMed

    Bugenhagen, B E C; Prosenc, M H

    2016-04-25

    The synthesis of symmetric and non-symmetric 5,5'-linked disalophen Ni(ii) complexes by the Suzuki-Miyaura-reaction is reported. Also, the synthesis and structural characterization of four Ni(ii)-precursor complexes are presented. The 5-Br-substituted mononuclear complexes and are coupled to the pinacolborane substituted complexes and yielding the four dinuclear dinickel complexes in good yields. The crystal structure of dinuclear complex was obtained revealing a coplanar arrangement between the two salophen fragments. Electronic spectra as well as DFT-calculations on the ground states and excitation energies are reported and they reveal a small coupling between the electronically saturated Ni-salophen complexes. PMID:27040080

  17. Coupled variable selection for regression modeling of complex treatment patterns in a clinical cancer registry.

    PubMed

    Schmidtmann, I; Elsäßer, A; Weinmann, A; Binder, H

    2014-12-30

    For determining a manageable set of covariates potentially influential with respect to a time-to-event endpoint, Cox proportional hazards models can be combined with variable selection techniques, such as stepwise forward selection or backward elimination based on p-values, or regularized regression techniques such as component-wise boosting. Cox regression models have also been adapted for dealing with more complex event patterns, for example, for competing risks settings with separate, cause-specific hazard models for each event type, or for determining the prognostic effect pattern of a variable over different landmark times, with one conditional survival model for each landmark. Motivated by a clinical cancer registry application, where complex event patterns have to be dealt with and variable selection is needed at the same time, we propose a general approach for linking variable selection between several Cox models. Specifically, we combine score statistics for each covariate across models by Fisher's method as a basis for variable selection. This principle is implemented for a stepwise forward selection approach as well as for a regularized regression technique. In an application to data from hepatocellular carcinoma patients, the coupled stepwise approach is seen to facilitate joint interpretation of the different cause-specific Cox models. In conditional survival models at landmark times, which address updates of prediction as time progresses and both treatment and other potential explanatory variables may change, the coupled regularized regression approach identifies potentially important, stably selected covariates together with their effect time pattern, despite having only a small number of events. These results highlight the promise of the proposed approach for coupling variable selection between Cox models, which is particularly relevant for modeling for clinical cancer registries with their complex event patterns. PMID:25345575

  18. Multistability and complex dynamics in coupled semiconductor lasers with time-delayed feedback

    NASA Astrophysics Data System (ADS)

    Balakin, M.; Kochkurov, L.; Melnikov, L.; Astakhov, V.

    2016-04-01

    We investigate complex dynamics of two coupled nonidentical Land-Kobayashi oscillators. It is shown that at low values of feedback rate variation of delay only leads to alternation of periodic and stationary regimes. The analysis of characteristic regimes of the system in a wide range of parameters is provided. We demonstrate that the system under study is multistable. With the variation of control parameters sole fixed point repeatedly undergoes supercritical Andronov-Hopf bifurcations, which leads to an increase in the number of limit cycles co-existing in the phase space. It is shown that multistable states are formed by different combinations of the periodic, quasi-periodic and chaotic regimes.

  19. Spin-coupling in ferric metalloporphyrin radical cation complexes: Mössbauer and susceptibility studies

    NASA Astrophysics Data System (ADS)

    Lang, George; Boso, Brian; Erler, Brian S.; Reed, Christopher A.

    1986-03-01

    The ferric metalloporphyrin π-radical cation complexes Fe(III) (OClO3)2 (TPP.) and [Fe(III) Cl (TPP.)] [SbCl6] were examined in microcrystalline form by Mössbauer spectroscopy and magnetic susceptometry over a range of temperatures and applied fields. All measurements on the six-coordinate Fe(OClO3)2 (TPP.) were consistent with isolated molecules having an S=5/2 iron site with zero field splitting (12 cm-1) S2z that is ferromagnetically coupled to the S=1/2 porphyrin radical by an energy term (-110 cm-1) Sṡs. Thus the ground state is overall spin-3. In the five-coordinate [FeCl (TPP.)] [SbCl6] the susceptibility is in reasonable agreement with the results of a calculation based on zero field splitting (12 cm-1) S2z for the S=5/2 iron and antiferromagnetic coupling (200 cm-1) Sṡs with the radical to give an overall spin-2 ground state. However, the Mössbauer measurements require a more complicated model having the same large intramolecular iron-radical coupling, a smaller zero field splitting (3 cm-1) S2z, and weak intermolecular antiferromagnetic coupling between heme pairs given by (32 cm-1) s1ṡs2 or, equivalently, (0.65 cm-1) S1ṡS2. A slightly improved correspondence with the measured susceptibility results. The intermolecular antiferromagnetic coupling probably results from crystallization of the [FeCl (TPP.)]+ cations in face-to-face dimers as observed in other closely related five-coordinate iron (III) porphyrins.

  20. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    NASA Astrophysics Data System (ADS)

    Gu, Hua-Guang; Chen, Sheng-Gen; Li, Yu-Ye

    2015-05-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372224 and 11402039) and the Fundamental Research Funds for Central Universities designated to Tongji University (Grant No. 1330219127).

  1. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    PubMed

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1. PMID:27235398

  2. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation.

    PubMed

    Veselská, Veronika; Fajgar, Radek; Číhalová, Sylva; Bolanz, Ralph M; Göttlicher, Jörg; Steininger, Ralph; Siddique, Jamal A; Komárek, Michael

    2016-11-15

    This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3-10), ionic strengths (0.001-0.1M KNO3), sorbate concentrations (10(-4), 10(-5), and 10(-6)M Cr(VI)), and sorbate/sorbent ratios (50-500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes. PMID:27450335

  3. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex

    PubMed Central

    Mekler, Vladimir; Minakhin, Leonid; Borukhov, Sergei; Mustaev, Arkady; Severinov, Konstantin

    2014-01-01

    Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT-rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis. PMID:25311862

  4. Impaired Astrocytic Gap Junction Coupling and Potassium Buffering in a Mouse Model of Tuberous Sclerosis Complex

    PubMed Central

    Xu, Lin; Zeng, Ling-Hui; Wong, Michael

    2009-01-01

    Abnormalities in astrocytes occur in the brains of patients with Tuberous Sclerosis Complex (TSC) and may contribute to the pathogenesis of neurological dysfunction in this disease. Here, we report that knock-out mice with Tsc1 gene inactivation in glia (Tsc1GFAPCKO mice) exhibit decreased expression of the astrocytic connexin protein, Cx43, and an associated impairment in gap junction coupling between astrocytes. Correspondingly, hippocampal slices from Tsc1GFAPCKO mice have increased extracellular potassium concentration in response to stimulation. This impaired potassium buffering can be attributed to abnormal gap junction coupling, as a gap junction inhibitor elicits an additional increase in potassium concentration in control, but not Tsc1GFAPCKO slices. Furthermore, treatment with a mammalian target of rapamycin inhibitor reverses the deficient Cx43 expression and impaired potassium buffering. These findings suggest that Tsc1 inactivation in astrocytes causes defects in astrocytic gap junction coupling and potassium clearance, which may contribute to epilepsy in Tsc1GFAPCKO mice. PMID:19385061

  5. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  6. Reductive coupling of nitrogen monoxide (*NO) facilitated by heme/copper complexes.

    PubMed

    Wang, Jun; Schopfer, Mark P; Puiu, Simona C; Sarjeant, Amy A N; Karlin, Kenneth D

    2010-02-15

    The interactions of nitrogen monoxide (*NO; nitric oxide) with transition metal centers continue to be of great interest, in part due to their importance in biochemical processes. Here, we describe *NO((g)) reductive coupling chemistry of possible relevance to that process (i.e., nitric oxide reductase (NOR) biochemistry), which occurs at the heme/Cu active site of cytochrome c oxidases (CcOs). In this report, heme/Cu/*NO((g)) activity is studied using 1:1 ratios of heme and copper complex components, (F(8))Fe (F(8) = tetrakis(2,6-difluorophenyl)porphyrinate(2-)) and [(tmpa)Cu(I)(MeCN)](+) (TMPA = tris(2-pyridylmethyl)amine). The starting point for heme chemistry is the mononitrosyl complex (F(8))Fe(NO) (lambda(max) = 399 (Soret), 541 nm in acetone). Variable-temperature (1)H and (2)H NMR spectra reveal a broad peak at delta = 6.05 ppm (pyrrole) at room temperature (RT), which gives rise to asymmetrically split pyrrole peaks at 9.12 and 8.54 ppm at -80 degrees C. A new heme dinitrosyl species, (F(8))Fe(NO)(2), obtained by bubbling (F(8))Fe(NO) with *NO((g)) at -80 degrees C, could be reversibly formed, as monitored by UV-vis (lambda(max) = 426 (Soret), 538 nm in acetone), EPR (silent), and NMR spectroscopies; that is, the mono-NO complex was regenerated upon warming to RT. (F(8))Fe(NO)(2) reacts with [(tmpa)Cu(I)(MeCN)](+) and 2 equiv of acid to give [(F(8))Fe(III)](+), [(tmpa)Cu(II)(solvent)](2+), and N(2)O((g)), fitting the stoichiometric *NO((g)) reductive coupling reaction: 2*NO((g)) + Fe(II) + Cu(I) + 2H(+) --> N(2)O((g)) + Fe(III) + Cu(II) + H(2)O, equivalent to one enzyme turnover. Control reaction chemistry shows that both iron and copper centers are required for the NOR-type chemistry observed and that, if acid is not present, half the *NO is trapped as a (F(8))Fe(NO) complex, while the remaining nitrogen monoxide undergoes copper complex promoted disproportionation chemistry. As part of this study, [(F(8))Fe(III)]SbF(6) was synthesized and characterized

  7. Coupling Charge Reduction Mass Spectrometry to Liquid Chromatography for Complex Mixture Analysis.

    PubMed

    Stutzman, John R; Crowe, Matthew C; Alexander, James N; Bell, Bruce M; Dunkle, Melissa N

    2016-04-01

    Electrospray ionization (ESI) of solution mixtures often generates complex mass spectra, even following liquid chromatography (LC), due to analyte multiple charging. Multiple charge state distributions can lead to isobaric interferences, mass spectral congestion, and ambiguous ion identification. As a consequence, data interpretation increases in complexity. Several charge reduction mass spectrometry (MS) approaches have been previously developed to reduce the average charge state of gaseous ions; however, all of these techniques have been restricted to direct infusion MS. In this study, synthetic polyols and surfactants separated by liquid chromatography and ionized by positive mode ESI have been subjected to polonium-210 α-particle radiation to reduce the average charge state to singly charged cations prior to mass analysis. LC/MS analysis of 5000 molecular weight poly(ethylene glycol) (PEG5000) generated an average charge state of 5.88+; whereupon, liquid chromatography/electrospray ionization/charge reduction/mass spectrometry (LC/CR/MS) analysis of PEG 5000 generated an average charge state of 1.00+. The PEG5000 results demonstrated a decrease in spectral complexity and enabled facile interpretation. Other complex solution mixtures representing specific MS challenges (i.e., competitive ionization and isobaric ion overlap) were explored and analyzed with LC/CR/MS to demonstrate the benefits of coupling LC to CR/MS. For example, polyol information related to initiator, identity/relative amount of monomer, and estimated molecular weight was characterized in random and triblock ethylene oxide/propylene oxide polyols using LC/CR/MS. LC/CR/MS is a new analytical technique for the analysis of complex mixtures. PMID:26971559

  8. Highly enantioselective oxidative couplings of 2-naphthols catalyzed by chiral bimetallic oxovanadium complexes with either oxygen or air as oxidant.

    PubMed

    Guo, Qi-Xiang; Wu, Zhi-Jun; Luo, Zhi-Bin; Liu, Quan-Zhong; Ye, Jian-Liang; Luo, Shi-Wei; Cun, Lin-Feng; Gong, Liu-Zhu

    2007-11-14

    The chiral bimetallic oxovanadium complexes have been designed for the enantioselective oxidative coupling of 2-naphthols bearing various substituents at C6 and/or C7. The chirality transferring from the amino acid to the axis of the biphenyl in oxovanadium complexes 2 was found to occur with the use of UV and CD spectra and DFT calculation. The homo-coupling reaction with oxygen as the oxidant was promoted by 5 mol % of an oxovanadium complex derived from L-isoleucine and achiral biphenol to afford binaphthols in nearly quantitative yields with high enantioselectivities of up to 98% ee. An oxovanadium complex derived from L-isoleucine and H8-binaphthol is highly efficient at catalyzing the air-oxidized coupling of 2-naphthols with excellent enantioselectivities of up to 97% ee. 51V NMR study shows that the oxovanadium complexes have two vanadium(V) species. Kinetic studies, the cross-coupling reaction, and HRMS spectral studies on the reaction have been carried out and illustrate that two vanadium(V) species are both involved in catalysis and that the coupling reaction undergoes a radical-radical mechanism in an intramolecular manner. Quantum mechanical calculations rationalize the importance of the cooperative effects of the axial chirality matching S-amino acids on the stereocontrol of the oxidative coupling reaction. The application of the transformation in the preparation of chiral ligands and conjugated polymers confirms the importance of the current process in organic synthesis. PMID:17956093

  9. Single-molecule resolution of G protein-coupled receptor (GPCR) complexes.

    PubMed

    Jonas, Kim C; Huhtaniemi, Ilpo; Hanyaloglu, Aylin C

    2016-01-01

    The organization of G protein-coupled receptors (GPCRs) into dimers and higher-order oligomers has provided a potential mechanistic system in defining complex GPCR responses. Despite being studied for nearly 20 years it has, and still is, been an area of controversy. Although technology has developed to quantitatively measure these associations in real time, identify the structural interfaces and even systems to understand the physiological significance of di/oligomerization, key questions remain outstanding including the role of each individual complex from the monomer to the higher-order oligomer, in their native system. Recently, single-molecule microscopy approaches have provided the tools to directly visualize individual GPCRs in dimers and oligomers, though as with any technological development each have their advantages and limitations. This chapter will describe these recent developments in single-molecule fluorescent microscopy, focusing on our recent application of super-resolution imaging of the GPCR for the luteinizing hormone/chorionic gonadotropin to quantify GPCR monomers and formation of protomers in to dimers and distinct oligomeric forms. We present our approach, considerations, strategy, and challenges to visualize this receptor beyond the light diffraction limit via photoactivated localization microscopy with photoactivatable dyes. The addition of super-resolution approaches to the GPCR "nano-tool kit" will pave the way for novel avenues to answer outstanding questions regarding the existence and significance of these complexes to GPCR signaling. PMID:26928539

  10. Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients

    NASA Astrophysics Data System (ADS)

    Charalampidis, E. G.; Kevrekidis, P. G.; Frantzeskakis, D. J.; Malomed, B. A.

    2016-08-01

    We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.

  11. Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects

    NASA Astrophysics Data System (ADS)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin–orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  12. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects.

    PubMed

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. PMID:27367475

  13. A self-consistent three-wave coupling model with complex linear frequencies

    SciTech Connect

    Kim, J.-H.; Terry, P. W.

    2011-09-15

    A three-wave coupling model with complex linear frequencies is investigated for the nonlinear interaction in a triad that has linearly unstable and stable modes. Time scales associated with linear and nonlinear physics are identified and compared with features of the frequency spectrum. From appropriate time scales, the frequency spectra are well characterized even in the transition to the steady state. The nonlinear time scales that best match spectral features are the nonlinear frequency of the fixed point and a frequency that depends on the amplitude displacement from the fixed point through the large-amplitude Jacobian elliptic solution. Two limited efforts to model the effect of other triads suggest robustness in the single triad results.

  14. Magnetic Field Induced Shear Flow in a Strongly Coupled Complex Plasma

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P.; Konopka, U.; Jiang, K.; Morfill, G.

    2011-11-01

    We address an experimental observation of shear flow of micron sized dust particles in a strongly coupled complex plasma in presence of a homogeneous magnetic field. Two concentric Aluminum rings of different size are placed on the lower electrode of a radio frequency (rf) parallel plate discharge. The modified local sheath electric field is pointing outward/inward close to the inner/outher ring, respectively. The microparticles, confined by the rings and subject to an ion wind that driven by the local sheath electric field and deflected by an externally applied magnetic field, start flowing in azimuthal direction. Depending upon the rf amplitudes on the electrodes, the dust layers show rotation in opposite direction at the edges of the ring-shaped cloud resulting a strong shear in its center. MD simulations shows a good agreement with the experimental results.

  15. A Tractable Method for Describing Complex Couplings between Neurons and Population Rate.

    PubMed

    Gardella, Christophe; Marre, Olivier; Mora, Thierry

    2016-01-01

    Neurons within a population are strongly correlated, but how to simply capture these correlations is still a matter of debate. Recent studies have shown that the activity of each cell is influenced by the population rate, defined as the summed activity of all neurons in the population. However, an explicit, tractable model for these interactions is still lacking. Here we build a probabilistic model of population activity that reproduces the firing rate of each cell, the distribution of the population rate, and the linear coupling between them. This model is tractable, meaning that its parameters can be learned in a few seconds on a standard computer even for large population recordings. We inferred our model for a population of 160 neurons in the salamander retina. In this population, single-cell firing rates depended in unexpected ways on the population rate. In particular, some cells had a preferred population rate at which they were most likely to fire. These complex dependencies could not be explained by a linear coupling between the cell and the population rate. We designed a more general, still tractable model that could fully account for these nonlinear dependencies. We thus provide a simple and computationally tractable way to learn models that reproduce the dependence of each neuron on the population rate. PMID:27570827

  16. Impact of asymptomatic infection on coupled disease-behavior dynamics in complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Xie, Jia-Rong; Chen, Han-Shuang; Liu, Can; Small, Michael

    2016-05-01

    Studies on how to model the interplay between diseases and behavioral responses (so-called coupled disease-behavior interaction) have attracted increasing attention. Owing to the lack of obvious clinical evidence of diseases, or the incomplete information related to the disease, the risks of infection cannot be perceived and may lead to inappropriate behavioral responses. Therefore, how to quantitatively analyze the impacts of asymptomatic infection on the interplay between diseases and behavioral responses is of particular importance. In this letter, under the complex network framework, we study the coupled disease-behavior interaction model by dividing infectious individuals into two states: U-state (without evident clinical symptoms, labelled as U) and I-state (with evident clinical symptoms, labelled as I). A susceptible individual can be infected by U- or I-nodes, however, since the U-nodes cannot be easily observed, susceptible individuals take behavioral responses only when they contact I-nodes. The mechanism is considered in the improved Susceptible-Infected-Susceptible (SIS) model and the improved Susceptible-Infected-Recovered (SIR) model, respectively. Then, one of the most concerned problems in spreading dynamics: the epidemic thresholds for the two models are given by two methods. The analytic results quantitatively describe the influence of different factors, such as asymptomatic infection, the awareness rate, the network structure, and so forth, on the epidemic thresholds. Moreover, because of the irreversible process of the SIR model, the suppression effect of the improved SIR model is weaker than the improved SIS model.

  17. A Tractable Method for Describing Complex Couplings between Neurons and Population Rate

    PubMed Central

    Marre, Olivier

    2016-01-01

    Abstract Neurons within a population are strongly correlated, but how to simply capture these correlations is still a matter of debate. Recent studies have shown that the activity of each cell is influenced by the population rate, defined as the summed activity of all neurons in the population. However, an explicit, tractable model for these interactions is still lacking. Here we build a probabilistic model of population activity that reproduces the firing rate of each cell, the distribution of the population rate, and the linear coupling between them. This model is tractable, meaning that its parameters can be learned in a few seconds on a standard computer even for large population recordings. We inferred our model for a population of 160 neurons in the salamander retina. In this population, single-cell firing rates depended in unexpected ways on the population rate. In particular, some cells had a preferred population rate at which they were most likely to fire. These complex dependencies could not be explained by a linear coupling between the cell and the population rate. We designed a more general, still tractable model that could fully account for these nonlinear dependencies. We thus provide a simple and computationally tractable way to learn models that reproduce the dependence of each neuron on the population rate. PMID:27570827

  18. Coupled ice shelf-ocean modeling and complex grounding line retreat from a seabed ridge

    NASA Astrophysics Data System (ADS)

    De Rydt, J.; Gudmundsson, G. H.

    2016-05-01

    Recent observations and modeling work have shown a complex mechanical coupling between Antarctica's floating ice shelves and the adjacent grounded ice sheet. A prime example is Pine Island Glacier, West Antarctica, which has a strong negative mass balance caused by a recent increase in ocean-induced melting of its ice shelf. The mass loss coincides with the retreat of the grounding line from a seabed ridge, on which it was at least partly grounded until the 1970s. At present, it is unclear what has caused the onset of this retreat and how feedback mechanisms between the ocean and ice shelf geometry have influenced the ice dynamics. To address these questions, we present the first results from an offline coupling between a state-of-the-art shallow-ice flow model with grounding line resolving capabilities and a three-dimensional ocean general circulation model with a static implementation of the ice shelf. A series of idealized experiments simulate the retreat from a seabed ridge in response to changes in the ocean forcing, and we show that the retreat becomes irreversible after 20 years of warm ocean conditions. A comparison to experiments with a simple depth-dependent melt rate parameterization demonstrates that such parameterizations are unable to capture the details of the retreat process, and they overestimate mass loss by more than 40% over a 50 year timescale.

  19. Coupled ice shelf-ocean modeling and complex grounding line retreat for Pine Island Glacier

    NASA Astrophysics Data System (ADS)

    De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    Recent observations and modeling work have shown a complex mechanical coupling between Antarctica's floating ice shelves and the adjacent grounded ice sheet. A prime example is Pine Island Glacier, West Antarctica, which has a strong negative mass balance caused by a recent increase in ocean-induced melting of its ice shelf. The mass loss coincides with the retreat of the grounding line from a seabed ridge, on which it was at least partly grounded until the 1970s. At present, it is unclear what has caused the onset of this retreat, and how feedback mechanisms between the ocean and iceshelf geometry have influenced the ice dynamics. To address these questions, we present results from an offline coupling between a state-of-the-art shallow-ice flow model with grounding line resolving capabilities, and a three-dimensional ocean general circulation model with a static implementation of the ice shelf. A series of idealized experiments simulate the retreat from a seabed ridge in response to changes in the ocean forcing, and we show that the retreat becomes irreversible after 20 years of warm ocean conditions. A comparison to experiments with a simple depth-dependent meltrate parameterisation demonstrates that such parameterizations are unable to capture the details of the retreat process, and they overestimate mass loss by more than 40% over a 50-year timescale.

  20. Soliton interactions and complexes for coupled nonlinear Schrödinger equations.

    PubMed

    Jiang, Yan; Tian, Bo; Liu, Wen-Jun; Sun, Kun; Li, Min; Wang, Pan

    2012-03-01

    Under investigation in this paper are the coupled nonlinear Schrödinger (CNLS) equations, which can be used to govern the optical-soliton propagation and interaction in such optical media as the multimode fibers, fiber arrays, and birefringent fibers. By taking the 3-CNLS equations as an example for the N-CNLS ones (N≥3), we derive the analytic mixed-type two- and three-soliton solutions in more general forms than those obtained in the previous studies with the Hirota method and symbolic computation. With the choice of parameters for those soliton solutions, soliton interactions and complexes are investigated through the asymptotic and graphic analysis. Soliton interactions and complexes with the bound dark solitons in a mode or two modes are observed, including that (i) the two bright solitons display the breatherlike structures while the two dark ones stay parallel, (ii) the two bright and dark solitons all stay parallel, and (iii) the states of the bound solitons change from the breatherlike structures to the parallel one even with the distance between those solitons smaller than that before the interaction with the regular one soliton. Asymptotic analysis is also used to investigate the elastic and inelastic interactions between the bound solitons and the regular one soliton. Furthermore, some discussions are extended to the N-CNLS equations (N>3). Our results might be helpful in such applications as the soliton switch, optical computing, and soliton amplification in the nonlinear optics. PMID:22587200

  1. Hsp40 Couples with the CSPα Chaperone Complex upon Induction of the Heat Shock Response

    PubMed Central

    Gibbs, Sarah J.; Barren, Brandy; Beck, Katy E.; Proft, Juliane; Zhao, Xiaoxi; Noskova, Tatiana; Braun, Andrew P.; Artemyev, Nikolai O.; Braun, Janice E. A.

    2009-01-01

    In response to a conditioning stress, the expression of a set of molecular chaperones called heat shock proteins is increased. In neurons, stress-induced and constitutively expressed molecular chaperones protect against damage induced by ischemia and neurodegenerative diseases, however the molecular basis of this protection is not known. Here we have investigated the crosstalk between stress-induced chaperones and cysteine string protein (CSPα). CSPα is a constitutively expressed synaptic vesicle protein bearing a J domain and a cysteine rich “string” region that has been implicated in the long term functional integrity of synaptic transmission and the defense against neurodegeneration. We have shown previously that the CSPα chaperone complex increases isoproterenol-mediated signaling by stimulating GDP/GTP exchange of Gαs. In this report we demonstrate that in response to heat shock or treatment with the Hsp90 inhibitor geldanamycin, the J protein Hsp40 becomes a major component of the CSPα complex. Association of Hsp40 with CSPα decreases CSPα-CSPα dimerization and enhances the CSPα-induced increase in steady state GTP hydrolysis of Gαs. This newly identified CSPα-Hsp40 association reveals a previously undescribed coupling of J proteins. In view of the crucial importance of stress-induced chaperones in the protection against cell death, our data attribute a role for Hsp40 crosstalk with CSPα in neuroprotection. PMID:19242542

  2. Modular Approaches to Diversified Soft Lewis Basic Complexants through Suzuki-Miyaura Cross-Coupling of Bromoheteroarenes with Organotrifluoroborates.

    PubMed

    Chin, Ai Lin; Carrick, Jesse D

    2016-02-01

    Remediation or transmutation of spent nuclear fuel obtained as a function of energy production and legacy waste remains a significant environmental concern. Substantive efforts over the last three decades have focused on the potential of soft-Lewis basic complexants for the chemoselective separation of trivalent actinides from lanthanides in biphasic solvent systems. Recent efforts in this laboratory have focused on the concept of modularity to rapidly prepare complexants and complexant scaffolds not easily accessible via traditional linear methods in a convergent manner to better understand solubility and complexation structure/activity function in process-relevant solvents. The current work describes an efficient method for the construction of diversified complexants through multi-Suzuki-Miyaura cross-coupling of bromoheteroarenes with organotrifluoroborates affording efficient access to 22 novel materials in 43-99% yield over two, three, or four cross-couplings on the same scaffold. Optimization of the catalyst/ligand system, application, and limitations are reported herein. PMID:26751755

  3. Reductive Coupling of Nitrogen Monoxide (•NO) Facilitated by Heme/Copper Complexes

    PubMed Central

    Wang, Jun; Schopfer, Mark P.; Puiu, Simona C.; Sarjeant, Amy A. N.; Karlin, Kenneth D.

    2009-01-01

    The interactions of nitrogen monoxide (•NO; nitric oxide) with transition metal centers continue to be of great interest, in part due to their importance in biochemical processes. Here, we describe •NO(g) reductive coupling chemistry of possible relevance to that process (i.e., nitric oxide reductase (NOR) biochemistry) which occurs at the heme/Cu active site of cytochrome c oxidases (CcOs). In this report, heme/Cu/•NO(g) activity is studied using 1:1 ratios of heme and copper complex components, (F8)Fe (F8 = tetrakis(2,6-difluorophenyl)porphyrinate(2-)) and [(tmpa)CuI(MeCN)]+ (TMPA = tris(2-pyridylmethyl)amine). The starting point for heme chemistry is the mononitrosyl complex (F8)Fe(NO) (λmax = 399 (Soret), 541 nm in acetone). Variable temperature 1H- and 2H-NMR spectra reveal a broad peak at δ = 6.05 ppm (pyrrole) at RT, which gives rise to asymmetrically split pyrrole peaks at 9.12 and 8.54 ppm at −80°C. A new heme dinitrosyl species, (F8)Fe(NO)2, obtained by bubbling (F8)Fe(NO) with •NO(g) at −80 °C, could be reversibly formed, as monitored by UV-vis (λmax = 426 (Soret), 538 nm in acetone), EPR (silent), and NMR spectroscopies, i.e. the mono-NO complex was regenerated upon warming to RT. (F8)Fe(NO)2 reacts with [(tmpa)CuI(MeCN)]+ and two equiv of acid to give [(F8)FeIII]+, [(tmpa)CuII(solvent)]2+ and N2O(g), fitting the stoichiometric •NO(g) reductive coupling reaction: 2 •NO(g) + FeII + CuI + 2 H+ → N2O(g) + FeIII + CuII + H2O, equivalent to one enzyme turnover. Control reaction chemistry shows that both iron and copper centers are required for the NOR type chemistry observed, and that if acid is not present, half the •NO is trapped as a (F8)Fe(NO) complex, while the remaining nitrogen monoxide undergoes copper complex promoted disproportionation chemistry. As part of this study, [(F8)FeIII]SbF6 was synthesized and characterized by X-ray crystallography, along with EPR (77 K: g = 5.84 and 6.12 in CH2Cl2 and THF, respectively) and

  4. Ab initio density matrix renormalization group study of magnetic coupling in dinuclear iron and chromium complexes

    SciTech Connect

    Harris, Travis V.; Morokuma, Keiji; Kurashige, Yuki; Yanai, Takeshi

    2014-02-07

    The applicability of ab initio multireference wavefunction-based methods to the study of magnetic complexes has been restricted by the quickly rising active-space requirements of oligonuclear systems and dinuclear complexes with S > 1 spin centers. Ab initio density matrix renormalization group (DMRG) methods built upon an efficient parameterization of the correlation network enable the use of much larger active spaces, and therefore may offer a way forward. Here, we apply DMRG-CASSCF to the dinuclear complexes [Fe{sub 2}OCl{sub 6}]{sup 2−} and [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+}. After developing the methodology through systematic basis set and DMRG M testing, we explore the effects of extended active spaces that are beyond the limit of conventional methods. We find that DMRG-CASSCF with active spaces including the metal d orbitals, occupied bridging-ligand orbitals, and their virtual double shells already capture a major portion of the dynamic correlation effects, accurately reproducing the experimental magnetic coupling constant (J) of [Fe{sub 2}OCl{sub 6}]{sup 2−} with (16e,26o), and considerably improving the smaller active space results for [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+} with (12e,32o). For comparison, we perform conventional MRCI+Q calculations and find the J values to be consistent with those from DMRG-CASSCF. In contrast to previous studies, the higher spin states of the two systems show similar deviations from the Heisenberg spectrum, regardless of the computational method.

  5. Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate-Au Nanoshell Complex Provides a Mechanism for Nonlinearity

    SciTech Connect

    Fofang, Nche T.; Grady, Nathaniel K.; Fan, Zhiyuan; Govorov, Alexander; Halas, Naomi J.

    2011-03-18

    Coherently coupled plasmons and excitons give rise to new optical excitations- plexcitons - due to the strong coupling of these two oscillator systems. Time-resolved studies of J-aggregate-Au nanoshell complexes when the nanoshell plasmon and J-aggregate exciton energies are degenerate probe the dynamical behavior of this coupled system. Transient absorption of the interacting plasmon-exciton system is observed, in dramatic contrast to the photoinduced transmission of the pristine J-aggregate. An additional, transient Fano-shaped modulation within the Fano dip is also observable. The behavior of the J-aggregate-Au nanoshell complex is described by a combined one-exciton and two-exciton state model coupled to the nanoshell plasmon.

  6. Tetracoordinated Bis-phenanthroline Copper-Complex Couple as Efficient Redox Mediators for Dye Solar Cells.

    PubMed

    Magni, Mirko; Giannuzzi, Roberto; Colombo, Alessia; Cipolla, Maria Pia; Dragonetti, Claudia; Caramori, Stefano; Carli, Stefano; Grisorio, Roberto; Suranna, Gian Paolo; Bignozzi, Carlo Alberto; Roberto, Dominique; Manca, Michele

    2016-06-01

    A tetracoordinated redox couple, made by [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6], 1, and its Cu(II) form [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6]2, 2, has been synthesized, and its electrochemical and photochemical features have been investigated and compared with those of a previously published Cu(2+)/Cu(+) redox shuttle, namely, [Cu(2,9-dimethyl-1,10-phenanthroline)2][PF6], 3, and its pentacoordinated oxidized form [Cu(2,9-dimethyl-1,10-phenanthroline)2Cl][PF6], 4. The detrimental effect of the fifth Cl(-) ancillary ligand on the charge transfer kinetics of the redox shuttles has been exhaustively demonstrated. Appropriately balanced Cu-based electrolytes have been then formulated and tested in dye solar cells in combination with a π-extended benzothiadiazole dye. The bis-phenanthroline Cu-complexes, 1 and 2, have been found to provide an overall 4.4% solar energy conversion efficiency, which is more than twice that of the literature benchmark couple, 3 and 4, employing a Cl-coordinated oxidized species and even comparable with the performances of a I(-)/I3(-) electrolyte of analogous concentration. A fast counter-electrode reaction, due to the excellent electrochemical reversibility of 2, and a high electron collection efficiency, allowed through the efficient dye regeneration kinetics exerted by 1, represents two major characteristics of these copper-based electron mediators and may constitute a pivotal step toward the development of a next generation of copper-based efficient iodine-free redox shuttles. PMID:27212146

  7. Dynamic coupling of complex brain networks and dual-task behavior.

    PubMed

    Alavash, Mohsen; Thiel, Christiane M; Gießing, Carsten

    2016-04-01

    Multi-tasking is a familiar situation where behavioral performance is often challenged. To date, fMRI studies investigating the neural underpinning of dual-task interference have mostly relied on local brain activation maps or static brain connectivity networks. Here, based on task fMRI we explored how fluctuations in behavior during concurrent performance of a visuospatial and a speech task relate to alternations in the topology of dynamic brain connectivity networks. We combined a time-resolved functional connectivity and complex network analysis with a sliding window approach applied to the trial by trial behavioral responses to investigate the coupling between dynamic brain networks and dual-task behavior at close temporal proximity. Participants showed fluctuations in their dual-task behavior over time, with the accuracy in the component tasks being statistically independent from one another. On the global level of brain networks we found that dynamic changes of network topology were differentially coupled with the behavior in each component task during the course of dual-tasking. While momentary decrease in the global efficiency of dynamic brain networks correlated with subsequent increase in visuospatial accuracy, better speech performance was preceded by higher global network efficiency and was followed by an increase in between-module connectivity over time. Additionally, dynamic alternations in the modular organization of brain networks at the posterior cingulate cortex were differentially predictive for the visuospatial as compared to the speech accuracy over time. Our results provide the first evidence that, during the course of dual-tasking, each component task is supported by a distinct topological configuration of brain connectivity networks. This finding suggests that the failure of functional brain connectivity networks to adapt to an optimal topology supporting the performance in both component tasks at the same time contributes to the moment to

  8. Simplifying the complexity of a coupled carbon turnover and pesticide degradation model

    NASA Astrophysics Data System (ADS)

    Marschmann, Gianna; Erhardt, André H.; Pagel, Holger; Kügler, Philipp; Streck, Thilo

    2016-04-01

    The mechanistic one-dimensional model PECCAD (PEsticide degradation Coupled to CArbon turnover in the Detritusphere; Pagel et al. 2014, Biogeochemistry 117, 185-204) has been developed as a tool to elucidate regulation mechanisms of pesticide degradation in soil. A feature of this model is that it integrates functional traits of microorganisms, identifiable by molecular tools, and physicochemical processes such as transport and sorption that control substrate availability. Predicting the behavior of microbially active interfaces demands a fundamental understanding of factors controlling their dynamics. Concepts from dynamical systems theory allow us to study general properties of the model such as its qualitative behavior, intrinsic timescales and dynamic stability: Using a Latin hypercube method we sampled the parameter space for physically realistic steady states of the PECCAD ODE system and set up a numerical continuation and bifurcation problem with the open-source toolbox MatCont in order to obtain a complete classification of the dynamical system's behaviour. Bifurcation analysis reveals an equilibrium state of the system entirely controlled by fungal kinetic parameters. The equilibrium is generally unstable in response to small perturbations except for a small band in parameter space where the pesticide pool is stable. Time scale separation is a phenomenon that occurs in almost every complex open physical system. Motivated by the notion of "initial-stage" and "late-stage" decomposers and the concept of r-, K- or L-selected microbial life strategies, we test the applicability of geometric singular perturbation theory to identify fast and slow time scales of PECCAD. Revealing a generic fast-slow structure would greatly simplify the analysis of complex models of organic matter turnover by reducing the number of unknowns and parameters and providing a systematic mathematical framework for studying their properties.

  9. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    NASA Astrophysics Data System (ADS)

    Shu, Yu-Chen; Chern, I.-Liang; Chang, Chien C.

    2014-10-01

    Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule (1D63) which is double-helix shape and composed of hundreds of atoms.

  10. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    SciTech Connect

    Shu, Yu-Chen; Chern, I-Liang; Chang, Chien C.

    2014-10-15

    Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule ( (1D63)) which is double-helix shape and composed of hundreds of atoms.

  11. Strongly coupled binuclear uranium-oxo complexes from uranyl oxo rearrangement and reductive silylation

    NASA Astrophysics Data System (ADS)

    Arnold, Polly L.; Jones, Guy M.; Odoh, Samuel O.; Schreckenbach, Georg; Magnani, Nicola; Love, Jason B.

    2012-03-01

    The most common motif in uranium chemistry is the d0f0 uranyl ion [UO2]2+ in which the oxo groups are rigorously linear and inert. Alternative geometries, such as the cis-uranyl, have been identified theoretically and implicated in oxo-atom transfer reactions that are relevant to environmental speciation and nuclear waste remediation. Single electron reduction is now known to impart greater oxo-group reactivity, but with retention of the linear OUO motif, and reactions of the oxo groups to form new covalent bonds remain rare. Here, we describe the synthesis, structure, reactivity and magnetic properties of a binuclear uranium-oxo complex. Formed through a combination of reduction and oxo-silylation and migration from a trans to a cis position, the new butterfly-shaped Si-OUO2UO-Si molecule shows remarkably strong UV-UV coupling and chemical inertness, suggesting that this rearranged uranium oxo motif might exist for other actinide species in the environment, and have relevance to the aggregation of actinide oxide clusters.

  12. Strongly coupled binuclear uranium-oxo complexes from uranyl oxo rearrangement and reductive silylation.

    PubMed

    Arnold, Polly L; Jones, Guy M; Odoh, Samuel O; Schreckenbach, Georg; Magnani, Nicola; Love, Jason B

    2012-03-01

    The most common motif in uranium chemistry is the d(0)f(0) uranyl ion [UO(2)](2+) in which the oxo groups are rigorously linear and inert. Alternative geometries, such as the cis-uranyl, have been identified theoretically and implicated in oxo-atom transfer reactions that are relevant to environmental speciation and nuclear waste remediation. Single electron reduction is now known to impart greater oxo-group reactivity, but with retention of the linear OUO motif, and reactions of the oxo groups to form new covalent bonds remain rare. Here, we describe the synthesis, structure, reactivity and magnetic properties of a binuclear uranium-oxo complex. Formed through a combination of reduction and oxo-silylation and migration from a trans to a cis position, the new butterfly-shaped Si-OUO(2)UO-Si molecule shows remarkably strong U(V)-U(V) coupling and chemical inertness, suggesting that this rearranged uranium oxo motif might exist for other actinide species in the environment, and have relevance to the aggregation of actinide oxide clusters. PMID:22354437

  13. Communication: A reduced-space algorithm for the solution of the complex linear response equations used in coupled cluster damped response theory

    NASA Astrophysics Data System (ADS)

    Kauczor, Joanna; Norman, Patrick; Christiansen, Ove; Coriani, Sonia

    2013-12-01

    We present a reduced-space algorithm for solving the complex (damped) linear response equations required to compute the complex linear response function for the hierarchy of methods: coupled cluster singles, coupled cluster singles and iterative approximate doubles, and coupled cluster singles and doubles. The solver is the keystone element for the development of damped coupled cluster response methods for linear and nonlinear effects in resonant frequency regions.

  14. Complex image method for RF antenna-plasma inductive coupling calculation in planar geometry. Part I: basic concepts

    NASA Astrophysics Data System (ADS)

    Howling, A. A.; Guittienne, Ph; Jacquier, R.; Furno, I.

    2015-12-01

    The coupling between an inductive source and the plasma determines the power transfer efficiency and the reflected impedance in the primary circuit. Usually, the plasma coupling is analysed by means of a transformer equivalent circuit, where the plasma inductance and resistance are estimated using a global plasma model. This paper shows that, for planar RF antennas, the mutual inductance between the plasma and the primary circuit can be calculated using partial inductances and the complex image method, where the plasma coupling is determined in terms of the plasma skin depth and the distance to the plasma. To introduce the basic concepts, the mutual inductance is calculated here for a linear conductor parallel to the plasma surface. In the accompanying paper part II Guittienne et al (2015 Plasma Sources Sci. Technol. 24 065015), impedance measurements on a RF resonant planar plasma source are modeled using an impedance matrix where the plasma-antenna mutual impedances are calculated using the complex image method presented here.

  15. Active site coupling in PDE:PKA complexes promotes resetting of mammalian cAMP signaling.

    PubMed

    Krishnamurthy, Srinath; Moorthy, Balakrishnan Shenbaga; Xin Xiang, Lim; Xin Shan, Lim; Bharatham, Kavitha; Tulsian, Nikhil Kumar; Mihalek, Ivana; Anand, Ganesh S

    2014-09-16

    Cyclic 3'5' adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and

  16. Spatial coupled disease-behavior framework as a dynamic and adaptive system. Reply to comments on "Coupled disease-behavior dynamics on complex networks: A review"

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    We would like to begin this response by recognizing all the insightful and thought-provoking comments to our review "Coupled disease-behavior dynamics on complex networks" [1]. We find that, with their diverse expertise, all the commentators enrich the discussion on this topic, and also identify important, interesting questions [2-13], indicating how much space there still is for the development of the field. To give the readers a systematic understanding, these opinions and suggestions are roughly divided into two classes: (i) whether the coupled models could be closer to realistic observations, yet simpler [2-5,7-10,13]; and (ii) whether the hypothesis of network models could mimic the empirical networks more accurately [5-8,10-13].

  17. Complex eigensolutions of coupled flexural and longitudinal modes in a beam with inclined elastic supports with non-proportional damping

    NASA Astrophysics Data System (ADS)

    Noll, Scott; Dreyer, Jason; Singh, Rajendra

    2014-02-01

    Structure borne vibration and noise in an automobile are often explained by representing the full vehicle as a system of elastically coupled beam structures representing the body, engine cradle and body subframe where the engine is often connected to the chassis via inclined viscoelastic supports. To understand more clearly the interactions between a beam structure and isolators, this article examines the flexural and longitudinal motions in an elastic beam with intentionally inclined mounts (viscoelastic end supports). A new analytical solution is derived for the boundary coupled Euler beam and wave equations resulting in complex eigensolutions. This system is demonstrated to be self-adjoint when the support stiffness matrices are symmetric; thus, the modal analysis is used to decouple the equations of motion and solve for the steady state, damped harmonic response. Experimental validation and computational verifications confirm the validity of the proposed formulation. New and interesting phenomena are presented including coupled rigid motions, modal properties for ideal angled roller boundaries, and relationships between coupling and system modal loss factors. The ideal roller boundary conditions when inclined are seen as a limiting case of coupled longitudinal and flexural motions. In particular, the coupled rigid body motions illustrate the influence of support stiffness coupling on the eigenvalues and eigenfunctions. The relative modal strain energy concept is used to distinguish the contribution of longitudinal and flexural deformation modes. Since the beam is assumed to be undamped, the system damping is derived from the viscoelastic supports. The support damping (for a given loss factor) is shown to be redistributed between the system modes due to the inclined coupling mechanisms. Finally, this article provides valuable insight by highlighting some technical issues a real-life designer faces when balancing modeling assumptions such as rigid or elastic

  18. A novel 4-aminoantipyrine-Pd(II) complex catalyzes Suzuki–Miyaura cross-coupling reactions of aryl halides

    PubMed Central

    Mendoza-Rayo, Darío; Rincón-Medina, José A; Chacón-García, Luis

    2014-01-01

    Summary A simple and efficient catalytic system based on a Pd complex of 4-aminoantipyrine, 4-AAP–Pd(II), was found to be highly active for Suzuki–Miyaura cross-coupling of aryl iodides and bromides with phenylboronic acids under mild reaction conditions. Good to excellent product yields from the cross-coupling reaction can be achieved when the reaction is carried out in ethanol, in the open air, using low loading of 4-AAP–Pd(II) as a precatalyst, and in the presence of aqueous K2CO3 as the base. A variety of functional groups are tolerated. PMID:25550748

  19. Assessment of the CCSD and CCSD(T) Coupled-Cluster Methods in Calculating Heats of Formation for Zn Complexes

    NASA Astrophysics Data System (ADS)

    Weaver, Michael N.; Yang, Yue; Merz, Kenneth M.

    2009-08-01

    Heats of formation were calculated using coupled-cluster methods for a series of zinc complexes. The calculated values were evaluated against previously conducted computational studies using density functional methods as well as experimental values. Heats of formation for nine neutral ZnXn complexes [X = -Zn, -H, -O, -F2, -S, -Cl, -Cl2, -CH3, (-CH3)2] were determined at the CCSD and CCSD(T) levels using the 6-31G** and TZVP basis sets as well as the LANL2DZ-6-31G** (LACVP**) and LANL2DZ-TZVP hybrid basis sets. The CCSD(T)/6-31G** level of theory was found to predict the heat of formation for the nonalkyl Zn complexes most accurately. The alkyl Zn species were problematic in that none of the methods that were tested accurately predicted the heat of formation for these complexes. In instances where experimental geometric parameters were available, these were most accurately predicted by the CCSD/6-31G** level of theory; going to CCSD(T) did not improve agreement with the experimental values. Coupled-cluster methods did not offer a systemic improvement over DFT calculations for a given functional/basis set combination. With the exceptions of ZnH and ZnF2, there are multiple density functionals that outperform coupled-cluster calculations with the 6-31G** basis set.

  20. Amide Coupling Reaction for the Synthesis of Bispyridine-based Ligands and Their Complexation to Platinum as Dinuclear Anticancer Agents

    PubMed Central

    Apps, Michael G.; Johnson, Ben W.; Sutcliffe, Oliver B.; Brown, Sarah D.; Wheate, Nial J.

    2014-01-01

    Amide coupling reactions can be used to synthesize bispyridine-based ligands for use as bridging linkers in multinuclear platinum anticancer drugs. Isonicotinic acid, or its derivatives, are coupled to variable length diaminoalkane chains under an inert atmosphere in anhydrous DMF or DMSO with the use of a weak base, triethylamine, and a coupling agent, 1-propylphosphonic anhydride. The products precipitate from solution upon formation or can be precipitated by the addition of water. If desired, the ligands can be further purified by recrystallization from hot water. Dinuclear platinum complex synthesis using the bispyridine ligands is done in hot water using transplatin. The most informative of the chemical characterization techniques to determine the structure and gross purity of both the bispyridine ligands and the final platinum complexes is 1H NMR with particular analysis of the aromatic region of the spectra (7-9 ppm). The platinum complexes have potential application as anticancer agents and the synthesis method can be modified to produce trinuclear and other multinuclear complexes with different hydrogen bonding functionality in the bridging ligand. PMID:24893964

  1. Exciton-Phonon Interaction Effects in II-Vi Compound Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    Pelekanos, Nikolaos Themelis

    1992-01-01

    In this thesis, we report on two specific examples of exciton-LO phonon Frohlich interaction effects, namely, hot carrier relaxation and temperature dependent exciton linewidth broadening. These phenomena are considered in the context of quasi-two dimensional excitons in strongly polar II-VI semiconductor quantum wells. Hot-exciton luminescence phenomena are investigated in a single quantum well of ZnTe/MnTe where tunneling through thin MnTe barrier layers suppresses the formation of thermalized luminescence. For near resonant photoexcitation, the secondary emission spectrum is modulated by distinct LO-phonon peaks, which, for sufficiently high order of scattering ( >=4), behave like hot luminescence (HPL) as opposed to resonant Raman scattering. This is confirmed by time-resolved spectroscopy as well as by steady-state characteristics such as linewidth broadening and lack of polarization memory. Several novel observations are made: (1) The LO-phonon intermediated energy relaxation involves Coulomb-correlated pairs, i.e. hot excitons, as opposed to independently-relaxing free electrons and holes. (2) The additional weak disorder originating from QW thickness fluctuations plays a major role in the details of the HPL spectra. The major contribution to the ground state exciton linewidth at room temperature originates from LO phonon -intermediated exciton scattering to higher exciton states. A measure of the effect is given by the parameter Gamma_{LO} which increases with the polarity of the material and is independent of dimensionality provided that the LO phonon energy is greater than the exciton binding energy. Measurements of Gamma_{LO} are performed in two quantum well systems: CdTe/MnTe and (Zn,Cd)Se/ZnSe. In the latter system, a strong reduction of Gamma _{LO} is observed as the quantum well width becomes comparable to the three-dimensional exciton Bohr radius. This is explained in terms of a model where quasi-2D confinement effects increase the exciton binding energy to a value greater than the LO phonon energy and hence reduce the available phase space for the exciton -LO phonon scattering process. Direct confirmation of our interpretation is found in magneto-transmission experiments.

  2. Simulating Coupling Complexity in Space Plasmas: First Results from a new code

    NASA Astrophysics Data System (ADS)

    Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.

    2005-12-01

    The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal

  3. Metal-metal interactions in weakly coupled mixed-valence E- and Z-diferrocenylethylene complexes.

    PubMed

    Chen, Y J; Pan, D S; Chiu, C F; Su, J X; Lin, S J; Kwan, K S

    2000-03-01

    To study metal-to-metal interactions in mixed-valence states of two weakly coupling ferrocenyl groups assembled in E or Z conformation on an ethylenic double bond, E-1,2-dimethyldiferrocenylethylene (1), Z-1,2-dimethyldi-ferrocenylethylene (2), and 1,2-diferrocenylcyclohexene (3) were synthesized and structurally characterized. Crystals of 1 are triclinic, P1, with a = 7.494(9) A, b = 10.801(3) A, c = 11.971(2) A, alpha = 102.17(2) degrees, beta = 106.12(9) degrees, gamma = 90.42(2) degrees, V = 907.8 A3, and Z = 2. Crystals of 2 are monoclinic, P2(1)/c, with a = 13.601(8) A, b = 11.104(4) A, c = 13.732(1) A, beta = 114.26(7) degrees, V = 1890.8(3) A3, and Z = 4. Crystals of 3 are orthorhombic, P2(1)2(1)2(1), with a = 5.766(2) A, b = 13.090(1) A, c = 26.695(2) A, V = 2014.9(3) A3, and Z = 4. Intervalence transition spectra (IT) and electrochemical data have been determined and compared with those of diferrocenyl-benzene (para, ortho, and meta). The comproportionation constants in nitrobenzene at 25 degrees C were found to be 490 and 813 for 1 and 3, respectively. That of 2 was not measured because of the fact that 2+ isomerizes rapidly in all solvents tested, yielding nearly a racemic mixture of E and Z conformers. This finding helps to clear the paradoxical phenomenon between experimental results of mixed-valence complexes of E- and Z-1,2-bis(1'-ethyl-1-ferrocenyl)-1,2-dimethylethylene and theories. The stability of the mixed-valence species was discussed in terms of resonance delocalization, Coulomb repulsion energy, inductive effect, magnetic interaction, structural factors, and statistical factor. According to our analysis based on the Hush formalism, the contribution due to Coulomb repulsion energy dominates the overall stability of the mixed-valence state in 1+, 2+, and 3+. Stabilization that arises from resonance delocalization is only minor and contributes less than 4% to the overall stability, even in 3+ where linked Cp rings and the ethylenic plane are

  4. Long-lived excited states of zwitterionic copper(I) complexes for photoinduced cross-dehydrogenative coupling reactions.

    PubMed

    Wang, Bin; Shelar, Deepak Prakash; Han, Xian-Zhu; Li, Ting-Ting; Guan, Xiangguo; Lu, Wei; Liu, Kun; Chen, Yong; Fu, Wen-Fu; Che, Chi-Ming

    2015-01-12

    Four heteroleptic copper(I) complexes containing phenanthroline and monoanionic nido-carborane-diphosphine ligands have been prepared and structurally characterized by various spectroscopic techniques and X-ray diffraction. These complexes exhibit intense absorptions in the visible range and excited-state lifetimes on the microsecond scale. Their application in visible-light-induced cross-dehydrogenative coupling reactions was investigated. Preliminary studies showed that one of the four copper(I) complexes is an efficient catalyst for photoinduced oxidative C-H functionalization using oxygen as oxidant. Furthermore, α-functionalized tertiary amines were obtained in good-to-excellent yields by light irradiation (λ>420 nm) of a mixture of our Cu(I) complex, tertiary amines, and a variety of nucleophiles (nitroalkane, acetone, or indoles) under aerobic conditions. Electron paramagnetic resonance measurements provided evidence for the formation of superoxide radical anions (O2(-⋅)) rather than singlet oxygen ((1)O2) during these photocatalytic reactions. PMID:25413572

  5. Effective DNA binding and cleaving tendencies of malonic acid coupled transition metal complexes

    NASA Astrophysics Data System (ADS)

    Pravin, Narayanaperumal; Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan

    2016-11-01

    Eight transition metal complexes were designed to achieve maximum biological efficacy. They were characterized by elemental analysis and various other spectroscopic techniques. The monomeric complexes were found to espouse octahedral geometry and non-electrolytic nature. The DNA interaction propensity of the complexes with calf thymus DNA (CT-DNA), studied at physiological pH by spectrophotometric, spectrofluorometric, cyclic voltammetry, and viscometric techniques revealed intercalation as the possible binding mode. Fascinatingly, the complexes were found to exhibit greater binding strength than that of the free ligands. A strong hypochromism and a slight red shift were exhibited by complex 5 among the other complexes. The intrinsic binding constant values of all the complexes compared to cisplatin reveal that they are excellent metallonucleases than that of cisplatin. The complexes were also shown to reveal displacement of the ethidium bromide, a strong intercalator using fluorescence titrations. Gel electrophoresis was used to divulge the competence of the complexes in cleaving the supercoiled pBR322 plasmid DNA. From the results, it is concluded that the complexes, especially 5, are excellent chemical nucleases in the presence of H2O2. Furthermore, the in vitro antimicrobial screening of the complexes exposes that these complexes are excellent antimicrobial agents. Overall the effect of coligands is evident from the results of all the investigations.

  6. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    ERIC Educational Resources Information Center

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  7. Broken symmetry approach to density functional calculation of magnetic anisotropy or zero field splittings for multinuclear complexes with antiferromagnetic coupling.

    PubMed

    van Wüllen, Christoph

    2009-10-29

    Antiferromagnetic coupling in multinuclear transition metal complexes usually leads to electronic ground states that cannot be described by a single Slater determinant and that are therefore difficult to describe by Kohn-Sham density functional methods. Density functional calculations in such cases are usually converged to broken symmetry solutions which break spin and, in many cases, also spatial symmetry. While a procedure exists to extract isotropic Heisenberg (exchange) coupling constants from such calculations, no such approach is yet established for the calculation of magnetic anisotropy energies or zero field splitting parameters. This work proposes such a procedure. The broken symmetry solutions are not only used to extract the exchange couplings but also single-ion D tensors which are then used to construct a (phenomenological) spin Hamiltonian, from which the magnetic anisotropy and the zero-field energy levels can be computed. The procedure is demonstrated for a bi- and a trinuclear Mn(III) model compound. PMID:19708660

  8. Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent

    NASA Astrophysics Data System (ADS)

    Yu, Minghua; Gu, Guotuan; Meng, Wei-Dong; Qing, Feng-Ling

    2007-01-01

    A superhydrophobic complex coating for cotton fabrics based on silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent (PFSC) was reported in this article. The complex thin film was prepared through a sol-gel process using cotton fabrics as a substrate. Silica nanoparticles in the coating made the textile surface much rougher, and perfluorooctylated quaternary ammonium silane coupling agent on the top layer of the surface lowered the surface free energy. Textiles coated with this coating showed excellent water repellent property, and water contact angle (CA) increased from 133° on cotton fabrics treated with pure PFSC without silica sol pretreatment up to 145°. The oil repellency was also improved and the contact angle of CH 2I 2 droplet on the fabric surface reached to 131°. In contrast, the contact angle of CH 2I 2 on the fabric surface treated with pure PFSC was only 125°.

  9. Endoglucanase Peripheral Loops Facilitate Complexation of Glucan Chains on Cellulose via Adaptive Coupling to the Emergent Substrate Structures

    SciTech Connect

    Lin, Yuchun; Beckham, Gregg T.; Himmel, Michael E.; Crowley, Michael F.; Chu, Jhih-wei

    2013-09-19

    We examine how the catalytic domain of a glycoside hydrolase family 7 endoglucanase catalytic domain (Cel7B CD) facilitates complexation of cellulose chains from a crystal surface. With direct relevance to the science of biofuel production, this problem also represents a model system of biopolymer processing by proteins in Nature. Interactions of Cel7B CD with a cellulose microfibril along different paths of complexation are characterized by mapping the atomistic fluctuations recorded in free-energy simulations onto the parameters of a coarse-grain model. The resulting patterns of protein-biopolymer couplings also uncover the sequence signatures of the enzyme in peeling off glucan chains from the microfibril substrate. We show that the semiopen active site of Cel7B CD exhibits similar barriers and free energies of complexation over two distinct routes; namely, scooping of a chain into the active-site cleft and threading from the chain end into the channel. On the other hand, the complexation energetics strongly depends on the surface packing of the targeted chain and the resulting interaction sites with the enzyme. A revealed principle is that Cel7B CD facilitates cellulose deconstruction via adaptive coupling to the emergent substrate. The flexible, peripheral segments of the protein outside of the active-site cleft are able to accommodate the varying features of cellulose along the simulated paths of complexation. The general strategy of linking physics-based molecular interactions to protein sequence could also be helpful in elucidating how other protein machines process biopolymers.

  10. Efficient Energy Transfer and Metal Coupling in Cyanide-Bridged Heterodinuclear Complexes Based on (Bipyridine)(terpyridine)ruthenium(II) and (Phenylpyridine)iridium(III) Complexes.

    PubMed

    Barthelmes, Kevin; Jäger, Michael; Kübel, Joachim; Friebe, Christian; Winter, Andreas; Wächtler, Maria; Dietzek, Benjamin; Schubert, Ulrich S

    2016-06-01

    We report a series of cyanide-bridged, heterodinuclear iridium(III)-ruthenium(II) complexes with the generalized formula [Ir((R2)2-ppy)2(CN)(μ-CN)Ru(bpy)(tpy-R1)]PF6 (ppy = 2-phenylpyridine, bpy = 2,2'-bipyridine, and tpy = 2,2':6',2″-terpyridine). The structural, spectroscopic, and electrochemical properties were analyzed in the context of variation of the electron-withdrawing (e.g., -F, -Br, -CHO) and -donating (e.g., -Me) and extended π-conjugated groups at several positions. In total, ten dinuclear complexes and the appropriate model complexes have been prepared. The iridium(III)-based emission is almost fully quenched in these complexes, and only the ruthenium(II)-based emission is observed, which indicates an efficient energy transfer toward the Ru center. Upon oxidation of the Ru center, the fluorinated complexes 2 exhibit a broad intervalence charge-transfer transition in the near-infrared region. The complexes are assigned to a weakly coupled class II system according to the Robin-Day classification. The electronic structure was evaluated by density functional theory (DFT) and time-dependent DFT calculations to corroborate the experimental data. PMID:27214264

  11. Fluorescence enhancement of light-harvesting complex 2 from purple bacteria coupled to spherical gold nanoparticles

    SciTech Connect

    Bujak, Ł.; Czechowski, N.; Piatkowski, D.; Litvin, R.; Mackowski, S.; Brotosudarmo, T. H. P.; Pichler, S.; Cogdell, R. J.; Heiss, W.

    2011-10-24

    The influence of plasmon excitations in spherical gold nanoparticles on the optical properties of a light-harvesting complex 2 (LH2) from the purple bacteria Rhodopseudomonas palustris has been studied. Systematic analysis is facilitated by controlling the thickness of a silica layer between Au nanoparticles and LH2 complexes. Fluorescence of LH2 complexes features substantial increase when these complexes are separated by 12 nm from the gold nanoparticles. At shorter distances, non-radiative quenching leads to a decrease of fluorescence emission. The enhancement of fluorescence originates predominantly from an increase of absorption of pigments comprising the LH2 complex.

  12. Fluorescence enhancement of light-harvesting complex 2 from purple bacteria coupled to spherical gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Bujak, Ł.; Czechowski, N.; Piatkowski, D.; Litvin, R.; Mackowski, S.; Brotosudarmo, T. H. P.; Cogdell, R. J.; Pichler, S.; Heiss, W.

    2011-10-01

    The influence of plasmon excitations in spherical gold nanoparticles on the optical properties of a light-harvesting complex 2 (LH2) from the purple bacteria Rhodopseudomonas palustris has been studied. Systematic analysis is facilitated by controlling the thickness of a silica layer between Au nanoparticles and LH2 complexes. Fluorescence of LH2 complexes features substantial increase when these complexes are separated by 12 nm from the gold nanoparticles. At shorter distances, non-radiative quenching leads to a decrease of fluorescence emission. The enhancement of fluorescence originates predominantly from an increase of absorption of pigments comprising the LH2 complex.

  13. Coordination Complexes of Decamethylytterbocene with4,4'-Disubstituted Bipyridines: An Experimental Study of Spin Coupling inLanthanide Complexes

    SciTech Connect

    Walter, Marc D.; Berg, David J.; Andersen, Richard A.

    2005-12-08

    The paramagnetic 1:1 coordination complexes of (C5Me5)2Ybwith a series of 4,4'-disubstituted bipyridines, bipy-X, where X is Me,tert-Bu, OMe, Ph, CO2Me, and CO2Et have been prepared. All of thecomplexes are paramagnetic and the values of the magnetic susceptibilityas a function of temperature show that these values are less thanexpected for the cation, [(C5Me5)2Yb(III)(bipy-X)]+, which have beenisolated as the cation-anion ion-pairs[(C5Me5)2Yb(III)(bipy-X)]+[(C5Me5)2YbI2]f fnfn where X is CO2Et, OMe andMe. The 1H NMR chemical shifts (293 K) for the methine resonances locatedat the 6,6' site in the bipy-X ring show a linear relationship with thevalues of chiT (300 K) for the neutral complexes which illustrates thatthe molecular behavior does not depend upon the phase with one exception,viz., (C5Me5)2Yb(bipy-Me). Single crystals of the 4,4'-dimethylbipyridinecomplex undergo an irreversible, abrupt first order phase change at 228 Kthat shatters the single crystals. The magnetic susceptibility,represented in a delta vs. T plot, on this complex, in polycrystallineform undergoes reversible abrupt changes in the temperature regime 205 -212 K, which is suggested to be due to the way the individual molec ularunits pack in the unit cell. A qualitative model is proposed thataccounts for the sub-normal magnetic moments in theseytterbocene-bipyridine complexes.

  14. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2014-02-01

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]- (FeRu) dissolved in D2O and formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4- (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state. The FTIR spectra of the νCN modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic νCN modes. The vibrational mode anharmonicities of the individual νCN modes range from 14 to 28 cm-1. The mixed-mode anharmonicities range from 2 to 14 cm-1. In general, the bridging νCN mode is most weakly coupled to the radial νCN mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four νCN modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D2O. The νCN modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm-1. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the νCN modes in cyanide-bridged transition metal mixed valence complexes.

  15. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    SciTech Connect

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  16. Electrostatic Effects on Proton-Coupled Electron Transfer in Oxomanganese Complexes Inspired by the Oxygen-Evolving Complex of Photosystem II

    PubMed Central

    Amin, Muhamed; Vogt, Leslie; Vassiliev, Serguei; Rivalta, Ivan; Sultan, Mohammad M.; Bruce, Doug; Brudvig, Gary W.; Batista, Victor S.; Gunner, M. R.

    2013-01-01

    The influence of electrostatic interactions on the free energy of proton-coupled-electron-transfer (PCET) in biomimetic oxomanganese complexes inspired by the oxygen-evolving complex (OEC) of photosystem II (PSII), are investigated. The reported study introduces an enhanced Multi-Conformer Continuum Electrostatics (MCCE) model, parameterized at the density functional theory (DFT) level with a classical valence model for the oxomanganese core. The calculated pKas and oxidation midpoint potentials (Ems) match experimental values for eight complexes indicating that purely electrostatic contributions account for most of the observed couplings between deprotonation and oxidation state transitions. We focus on pKas of terminal water ligands in [Mn(II/III)(H2O)6]2+/3+ (1), [Mn(III)(P)(H2O)2]3- (2, P = 5,10,15,20- tetrakis (2,6-dichloro-3-sulfonatophenyl) porphyrinato), [Mn(IV,IV)2(μ-O)2(terpy)2(H2O)2]4+ (3, terpy = 2,2’:6’,2”-terpyridine) and [Mn3(IV,IV,IV)(μ-O)4(phen)4(H2O)2]4+ (4, phen = 1,10-phenanthroline) and the pKas of μ-oxo bridges and Mn Ems in [Mn2(μ-O)2(bpy)4]2+ (5, bpy = 2,2’-bipyridyl), [Mn2(μ-O)2(salpn)2] (6, salpn= N,N′-bis(salicylidene)-1,3-propanediamine), [Mn2(μ-O)2(3,5-di(Cl)-salpn)2] (7) and [Mn2(μ-O)2(3,5-di(NO2)-salpn)2] (8) which are most relevant to PCET mechanisms. The analysis of complexes 6-8 highlights the strong coupling between electron and proton transfers, with any Mn oxidation lowering the pKa of an oxo bridge by 10.5±0.9 pH units. The model also accounts for changes in the Ems due to ligand substituents, such as those in complexes 6-8, due to the electron withdrawing Cl (7) and NO2 (8). The reported study provides the foundation for analysis of electrostatic effects in other oxomanganese complexes and metalloenzymes, where PCET plays a fundamental role in redox-leveling mechanisms. PMID:23570540

  17. Interfacial Charge Transfer in Dye-Sensitized Solar Cells Using SCN-Free Terpyridine-Coordinated Ru Complex Dye and Co Complex Redox Couples.

    PubMed

    Kono, Takahiro; Masaki, Naruhiko; Nishikawa, Masahiro; Tamura, Rei; Matsuzaki, Hiroyuki; Kimura, Mutsumi; Mori, Shogo

    2016-07-01

    The efficiency of dye-sensitized solar cells (DSSCs) using Ru complex dyes and Co complex redox couples has been increased with a strategy to prevent charge recombination via the addition of bulky or lengthy peripheral units to the dyes. However, despite the efforts, most of the DSSCs are still suffering from nonunity quantum efficiency and fast recombination. We examine the effect of SCN ligand, which has been used for many Ru complex dyes and could attract positively charged Co complexes. We find that replacing the ligands with 2,6-bis(2'-(4'-trifluoromethyl)pyrazolyl)pyridine increases the quantum efficiency and electron lifetime. With the combination of the replacement of SCN ligands and the addition of bulky moiety, ∼80% external quantum efficiency is achieved. These suggest that not only the addition of a blocking effect but also the reduction of electrostatic and dispersion forces between dyes and Co complexes are essential to control the charge separation and recombination processes. PMID:27328462

  18. Dynamics of compressional Mach cones in a strongly coupled complex plasma

    SciTech Connect

    Bandyopadhyay, P. Dey, R.; Sen, Abhijit; Kadyan, Sangeeta

    2014-10-15

    Using a Generalised-Hydrodynamic (GH) fluid model, we study the influence of strong coupling induced modification of the fluid compressibility on the dynamics of compressional Mach cones in a dusty plasma medium. A significant structural change of lateral wakes for a given Mach number and Epstein drag force is found in the strongly coupled regime. With the increase of fluid compressibility, the peak amplitude of the normalised perturbed dust density first increases and then decreases monotonically after reaching its maximum value. It is also noticed that the opening angle of the cone structure decreases with the increase of the compressibility of the medium and the arm of the Mach cone breaks up into small structures in the velocity vector profile when the coupling between the dust particles increases.

  19. Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion

    PubMed Central

    Rieffel, John A.; Valero-Cuevas, Francisco J.; Lipson, Hod

    2010-01-01

    Traditional engineering approaches strive to avoid, or actively suppress, nonlinear dynamic coupling among components. Biological systems, in contrast, are often rife with these dynamics. Could there be, in some cases, a benefit to high degrees of dynamical coupling? Here we present a distributed robotic control scheme inspired by the biological phenomenon of tensegrity-based mechanotransduction. This emergence of morphology-as-information-conduit or ‘morphological communication’, enabled by time-sensitive spiking neural networks, presents a new paradigm for the decentralized control of large, coupled, modular systems. These results significantly bolster, both in magnitude and in form, the idea of morphological computation in robotic control. Furthermore, they lend further credence to ideas of embodied anatomical computation in biological systems, on scales ranging from cellular structures up to the tendinous networks of the human hand. PMID:19776146

  20. A highly active water-soluble cross-coupling catalyst based on dendritic polyglycerol N-heterocyclic carbene palladium complexes.

    PubMed

    Meise, Markus; Haag, Rainer

    2008-01-01

    A new water-soluble polyglycerol derivative functionalized with N-heterocyclic carbene palladium complexes was prepared and applied as catalyst for Suzuki cross-coupling reactions in water. The complex displays a metal loading of around 65 metal centers per dendrimeric molecule, which is estimated to contain 130 chelating groups and thus corresponds approximately to the formation of 2:1 NHC/metal complexes. Monomeric analogues were also synthesized to validate the reactivity of the dendritic catalyst. Both types of catalysts were tested with various aryl bromides and arylboronic acids. Turnover frequencies of up to 2586 h(-1) at 80 degrees C were observed with the dendritic catalyst along with turnover numbers of up to 59 000, which are among the highest turnover numbers reported for polymer-supported catalysts in neat water. The dendritic catalyst could be used (reused) in five consecutive reactions without loss in activity. PMID:18702166

  1. Interactions between Redox Complexes and Semiconductor Quantum Dots Coupled via a Peptide Bridge

    PubMed Central

    Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Grimes, Amy F.; English, Doug S.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi

    2009-01-01

    Colloidal quantum dots (QDs) have a large fraction of their atoms arrayed on their surfaces and are capped with bifunctional ligands, which make their photoluminescence highly sensitive to potential charge transfer to, or from, the surrounding environment. In this report, we used peptides as bridges between CdSe-ZnS QDs and metal complexes to promote charge transfer between the metal complexes and QDs. We found that quenching of the QD emission is highly dependent on the relative position of the oxidation levels of QDs and metal complex used; it also traces the number of metal complexes brought in close proximity of the nanocrystal surface. In addition, partial bleaching of the absorption was measured for the QD-metal complex assemblies. These proximity driven interactions were further used to construct sensing assemblies to detect proteolytic enzyme activity. PMID:19049466

  2. The Oedipus Complex as Observed in Work with Couples and Their Children

    ERIC Educational Resources Information Center

    Miller, Lisa

    2004-01-01

    In work with couples where there is a child referred to a Child and Adolescent Mental Health Service, there are opportunities to observe and to work with unresolved Oedipal issues brought by the parents to the task of creating a family. These conflicts can be seen enacted by the child or children, either internally or externally. Examples are…

  3. The Copper-nicotinamide complex: sustainable applications in coupling and cycloaddition reactions

    EPA Science Inventory

    Crystalline copper (II)-nicotinamide complex, synthesized via simple mixing of copper chloride and nicotinamide solution at room temperature, catalyzes the C-S, C-N bond forming and cycloaddition reactions under a variety of sustainable reaction conditions.

  4. FLS-Based Adaptive Synchronization Control of Complex Dynamical Networks With Nonlinear Couplings and State-Dependent Uncertainties.

    PubMed

    Li, Xiao-Jian; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of synchronization control of complex dynamical networks (CDN) subject to nonlinear couplings and uncertainties. An fuzzy logical system-based adaptive distributed controller is designed to achieve the synchronization. The asymptotic convergence of synchronization errors is analyzed by combining algebraic graph theory and Lyapunov theory. In contrast to the existing results, the proposed synchronization control method is applicable for the CDN with system uncertainties and unknown topology. Especially, the considered uncertainties are allowed to occur in the node local dynamics as well as in the interconnections of different nodes. In addition, it is shown that a unified controller design framework is derived for the CDN with or without coupling delays. Finally, simulations on a Chua's circuit network are provided to validate the effectiveness of the theoretical results. PMID:25720020

  5. Strong Exchange Coupling in a Trimetallic Radical-Bridged Cobalt(II)-Hexaazatrinaphthylene Complex.

    PubMed

    Moilanen, Jani O; Chilton, Nicholas F; Day, Benjamin M; Pugh, Thomas; Layfield, Richard A

    2016-04-25

    Reducing hexaazatrinaphthylene (HAN) with potassium in the presence of 18-c-6 produces [{K(18-c-6)}HAN], which contains the S=1/2 radical [HAN](.-) . The [HAN](.-) radical can be transferred to the cobalt(II) amide [Co{N(SiMe3 )2 }2 ], forming [K(18-c-6)][(HAN){Co(N'')2 }3 ]; magnetic measurements on this compound reveal an S=4 spin system with strong cobalt-ligand antiferromagnetic exchange and J≈-290 cm(-1) (-2 J formalism). In contrast, the Co(II) centres in the unreduced analogue [(HAN){Co(N'')2 }3 ] are weakly coupled (J≈-4.4 cm(-1) ). The finding that [HAN](.-) can be synthesized as a stable salt and transferred to cobalt introduces potential new routes to magnetic materials based on strongly coupled, triangular HAN building blocks. PMID:26997130

  6. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes

    SciTech Connect

    Tecmer, Paweł Visscher, Lucas; Severo Pereira Gomes, André; Knecht, Stefan

    2014-07-28

    We present a study of the electronic structure of the [UO{sub 2}]{sup +}, [UO{sub 2}]{sup 2} {sup +}, [UO{sub 2}]{sup 3} {sup +}, NUO, [NUO]{sup +}, [NUO]{sup 2} {sup +}, [NUN]{sup −}, NUN, and [NUN]{sup +} molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin–orbit coupling and Gaunt interactions are compared to results obtained with the Dirac–Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity)

  7. Red-shifted cyanide stretching frequencies in cyanide-bridged transition metal donor-acceptor complexes. Support for vibronic coupling

    SciTech Connect

    Watzky, M.A.; Endicott, J.F.; Song, X.

    1996-06-05

    Patterns in the cyanide stretching frequencies have been examined in several series of monometal- and CN{sup {minus}} bridged transition metal complexes. Metal-to-cyanide back-bonding can be identified as a major factor contributing to red shifts of v{sub CN} in monometal complexes. This effect is complicated in cyanide-bridged complexes in two ways: (a) when both metals can back-bond to cyanide, the net interaction is repulsive and results in a blue shift of v{sub CN}: and (b) when a donor and acceptor are bridged, V{sub CN} undergoes a substantial red shift (sometimes more than 60 cm{sup {minus}1} lower in energy than the parent monometal complex). These effects can be described by simple perturbational models for the electronic interactions. Monometal cyanide complexes and CN{sup {minus}}-bridged backbonding metals can be treated in terms of their perturbations of the CN{sup {minus}} {pi} and {pi}* orbitals by using a simple, Hueckel-like, three-center perturbational treatment of electronic interactions. However, bridged donor-acceptor pairs are best described by a vibronic model in which it is assumed that the extent of electronic delocalization is in equilibrium with variations of some nuclear coordinates. Consistent with this approach, it is found that (a) the oscillator strength of the donor-acceptor charge transfer (DACT) absorption is roughly proportional to the red shift of v{sub CN} and (b) there are strong symmetry constraints on the coupling.

  8. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    SciTech Connect

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2014-02-28

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (ν{sub CN}) vibrations found in [(NH{sub 3}){sub 5}Ru{sup III}NCFe{sup II}(CN){sub 5}]{sup −} (FeRu) dissolved in D{sub 2}O and formamide and [(NC){sub 5}Fe{sup II}CNPt{sup IV}(NH{sub 3}){sub 4}NCFe{sup II}(CN){sub 5}]{sup 4−} (FePtFe) dissolved in D{sub 2}O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the ν{sub CN} modes in the electronic ground state. The FTIR spectra of the ν{sub CN} modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic ν{sub CN} modes. The vibrational mode anharmonicities of the individual ν{sub CN} modes range from 14 to 28 cm{sup −1}. The mixed-mode anharmonicities range from 2 to 14 cm{sup −1}. In general, the bridging ν{sub CN} mode is most weakly coupled to the radial ν{sub CN} mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four ν{sub CN} modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D{sub 2}O. The ν{sub CN} modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm{sup −1}. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the ν{sub CN} modes in cyanide-bridged transition metal mixed valence complexes.

  9. Dynamical complexity of multipoint geospace observations related to magnetosphere-ionosphere coupling

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Donner, Reik; Runge, Jakob

    2016-07-01

    We explore, evaluate and compare the applicability, effectiveness and interdisciplinary character of a variety of modern and sophisticated methods, from complex systems sciences, for the investigation of dynamical complexity of the near-Earth electromagnetic environment. We identify and inter-compare complementary analysis concepts, allowing for a systematic study of geospace magnetic storms and magnetospheric substorms and regime shifts between normal and abnormal states of the Earth's magnetic field, based on observational data from both ground and space. We expect these concepts to allow identifying previously unrecognized precursory structures in the dynamical complexity and, thus, contribute to a better understanding of dynamical processes manifested in observable magnetic field fluctuations prior to possible space weather-related hazards.

  10. Electron-Phonon Coupling and CT-Character in the lowest Triplet Excited State of Anthracene EDA-Complex Crystals

    NASA Astrophysics Data System (ADS)

    Maier, S.; Port, H.

    1987-11-01

    Photoexcitation spectra of triplet (T1← S0) zero-phonon lines and phonon sidebands in different anthracene electron donor-acceptor (EDA) complex crystals (A-PMDA, A-TCNB, A-TCPA) have been analyzed between 1.3 K and 50 K at high spectral resolution. From the electron-phonon coupling strength at T = 0 K values of the charge-transfer (CT) character in the range between 6% and 10% are calculated. The differences in these values are found to be correlated with the energetic positions of the triplet state, which are explained within the framework of the Mulliken theory.

  11. Coordination of 1,4-Diazabutadiene Ligands to Decamethylytterbocene: Additional Examples of Spin Coupling in Ytterbocene Complexes

    SciTech Connect

    Andersen, Richard; Walter, Marc D.; Berg, David J.; Andersen, Richard A.

    2006-11-04

    The paramagnetic 1:1 coordination complexes of (C5Me5)2Yb with a series of diazabutadiene ligands, RN=C(R')C(R')=NR, where R= CMe3, CHMe2, adamantyl, p-tolyl, p-anisyl, and mesityl when R'=H, and R= p-anisyl when R'= Me, have been prepared. The complexes are paramagnetic, but their magnetic moments are less than expected for the two uncoupled spin carriers, (C5Me5)2Yb(III, 4f13) and the diazabutadiene radical anions (S=1/2), which implies exchange coupling between the spins. The variable temperature 1H NMR spectra show that rotation about the R-N bond is hindered and these barriers are estimated. The barriers are largely determined by steric effects but electronic effects are not unimportant.

  12. Double-donor complex in vertically coupled quantum dots in a threading magnetic field.

    PubMed

    Manjarres-García, Ramón; Escorcia-Salas, Gene Elizabeth; Manjarres-Torres, Javier; Mikhailov, Ilia D; Sierra-Ortega, José

    2012-01-01

    We consider a model of hydrogen-like artificial molecule formed by two vertically coupled quantum dots in the shape of axially symmetrical thin layers with on-axis single donor impurity in each of them and with the magnetic field directed along the symmetry axis. We present numerical results for energies of some low-lying levels as functions of the magnetic field applied along the symmetry axis for different quantum dot heights, radii, and separations between them. The evolution of the Aharonov-Bohm oscillations of the energy levels with the increase of the separation between dots is analyzed. PMID:23013550

  13. Photoactivation of Diiodido-Pt(IV) Complexes Coupled to Upconverting Nanoparticles.

    PubMed

    Perfahl, Stefanie; Natile, Marta M; Mohamad, Heba S; Helm, Christiane A; Schulzke, Carola; Natile, Giovanni; Bednarski, Patrick J

    2016-07-01

    The preparation, characterization, and surface modification of upconverting lanthanide-doped hexagonal NaGdF4 nanocrystals attached to light sensitive diiodido-Pt(IV) complexes is presented. The evaluation for photoactivation and cytotoxicity of the novel carboxylated diiodido-Pt(IV) cytotoxic prodrugs by near-infrared (NIR) light (λ = 980 nm) is also reported. We attempted two different strategies for attachment of light-sensitive diiodido-Pt(IV) complexes to Yb,Er- and Yb,Tm-doped β-NaGdF4 upconverting nanoparticles (UCNPs) in order to provide nanohybrids, which offer unique opportunities for selective drug activation within the tumor cells and subsequent spatiotemporal controlled drug release by NIR-to-visible light-upconversion: (A) covalent attachment of the Pt(IV) complex via amide bond formation and (B) carboxylate exchange of oleate on the surface of the UCNPs with diiodido-Pt(IV) carboxylato complexes. Initial feasibility studies showed that NIR applied by a 980 nm laser had only a slight effect on the stability of the various diiodido-Pt(IV) complexes, but when UCNPs were present more rapid loss of the ligand-metal-charge transfer (LMCT) bands of the diiodido-Pt(IV) complexes was observed. Furthermore, Pt released from the Pt(IV) complexes platinated calf-thymus DNA (ct-DNA) more rapidly when NIR was applied compared to dark controls. Of the two attachment strategies, method A with the covalently attached diiodido-Pt(IV) carboxylates via amide bond formation proved to be the most effective method for generating UCNPs that release Pt when irradiated with NIR; the released Pt was also able to bind irreversibly to calf thymus DNA. Nonetheless, only ca. 20% of the Pt on the surface of the UCNPs was in the Pt(IV) oxidation state, the rest was Pt(II), indicating chemical reduction of the diiodido-Pt(IV) prodrug by the UCNPs. Cytotoxicity studies with the various UCNP-Pt conjugates and constructs, tested on human leukemia HL60 cells in culture, indicated a

  14. The coupling of carbon dioxide and epoxides by phenanthroline derivatives containing different Cu(II) complexes as catalyst

    NASA Astrophysics Data System (ADS)

    Kilic, Ahmet; Palali, Ahmet Arif; Durgun, Mustafa; Tasci, Zeynep; Ulusoy, Mahmut

    2013-09-01

    A series of the mononuclear Cu(II) metal complexes containing the ligand Bdppz [(9a,13a-dihydro-4,5,9,14-tetraaza-benzo[b]triphenylene-11-yl)-phenyl-methanone] (L1) and Aqphen [(12,17-dihydronaphthol[2,3-h]dipyrido[3,2-a:2‧,3‧-c]-phenazine-12,17-dione)] (L2) were synthesized and used as catalyst for the coupling of carbon dioxide (CO2) and liquid epoxide which served as both reactant and solvent. Dimethylamino pyridine (DMAP) was used as co-catalyst. The yields of epoxides to corresponding cyclic carbonates were determined by comparing the ratio of product to substrate in the 1H NMR spectrum of an aliquot of the reaction mixture. The mononuclear Cu(II) complexes of these ligands were synthesized by treating an ethanol solvent of the appropriate ligand with a different molar amount of CuCl2·2H2O. The Cu(II) complexes were characterized by FT-IR, UV-Vis, elemental analysis, melting point analysis, mass spectra, molar conductivity measurements and magnetic susceptibility techniques. The reaction of the Bdppz and Aqphen ligands in a 1:1, 1:2 or 1:3 mole ratio with CuCl2·2H2O afforded ionic Cu(II) complexes in the presence of Et3N.

  15. KCNQ1, KCNE2, and Na+-Coupled Solute Transporters Form Reciprocally Regulating Complexes that Affect Neuronal Excitability

    PubMed Central

    Abbott, Geoffrey W.; Tai, Kwok-Keung; Neverisky, Daniel; Hansler, Alex; Hu, Zhaoyang; Roepke, Torsten K.; Lerner, Daniel J.; Chen, Qiuying; Liu, Li; Zupan, Bojana; Toth, Miklos; Haynes, Robin; Huang, Xiaoping; Demirbas, Didem; Buccafusca, Roberto; Gross, Steven S.; Kanda, Vikram A.; Berry, Gerard T.

    2014-01-01

    Na+-coupled solute transport is crucial for the uptake of nutrients and metabolic precursors, such as myo-inositol, an important osmolyte and precursor for various cell signaling molecules. Here, we found that various solute transporters and potassium channel subunits formed complexes and reciprocally regulated each other in vitro and in vivo. Global metabolite profiling revealed that mice lacking KCNE2, a K+ channel β subunit, showed a reduction in the myo-inositol concentration in cerebrospinal fluid (CSF) but not in serum. Increased behavorial responsiveness to stress and seizure susceptibility in Kcne2−/− mice were alleviated by injections of myo-inositol. Suspecting a defect in myo-inositol transport, we found that KCNE2 and KCNQ1, a voltage-gated potassium channel α subunit, colocalized and coimmunoprecipitated with SMIT1, a Na+-coupled myo-inositol transporter, in the choroid plexus epithelium. Heterologous coexpression demonstrated that myo-inositol transport by SMIT1 was augmented by coexpression of KCNQ1 but inhibited by coexpression of both KCNQ1 and KCNE2, which form a constitutively active, heteromeric K+ channel. SMIT1 and the related transporter SMIT2 were also inhibited by a constitutively active mutant form of KCNQ1. The activity of KCNQ1 and KCNQ1-KCNE2 were augmented by SMIT1 and the glucose transporter SGLT1, but suppressed by SMIT2. Channel-transporter signaling complexes may be a widespread mechanism to facilitate solute transport and electrochemical crosstalk. PMID:24595108

  16. Investigation of organic magnetoresistance dependence on spin-orbit coupling using 8-hydroxyquinolinate rare-earth based complexes

    NASA Astrophysics Data System (ADS)

    Carvalho, R. S.; Costa, D. G.; Ávila, H. C.; Paolini, T. B.; Brito, H. F.; Capaz, Rodrigo B.; Cremona, M.

    2016-05-01

    The recently discovered organic magnetoresistance effect (OMAR) reveals the spin-dependent behavior of the charge transport in organic semiconductors. So far, it is known that hyperfine interactions play an important role in this phenomenon and also that spin-orbit coupling is negligible for light-atom based compounds. However, in the presence of heavy atoms, spin-orbit interactions should play an important role in OMAR. It is known that these interactions are responsible for singlet and triplet states mixing via intersystem crossing and the change of spin-charge relaxation time in the charge mobility process. In this work, we report a dramatic change in the OMAR effect caused by the presence of strong intramolecular spin-orbit coupling in a series of rare-earth quinolate organic complex-based devices. Our data show a different OMAR lineshape compared with the OMAR lineshape of tris(8-hydroxyquinolinate) aluminum-based devices, which are well described in the literature. In addition, electronic structure calculations based on density functional theory help to establish the connection between this results and the presence of heavy central ions in the different complexes.

  17. Coupled lagged ensemble weather- and river runoff prediction in complex Alpine terrain

    NASA Astrophysics Data System (ADS)

    Smiatek, Gerhard; Kunstmann, Harald; Werhahn, Johannes

    2013-04-01

    It is still a challenge to predict fast reacting streamflow precipitation response in Alpine terrain. Civil protection measures require flood prediction in 24 - 48 lead time. This holds particularly true for the Ammer River region which was affected by century floods in 1999, 2003 and 2005. Since 2005 a coupled NWP/Hydrology model system is operated in simulating and predicting the Ammer River discharges. The Ammer River catchment is located in the Bavarian Ammergau Alps and alpine forelands, Germany. With elevations reaching 2185 m and annual mean precipitation between 1100 and 2000 mm it represents very demanding test ground for a river runoff prediction system. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. The major components of the system are the MM5 NWP model run at 3.5 km resolution and initialized twice a day, the hydrology model WaSiM-ETH run at 100 m resolution and Perl object environment (POE) implementing the networking and the system operation. Results obtained in the years 2005-2012 reveal that river runoff simulations depict already high correlation (NSC in range 0.53 and 0.95) with observed runoff in retrospective runs with monitored meteorology data, but suffer from errors in quantitative precipitation forecast (QPF) from the employed numerical weather prediction model. We evaluate the NWP model accuracy, especially the precipitation intensity, frequency and location and put a focus on the performance gain of bias adjustment procedures. We show how this enhanced QFP data help to reduce the uncertainty in the discharge prediction. In addition to the HND (Hochwassernachrichtendienst, Bayern) observations TERENO Longterm Observatory hydrometeorological observation data are available since 2011. They are used to evaluate the NWP performance and setup of a bias correction procedure based on ensemble postprocessing applying Bayesian (BMA) model averaging

  18. Spectroscopic studies of plasmon coupling between photosynthetic complexes and metallic quantum dots

    NASA Astrophysics Data System (ADS)

    Olejnik, Maria; Krajnik, Bartosz; Kowalska, Dorota; Lin, Guanhua; Mackowski, Sebastian

    2013-05-01

    Metallic quantum dots, or nanoparticles, have found an increasing number of applications not only in nanotechnology and nanoscience, but also in neighboring disciplines, such as chemistry and biology. Among the variety of ways to exploit the unique properties of metallic nanostructures is the notion that plasmonic effects associated with the movement of free carriers in metallic nanoparticles may enhance photosynthetic function in naturally evolved organisms. We report on optical microscopy and spectroscopy studies of three hybrid nanostructures composed of spherical gold nanoparticles and peridinin-chlorophyll-protein (PCP), a light-harvesting complex from algae. In the case of a bioconjugated structure we find efficient, concentration dependent quenching due to non-radiative energy transfer. In contrast, for the PCP complexes deposited directly on Au nanoparticles, the emission is increased as a result of the strong increase of the fluorescence quantum yield. Finally, for a structure with controlled separation between metallic nanoparticles and the light-harvesting complexes the emission features non-monotonic behavior with maximum enhancement of about 6, which is due to a combination of fluorescence and absorption rate increases. In this way we demonstrate how the design of plasmonic hybrid nanostructures determines the optical response, which is important for engineering novel systems for photovoltaics and sensor applications, for instance.

  19. Complex analysis of scattering 1p-shell nuclei in the framework of coupled channel method

    NASA Astrophysics Data System (ADS)

    Nassurlla, M.; Burtebayev, N.; Duisebayev, A.; Burtebayeva, J.; Spitaleri, C.; Urkinbayev, A.; Rusek, K.; Piasecki, E.; Kliczewski, S.; Trzcinska, A.; Sakuta, S. B.; Boztosun, I.; Artemov, S. V.; Galanina, L. I.

    2016-04-01

    The scattering process on 1p-shell nuclei, having the cluster structure, can be seen in the anomaly increasing of cross sections for large angles. Most often, this increasing of cross sections is connected with mechanism of transfer of clusters or nucleons. The study of the α-cluster transfer mechanism in the elastic scattering of 20Ne ions on 16O nuclei is important for investigation burning process in evolution of the Universe immediately after the Big-Bang. Therefore new experiment on the heavy ion accelerator (Warsaw University) was carried out with a significant expansion of the range of angles up to 1700 in center mass system at E Lab =50.0 MeV. Data analysis of angular distribution was performed in framework of the optical model and coupled channel method. The optimal parameters of the optical potential were obtained and the spectroscopic factor was obtained 1 for 20Ne as α +16O.

  20. Sensitivity analysis of complex coupled systems extended to second and higher order derivatives

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    In design of engineering systems, the what if questions often arise such as: what will be the change of the aircraft payload, if the wing aspect ratio is incremented by 10 percent. Answers to such questions are commonly sought by incrementing the pertinent variable, and reevaluating the major disciplinary analyses involved. These analyses are contributed by engineering disciplines that are, usually, coupled, as are the aerodynamics, structures, and performance in the context of the question above. The what if questions can be answered precisely by computation of the derivatives. A method for calculation of the first derivatives has been developed previously. An algorithm is presented for calculation of the second and higher order derivatives.

  1. Non-double-couple earthquake mechanisms at the Hengill-Grensdalur volcanic complex, southwest Iceland

    USGS Publications Warehouse

    Julian, B.R.; Miller, A.D.; Foulger, G.R.

    1997-01-01

    The Hengill-Grensdalur area in Iceland generates frequent small non-double-couple earthquakes with explosive volumetric components. We collected high quality three-component digital recordings of 4,000 earthquakes on a purpose-designed, 32-station network in 1991, and determined focal mechanisms for 100 of the best-recorded earthquakes by inverting amplitude ratios. Many of the mechanisms are consistent, within the errors, with simultaneous shear and tensile faulting, with tensile faults parallel to the local spreading ridge, and shear faulting similar to that in the South Iceland transform-fault zone. Some events cannot be explained by this model, however, and require other processes, such as crack closing and partial compensation of tensile cracks by fluid flow.

  2. Heinrich events modeled with a coupled complex ice sheet-climate model

    NASA Astrophysics Data System (ADS)

    Ziemen, Florian; Rodehacke, Christian; Mikolajewicz Mikolajewicz, Uwe

    2013-04-01

    We investigate glacial climate variability with a coupled ice sheet model (ISM) - atmosphere-ocean-vegetation general circulation model (AOVGCM) system, focusing on one of the most prominent features of glacial climate variability, the Heinrich events. Modeling past climates and periods of past climate change is an important test of the capability of climate models to correctly represent future climate changes. Only if we can correctly represent past climates and climate changes, we can be confident about our predictions of future climate changes. We show results from two experiments: (1) a steady-state LGM experiment where the ice sheet model is accelerated by a factor of 10 compared to the climate model covering 30 kyrs in the ISM (3 kyrs in the AOVGCM) and (2) a synchronously coupled experiment focusing in on one ice sheet collapse covering 3.2 kyrs in both models. For the experiments, we coupled a modified version of the Parallel Ice Sheet Model (mPISM) bidirectionally with the AOVGCM ECHAM5/MPIOM/LPJ. ECHAM5 and LPJ were run in T31 resolution (~ 3.75°), MPIOM on a grid with a nominal resolution of 3° and poles over Greenland and Antarctica, mPISM on a 20 km grid covering most of the northern hemisphere. In the models, as well as in the coupling, no flux correction or anomaly maps are applied. The ice sheet surface mass balance is computed using a positive degree day scheme with lapse rate correction and height desertification effect. In the experiments, the surges of the Hudson Strait Ice Stream reach discharge rates of 60000 m3/s and show a typical recurrence interval of 7 kyrs, matching the basic characteristics for Heinrich events inferred from proxy data. The surges are consequences of an internal instability mechanism suggested by MacAyeal (1993) and various parts of the ice sheets show repeated surging. The large ice discharge during a surge of the Hudson Strait Ice Stream causes an expansion of the sea ice cover in the Labrador Sea and the adjacent

  3. Proton-Coupled Electron Transfer in the Reduction of Carbonyls by Samarium Diiodide-Water Complexes.

    PubMed

    Chciuk, Tesia V; Anderson, William R; Flowers, Robert A

    2016-07-20

    Reduction of carbonyls by SmI2 is significantly impacted by the presence of water, but the fundamental step(s) of initial transfer of a formal hydrogen atom from the SmI2-water reagent system to produce an intermediate radical is not fully understood. In this work, we provide evidence consistent with the reduction of carbonyls by SmI2-water proceeding through proton-coupled electron transfer (PCET). Combined rate and computational studies show that a model aldehyde and ketone are likely reduced through an asynchronous PCET, whereas reduction of a representative lactone occurs through a concerted PCET. In the latter case, concerted PCET is likely a consequence of significantly endergonic initial electron transfer. PMID:27367158

  4. Exchange coupling transformations in Cu (II) heterospin complexes of “breathing crystals” under structural phase transitions

    SciTech Connect

    Morozov, Vitaly A.; Petrova, Marina V.; Lukzen, Nikita N.

    2015-08-15

    Family of “breathing crystals” is the polymer-chain complexes of Cu(hfac){sub 2} with nitroxides. The polymer chains consist of one-, two- or three-spin clusters. The “breathing crystals” experience simultaneous magnetic and Jahn-Teller type structural phase transitions with change of total cluster spin and drastic change of bond lengths (ca. 10-12%). For the first time the intra-cluster magnetic couplings in ”breathing crystals” have been calculated both by band structure methods GGA + U and hybrid DFT (B3LYP and PBE0) for the isolated exchange clusters. The temperature dependence of the magnetic coupling constant was calculated for two polymer-chain compounds of the “breathing crystal” family - C{sub 21}H{sub 19}CuF{sub 12}N{sub 4}O{sub 6} with the chains containing two-spin clusters and C{sub 22}H{sub 21}CuF{sub 12}N{sub 4}O{sub 6} with the chains of alternating three-spin clusters and one-spin sites. It was found that adding a Hubbard-like parameter not only to the copper 3d electrons but also to the oxygen 2p electrons (GGA + U{sub d} + U{sub p} approach) results in an improved description of exchange coupling in the “breathing crystal” compounds. At the same time treatment of the isolated clusters by a large basis hybrid DFT with high computational cost provides a similar quality fit of the experimental magneto-chemical data as that for the GGA + U{sub d} + U{sub p} band structure calculation scheme. Our calculations also showed that in spite of the abrupt transformation of the magnetic coupling constant under the phase transition, the band gap in the “breathing crystals” remains about the same value with temperature decrease.

  5. Prion Protein—Antibody Complexes Characterized by Chromatography-Coupled Small-Angle X-Ray Scattering

    PubMed Central

    Carter, Lester; Kim, Seung Joong; Schneidman-Duhovny, Dina; Stöhr, Jan; Poncet-Montange, Guillaume; Weiss, Thomas M.; Tsuruta, Hiro; Prusiner, Stanley B.; Sali, Andrej

    2015-01-01

    Aberrant self-assembly, induced by structural misfolding of the prion proteins, leads to a number of neurodegenerative disorders. In particular, misfolding of the mostly α-helical cellular prion protein (PrPC) into a β-sheet-rich disease-causing isoform (PrPSc) is the key molecular event in the formation of PrPSc aggregates. The molecular mechanisms underlying the PrPC-to-PrPSc conversion and subsequent aggregation remain to be elucidated. However, in persistently prion-infected cell-culture models, it was shown that treatment with monoclonal antibodies against defined regions of the prion protein (PrP) led to the clearing of PrPSc in cultured cells. To gain more insight into this process, we characterized PrP-antibody complexes in solution using a fast protein liquid chromatography coupled with small-angle x-ray scattering (FPLC-SAXS) procedure. High-quality SAXS data were collected for full-length recombinant mouse PrP [denoted recPrP(23–230)] and N-terminally truncated recPrP(89–230), as well as their complexes with each of two Fab fragments (HuM-P and HuM-R1), which recognize N- and C-terminal epitopes of PrP, respectively. In-line measurements by fast protein liquid chromatography coupled with SAXS minimized data artifacts caused by a non-monodispersed sample, allowing structural analysis of PrP alone and in complex with Fab antibodies. The resulting structural models suggest two mechanisms for how these Fabs may prevent the conversion of PrPC into PrPSc. PMID:26287631

  6. An affibody in complex with a target protein: Structure and coupled folding

    PubMed Central

    Wahlberg, Elisabet; Lendel, Christofer; Helgstrand, Magnus; Allard, Peter; Dincbas-Renqvist, Vildan; Hedqvist, Anders; Berglund, Helena; Nygren, Per-Åke; Härd, Torleif

    2003-01-01

    Combinatorial protein engineering provides powerful means for functional selection of novel binding proteins. One class of engineered binding proteins, denoted affibodies, is based on the three-helix scaffold of the Z domain derived from staphylococcal protein A. The ZSPA-1 affibody has been selected from a phage-displayed library as a binder to protein A. ZSPA-1 also binds with micromolar affinity to its own ancestor, the Z domain. We have characterized the ZSPA-1 affibody in its uncomplexed state and determined the solution structure of a Z:ZSPA-1 protein–protein complex. Uncomplexed ZSPA-1 behaves as an aggregation-prone molten globule, but folding occurs on binding, and the original (Z) three-helix bundle scaffold is fully formed in the complex. The structural basis for selection and strong binding is a large interaction interface with tight steric and polar/nonpolar complementarity that directly involves 10 of 13 mutated amino acid residues on ZSPA-1. We also note similarities in how the surface of the Z domain responds by induced fit to binding of ZSPA-1 and Ig Fc, respectively, suggesting that the ZSPA-1 affibody is capable of mimicking the morphology of the natural binding partner for the Z domain. PMID:12594333

  7. The NatA Acetyltransferase Couples Sup35 Prion Complexes to the [PSI+] Phenotype

    PubMed Central

    Pezza, John A.; Langseth, Sara X.; Raupp Yamamoto, Rochele; Doris, Stephen M.; Ulin, Samuel P.; Salomon, Arthur R.

    2009-01-01

    Protein-only (prion) epigenetic elements confer unique phenotypes by adopting alternate conformations that specify new traits. Given the conformational flexibility of prion proteins, protein-only inheritance requires efficient self-replication of the underlying conformation. To explore the cellular regulation of conformational self-replication and its phenotypic effects, we analyzed genetic interactions between [PSI+], a prion form of the S. cerevisiae Sup35 protein (Sup35[PSI+]), and the three Nα-acetyltransferases, NatA, NatB, and NatC, which collectively modify ∼50% of yeast proteins. Although prion propagation proceeds normally in the absence of NatB or NatC, the [PSI+] phenotype is reversed in strains lacking NatA. Despite this change in phenotype, [PSI+] NatA mutants continue to propagate heritable Sup35[PSI+]. This uncoupling of protein state and phenotype does not arise through a decrease in the number or activity of prion templates (propagons) or through an increase in soluble Sup35. Rather, NatA null strains are specifically impaired in establishing the translation termination defect that normally accompanies Sup35 incorporation into prion complexes. The NatA effect cannot be explained by the modification of known components of the [PSI+] prion cycle including Sup35; thus, novel acetylated cellular factors must act to establish and maintain the tight link between Sup35[PSI+] complexes and their phenotypic effects. PMID:19073888

  8. Excitonic coupling of chlorophylls in the plant light-harvesting complex LHC-II.

    PubMed Central

    Schubert, Axel; Beenken, Wichard J D; Stiel, Holger; Voigt, Bernd; Leupold, Dieter; Lokstein, Heiko

    2002-01-01

    Manifestation and extent of excitonic interactions in the red Chl-absorption region (Q(y) band) of trimeric LHC-II were investigated using two complementary nonlinear laser-spectroscopic techniques. Nonlinear absorption of 120-fs pulses indicates an increased absorption cross section in the red wing of the Q(y) band as compared to monomeric Chl a in organic solution. Additionally, the dependence of a nonlinear polarization response on the pump-field intensity was investigated. This approach reveals that one emitting spectral form, characterized by a 2.3(+/-0.8)-fold larger dipole strength than monomeric Chl a, dominates the fluorescence spectrum of LHC-II. Considering available structural and spectroscopic data, these results can be consistently explained assuming the existence of an excitonically coupled dimer located at Chl-bindings sites a2 and b2 (referring to the original notation of W. Nühlbrandt, D.N. Wang, and Y. Fujiyoshi, Nature, 1994, 367:614-621), which must not necessarily correspond to Chls a and b). This fluorescent dimer, terminating the excitation energy-transfer chain of the LHC-II monomeric subunit, is discussed with respect to its relevance for intra- and inter-antenna excitation energy transfer. PMID:11806942

  9. An alternative to fully coupled reactive transport simulations for long-term prediction of chemical reactions in complex geological systems

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Kühn, Michael

    2014-05-01

    Fully-coupled reactive transport simulations involving multiphase hydrodynamics and chemical reactions in heterogeneous settings are extremely challenging from a computational point of view. This often leads to oversimplification of the investigated system: coarse spatial discretization, to keep the number of elements in the order of few thousands; simplified chemistry, disregarding many potentially important reactions. A novel approach for coupling non-reactive hydrodynamic simulations with the outcome of single batch geochemical simulations was therefore introduced to assess the potential long-term mineral trapping at the Ketzin pilot site for underground CO2 storage in Germany [1],[2]. The advantage of the coupling is the ability to use multi-million grid non-reactive hydrodynamics simulations on one side and few batch 0D geochemical simulations on the other, so that the complexity of both systems does not need to be reduced. This contribution shows the approach which was taken to validate this simplified coupling scheme. The procedure involved batch simulations of the reference geochemical model, then performing both non-reactive and fully coupled 1D and 3D reactive transport simulations and finally applying the simplified coupling scheme based on the non-reactive and geochemical batch model. The TOUGHREACT/ECO2N [3] simulator was adopted for the validation. The degree of refinement of the spatial grid and the complexity and velocity of the mineral reactions, along with a cut-off value for the minimum concentration of dissolved CO2 allowed to originate precipitates in the simplified approach were found out to be the governing parameters for the convergence of the two schemes. Systematic discrepancies between the approaches are not reducible, simply because there is no feedback between chemistry and hydrodynamics, and can reach 20 % - 30 % in unfavourable cases. However, even such discrepancy is completely acceptable, in our opinion, given the amount of

  10. Complex Coupling of Air Quality and Climate-Relevant Aerosols in a Chemistry-Aerosol Microphysics Model

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.; Carslaw, K. S.; Reddington, C.; Mann, G.

    2013-12-01

    Controlling emissions of aerosols and their precursors to improve air quality will impact the climate through direct and indirect radiative forcing. We have investigated the impacts of changes in a range of aerosol and gas-phase emission fluxes and changes in temperature on air quality and climate change metrics using a global aerosol microphysics and chemistry model, GLOMAP. We investigate how the responses of PM2.5 and cloud condensation nuclei (CCN) are coupled, and how attempts to improve air quality could have inadvertent effects on CCN, clouds and climate. The parameter perturbations considered are a 5°C increase in global temperature, increased or decreased precursor emissions of anthropogenic SO2, NH3, and NOx, and biogenic monoterpenes, and increased or decreased primary emissions of organic and black carbon aerosols from wildfire, fossil fuel, and biofuel. To quantify the interactions, we define a new sensitivity metric in terms of the response of CCN divided by the response of PM in different regions. .Our results show that the coupled chemistry and aerosol processes cause complex responses that will make any co-benefit policy decision problematic. In particular, we show that reducing SO2 emissions effectively reduces surface-level PM2.5 over continental regions in summer when background PM2.5 is high, with a relatively small reduction in marine CCN (and hence indirect radiative cooling over ocean), which is beneficial for near-term climate. Reducing NOx emissions does not improve summertime air quality very effectively but leads to a relatively high reduction of marine CCN. Reducing NH3 emissions has moderate effects on both PM2.5 and CCN. These three species are strongly coupled chemically and microphysically and the effects of changing emissions of one species on mass and size distributions of aerosols are very complex and spatially and temporally variable. For example, reducing SO2 emissions leads to reductions in sulphate and ammonium mass

  11. Intermolecular Photocatalyzed Heck-like Coupling of Unactivated Alkyl Bromides by a Dinuclear Gold Complex.

    PubMed

    Xie, Jin; Li, Jian; Weingand, Vanessa; Rudolph, Matthias; Hashmi, A Stephen K

    2016-08-26

    A practical protocol for a photocatalyzed alkyl-Heck-like reaction of unactivated alkyl bromides and different alkenes promoted by dinuclear gold photoredox catalysis in the presence of an inorganic base is reported. Primary, secondary, and tertiary unactivated alkyl bromides with β-hydrogen can be applied. Esters, aldehydes, ketones, nitriles, alcohols, heterocycles, alkynes, alkenes, ethers, and halogen moieties are all well tolerated. In addition to 1,1-diarylalkenes, silylenolethers and enamides can also be applied, which further increases the synthetic potential of the reaction. The mild reaction conditions, broad substrate scope, and an excellent functional-group tolerance deliver an ideal tool for synthetic chemists that can even be used for challenging late-stage modifications of complex natural products. PMID:27348503

  12. Trajectory Generation and Coupled Numerical Simulation for Thermal Spraying Applications on Complex Geometries

    NASA Astrophysics Data System (ADS)

    Candel, A.; Gadow, R.

    2009-12-01

    For high process reproducibility and optimized coating quality in thermal spray applications on complex geometries, atmospheric plasma spraying and high-velocity oxygen fuel torches are guided by advanced robot systems. The trajectory of the torch, the spray angle, and the relative speed between torch and component are crucial factors which affect the coating microstructure, properties, and, especially, the residual stress distribution. Thus, the requirement of high-performance thermally sprayed coatings with narrow dimensional tolerances leads to challenges in the field of robot-assisted handling, and software tools for efficient trajectory generation and robot programming are demanded. By appropriate data exchange, the automatically generated torch trajectory and speed profile can be integrated in finite element method models to analyze their influence on the heat and mass transfer during deposition. Coating experiments assisted by online diagnostics were performed to validate the developed software tools.

  13. Nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex.

    PubMed

    Goyal, Puja; Schwerdtfeger, Christine A; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-02-12

    Photoinduced concerted electron-proton transfer (EPT), denoted photo-EPT, is important for a wide range of energy conversion processes. Transient absorption and Raman spectroscopy experiments on the hydrogen-bonded p-nitrophenylphenol-t-butylamine complex, solvated in 1,2-dichloroethane, suggested that this complex may undergo photo-EPT. The experiments probed two excited electronic states that were interpreted as an intramolecular charge transfer (ICT) state and an EPT state. Herein mixed quantum mechanical/molecular mechanical nonadiabatic surface hopping dynamics is used to investigate the relaxation pathways following photoexcitation. The potential energy surface is generated on the fly with a semiempirical floating occupation molecular orbital complete active space configuration interaction method for the solute molecule and a molecular mechanical force field for the explicit solvent molecules. The free energy curves along the proton transfer coordinate illustrate that proton transfer is thermodynamically and kinetically favorable on the lower-energy excited state but not on the higher-energy excited state, supporting the characterization of these states as EPT and ICT, respectively. The nonadiabatic dynamics simulations indicate that the population decays from the ICT state to the EPT state in ∼100 fs and from the EPT state to the ground state on the slower time scale of ∼1 ps, qualitatively consistent with the experimental measurements. For ∼54% of the trajectories, the proton transfers from the phenol to the amine in ∼400 fs on the EPT state and then transfers back to the phenol rapidly upon decay to the ground state. Thus, these calculations augment the original interpretation of the experimental data by providing evidence of proton transfer on the EPT state prior to decay to the ground state. The fundamental insights obtained from these simulations are also relevant to other photo-EPT processes. PMID:25545667

  14. Dynamics of Complex Systems Built as Coupled Physical, Communication and Decision Layers

    PubMed Central

    Kühnlenz, Florian; Nardelli, Pedro H. J.

    2016-01-01

    This paper proposes a simple model to capture the complexity of multilayer systems where their constituent layers affect, and are affected by, each other. The physical layer is a circuit composed by a power source and resistors in parallel. Every individual agent aims at maximizing its own delivered power by adding, removing or keeping the resistors it has; the delivered power is in turn a non-linear function that depends on the other agents’ behavior, its own internal state, its global state perception, the information received from its neighbors via the communication network and a randomized selfishness. We develop an agent-based simulation to analyze the effects of number of agents (system size), communication network topology, communication errors and the minimum power gain that triggers a behavioral change on the system dynamic. Our results show that a wave-like behavior at macro-level (caused by individual changes in the decision layer) can only emerge for a specific system size. The ratio between cooperators and defectors depends on the minimum gain assumed—lower minimal gains lead to less cooperation, and vice-versa. Different communication network topologies imply different levels of power utilization and fairness at the physical layer, and a certain level of error in the communication layer induces more cooperation. PMID:26730590

  15. Dynamics of Complex Systems Built as Coupled Physical, Communication and Decision Layers.

    PubMed

    Kühnlenz, Florian; Nardelli, Pedro H J

    2016-01-01

    This paper proposes a simple model to capture the complexity of multilayer systems where their constituent layers affect, and are affected by, each other. The physical layer is a circuit composed by a power source and resistors in parallel. Every individual agent aims at maximizing its own delivered power by adding, removing or keeping the resistors it has; the delivered power is in turn a non-linear function that depends on the other agents' behavior, its own internal state, its global state perception, the information received from its neighbors via the communication network and a randomized selfishness. We develop an agent-based simulation to analyze the effects of number of agents (system size), communication network topology, communication errors and the minimum power gain that triggers a behavioral change on the system dynamic. Our results show that a wave-like behavior at macro-level (caused by individual changes in the decision layer) can only emerge for a specific system size. The ratio between cooperators and defectors depends on the minimum gain assumed-lower minimal gains lead to less cooperation, and vice-versa. Different communication network topologies imply different levels of power utilization and fairness at the physical layer, and a certain level of error in the communication layer induces more cooperation. PMID:26730590

  16. Divergent Coupling of Alcohols and Amines Catalyzed by Isoelectronic Hydride Mn(I) and Fe(II) PNP Pincer Complexes.

    PubMed

    Mastalir, Matthias; Glatz, Mathias; Gorgas, Nikolaus; Stöger, Berthold; Pittenauer, Ernst; Allmaier, Günter; Veiros, Luis F; Kirchner, Karl

    2016-08-22

    Herein, we describe an efficient coupling of alcohols and amines catalyzed by well-defined isoelectronic hydride Mn(I) and Fe(II) complexes, which are stabilized by a PNP ligand based on the 2,6-diaminopyridine scaffold. This reaction is an environmentally benign process implementing inexpensive, earth-abundant non-precious metal catalysts, and is based on the acceptorless alcohol dehydrogenation concept. A range of alcohols and amines including both aromatic and aliphatic substrates were efficiently converted in good to excellent isolated yields. Although in the case of Mn selectively imines were obtained, with Fe-exclusively monoalkylated amines were formed. These reactions proceed under base-free conditions and required the addition of molecular sieves. PMID:27377955

  17. Crystal Structure of a Group I Energy Coupling Factor Vitamin Transporter S Component in Complex with Its Cognate Substrate.

    PubMed

    Josts, Inokentijs; Almeida Hernandez, Yasser; Andreeva, Antonina; Tidow, Henning

    2016-07-21

    Energy coupling factor (ECF) transporters are responsible for the uptake of essential scarce nutrients in prokaryotes. This ATP-binding cassette transporter family comprises two subgroups that share a common architecture forming a tripartite membrane protein complex consisting of a translocation component and ATP hydrolyzing module and a substrate-capture (S) component. Here, we present the crystal structure of YkoE from Bacillus subtilis, the S component of the previously uncharacterized group I ECF transporter YkoEDC. Structural and biochemical analyses revealed the constituent residues of the thiamine-binding pocket as well as an unexpected mode of vitamin recognition. In addition, our experimental and bioinformatics data demonstrate major differences between YkoE and group II ECF transporters and indicate how group I vitamin transporter S components have diverged from other group I and group II ECF transporters. PMID:27447050

  18. Multidimensional treatment of stochastic solvent dynamics in photoinduced proton-coupled electron transfer processes: sequential, concerted, and complex branching mechanisms.

    PubMed

    Soudackov, Alexander V; Hazra, Anirban; Hammes-Schiffer, Sharon

    2011-10-14

    A theoretical approach for the multidimensional treatment of photoinduced proton-coupled electron transfer (PCET) processes in solution is presented. This methodology is based on the multistate continuum theory with an arbitrary number of diabatic electronic states representing the relevant charge distributions in a general PCET system. The active electrons and transferring proton(s) are treated quantum mechanically, and the electron-proton vibronic free energy surfaces are represented as functions of multiple scalar solvent coordinates corresponding to the single electron and proton transfer reactions involved in the PCET process. A dynamical formulation of the dielectric continuum theory is used to derive a set of coupled generalized Langevin equations of motion describing the time evolution of these collective solvent coordinates. The parameters in the Langevin equations depend on the solvent properties, such as the dielectric constants, relaxation time, and molecular moment of inertia, as well as the solute properties. The dynamics of selected intramolecular nuclear coordinates, such as the proton donor-acceptor distance or a torsional angle within the PCET complex, may also be included in this formulation. A surface hopping method in conjunction with the Langevin equations of motion is used to simulate the nonadiabatic dynamics on the multidimensional electron-proton vibronic free energy surfaces following photoexcitation. This theoretical treatment enables the description of both sequential and concerted mechanisms, as well as more complex processes involving a combination of these mechanisms. The application of this methodology to a series of model systems corresponding to collinear and orthogonal PCET illustrates fundamental aspects of these different mechanisms and elucidates the significance of proton vibrational relaxation and nonequilibrium solvent dynamics. PMID:22010706

  19. Intermolecular (119)Sn,(31)P Through-Space Spin-Spin Coupling in a Solid Bivalent Tin Phosphido Complex.

    PubMed

    Arras, Janet; Eichele, Klaus; Maryasin, Boris; Schubert, Hartmut; Ochsenfeld, Christian; Wesemann, Lars

    2016-05-01

    A bivalent tin complex [Sn(NP)2] (NP = [(2-Me2NC6H4)P(C6H5)](-)) was prepared and characterized by X-ray diffraction and solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. In agreement with the X-ray structures of two polymorphs of the molecule, (31)P and (119)Sn CP/MAS NMR spectra revealed one crystallographic phosphorus and tin site with through-bond (1)J((117/119)Sn,(31)P) and through-space (TS)J((117/119)Sn,(31)P) spin-spin couplings. Density functional theory (DFT) calculations of the NMR parameters confirm the experimental data. The observation of through-space (TS)J((117/119)Sn,(31)P) couplings was unexpected, as the distances of the phosphorus atoms of one molecule and the tin atom of the neighboring molecule (>4.6 Å) are outside the sum of the van der Waals radii of the atoms P and Sn (4.32 Å). The intermolecular Sn···P separations are clearly too large for bonding interactions, as supported by a natural bond orbital (NBO) analysis. PMID:27071033

  20. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes

    SciTech Connect

    Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R.; Ishizaki, Akihito

    2015-08-14

    Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.

  1. Serum Response Factor-GATA Ternary Complex Required for Nuclear Signaling by a G-Protein-Coupled Receptor

    PubMed Central

    Morin, Steves; Paradis, Pierre; Aries, Anne; Nemer, Mona

    2001-01-01

    Endothelins are a family of biologically active peptides that are critical for development and function of neural crest-derived and cardiovascular cells. These effects are mediated by two G-protein-coupled receptors and involve transcriptional regulation of growth-responsive and/or tissue-specific genes. We have used the cardiac ANF promoter, which represents the best-studied tissue-specific endothelin target, to elucidate the nuclear pathways responsible for the transcriptional effects of endothelins. We found that cardiac-specific response to endothelin 1 (ET-1) requires the combined action of the serum response factor (SRF) and the tissue-restricted GATA proteins which bind over their adjacent sites, within a 30-bp ET-1 response element. We show that SRF and GATA proteins form a novel ternary complex reminiscent of the well-characterized SRF-ternary complex factor interaction required for transcriptional induction of c-fos in response to growth factors. In transient cotransfections, GATA factors and SRF synergistically activate atrial natriuretic factor and other ET-1-inducible promoters that contain both GATA and SRF binding sites. Thus, GATA factors may represent a new class of tissue-specific SRF accessory factors that account for muscle- and other cell-specific SRF actions. PMID:11158291

  2. Explicitly correlated coupled cluster calculations for the benzenium ion (C6H7(+)) and its complexes with Ne and Ar.

    PubMed

    Botschwina, Peter; Oswald, Rainer

    2011-11-24

    Explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level (Adler, T. B.; Knizia, G.; Werner, H.-J. J. Chem. Phys. 2007, 127, 221106) has been employed in a study of the benzenium ion (C6H7(+)) and its complexes with a neon or an argon atom. The ground-state rotational constants of C6H7(+) are predicted to be A0 = 5445 MHz, B0 = 5313 MHz, and C0 = 2731 MHz. Anharmonic vibrational wavenumbers of this cation were obtained by combination of harmonic CCSD(T*)-F12a values with anharmonic contributions calculated by double-hybrid density functional theory at the B2PLYP-D level. For the complexes of C6H7(+) with Ne or Ar, the lowest energy minimum is of π-bonded structure. The corresponding dissociation energies D0 are estimated to be 160 and 550 cm(-1), respectively. There is no indication of H-bonds to the aromatic or aliphatic hydrogen atoms. Instead, three nonequivalent local energy minima were found for nuclear configurations where the rare-gas atom lies in the ring-plane and approximatly points to the center of one of the six CC bonds. PMID:21981720

  3. Solution NMR Experiment for Measurement of (15)N-(1)H Residual Dipolar Couplings in Large Proteins and Supramolecular Complexes.

    PubMed

    Eletsky, Alexander; Pulavarti, Surya V S R K; Beaumont, Victor; Gollnick, Paul; Szyperski, Thomas

    2015-09-01

    NMR residual dipolar couplings (RDCs) are exquisite probes of protein structure and dynamics. A new solution NMR experiment named 2D SE2 J-TROSY is presented to measure N-H RDCs for proteins and supramolecular complexes in excess of 200 kDa. This enables validation and refinement of their X-ray crystal and solution NMR structures and the characterization of structural and dynamic changes occurring upon complex formation. Accurate N-H RDCs were measured at 750 MHz (1)H resonance frequency for 11-mer 93 kDa (2)H,(15)N-labeled Trp RNA-binding attenuator protein tumbling with a correlation time τc of 120 ns. This is about twice as long as that for the most slowly tumbling system, for which N-H RDCs could be measured, so far, and corresponds to molecular weights of ∼200 kDa at 25 °C. Furthermore, due to the robustness of SE2 J-TROSY with respect to residual (1)H density from exchangeable protons, increased sensitivity at (1)H resonance frequencies around 1 GHz promises to enable N-H RDC measurement for even larger systems. PMID:26293598

  4. Determination of local optical response functions of nanostructures with increasing complexity by using single and coupled Lorentzian oscillator models

    NASA Astrophysics Data System (ADS)

    Aeschlimann, Martin; Brixner, Tobias; Fischer, Alexander; Hensen, Matthias; Huber, Bernhard; Kilbane, Deirdre; Kramer, Christian; Pfeiffer, Walter; Piecuch, Martin; Thielen, Philip

    2016-07-01

    We reconstruct the optical response of nanostructures of increasing complexity by fitting interferometric time-resolved photoemission electron microscopy (PEEM) data from an ultrashort (21 fs) laser excitation source with different harmonic oscillator-based models. Due to its high spatial resolution of ~40 nm, PEEM is a true near-field imaging system and enables in normal incidence mode a mapping of plasmon polaritons and an intuitive interpretation of the plasmonic behaviour. Using an actively stabilized Mach-Zehnder interferometer, we record two-pulse correlation signals with 50 as time resolution that contain information about the temporal plasmon polariton evolution. Spectral amplitude and phase of excited plasmon polaritons are extracted from the recorded phase-resolved interferometric two-pulse correlation traces. We show that the optical response of a plasmon polariton generated at a gold nanoparticle can be reconstructed from the interferometric two-pulse correlation signal using a single harmonic oscillator model. In contrast, for a corrugated silver surface, a system with increased plasmonic complexity, in general an unambiguous reconstruction of the local optical response based on coupled and uncoupled harmonic oscillators, fails. Whereas for certain local responses different models can be discriminated, this is impossible for other positions. Multidimensional spectroscopy offers a possibility to overcome this limitation.

  5. Reductive Coupling of Diynes at Rhodium Gives Fluorescent Rhodacyclopentadienes or Phosphorescent Rhodium 2,2'-Biphenyl Complexes.

    PubMed

    Sieck, Carolin; Tay, Meng Guan; Thibault, Marie-Hélène; Edkins, Robert M; Costuas, Karine; Halet, Jean-François; Batsanov, Andrei S; Haehnel, Martin; Edkins, Katharina; Lorbach, Andreas; Steffen, Andreas; Marder, Todd B

    2016-07-18

    Reactions of [Rh(κ(2) -O,O-acac)(PMe3 )2 ] (acac=acetylacetonato) and α,ω-bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties. As a result of a [2+2] reductive coupling at Rh, 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence (Φ=0.07-0.54, τ=0.2-2.5 ns) despite the presence of the heavy metal atom. Rhodium biphenyl complexes (B), which show exceptionally long-lived (hundreds of μs) phosphorescence (Φ=0.01-0.33) at room temperature in solution, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent β-H-shift. We attribute the different photophysical properties of isomers A and B to a higher excited state density and a less stabilized T1 state in the biphenyl complexes B, allowing for more efficient intersystem crossing S1 →Tn and T1 →S0 . Control of the isomer distribution is achieved by modification of the bis- (diyne) linker length, providing a fundamentally new route to access photoactive metal biphenyl compounds. PMID:27355689

  6. Electron Transfer Reactivity of the Aqueous Iron(IV)-Oxo Complex. Outer-Sphere vs Proton-Coupled Electron Transfer.

    PubMed

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2016-07-01

    The kinetics of oxidation of organic and inorganic reductants by aqueous iron(IV) ions, Fe(IV)(H2O)5O(2+) (hereafter Fe(IV)aqO(2+)), are reported. The substrates examined include several water-soluble ferrocenes, hexachloroiridate(III), polypyridyl complexes M(NN)3(2+) (M = Os, Fe and Ru; NN = phenanthroline, bipyridine and derivatives), HABTS(-)/ABTS(2-), phenothiazines, Co(II)(dmgBF2)2, macrocyclic nickel(II) complexes, and aqueous cerium(III). Most of the reductants were oxidized cleanly to the corresponding one-electron oxidation products, with the exception of phenothiazines which produced the corresponding oxides in a single-step reaction, and polypyridyl complexes of Fe(II) and Ru(II) that generated ligand-modified products. Fe(IV)aqO(2+) oxidizes even Ce(III) (E(0) in 1 M HClO4 = 1.7 V) with a rate constant greater than 10(4) M(-1) s(-1). In 0.10 M aqueous HClO4 at 25 °C, the reactions of Os(phen)3(2+) (k = 2.5 × 10(5) M(-1) s(-1)), IrCl6(3-) (1.6 × 10(6)), ABTS(2-) (4.7 × 10(7)), and Fe(cp)(C5H4CH2OH) (6.4 × 10(7)) appear to take place by outer sphere electron transfer (OSET). The rate constants for the oxidation of Os(phen)3(2+) and of ferrocenes remained unchanged in the acidity range 0.05 < [H(+)] < 0.10 M, ruling out prior protonation of Fe(IV)aqO(2+) and further supporting the OSET assignment. A fit to Marcus cross-relation yielded a composite parameter (log k22 + E(0)Fe/0.059) = 17.2 ± 0.8, where k22 and E(0)Fe are the self-exchange rate constant and reduction potential, respectively, for the Fe(IV)aqO(2+)/Fe(III)aqO(+) couple. Comparison with literature work suggests k22 < 10(-5) M(-1) s(-1) and thus E(0)(Fe(IV)aqO(2+)/Fe(III)aqO(+)) > 1.3 V. For proton-coupled electron transfer, the reduction potential is estimated at E(0) (Fe(IV)aqO(2+), H(+)/Fe(III)aqOH(2+)) ≥ 1.95 V. PMID:27320290

  7. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration under complex terrain

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N. B.

    2010-07-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial scales. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at varying temporal and spatial scales under complex terrain. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can fully account for the dynamic impacts of complex terrain and changing land cover in concert with some varying kinetic parameters (i.e., roughness and zero-plane displacement) over time. Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  8. Improving the WRF model's simulation over sea ice surface through coupling with a complex thermodynamic sea ice model

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Huang, J.; Luo, Y.; Zhao, Z.

    2015-12-01

    Sea ice plays an important role in the air-ice-ocean interaction, but it is often represented simply in many regional atmospheric models. The Noah sea ice model, which has been widely used in the Weather Research and Forecasting (WRF) model, exhibits cold bias in simulating the Arctic sea ice temperature when validated against the Surface Heat Budget of the Arctic Ocean (SHEBA) in situ observations. According to sensitivity tests, this bias is attributed not only to the simulation of snow depth and turbulent fluxes but also to the heat conduction within snow and ice. Compared with the Noah sea ice model, the high-resolution thermodynamic snow and ice model (HIGHTSI) has smaller bias in simulating the sea ice temperature. HIGHTSI is further coupled with the WRF model to evaluate the possible added value from better resolving the heat transport and solar penetration in sea ice from a complex thermodynamic sea ice model. The cold bias in simulating the surface temperature over sea ice in winter by the original Polar WRF is reduced when HIGHTSI rather than Noah is coupled with the WRF model, and this also leads to a better representation of surface upward longwave radiation and 2 m air temperature. A discussion on the impact of specifying sea ice thickness in the WRF model is presented. Consistent with previous research, prescribing the sea ice thickness with observational information would result in the best simulation among the available methods. If no observational information is available, using an empirical method based on the relationship between sea ice concentration and sea ice thickness could mimic the large-scale spatial feature of sea ice thickness. The potential application of a thermodynamic sea ice model in predicting the change in sea ice thickness in a RCM is limited by the lack of sea ice dynamic processes in the model and the coarse assumption on the initial value of sea ice thickness.

  9. Functional Importance of a Structurally Distinct Homodimeric Complex of the Family B G Protein-Coupled Secretin Receptor

    PubMed Central

    Gao, Fan; Harikumar, Kaleeckal G.; Dong, Maoqing; Lam, Polo C.-H.; Sexton, Patrick M.; Christopoulos, Arthur; Bordner, Andrew; Abagyan, Ruben; Miller, Laurence J.

    2009-01-01

    Oligomerization of G protein-coupled receptors has been described, but its structural basis and functional importance have been inconsistent. Here, we demonstrate that the agonist occupied wild-type secretin receptor is predominantly in a guanine nucleotide-sensitive high-affinity state and exhibits negative cooperativity, whereas the monomeric receptor is primarily in a guanine nucleotide-insensitive lower affinity state. We previously demonstrated constitutive homodimerization of this receptor through the lipid-exposed face of transmembrane (TM) IV. We now use cysteine-scanning mutagenesis of 14 TM IV residues, bioluminescence resonance energy transfer (BRET), and functional analysis to map spatial approximations and functional importance of specific residues in this complex. All, except for three helix-facing mutants, trafficked to the cell surface, where secretin was shown to bind and elicit cAMP production. Cells expressing complementary-tagged receptors were treated with cuprous phenanthroline to establish disulfide bonds between spatially approximated cysteines. BRET was measured as an indication of receptor oligomerization and was repeated after competitive disruption of oligomers with TM IV peptide to distinguish covalent from noncovalent associations. Although all constructs generated a significant BRET signal, this was disrupted by peptide in all except for single-site mutants replacing five residues with cysteine. Of these, covalent stabilization of receptor homodimers through positions of Gly243, Ile247, and Ala250 resulted in a GTP-sensitive high-affinity state of the receptor, whereas the same procedure with Ala246 and Phe240 mutants resulted in a GTP-insensitive lower affinity state. We propose the existence of a functionally important, structurally specific high-affinity dimeric state of the secretin receptor, which may be typical of family B G protein-coupled receptors. PMID:19429716

  10. Efficient cross-coupling of aryl Grignard reagents with alkyl halides by recyclable ionic iron(III) complexes bearing a bis(phenol)-functionalized benzimidazolium cation.

    PubMed

    Xia, Chong-Liang; Xie, Cun-Fei; Wu, Yu-Feng; Sun, Hong-Mei; Shen, Qi; Zhang, Yong

    2013-12-14

    A novel bis(phenol)-functionalized benzimidazolium salt, 1,3-bis(3,5-di-tert-butyl-2-hydroxybenzyl)benzimidazolium chloride (H3LCl, 1), was designed and used to prepare ionic iron(III) complexes of the type [H3L][FeX4] (X = Cl, 2; X = Br, 3). Both 2 and 3 were characterized by elemental analysis, Raman spectroscopy, electrospray ionization mass spectrometry and X-ray crystallography. The catalytic performances of 2 and 3 in cross-coupling reactions using aryl Grignard reagents with primary and secondary alkyl halides bearing β-hydrogens were studied. This analysis shows that complex 2 has good potential for alkyl chloride-mediated coupling. In comparison, complex 3 showed slightly lower catalytic activity. After decanting the product contained in the ethereal layer, complex 2 could be recycled at least eight times without significant loss of catalytic activity. PMID:24145602

  11. Pretreatment procedures for characterization of arsenic and selenium species in complex samples utilizing coupled techniques with mass spectrometric detection.

    PubMed

    Wrobel, Katarzyna; Wrobel, Kazimierz; Caruso, Joseph A

    2005-01-01

    Research interest in analyzing arsenic and selenium is dictated by their species-dependent behavior in the environment and in living organisms. Different analytical methodologies for known species in relatively simple chemical systems are well established, yet the analysis of complex samples is still a challenge. Owing to the complex matrix and low concentrations of target species that may be chemically labile, suitable pretreatment of the sample becomes a critical step in any speciation procedure. In this paper, the pretreatment procedures used for arsenic and selenium speciation are reviewed with the emphasis on the link between the analytical protocol applied and the biologically-significant information provided by the results obtained. In the first approach, the aim of pretreatment is to convert the original sample into a form that can be analyzed by a coupled (hyphenated) technique, preventing possible losses and/or species interconversion. Common techniques include different leaching and extraction modes, enzymatic hydrolysis, species volatilization, and so on, with or without species preconcentration. On the other hand, if the speciation analysis is performed for elucidation of elemental pathways and specific functions in a living system, more conscious pretreatment and/or fractionation is needed. The macroscopic separation of organs and tissues, isolation of certain types of cells, cell disruption and separation of sub-cellular fractions, as well as isolation of a specific biomolecules become important. Furthermore, to understand molecular mechanisms, the identification of intermediate-often highly instable--metabolites is necessary. Real life applications are reviewed in this work for aquatic samples, soils and sediments, plants, yeast, and urine. PMID:15662512

  12. Phospholamban Modulates the Functional Coupling between Nucleotide Domains in Ca-ATPase Oligomeric Complexes in Cardiac Sarcoplasmic Reticulum

    SciTech Connect

    Chen, L.; Yao, Qing; Soares, Thereza A.; Squier, Thomas C.; Bigelow, Diana J.

    2009-03-24

    Oligomeric interactions between Ca-ATPase polypeptide chains and their modulation by phospholamban (PLB) were measured in native cardiac sarcoplasmic reticulum (SR) microsomes. Progressive modification of Lys514 with fluorescein-5-isothiocyanate (FITC), which physically blocks access to the nucleotide binding site by ATP, demonstrates that Ca-ATPase active sites function independently of one another prior to the phosphorylation of PLB. However, upon PKA-dependent phosphorylation of PLB, a second-order dependence between enzyme activity and the fraction of active sites is observed, consistent with a dimeric functional complex. Complementary distance measurements were made using FITC or 5-iodoacetamido-fluorescein (IAF) bound to Cys674 within the N- or P-domains respectively, to detect structural coupling within oligomeric complexes. Accompanying the phosphorylation of PLB, neighboring Ca-ATPase polypeptide chains exhibit a 4 ± 2 Å decrease in the proximity between FITC sites within the N-domain and a 9 ± 3 Å increase in the proximity between IAF sites within P-domains. Thus, the phosphorylation of PLB induces spatial rearrangements between the N- and P-domain elements of proximal Ca-ATPase polypeptide chains which restore functional interactions between neighboring polypeptide chains and, in turn, result in increased rates of catalytic turnover. These results are interpreted in terms of a structural model, calculated through optimization of shape complementarity, desolvation, and electrostatic energies, which suggests a dimeric arrangement of Ca-ATPase polypeptide chains through the proximal association of N-domains. We suggest that the phosphorylation of PLB acts to release constraints involving interdomain subunit interactions that enhance catalytically important N-domain motions.

  13. Critical coupling and coherent perfect absorption for ranges of energies due to a complex gain and loss symmetric system

    SciTech Connect

    Hasan, Mohammad; Ghatak, Ananya; Mandal, Bhabani Prasad

    2014-05-15

    We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system. -- Highlights: •Energy ranges for CC and CPA are obtained explicitly for complex WS potential. •Analytical conditions for CC and CPA for PT symmetric WS potential are obtained. •Conditions for left and right CC are shown to be different. •Conditions for CC and CPA are shown to be that of SS for the time reversed system. •Our model shows the great flexibility of frequencies for CC and CPA.

  14. Quasilongitudinal soliton in a two-dimensional strongly coupled complex dusty plasma in the presence of an external magnetic field.

    PubMed

    Ghosh, Samiran

    2014-09-01

    The propagation of a nonlinear low-frequency mode in two-dimensional (2D) monolayer hexagonal dusty plasma crystal in presence of external magnetic field and dust-neutral collision is investigated. The standard perturbative approach leads to a 2D Korteweg-de Vries (KdV) soliton for the well-known dust-lattice mode. However, the Coriolis force due to crystal rotation and Lorentz force due to magnetic field on dust particles introduce a linear forcing term, whereas dust-neutral drag introduce the usual damping term in the 2D KdV equation. This new nonlinear equation is solved both analytically and numerically to show the competition between the linear forcing and damping in the formation of quasilongitudinal soliton in a 2D strongly coupled complex (dusty) plasma. Numerical simulation on the basis of the typical experimental plasma parameters and the analytical solution reveal that the neutral drag force is responsible for the usual exponential decay of the soliton, whereas Coriolis and/or Lorentz force is responsible for the algebraic decay as well as the oscillating tail formation of the soliton. The results are discussed in the context of the plasma crystal experiment. PMID:25314548

  15. Assessing coupling between lakes and layered aquifers in a complex Pleistocene landscape based on water level dynamics

    NASA Astrophysics Data System (ADS)

    Lischeid, Gunnar; Natkhin, Marco; Steidl, Jörg; Dietrich, Ottfried; Dannowski, Ralf; Merz, Christoph

    2010-11-01

    The biosphere reserve Schorfheide-Chorin is a scenic region with many lakes. Hydraulic coupling between lakes and groundwater is difficult to assess due to the very heterogeneous Pleistocene deposits with a complex layering of different aquifers, part of them being confined. Thus, a principal component analysis of time series of groundwater and lake water levels was performed. The first two principal components provided a quantitative measure of damping of the input signal, i.e., the extent to which time series of groundwater pressure heads or lake water levels are smoothed and delayed with respect to the input signal, i.e., groundwater recharge or precipitation minus evapotranspiration, respectively. The lakes differed substantially with respect to damping behaviour, indicating different impacts of deep groundwater contribution. For most of the groundwater wells, damping increased linearly with mean depth to water table. In contrast, some wells exhibited nearly identical behaviour independent of depth. High-pass filtered data of water table level from these wells were strongly and inversely correlated with those of barometric pressure fluctuations, pointing to a confined aquifer which was evidently not connected to the adjacent lake.

  16. Electrochemical proton-coupled electron transfer of an osmium aquo complex: theoretical analysis of asymmetric tafel plots and transfer coefficients.

    PubMed

    Ludlow, Michelle K; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2010-02-01

    Electrochemical proton-coupled electron transfer of an osmium aquo complex attached to a self-assembled monolayer on a gold electrode is studied with a recently developed theoretical formulation. The calculated hydrogen/deuterium kinetic isotope effect for the standard rate constant, the cathodic transfer coefficient at zero overpotential, and the Tafel plot are in excellent agreement with experimental data. The input quantities to the heterogeneous rate constant expressions were calculated with density functional theory in conjunction with dielectric continuum models, and no parameters were fit to experimental data. The theoretical calculations indicate that the asymmetry of the Tafel plot and the deviation of the transfer coefficient at zero overpotential from the standard value of one-half arise from the change in the equilibrium proton donor-acceptor distance upon electron transfer. The direction of the asymmetry and deviation from one-half is determined by the sign of this distance change, and the magnitude of these effects is determined by the magnitude of this distance change, as well as the reorganization energy and the distance dependence of the overlap between the initial and final proton vibrational wave functions. This theory provides experimentally testable predictions for the impact of specific system properties on the qualitative behavior of the Tafel plots. PMID:20067257

  17. Rapid Isolation and Determination of Flavones in Biological Samples Using Zinc Complexation Coupled with High-Performance Liquid Chromatography.

    PubMed

    Sun, Chenghe; Wang, Hecheng; Wang, Yingping; Xiao, Shengyuan

    2016-01-01

    Chlorophyll-type contaminants are commonly encountered in the isolation and determination of flavones of plant aerial plant parts. Heme is also a difficult background substance in whole blood analysis. Both chlorophyll and heme are porphyrin type compounds. In this study, a rapid method for isolating flavones with 5-hydroxyl or ortho-hydroxyl groups from biological samples was developed based on the different solubilities of porphyrin-metal and flavone-metal complexes. It is important that other background substances, e.g., proteins and lipids, are also removed from flavones without an additional processing. The recoveries of scutellarin, baicalin, baicalein, wogonoside and wogonin, which are the primary constituents of Scutellaria baicalensis (skullcaps) were 99.65% ± 1.02%, 98.98% ± 0.73%, 99.65% ± 0.03%, 97.59% ± 0.09% and 95.19% ± 0.47%, respectively. As a sample pretreatment procedure, this method was coupled to high-performance liquid chromatography (HPLC) with good separation, sensitivity and linearity and was applied to determine the flavone content in different aerial parts of S. baicalensis and in dried blood spot samples. PMID:27537870

  18. Fast, Accurate Simulation of Polaron Dynamics and Multidimensional Spectroscopy by Multiple Davydov Trial States.

    PubMed

    Zhou, Nengji; Chen, Lipeng; Huang, Zhongkai; Sun, Kewei; Tanimura, Yoshitaka; Zhao, Yang

    2016-03-10

    By employing the Dirac-Frenkel time-dependent variational principle, we study the dynamical properties of the Holstein molecular crystal model with diagonal and off-diagonal exciton-phonon coupling. A linear combination of the Davydov D1 (D2) ansatz, referred to as the "multi-D1 ansatz" ("multi-D2 ansatz"), is used as the trial state with enhanced accuracy but without sacrificing efficiency. The time evolution of the exciton probability is found to be in perfect agreement with that of the hierarchy equations of motion, demonstrating the promise the multiple Davydov trial states hold as an efficient, robust description of dynamics of complex quantum systems. In addition to the linear absorption spectra computed for both diagonal and off-diagonal cases, for the first time, 2D spectra have been calculated for systems with off-diagonal exciton-phonon coupling by employing the multiple D2 ansatz to compute the nonlinear response function, testifying to the great potential of the multiple D2 ansatz for fast, accurate implementation of multidimensional spectroscopy. It is found that the signal exhibits a single peak for weak off-diagonal coupling, while a vibronic multipeak structure appears for strong off-diagonal coupling. PMID:26871592

  19. A Well-Defined {[(PhCH₂O)₂P(CH₃)₂CHNCH(CH₃)₂]₂PdCl₂} Complex Catalyzed Hiyama Coupling of Aryl Bromides with Arylsilanes.

    PubMed

    Guo, Mengping; Fu, Leiqing; Li, Jiamin; Zhou, Lanjiang; Kang, Yanping

    2016-01-01

    A palladium (II) complex {[(PhCH₂O)₂P(CH₃)₂CHNCH(CH₃)₂]₂PdCl₂} catalyzed Hiyama cross-coupling reaction between aryl bromides and arylsilanes has been developed. The substituted biaryls were produced in moderate to high yields, regardless of electron-withdrawing or electron-donating. PMID:27483226

  20. Amidino ligands obtained from the coupling of 1-methylcytosine and nitrile: a new method to incorporate biomolecules into luminescent Re(CO)3 complexes.

    PubMed

    Gómez-Iglesias, Patricia; Martín-Alvarez, Jose Miguel; Miguel, Daniel; Villafañe, Fernando

    2015-10-28

    The formation of an amidino chelating ligand from the coupling reaction of 1-methylcytosine and nitrile is a new method herein reported for the incorporation of biologically relevant substrates into rhenium(i) tricarbonyl complexes. The reactions are carried out thermally or are microwave assisted. PMID:26403763

  1. Complex image method for RF antenna-plasma inductive coupling calculation in planar geometry. Part II: measurements on a resonant network

    NASA Astrophysics Data System (ADS)

    Guittienne, Ph; Jacquier, R.; Howling, A. A.; Furno, I.

    2015-12-01

    Measurements and analysis of a radio-frequency planar antenna are presented for applications in inductively-coupled plasma processing. The network of inductive and capacitive elements exhibits high currents under resonance which are efficient for plasma generation. Mode frequencies and impedances are accurately calculated by accounting for the mutual partial inductances using the impedance matrix. The effect of plasma inductive coupling on mode frequency shift and mode impedance is estimated using the complex image method, giving good agreement with experiment. It is proposed that the complex image method combined with the partial inductance concept (see the accompanying paper, Part I (Howling et al 2015 Plasma Sources Sci. Technol. 24 065014)) offers a general way to calculate the impedance characteristics of inductively-coupled plasma sources in planar geometry.

  2. Air-Stable Triazine-Based Ni(II) PNP Pincer Complexes As Catalysts for the Suzuki-Miyaura Cross-Coupling.

    PubMed

    Mastalir, Matthias; Stöger, Berthold; Pittenauer, Ernst; Allmaier, Günter; Kirchner, Karl

    2016-07-01

    Air-stable, thermally robust, and well-defined cationic Ni(II) PNP pincer complexes based on the 2,4-diaminotriazine scaffold are described. These complexes are active catalysts for the Suzuki-Miyaura cross-coupling of a wide range of aryl, heteroaryl (including benzoxazole, thiazole, pyridine, pyrimidine, thiazole), primary and secondary alkyl halides, and pseudohalides with different organoboronate reagents giving excellent to good isolated yields. Neutral deprotonated complexes seem to play a key role in the catalytic process. PMID:27281438

  3. A thiocyanato-bridged copper(I) cubane complex and its application in palladium-catalyzed Sonogashira coupling of aryl halides.

    PubMed

    Trivedi, Manoj; Singh, Gurmeet; Kumar, Abhinav; Rath, Nigam P

    2013-09-28

    Reaction of copper(I) thiocyanate with 1,1'-bis(di-tert-butylphosphino) ferrocene (dtbpf) in a 2:1 molar ratio in DCM-MeOH (50:50 V/V) afforded a tetranuclear copper(I) complex [Cu4(μ3-SCN)4(κ(1)-P,P-dtbpf)2] (1) with a cubane-like structure. Complex 1 was shown to be an efficient catalyst in comparison to CuI in the Sonogashira reaction. The coupling products were obtained in high yields by using Pd loadings of 0.2 mol% as well as complex-1 of 0.1 mol%. PMID:23903662

  4. The impact of ice shelf - iceberg coupling on the North Atlantic Ocean in a global climate model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Bugelmayer, M.; Roche, D. M.; Renssen, H.

    2012-04-01

    The influence of icebergs on the climate system is well known. On the one hand they act as a source of fresh water and on the other hand icebergs are a sink of latent heat. As a consequence icebergs clearly affect the ocean stratification and the formation of sea ice. The influence of icebergs on the climate system is especially important during so - called Heinrich events, which were periods with huge armadas of icebergs during the glacial climate. So far, icebergs have mostly been parameterized in global climate models as freshwater and heat fluxes. More recently, an iceberg module was used to generate bergs at specific locations. In this study a version of the Earth System Model of Intermediate Complexity, LOVECLIM, that includes a 3D dynamic - thermodynamic iceberg module (Jongma et al, 2008) is coupled to the Grenoble model for ice shelves and land ice (GRISLI, Ritz et al, 1997; 2001). Therefore, the icebergs are generated according to the amount of mass loss at the calving sites of GRISLI. The ice shelf model itself depends on the precipitation and temperature that is calculated by LOVECLIM. The calving rate of GRISLI is given back to the dynamic iceberg module in the form of an ice volume flux. The volume flux is taken to generate icebergs according to the size and mass distribution of Bigg et al. (1997). These bergs are then released at the same locations as the calving took place. In the present study we analyse the effect of moving icebergs on sea surface temperature, salinity and convection in comparison to an experiment where the ice volume that is lost by calving is given to the ocean directly as a freshwater flux at the calving site. Moreover, the influence of the start position of the icebergs on their tracks and on the ocean is investigated as we examine the differences between a model run using prescribed locations and the model run with the coupled ice shelf - iceberg model. All the experiments are done under preindustrial forcing.

  5. Variation of Exciton-Vibrational Coupling in Photosystem II Core Complexes from Thermosynechococcus elongatus As Revealed by Single-Molecule Spectroscopy

    PubMed Central

    2015-01-01

    The spectral properties and dynamics of the fluorescence emission of photosystem II core complexes are investigated by single-molecule spectroscopy at 1.6 K. The emission spectra are dominated by sharp zero-phonon lines (ZPLs). The sharp ZPLs are the result of weak to intermediate exciton-vibrational coupling and slow spectral diffusion. For several data sets, it is possible to surpass the effect of spectral diffusion by applying a shifting algorithm. The increased signal-to-noise ratio enables us to determine the exciton-vibrational coupling strength (Huang–Rhys factor) with high precision. The Huang–Rhys factors vary between 0.03 and 0.8. The values of the Huang–Rhys factors show no obvious correlation between coupling strength and wavelength position. From this result, we conclude that electrostatic rather than exchange or dispersive interactions are the main contributors to the exciton-vibrational coupling in this system. PMID:25708355

  6. Manipulating Nonlinear Emission and Cooperative Effect of CdSe/ZnS Quantum Dots by Coupling to a Silver Nanorod Complex Cavity

    PubMed Central

    Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan

    2014-01-01

    Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots. PMID:24787617

  7. Structural Model of Ligand-G Protein-coupled Receptor (GPCR) Complex Based on Experimental Double Mutant Cycle Data

    PubMed Central

    Marquer, Catherine; Fruchart-Gaillard, Carole; Letellier, Guillaume; Marcon, Elodie; Mourier, Gilles; Zinn-Justin, Sophie; Ménez, André; Servent, Denis; Gilquin, Bernard

    2011-01-01

    The snake toxin MT7 is a potent and specific allosteric modulator of the human M1 muscarinic receptor (hM1). We previously characterized by mutagenesis experiments the functional determinants of the MT7-hM1 receptor interaction (Fruchart-Gaillard, C., Mourier, G., Marquer, C., Stura, E., Birdsall, N. J., and Servent, D. (2008) Mol. Pharmacol. 74, 1554–1563) and more recently collected evidence indicating that MT7 may bind to a dimeric form of hM1 (Marquer, C., Fruchart-Gaillard, C., Mourier, G., Grandjean, O., Girard, E., le Maire, M., Brown, S., and Servent, D. (2010) Biol. Cell 102, 409–420). To structurally characterize the MT7-hM1 complex, we adopted a strategy combining double mutant cycle experiments and molecular modeling calculations. First, thirty-three ligand-receptor proximities were identified from the analysis of sixty-one double mutant binding affinities. Several toxin residues that are more than 25 Å apart still contact the same residues on the receptor. As a consequence, attempts to satisfy all the restraints by docking the toxin onto a single receptor failed. The toxin was then positioned onto two receptors during five independent flexible docking simulations. The different possible ligand and receptor extracellular loop conformations were described by performing simulations in explicit solvent. All the docking calculations converged to the same conformation of the MT7-hM1 dimer complex, satisfying the experimental restraints and in which (i) the toxin interacts with the extracellular side of the receptor, (ii) the tips of MT7 loops II and III contact one hM1 protomer, whereas the tip of loop I binds to the other protomer, and (iii) the hM1 dimeric interface involves the transmembrane helices TM6 and TM7. These results structurally support the high affinity and selectivity of the MT7-hM1 interaction and highlight the atypical mode of interaction of this allosteric ligand on its G protein-coupled receptor target. PMID:21685390

  8. Cell-free synthesis of a functional G protein-coupled receptor complexed with nanometer scale bilayer discs

    PubMed Central

    2011-01-01

    Background G protein coupled receptors (GPCRs) represent the largest family of membrane proteins in the human genome and the richest source of targets for the pharmaceutical industry. A major limitation to characterizing GPCRs has been the difficulty in developing high-level heterologous expression systems that are cost effective. Reasons for these difficulties include inefficient transport and insertion in the plasma membrane and cytotoxicity. Additionally, GPCR purification requires detergents, which have a negative effect on receptor yields and stability. Results Here we report a detergent-free cell-free protein expression-based method to obtain pharmacologically active GPCRs in about 2 hours. Our strategy relies on the co-translational insertion of modified GPCRs into nanometer-sized planar membranes. As a model we employed an engineered β2-adrenergic receptor in which the third intracellular loop has been replaced with T4 lysozyme (β2AR -T4L). We demonstrated that nanolipoprotein particles (NLPs) are necessary for expression of active β2AR -T4L in cell-free systems. The binding specificity of the NLP- β2AR-T4L complex has been determined by competitive assays. Our results demonstrate that β2AR-T4L synthesized in vitro depends on similar oxidative conditions as those required by an in vivo-expressed receptor. Conclusions Although the activation of β2AR-T4L requires the insertion of the T4 lysozyme sequence and the yield of that active protein limited, our results conceptually prove that cell-free protein expression could be used as a fast approach to express these valuable and notoriously difficult-to-express proteins. PMID:21605442

  9. Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry

    PubMed Central

    2011-01-01

    Background Plant hormones play a pivotal role in several physiological processes during a plant's life cycle, from germination to senescence, and the determination of endogenous concentrations of hormones is essential to elucidate the role of a particular hormone in any physiological process. Availability of a sensitive and rapid method to quantify multiple classes of hormones simultaneously will greatly facilitate the investigation of signaling networks in controlling specific developmental pathways and physiological responses. Due to the presence of hormones at very low concentrations in plant tissues (10-9 M to 10-6 M) and their different chemistries, the development of a high-throughput and comprehensive method for the determination of hormones is challenging. Results The present work reports a rapid, specific and sensitive method using ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem spectrometry (UPLC/ESI-MS/MS) to analyze quantitatively the major hormones found in plant tissues within six minutes, including auxins, cytokinins, gibberellins, abscisic acid, 1-amino-cyclopropane-1-carboxyic acid (the ethylene precursor), jasmonic acid and salicylic acid. Sample preparation, extraction procedures and UPLC-MS/MS conditions were optimized for the determination of all plant hormones and are summarized in a schematic extraction diagram for the analysis of small amounts of plant material without time-consuming additional steps such as purification, sample drying or re-suspension. Conclusions This new method is applicable to the analysis of dynamic changes in endogenous concentrations of hormones to study plant developmental processes or plant responses to biotic and abiotic stresses in complex tissues. An example is shown in which a hormone profiling is obtained from leaves of plants exposed to salt stress in the aromatic plant, Rosmarinus officinalis. PMID:22098763

  10. Copper(II) and nickel(II) complexes of beta-aminoketoxime ligand: syntheses, crystal structures, magnetism, and nickel(II) templated coupling of oxime with nitrile.

    PubMed

    Das, Oindrila; Adarsh, N N; Paul, Ankan; Paine, Tapan Kanti

    2010-01-18

    The syntheses, molecular structures, and magnetic properties of a dicopper(II) complex, [Cu(2)(HL(1))(2)](ClO(4))(2) (1), and its nickel(II) analog, [Ni(2)(HL(1))(2)](ClO(4))(2) (2), of a beta-amino ketoxime ligand (H(2)L(1) = 4,4,9,9-tetramethyl-5,8-diazadodecane-2,11-dione dioxime) are discussed. The metal centers in out-of-plane oximate bridged dinuclear complexes (1 and 2) display distorted trigonal bipyramidal geometry and form a six-membered M(2)(NO)(2) ring oriented in a boat conformation. The two copper(II) centers in 1 interact ferromagnetically giving rise to a triplet-spin ground state whereas the two nickel(II) centers in 2 interact antiferromagnetically to stabilize a singlet-spin state. Variable temperature magnetic susceptibility measurements establish the presence of a weak ferromagnetic coupling (J = 13 cm(-1)) in 1 and a weak anitiferromagnetic coupling (J = -12 cm(-1)) in 2. The exchange coupling constant derived from B3LYP computations in conjunction with broken symmetry spin-projection techniques for the oximate bridged dinuclear copper(II) complex shows excellent agreement with the corresponding experimental value. A square-planar mononuclear nickel(II) complex of the dioxime ligand, [Ni(H(2)L(1))](ClO(4))(2) (3), is reported along with its crystal structure, which reacts with acetonitrile to produce a six-coordinate mononuclear complex, [Ni(L(2))](ClO(4))(2) (4). The ligand (L(2)) in complex 4 is the iminoacyl derivative of oxime, where the coupling of oxime and acetonitrile takes place via a proton-assisted pathway. The iminoacylation of H(2)L(1) works with other nitriles like butyronitrile and benzonitrile. Computational studies support a proton-assisted coupling of oxime with nitrile. The critical transition states have been located for the iminoacylation reaction. Complex 4 can be converted back to complex 3 by reacting with sodium acetate in methanol. PMID:20025254

  11. The copper-free Sonogashira cross-coupling reaction promoted by palladium complexes of nitrogen-containing chelating ligands in neat water at room temperature.

    PubMed

    Zhong, Hong; Wang, Jinyun; Li, Liuyi; Wang, Ruihu

    2014-02-01

    The commercially available 2,2'-dipyridylamine was used as a supporting ligand in the palladium-catalyzed Sonogashira cross-coupling reaction. The reactions between aryl iodides and terminal alkynes with different steric hindrance can be efficiently performed in the absence of copper in neat water at room temperature. The superior catalytic performance of the catalytic system was attributed to water solubility of the palladium 2,2'-dipyridylamine complex. Palladium nanoparticles with small size and narrow size distribution were formed after the cross-coupling reaction. PMID:24281778

  12. Half-sandwich nickel complexes with ring-expanded NHC ligands - synthesis, structure and catalytic activity in Kumada-Tamao-Corriu coupling.

    PubMed

    Banach, Ł; Guńka, P A; Buchowicz, W

    2016-06-01

    The general synthesis of [Ni(Cp)(X)(NHC)] complexes from a nickel halide, CpLi, and a carbene solution is reported. This procedure yields unprecedented complexes with ring-expanded NHC ligands (RE-NHC) of six- (1a, 1b), seven- (1c), and eight-membered (1d) heterocycles. The NMR spectra of 1a-1d are consistent with the hindered rotation of Ni-Ccarbene and N-CMes bonds, while X-ray analyses of 1b, 1c, and 1d reveal a pronounced trans influence of the RE-NHC ligands. Complexes 1a-1e are efficient pre-catalysts in Kumada-Tamao-Corriu coupling with the maximum efficiency observed for complexes bearing the six-membered NHC. PMID:26853761

  13. First high-power model of the annular-ring coupled structure for use in the Japan Proton Accelerator Research Complex linac

    NASA Astrophysics Data System (ADS)

    Ao, Hiroyuki; Yamazaki, Yoshishige

    2012-01-01

    A prototype cavity for the annular-ring coupled structure (ACS) for use in the Japan Proton Accelerator Research Complex (J-PARC) linac has been developed to confirm the feasibility of achieving the required performance. This prototype cavity is a buncher module, which includes ten accelerating cells in total. The ACS cavity is formed by the silver brazing of ACS half-cell pieces stacked in a vacuum furnace. The accelerating cell of the ACS is surrounded by a coupling cell. We, therefore, tuned the frequencies of the accelerating and coupling cells by an ultraprecision lathe before brazing, taking into account the frequency shift due to brazing. The prototype buncher module was successfully conditioned up to 600 kW, which corresponds to an accelerating field that is higher than the designed field of 4.1MV/m by 30%. We describe the frequency-tuning results for the prototype buncher module and its high-power conditioning.

  14. Reconstitution of photosynthetic energy conservation. II. Photophosphorylation in liposomes containing photosystem-I reaction center and chloroplast coupling-factor complex.

    PubMed

    Hauska, G; Samoray, D; Orlich, G; Nelson, N

    1980-10-01

    Photophosphorylation has been reconstituted in a liposomal system containing reaction centers of photosystem I and coupling-factor complex, both highly purified from spinach chloroplasts. This energy-converting model system was put together by diluting the preparation of the coupling-factor complex with an aqueous suspension of proteolipid vesicles, preformed from photosystem-I reaction centers and soybean phospholipids by sonication. In the presence of reduced N-methyl-phenazonium methosulfate the system catalyzed photophosphorylation with rates up to 50 mumol ATP formed x mg chlorophyll-1 x h-1, which was sensitive to uncouplers and to N,N'-dicyclohexyl-carbodiimide. The properties of the system in comparison to chloroplasts is discussed. PMID:6450680

  15. Palladium(II)-1-phenylthio-2-arylchalcogenoethane complexes: palladium phosphide nano-peanut and ribbon formation controlled by chalcogen and Suzuki coupling activation.

    PubMed

    Kumar Rao, Gyandshwar; Kumar, Arun; Saleem, Fariha; Singh, Mahabir P; Kumar, Satyendra; Kumar, Bharat; Mukherjee, Goutam; Singh, Ajai K

    2015-04-14

    The ligands PhSCH2CH2EAr (; E = S, Se or Te) and their Pd-complexes [PdLCl2] () have been synthesized and authenticated with their (1)H, (13)C{(1)H}, (77)Se{(1)H} and (125)Te{(1)H} NMR spectra. Single crystal structures of and reveal the geometry of donor atoms around palladium as nearly square planar. Thermolysis of all three complexes in trioctylphosphine (TOP) at 350, 320 and 280 °C, respectively, results in a single phase of crystalline PdP2. The morphology of the phase varies with 'E' to some extent. The nanopeanuts (size ∼30 and ∼35 nm) were formed with and as precursor complexes. On using complex as a precursor nanoribbons are formed. The preferential growth in the (202) plane in the case of all the three precursor complexes has been rationalized in terms of texture coefficient and average crystallite size. All three complexes and PdP2 NPs have been explored for Suzuki-Miyaura coupling of several aryl halides. Complexes and show good catalytic activity but complex does not. The activity appears to result due to in situ generated palladium containing nanoparticles (NPs) in the case of and . The formation of inactive large Pd aggregates in the case of appears to be responsible for the difference. The PdP2 NPs have been found to show good catalytic activity and recyclability up to six reaction cycles. The results of the three phase test suggest the involvement of both homogeneous and heterogeneous pathways in the activation of Suzuki coupling. DFT based free energy calculations are consistent with the results of catalysis via Pd(0) protected with the ligand. This palladium may also be released from in situ generated NPs. In the case of , negligible reactivity may be due to non-release of Pd. PMID:25757704

  16. Aspects of Subunit Interactions in the Chloroplast ATP Synthase (I. Isolation of a Chloroplast Coupling Factor 1-Subunit III Complex from Spinach Thylakoids).

    PubMed Central

    Wetzel, C. M.; McCarty, R. E.

    1993-01-01

    A chloroplast ATP synthase complex (CF1 [chloroplast-coupling factor 1]-CF0 [membrane-spanning portion of chloroplast ATP synthase]) depleted of all CF0 subunits except subunit III (also known as the proteolipid subunit) was purified to study the interaction between CF1 and subunit III. Subunit III has a putative role in proton translocation across the thylakoid membrane during photophosphorylation; therefore, an accurate model of subunit inter-actions involving subunit III will be valuable for elucidating the mechanism and regulation of energy coupling. Purification of the complex from a crude CF1-CF0 preparation from spinach (Spinacia oleracea) thylakoids was accomplished by detergent treatment during anion-exchange chromatography. Subunit III in the complex was positively identified by amino acid analysis and N-terminal sequencing. The association of subunit III with CF1 was verified by linear sucrose gradient centrifugation, immunoprecipitation, and incorporation of the complex into asolectin liposomes. After incorporation into liposomes, CF1 was removed from the CF1-III complex by ethylenediaminetetracetate treatment. The subunit III-proteoliposomes were competent to rebind purified CF1. These results indicate that subunit III directly interacts with CF1 in spinach thylakoids. PMID:12231815

  17. Intramolecular transfer of {open_quotes}CO{close_quotes} from ({eta}{sup 6}-arene)Cr(CO){sub 3} complexes in stille-type palladium-catalyzed cross coupling reactions

    SciTech Connect

    Caldirola, P.; Chowdhury, R.; Johansson, A.M.; Hacksell, U.

    1995-12-31

    The reaction between [{eta}{sup 6}-(trialkylstannyl)benzene]Cr(CO){sub 3} complexes and different electrophiles such as iodobenzene and aryltriflate and the coupling between (tributylphenyl)stannane and the Cr(CO){sub 3} complex of chlorobenzene have been studied. Products from two different types of reactions were observed: (1) benzophenone along with the alkylarylketone, resulting from a carbonylative coupling, and (2) biphenyl, arising from a direct coupling.

  18. Decarboxylative Coupling Reaction in ESI(-)-MS/MS of 4-Nitrobenzyl 4-Hydroxybenzoates: Triplet Ion-Neutral Complex-Mediated 4-Nitrobenzyl Transfer

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping; Bai, Xingfeng; Fang, Liwen; Jiang, Kezhi; Li, Zuguang

    2016-05-01

    In negative electrospray ionization mass spectrometry of 4-nitrobenzyl 4-hydroxybenzoates, a decarboxylation reaction, which was significantly promoted by the presence of a nitro group on the benzyl group, competed with radical elimination reactions. Density functional theory calculations indicated that decarboxylation of deprotonated 4-nitrobenzyl vanillate occurred via a radical route involving homolytic cleavage of the Cbenzyl-O bond to give a triplet ion-neutral complex, followed by decarboxylative coupling.

  19. Absorption Spectroscopy, Emissive Properties, and Ultrafast Intersystem Crossing Processes in Transition Metal Complexes: TD-DFT and Spin-Orbit Coupling.

    PubMed

    Daniel, Chantal

    2016-01-01

    Absorption spectroscopy, emissive properties, and ultrafast intersystem crossing processes in transition metal complexes are discussed in the light of recent developments in time-dependent density functional theory (TD-DFT), spin-orbit coupling (SOC) effects, and non-adiabatic excited states dynamics. Methodological highlights focus on spin-orbit and vibronic couplings and on the recent strategies available for simulating ultra-fast intersystem crossings (ISC).The role of SOC in the absorption spectroscopy of third-row transition metal complexes is illustrated by two cases studies, namely Ir(III) phenyl pyridine and Re(I) carbonyl bipyridine complexes.The problem of luminescence decay in third-row transition metal complexes handled by TD-DFT linear and quadratic response theories including SOC is exemplified by three studies: (1) the phosphorescence of Ir(III) complexes from the lowest triplet state; (2) the emissive properties of square planar Pt(II) complexes with bidentate and terdentate ligands characterized by low-lying metal-to-ligand-charge-transfer (MLCT) and metal-centered (MC) states; and (3) the ultra-fast luminescence decay of Re(I) carbonyl bipyridine halides via low-lying singlet and triplet charge transfer states delocalized over the bipyridine and the halide ligands.Ultrafast ISC occurring in spin crossover [Fe (bpy)3]2+, in [Ru (bpy)3]2+, and [Re (Br)(CO)3(bpy] complexes are deciphered thanks to recent developments based on various approaches, namely non-radiative rate theory within the Condon approximation, non-adiabatic surface hopping molecular dynamics, and quantum wave packet dynamics propagation. PMID:26129697

  20. The role of complex networks in behavior epidemiology. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Zhao, Dawei; Wang, Lianhai

    2015-12-01

    Outbreaks of disease can trigger spontaneous behavioral response of individuals to consider prevention measures (mainly including medical cure and non-pharmaceutical intervention), which usually in turn influence the diffusion of epidemic, namely, forming the interplay between individual behaviors and epidemic dynamics. During the past decade, understanding such coupled disease-behavior dynamics in population has become a critical tool for predicting the disease evolution and designing effective prevention strategies [1-3].

  1. An Annular Lipid Belt Is Essential for Allosteric Coupling and Viral Inhibition of the Antigen Translocation Complex TAP (Transporter Associated with Antigen Processing)*

    PubMed Central

    Eggensperger, Sabine; Fisette, Olivier; Parcej, David; Schäfer, Lars V.; Tampé, Robert

    2014-01-01

    The transporter associated with antigen processing (TAP) constitutes a focal element in the adaptive immune response against infected or malignantly transformed cells. TAP shuttles proteasomal degradation products into the lumen of the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. Here, the heterodimeric TAP complex was purified and reconstituted in nanodiscs in defined stoichiometry. We demonstrate that a single heterodimeric core-TAP complex is active in peptide binding, which is tightly coupled to ATP hydrolysis. Notably, with increasing peptide length, the ATP turnover was gradually decreased, revealing that ATP hydrolysis is coupled to the movement of peptide through the ATP-binding cassette transporter. In addition, all-atom molecular dynamics simulations show that the observed 22 lipids are sufficient to form an annular belt surrounding the TAP complex. This lipid belt is essential for high affinity inhibition by the herpesvirus immune evasin ICP47. In conclusion, nanodiscs are a powerful approach to study the important role of lipids as well as the function, interaction, and modulation of the antigen translocation machinery. PMID:25305015

  2. Spatial modulation of light transmission through a single microcavity by coupling of photosynthetic complex excitations to surface plasmons

    NASA Astrophysics Data System (ADS)

    Carmeli, Itai; Cohen, Moshik; Heifler, Omri; Lilach, Yigal; Zalevsky, Zeev; Mujica, Vladimiro; Richter, Shachar

    2015-06-01

    Molecule-plasmon interactions have been shown to have a definite role in light propagation through optical microcavities due to strong coupling between molecular excitations and surface plasmons. This coupling can lead to macroscopic extended coherent states exhibiting increment in temporal and spatial coherency and a large Rabi splitting. Here, we demonstrate spatial modulation of light transmission through a single microcavity patterned on a free-standing Au film, strongly coupled to one of the most efficient energy transfer photosynthetic proteins in nature, photosystem I. Here we observe a clear correlation between the appearance of spatial modulation of light and molecular photon absorption, accompanied by a 13-fold enhancement in light transmission and the emergence of a distinct electromagnetic standing wave pattern in the cavity. This study provides the path for engineering various types of bio-photonic devices based on the vast diversity of biological molecules in nature.

  3. The order O({α}_t{α}_s) corrections to the trilinear Higgs self-couplings in the complex NMSSM

    NASA Astrophysics Data System (ADS)

    Mühlleitner, Margarete; Nhung, Dao Thi; Ziesche, Hanna

    2015-12-01

    A consistent interpretation of the Higgs data requires the same precision in the Higgs boson masses and in the trilinear Higgs self-couplings, which are related through their common origin from the Higgs potential. In this work we provide the two-loop corrections at O({α}_t{α}_s) in the approximation of vanishing external momenta to the trilinear Higgs self-couplings in the CP-violating Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM). In the top/stop sector two different renormalization schemes have been implemented, the OS and the overline{DR} scheme. The two-loop corrections to the self-couplings are of the order of 10% in the investigated scenarios. The theoretical error, estimated both from the variation of the renormalization scale and from the change of the top/stop sector renormalization scheme, has been shown to be reduced due to the inclusion of the two-loop corrections.

  4. Distance-Independent Charge Recombination Kinetics in Cytochrome c - Cytochrome c Peroxidase Complexes: Compensating Changes in the Electronic Coupling and Reorganization Energies

    PubMed Central

    Jiang, Nan; Kuznetsov, Aleksey; Nocek, Judith M.; Hoffman, Brian M.; Crane, Brian R.; Hu, Xiangqian; Beratan, David N.

    2013-01-01

    Charge recombination rate constants vary no more than three-fold for inter-protein ET in the Zn-substituted wild type (WT) cytochrome c peroxidase (CcP):cytochrome c (Cc) complex and in complexes with four mutants of the Cc protein (i.e., F82S, F82W, F82Y and F82I), despite large differences in the ET distance. Theoretical analysis indicates that charge recombination for all complexes involves a combination of tunneling and hopping via Trp191. For three of the five structures (WT and F82S(W)), the protein favors hopping more than that in the other two structures that have longer heme→ZnP distances (F82Y(I)). Experimentally observed biexponential ET kinetics is explained by the complex locking in alternative coupling pathways, where the acceptor hole state is either primarily localized on ZnP (slow phase) or on Trp191 (fast phase). The large conformational differences between the CcP:Cc interface for the F82Y(I) mutants compared to the WT and F82S(W) complexes are predicted to change the reorganization energies for the CcP:Cc ET reactions because of changes in solvent exposure and inter-protein ET distances. Since the recombination reaction is likely to occur in the inverted Marcus regime, an increased reorganization energy compensates the decreased role for hopping recombination (and the longer transfer distance) in the F82Y(I) mutants. Taken together, coupling pathway and reorganization energy effects for the five protein complexes explains the observed insensitivity of recombination kinetics to donor-acceptor distance and docking pose and also reveals how hopping through aromatic residues can accelerate long-range ET. PMID:23895339

  5. Radical Monocationic Guanidino-Functionalized Aromatic Compounds (GFAs) as Bridging Ligands in Dinuclear Metal Acetate Complexes: Synthesis, Electronic Structure, and Magnetic Coupling.

    PubMed

    Eberle, Benjamin; Damjanović, Marko; Enders, Markus; Leingang, Simone; Pfisterer, Jessica; Krämer, Christoph; Hübner, Olaf; Kaifer, Elisabeth; Himmel, Hans-Jörg

    2016-02-15

    In this work, the oxidation of several new dinuclear metal (M) acetate complexes of the redox-active guanidino-functionalized aromatic compound (GFA) 1,2,4,5-tetrakis(tetramethylguanidino)benzene (1) was studied. The complexes [1{M(OAc)2}2] (M = Ni or Pd) were oxidized to the radical monocationic complexes [1{M(OAc)2}2](+ •). From CV (cyclic voltammetry) measurements, the Gibbs free enthalpy for disproportionation of [1{M(OAc)2}2](+ •) into [1{M(OAc)2}2] and [1{M(OAc)2}2](2+) could be estimated to be roughly +20 kJ mol(-1) in CH2Cl2 solution. A characteristic feature of the [1{M(OAc)2}2](+ •) complexes is the presence of intense metal-ligand charge-transfer bands in the electronic absorption spectra. The complex [1{Ni(OAc)2}2](+ •) combines three paramagnetic centers with four metal-centered unpaired electrons and a ligand centered π-radical and exhibits a sextet electronic ground state. Spin distribution of the Ni complexes was evaluated by paramagnetic (1)H and (13)C NMR and was correlated with calculations. The strong ferromagnetic metal-ligand magnetic coupling was studied in the solid state by magnetometric (SQUID) measurements and by quantum chemical (DFT) calculations. The temperature dependence of the paramagnetic NMR shift was used for the evaluation of the magnetic coupling between the Ni centers and the π-radical in solution. PMID:26814470

  6. Analytical developments for the determination of monomethylmercury complexes with low molecular mass thiols by reverse phase liquid chromatography hyphenated to inductively coupled plasma mass spectrometry.

    PubMed

    Bouchet, Sylvain; Björn, Erik

    2014-04-25

    The behavior of monomethylmercury (MMHg) is markedly influenced by its distribution among complexes with low molecular mass (LMM) thiols but analytical methodologies dedicated to measure such complexes are very scarce up to date. In this work, we selected 15 LMM thiols often encountered in living organisms and/or in the environment and evaluated the separation of the 15 corresponding MMHg-thiol complexes by various high performance liquid chromatography (HPLC) columns. Two C18 (Phenomenex Synergi Hydro-RP and LunaC18(2)), two phenyl (Inertsil Ph 3 and 5μm) and one mixed-mode (Restek Ultra IBD) stationary phases were tested for their retention and resolution capacities of the various complexes. The objective was to find simple separation conditions with low organic contents in the mobile phase to provide optimal conditions for detection by inductively coupled plasma mass spectrometry (ICPMS). The 15 complexes were synthesized in solution and characterized by electrospray ionization-mass spectrometry (ESI-MS). The C18 columns tested were either not resolutive enough or too retentive. The 3μm phenyl stationary phase was able to resolve 10 out of the 15 complexes in less than 25min, under isocratic conditions. The mixed-mode column was especially effective at separating the most hydrophilic complexes (6 complexes out of the 15), corresponding to the main LMM thiols found in living organisms. The detection limits (DLs) for these two columns were in the low nanomolar range and overall slightly better for the phenyl column. The possibilities offered by such methodology were exemplified by monitoring the time-course concentrations of four MMHg-thiol complexes within a phytoplankton incubation containing MMHg in the presence of an excess of four added thiols. PMID:24657146

  7. Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection.

    PubMed

    Flis, Paulina; Ouerdane, Laurent; Grillet, Louis; Curie, Catherine; Mari, Stéphane; Lobinski, Ryszard

    2016-08-01

    Description of metal species in plant fluids such as xylem, phloem or related saps remains a complex challenge usually addressed either by liquid chromatography-mass spectrometry, X-ray analysis or computational prediction. To date, none of these techniques has achieved a complete and true picture of metal-containing species in plant fluids, especially for the least concentrated complexes. Here, we present a generic analytical methodology for a large-scale (> 10 metals, > 50 metal complexes) detection, identification and semiquantitative determination of metal complexes in the xylem and embryo sac liquid of the green pea, Pisum sativum. The procedure is based on direct injection using hydrophilic interaction chromatography with dual detection by elemental (inductively coupled plasma mass spectrometry) and molecular (high-resolution electrospray mass spectrometry) mass spectrometric detection. Numerous and novel complexes of iron(II), iron(III), copper(II), zinc, manganese, cobalt(II), cobalt(III), magnesium, calcium, nickel and molybdenum(IV) with several ligands including nicotianamine, citrate, malate, histidine, glutamine, aspartic acid, asparagine, phenylalanine and others are observed in pea fluids and discussed. This methodology provides a large inventory of various types of metal complexes, which is a significant asset for future biochemical and genetic studies into metal transport/homeostasis. PMID:27111838

  8. Public health impact of disease-behavior dynamics. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Wells, Chad R.; Galvani, Alison P.

    2015-12-01

    In a loop of dynamic feedback, behavior such as the decision to vaccinate, hand washing, or avoidance influences the progression of the epidemic, yet behavior is driven by the individual's and population's perceived risk of infection during an outbreak. In what we believe will become a seminal paper that stimulates future research as well as an informative teaching aid, Wang et. al. comprehensively review methodological advances that have been used to incorporate human behavior into epidemiological models on the effects of coupling disease transmission and behavior on complex social networks [1]. As illustrated by the recent outbreaks of measles and Middle Eastern Respiratory Syndrome (MERS), here we highlight the importance of coupling behavior and disease transmission that Wang et al. address.

  9. Accessing Molecularly Complex Azaborines: Palladium-Catalyzed Suzuki–Miyaura Cross-Couplings of Brominated 2,1-Borazaronaphthalenes and Potassium Organotrifluoroborates

    PubMed Central

    2015-01-01

    Despite their potential applications in both medicinal chemistry and materials science, there have been limited reports on the functionalization of 2,1-borazaronaphthalenes since their discovery in 1959. To access new chemical space and build molecular complexity, the Suzuki–Miyaura cross-coupling of brominated 2,1-borazaronaphthalenes has been investigated. The palladium-catalyzed cross-coupling proceeds with an array of potassium (hetero)aryltrifluoroborates in high yield with low catalyst loadings under mild reaction conditions. By the use of a high-yielding bromination of various 2,1-borazaronaphthalenes to generate electrophilic azaborine species, a library of 3-(hetero)aryl and 3,6-diaryl-2,1-borazaronaphthalenes has been synthesized. PMID:24984003

  10. Modelling real disease dynamics with behaviourally adaptive complex networks. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Small, Michael

    2015-12-01

    Mean field compartmental models of disease transmission have been successfully applied to a host of different scenarios, and the Kermack-McKendrick equations are now a staple of mathematical biology text books. In Susceptible-Infected-Removed format these equations provide three coupled first order ordinary differential equations with a very mild nonlinearity and they are very well understood. However, underpinning these equations are two important assumptions: that the population is (a) homogeneous, and (b) well-mixed. These assumptions become closest to being true for diseases infecting a large portion of the population for which inevitable individual effects can be averaged away. Emerging infectious disease (such as, in recent times, SARS, avian influenza, swine flu and ebola) typically does not conform to this scenario. Individual contacts and peculiarities of the transmission network play a vital role in understanding the dynamics of such relatively rare infections - particularly during the early stages of an outbreak.

  11. Structure and Function of Cross-class Complexes of G Protein-coupled Secretin and Angiotensin 1a Receptors.

    PubMed

    Harikumar, Kaleeckal G; Augustine, Mary Lou; Lee, Leo T O; Chow, Billy K C; Miller, Laurence J

    2016-08-12

    Complexes of secretin (SecR) and angiotensin 1a (Atr1a) receptors have been proposed to be functionally important in osmoregulation, providing an explanation for overlapping and interdependent functions of hormones that bind and activate different classes of GPCRs. However, the nature of these cross-class complexes has not been well characterized and their signaling properties have not been systematically explored. We now use competitive inhibition of receptor bioluminescence resonance energy transfer and bimolecular fluorescence complementation to establish the dominant functionally important state as a symmetrical homodimeric form of SecR decorated by monomeric Atr1a, interacting through lipid-exposed faces of Atr1a TM1 and TM4. Conditions increasing prevalence of this complex exhibited negative allosteric modulatory impact on secretin-stimulated cAMP responses at SecR. In contrast, activating Atr1a with full agonist in such a complex exhibited a positive allosteric modulatory impact on the same signaling event. This modulation was functionally biased, with secretin-stimulated calcium responses unaffected, whereas angiotensin-stimulated calcium responses through the complex were reduced or absent. Further supporting this interpretation, Atr1a with mutations of lipid-exposed faces of TM1 and TM4 that did not affect its ability to bind or signal, could be expressed in the same cell as SecR, yet not exhibit either the negative or positive allosteric impact on cAMP observed with the inactive or activated states of wild type Atr1a on function, and not interfere with angiotensin-stimulated calcium responses like complexes with Atr1a. This may provide a more selective means of exploring the physiologic functional impact of this cross-class receptor complex without interfering with the function of either component receptor. PMID:27330080

  12. Electromagnetic coupling and array packing induce exchange of dominance on complex modes in 3D periodic arrays of spheres with large permittivity

    DOE PAGESBeta

    Campione, Salvatore; Capolino, Filippo

    2016-01-25

    In this study, we investigate the effect on wave propagation of array packing and electromagnetic coupling between spheres in a three-dimensional (3D) lattice of microspheres with large permittivity that exhibit strong magnetic polarizability. We report on the complex wavenumber of Bloch waves in the lattice when each sphere is assumed to possess both electric and magnetic dipoles and full electromagnetic coupling is accounted for. While for small material-filling fractions we always determine one dominant mode with low attenuation constant, the same does not happen for large filling fractions, when electromagnetic coupling is included. In the latter case we peculiarly observemore » two dominant modes with low attenuation constant, dominant in different frequency ranges. The filling fraction threshold for which two dominant modes appear varies for different metamaterial constituents, as proven by considering spheres made by either titanium dioxide or lead telluride. As further confirmation of our findings, we retrieve the complex propagation constant of the dominant mode(s) via a field fitting procedure employing two sets of waves (direct and reflected) pertaining to two distinct modes, strengthening the presence of the two distinct dominant modes for increasing filling fractions. However, given that one mode only, with transverse polarization, at any given frequency, is dominant and able to propagate inside the lattice, we are able to accurately treat the metamaterial that is known to exhibit artificial magnetism as a homogeneous material with effective parameters, such as the refractive index. Results clearly show that the account of both electric and magnetic scattering processes in evaluating all electromagnetic intersphere couplings is essential for a proper description of the electromagnetic propagation in lattices.« less

  13. Evaluation of nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole in myoglobin-azide, -cyanide, and -mercaptoethanol complexes by electron spin echo envelope modulation spectroscopy.

    PubMed

    Magliozzo, R S; Peisach, J

    1993-08-24

    Electron spin echo envelope modulation (ESEEM) spectroscopy and computer simulation of spectra has been used to evaluate the nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole nitrogen directly coordinated to iron in three low-spin heme complexes, myoglobin-azide, -cyanide, and -mercaptoethanol (MbN3, MbCN, and MbRS). The variability in the weak electron-nuclear coupling parameters reveals the electronic flexibility within the heme group that depends on properties of the exogenous ligands. For example, the isotropic component of the nitrogen nuclear hyperfine coupling ranges from 4.4 MHz for MbN3 to 2.2 MHz for both MbCN and MbRS. The weaker coupling in MbCN and MbRS is taken as evidence for delocalization of unpaired electron spin from iron into the exogenous anionic ligands. The value of e2Qq, the nuclear quadrupole coupling constant for the axial imidazole nitrogen in MbCN and MbRS, was 2.5 MHz but was significantly larger, 3.2 MHz, in MbN3. This large value is considered evidence for a weakened sigma bond between the proximal imidazole and ferric iron in this form, and for a feature contributing to the origin of the high spin-low spin equilibrium exhibited by MbN3 [Beetlestone, J., & George, P. (1964) Biochemistry 5, 707-714]. The ESEEM results have allowed a correlation to be made between the orientation of the g tensor axes, the orientation of the p-pi orbital of the proximal imidazole nitrogen, and sigma- and pi-bonding features of the axial ligands. Furthermore, the proximal imidazole is suggested to act as a pi-acceptor in low-spin heme complexes in order to support strong sigma electron donation from the lone pair orbital to iron. An evaluation of the nitrogen nuclear hyperfine coupling parameters for the porphyrin pyrrole sites in MbRS reveals a large inequivalence in isotropic components consistent with an orientation of rhombic axes (and g tensor axes) that eclipses the Fe-Npyrrole vector directions. PMID:8395204

  14. Deriving the New Traveling Wave Solutions for the Nonlinear Dispersive Equation, KdV-ZK Equation and Complex Coupled KdV System Using Extended Simplest Equation Method

    NASA Astrophysics Data System (ADS)

    Mohammed, K. Elboree

    2015-10-01

    In this paper, we investigate the traveling wave solutions for the nonlinear dispersive equation, Korteweg-de Vries Zakharov-Kuznetsov (KdV-ZK) equation and complex coupled KdV system by using extended simplest equation method, and then derive the hyperbolic function solutions include soliton solutions, trigonometric function solutions include periodic solutions with special values for double parameters and rational solutions. The properties of such solutions are shown by figures. The results show that this method is an effective and a powerful tool for handling the solutions of nonlinear partial differential equations (NLEEs) in mathematical physics.

  15. Water-Soluble Pd-Imidate Complexes: Broadly Applicable Catalysts for the Synthesis of Chemically Modified Nucleosides via Pd-Catalyzed Cross-Coupling.

    PubMed

    Gayakhe, Vijay; Ardhapure, Ajaykumar; Kapdi, Anant R; Sanghvi, Yogesh S; Serrano, Jose Luis; García, Luis; Pérez, Jose; García, Joaquím; Sánchez, Gregorio; Fischer, Christian; Schulzke, Carola

    2016-04-01

    A broadly applicable catalyst system consisting of water-soluble Pd-imidate complexes has been enployed for the Suzuki-Miyaura cross-coupling of four different nucleosides in water under mild conditions. The efficient nature of the catalyst system also allowed its application in developing a microwave-assisted protocol with the purpose of expediting the catalytic reaction. Preliminary mechanistic studies, assisted by catalyst poison tests and stoichiometric tests performed using an electrospray ionization spectrometer, revealed the possible presence of a homotopic catalyst system. PMID:26924820

  16. Determination of the hyperfine coupling with the remote nitrogen in the VO 2+—(imidazole) 4 complex by ESEEM spectroscopy

    NASA Astrophysics Data System (ADS)

    Dikanov, Sergei A.; Burgard, Christian; Hüttermann, Jürgen

    1993-09-01

    Electron spin echo envelope modulation experiments are presented from 15N-substituted VO 2+—(imidazole) 4 complexes which demonstrate the interaction of the paramagnetic ion with the remote, weakly coupled ring nitrogen. The hyperfine parameters derived show that the interaction is about twenty times smaller than with the directly coordinated nitrogen of imidazole, a ratio comparable to that derived from known values for Cu 2+—(imidazole) 4. These findings question results reported from previous ENDOR work on VO 2+—(imidazole) 4.

  17. Selenium-ligated palladium(II) complexes as highly active catalysts for carbon-carbon coupling reactions: the Heck reaction.

    PubMed

    Yao, Qingwei; Kinney, Elizabeth P; Zheng, Chong

    2004-08-19

    Three selenium-ligated Pd(II) complexes were readily synthesized and shown to be extremely active catalysts for the Heck reaction of various aryl bromides, including deactivated and heterocyclic ones. The catalytic activity of the selenide-based Pd(II) complexes not only rivals but vastly outperforms that of the corresponding phosphorus and sulfur analogues. Practical advantages of the selenium-based catalysts include their straightforward synthesis and high activity in the absence of any additives as well as the enhanced stability of the selenide ligands toward air oxidation. PMID:15330667

  18. Rapid-mix flow cytometry measurements of subsecond regulation of G protein-coupled receptor ternary complex dynamics by guanine nucleotides.

    PubMed

    Wu, Yang; Buranda, Tione; Simons, Peter C; Lopez, Gabriel P; McIntire, William E; Garrison, James C; Prossnitz, Eric R; Sklar, Larry A

    2007-12-01

    We have used rapid-mix flow cytometry to analyze the early subsecond dynamics of the disassembly of ternary complexes of G protein-coupled receptors (GPCRs) immobilized on beads to examine individual steps associated with guanine nucleotide activation. Our earlier studies suggested that the slow dissociation of Galpha and Gbetagamma subunits was unlikely to be an essential component of cell activation. However, these studies did not have adequate time resolution to define precisely the disassembly kinetics. Ternary complexes were assembled using three formyl peptide receptor constructs (wild type, formyl peptide receptor-Galpha(i2) fusion, and formyl peptide receptor-green fluorescent protein fusion) and two isotypes of the alpha subunit (alpha(i2) and alpha(i3)) and betagamma dimer (beta(1)gamma(2) and beta(4)gamma(2)). At saturating nucleotide levels, the disassembly of a significant fraction of ternary complexes occurred on a subsecond time frame for alpha(i2) complexes and tau(1/2)< or =4s for alpha(i3) complexes, time scales that are compatible with cell activation. beta(1)gamma(2) isotype complexes were generally more stable than beta(4)gamma(2)-associated complexes. The comparison of the three constructs, however, proved that the fast step was associated with the separation of receptor and G protein and that the dissociation of the ligand or of the alpha and betagamma subunits was slower. These results are compatible with a cell activation model involving G protein conformational changes rather than disassembly of Galphabetagamma heterotrimer. PMID:17904091

  19. A time convolution less density matrix approach to the nonlinear optical response of a coupled system-bath complex

    SciTech Connect

    Richter, Marten Knorr, Andreas

    2010-04-15

    Time convolution less density matrix theory (TCL) is a powerful and well established tool to investigate strong system-bath coupling for linear optical spectra. We show that TCL equations can be generalised to the nonlinear optical response up to a chosen order in the optical field. This goal is achieved via an time convolution less perturbation scheme for the reduced density matrices of the electronic system. In our approach, the most important results are the inclusion of a electron-phonon coupling non-diagonal in the electronic states and memory effects of the bath: First, the considered model system is introduced. Second, the time evolution of the statistical operator is expanded with respect to the external optical field. This expansion is the starting point to explain how a TCL theory can treat the response up to in a certain order in the external field. Third, new TCL equations, including bath memory effects, are derived and the problem of information loss in the reduced density matrix is analysed. For this purpose, new dimensions are added to the reduced statistical operator to compensate lack of information in comparison with the full statistical operator. The theory is benchmarked with a two level system and applied to a three level system including non-diagonal phonon coupling. In our analysis of pump-probe experiments, the bath memory is influenced by the system state occupied between pump and probe pulse. In particular, the memory of the bath influences the dephasing process of electronic coherences developing during the time interval between pump and probe pulses.

  20. Conservation laws, radiative decay rates, and excited state localization in organometallic complexes with strong spin-orbit coupling.

    PubMed

    Powell, B J

    2015-01-01

    There is longstanding fundamental interest in 6-fold coordinated d(6) (t(2g)(6)) transition metal complexes such as [Ru(bpy)3](2+) and Ir(ppy)3, particularly their phosphorescence. This interest has increased with the growing realisation that many of these complexes have potential uses in applications including photovoltaics, imaging, sensing, and light-emitting diodes. In order to design new complexes with properties tailored for specific applications a detailed understanding of the low-energy excited states, particularly the lowest energy triplet state, T1, is required. Here we describe a model of pseudo-octahedral complexes based on a pseudo-angular momentum representation and show that the predictions of this model are in excellent agreement with experiment - even when the deviations from octahedral symmetry are large. This model gives a natural explanation of zero-field splitting of T1 and of the relative radiative rates of the three sublevels in terms of the conservation of time-reversal parity and total angular momentum modulo two. We show that the broad parameter regime consistent with the experimental data implies significant localization of the excited state. PMID:26123864

  1. Evaluation of Multi-tRNA Synthetase Complex by Multiple Reaction Monitoring Mass Spectrometry Coupled with Size Exclusion Chromatography

    PubMed Central

    Kim, Jun Seok; Lee, Cheolju

    2015-01-01

    Eight aminoacyl-tRNA synthetases (M, K, Q, D, R, I, EP and LARS) and three auxiliary proteins (AIMP1, 2 and 3) are known to form a multi-tRNA synthetase complex (MSC) in mammalian cells. We combined size exclusion chromatography (SEC) with reversed-phase liquid chromatography multiple reaction monitoring mass spectrometry (RPLC-MRM-MS) to characterize MSC components and free ARS proteins in human embryonic kidney (HEK 293T) cells. Crude cell extract and affinity-purified proteins were fractionated by SEC in non-denaturing state and ARSs were monitored in each fraction by MRM-MS. The eleven MSC components appeared mostly in earlier SEC fractions demonstrating their participation in complex formation. TARSL2 and AIMP2-DX2, despite their low abundance, were co-purified with KARS and detected in the SEC fractions, where MSC appeared. Moreover, other large complex-forming ARS proteins, such as VARS and FARS, were detected in earlier fractions. The MRM-MS results were further confirmed by western blot analysis. Our study demonstrates usefulness of combined SEC-MRM analysis for the characterization of protein complexes and in understanding the behavior of minor isoforms or variant proteins. PMID:26544075

  2. Conservation laws, radiative decay rates, and excited state localization in organometallic complexes with strong spin-orbit coupling

    PubMed Central

    Powell, B. J.

    2015-01-01

    There is longstanding fundamental interest in 6-fold coordinated d6 () transition metal complexes such as [Ru(bpy)3]2+ and Ir(ppy)3, particularly their phosphorescence. This interest has increased with the growing realisation that many of these complexes have potential uses in applications including photovoltaics, imaging, sensing, and light-emitting diodes. In order to design new complexes with properties tailored for specific applications a detailed understanding of the low-energy excited states, particularly the lowest energy triplet state, T1, is required. Here we describe a model of pseudo-octahedral complexes based on a pseudo-angular momentum representation and show that the predictions of this model are in excellent agreement with experiment - even when the deviations from octahedral symmetry are large. This model gives a natural explanation of zero-field splitting of T1 and of the relative radiative rates of the three sublevels in terms of the conservation of time-reversal parity and total angular momentum modulo two. We show that the broad parameter regime consistent with the experimental data implies significant localization of the excited state. PMID:26123864

  3. Isotope Coded Protein Labeling Coupled Immunoprecipitation (ICPL-IP): A Novel Approach for Quantitative Protein Complex Analysis From Native Tissue*

    PubMed Central

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-01-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms—including humans—are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)1 with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  4. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    PubMed

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  5. Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition

    PubMed Central

    Jiao, Junyi; Rebane, Aleksander A.; Ma, Lu; Gao, Ying; Zhang, Yongli

    2015-01-01

    HIV-1 glycoprotein 41 (gp41) mediates viral entry into host cells by coupling its folding energy to membrane fusion. Gp41 folding is blocked by fusion inhibitors, including the commercial drug T20, to treat HIV/AIDS. However, gp41 folding intermediates, energy, and kinetics are poorly understood. Here, we identified the folding intermediates of a single gp41 trimer-of-hairpins and measured their associated energy and kinetics using high-resolution optical tweezers. We found that folding of gp41 hairpins was energetically independent but kinetically coupled: Each hairpin contributed a folding energy of ∼−23 kBT, but folding of one hairpin successively accelerated the folding rate of the next one by ∼20-fold. Membrane-mimicking micelles slowed down gp41 folding and reduced the stability of the six-helix bundle. However, the stability was restored by cooperative folding of the membrane-proximal external region. Surprisingly, T20 strongly inhibited gp41 folding by actively displacing the C-terminal hairpin strand in a force-dependent manner. The inhibition was abolished by a T20-resistant gp41 mutation. The energetics and kinetics of gp41 folding established by us provides a basis to understand viral membrane fusion, infection, and therapeutic intervention. PMID:26038562

  6. Infrared diode laser spectroscopy of the Ne-D2O van der Waals complex: Strong Coriolis and angular-radial coupling

    NASA Astrophysics Data System (ADS)

    Li, Song; Zheng, Rui; Zhu, Yu; Duan, Chuanxi

    2011-10-01

    Four internal-rotation/vibration bands of the Ne-D2O complex have been measured in the v2 bend region of D2O using a tunable infrared diode laser spectrometer to probe a slit supersonic expansion. Three ortho bands are excited from the ground state Σ(000) to the Σ and Π(111, υ2 = 1) internal rotor states and the n = 1, Σ(000, υ2 = 1) stretching-internal rotor combination state. Strong perturbations between the excited vibrational states are evident. The observed spectra are analyzed separately with a three-state J-dependent Coriolis plus J-independent angular-radial coupling model [M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 106, 3078 (1997), 10.1063/1.473051] and a three-state Coriolis coupling model [R. C. Cohen and R. J. Saykally, J. Chem. Phys. 95, 7891 (1991), 10.1063/1.461318]. The former model works more successfully than the latter. Molecular constants for the ground and excited vibrational states of ortho 20Ne-D2O isotopomer as well as the Coriolis and angular-radial coupling constants are determined accurately. The van der Waals stretching frequency is estimated to be νs = 24.85 cm-1 in the ground state and decreases to about 20.8 cm-1 upon vibrational excitation of the D2O bend.

  7. αT-Catenin Is a Constitutive Actin-binding α-Catenin That Directly Couples the Cadherin·Catenin Complex to Actin Filaments*

    PubMed Central

    Wickline, Emily D.; Dale, Ian W.; Merkel, Chelsea D.; Heier, Jonathon A.; Stolz, Donna B.

    2016-01-01

    α-Catenin is the primary link between the cadherin·catenin complex and the actin cytoskeleton. Mammalian αE-catenin is allosterically regulated: the monomer binds the β-catenin·cadherin complex, whereas the homodimer does not bind β-catenin but interacts with F-actin. As part of the cadherin·catenin complex, αE-catenin requires force to bind F-actin strongly. It is not known whether these properties are conserved across the mammalian α-catenin family. Here we show that αT (testes)-catenin, a protein unique to amniotes that is expressed predominantly in the heart, is a constitutive actin-binding α-catenin. We demonstrate that αT-catenin is primarily a monomer in solution and that αT-catenin monomer binds F-actin in cosedimentation assays as strongly as αE-catenin homodimer. The β-catenin·αT-catenin heterocomplex also binds F-actin with high affinity unlike the β-catenin·αE-catenin complex, indicating that αT-catenin can directly link the cadherin·catenin complex to the actin cytoskeleton. Finally, we show that a mutation in αT-catenin linked to arrhythmogenic right ventricular cardiomyopathy, V94D, promotes homodimerization, blocks β-catenin binding, and in cardiomyocytes disrupts localization at cell-cell contacts. Together, our data demonstrate that αT-catenin is a constitutively active actin-binding protein that can physically couple the cadherin·catenin complex to F-actin in the absence of tension. We speculate that these properties are optimized to meet the demands of cardiomyocyte adhesion. PMID:27231342

  8. Effect of Lipid Composition on the Membrane Orientation of the G Protein-Coupled Receptor Kinase 2-Gβ1γ2 Complex.

    PubMed

    Yang, Pei; Homan, Kristoff T; Li, Yaoxin; Cruz-Rodríguez, Osvaldo; Tesmer, John J G; Chen, Zhan

    2016-05-24

    Interactions between proteins and cell membranes are critical for biological processes such as transmembrane signaling, and specific components of the membrane may play roles in helping to organize or mandate particular conformations of both integral and peripheral membrane proteins. One example of a signaling enzyme whose function is dependent on membrane binding and whose activity is affected by specific lipid components is G protein-coupled receptor (GPCR) kinase 2 (GRK2). Efficient GRK2-mediated phosphorylation of activated GPCRs is dependent not only on its recruitment to the membrane by heterotrimeric Gβγ subunits but also on the presence of highly negatively charged lipids, in particular phosphatidylinositol 4',5'-bisphosphate (PIP2). We hypothesized that PIP2 may favor a distinct orientation of the GRK2-Gβγ complex on the membrane that is more optimal for function. In this study, we compared the possible orientations of the GRK2-Gβγ complex and Gβγ alone on model cell membranes prepared with various anionic phospholipids as deduced from sum frequency generation vibrational and attenuated total reflectance Fourier transform infrared spectroscopic methods. Our results indicate that PIP2 affects the membrane orientation of the GRK2-Gβ1γ2 complex but not that of complexes formed with anionic phospholipid binding deficient mutations in the GRK2 pleckstrin homology (PH) domain. Gβ1γ2 exhibits a similar orientation on the lipid bilayer regardless of its lipid composition. The PIP2-induced orientation of the GRK2-Gβ1γ2 complex is therefore most likely caused by specific interactions between PIP2 and the GRK2 PH domain. Thus, PIP2 not only helps recruit GRK2 to the membrane but also "fine tunes" the orientation of the GRK2-Gβγ complex so that it is better positioned to phosphorylate activated GPCRs. PMID:27088923

  9. Enzyme-Coupled Nanoparticles-Assisted Laser Desorption Ionization Mass Spectrometry for Searching for Low-Mass Inhibitors of Enzymes in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: `ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and `ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  10. A trans-Hyponitrite Intermediate in the Reductive Coupling and Deoxygenation of Nitric Oxide by a Tricopper-Lewis Acid Complex.

    PubMed

    Lionetti, Davide; de Ruiter, Graham; Agapie, Theodor

    2016-04-20

    The reduction of nitric oxide (NO) to nitrous oxide (N2O) is a process relevant to biological chemistry as well as to the abatement of certain environmental pollutants. One of the proposed key intermediates in NO reduction is hyponitrite (N2O2(2-)), the product of reductive coupling of two NO molecules. We report the reductive coupling of NO by an yttrium-tricopper complex generating a trans-hyponitrite moiety supported by two μ-O-bimetallic (Y,Cu) cores, a previously unreported coordination mode. Reaction of the hyponitrite species with Brønsted acids leads to the generation of N2O, demonstrating the viability of the hyponitrite complex as an intermediate in NO reduction to N2O. The additional reducing equivalents stored in each tricopper unit are employed in a subsequent step for N2O reduction to N2, for an overall (partial) conversion of NO to N2. The combination of Lewis acid and multiple redox active metals facilitates this four electron conversion via an isolable hyponitrite intermediate. PMID:27028157

  11. Online coupling of high-resolution chromatography with extreme UV photon activation tandem mass spectrometry: Application to the structural investigation of complex glycans by dissociative photoionization.

    PubMed

    Ropartz, David; Giuliani, Alexandre; Fanuel, Mathieu; Hervé, Cécile; Czjzek, Mirjam; Rogniaux, Hélène

    2016-08-24

    The activation of ions by extreme-energy photons (XUV) produced by a synchrotron radiation beamline is a powerful method for characterizing complex glycans using tandem mass spectrometry (MS). As previously described, this activation method leads to rich fragmentation spectra with many structurally valuable cross-ring cleavages while maintaining labile modifications on the glycan structures. However, until now, the tandem MS event was too long to be compatible with liquid chromatography elution times. In this work, the duty cycle of the activation and detection of fragments was shortened, and the background signal on the spectra was drastically reduced. Both improvements allowed, for the first time, the successful coupling of a UHPLC system to XUV-activated tandem MS. The approach was used to characterize a complex mixture of oligo-porphyrans, which are a class of highly sulfated oligosaccharides, in a fully automated way. Due to an enhanced dynamic range and an increased sensitivity, some hypothetical structures of low abundance have been unequivocally confirmed in this study and others have been revised. Some previously undescribed species of oligo-porphyrans that exhibit lateral branching have been fully resolved. This work contributes to the scarce knowledge of the structure of porphyrans in red algae and pushes the current capacities of XUV-activation tandem MS by demonstrating the possibility of a direct coupling with UHPLC. This study will considerably broaden the applicability and practicality of this method in many fields of analytical biology. PMID:27496992

  12. Cdk1-dependent regulation of the Mre11 complex couples DNA repair pathways to cell cycle progression

    PubMed Central

    Simoneau, Antoine; Robellet, Xavier; Ladouceur, Anne-Marie; D’Amours, Damien

    2014-01-01

    Homologous recombination (HR) and non-homologous end joining (NHEJ) are the main pathways ensuring the repair of DNA double-stranded breaks (DSBs) in eukaryotes. It has long been known that cell cycle stage is a major determinant of the type of pathway used to repair DSBs in vivo. However, the mechanistic basis for the cell cycle regulation of the DNA damage response is still unclear. Here we show that a major DSB sensor, the Mre11–Rad50–Xrs2 (MRX) complex, is regulated by cell cycle-dependent phosphorylation specifically in mitosis. This modification depends on the cyclin-dependent kinase Cdc28/Cdk1, and abrogation of Xrs2 and Mre11 phosphorylation results in a marked preference for DSB repair through NHEJ. Importantly, we show that phosphorylation of the MRX complex after DNA damage and during mitosis are regulated independently of each other by Tel1/ATM and Cdc28/Cdk1 kinases. Collectively, our results unravel an intricate network of phosphoregulatory mechanisms that act through the MRX complex to modulate DSB repair efficiency during mitosis. PMID:24553123

  13. Coupling of histone methylation and RNA processing by the nuclear mRNA cap-binding complex.

    PubMed

    Li, Zicong; Jiang, Danhua; Fu, Xing; Luo, Xiao; Liu, Renyi; He, Yuehui

    2016-01-01

    In eukaryotes, genes are transcribed into pre-mRNAs that are subsequently processed into mature mRNAs by adding a 5'-cap and a 3'-polyA tail and splicing introns. Pre-mRNA processing involves their binding proteins and processing factors, whereas gene transcription often involves chromatin modifiers. It has been unclear how the factors involved in chromatin modifications and RNA processing function in concert to control mRNA production. Here, we show that in Arabidopsis thaliana, the evolutionarily conserved nuclear mRNA cap-binding complex (CBC) forms multi-protein complexes with a conserved histone 3 lysine 4 (H3K4) methyltransferase complex called COMPASS-like and a histone 3 lysine 36 (H3K36) methyltransferase to integrate active histone methylations with co-transcriptional mRNA processing and cap preservation, leading to a high level of mature mRNA production. We further show that CBC is required for H3K4 and H3K36 trimethylation, and the histone methyltransferases are required for CBC-mediated mRNA cap preservation and efficient pre-mRNA splicing at their target loci, suggesting that these factors are functionally interdependent. Our study reveals novel roles for histone methyltransferases in RNA-processing-related events and provides mechanistic insights into how the 'downstream' RNA CBC controls eukaryotic gene transcription. PMID:27249350

  14. Steric and Electronic Influence on Proton-Coupled Electron-Transfer Reactivity of a Mononuclear Mn(III)-Hydroxo Complex.

    PubMed

    Rice, Derek B; Wijeratne, Gayan B; Burr, Andrew D; Parham, Joshua D; Day, Victor W; Jackson, Timothy A

    2016-08-15

    A mononuclear hydroxomanganese(III) complex was synthesized utilizing the N5 amide-containing ligand 2-[bis(pyridin-2-ylmethyl)]amino-N-2-methyl-quinolin-8-yl-acetamidate (dpaq(2Me) ). This complex is similar to previously reported [Mn(III)(OH)(dpaq(H))](+) [Inorg. Chem. 2014, 53, 7622-7634] but contains a methyl group adjacent to the hydroxo moiety. This α-methylquinoline group in [Mn(III)(OH)(dpaq(2Me))](+) gives rise to a 0.1 Å elongation in the Mn-N(quinoline) distance relative to [Mn(III)(OH)(dpaq(H))](+). Similar bond elongation is observed in the corresponding Mn(II) complex. In MeCN, [Mn(III)(OH)(dpaq(2Me))](+) reacts rapidly with 2,2',6,6'-tetramethylpiperidine-1-ol (TEMPOH) at -35 °C by a concerted proton-electron transfer (CPET) mechanism (second-order rate constant k2 of 3.9(3) M(-1) s(-1)). Using enthalpies and entropies of activation from variable-temperature studies of TEMPOH oxidation by [Mn(III)(OH)(dpaq(2Me))](+) (ΔH(‡) = 5.7(3) kcal(-1) M(-1); ΔS(‡) = -41(1) cal M(-1) K(-1)), it was determined that [Mn(III)(OH)(dpaq(2Me))](+) oxidizes TEMPOH ∼240 times faster than [Mn(III)(OH)(dpaq(H))](+). The [Mn(III)(OH)(dpaq(2Me))](+) complex is also capable of oxidizing the stronger O-H and C-H bonds of 2,4,6-tri-tert-butylphenol and xanthene, respectively. However, for these reactions [Mn(III)(OH)(dpaq(2Me))](+) displays, at best, modest rate enhancement relative to [Mn(III)(OH)(dpaq(H))](+). A combination of density function theory (DFT) and cyclic voltammetry studies establish an increase in the Mn(III)/Mn(II) reduction potential of [Mn(III)(OH)(dpaq(2Me))](+) relative to [Mn(III)(OH)(dpaq(H))](+), which gives rise to a larger driving force for CPET for the former complex. Thus, more favorable thermodynamics for [Mn(III)(OH)(dpaq(2Me))](+) can account for the dramatic increase in rate with TEMPOH. For the more sterically encumbered substrates, DFT computations suggest that this effect is mitigated by unfavorable steric interactions between the

  15. Preparation and properties of mononuclear and ferromagnetically coupled dinuclear manganese complexes with 2,2 prime -biphenoxide

    SciTech Connect

    Schake, A.R.; Streib, W.E.; Huffman, J.C.; Christou, G. ); Schmitt, E.A.; Conti, A.J.; Hendrickson, D.N. )

    1991-08-07

    The treatment of Mn{sub 3}O(O{sub 2}CPh){sub 6}(py){sub 2}(H{sub 2}O) with 2,2{prime}-biphenol (biphenH{sub 2}) and NEt{sub 3} in MeCN leads to formation of (NEt{sub 3}H){sub 2}(Mn(biphen){sub 2}(biphenH)) (2), and the crystal structure is reported. A similar reaction system using 3,3{prime}, 5,5{prime}-tetra-bromobiphenol leads to the product (NEt{sub 3}H){sub 2}(Mn(Br{sub 4}biphen){sub 2}(O{sub 2}CPh)) (3) whose IR spectrum suggests its structure to be similar to 2 with a chelating ({eta}{sup 2}) benzoate replacing the monodentate biphenH group. Treatment of complex 2 with 2,2{prime}-bipyriding (bpy) in CH{sub 2}CI{sub 2} yields a black solution: layering with hexanes and storage at {minus}20C leads to crystallization of Mn{sub 2}(biphen){sub 2}(biphenH)(byp){sub 2} (4) whereas storage at room temperature leads to crystallization of (bpyH)(Mn(biphen){sub 2}(bpy)) (5) The crystal structure of complex 4 is reported. The complex is mixed-valence (Mn{sup II},Mn{sup III}), and the structure consists of two Mn atoms bridged by two oxygen atoms from two biphen groups, the other oxygen atoms of which are terminally ligated to the Mn{sup III} center. Six-coordination of the latter is completed by a chelating bpy. The Mn{sup II} has a chelating bpy, and five-coordination is completed by a monodentate biphenH, the second oxygen of which is protonated as in 2. The Mn{sup II} and Mn{sup III} coordination geometries are distorted square-pyramidal and octahedral, respectively. The structure of complex 5 is assumed to be a six-coordinate, distorted octahedral monomer. Variable-temperature solid-state magnetic susceptibility studies on complex 4 at 10.0 kG are reported.

  16. How to identify the most effective control measures based on disease-behavior coupled mechanisms?. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Sun, Gui-Quan; Jin, Zhen

    2015-12-01

    Modelling infectious diseases on complex networks is a significant tool to understand the transmission of epidemics in human society, and consequently it has commanded increasing attention in the community of mathematicians, physicists, epidemiologists, public health policy-makers and so on [1-4]. Human behavior responses are associated with the emergence of infectious disease, for instance, wearing masks [5], staying away from a thick crowd [6], cutting contacts with infected individuals [7] and receiving a vaccination [8]. However, infectious diseases and human behavior were often modeled as independent systems in the literature, despite the fact that in the real world they are often mutually influential on each other, and hence their coupling exerts significant impacts on disease spread [9,10].

  17. Solution NMR structure of putidaredoxin-cytochrome P450cam complex via a combined residual dipolar coupling-spin labeling approach suggests a role for Trp106 of putidaredoxin in complex formation.

    PubMed

    Zhang, Wei; Pochapsky, Susan S; Pochapsky, Thomas C; Jain, Nitin U

    2008-12-12

    The 58-kDa complex formed between the [2Fe-2S] ferredoxin, putidaredoxin (Pdx), and cytochrome P450cam (CYP101) from the bacterium Pseudomonas putida has been investigated by high-resolution solution NMR spectroscopy. Pdx serves as both the physiological reductant and effector for CYP101 in the enzymatic reaction involving conversion of substrate camphor to 5-exo-hydroxycamphor. In order to obtain an experimental structure for the oxidized Pdx-CYP101 complex, a combined approach using orientational data on the two proteins derived from residual dipolar couplings and distance restraints from site-specific spin labeling of Pdx has been applied. Spectral changes for residues in and near the paramagnetic metal cluster region of Pdx in complex with CYP101 have also been mapped for the first time using (15)N and (13)C NMR spectroscopy, leading to direct identification of the residues strongly affected by CYP101 binding. The new NMR structure of the Pdx-CYP101 complex agrees well with results from previous mutagenesis and biophysical studies involving residues at the binding interface such as formation of a salt bridge between Asp38 of Pdx and Arg112 of CYP101, while at the same time identifying key features different from those of earlier modeling studies. Analysis of the binding interface of the complex reveals that the side chain of Trp106, the C-terminal residue of Pdx and critical for binding to CYP101, is located across from the heme-binding loop of CYP101 and forms non-polar contacts with several residues in the vicinity of the heme group on CYP101, pointing to a potentially important role in complex formation. PMID:18835276

  18. Calculation of three-body resonances using slow-variable discretization coupled with a complex absorbing potential

    NASA Astrophysics Data System (ADS)

    Blandon, Juan; Kokoouline, Viatcheslav; Masnou-Seeuws, Françoise

    2007-04-01

    We developed a method to calculate positions and widths of three-body resonances. The method combines the hyperspherical adiabatic approach, slow variable discretization method [O. I. Tolstikhin , J. Phys. B 29, L389 (1996)], and a complex absorbing potential. The method can be used to obtain resonances having short-range or long-range wave functions. In particular, we have applied the method to obtain very shallow three-body Efimov resonances for a model system [E. Nielsen , Phys. Rev. A 66, 012705 (2002)].

  19. Nearest- and next-nearest-neighbor Ru(II)/Ru(III) electronic coupling in cyanide-bridged tetra-ruthenium square complexes.

    PubMed

    Lin, Ju-Ling; Tsai, Chia-Nung; Huang, Sheng-Yi; Endicott, John F; Chen, Yuan-Jang; Chen, Hsing-Yin

    2011-09-01

    Electrochemical properties of cyanide-bridged metal squares, [Ru(4)](4+) and [Rh(2)-Ru(2)](6+), clearly demonstrate the role of the nearest (NN) metal moiety in mediating the next-nearest neighbor (NNN) metal-to-metal electronic coupling. The differences in electrochemical potentials for successive oxidations of equivalent Ru(II) centers in [Ru(4)](4+) are ΔE(1/2) = 217 mV and 256 mV and are related to intense, dual metal-to-metal-charge-transfer (MMCT) absorption bands. This contrasts with a small value of ΔE(1/2) = 77 mV and no MMCT absorption bands observed to accompany the oxidations of [Rh(2)-Ru(2)](6+). These observations demonstrate NN-mediated superexchange mixing by the linker Ru of NNN Ru(II) and Ru(III) moieties and that this mixing results in a NNN contribution to the ground state stabilization energy of about 90 ± 20 meV. In contrast, the classical Hush model for mixed valence complexes with the observed MMCT absorption parameters predicts a NNN stabilization energy of about 6 meV. The observations also indicate that the amount of charge delocalization per Ru(II)/Ru(III) pair is about 4 times greater for the NN than the NNN couples in these CN-bridged complexes, which is consistent with DFT modeling. A simple fourth-order secular determinant model is used to describe the effects of donor/acceptor mixing in these complexes. PMID:21809814

  20. Probing the coupling between proton and electron transfer in Photosystem II core complexes containing a 3-fluorotyrosine

    PubMed Central

    Rappaport, Fabrice; Boussac, Alain; Force, Dee Ann; Peloquin, Jeffrey; Brynda, Marcin; Sugiura, Miwa; Un, Sun; Britt, R. David; Diner, Bruce A.

    2009-01-01

    The catalytic cycle of numerous enzymes involves the coupling between proton transfer and electron transfer. Yet, the understanding of this coordinated transfer in biological systems remains limited, likely because its characterization relies on the controlled but experimentally challenging modifications of the free energy changes associated with either the electron or proton transfer. We have performed such a study here in Photosystem II. The driving force for electron transfer from TyrZ to P680•+ has been decreased by ~ 80 meV by mutating the axial ligand of P680, and that for proton transfer upon oxidation of TyrZ by substituting a 3-fluorotyrosine (3F-TyrZ) for TyrZ. In Mn-depleted Photosystem II, the dependence upon pH of the oxidation rates of TyrZ and 3F-TyrZ were found to be similar. However, in the pH range where the phenolic hydroxyl of TyrZ is involved in a H-bond with a proton acceptor, the activation energy of the oxidation of 3F-TyrZ is decreased by 110 meV, a value which correlates with the in vitro finding of a 90 meV stabilization energy to the phenolate form of 3F-Tyr when compared to Tyr (Seyedsayamdost et al., 2006, JACS 128:1569–79). Thus, when the phenol of YZ acts as a H-bond-donor, its oxidation by P680•+ is controlled by its prior deprotonation. This contrasts with the situation prevailing at lower pH, where the proton acceptor is protonated and therefore unavailable, in which the oxidation-induced proton transfer from the phenolic hydroxyl of TyrZ has been proposed to occur concertedly with the electron transfer to P680•+. This suggests a switch between a concerted proton/electron transfer at pHs < 7.5 to a sequential one at pHs > 7.5 and illustrates the roles of the H-bond and of the likely salt-bridge existing between the phenolate and the nearby proton acceptor in determining the coupling between proton and electron transfer. PMID:19265377

  1. Cyclometalated iridium complexes of bis(aryl) phosphine ligands: catalytic C-H/C-D exchanges and C-C coupling reactions.

    PubMed

    Campos, Jesús; Espada, María F; López-Serrano, Joaquín; Carmona, Ernesto

    2013-06-01

    This work details the synthesis and structural identification of a series of complexes of the (η(5)-C5Me5)Ir(III) unit coordinated to cyclometalated bis(aryl)phosphine ligands, PR'(Ar)2, for R' = Me and Ar = 2,4,6-Me3C6H2, 1b; 2,6-Me2-4-OMe-C6H2, 1c; 2,6-Me2-4-F-C6H2, 1d; R' = Et, Ar = 2,6-Me2C6H3, 1e. Both chloride- and hydride-containing compounds, 2b-2e and 3b-3e, respectively, are described. Reactions of chlorides 2 with NaBArF (BArF = B(3,5-C6H3(CF3)2)4) in the presence of CO form cationic carbonyl complexes, 4(+), with ν(CO) values in the narrow interval 2030-2040 cm(-1), indicating similar π-basicity of the Ir(III) center of these complexes. In the absence of CO, NaBArF forces κ(4)-P,C,C',C″ coordination of the metalated arm (studied for the selected complexes 5b, 5d, and 5e), a binding mode so far encountered only when the phosphine contains two benzylic groups. A base-catalyzed intramolecular, dehydrogenative, C-C coupling reaction converts the κ(4) species 5d and 5e into the corresponding hydrido phosphepine complexes 6d and 6e. Using CD3OD as the source of deuterium, the chlorides 2 undergo deuteration of their 11 benzylic positions whereas hydrides 3 experience only D incorporation into the Ir-H and Ir-CH2 sites. Mechanistic schemes that explain this diversity have come to light thanks to experimental and theoretical DFT studies that are also reported. PMID:23675910

  2. Bistable multifunctionality and switchable strong ferromagnetic-to-antiferromagnetic coupling in a one-dimensional rhodium(I)-semiquinonato complex.

    PubMed

    Mitsumi, Minoru; Nishitani, Takashi; Yamasaki, Shota; Shimada, Nayuta; Komatsu, Yuuki; Toriumi, Koshiro; Kitagawa, Yasutaka; Okumura, Mitsutaka; Miyazaki, Yuji; Górska, Natalia; Inaba, Akira; Kanda, Akinori; Hanasaki, Noriaki

    2014-05-14

    We present a comprehensive study of the synthesis, heat capacity, crystal structures, UV-vis-NIR and mid-IR spectra, DFT calculations, and magnetic and electrical properties of a one-dimensional (1D) rhodium(I)-semiquinonato complex, [Rh(3,6-DBSQ-4,5-(MeO)2)(CO)2]∞ (3), where 3,6-DBSQ-4,5-(MeO)2(•-) represents 3,6-di-tert-butyl-4,5-dimethoxy-1,2-benzosemiquinonato radical anion. The compound 3 comprises neutral 1D chains of complex molecules stacked in a staggered arrangement with short Rh-Rh distances of 3.0796(4) and 3.1045(4) Å at 226 K and exhibits unprecedented bistable multifunctionality with respect to its magnetic and conductive properties in the temperature range of 228-207 K. The observed bistability results from the thermal hysteresis across a first-order phase transition, and the transition accompanies the exchange of the interchain C-H···O hydrogen-bond partners between the semiquinonato ligands. The strong overlaps of the complex molecules lead to unusually strong ferromagnetic interactions in the low-temperature (LT) phase. Furthermore, the magnetic interactions in the 1D chain drastically change from strongly ferromagnetic in the LT phase to antiferromagnetic in the room-temperature (RT) phase with hysteresis. In addition, the compound 3 exhibits long-range antiferromagnetic ordering between the ferromagnetic chains and spontaneous magnetization because of spin canting (canted antiferromagnetism) at a transition temperature T(N) of 14.2 K. The electrical conductivity of 3 at 300 K is 4.8 × 10(-4) S cm(-1), which is relatively high despite Rh not being in a mixed-valence state. The temperature dependence of electrical resistivity also exhibits a clear hysteresis across the first-order phase transition. Furthermore, the ferromagnetic LT phase can be easily stabilized up to RT by the application of a relatively weak applied pressure of 1.4 kbar, which reflects the bistable characteristics and demonstrates the simultaneous control of

  3. Complex-scaled equation-of-motion coupled-cluster method with single and double substitutions for autoionizing excited states: Theory, implementation, and examples

    SciTech Connect

    Bravaya, Ksenia B.; Zuev, Dmitry; Epifanovsky, Evgeny; Krylov, Anna I.

    2013-03-28

    Theory and implementation of complex-scaled variant of equation-of-motion coupled-cluster method for excitation energies with single and double substitutions (EOM-EE-CCSD) is presented. The complex-scaling formalism extends the EOM-EE-CCSD model to resonance states, i.e., excited states that are metastable with respect to electron ejection. The method is applied to Feshbach resonances in atomic systems (He, H{sup -}, and Be). The dependence of the results on one-electron basis set is quantified and analyzed. Energy decomposition and wave function analysis reveal that the origin of the dependence is in electron correlation, which is essential for the lifetime of Feshbach resonances. It is found that one-electron basis should be sufficiently flexible to describe radial and angular electron correlation in a balanced fashion and at different values of the scaling parameter, {theta}. Standard basis sets that are optimized for not-complex-scaled calculations ({theta} = 0) are not sufficiently flexible to describe the {theta}-dependence of the wave functions even when heavily augmented by additional sets.

  4. Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs.

    PubMed

    Planque, M; Arnould, T; Dieu, M; Delahaut, P; Renard, P; Gillard, N

    2016-09-16

    Sensitive detection of food allergens is affected by food processing and foodstuff complexity. It is therefore a challenge to detect cross-contamination in food production that could endanger an allergic customer's life. Here we used ultra-high performance liquid chromatography coupled to tandem mass spectrometry for simultaneous detection of traces of milk (casein, whey protein), egg (yolk, white), soybean, and peanut allergens in different complex and/or heat-processed foodstuffs. The method is based on a single protocol (extraction, trypsin digestion, and purification) applicable to the different tested foodstuffs: chocolate, ice cream, tomato sauce, and processed cookies. The determined limits of quantitation, expressed in total milk, egg, peanut, or soy proteins (and not soluble proteins) per kilogram of food, are: 0.5mg/kg for milk (detection of caseins), 5mg/kg for milk (detection of whey), 2.5mg/kg for peanut, 5mg/kg for soy, 3.4mg/kg for egg (detection of egg white), and 30.8mg/kg for egg (detection of egg yolk). The main advantage is the ability of the method to detect four major food allergens simultaneously in processed and complex matrices with very high sensitivity and specificity. PMID:27554027

  5. From bis(silylene) and bis(germylene) pincer-type nickel(II) complexes to isolable intermediates of the nickel-catalyzed Sonogashira cross-coupling reaction.

    PubMed

    Gallego, Daniel; Brück, Andreas; Irran, Elisabeth; Meier, Florian; Kaupp, Martin; Driess, Matthias; Hartwig, John F

    2013-10-16

    The first [ECE]Ni(II) pincer complexes with E = Si(II) and E = Ge(II) metallylene donor arms were synthesized via C-X (X = H, Br) oxidative addition, starting from the corresponding [EC(X)E] ligands. These novel complexes were fully characterized (NMR, MS, and XRD) and used as catalyst for Ni-catalyzed Sonogashira reactions. These catalysts allowed detailed information on the elementary steps of this catalytic reaction (transmetalation → oxidative addition → reductive elimination), resulting in the isolation and characterization of an unexpected intermediate in the transmetalation step. This complex, {[ECE]Ni acetylide → CuBr} contains both nickel and copper, with the copper bound to the alkyne π-system. Consistent with these unusual structural features, DFT calculations of the {[ECE]Ni acetylide → CuBr} intermediates revealed an unusual E-Cu-Ni three-center-two-electron bonding scheme. The results reveal a general reaction mechanism for the Ni-based Sonogashira coupling and broaden the application of metallylenes as strong σ-donor ligands for catalytic transformations. PMID:24053603

  6. Insights into dehydrogenative coupling of alcohols and amines catalyzed by a (PNN)-Ru(II) hydride complex: unusual metal-ligand cooperation.

    PubMed

    Zeng, Guixiang; Li, Shuhua

    2011-11-01

    Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN-Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H(2); (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H(2). The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H(2) liberation to regenerate the catalyst. In all these steps, the metal-ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal-ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C-H bond and two ionic hydrogen bonds supported by the PNN ligand. PMID:21942421

  7. Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation.

    PubMed

    Kubota, Takashi; Katou, Yuki; Nakato, Ryuichiro; Shirahige, Katsuhiko; Donaldson, Anne D

    2015-08-01

    The sliding clamp PCNA is a crucial component of the DNA replication machinery. Timely PCNA loading and unloading are central for genome integrity and must be strictly coordinated with other DNA processing steps during replication. Here, we show that the S. cerevisiae Elg1 replication factor C-like complex (Elg1-RLC) unloads PCNA genome-wide following Okazaki fragment ligation. In the absence of Elg1, PCNA is retained on chromosomes in the wake of replication forks, rather than at specific sites. Degradation of the Okazaki fragment ligase Cdc9 leads to PCNA accumulation on chromatin, similar to the accumulation caused by lack of Elg1. We demonstrate that Okazaki fragment ligation is the critical prerequisite for PCNA unloading, since Chlorella virus DNA ligase can substitute for Cdc9 in yeast and simultaneously promotes PCNA unloading. Our results suggest that Elg1-RLC acts as a general PCNA unloader and is dependent upon DNA ligation during chromosome replication. PMID:26212319

  8. Coupling Gd‑DTPA with a bispecific, recombinant protein anti‑EGFR‑iRGD complex improves tumor targeting in MRI.

    PubMed

    Xin, Xiaoyan; Sha, Huizi; Shen, Jingtao; Zhang, Bing; Zhu, Bin; Liu, Baorui

    2016-06-01

    Recombinant anti‑epidermal growth factor receptor‑internalizing arginine‑glycine‑aspartic acid (anti‑EGFR single‑domain antibody fused with iRGD peptide) protein efficiently targets the EGFR extracellular domain and integrin αvβ/β5, and shows a high penetration into cells. Thus, this protein may improve penetration of conjugated drugs into the deep zone of gastric cancer multicellular 3D spheroids. In the present study, a novel tumor‑targeting contrast agent for magnetic resonance imaging (MRI) was developed, by coupling gadolinium‑diethylene triamine pentaacetate (Gd‑DTPA) with the bispecific recombinant anti‑EGFR‑iRGD protein. The anti‑EGFR‑iRGD protein was extracted from Escherichia coli and Gd was loaded onto the recombinant protein by chelation using DTPA anhydride. Single‑targeting agent anti‑EGFR‑DTPA‑Gd, which served as the control, was also prepared. The results of the present study showed that anti‑EGFR‑iRGD‑DTPA‑Gd exhibited no significant cyto-toxicity to human gastric carcinoma cells (BGC‑823) under the experimental conditions used. Compared with a conventional contrast agent (Magnevist), anti‑EGFR‑iRGD‑DTPA‑Gd showed higher T1 relaxivity (10.157/mM/sec at 3T) and better tumor‑targeting ability. In addition, the signal intensity and the area under curve for the enhanced signal time in tumor, in vivo, were stronger than Gd‑DTPA alone or the anti‑EGFR‑Gd control. Thus, Gd‑labelled anti‑EGFR‑iRGD has potential as a tumor‑targeting contrast agent for improved MRI. PMID:27035336

  9. Coupling Gd-DTPA with a bispecific, recombinant protein anti-EGFR-iRGD complex improves tumor targeting in MRI

    PubMed Central

    XIN, XIAOYAN; SHA, HUIZI; SHEN, JINGTAO; ZHANG, BING; ZHU, BIN; LIU, BAORUI

    2016-01-01

    Recombinant anti-epidermal growth factor receptor-internalizing arginine-glycine-aspartic acid (anti-EGFR single-domain antibody fused with iRGD peptide) protein efficiently targets the EGFR extracellular domain and integrin αvβ/β5, and shows a high penetration into cells. Thus, this protein may improve penetration of conjugated drugs into the deep zone of gastric cancer multicellular 3D spheroids. In the present study, a novel tumor-targeting contrast agent for magnetic resonance imaging (MRI) was developed, by coupling gadolinium-diethylene triamine pentaacetate (Gd-DTPA) with the bispecific recombinant anti-EGFR-iRGD protein. The anti-EGFR-iRGD protein was extracted from Escherichia coli and Gd was loaded onto the recombinant protein by chelation using DTPA anhydride. Single-targeting agent anti-EGFR-DTPA-Gd, which served as the control, was also prepared. The results of the present study showed that anti-EGFR-iRGD-DTPA-Gd exhibited no significant cyto toxicity to human gastric carcinoma cells (BGC-823) under the experimental conditions used. Compared with a conventional contrast agent (Magnevist), anti-EGFR-iRGD-DTPA-Gd showed higher T1 relaxivity (10.157/mM/sec at 3T) and better tumor-targeting ability. In addition, the signal intensity and the area under curve for the enhanced signal time in tumor, in vivo, were stronger than Gd-DTPA alone or the anti-EGFR-Gd control. Thus, Gd-labelled anti-EGFR-iRGD has potential as a tumor-targeting contrast agent for improved MRI. PMID:27035336

  10. Comprehensive gas chromatography coupled to mass spectrometry for the separation of pesticides in a very complex matrix.

    PubMed

    Mondello, Luigi; Casilli, Alessandro; Tranchida, Peter Quinto; Lo Presti, Maria; Dugo, Paola; Dugo, Giovanni

    2007-11-01

    The present research is focused on the development of a comprehensive two-dimensional gas chromatography-rapid scanning quadrupole mass spectrometric (GC x GC-qMS) methodology for the analysis of trace-amount pesticides contained in a complex real-world sample. Reliable peak assignment was carried out by using a recently developed, dedicated pesticide MS library (for comprehensive GC analysis), characterized by a twin-filter search procedure, the first based on a minimum degree of spectral similarity and the second on the interactive use of linear retention indices (LRI). The library was constructed by subjecting mixtures of commonly used pesticides to GC x GC-qMS analysis and then deriving their pure mass spectra and LRI values. In order to verify the effectiveness of the approach, a pesticide-contaminated red grapefruit extract was analysed. The certainty of peak assignment was attained by exploiting both the enhanced separation power of dual-oven GC x GC and the highly effective search procedure. PMID:17589835

  11. Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation

    PubMed Central

    Kubota, Takashi; Katou, Yuki; Nakato, Ryuichiro; Shirahige, Katsuhiko; Donaldson, Anne D.

    2015-01-01

    Summary The sliding clamp PCNA is a crucial component of the DNA replication machinery. Timely PCNA loading and unloading are central for genome integrity and must be strictly coordinated with other DNA processing steps during replication. Here, we show that the S. cerevisiae Elg1 replication factor C-like complex (Elg1-RLC) unloads PCNA genome-wide following Okazaki fragment ligation. In the absence of Elg1, PCNA is retained on chromosomes in the wake of replication forks, rather than at specific sites. Degradation of the Okazaki fragment ligase Cdc9 leads to PCNA accumulation on chromatin, similar to the accumulation caused by lack of Elg1. We demonstrate that Okazaki fragment ligation is the critical prerequisite for PCNA unloading, since Chlorella virus DNA ligase can substitute for Cdc9 in yeast and simultaneously promotes PCNA unloading. Our results suggest that Elg1-RLC acts as a general PCNA unloader and is dependent upon DNA ligation during chromosome replication. PMID:26212319

  12. Accurate Treatment of Large Supramolecular Complexes by Double-Hybrid Density Functionals Coupled with Nonlocal van der Waals Corrections.

    PubMed

    Calbo, Joaquín; Ortí, Enrique; Sancho-García, Juan C; Aragó, Juan

    2015-03-10

    In this work, we present a thorough assessment of the performance of some representative double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL) as well as their parent hybrid and GGA counterparts, in combination with the most modern version of the nonlocal (NL) van der Waals correction to describe very large weakly interacting molecular systems dominated by noncovalent interactions. Prior to the assessment, an accurate and homogeneous set of reference interaction energies was computed for the supramolecular complexes constituting the L7 and S12L data sets by using the novel, precise, and efficient DLPNO-CCSD(T) method at the complete basis set limit (CBS). The correction of the basis set superposition error and the inclusion of the deformation energies (for the S12L set) have been crucial for obtaining precise DLPNO-CCSD(T)/CBS interaction energies. Among the density functionals evaluated, the double-hybrid revPBE0-DH-NL and B2PLYP-NL with the three-body dispersion correction provide remarkably accurate association energies very close to the chemical accuracy. Overall, the NL van der Waals approach combined with proper density functionals can be seen as an accurate and affordable computational tool for the modeling of large weakly bonded supramolecular systems. PMID:26579747

  13. The qualitative and quantitative analysis of the coupled C, N, P and Si retention in complex of water reservoirs.

    PubMed

    Bartoszek, Lilianna; Koszelnik, Piotr

    2016-01-01

    The Solina-Myczkowce complex of reservoirs (SMCR) accounts about 15 % of the water storage in Poland. On the base of historical (2004-2006 years) data, the mass balance of nitrogen, phosphorus, total organic carbon and dissolved silicon were calculated. Large, natural affluents were the main source of the biogenic compounds in the studied ecosystem, delivering 90 % of TOC, 87 % of TN and 81 % of TP and DSi load. Moreover, results show that SMCR is an important sink for all the analysed biogenic elements. About 15-30 % of external loads were retained in the reservoir mainly in upper Solina. Due to the intensive processes of primary production, inorganic forms of nitrogen and phosphorus were mainly retained. Internal production of organic matter lead to an amount of the organic matter deposited in the sediments greater than was anticipated on the basis of the mass balance calculations. A constant load of dissolved silicon originating only from natural sources did not contribute to supplement deficits of Si present in the body of water in the reservoirs, promoting disturbances in N:C:P:Si ratios and another growth condition for other types of algae. PMID:27504255

  14. Proton-Coupled Electron Transfer During the S-State Transitions of the Oxygen-Evolving Complex of Photosystem II.

    PubMed

    Amin, Muhamed; Vogt, Leslie; Szejgis, Witold; Vassiliev, Serguei; Brudvig, Gary W; Bruce, Doug; Gunner, M R

    2015-06-18

    The oxygen-evolving complex (OEC) of photosystem II (PSII) is a unique Mn4O5Ca cluster that catalyzes water oxidation via four photoactivated electron transfer steps. As the protein influence on the redox and protonation chemistry of the OEC remains an open question, we present a classical valence model of the OEC that allows the redox state of each Mn and the protonation state of bridging μ-oxos and terminal waters to remain in equilibrium with the PSII protein throughout the redox cycle. We find that the last bridging oxygen loses its proton during the transition from S0 to S1. Two possible S2 states are found depending on the OEC geometry: S2 has Mn4(IV) with a proton lost from a terminal water (W1) trapped by the nearby D1-D61 if O5 is closer to Mn4, or Mn1(IV), with partial deprotonation of D1-H337 and D1-E329 if O5 is closer to Mn1. In S3, the OEC is Mn4(IV) with W2 deprotonated. The estimated OEC Em's range from +0.7 to +1.3 V, enabling oxidation by P680(+), the primary electron donor in PSII. In chloride-depleted PSII, the proton release increases during the S1 to S2 transition, leaving the OEC unable to properly advance through the water-splitting cycle. PMID:25575266

  15. Complex absorbing potential based equation-of-motion coupled cluster method for the potential energy curve of CO{sub 2}{sup −} anion

    SciTech Connect

    Ghosh, Aryya; Vaval, Nayana; Pal, Sourav; Bartlett, Rodney J.

    2014-10-28

    The equation-of-motion coupled cluster method employing the complex absorbing potential has been used to investigate the low energy electron scattering by CO{sub 2}. We have studied the potential energy curve for the {sup 2}Π{sub u} resonance states of CO{sub 2}{sup −} upon bending as well as symmetric and asymmetric stretching of the molecule. Specifically, we have stretched the C−O bond length from 1.1 Å to 1.5 Å and the bending angles are changed between 180° and 132°. Upon bending, the low energy {sup 2}Π{sub u} resonance state is split into two components, i.e., {sup 2}A{sub 1}, {sup 2}B{sub 1} due to the Renner-Teller effect, which behave differently as the molecule is bent.

  16. Decay of iron(V) nitride complexes by a N-N bond-coupling reaction in solution: a combined spectroscopic and theoretical analysis.

    PubMed

    Krahe, Oliver; Bill, Eckhard; Neese, Frank

    2014-08-11

    Cryogenically trapped Fe(V) nitride complexes with cyclam-based ligands were found to decay by bimolecular reactions, forming exclusively Fe(II) compounds. Characterization of educts and products by Mössbauer spectroscopy, mass spectrometry, and spectroscopy-oriented DFT calculations showed that the reaction mechanism is reductive nitride coupling and release of dinitrogen (2 Fe(V)≡N→Fe(II)-N=N-Fe(II)→2 Fe(II)+N2). The reaction pathways, representing an "inverse" of the Haber-Bosch reaction, were computationally explored in detail, also to judge the feasibility of yielding catalytically competent Fe(V)(N). Implications for the photolytic cleavage of Fe(III) azides used to generate high-valent Fe nitrides are discussed. PMID:24839269

  17. Efficient Epoxidation of Styrene Derivatives by a Nonheme Iron(IV)-Oxo Complex via Proton-Coupled Electron Transfer with Triflic Acid.

    PubMed

    Park, Jiyun; Lee, Yong-Min; Ohkubo, Kei; Nam, Wonwoo; Fukuzumi, Shunichi

    2015-06-15

    Styrene derivatives are not oxidized by [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) in acetonitrile at 298 K, whereas epoxidation of styrene derivatives by the iron(IV)-oxo complex occurs efficiently in the presence of triflic acid (HOTf) via proton-coupled electron transfer (PCET) from styrene derivatives to the diprotonated species of [(N4Py)Fe(IV)(O)](2+) with HOTf. Logarithms of the first-order rate constants of HOTf-promoted expoxidation of styrene derivatives with [(N4Py)Fe(IV)(O)](2+) and PCET from electron donors to [(N4Py)Fe(IV)(O)](2+) in the precursor complexes exhibit a remarkably unified correlation with the driving force of PCET in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes are taken into account. The same PCET driving force dependence is obtained for the first-order rate constants of HOTf-promoted oxygen atom transfer from thioanisols to [(N4Py)Fe(IV)(O)](2+) and HOTf-promoted hydrogen atom transfer from toluene derivatives to [(N4Py)Fe(IV)(O)](2+) in the precursor complexes. Thus, HOTf-promoted epoxidation of styrene derivatives by [(N4Py)Fe(IV)(O)](2+) proceeds via the rate-determining electron transfer from styrene derivatives to the diprotonated species of [(N4Py)Fe(IV)(O)](2+), as shown in the reactions of HOTf-promoted oxygen atom transfer from thioanisols to [(N4Py)Fe(IV)(O)](2+) and HOTf-promoted hydrogen atom transfer from toluene derivatives to [(N4Py)Fe(IV)(O)](2+). PMID:26010774

  18. Electronic Structure and Bonding in Iron(II) and Iron(I) Complexes Bearing Bisphosphine Ligands of Relevance to Iron-Catalyzed C–C Cross-Coupling

    PubMed Central

    2015-01-01

    Chelating phosphines are effective additives and supporting ligands for a wide array of iron-catalyzed cross-coupling reactions. While recent studies have begun to unravel the nature of the in situ-formed iron species in several of these reactions, including the identification of the active iron species, insight into the origin of the differential effectiveness of bisphosphine ligands in catalysis as a function of their backbone and peripheral steric structures remains elusive. Herein, we report a spectroscopic and computational investigation of well-defined FeCl2(bisphosphine) complexes (bisphosphine = SciOPP, dpbz, tBudppe, or Xantphos) and known iron(I) variants to systematically discern the relative effects of bisphosphine backbone character and steric substitution on the overall electronic structure and bonding within their iron complexes across oxidation states implicated to be relevant in catalysis. Magnetic circular dichroism (MCD) and density functional theory (DFT) studies demonstrate that common o-phenylene and saturated ethyl backbone motifs result in small but non-negligible perturbations to 10Dq(Td) and iron–bisphosphine bonding character at the iron(II) level within isostructural tetrahedra as well as in five-coordinate iron(I) complexes FeCl(dpbz)2 and FeCl(dppe)2. Notably, coordination of Xantphos to FeCl2 results in a ligand field significantly reduced relative to those of its iron(II) partners, where a large bite angle and consequent reduced iron–phosphorus Mayer bond orders (MBOs) could play a role in fostering the unique ability of Xantphos to be an effective additive in Kumada and Suzuki–Miyaura alkyl–alkyl cross-couplings. Furthermore, it has been found that the peripheral steric bulk of the SciOPP ligand does little to perturb the electronic structure of FeCl2(SciOPP) relative to that of the analogous FeCl2(dpbz) complex, potentially suggesting that differences in the steric properties of these ligands might be more important in

  19. Electronic Structure and Bonding in Iron(II) and Iron(I) Complexes Bearing Bisphosphine Ligands of Relevance to Iron-Catalyzed C-C Cross-Coupling.

    PubMed

    Kneebone, Jared L; Fleischauer, Valerie E; Daifuku, Stephanie L; Shaps, Ari A; Bailey, Joseph M; Iannuzzi, Theresa E; Neidig, Michael L

    2016-01-01

    Chelating phosphines are effective additives and supporting ligands for a wide array of iron-catalyzed cross-coupling reactions. While recent studies have begun to unravel the nature of the in situ-formed iron species in several of these reactions, including the identification of the active iron species, insight into the origin of the differential effectiveness of bisphosphine ligands in catalysis as a function of their backbone and peripheral steric structures remains elusive. Herein, we report a spectroscopic and computational investigation of well-defined FeCl2(bisphosphine) complexes (bisphosphine = SciOPP, dpbz, (tBu)dppe, or Xantphos) and known iron(I) variants to systematically discern the relative effects of bisphosphine backbone character and steric substitution on the overall electronic structure and bonding within their iron complexes across oxidation states implicated to be relevant in catalysis. Magnetic circular dichroism (MCD) and density functional theory (DFT) studies demonstrate that common o-phenylene and saturated ethyl backbone motifs result in small but non-negligible perturbations to 10Dq(Td) and iron-bisphosphine bonding character at the iron(II) level within isostructural tetrahedra as well as in five-coordinate iron(I) complexes FeCl(dpbz)2 and FeCl(dppe)2. Notably, coordination of Xantphos to FeCl2 results in a ligand field significantly reduced relative to those of its iron(II) partners, where a large bite angle and consequent reduced iron-phosphorus Mayer bond orders (MBOs) could play a role in fostering the unique ability of Xantphos to be an effective additive in Kumada and Suzuki-Miyaura alkyl-alkyl cross-couplings. Furthermore, it has been found that the peripheral steric bulk of the SciOPP ligand does little to perturb the electronic structure of FeCl2(SciOPP) relative to that of the analogous FeCl2(dpbz) complex, potentially suggesting that differences in the steric properties of these ligands might be more important in

  20. High resolution spectroscopy and channel-coupling treatment of the A 1Sigma+-b 3[Pi] complex of NaRb

    NASA Astrophysics Data System (ADS)

    Tamanis, M.; Ferber, R.; Zaitsevskii, A.; Pazyuk, E. A.; Stolyarov, A. V.; Chen, Hongmin; Qi, Jianbing; Wang, Henry; Stwalley, William C.

    2002-11-01

    The paper presents the study of the fully mixed A 1Sigma+-b 3Pi complex of the NaRb molecule based on high-resolution sub-Doppler spectroscopy and intensity measurements, ab initio relativistic calculations of energies, transition moments and spin-orbit interactions, as well as an inverted channel-coupling approach (ICCA) deperturbation analysis. A two-laser V-type pump-probe excitation scheme was employed to obtain A[left arrow]X transition frequencies to 16 A-state vibrational levels from v=6 to v=21 with J from 8 to 23. Additionally, relative intensities in laser-induced A[right arrow]X fluorescence spectra have been recorded, including progressions with all observable transitions to the ground state vibronic levels, the latter yielding unambiguous v assignment of the A-state levels observed. All experimental rovibronic term values and all measured intensity distributions were embedded in a direct simultaneous weighted nonlinear fitting in the framework of an elaborated ICCA allowing us to obtain deperturbed relativistic diabatic potentials of the interacting A 1Sigma+ and b 3Pi states. To make this possible, ab initio structure calculations of the spin-orbit singlet-triplet coupling parameter, the spin-orbit splitting of the b 3Pi state, the transition dipole moments, and the electronic energy differences for internuclear distance 3.0-7.0 A have been performed using second order many-body multipartitioning perturbation theory. The developed ICCA is proved to be appropriate for deperturbation analysis of strongly coupled electronic states provided that accurate nonadiabatic matrix elements are known. This allows unambiguous assignment of the vibrational levels of the b 3Pi0 state, which is not directly observed.

  1. Thiocyanate-Ligated Heterobimetallic {PtM} Lantern Complexes Including a Ferromagnetically Coupled 1D Coordination Polymer.

    PubMed

    Guillet, Jesse L; Bhowmick, Indrani; Shores, Matthew P; Daley, Christopher J A; Gembicky, Milan; Golen, James A; Rheingold, Arnold L; Doerrer, Linda H

    2016-08-15

    A series of heterobimetallic lantern complexes with the central unit {PtM(SAc)4(NCS)} have been prepared and thoroughly characterized. The {Na(15C5)}[PtM(SAc)4(NCS)] series, 1 (Co), 2 (Ni), 3 (Zn), are discrete compounds in the solid state, whereas the {Na(12C4)2)}[PtM(SAc)4(NCS)] series, 4 (Co), 5 (Ni), 6 (Zn), and 7 (Mn), are ion-separated species. Compound 7 is the first {PtMn} lantern of any bridging ligand (carboxylate, amide, etc.). Monomeric 1-7 have M(2+), necessitating counter cations that have been prepared as {(15C5)Na}(+) and {(12C4)2Na}(+) variants, none of which form extended structures. In contrast, neutral [PtCr(tba)4(NCS)]∞ 8 forms a coordination polymer of {PtCr}(+) units linked by (NCS)(-) in a zigzag chain. All eight compounds have been thoroughly characterized and analyzed in comparison to a previously reported family of compounds. Crystal structures are presented for compounds 1-6 and 8, and solution magnetic susceptibility measurements are presented for compounds 1, 2, 4, 5, and 7. Further structural analysis of dimerized {PtM} units reinforces the empirical observation that greater charge density along the Pt-M vector leads to more Pt···Pt interactions in the solid state. Four structural classes, one new, of {MPt}···{PtM} units are presented. Solid state magnetic characterization of 8 reveals a ferromagnetic interaction in the {PtCr(NCS)} chain between the Cr centers of J/kB = 1.7(4) K. PMID:27486841

  2. Luminescence dynamics and {sup 13}C NMR characteristics of dinuclear complexes exhibiting coupled lanthanide(III) cation pairs

    SciTech Connect

    Matthews, K.D.; Bailey-Folkes, S.A.; Kahwa, I.A.

    1992-08-20

    Luminescence and cross-polarization magic angle spinning (CP-MAS) {sup 13}C NMR properties of lanthanide dinuclear macrocyclic complexes of a compartmental Schiff base chelate (1) derived from the condensation of 2,6-diformyl-p-cresol and 3,6-dioxa-1,8-octanediamine are reported. The Schiff base chromophore in 1 is a strong light absorber and an efficient sensitizer for intense Tb{sup 3+}({sup 5}D{sub 4}) and Eu{sup 3+}({sup 5}D{sub 0})(T < 110 K ) emission which does not exhibit self-quenching effects. Emission from Tb{sup 3+} is sensitized by the ligand singlet state; in striking contrast, Eu{sup 3+} emission is sensitized by the triplet state and reveals an unusual nonradiative quenching process at T > 110 K with a thermal barrier of {approx} 2300 cm{sup {minus}1}. Weak emission is observed from Dy{sup 3+}({sup 4}F{sub 9/2}), Sm{sup 3+}({sup 4}G{sub 5/2}), and Pr{sup 3+}({sup 1}D{sub 2}) diluted in Gd{sup 3+} (i.e., from Gd{sup 3+}-Ln{sup 3+} heteropairs, Ln = Pr, Sm, Dy). Intramolecular metal-metal (Ln-Ln = 4 {Angstrom}) interactions account for the greatly quenched emission from Sm{sup 3+}-Sm{sup 3+} and Dy{sup 3+}-Dy{sup 3+} homopairs compared to Gd{sup 3+}-Ln heteropairs (Ln = Sm, Dy). Gd{sup 3+}-Ln{sup 3+} emission lifetimes at 77 K are 1610 (Tb{sup 3+}), 890 (Eu{sup 3+}), 14 (Dy{sup 3+}) and {approx} 13 {mu}s (Sm{sup 3+}). Nonradiative relaxation processes at 77 K in dilute Ln{sup 3+}:Gd{sub 2}1(NO{sub 3}){sub 4}{center_dot}H{sub 2}O, being temperature independent for Sm{sup 3+} and Eu{sup 3+} but temperature dependent for Tb{sup 3+}, follow the energy gap law with {alpha} {approx} - 10{sup {minus}3} cm and B {approx} 2 x 10{sup 8} s{sup {minus}1}. CP-MAS data show paramagnetic broadening of {sup 13}C resonances which increases with the magnetic moment of Ln{sup 3+}. Surprisingly, no significant shifts in resonance positions corresponding to the changing nature of paramagnetic Ln{sup 3+} ions are observed. 43 refs., 8 figs., 2 tabs.

  3. Coupling fast all-season soil strength land surface model with weather research and forecasting model to assess low-level icing in complex terrain

    NASA Astrophysics Data System (ADS)

    Sines, Taleena R.

    Icing poses as a severe hazard to aircraft safety with financial resources and even human lives hanging in the balance when the decision to ground a flight must be made. When analyzing the effects of ice on aviation, a chief cause for danger is the disruption of smooth airflow, which increases the drag force on the aircraft therefore decreasing its ability to create lift. The Weather Research and Forecast (WRF) model Advanced Research WRF (WRF-ARW) is a collaboratively created, flexible model designed to run on distributed computing systems for a variety of applications including forecasting research, parameterization research, and real-time numerical weather prediction. Land-surface models, one of the physics options available in the WRF-ARW, output surface heat and moisture flux given radiation, precipitation, and surface properties such as soil type. The Fast All-Season Soil STrength (FASST) land-surface model was developed by the U.S. Army ERDC-CRREL in Hanover, New Hampshire. Designed to use both meteorological and terrain data, the model calculates heat and moisture within the surface layer as well as the exchange of these parameters between the soil, surface elements (such as snow and vegetation), and atmosphere. Focusing on the Presidential Mountain Range of New Hampshire under the NASA Experimental Program to Stimulate Competitive Research (EPSCoR) Icing Assessments in Cold and Alpine Environments project, one of the main goals is to create a customized, high resolution model to predict and assess ice accretion in complex terrain. The purpose of this research is to couple the FASST land-surface model with the WRF to improve icing forecasts in complex terrain. Coupling FASST with the WRF-ARW may improve icing forecasts because of its sophisticated approach to handling processes such as meltwater, freezing, thawing, and others that would affect the water and energy budget and in turn affect icing forecasts. Several transformations had to take place in order

  4. Magnetic interactions and magnetic anisotropy in exchange coupled 4f-3d systems: a case study of a heterodinuclear Ce3+-Fe3+ cyanide-bridged complex.

    PubMed

    Sorace, Lorenzo; Sangregorio, Claudio; Figuerola, Albert; Benelli, Cristiano; Gatteschi, Dante

    2009-01-01

    We report here a detailed single-crystal EPR and magnetic study of a homologous series of complexes of the type Ln-M (Ln = La(III), Ce(III); M = Fe(III), Co(III)). We were able to obtain a detailed picture of the low-lying levels of Ce(III) and Fe(III) centres through the combined use of single-crystal EPR and magnetic susceptibility data. We show that classical ligand field theory can be of great help in rationalising the energies of the low-lying levels of both the transition-metal and rare-earth ions. The combined analysis of single-crystal EPR and magnetic data of the coupled system Ce-Fe confirmed the great complexity of the interactions involving rare-earth elements. With little uncertainty, it turned out clearly that the description of the interaction involving the lowest lying spin levels requires the introduction of the isotropic, anisotropic and antisymmetric terms. PMID:19115307

  5. Coupling solid-phase microextraction with ambient mass spectrometry using surface coated wooden-tip probe for rapid analysis of ultra trace perfluorinated compounds in complex samples.

    PubMed

    Deng, Jiewei; Yang, Yunyun; Fang, Ling; Lin, Li; Zhou, Haiyun; Luan, Tiangang

    2014-11-18

    Coupling solid-phase microextraction (SPME) with ambient mass spectrometry using surface coated wooden-tip probe was achieved for the first time and applied in the analysis of ultra trace perfluorinated compounds (PFCs) in complex environmental and biological samples. We modified n-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride on the surface of sharp wooden tip via silanization to form a novel SPME probe, which was then used for highly selective enrichment of PFCs from complex matrices and applied as a solid substrate to induce electrospray ionization for mass spectrometric analysis. The porous structural surface together with the dual extraction mechanisms (reversed phase adsorption and ion exchange adsorption) demonstrated that the SPME probe has an outstanding enrichment capacity, enhancing sensitivity by approximately 4000-8000 folds for the detection in aqueous samples, and 100-500-fold in whole blood and milk samples. The method showed good linearity, with correlation coefficient values (r(2)) of no less than 0.9931 for eight target PFCs. The limits of detection and qualification of the eight PFCs were 0.06-0.59 and 0.21-1.98 ng/L, respectively. Quantification of real samples was achieved by isotope internal standard calibration curve method or isotope dilution method, and ultratrace levels of PFCs present in lake water, river water, whole blood, and milk samples had been successfully detected and qualified. PMID:25354323

  6. Enhanced fluorescence sensitivity by coupling yttrium-analyte complexes and three-way fast high-performance liquid chromatography data modeling.

    PubMed

    Alcaraz, Mirta R; Culzoni, María J; Goicoechea, Héctor C

    2016-01-01

    The present study reports a sensitive chromatographic method for the analysis of seven fluoroquinolones (FQs) in environmental water samples, by coupling yttrium-analyte complex and three-way chromatographic data modeling. This method based on the use of HPLC-FSFD does not require complex or tedious sample treatments or enrichment processes before the analysis, due to the significant fluorescence increments of the analytes reached by the presence of Y(3+). Enhancement achieved for the FQs signals obtained after Y(3+) addition reaches 103- to 1743-fold. Prediction results corresponding to the application of MCR-ALS to the validation set showed relative error of prediction (REP%) values below 10% in all cases. A recovery study that includes the simultaneous determination of the seven FQs in three different environmental aqueous matrices was conducted. The recovery studies assert the efficiency and the accuracy of the proposed method. The LOD values calculated are in the order of part per trillion (below 0.5 ng mL(-1) for all the FQs, except for enoxacin). It is noteworthy to mention that the method herein proposed, which does not include pre-concentration steps, allows reaching LOD values in the same order of magnitude than those achieved by more sophisticated methods based on SPE and UHPLC-MS/MS. PMID:26703253

  7. Electron transfer reactivity of the aqueous iron(IV)–oxo complex. Outer-sphere vs proton-coupled electron transfer

    DOE PAGESBeta

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2016-06-18

    Here, the kinetics of oxidation of organic and inorganic reductants by aqueous iron(IV) ions, FeIV(H2O)5O2+ (hereafter FeIVaqO2+), are reported. The substrates examined include several water-soluble ferrocenes, hexachloroiridate(III), polypyridyl complexes M(NN)32+ (M = Os, Fe and Ru; NN = phenanthroline, bipyridine and derivatives), HABTS–/ABTS2–, phenothiazines, CoII(dmgBF2)2, macrocyclic nickel(II) complexes, and aqueous cerium(III). Most of the reductants were oxidized cleanly to the corresponding one-electron oxidation products, with the exception of phenothiazines which produced the corresponding oxides in a single-step reaction, and polypyridyl complexes of Fe(II) and Ru(II) that generated ligand-modified products. FeIVaqO2+ oxidizes even Ce(III) (E0 in 1 M HClO4 = 1.7more » V) with a rate constant greater than 104 M–1 s–1. In 0.10 M aqueous HClO4 at 25 °C, the reactions of Os(phen)32+ (k = 2.5 × 105 M–1 s–1), IrCl63– (1.6 × 106), ABTS2– (4.7 × 107), and Fe(cp)(C5H4CH2OH) (6.4 × 107) appear to take place by outer sphere electron transfer (OSET). The rate constants for the oxidation of Os(phen)32+ and of ferrocenes remained unchanged in the acidity range 0.05 < [H+] < 0.10 M, ruling out prior protonation of FeIVaqO2+ and further supporting the OSET assignment. A fit to Marcus cross-relation yielded a composite parameter (log k22 + E0Fe/0.059) = 17.2 ± 0.8, where k22 and E0Fe are the self-exchange rate constant and reduction potential, respectively, for the FeIVaqO2+/FeIIIaqO+ couple. Comparison with literature work suggests k22 < 10–5 M–1 s–1 and thus E0(FeIVaqO2+/FeIIIaqO+) > 1.3 V. For proton-coupled electron transfer, the reduction potential is estimated at E0 (FeIVaqO2+, H+/FeIIIaqOH2+) ≥ 1.95 V.« less

  8. Removal of high-salinity matrices through polymer-complexation-ultrafiltration for the detection of trace levels of REEs using inductively coupled plasma mass spectrometry.

    PubMed

    Duan, Hualing; Lin, Jijun; Gong, Zhenbin; Huang, Jiahua; Yang, Shifeng

    2015-10-01

    The polymer-complexation-ultrafiltration (PCUF) technique was applied to separate trace levels of rare earth elements (REEs), including scandium, yttrium and the lanthanides, from high-salinity matrices prior to their determination by inductively coupled plasma mass spectrometry (ICP-MS). The REEs were converted into REE-polymer complexes using the water-soluble polymer polyacrylic acid (PAA) at a specified pH, retained on the ultrafiltration membrane of centrifugal filter units, and finally eluted using diluted nitric acid to achieve separation from matrices with relatively high levels of various inorganic ions, such as sodium, potassium, calcium, magnesium, and chlorine ions. Numerous factors affecting the PCUF efficiency were optimized. The optimal conditions included the addition of 30 mg L(-1) of PAA, a pH of 7.5, a reaction time of 40 min at room temperature, and 5.0 mL of 3% nitric acid (v/v) eluent. Under these conditions, the analytes were quantitatively separated and recovered, with a resulting relative standard deviation (RSD) of less than 4.0% (0.05 µg L(-1), n=5) and standard addition recoveries between 89.2% (La) and 95.8% (Sm) for matrices of various salinities. The blank samples for the method ranged from 0.0003 µg L(-1) (Dy) to 0.0031 µg L(-1) (Sc), and the limits of quantification (LOQs, 10σ) were between 0.0006 µg L(-1) (Dy) and 0.0026 µg L(-1) (Sc). Furthermore, the salinity of the sample exhibited no effect on the REE-polymer complex formation process. Finally, the method was successfully applied for the determination of trace levels of dissolved Sc, Y, and lanthanides in coastal and estuarine seawater samples. PMID:26078161

  9. Determination of aminopolycarboxylic acids at ultra-trace levels by means of online coupling ion exchange chromatography and inductively coupled plasma-mass spectrometry with indirect detection via their Pd²⁺-complexes.

    PubMed

    Nette, David; Seubert, Andreas

    2015-07-16

    A new indirect IC-ICP-MS method for the determination of aminopolycarboxylic acids in water samples is described. It is based on the addition of an excess of Pd(II) to water samples. The analytes are forced into very strong and negatively charged palladium complexes, separated by ion exchange chromatography and detected by their palladium content, utilizing an on-line coupled ICP-MS. This method is suitable to determine the concentration of 8 aminopolycarboxylic acids (nitrilotriacetic acid (NTA), (2-carboxyethyl) iminodiacetic acid (β-ADA), methylglycinediacetic acid (MGDA), 2-hydroxyethyl) ethylenediamine triacetic acid (HEDTA), diethylene triamine pentaacetic acid (DTPA), ethylendiamine tetraacetic acid (EDTA), 1,3-diaminopropane tetraacetic acid (1,3-PDTA) and 1,2-diaminopropane tetraacetic acid (1,2-PDTA) at the ng kg(-1) level. The method is faster and easier than the established gas chromatography (GC)-method ISO 16588:2002 and up to two orders of magnitude more sensitive than the ion pair chromatography based method of DIN 38413-8. Analytic performance is superior to ISO 16588:2002 and the comparability is good. PMID:26073818

  10. Prediction Models of Retention Indices for Increased Confidence in Structural Elucidation during Complex Matrix Analysis: Application to Gas Chromatography Coupled with High-Resolution Mass Spectrometry.

    PubMed

    Dossin, Eric; Martin, Elyette; Diana, Pierrick; Castellon, Antonio; Monge, Aurelien; Pospisil, Pavel; Bentley, Mark; Guy, Philippe A

    2016-08-01

    Monitoring of volatile and semivolatile compounds was performed using gas chromatography (GC) coupled to high-resolution electron ionization mass spectrometry, using both headspace and liquid injection modes. A total of 560 reference compounds, including 8 odd n-alkanes, were analyzed and experimental linear retention indices (LRI) were determined. These reference compounds were randomly split into training (n = 401) and test (n = 151) sets. LRI for all 552 reference compounds were also calculated based upon computational Quantitative Structure-Property Relationship (QSPR) models, using two independent approaches RapidMiner (coupled to Dragon) and ACD/ChromGenius software. Correlation coefficients for experimental versus predicted LRI values calculated for both training and test set compounds were calculated at 0.966 and 0.949 for RapidMiner and at 0.977 and 0.976 for ACD/ChromGenius, respectively. In addition, the cross-validation correlation was calculated at 0.96 from RapidMiner and the residual standard error value obtained from ACD/ChromGenius was 53.635. These models were then used to predict LRI values for several thousand compounds reported present in tobacco and tobacco-related fractions, plus a range of specific flavor compounds. It was demonstrated that using the mean of the LRI values predicted by RapidMiner and ACD/ChromGenius, in combination with accurate mass data, could enhance the confidence level for compound identification from the analysis of complex matrixes, particularly when the two predicted LRI values for a compound were in close agreement. Application of this LRI modeling approach to matrixes with unknown composition has already enabled the confirmation of 23 postulated compounds, demonstrating its ability to facilitate compound identification in an analytical workflow. The goal is to reduce the list of putative candidates to a reasonable relevant number that can be obtained and measured for confirmation. PMID:27403731

  11. Development of a 3D Coupled Physical-Biogeochemical Model for the Marseille Coastal Area (NW Mediterranean Sea): What Complexity Is Required in the Coastal Zone?

    PubMed Central

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007–2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model. PMID:24324589

  12. Phonon-Assisted Anti-Stokes Lasing in ZnTe Nanoribbons.

    PubMed

    Zhang, Qing; Liu, Xinfeng; Utama, M Iqbal Bakti; Xing, Guichuan; Sum, Tze Chien; Xiong, Qihua

    2016-01-13

    Phonon-assisted anti-Stokes emission and its stimulated emission in polar semiconductor ZnTe are demonstrated via the annihilation of phonons as a result of strong exciton-phonon coupling. The findings are not only important for developing high-power radiation-balanced lasers, but are also promising for manufacturing ultraefficient solid-state laser coolers. PMID:26573758

  13. A study of Cu turnover in proteins of the visceral complex of Littorina littorea by stable isotopic analysis using coupled HPLC-ICP-MS.

    PubMed

    Mason, A Z; Borja, M R

    2002-01-01

    A two-dimensional HPLC system, tandemly coupled to an ICP-MS, has been used to study copper accumulation and turnover in the visceral complex cytosol of the gastropod, Littorina littorea. Animals were exposed for 8 weeks to NTA-buffered seawater containing stable isotopic 65Cu and then transferred to media containing stable isotopic 63Cu. The free ion activity of each isotope was maintained at 10(-11) M. Size exclusion (SE) HPLC showed Cu associated with haemocyanin (HC) and metallothionein-like (MT) proteins in two ligand pools with apparent molecular weights of >300 kDa and approximately 17 kDa, respectively. The MT pool was inducible by Cu, could assimilate the metal from both intrinsic and extrinsic sources and showed a higher rate of Cu accumulation and turnover than the HC pool. The induction of this pool also caused the sequestration and cytosolic redistribution of Zn, Cd, Pb, Mn and Co. Further fractionation of the MT pool by ion-exchange (IE) HPLC revealed that the Cu was associated with a single, major isoform of the protein that was Cu inducible and also bound trace quantities of Zn and Pb. A number of additional metal containing proteins were also resolved by IE. the most prominent of which also bound Pb, Mn and minor quantities of Zn. The significance of these findings in metal homeostasis and detoxification is discussed. PMID:12408587

  14. Hybrid Approaches to Structural Characterization of Conformational Ensembles of Complex Macromolecular Systems Combining NMR Residual Dipolar Couplings and Solution X-ray Scattering.

    PubMed

    Venditti, Vincenzo; Egner, Timothy K; Clore, G Marius

    2016-06-01

    Solving structures or structural ensembles of large macromolecular systems in solution poses a challenging problem. While NMR provides structural information at atomic resolution, increased spectral complexity, chemical shift overlap, and short transverse relaxation times (associated with slow tumbling) render application of the usual techniques that have been so successful for medium sized systems (<50 kDa) difficult. Solution X-ray scattering, on the other hand, is not limited by molecular weight but only provides low resolution structural information related to the overall shape and size of the system under investigation. Here we review how combining atomic resolution structures of smaller domains with sparse experimental data afforded by NMR residual dipolar couplings (which yield both orientational and shape information) and solution X-ray scattering data in rigid-body simulated annealing calculations provides a powerful approach for investigating the structural aspects of conformational dynamics in large multidomain proteins. The application of this hybrid methodology is illustrated for the 128 kDa dimer of bacterial Enzyme I which exists in a variety of open and closed states that are sampled at various points in the catalytic cycles, and for the capsid protein of the human immunodeficiency virus. PMID:26739383

  15. Effects of a nearby Mn delta layer on the optical properties of an InGaAs/GaAs quantum well

    SciTech Connect

    Balanta, M. A. G. Brasil, M. J. S. P.; Iikawa, F.; Brum, J. A.; Mendes, Udson C.; Danilov, Yu. A.; Dorokhin, M. V.; Vikhrova, Olga V.; Zvonkov, Boris N.

    2014-11-28

    We investigated the effects of nearby Mn ions on the confined states of a InGaAs/GaAs quantum well through circularly polarized and magneto-optical measurements. The addition of a Mn delta-doping layer at the barrier close to the well gives rise to surprisingly narrow absorption peaks in the photoluminescence excitation spectra. The peaks become increasingly stronger for decreasing spacer-layer thicknesses between the quantum well and the Mn layer. Most of the peaks were identified based on self-consistent calculations; however, we observed additional peaks that cannot be identified with quantum well transitions, which origin we attribute to an enhanced exciton-phonon coupling. Finally, we discuss possible effects related to the exciton magneto-polaron complex in the reinforcement of the photoluminescence excitation peaks.

  16. The Spatial-Functional Coupling of Box C/D and C′/D′ RNPs Is an Evolutionarily Conserved Feature of the Eukaryotic Box C/D snoRNP Nucleotide Modification Complex ▿ †

    PubMed Central

    Qu, Guosheng; van Nues, Rob W.; Watkins, Nicholas J.; Maxwell, E. Stuart

    2011-01-01

    Box C/D ribonucleoprotein particles guide the 2′-O-ribose methylation of target nucleotides in both archaeal and eukaryotic RNAs. These complexes contain two functional centers, assembled around the C/D and C′/D′ motifs in the box C/D RNA. The C/D and C′/D′ RNPs of the archaeal snoRNA-like RNP (sRNP) are spatially and functionally coupled. Here, we show that similar coupling also occurs in eukaryotic box C/D snoRNPs. The C/D RNP guided 2′-O-methylation when the C′/D′ motif was either mutated or ablated. In contrast, the C′/D′ RNP was inactive as an independent complex. Additional experiments demonstrated that the internal C′/D′ RNP is spatially coupled to the terminal box C/D complex. Pulldown experiments also indicated that all four core proteins are independently recruited to the box C/D and C′/D′ motifs. Therefore, the spatial-functional coupling of box C/D and C′/D′ RNPs is an evolutionarily conserved feature of both archaeal and eukaryotic box C/D RNP complexes. PMID:21041475

  17. The spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of the eukaryotic box C/D snoRNP nucleotide modification complex.

    PubMed

    Qu, Guosheng; van Nues, Rob W; Watkins, Nicholas J; Maxwell, E Stuart

    2011-01-01

    Box C/D ribonucleoprotein particles guide the 2'-O-ribose methylation of target nucleotides in both archaeal and eukaryotic RNAs. These complexes contain two functional centers, assembled around the C/D and C'/D' motifs in the box C/D RNA. The C/D and C'/D' RNPs of the archaeal snoRNA-like RNP (sRNP) are spatially and functionally coupled. Here, we show that similar coupling also occurs in eukaryotic box C/D snoRNPs. The C/D RNP guided 2'-O-methylation when the C'/D' motif was either mutated or ablated. In contrast, the C'/D' RNP was inactive as an independent complex. Additional experiments demonstrated that the internal C'/D' RNP is spatially coupled to the terminal box C/D complex. Pulldown experiments also indicated that all four core proteins are independently recruited to the box C/D and C'/D' motifs. Therefore, the spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of both archaeal and eukaryotic box C/D RNP complexes. PMID:21041475

  18. Polynuclear platinum phosphanido/phosphinito complexes: formation of P-O and P-O-P bonds through reductive coupling processes.

    PubMed

    Ara, Irene; Forniés, Juan; Ibáñez, Susana; Mastrorilli, Piero; Todisco, Stefano; Gallo, Vito

    2016-02-01

    A mixture of the asymmetric complexes of formula [(RF)2Pt(μ-Ph2PO)(μ-PPh2)Pt(μ-PPh2)2Pt(solv)(solv')] [(1-(solv)(solv')] (solv, solv' = acetone, H2O, CH3CN) has been prepared by reaction of [(RF)2Pt(II)(μ-PPh2)2Pt(II)(μ-PPh2)2Pt(II)(NCCH3)2] with AgClO4 in CH3CN/acetone. The lability of the Pt-solvent bonds allows the displacement of the coordinated solvent molecules by dppm or Cl(-) and the isolation of the tri- or hexanuclear phosphanido/phosphinito Pt(ii) complexes [(C6F5)2Pt(μ-PPh2)(μ-PPh2O)Pt(μ-PPh2)2Pt(dppm)] (2) or [NBu4]2[(C6F5)2Pt(μ-PPh2)(μ-PPh2O)Pt(μ-PPh2)2Pt(μ-Cl)2Pt(μ-PPh2)2Pt(μ-PPh2)(μ-PPh2O)Pt(C6F5)2] (as a mixture of the two possible isomers 4a and 4b). Complex 2 reacts with AgClO4 to form the tetranuclear derivative [(C6F5)2Pt(μ-PPh2)(μ-PPh2O)Pt(μ-PPh2)2Pt(dppm)Ag(OClO3)] (3), which displays two Pt-Ag donor-acceptor bonds. The mixture of the hexanuclear isomers 4a-4b reacts with Tl(acac) producing the acetylacetonato complex [NBu4][(C6F5)2Pt(μ-PPh2)(μ-PPh2O)Pt(μ-PPh2)2Pt(acac)] (5) which, upon reaction with HCl, yields back the mixture of 4a-4b. The reaction of 4a-4b with PPh3 produces [NBu4][(C6F5)2Pt(μ-PPh2)(μ-PPh2O)Pt(μ-PPh2)2Pt(Cl)(PPh3)] (6) as a mixture of isomers with the chloro ligand located syn (6a) or anti (6b) to the PPh2O(-) group. Either the reaction of 6 with AgClO4 or the treatment of 5 with HPPh3ClO4 results in the formation of the species [(C6F5)2Pt(II)(μ-PPh2)2Pt(I)(μ-PPh2OPPh2)Pt(I)(PPh3)] (7) (44 VEC), which can be explained as the consequence of a PPh2O/PPh2 reductive coupling and a rearrangement of ligands in the molecule generating a Pt(ii),Pt(i),Pt(i) compound. All complexes were characterised in the solid state by XRD (only one of the isomers, in the cases of 4 and 6) and in solution by NMR spectroscopy. PMID:26555928

  19. Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A {sup 1{Sigma}+}-b {sup 3{Pi}} complex of KCs

    SciTech Connect

    Kruzins, A.; Klincare, I.; Nikolayeva, O.; Tamanis, M.; Ferber, R.; Pazyuk, E. A.; Stolyarov, A. V.

    2010-04-15

    The laser-induced fluorescence (LIF) A {sup 1{Sigma}+}-b {sup 3{Pi}{yields}}X {sup 1{Sigma}+} spectra of the KCs molecule were recorded in a near infrared region by a Fourier-transform spectrometer with a resolution of 0.03 cm{sup -1}. Overall more than 200 collisionally enhanced LIF spectra were rotationally assigned to {sup 39}K{sup 133}Cs and {sup 41}K{sup 133}Cs isotopomers yielding more than 3400 rovibronic term values of the strongly mixed singlet A {sup 1{Sigma}+} and triplet b {sup 3{Pi}} states with the uncertainty of 0.003-0.01 cm{sup -1}. Experimental data massive starts from the lowest vibrational level v{sub A}=0 of the singlet and nonuniformly covers the energy range E is an element of [10 040,13 250] cm{sup -1} with rotational quantum numbers J{sup '} is an element of [7,225]. Besides the dominating regular A {sup 1{Sigma}+}-b {sup 3{Pi}}{sub {Omega}=0} interactions, the weak local heterogeneous A {sup 1{Sigma}+}-b {sup 3{Pi}}{sub {Omega}=1} perturbations have been discovered and analyzed. Coupled-channels deperturbation analysis of the experimental {sup 39}K{sup 133}Cs e-parity term values of the A {sup 1{Sigma}+}-b {sup 3{Pi}}{sub {Omega}=0,1,2} complex was accomplished in the framework of the phenomenological 4x4 Hamiltonian accounting implicitly for regular interactions with the remote {sup 1{Pi}} and {sup 3{Sigma}+} states. The diabatic potential energy curves of the A {sup 1{Sigma}+} and b {sup 3{Pi}} states, as well as relevant spin-orbit coupling matrix elements, were defined analytically with the expanded Morse oscillators model. The obtained parameters reproduce 95% of experimental data field of the {sup 39}K{sup 133}Cs isotopomer with a standard deviation of 0.004 cm{sup -1}, which is consistent with the uncertainty of the experiment. Reliability of the derived parameters was confirmed by a good agreement between the predicted and experimental term values of the {sup 41}K{sup 133}Cs isotopomer. The calculated relative intensity

  20. Carbon–Hydrogen Bond Activation, C–N Bond Coupling, and Cycloaddition Reactivity of a Three-Coordinate Nickel Complex Featuring a Terminal Imido Ligand

    PubMed Central

    2015-01-01

    The three-coordinate imidos (dtbpe)Ni=NR (dtbpe = tBu2PCH2CH2PtBu2, R = 2,6-iPr2C6H3, 2,4,6-Me3C6H2 (Mes), and 1-adamantyl (Ad)), which contain a legitimate Ni–N double bond as well as basic imido nitrogen based on theoretical analysis, readily deprotonate HC≡CPh to form the amide acetylide species (dtbpe)Ni{NH(Ar)}(C≡CPh). In the case of R = 2,6-iPr2C6H3, reductive carbonylation results in formation of the (dtbpe)Ni(CO)2 along with the N–C coupled product keteneimine PhCH=C=N(2,6- iPr2C6H3). Given the ability of the Ni=N bond to have biradical character as suggested by theoretical analysis, H atom abstraction can also occur in (dtbpe)Ni=N{2,6-iPr2C6H3} when this species is treated with HSn(nBu)3. Likewise, the microscopic reverse reaction—conversion of the Ni(I) anilide (dtbpe)Ni{NH(2,6-iPr2C6H3)} to the imido (dtbpe)Ni=N{2,6-iPr2C6H3}—is promoted when using the radical Mes*O• (Mes* = 2,4,6-tBu3C6H2). Reactivity studies involving the imido complexes, in particular (dtbpe)Ni=N{2,6-iPr2C6H3}, are also reported with small, unsaturated molecules such as diphenylketene, benzylisocyanate, benzaldehyde, and carbon dioxide, including the formation of C–N and N–N bonds by coupling reactions. In addition to NMR spectroscopic data and combustion analysis, we also report structural studies for all the cycloaddition reactions involving the imido (dtbpe)Ni=N{2,6-iPr2C6H3}. PMID:25437507

  1. Proton Quantization and Vibrational Relaxation in Nonadiabatic Dynamics of Photoinduced Proton-Coupled Electron Transfer in a Solvated Phenol-Amine Complex.

    PubMed

    Goyal, Puja; Schwerdtfeger, Christine A; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2016-03-10

    Nonadiabatic dynamics simulations of photoinduced proton-coupled electron transfer (PCET) in a phenol-amine complex in solution were performed. The electronic potential energy surfaces were generated on-the-fly with a hybrid quantum mechanical/molecular mechanical approach that described the solute with a multiconfigurational method in a bath of explicit solvent molecules. The transferring hydrogen nucleus was represented as a quantum mechanical wave function calculated with grid-based methods, and surface hopping trajectories were propagated on the adiabatic electron-proton vibronic surfaces. Following photoexcitation to the excited S1 electronic state, the overall decay to the ground vibronic state was found to be comprised of relatively fast decay from a lower proton vibrational state of S1 to a highly excited proton vibrational state of the ground S0 electronic state, followed by vibrational relaxation within the S0 state. Proton transfer can occur either on the highly excited proton vibrational states of S0 due to small environmental fluctuations that shift the delocalized vibrational wave functions or on the low-energy proton vibrational states of S1 due to solvent reorganization that alters the asymmetry of the proton potential and reduces the proton transfer barrier. The isotope effect arising from replacing the transferring hydrogen with deuterium is predicted to be negligible because hydrogen and deuterium behave similarly in both types of proton transfer processes. Although an isotope effect could be observed for other systems, in general the absence of an isotope effect does not imply the absence of proton transfer in photoinduced PCET systems. This computational approach is applicable to a wide range of other photoinduced PCET processes. PMID:26812149

  2. Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation–contraction coupling supramolecular complex

    PubMed Central

    Lopez, Rubén J.; Mosca, Barbara; Treves, Susan; Maj, Marcin; Bergamelli, Leda; Calderon, Juan C.; Bentzinger, C. Florian; Romanino, Klaas; Hall, Michael N.; Rüegg, Markus A.; Delbono, Osvaldo; Caputo, Carlo; Zorzato, Francesco

    2016-01-01

    The protein mammalian target of rapamycin (mTOR) is a serine/threonine kinase regulating a number of biochemical pathways controlling cell growth. mTOR exists in two complexes termed mTORC1 and mTORC2. Regulatory associated protein of mTOR (raptor) is associated with mTORC1 and is essential for its function. Ablation of raptor in skeletal muscle results in several phenotypic changes including decreased life expectancy, increased glycogen deposits and alterations of the twitch kinetics of slow fibres. In the present paper, we show that in muscle-specific raptor knockout (RamKO), the bulk of glycogen phosphorylase (GP) is mainly associated in its cAMP-non-stimulated form with sarcoplasmic reticulum (SR) membranes. In addition, 3[H]–ryanodine and 3[H]–PN200-110 equilibrium binding show a ryanodine to dihydropyridine receptors (DHPRs) ratio of 0.79 and 1.35 for wild-type (WT) and raptor KO skeletal muscle membranes respectively. Peak amplitude and time to peak of the global calcium transients evoked by supramaximal field stimulation were not different between WT and raptor KO. However, the increase in the voltage sensor-uncoupled RyRs leads to an increase of both frequency and mass of elementary calcium release events (ECRE) induced by hyper-osmotic shock in flexor digitorum brevis (FDB) fibres from raptor KO. The present study shows that the protein composition and function of the molecular machinery involved in skeletal muscle excitation–contraction (E–C) coupling is affected by mTORC1 signalling. PMID:25431931

  3. Complexes of type C6H7+.L (L = N2 and CO2) studied by explicitly correlated coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Botschwina, Peter; Oswald, Rainer

    2012-05-01

    Complexes of the benzenium ion (C_6 H_7^ +) with N2 or CO2 have been studied by explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level [T. B. Adler et al., J. Chem. Phys. 127, 221106 (2007), 10.1063/1.2817618] and the double-hybrid density functional B2PLYP-D [T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007), 10.1039/b704725h]. Improved harmonic vibrational wavenumbers for C_6 H_7^ + have been obtained by CCSD(T*)-F12a calculations with the VTZ-F12 basis set. Combining them with previous B2PLYP-D anharmonic contributions we arrive at anharmonic wavenumbers which are in excellent agreement with recent experimental data from p-H2 matrix isolation IR spectroscopy [M. Bahou et al., J. Chem. Phys. 136, 154304 (2012), 10.1063/1.3703502]. The energetically most favourable conformer of C_6 H_7^ +.N2 shows a π-bonded structure similar to C_6 H_7^ +.Rg (Rg = Ne, Ar) [P. Botschwina and R. Oswald, J. Phys. Chem. A 115, 13664 (2011), 10.1021/jp207905t] with De ≈ 870 cm-1. For C_6 H_7^ +.CO2, a slightly lower energy is calculated for a conformer with the CO2 ligand lying in the ring-plane of the C_6 H_7^ + moiety (De ≈ 1508 cm-1). It may be discriminated from other conformers through a strong band predicted at 1218 cm-1, red-shifted by 21 cm-1 from the corresponding band of free C_6 H_7^ +.

  4. Complexes of type C6H7(+)·L (L = N2 and CO2) studied by explicitly correlated coupled cluster theory.

    PubMed

    Botschwina, Peter; Oswald, Rainer

    2012-05-28

    Complexes of the benzenium ion (C(6)H(7)(+)) with N(2) or CO(2) have been studied by explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level [T. B. Adler et al., J. Chem. Phys. 127, 221106 (2007)] and the double-hybrid density functional B2PLYP-D [T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007)]. Improved harmonic vibrational wavenumbers for C(6)H(7)(+) have been obtained by CCSD(T∗)-F12a calculations with the VTZ-F12 basis set. Combining them with previous B2PLYP-D anharmonic contributions we arrive at anharmonic wavenumbers which are in excellent agreement with recent experimental data from p-H(2) matrix isolation IR spectroscopy [M. Bahou et al., J. Chem. Phys. 136, 154304 (2012)]. The energetically most favourable conformer of C(6)H(7)(+)·N(2) shows a π-bonded structure similar to C(6)H(7)(+)·Rg (Rg = Ne, Ar) [P. Botschwina and R. Oswald, J. Phys. Chem. A 115, 13664 (2011)] with D(e) ≈ 870 cm(-1). For C(6)H(7)(+)·CO(2), a slightly lower energy is calculated for a conformer with the CO(2) ligand lying in the ring-plane of the C(6)H(7)(+) moiety (D(e) ≈ 1508 cm(-1)). It may be discriminated from other conformers through a strong band predicted at 1218 cm(-1), red-shifted by 21 cm(-1) from the corresponding band of free C(6)H(7)(+). PMID:22667554

  5. Three-dimensional seismic structure and moment tensors of non-double-couple earthquakes at the Hengill-Grensdalur volcanic complex, Iceland

    USGS Publications Warehouse

    Miller, A.D.; Julian, B.R.; Foulger, G.R.

    1998-01-01

    The volcanic and geothermal areas of Iceland are rich sources of non-double-couple (non-DC) earthquakes. A state-of-the-art digital seismometer network deployed at the Hengill-Grensdalur volcanic complex in 1991 recorded 4000 small earthquakes. We used the best recorded of these to determine 3-D VP and VP/VS structure tomographically and accurate earthquake moment tensors. The VP field is dominated by high seismic wave speed bodies interpreted as solidified intrusions. A widespread negative (-4 per cent) VP/VS anomaly in the upper 4 km correlates with the geothermal field, but is too strong to be caused solely by the effect of temperature upon liquid water or the presence of vapour, and requires in addition mineralogical or lithological differences between the geothermal reservoir and its surroundings. These may be caused by geothermal alteration. Well-constrained moment tensors were obtained for 70 of the best-recorded events by applying linear programming methods to P- and S-wave polarities and amplitude ratios. About 25 per cent of the mechanisms are, within observational error, consistent with DC mechanisms consistent with shear faulting. The other 75 per cent have significantly non-DC mechanisms. Many have substantial explosive components, one has a substantial implosive component, and the deviatoric component of many is strongly non-DC. Many of the non-DC mechanisms are consistent, within observational error, with simultaneous tensile and shear faulting. However, the mechanisms occupy a continuum in source-type parameter space and probably at least one additional source process is occurring. This may be fluid flow into newly formed cracks, causing partial compensation of the volumetric component. Studying non-shear earthquakes such as these has great potential for improving our understanding of geothermal processes and earthquake source processes in general.

  6. Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex.

    PubMed

    Lopez, Rubén J; Mosca, Barbara; Treves, Susan; Maj, Marcin; Bergamelli, Leda; Calderon, Juan C; Bentzinger, C Florian; Romanino, Klaas; Hall, Michael N; Rüegg, Markus A; Delbono, Osvaldo; Caputo, Carlo; Zorzato, Francesco

    2015-02-15

    The protein mammalian target of rapamycin (mTOR) is a serine/threonine kinase regulating a number of biochemical pathways controlling cell growth. mTOR exists in two complexes termed mTORC1 and mTORC2. Regulatory associated protein of mTOR (raptor) is associated with mTORC1 and is essential for its function. Ablation of raptor in skeletal muscle results in several phenotypic changes including decreased life expectancy, increased glycogen deposits and alterations of the twitch kinetics of slow fibres. In the present paper, we show that in muscle-specific raptor knockout (RamKO), the bulk of glycogen phosphorylase (GP) is mainly associated in its cAMP-non-stimulated form with sarcoplasmic reticulum (SR) membranes. In addition, 3[H]-ryanodine and 3[H]-PN200-110 equilibrium binding show a ryanodine to dihydropyridine receptors (DHPRs) ratio of 0.79 and 1.35 for wild-type (WT) and raptor KO skeletal muscle membranes respectively. Peak amplitude and time to peak of the global calcium transients evoked by supramaximal field stimulation were not different between WT and raptor KO. However, the increase in the voltage sensor-uncoupled RyRs leads to an increase of both frequency and mass of elementary calcium release events (ECRE) induced by hyper-osmotic shock in flexor digitorum brevis (FDB) fibres from raptor KO. The present study shows that the protein composition and function of the molecular machinery involved in skeletal muscle excitation-contraction (E-C) coupling is affected by mTORC1 signalling. PMID:25431931

  7. Tandem C(sp(2))-OMe Activation/C(sp(2))-C(sp(2)) Coupling in Early Transition-Metal Complexes: Aromatic C-O Activation beyond Late Transition Metals.

    PubMed

    Radkov, Vasily; Roisnel, Thierry; Trifonov, Alexander; Carpentier, Jean-François; Kirillov, Evgueni

    2016-04-01

    We report on combined structural, kinetic, and computational studies unraveling the mechanism of a unique, highly selective intramolecular C(sp(2))-OMe cleavage/C(sp(2))-C(sp(2)) coupling tandem reaction in group 3 metal (Y and Sc) complexes of amidine-amidopyridinate ligands. The latter process represents a rare stoichiometric model of the nonredox cleavage of inert C(sp(2))-O bonds relevant to cross-coupling reactions of aromatic ethers catalyzed by late transition metals. PMID:26999638

  8. Improving the WRF model's (version 3.6.1) simulation over sea ice surface through coupling with a complex thermodynamic sea ice model (HIGHTSI)

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Huang, Jianbin; Luo, Yong; Zhao, Zongci

    2016-06-01

    Sea ice plays an important role in the air-ice-ocean interaction, but it is often represented simply in many regional atmospheric models. The Noah sea ice scheme, which is the only option in the current Weather Research and Forecasting (WRF) model (version 3.6.1), has a problem of energy imbalance due to its simplification in snow processes and lack of ablation and accretion processes in ice. Validated against the Surface Heat Budget of the Arctic Ocean (SHEBA) in situ observations, Noah underestimates the sea ice temperature which can reach -10 °C in winter. Sensitivity tests show that this bias is mainly attributed to the simulation within the ice when a time-dependent ice thickness is specified. Compared with the Noah sea ice model, the high-resolution thermodynamic snow and ice model (HIGHTSI) uses more realistic thermodynamics for snow and ice. Most importantly, HIGHTSI includes the ablation and accretion processes of sea ice and uses an interpolation method which can ensure the heat conservation during its integration. These allow the HIGHTSI to better resolve the energy balance in the sea ice, and the bias in sea ice temperature is reduced considerably. When HIGHTSI is coupled with the WRF model, the simulation of sea ice temperature by the original Polar WRF is greatly improved. Considering the bias with reference to SHEBA observations, WRF-HIGHTSI improves the simulation of surface temperature, 2 m air temperature and surface upward long-wave radiation flux in winter by 6, 5 °C and 20 W m-2, respectively. A discussion on the impact of specifying sea ice thickness in the WRF model is presented. Consistent with previous research, prescribing the sea ice thickness with observational information results in the best simulation among the available methods. If no observational information is available, we present a new method in which the sea ice thickness is initialized from empirical estimation and its further change is predicted by a complex thermodynamic

  9. 1,5-Diamido-9,10-anthraquinone, a Centrosymmetric Redox-Active Bridge with Two Coupled β-Ketiminato Chelate Functions: Symmetric and Asymmetric Diruthenium Complexes.

    PubMed

    Ansari, Mohd Asif; Mandal, Abhishek; Paretzki, Alexa; Beyer, Katharina; Fiedler, Jan; Kaim, Wolfgang; Lahiri, Goutam Kumar

    2016-06-01

    The dinuclear complexes {(μ-H2L)[Ru(bpy)2]2}(ClO4)2 ([3](ClO4)2), {(μ-H2L)[Ru(pap)2]2}(ClO4)2 ([4](ClO4)2), and the asymmetric [(bpy)2Ru(μ-H2L)Ru(pap)2](ClO4)2 ([5](ClO4)2) were synthesized via the mononuclear species [Ru(H3L)(bpy)2]ClO4 ([1]ClO4) and [Ru(H3L)(pap)2]ClO4 ([2]ClO4), where H4L is the centrosymmetric 1,5-diamino-9,10-anthraquinone, bpy is 2,2'-bipyridine, and pap is 2-phenylazopyridine. Electrochemistry of the structurally characterized [1]ClO4, [2]ClO4, [3](ClO4)2, [4](ClO4)2, and [5](ClO4)2 reveals multistep oxidation and reduction processes, which were analyzed by electron paramagnetic resonance (EPR) of paramagnetic intermediates and by UV-vis-NIR spectro-electrochemistry. With support by time-dependent density functional theory (DFT) calculations the redox processes could be assigned. Significant results include the dimetal/bridging ligand mixed spin distribution in 3(3+) versus largely bridge-centered spin in 4(3+)-a result of the presence of Ru(II)-stabilizig pap coligands. In addition to the metal/ligand alternative for electron transfer and spin location, the dinuclear systems allow for the observation of ligand/ligand and metal/metal site differentiation within the multistep redox series. DFT-supported EPR and NIR absorption spectroscopy of the latter case revealed class II mixed-valence behavior of the oxidized asymmetric system 5(3+) with about equal contributions from a radical bridge formulation. In comparison to the analogues with the deprotonated 1,4-diaminoanthraquinone isomer the centrosymmetric H2L(2-) bridge shows anodically shifted redox potentials and weaker electronic coupling between the chelate sites. PMID:27171539

  10. FT-IR spectroscopic characterization of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli: oxidation of FeS cluster N2 is coupled with the protonation of an aspartate or glutamate side chain.

    PubMed

    Hellwig, P; Scheide, D; Bungert, S; Mäntele, W; Friedrich, T

    2000-09-01

    The proton-pumping NADH:ubiquinone oxidoreductase, also called complex I, is the first energy-transducing complex of many respiratory chains. It couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. One FMN and up to nine iron-sulfur (FeS) clusters participate in the redox reaction. So far, complex I has been described mainly by means of EPR- and UV-vis spectroscopy. Here, we report for the first time an infrared spectroscopic characterization of complex I. Electrochemically induced FT-IR difference spectra of complex I from Escherichia coli and of the NADH dehydrogenase fragment of this complex were obtained for critical potential steps. The spectral contributions of the FMN in both preparations were derived from a comparison using model compounds and turned out to be unexpectedly small. Furthermore, the FT-IR difference spectra reveal that the redox transitions of the FMN and of the FeS clusters induce strong reorganizations of the polypeptide backbone. Additional signals in the spectra of complex I reflect contributions induced by the redox transition of the high-potential FeS cluster N2 which is not present in the NADH dehydrogenase fragment. Part of these signals are attributed to the reorganization of protonated/deprotonated Asp or Glu side chains. On the basis of these data we discuss the role of N2 for proton translocation of complex I. PMID:10978175

  11. Dynamic coupling among channel flow, plateau growth, foreland shortening, and the formation of metamorphic core complexes: Application to the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Rey, P. F.; Teyssier, C.; Whitney, D. L.

    2009-04-01

    Gravitational potential energy stored in an orogenic plateau can be sufficiently strong to deform the surrounding region (foreland), hence contributing to both plateau growth and collapse. Gravity-driven channel flow from the plateau lower crust into the foreland lower crust, or channel extrusion, has been proposed as a main contributor to the eastward growth of the Tibetan plateau, possibly driving the lower crust channel as far as 1000 km beneath the foreland (eg. Royden et al., 2008). On the basis of numerical modeling using temperature-dependent viscosities and densities, we show that four processes impose severe limitations to channel extrusion: (1) cooling of the extruded channel, (2) convective motion in the plateau channel, (3) surface extension of the plateau, and (4) erosion of the plateau edge. Model results show that peak velocities in the extrusion channel drop rapidly (in less than a few My) from ca. 5 cm/year to less than 1 cm/year, owing to the rapid cooling in the channel from 750-850°C to 650-550°C as it travels into the foreland region. Channel flow extrusion is further slowed when convective flow initiates in the plateau channel as a result of only a few percent drop in density. This convection inhibits laminar flow in the channel, reduces the peak horizontal velocity in the channel to a few mm, and even drives a counter flow at the base of the channel, preventing its propagation toward the foreland. If the foreland is actively pulled away from the plateau (extending boundaries), the plateau upper crust undergoes extension and the lower crust moves up efficiently into a metamorphic core complex, which inhibits flow of the channel away from the plateau and even generates a counter flow from the foreland to the metamorphic core complex. If the foreland is fixed, the same phenomenon occurs as long as the foreland upper crust undergoes shortening (likely weakened by high pore fluid pressure), which enhances extension of the plateau and upward flow

  12. Functionalized β-cyclodextrin as supramolecular ligand and their Pd(OAc)2 complex: highly efficient and reusable catalyst for Mizoroki-Heck cross-coupling reactions in aqueous medium.

    PubMed

    Dindulkar, Someshwar D; Jeong, Daham; Kim, Hwanhee; Jung, Seunho

    2016-07-22

    A novel class of water soluble palladium complexes with recognition abilities based on functionalized β-cyclodextrin has been synthesized. The complex demonstrated high catalytic activity and a supramolecular platform for phosphine-free Mizoroki-Heck cross-coupling reactions in water. The efficient arylation of alkenes was carried out using different iodo- and bromo-arenes with good to excellent yields (up to 96%). The advantages, like recyclability of catalysts, operational simplicity and accessibility in aqueous medium, make this protocol eco-friendly. PMID:27208891

  13. Generating Active "L-Pd(0)" via Neutral or Cationic π-Allylpalladium Complexes Featuring Biaryl/Bipyrazolylphosphines: Synthetic, Mechanistic, and Structure-Activity Studies in Challenging Cross-Coupling Reactions.

    PubMed

    DeAngelis, A J; Gildner, Peter G; Chow, Ruishan; Colacot, Thomas J

    2015-07-01

    Two new classes of highly active yet air- and moisture-stable π-R-allylpalladium complexes containing bulky biaryl- and bipyrazolylphosphines with extremely broad ligand scope have been developed. Neutral π-allylpalladium complexes incorporated a range of biaryl/bipyrazolylphosphine ligands, while extremely bulky ligands were accommodated by a cationic scaffold. These complexes are easily activated under mild conditions and are efficient for a wide array of challenging C-C and C-X (X = heteroatom) cross-coupling reactions. Their high activity is correlated to their facile activation to a 12-electron-based "L-Pd(0)" catalyst under commonly employed conditions for cross-coupling reactions, noninhibitory byproduct release upon activation, and suppression of the off-cycle pathway to form dinuclear (μ-allyl)(μ-Cl)Pd2(L)2 species, supported by structural (single crystal X-ray) and kinetic studies. A broad scope of C-C and C-X coupling reactions with low catalyst loadings and short reaction times highlight the versatility and practicality of these catalysts in organic synthesis. PMID:26035637

  14. Pure Optical Dephasing Dynamics in Semiconducting Single-Walled Carbon Nanotubes

    SciTech Connect

    Graham, Matt; Fleming, Graham; Ma, Yingzhong; Green, Alexander A.; Hersam, Mark C.

    2011-01-01

    We report a detailed study of ultrafast exciton dephasing processes in semiconducting single-walled carbon nanotubes (SWNTs) employing a sample highly enriched in a single tube species, the (6,5) tube. Systematic measurements of femtosecond pump-probe, two-pulse photon echo and three-pulse photon echo peak shift over a broad range of excitation intensities and lattice temperature (from 4.4 to 292 K) enable us to quantify the timescales of pure optical dephasing (T 2 ), along with exciton-exciton and exciton-phonon scattering, environmental effects as well as spectral diffusion. While the exciton dephasing time (T2 ) increases from 205 fs at room temperature to 320 fs at 70 K, we found that further decrease of the lattice temperature leads to a shortening of the T2 times. This complex temperature dependence was found to arise from an enhanced relaxation of exciton population at lattice temperatures below 80 K. By quantitatively accounting the contribution from the population relaxation, the corresponding pure optical dephasing times increase monotonically from 225 fs at room temperature to 508 fs at 4.4 K. We further found that below 180 K, the inverse of the pure dephasing time (1/T 2 ) scales linearly with temperature with a slope of 6.7 0.6 eV/K, which suggests dephasing arising from one-phonon scattering (i.e. acoustic phonons). In view ofthe large dynamic disorder of the surrounding environment, the origin of the long room temperature pure dephasing time is proposed to result from reduced strength of exciton-phonon coupling by motional narrowing over nuclear fluctuations. This consideration further suggests the occurrence of remarkable initial exciton delocalization, and makes nanotubes ideal to study many-body effects in spatially confined systems.

  15. HC[triple bond]P and H3C-C[triple bond]P as proton acceptors in protonated complexes containing two phosphorus bases: structures, binding energies, and spin-spin coupling constants.

    PubMed

    Alkorta, Ibon; Elguero, José; Bene, Janet E Del

    2007-10-01

    Ab initio calculations at the MP2/aug'-cc-pVTZ level have been carried out to investigate the structures and binding energies of cationic complexes involving protonated sp, sp2, and sp3 phosphorus bases as proton donor ions and the sp-hybridized phosphorus bases H-C[triple bond]P and H3C-C[triple bond]P as proton acceptors. These proton-bound complexes exhibit a variety of structural motifs, but all are stabilized by interactions that occur through the pi cloud of the acceptor base. The binding energies of these complexes range from 6 to 15 kcal/mol. Corresponding complexes with H3C-C[triple bond]P as the proton acceptor are more stable than those with H-C[triple bond]P as the acceptor, a reflection of the greater basicity of H3C-C[triple bond]P. In most complexes with sp2- or sp3-hybridized P-H donor ions, the P-H bond lengthens and the P-H stretching frequency is red-shifted relative to the corresponding monomers. Complex formation also leads to a lengthening of the C[triple bond]P bond and a red shift of the C[triple bond]P stretching vibration. The two-bond coupling constants 2pihJ(P-P) and 2pihJ(P-C) are significantly smaller than 2hJ(P-P) and 2hJ(P-C) for complexes in which hydrogen bonding occurs through lone pairs of electrons on P or C. This reflects the absence of significant s electron density in the hydrogen-bonding regions of these pi complexes. PMID:17760429

  16. The (CH2)2O-H2O hydrogen bonded complex. Ab Initio calculations and Fourier transform infrared spectroscopy from neon matrix and a new supersonic jet experiment coupled to the infrared AILES beamline of synchrotron SOLEIL.

    PubMed

    Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebène, B; Alikhani, M E; Georges, R; Moudens, A; Goubet, M; Huet, T R; Pirali, O; Roy, P

    2011-03-31

    A series of hydrogen bonded complexes involving oxirane and water molecules have been studied. In this paper we report on the vibrational study of the oxirane-water complex (CH(2))(2)O-H(2)O. Neon matrix experiments and ab initio anharmonic vibrational calculations have been performed, providing a consistent set of vibrational frequencies and anharmonic coupling constants. The implementation of a new large flow supersonic jet coupled to the Bruker IFS 125 HR spectrometer at the infrared AILES beamline of the French synchrotron SOLEIL (Jet-AILES) enabled us to record first jet-cooled Fourier transform infrared spectra of oxirane-water complexes at different resolutions down to 0.2 cm(-1). Rovibrational parameters and a lower bound of the predissociation lifetime of 25 ps for the v(OH)(b) = 1 state have been derived from the rovibrational analysis of the ν(OH)(b) band contour recorded at respective rotational temperatures of 12 K (Jet-AILES) and 35 K (LADIR jet). PMID:21381647

  17. Mono- and binuclear cyclometallated palladium(II) complexes containing bridging (N,O-) and terminal (N-) imidate ligands: air stable, thermally robust and recyclable catalysts for cross-coupling processes.

    PubMed

    Fairlamb, Ian J S; Kapdi, Anant R; Lee, Adam F; Sánchez, Gregorio; López, Gregorio; Serrano, José Luis; García, Luis; Pérez, José; Pérez, Eduardo

    2004-12-01

    Novel dinuclear cyclometallated palladium complexes [{Pd(mu-NCO)(C circumflex accent N)}(2)], containing asymmetric imidato -NCO- bridging units have been synthesised [C circumflex accent N = 7,8-benzoquinolyl; -NCO- = succinimidate (1c), phthalimidate (1a-3a) or maleimidate (3c)]. The reaction of these complexes, and the previously reported analogous imidate precursors containing a phenylazophenyl (1a-3a) or 2-pyridylphenyl (1b-3b) backbone, with tertiary phosphines provides novel mononuclear N-bonded imidate derivatives of the general formula [Pd(C circumflex accent N)(imidate)(L)][L = PPh(3), P(4-F-C(6)H(4))(3) or P(4-MeO-C(6)H(4))(3)]. The single crystal structures of [Pd(azb)(phthalimidate)(P(4-MeO-C(6)H(4))(3))](9a) and [Pd(bzq)(phthalimidate)(PPh(3))](7c) have been established. Dinuclear complexes (1a-3a, 1b-3b, 1c-3c) demonstrate outstanding thermal stability in the solid-state, as shown by thermoanalytical techniques. A marked influence of bridging imidate groups on the initial decomposition temperature is observed. The dinuclear and mononuclear derivatives are shown to be active catalysts/precatalysts for the Suzuki-Miyaura cross-coupling reactions of aryl bromides with aryl boronic acids, and the Sonogashira reactions of aryl halides with phenyl acetylene (in the presence and absence of Cu(I) salts). The conversions appear to be dependent, to some extent, on the type of imidate ligand, suggesting a role for these pseudohalides in the catalytic cycle in both cross-coupling processes. Lower catalyst loadings in 'copper-free' Sonogashira cross-couplings favour higher turnover frequencies. We have further determined that these catalysts may be recycled using a poly(ethylene oxide)(PEO)/methanol solvent medium in Suzuki-Miyaura cross-coupling. Once the reaction is complete, product extraction into a hexane/diethyl ether mixture (1 : 1, v/v) gives cross-coupled products in good yields (with purity > 95%). The polar phase can then be re-used several times

  18. Si-H bond activation at {(NHC)₂Ni⁰} leading to hydrido silyl and bis(silyl) complexes: a versatile tool for catalytic Si-H/D exchange, acceptorless dehydrogenative coupling of hydrosilanes, and hydrogenation of disilanes to hydrosilanes.

    PubMed

    Schmidt, David; Zell, Thomas; Schaub, Thomas; Radius, Udo

    2014-07-28

    The unique reactivity of the nickel(0) complex [Ni2(iPr2Im)4(COD)] (1) (iPr2Im = 1,3-di-isopropyl-imidazolin-2-ylidene) towards hydrosilanes in stoichiometric and catalytic reactions is reported. A series of nickel hydrido silyl complexes cis-[Ni(iPr2Im)2(H)(SiH(n-1)R(4-n))] (n = 1, 2) and nickel bis(silyl) complexes cis-[Ni(iPr2Im)2(SiH(n-1)R(4-n))2] (n = 1, 2, 3) were synthesized by stoichiometric reactions of 1 with hydrosilanes H(n)SiR(4-n), and fully characterized by X-ray diffraction and spectroscopic methods. These hydrido silyl complexes are examples where the full oxidative addition step is hindered. They have, as a result of the remaining Si-H interactions, remarkably short Si-H distances and feature a unique dynamic behavior in solution. Cis-[Ni(iPr2Im)2(H)(SiMePh2)] (cis-5) shows in solution at room temperature a dynamic site exchange of the NHC ligands, H-D exchange with C6D6 to give the deuteride complex cis-[Ni(iPr2Im)2(D)(SiMePh2)] (cis-5-D), and at elevated temperatures an irreversible isomerization to trans-[Ni(iPr2Im)2(D)(SiMePh2)] (trans-5-D). Reactions with sterically less demanding silanes give cis-configured bis(silyl) complexes accompanied by the release of dihydrogen. These complexes display, similarly to the hydrido silyl complexes, interestingly short Si-Si distances. Complex 1 reacts with 4 eq. HSi(OEt)3, in contrast to all the other silanes used in this study, to give the trans-configured bis(silyl) complex trans-[Ni(iPr2Im)2Ni(Si(OEt)3)2] (trans-12). The addition of two equivalents of Ph2SiH2 to 1 results, at elevated temperatures, in the formation of the dinuclear complex [{(iPr2Im)Ni-μ(2)-(HSiPh2)}2] (6). This diamagnetic, formal Ni(I) complex exhibits a long Ni-Ni bond in the solid state, as established by X-ray diffraction. The capability of the electron rich {Ni(iPr2Im)2} complex fragment to activate Si-H bonds was applied catalytically in the deuteration of Et3Si-H to Et3Si-D employing C6D6 as a convenient deuterium source

  19. Actin Filaments Are Involved in the Coupling of V0-V1 Domains of Vacuolar H+-ATPase at the Golgi Complex.

    PubMed

    Serra-Peinado, Carla; Sicart, Adrià; Llopis, Juan; Egea, Gustavo

    2016-04-01

    We previously reported that actin-depolymerizing agents promote the alkalization of the Golgi stack and thetrans-Golgi network. The main determinant of acidic pH at the Golgi is the vacuolar-type H(+)-translocating ATPase (V-ATPase), whose V1domain subunitsBandCbind actin. We have generated a GFP-tagged subunitB2construct (GFP-B2) that is incorporated into the V1domain, which in turn is coupled to the V0sector. GFP-B2 subunit is enriched at distal Golgi compartments in HeLa cells. Subcellular fractionation, immunoprecipitation, and inversal FRAP experiments show that the actin depolymerization promotes the dissociation of V1-V0domains, which entails subunitB2translocation from Golgi membranes to the cytosol. Moreover, molecular interaction between subunitsB2andC1and actin were detected. In addition, Golgi membrane lipid order disruption byd-ceramide-C6 causes Golgi pH alkalization. We conclude that actin regulates the Golgi pH homeostasis maintaining the coupling of V1-V0domains of V-ATPase through the binding of microfilaments to subunitsBandCand preserving the integrity of detergent-resistant membrane organization. These results establish the Golgi-associated V-ATPase activity as the molecular link between actin and the Golgi pH. PMID:26872971

  20. Simple deterministic models and applications. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Mo

    2015-12-01

    Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.

  1. A Field-Scale Reactive Transport Model for U(VI) Migration Influenced by Coupled Multirate Mass Transfer and Surface Complexation Reactions

    SciTech Connect

    Ma, Rui; Zheng, Chunmiao; Prommer, Henning; Greskowiak, Janek; Liu, Chongxuan; Zachara, John M.; Rockhold, Mark L.

    2010-05-06

    A field-scale reactive transport model was developed that incorporates laboratory-characterized U(VI) surface complexation reactions (SCR) and multi-rate mass transfer processes, and field-measured hydrogeochemical conditions at Department of Energy, Hanford 300A site, Washington, where an Integrated Field Research Challenge project is ongoing. The model was used to assess the importance of multi-rate mass transfer processes on sorption-retarded U(VI) reactive transport at the 300A site and to evaluate the effect of variable geochemical conditions on U(VI) plume migration caused by dynamic river stage fluctuations at the east side of the site. Model simulations revealed a complex spatio-temporal variations of groundwater geochemistry that affects U(VI) speciation, adsorption, and plume migration. In general, the river water intrusion enhances uranium adsorption and lowers groundwater aqueous uranium concentration as a result of river water dilution that decreases aqueous carbonate concentration, which subsequently weakens aqueous U(VI)-carbonate complexation and enhances U(VI)-surface complexation. The simulations also found that SCR-retarded U migration becomes more dynamic and more in sync with the groundwater flow field when multi-rate mass transfer processes are involved. Strong U(VI) adsorption was simulated at the 300A site based on the field-measured hydrogeochemical conditions, suggesting a slow dissipation of U(VI) plume, a phenomenon consistent with the observation at the site. Uranium breakthrough curves at selected observation points and the mass changes over time in the simulation indicate that uranium adsorption/desorption never attains steady state as a result of both the highly dynamic flow field and the chemistry variations caused by river water intrusion. Thus, the multi-rate SCM model appears to be a crucial feature for future reactive transport simulations of uranium at the 300A site.

  2. Direct coupled-channels deperturbation analysis of the A{sup 1}Σ{sup +} ∼ b{sup 3}Π complex in LiCs with experimental accuracy

    SciTech Connect

    Kowalczyk, P.; Jastrzebski, W.; Szczepkowski, J.

    2015-06-21

    We have carried out the direct deperturbation analysis of about 780 rovibronic term values of the strongly spin-orbit (SO) coupled A{sup 1}Σ{sup +} and b{sup 3}Π states of the {sup 7}Li{sup 133}Cs molecule recorded by polarization labelling spectroscopy technique. The explicit A{sup 1}Σ{sup +} ∼ b{sup 3}Π{sub Ω=0,1,2} coupled-channels treatment allowed us to reproduce 95% experimental term values with a standard deviation of 0.05 cm{sup −1} which is close to the accuracy of the present experiment. The initial potential energy curves (PECs) of the mutually perturbed states and SO matrix elements were ab initio evaluated in the basis of the spin-averaged wave functions. The empirically refined PECs and SO functions, along with the theoretical transition dipole moments, were used to predict energy and radiative properties of the A ∼ b complex for low J levels of both {sup 7}Li{sup 133}Cs and {sup 6}Li{sup 133}Cs isotopologues. The reasonable candidates for the stimulated Raman transitions between initial Feshbach resonance states, the mixed levels of the A ∼ b complex, and absolute ground X{sup 1}Σ{sup +} (v = 0 and J = 0) state were identified.

  3. Is it important to characterize complex patterns of riverbed hydraulic conductivities for assessing river-aquifer exchange fluxes? An evaluation with an integrated fully coupled hydrological model.

    NASA Astrophysics Data System (ADS)

    Tang, Qi; Kurtz, Wolfgang; Schilling, Oliver; Brunner, Philip; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2016-04-01

    Riverbed hydraulic conductivity is a critical parameter for the prediction of exchange fluxes between groundwater and surface water bodies. It was found in previous studies that it is important to characterize heterogeneity of riverbed hydraulic conductivity. In this context, we also investigated in the past whether the heterogeneity pattern of riverbed hydraulic conductivities (i.e., multiGaussian, different types of non-multiGaussian patterns) plays an important role. It was found that the heterogeneity pattern does not matter so much. However, these past studies were conducted with the subsurface hydrological model SPRING which only considers one way coupling and only vertical fluxes through the river-aquifer interface. In this study, the role of patterns was further explored using the fully coupled hydrological model HydroGeoSphere. A synthetic 3-D river-aquifer model was set up with a heterogeneous riverbed showing non-multiGaussian patterns in the form of meandering channels as the reference field. Data assimilation experiments were carried out with help of the Ensemble Kalman Filter to characterize the heterogeneous riverbed. The data assimilation experiments were conducted for four types of riverbed hydraulic conductivity (K) fields: (i) spatially homogeneous, (ii) heterogeneous with multiGaussian distribution, (iii) heterogeneous with non-multiGaussian distribution (channelized structures) and (iv) heterogeneous with non-multiGaussian distribution (elliptic structures). For all the data assimilation scenarios, state variables and riverbed K were updated by assimilating piezometric heads. The experiments were repeated for ten reference fields. Results show that for all prior geostatistical models data assimilation was able to reduce the difference between simulated and measured hydraulic heads, and to improve the characterization of riverbed hydraulic conductivities and river-aquifer exchange fluxes. Results were slightly better for non-multiGaussian fields

  4. Correcting High-Resolution Borehole Strainmeter Data from Complex External Influences and Partial-Solid Coupling: the Case of Trizonia, Rift of Corinth (Greece)

    NASA Astrophysics Data System (ADS)

    Canitano, A.; Bernard, P.; Linde, A. T.; Sacks, S.; Boudin, F.

    2014-08-01

    High-resolution borehole strainmeters are usually installed in tectonically active regions in order to detect slow-slip events, and to estimate slow transients related to earthquake swarms. However, they are also sensitive to other numerous influences, internal or external. Furthermore, the quality of their coupling to the rock through cementation, and the mechanical properties of the rock mass around them, have a critical influence on their records. Many of the existing strainmeters present such problems, and the correction for these effects often remains a challenge. In this paper, we present the analysis of the records of a high-resolution borehole dilatometer (Sacks-Evertson), located in the seismically active rift of Corinth (Greece) (station TRZ in the Trizonia island). We show that the instrument suffers from an only partial-solid coupling, and that the nearby sea tides have a direct (through elastic response) and indirect (through pore-pressure diffusion) effect on the dilatation signal, which adds up to the solid tidal strain source. We propose a methodology that allows, in a first step, to better separate the internal (solid tide) from the external (air pressure, sea level) influences, by calculating a frequency-dependent transfer function outside the range of the tidal periods. We then extrapolate this function, in particular at the tidal periods. In a second step, the resulting variation with frequency of the coupling coefficients with sea level led us to estimate the proportion of instrument not solidly cemented to rock (thus in contact with water pore pressure), which is about 90 % of the total height. Despite the small proportion of solid coupling, the sensor resolution remains very good up to a few tens of hours of a time period, thanks to the confining effects of the rocks on the local pore pressure. These results allow us to correct for the external effects, and reduce the associated variance by 80-90 % (in the period range of minutes to days

  5. Interferences removal for cadmium determination in samples with complex matrices by hydride generation coupled with non-dispersive atomic fluorescence spectrometry.

    PubMed

    Li, Zhongxi; Zhou, Liping

    2006-01-01

    An intermittent on-line concentration and separation system coupled with HG-AFS was developed to eliminate serious interferences from Cu2+, Pb2+ and Zn2+ on the determination of cadmium. In the present method, the interferences from common coexisting ions, such as Cu2+, Pb2+, Zn2+, Fe3+ and Ni2+, were greatly reduced. Under the optimized conditions, a detection limit of 3 pg ml(-1) (3sigma, n=11) and a precision of 1.9% RSD for 1 ng ml(-1) of Cd were obtained. The method was successfully applied to the determination of cadmium in a series of Chinese Geological Reference Materials (SRMs) and GBW01621 ferronickel alloy using simple aqueous standard calibration technique. The results obtained were in good agreement with the certified values. PMID:16429786

  6. High-Order Hybridized Discontinuous Galerkin (HDG) Method for Wave Propagation Simulation in Complex Geophysical Media - Elastic, Acoustic and Hydro-Acoustic - an Unifying Framework to Couple Continuous Spectral Element and Discontinuous Galerkin Methods.

    NASA Astrophysics Data System (ADS)

    Sébastien, T.; Vilotte, J. P.; Guillot, L.; Mariotti, C.

    2014-12-01

    Today seismological observation systems combine broadband seismic receivers, hydrophones and micro-barometers antenna that provide complementary observations of source-radiated waves in heterogeneous and complex geophysical media. Exploiting these observations requires accurate and multi-physics - elastic, hydro-acoustic, infrasonic - wave simulation methods. A popular approach is the Spectral Element Method (SEM) (Chaljub et al, 2006) which is high-order accurate (low dispersion error), very flexible to parallelization and computationally attractive due to efficient sum factorization technique and diagonal mass matrix. However SEMs suffer from lack of flexibility in handling complex geometry and multi-physics wave propagation. High-order Discontinuous Galerkin Methods (DGMs), i.e. Dumbser et al (2006), Etienne et al. (2010), Wilcox et al (2010), are recent alternatives that can handle complex geometry, space-and-time adaptativity, and allow efficient multi-physics wave coupling at interfaces. However, DGMs are more memory demanding and less computationally attractive than SEMs, especially when explicit time stepping is used. We propose a new class of higher-order Hybridized Discontinuous Galerkin Spectral Elements (HDGSEM) methods for spatial discretization of wave equations, following the unifying framework for hybridization of Cockburn et al (2009) and Nguyen et al (2011), which allows for a single implementation of conforming and non-conforming SEMs. When used with energy conserving explicit time integration schemes, HDGSEM is flexible to handle complex geometry, computationally attractive and has significantly less degrees of freedom than classical DGMs, i.e., the only coupled unknowns are the single-valued numerical traces of the velocity field on the element's faces. The formulation can be extended to model fractional energy loss at interfaces between elastic, acoustic and hydro-acoustic media. Accuracy and performance of the HDGSEM are illustrated and

  7. Isomeric [RuCl2(dmso)2(indazole)2] complexes: ruthenium(II)-mediated coupling reaction of acetonitrile with 1H-indazole.

    PubMed

    Reisner, Erwin; Arion, Vladimir B; Rufińska, Anna; Chiorescu, Ion; Schmid, Wolfgang F; Keppler, Bernhard K

    2005-07-21

    Reaction of the antitumor complex trans-[Ru(III)Cl4(Hind)2]- (Hind = indazole) with an excess of dimethyl sulfoxide (dmso) in acetone afforded the complex trans,trans,trans-[Ru(II)Cl2(dmso)2(Hind)2] (1). Two other isomeric compounds trans,cis,cis-[Ru(II)Cl2(dmso)2(Hind)2] (2) and cis,cis,cis-[Ru(II)Cl2(dmso)2(Hind)2] (3) have been obtained on refluxing cis-[Ru(II)Cl(2)(dmso)(4)] with 2 equiv. of indazole in ethanol and methanol, respectively. Isomers 1 and 2 react with acetonitrile yielding the complexes trans-[Ru(II)Cl2(dmso)(Hind){HN=C(Me)ind}].CH3CN (4.CH3CN) and trans,cis-[Ru(II)Cl2(dmso)2{HN=C(Me)ind}].H2O (5.H2O), respectively, containing a cyclic amidine ligand resulting from insertion of the acetonitrile C triple bond N group in the N1-H bond of the N2-coordinated indazole ligand in the nomenclature used for 1H-indazole. These are the first examples of the metal-assisted iminoacylation of indazole. The products isolated have been characterized by elemental analysis, IR spectroscopy, UV-vis spectroscopy, electrospray mass-spectrometry, thermogravimetry, differential scanning calorimetry, 1H NMR spectroscopy, and solid-state 13C CP MAS NMR spectroscopy. The isomeric structures of 1-3 and the presence of a chelating amidine ligand in 4 and 5 have been confirmed by X-ray crystallography. The electrochemical behavior of 1-5 and the formation of 5 have been studied by cyclic voltammetry. PMID:15995743

  8. Cyanovanadate(III) complexes as novel additives for efficient generation of volatile cadmium species in complex samples prior to determinations by inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Yilmaz, Vedat; Arslan, Zikri; Rose, LaKeysha; Little, Maria D

    2013-10-15

    A new method has been described for generation of volatile species of Cd using vanadium(III) cyanide complex. Aqueous solutions of 0.04 mol L(-1) vanadium chloride (VCl3) and 0.12 mol L(-1) potassium cyanide (KCN) were reacted on-line yielding a suspension of vanadium hydroxide, V(OH)3. This suspension was dissolved along the stream of sample solution in dilute HCl to form heptacyanovanadate(III) complex, [V(CN)7]4-. Volatile Cd species were generated by reacting the stream of sample solution and cyanovanadate(III) complex with sodium borohydride (NaBH4). Feasibility of off-line and on-online approaches was investigated for quantitative determinations. Better precision and daily stability were achieved with on-line settings. Optimum signals were obtained from sample solutions within a range of 3 to 5% v/v HCl. A concentration of 2% m/v NaBH4 was adequate to achieve an enhancement of 20-fold in the presence of cyanovanadate(III) complex. The limits of detection were 5.0 and 4.5 ng L(-1) for 110Cd and 111Cd isotopes, respectively. Precision (%RSD) was better than 4.7% for six replicate measurements. The interferences of Cu(II) and Ni(II) were marginal (<10%) at 1.0 µg mL(-1). Depressive effects from Bi, Se and Sn were not significant below 0.1 µg mL(-1). The method was validated by determination of Cd using ICP-MS in certified reference materials of Nearshore seawater (CASS-4), Bone ash (SRM 1400), Dogfish liver (DOLT-4) and Mussel tissue (SRM 2976). PMID:24014893

  9. Cyanovanadate(III) complexes as novel additives for efficient generation of volatile cadmium species in complex samples prior to determinations by inductively coupled plasma mass spectrometry (ICP-MS)

    PubMed Central

    Yilmaz, Vedat; Arslan, Zikri; Rose, LaKeysha; Little, Maria D.

    2013-01-01

    A new method has been described for generation of volatile species of Cd using vanadium(III) cyanide complex. Aqueous solutions of 0.04 mol L−1 vanadium chloride (VCl3) and 0.12 mol L−1 potassium cyanide (KCN) were reacted on-line yielding a suspension of vanadium hydroxide, V(OH)3. This suspension was dissolved along the stream of sample solution in dilute HCl to form heptacyanovanadate(III) complex, [V(CN)7]4−. Volatile Cd species were generated by reacting the stream of sample solution and cyanovanadate(III) complex with sodium borohydride (NaBH4). Feasibility of off-line and on-online approaches was investigated for quantitative determinations. Better precision and daily stability were achieved with on-line settings. Optimum signals were obtained from sample solutions within a range of 3 to 5% v/v HCl. A concentration of 2% m/v NaBH4 was adequate to achieve an enhancement of 20-fold in the presence of cyanovanadate(III) complex. The limits of detection were 5.0 and 4.5 ng L−1 for 110Cd and 111Cd isotopes, respectively. Precision (%RSD) was better than 4.7% for six replicate measurements. The interferences of Cu(II) and Ni(II) were marginal (<10%) at 1.0 μg mL−1. Depressive effects from Bi, Se and Sn were not significant below 0.1 μg mL−1. The method was validated by determination of Cd using ICP-MS in certified reference materials of Nearshore seawater (CASS-4), Bone ash (SRM 1400), Dogfish liver (DOLT-4) and Mussel tissue (SRM 2976). PMID:24014893

  10. PHI: a powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes.

    PubMed

    Chilton, Nicholas F; Anderson, Russell P; Turner, Lincoln D; Soncini, Alessandro; Murray, Keith S

    2013-05-15

    A new program, PHI, with the ability to calculate the magnetic properties of large spin systems and complex orbitally degenerate systems, such as clusters of d-block and f-block ions, is presented. The program can intuitively fit experimental data from multiple sources, such as magnetic and spectroscopic data, simultaneously. PHI is extensively parallelized and can operate under the symmetric multiprocessing, single process multiple data, or GPU paradigms using a threaded, MPI or GPU model, respectively. For a given problem PHI is been shown to be almost 12 times faster than the well-known program MAGPACK, limited only by available hardware. PMID:23386394

  11. Using coupled micropillar compression and micro-Laue diffraction to investigate deformation mechanisms in a complex metallic alloy Al13Co4

    NASA Astrophysics Data System (ADS)

    Bhowmik, Ayan; Dolbnya, Igor P.; Britton, T. Ben; Jones, Nicholas G.; Sernicola, Giorgio; Walter, Claudia; Gille, Peter; Dye, David; Clegg, William J.; Giuliani, Finn

    2016-03-01

    In this study, we have used in-situ micro-Laue diffraction combined with micropillar compression of focused ion beam milled Al13Co4 complex metallic alloy to investigate the evolution of deformation in Al13Co4. Streaking of the Laue spots shows that the onset of plastic flow occurs at stresses as low as 0.8 GPa, although macroscopic yield only becomes apparent at 2 GPa. The measured misorientations, obtained from peak splitting, enable the geometrically necessary dislocation density to be estimated as 1.1 × 1013 m-2.

  12. Adenosine A1 receptors heterodimerize with β1- and β2-adrenergic receptors creating novel receptor complexes with altered G protein coupling and signaling.

    PubMed

    Chandrasekera, P Charukeshi; Wan, Tina C; Gizewski, Elizabeth T; Auchampach, John A; Lasley, Robert D

    2013-04-01

    G protein coupled receptors play crucial roles in mediating cellular responses to external stimuli, and increasing evidence suggests that they function as multiple units comprising homo/heterodimers and hetero-oligomers. Adenosine and β-adrenergic receptors are co-expressed in numerous tissues and mediate important cellular responses to the autocoid adenosine and sympathetic stimulation, respectively. The present study was undertaken to examine whether adenosine A1ARs heterodimerize with β1- and/or β2-adrenergic receptors (β1R and β2R), and whether such interactions lead to functional consequences. Co-immunoprecipitation and co-localization studies with differentially epitope-tagged A1, β1, and β2 receptors transiently co-expressed in HEK-293 cells indicate that A1AR forms constitutive heterodimers with both β1R and β2R. This heterodimerization significantly influenced orthosteric ligand binding affinity of both β1R and β2R without altering ligand binding properties of A1AR. Receptor-mediated ERK1/2 phosphorylation significantly increased in cells expressing A1AR/β1R and A1AR/β2R heteromers. β-Receptor-mediated cAMP production was not altered in A1AR/β1R expressing cells, but was significantly reduced in the A1AR/β2R cells. The inhibitory effect of the A1AR on cAMP production was abrogated in both A1AR/β1R and A1AR/β2R expressing cells in response to the A1AR agonist CCPA. Co-immunoprecipitation studies conducted with human heart tissue lysates indicate that endogenous A1AR, β1R, and β2R also form heterodimers. Taken together, our data suggest that heterodimerization between A1 and β receptors leads to altered receptor pharmacology, functional coupling, and intracellular signaling pathways. Unique and differential receptor cross-talk between these two important receptor families may offer the opportunity to fine-tune crucial signaling responses and development of more specific therapeutic interventions. PMID:23291003

  13. An effective pre-treatment method for the determination of short-chain fatty acids in a complex matrix by derivatization coupled with headspace single-drop microextraction.

    PubMed

    Chen, Yuan; Li, Yun; Xiong, Yongqiang; Fang, Chenchen; Wang, Xiaotao

    2014-01-17

    We have developed a sample preparation method involving derivatization combined with headspace single-drop microextraction (HS-SDME) for the determination of short-chain fatty acids (SCFAs) in complex matrices. The derivatization of SCFAs was conducted using the BF3/ethanol method prior to HS-SDME. The HS-SDME extraction conditions for the derivatization products (ethyl esters) of SCFAs were optimized using 1.0μL of dibutylphthalate (DBP), 1000rpm stirring speed, 30% (w/v) NaCl, 20min extraction time, and 7mL of sample solution in a 12mL vial. Quantitative determination of ethyl esters was performed using gas chromatography (GC). Linear calibration curves and excellent reproducibility were obtained using these optimized extraction conditions. Compared with our previous work, the significantly lower detection limits (0.11, 0.017, 0.0060, and 0.0024μg/mL for C2 to C5 SCFAs, respectively) indicate that this new method is suitable for quantitative analysis of SCFAs in complex matrices, such as the RuO4 oxidation products of kerogen or asphaltene. PMID:24388413

  14. A cyclometalated resting state for a reactive molybdenum amide: Favorable consequences of {beta}-hydrogen elimination including reductive cleavage, coupling, and complexation

    SciTech Connect

    Tsai, Y.C.; Johnson, M.J.A.; Mindiola, D.J.; Cummins, C.C.; Klooster, W.T.; Koetzle, T.F.

    1999-11-10

    Dimethylamide ligation of molybdenum(III) supports Mo{triple{underscore}bond}Mo triple bond formation, and N-tert-butylanilide ligation engenders reactive yet isolable monomeric three-coordination derivatives, it is now shown that ligation of Mo(III) by N-isopropylanilide gives rise to the cyclometalated{sup 4} ({beta}-H eliminated) species Mo(H)({eta}{sup 2}-Me{sub 3}C{double{underscore}bond}NAr)(N[{sup i}Pr]Ar){sub 2} (1, Ar = 3,5-C{sub 6}H{sub 3}Me{sub 2}), which can be thought of alternatively as an imine complex or as a metallaziridine derivative. {beta}-H elimination for complexes of organoamide ligands is a rarely documented phenomenon. Compound 1, which is freely soluble in hydrocarbon and ethereal solvents, was obtained as a brown solid in 70% yield from the reaction of Li(N[{sup i}Pr]Ar)(OEt{sub 2}) with MoCl{sub 3}(THF){sub 3}.

  15. New method for the immobilization of pullulanase onto hybrid magnetic (Fe3O4-κ-carrageenan) nanoparticles by electrostatic coupling with pullulanase/chitosan complex.

    PubMed

    Long, Jie; Wu, Zhengzong; Li, Xingfei; Xu, Enbo; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2015-04-01

    We present a simple method to immobilize pullulanase onto hybrid magnetic (Fe3O4-κ-carrageenan) nanoparticles, involving the in situ synthesis of magnetic carrageenan nanoparticles and the formation of pullulanase/chitosan complex. The complex behavior of pullulanase with chitosan as a function of pH and protein-polysaccharide ratio was studied by turbidimetric titration. Then, the as-prepared immobilized enzymes were characterized by vibrating-sample magnetometer, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometer, and thermogravimetric analysis. It was found that the activity retention of immobilized pullulanase and amount of enzyme loaded reached 95.5% and 96.3 mg/g, respectively, under optimal conditions. The immobilized enzyme exhibited great operational stability (retaining approximately 61% residual activity after ten consecutive reuses), demonstrating that enzyme leakage during the catalysis reaction was efficiently reduced. Furthermore, the activity of immobilized pullulanase was significantly (p < 0.01) higher than that of free pullulanase in a low pH range (pH < 3.0) and temperature over 60 °C, and the immobilized enzymes retained 45% of their initial activity after 5 h at 60 °C, compared to 21% for the free enzyme. These results indicated that immobilized pullulanase was efficient in terms of catalytic activity and can be applied to continuous starch processing applications in the food industry. PMID:25797694

  16. Cadmium transport in isolated enterocytes of freshwater rainbow trout: interactions with zinc and iron, effects of complexation with cysteine, and an ATPase-coupled efflux.

    PubMed

    Kwong, Raymond W M; Niyogi, Som

    2012-03-01

    The present study investigated the mechanisms of intestinal cadmium (Cd) uptake and efflux, using isolated enterocytes of freshwater rainbow trout (Oncorhynchus mykiss) as the experimental model. The apical uptake of free Cd(2+) in the enterocytes was a saturable and high-affinity transport process. Both zinc (Zn(2+)) and iron (Fe(2+)) inhibited cellular Cd(2+) uptake through a competitive interaction, suggesting that Cd(2+) enters enterocytes via both Zn(2+) (e.g., ZIP8) and Fe(2+) (e.g., DMT1) transport pathways. Cellular Cd(2+) uptake increased in the presence of HCO(3)(-), which resembled the function of mammalian ZIP8. Cellular Cd(2+) uptake was unaffected by Ca(2+), indicating that Cd(2+) does not compete with Ca(2+) for apical uptake. Interestingly, Cd uptake was influenced by the presence of l-cysteine, and under the exposure condition where Cd(Cys)(+) was the predominant Cd species, cellular Cd uptake rate increased with the increased concentration of Cd(Cys)(+). The kinetic analysis indicated that the uptake of Cd(Cys)(+) occurs through a low capacity transport mechanism relative to that of free Cd(2+). In addition, Cd efflux from the enterocytes decreased in the presence of an ATPase inhibitor (orthovanadate), suggesting the existence of an ATPase-coupled extrusion process. Overall, our findings provide new mechanistic insights into the intestinal Cd transport in freshwater fish. PMID:21930242

  17. Membrane-bound MinDE complex acts as a toggle switch that drives Min oscillation coupled to cytoplasmic depletion of MinD

    PubMed Central

    Vecchiarelli, Anthony G.; Li, Min; Mizuuchi, Michiyo; Hwang, Ling Chin; Seol, Yeonee; Neuman, Keir C.; Mizuuchi, Kiyoshi

    2016-01-01

    The Escherichia coli Min system self-organizes into a cell-pole to cell-pole oscillator on the membrane to prevent divisions at the cell poles. Reconstituting the Min system on a lipid bilayer has contributed to elucidating the oscillatory mechanism. However, previous in vitro patterns were attained with protein densities on the bilayer far in excess of those in vivo and failed to recapitulate the standing wave oscillations observed in vivo. Here we studied Min protein patterning at limiting MinD concentrations reflecting the in vivo conditions. We identified “burst” patterns—radially expanding and imploding binding zones of MinD, accompanied by a peripheral ring of MinE. Bursts share several features with the in vivo dynamics of the Min system including standing wave oscillations. Our data support a patterning mechanism whereby the MinD-to-MinE ratio on the membrane acts as a toggle switch: recruiting and stabilizing MinD on the membrane when the ratio is high and releasing MinD from the membrane when the ratio is low. Coupling this toggle switch behavior with MinD depletion from the cytoplasm drives a self-organized standing wave oscillator. PMID:26884160

  18. Spectroscopic Investigation of Proton-Coupled Electron Transfer in Water Oxidation Catalyzed by a Ruthenium Complex, [Ru(tpy)(bpy)(H_2O)]2+

    NASA Astrophysics Data System (ADS)

    Duffy, Erin M.; Marsh, Brett; Voss, Jonathan; Garand, Etienne

    2015-06-01

    The splitting of H_2O into H_2 and O_2 is an attractive option for alternative energy, but the oxygen evolution step poses a significant challenge. A decades-long effort to produce a suitable water oxidation catalyst (WOC) has made progress on this front, but the precise reaction mechanism of these catalysts is still not well understood. One of the most extensively studied WOCs is [Ru(tpy)(bpy)(H_2O)]2+ (tpy = 2,2':6,2"-terpyridine, bpy = 2,2'-bipyridine). Presented here are gas-phase infrared spectra of water clusters of [Ru(tpy)(bpy)(OH_2)]2+ and the first intermediate of the catalytic cycle, [Ru(tpy)(bpy)(OH)]2+. In particular, the O-H stretches are used as a probe of solvation strength, and trends in their spectral shifts are examined as a function of cluster size. With the aid of density functional theory (DFT) calculations, these spectra reveal structural changes induced by solvation that provide clear evidence for proton-coupled electron transfer (PCET), in support of proposed mechanisms.

  19. Ab initio calculation of proton-coupled electron transfer rates using the external-potential representation: a ubiquinol complex in solution.

    PubMed

    Yamamoto, Takeshi; Kato, Shigeki

    2007-06-14

    In quantum-mechanical/molecular-mechanical (QM/MM) treatment of chemical reactions in condensed phases, one solves the electronic Schrodinger equation for the solute (or an active site) under the electrostatic field from the environment. This Schrodinger equation depends parametrically on the solute nuclear coordinates R and the external electrostatic potential V. This fact suggests that one may use R and V as natural collective coordinates for describing the entire system, where V plays the role of collective solvent variables. In this paper such an (R,V) representation of the QM/MM canonical ensemble is described, with particular focus on how to treat charge transfer processes in this representation. As an example, the above method is applied to the proton-coupled electron transfer of a ubiquinol analog with phenoxyl radical in acetonitrile solvent. Ab initio free-energy surfaces are calculated as functions of R and V using the reference interaction site model self-consistent field method, the equilibrium points and the minimum free-energy crossing point are located in the (R,V) space, and then the kinetic isotope effects (KIEs) are evaluated approximately. The results suggest that a stiffer proton potential at the transition state may be responsible for unusual KIEs observed experimentally for related systems. PMID:17581070

  20. A characterization of the coupled evolution of grain fabric and pore space using complex networks: Pore connectivity and optimized flows in the presence of shear bands

    NASA Astrophysics Data System (ADS)

    Russell, Scott; Walker, David M.; Tordesillas, Antoinette

    2016-03-01

    A framework for the multiscale characterization of the coupled evolution of the solid grain fabric and its associated pore space in dense granular media is developed. In this framework, a pseudo-dual graph transformation of the grain contact network produces a graph of pores which can be readily interpreted as a pore space network. Survivability, a new metric succinctly summarizing the connectivity of the solid grain and pore space networks, measures material robustness. The size distribution and the connectivity of pores can be characterized quantitatively through various network properties. Assortativity characterizes the pore space with respect to the parity of the number of particles enclosing the pore. Multiscale clusters of odd parity versus even parity contact cycles alternate spatially along the shear band: these represent, respectively, local jamming and unjamming regions that continually switch positions in time throughout the failure regime. Optimal paths, established using network shortest paths in favor of large pores, provide clues on preferential paths for interstitial matter transport. In systems with higher rolling resistance at contacts, less tortuous shortest paths thread through larger pores in shear bands. Notably the structural patterns uncovered in the pore space suggest that more robust models of interstitial pore flow through deforming granular systems require a proper consideration of the evolution of in situ shear band and fracture patterns - not just globally, but also inside these localized failure zones.

  1. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben

    NASA Astrophysics Data System (ADS)

    Elghobashy, Mohamed R.; Bebawy, Lories I.; Shokry, Rafeek F.; Abbas, Samah S.

    2016-03-01

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2 nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00 μg mL- 1 for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method.

  2. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben.

    PubMed

    Elghobashy, Mohamed R; Bebawy, Lories I; Shokry, Rafeek F; Abbas, Samah S

    2016-03-15

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00μgmL(-1) for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method. PMID:26745510

  3. Coupling of the 99mtechnetium-nitrido group to monoclonal antibody and use of the complexes for the detection of tumors in mice

    SciTech Connect

    Kanellos, J.; Pietersz, G.A.; McKenzie, I.F.; Bonnyman, J.; Baldas, J.

    1986-08-01

    The in vivo detection of tumors by immunoscintigraphy using /sup 99m/Tc labelled monoclonal antibodies (MoAb) was explored in this study. A simple method for the labelling of microgram quantities of MoAb with /sup 99m/Tc based on the substitution reaction of MoAb and /sup 99m/TcNCl/sub 4//sup -/ is described. The selective activity of the /sup 99m/technetium-nitrido-MoAb (/sup 99m/TcN-MoAb) complexes was proved in vitro by a binding assay with different target cells. The /sup 99m/TcN-MoAb complexes were shown to bind reactive cells up to 20 times more avidly than nonreactive cells. The specificity of the /sup 99m/TcN-MoAb complexes was shown in vivo. (C57BL/6 X BALB/c)F1 mice bearing palpable tumors (0.3-1.5 cm in diameter) were given an iv injection of 1 of 2 MoAb (one reactive and the other nonreactive) identically labeled with /sup 99m/TcNCl/sub 4//sup -/ and then scanned with a gamma camera, and/or the tissues were removed and the localization of /sup 99m/Tc-nitrido group-labeled MoAb was measured. Tumor localization of the reactive MoAb (1.8-2.2% of the injected dose) was four times greater than that of the nonreactive /sup 99m/TcN-MoAb (0.3-0.4% of the injected dose). The localization of specific /sup 99m/TcN-MoAb to a murine thymoma was observed in the gamma camera image at just 2 hours after injection. At 27 hours, tumors could readily be detected by /sup 99m/TcN-MoAb without the need for background subtraction. Nonreactive /sup 99m/TcN-MoAb did not image the tumors. The use of /sup 99m/TcN-MoAb offers substantial improvement over radioiodinated (/sup 125/I or /sup 131/I) MoAb for the detection of tumors. The use of /sup 99m/TcNCl/sub 4//sup -/ as a labeling agent results in /sup 99m/Tc-labeled MoAb with high specific activity and specificity when compared with the specific activity and specificity of the /sup 99m/Tc-MoAb prepared by using the conventional SnCl/sub 2/ reduction of pertechnetate.

  4. Development of new portable miniaturize solid phase microextraction of silver-APDC complex using micropipette tip in-syringe system couple with electrothermal atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shah, Faheem; Arain, Sadaf Sadia; Arain, Salma Aslam; Panhwar, Abdul Haleem; Arain, Mariam Shahzadi; Samoon, Muhammad Kashif

    2016-02-01

    An innovative and simple miniaturized solid phase microextraction (M-SPME) method, was developed for preconcentration and determination of silver(I) in the fresh and waste water samples. For M-SPME, a micropipette tip packed with activated carbon cloth (ACC) as sorbent, in a syringe system. The size, morphology and elemental composition of ACC before and after adsorption of analyte have been characterized by scanning electron microscopy and energy dispersive spectroscopy. The sample solution treated with a complexing reagent, ammonium pyrrolidine dithiocarbamate (APDC), was drawn into the syringe filled with ACC and dispensed manually for 2 to 10 aspirating/dispensing cycle. Then the Ag- complex sorbed on the ACC in micropipette was quantitatively eluted by drawing and dispensing of different concentrations of acids for 2 to 5 aspirating/dispensing cycles. The extracted Ag ions with modifier were injected directly into the electrothermal atomic absorption spectrometry for analysis. The influence of different variables on the extraction efficiency, including the concentration of ligand, pH, sample volume, eluent type, concentration and volume was investigated. Validity and accuracy of the developed method was checked by the standard addition method. Reliability of the proposed methodology was checked by the relative standard deviation (%RSD), which was found to be <5%. Under the optimized experimental variables, the limits of detection (LOD) and enhancement factors (EF), were obtained to be 0.86 ng L(-1) and 120, respectively. The proposed method was successfully applied for the determination of trace levels of silver ions in fresh and waste water samples. PMID:26520476

  5. Development of new portable miniaturize solid phase microextraction of silver-APDC complex using micropipette tip in-syringe system couple with electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Naeemullah; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shah, Faheem; Arain, Sadaf Sadia; Arain, Salma Aslam; Panhwar, Abdul Haleem; Arain, Mariam Shahzadi; Samoon, Muhammad Kashif

    2016-02-01

    An innovative and simple miniaturized solid phase microextraction (M-SPME) method, was developed for preconcentration and determination of silver(I) in the fresh and waste water samples. For M-SPME, a micropipette tip packed with activated carbon cloth (ACC) as sorbent, in a syringe system. The size, morphology and elemental composition of ACC before and after adsorption of analyte have been characterized by scanning electron microscopy and energy dispersive spectroscopy. The sample solution treated with a complexing reagent, ammonium pyrrolidine dithiocarbamate (APDC), was drawn into the syringe filled with ACC and dispensed manually for 2 to 10 aspirating/dispensing cycle. Then the Ag- complex sorbed on the ACC in micropipette was quantitatively eluted by drawing and dispensing of different concentrations of acids for 2 to 5 aspirating/dispensing cycles. The extracted Ag ions with modifier were injected directly into the electrothermal atomic absorption spectrometry for analysis. The influence of different variables on the extraction efficiency, including the concentration of ligand, pH, sample volume, eluent type, concentration and volume was investigated. Validity and accuracy of the developed method was checked by the standard addition method. Reliability of the proposed methodology was checked by the relative standard deviation (%RSD), which was found to be < 5%. Under the optimized experimental variables, the limits of detection (LOD) and enhancement factors (EF), were obtained to be 0.86 ng L- 1 and 120, respectively. The proposed method was successfully applied for the determination of trace levels of silver ions in fresh and waste water samples.

  6. Helix coupling

    DOEpatents

    Ginell, W.S.

    1982-03-17

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  7. Helix coupling

    DOEpatents

    Ginell, William S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  8. Drop-on-demand sample introduction system coupled with the flowing atmospheric-pressure afterglow for direct molecular analysis of complex liquid microvolume samples.

    PubMed

    Schaper, J Niklas; Pfeuffer, Kevin P; Shelley, Jacob T; Bings, Nicolas H; Hieftje, Gary M

    2012-11-01

    One of the fastest developing fields in analytical spectrochemistry in recent years is ambient desorption/ionization mass spectrometry (ADI-MS). This burgeoning interest has been due to the demonstrated advantages of the method: simple mass spectra, little or no sample preparation, and applicability to samples in the solid, liquid, or gaseous state. One such ADI-MS source, the flowing atmospheric-pressure afterglow (FAPA), is capable of direct analysis of solids just by aiming the source at the solid surface and sampling the produced ions into a mass spectrometer. However, direct introduction of significant volumes of liquid samples into this source has not been possible, as solvent loads can quench the afterglow and, thus, the formation of reagent ions. As a result, the analysis of liquid samples is preferably carried out by analyzing dried residues or by desorbing small amounts of liquid samples directly from the liquid surface. In the former case, reproducibility of sample introduction is crucial if quantitative results are desired. In the present study, introduction of liquid samples as very small droplets helps overcome the issues of sample positioning and reduced levels of solvent intake. A recently developed "drop-on-demand" (DOD) aerosol generator is capable of reproducibly producing very small volumes of liquid (∼17 pL). In this paper, the coupling of FAPA-MS and DOD is reported and applications are suggested. Analytes representing different classes of substances were tested and limits of detections were determined. Matrix tolerance was investigated for drugs of abuse and their metabolites by analyzing raw urine samples and quantification without the use of internal standards. Limits of detection below 2 μg/mL, without sample pretreatment, were obtained. PMID:23025277

  9. Drop-on-demand sample introduction system coupled with the flowing atmospheric-pressure afterglow for direct molecular analysis of complex liquid micro-volume samples

    PubMed Central

    Schaper, J. Niklas; Pfeuffer, Kevin P.; Shelley, Jacob T.; Bings, Nicolas H.

    2012-01-01

    One of the fastest developing fields in analytical spectrochemistry in recent years is ambient desorption/ionization mass spectrometry (ADI-MS). This burgeoning interest has been due to the demonstrated advantages of the method: simple mass spectra, little or no sample preparation, and applicability to samples in the solid, liquid, or gaseous state. One such ADI-MS source, the flowing atmospheric-pressure afterglow (FAPA), is capable of direct analysis of solids just by aiming the source at the solid surface and sampling the produced ions into a mass spectrometer. However, direct introduction of significant volumes of liquid samples into this source has not been possible, as solvent loads can quench the afterglow and, thus, the formation of reagent ions. As a result, the analysis of liquid samples is preferably carried out by analyzing dried residues or by desorbing small amounts of liquid samples directly from the liquid surface. In the former case, reproducibility of sample introduction is crucial if quantitative results are desired. In the present study, introduction of liquid samples as very small droplets helps overcome the issues of sample positioning and reduced levels of solvent intake. A recently developed “drop-on-demand” (DOD) aerosol generator is capable of reproducibly producing very small volumes of liquid (~17 pL). In this paper, the coupling of FAPA-MS and DOD is reported and applications are suggested. Analytes representing different classes of substances were tested and limits of detections were determined. Matrix tolerance was investigated for drugs of abuse and their metabolites by analyzing raw urine samples and quantification without the use of internal standards. Limits of detection below 2 µg/mL, without sample pretreatment, were obtained. PMID:23025277

  10. Toward rational design of protein detergent complexes: determinants of mixed micelles that are critical for the in vitro stabilization of a G-protein coupled receptor.

    PubMed

    O'Malley, Michelle A; Helgeson, Matthew E; Wagner, Norman J; Robinson, Anne S

    2011-10-19

    Although reconstitution of membrane proteins within protein detergent complexes is often used to enable their structural or biophysical characterization, it is unclear how one should rationally choose the appropriate micellar environment to preserve native protein folding. Here, we investigated model mixed micelles consisting of a nonionic glucosylated alkane surfactant from the maltoside and thiomaltoside families, bile salt surfactant, and the steryl derivative cholesteryl hemisuccinate. We correlated several key attributes of these micelles with the in vitro ligand-binding activity of hA(2)aR in these systems. Through small-angle neutron scattering and radioligand-binding analysis, we found several key aspects of mixed micellar systems that preserve the activity of hA(2)aR, including a critical amount of cholesteryl hemisuccinate per micelle, and an optimal hydrophobic thickness of the micelle that is analogous to the thickness of native mammalian bilayers. These features are closely linked to the headgroup chemistry of the surfactant and the hydrocarbon chain length, which influence both the morphology and composition of resulting micelles. This study should serve as a general guide for selecting the appropriate mixed surfactant systems to stabilize membrane proteins for biophysical analysis. PMID:22004748

  11. Promoting C–C Bond Coupling of Benzyne and Methyl Ligands in Electron-Deficient (triphos)Pt–CH3+ Complexes

    PubMed Central

    2016-01-01

    In situ generated benzyne reacts at room temperature with (triphos)Pt–CH3+ to form a five-coordinate π-complex (2) that is isolable and stable in solution. Thermolysis of 2 at 60 °C generates (triphos)Pt(o-tolyl)+ (3), which is the product of formal migratory insertion of CH3– onto the coordinated benzyne. The reaction of 2 with the acid Ph2NH2+ yields toluene at room temperature over the course of 8 h, while the same reaction with 3 only proceeds to 40% conversion over 2 days. These data indicate that the protonolysis of 2 does not proceed by CH3 migration onto benzyne to form 3 followed by protodemetalation. Instead, the data suggest either that protonation of 2 is first and is followed by H migration to yield a PtIVPh(Me) dication or that this latter species is generated by direct protonolysis of coordinated benzyne prior to reductive elimination of toluene. PMID:26146438

  12. Impacts of snow and glaciers over Tibetan Plateau on Holocene climate change: Sensitivity experiments with a coupled model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Jin, Liya; Ganopolski, Andrey; Chen, Fahu; Claussen, Martin; Wang, Huijun

    2005-09-01

    An Earth system model of intermediate complexity has been used to investigate the sensitivity of simulated global climate to gradually increased snow and glacier cover over the Tibetan Plateau for the last 9000 years (9 kyr). The simulations show that in the mid-Holocene at about 6 kyr before present (BP) the imposed ice sheets over the Tibetan Plateau induces summer precipitation decreases strongly in North Africa and South Asia, and increases in Southeast Asia. The response of vegetation cover to the imposed ice sheets over the Tibetan Plateau is not synchronous in South Asia and in North Africa, showing an earlier and, hence, a more rapid decrease in vegetation cover in North Africa from 9 to 6 kyr BP while it has almost no influence on that in south Asia until 5 kyr BP. The simulation results suggest that the snow and glacier environment over the Tibetan Plateau is an important factor for Holocene climate variability in North Africa, South Asia and Southeast Asia.

  13. Enantioselective column coupled electrophoresis employing large bore capillaries hyphenated with tandem mass spectrometry for ultra-trace determination of chiral compounds in complex real samples.

    PubMed

    Piešťanský, Juraj; Maráková, Katarína; Kovaľ, Marián; Havránek, Emil; Mikuš, Peter

    2015-12-01

    A new multidimensional analytical approach for the ultra-trace determination of target chiral compounds in unpretreated complex real samples was developed in this work. The proposed analytical system provided high orthogonality due to on-line combination of three different methods (separation mechanisms), i.e. (1) isotachophoresis (ITP), (2) chiral capillary zone electrophoresis (chiral CZE), and (3) triple quadrupole mass spectrometry (QqQ MS). The ITP step, performed in a large bore capillary (800 μm), was utilized for the effective sample pretreatment (preconcentration and matrix clean-up) in a large injection volume (1-10 μL) enabling to obtain as low as ca. 80 pg/mL limits of detection for the target enantiomers in urine matrices. In the chiral CZE step, the different chiral selectors (neutral, ionizable, and permanently charged cyclodextrins) and buffer systems were tested in terms of enantioselectivity and influence on the MS detection response. The performance parameters of the optimized ITP - chiral CZE-QqQ MS method were evaluated according to the FDA guidance for bioanalytical method validation. Successful validation and application (enantioselective monitoring of renally eliminated pheniramine and its metabolite in human urine) highlighted great potential of this chiral approach in advanced enantioselective biomedical applications. PMID:26377388

  14. High-order Hybridized Discontinuous Galerkin (HDG) method for wave propagation simulation in complex geophysical media (elastic, acoustic and hydro-acoustic); an unifying framework to couple continuous Spectral Element and Discontinuous Galerkin Methods

    NASA Astrophysics Data System (ADS)

    Terrana, Sebastien; Vilotte, Jean-Pierre; Guillot, Laurent; Mariotti, Christian

    2015-04-01

    Today seismological observation systems combine broadband seismic receivers, hydrophones and micro-barometers antenna that provide complementary observations of source-radiated waves in heterogeneous and complex geophysical media. Exploiting these observations requires accurate and multi-physics - elastic, hydro-acoustic, infrasonic - wave simulation methods. A popular approach is the Spectral Element Method (SEM) (Chaljub et al, 2006) which is high-order accurate (low dispersion error), very flexible to parallelization and computationally attractive due to efficient sum factorization technique and diagonal mass matrix. However SEMs suffer from lack of flexibility in handling complex geometry and multi-physics wave propagation. High-order Discontinuous Galerkin Methods (DGMs), i.e. Dumbser et al (2006), Etienne et al. (2010), Wilcox et al (2010), are recent alternatives that can handle complex geometry, space-and-time adaptativity, and allow efficient multi-physics wave coupling at interfaces. However, DGMs are more memory demanding and less computationally attractive than SEMs, especially when explicit time stepping is used. We propose a new class of higher-order Hybridized Discontinuous Galerkin Spectral Elements (HDGSEM) methods for spatial discretization of wave equations, following the unifying framework for hybridization of Cockburn et al (2009) and Nguyen et al (2011), which allows for a single implementation of conforming and non-conforming SEMs. When used with energy conserving explicit time integration schemes, HDGSEM is flexible to handle complex geometry, computationally attractive and has significantly less degrees of freedom than classical DGMs, i.e., the only coupled unknowns are the single-valued numerical traces of the velocity field on the element's faces. The formulation can be extended to model fractional energy loss at interfaces between elastic, acoustic and hydro-acoustic media. Accuracy and performance of the HDGSEM are illustrated and

  15. Solution Structure of the 128 kDa Enzyme I Dimer from Escherichia coli and its 146 kDa Complex With HPr Using Residual Dipolar Couplings and Small and Wide Angle X-Ray Scattering

    PubMed Central

    Schwieters, Charles D.; Suh, Jeong-Yong; Grishaev, Alexander; Ghirlando, Rodolfo; Takayama, Yuki; Clore, G. Marius

    2010-01-01

    The solution structures of free Enzyme I (EI, ∼128 kDa, 575×2 residues), the first enzyme in the bacterial phosphotransferse system and its complex with HPr (∼146 kDa) have been solved using novel methodology that makes use of prior structural knowledge (namely, the structures of the dimeric EIC domain and the isolated EIN domain both free and complexed to HPr), combined with residual dipolar coupling (RDC), small (SAXS) and wide (WAXS) angle X-ray scattering and small angle neutron scattering (SANS) data. The calculational strategy employs conjoined rigid body/torsion/Cartesian simulated annealing, and incorporates improvements in calculating and refining against SAXS/WAXS data that take into account complex molecular shapes in the description of the solvent layer resulting in a better representation of the SAXS/WAXS data. The RDC data orient the symmetrically related EIN domains relative to the C2 symmetry axis of the EIC dimer, while translational, shape and size information is provided by SAXS/WAXS. The resulting structures are independently validated by SANS. Comparison of the structures of the free EI and the EI-HPr complex with that of the crystal structure of a trapped phosphorylated EI intermediate reveals large (∼70-90°) hinge body rotations of the two subdomains comprising the EIN domain, as well as of the EIN domain relative to the dimeric EIC domain. These large-scale interdomain motions shed light on the structural transitions that accompany the catalytic cycle of EI. PMID:20731394

  16. DFT analysis of g and 13C hyperfine coupling tensors for model Ni(I)(CO)(n)L(m) (n = 1-4, L = H2O, OH-) complexes epitomizing surface nickel(I) carbonyls.

    PubMed

    Pietrzyk, Piotr; Podolska, Katarzyna; Sojka, Zbigniew

    2008-11-27

    Relativistic calculations within the spin-orbit mean-field (SOMF) approximation, the zero-order regular approximation (ZORA), and the scalar relativistic method based on the Pauli Hamiltonian were performed for the prediction and interpretation of the electronic g tensor and (13)C hyperfine tensor for a set of model polycarbonyl nickel(I) complexes with aqua or hydroxy coligands. They exhibit extensive similarities with heterogeneous [Ni(I)(CO)(n)]-surface complexes produced upon adsorption of carbon monoxide on Ni(I) ions grafted on silica or inside the zeolite channels. Benchmark calculations showing the influence of the exchange-correlation functional on the g tensor were carried out for well-defined nickel(I) complexes of known structure. On this basis, the SOMF-B3LYP scheme was chosen for calculations of the g tensor, and the obtained results were in satisfactory agreement with literature EPR data found for the [Ni(I)(CO)(n)]/SiO(2) system. The calculated g and A((13)C) tensors allowed polycarbonyl complexes of various stereochemistries to be distinguished. The nature of the Deltag(ii) shifts was assessed in terms of the molecular orbital contributions due to the magnetic-field-induced couplings and their structure sensitivity. The noncoincidence of g and (13)C hyperfine principal axes and their orientation with respect to the molecular framework was also examined. The ability of DFT calculations to follow consistently variations of the EPR parameters induced by stereochemical changes around the Ni(I) center provides an invaluable reference for the interpretation of experimental results. PMID:18986126

  17. Palladium complexes of abnormal N-heterocyclic carbenes as precatalysts for the much preferred Cu-free and amine-free Sonogashira coupling in air in a mixed-aqueous medium.

    PubMed

    John, Alex; Shaikh, Mobin M; Ghosh, Prasenjit

    2009-12-21

    A series of new PEPPSI (Pyridine Enhanced Precatalyst Preparation Stabilization and Initiation) themed precatalysts of abnormal N-heterocyclic carbenes for the highly desirable Cu-free and amine-free Sonogashira coupling in air in a mixed-aqueous medium is reported. Specifically, the PEPPSI themed (NHC)PdI2(pyridine) type precatalysts, 1b-4b, efficiently carried out the highly convenient Cu-free and amine-free Sonogashira coupling of aryl bromides and iodides with terminal acetylenes in air in a mixed aqueous medium. Complexes, 1b-4b, were synthesized by the direct reaction of the corresponding imidazo[1,2-a]pyridinium iodide salts, 1a-4a, with PdCl2 in pyridine in the presence of K2CO3 as a base while the imidazo[1,2-a]pyridinium iodide salts, 1a-4a, were in turn synthesized by the alkylation reactions of the respective imidazo[1,2-a]pyridine derivatives with alkyl iodides. The density functional theory (DFT) studies revealed that these imidazol-3-ylidene[1,2-a]pyridine derived abnormal carbenes are strongly sigma-donating and consequently significantly weaken the catalytically important labile trans pyridine ligand in 1b-4b. PMID:20023883

  18. Mori approach to exciton memories in initially unrelaxed excitonphonon systems: direct and reorganized perturbation expansions

    NASA Astrophysics Data System (ADS)

    Čápek, V.

    1993-11-01

    Starting from the Mori formalism, memory functions of excitons coupled to harmonic phonons in periodic crystals with linear exciton-phonon coupling are calculated in two limiting cases: that of the naxrow unrenormalized exciton band with only site local coupling and that of the weak exciton-phonon coupling. Mutual correspondence as well as that with results of analogous works is discussed. By a mathematical trick, perturbational series for memory kernel of initially unrela-xed excitons interacting locally with harmonic phonons is then reorganized. Using that, full agreement is achieved with previous results obtained by Generalized Master Equations for initially relaxed excitons in case of narrow exciton band width. For the weak exciton-phonon coupling case, appreciable reduction of damping of the quasicoherent channel may be achieved on account of polaron effects. Crucial role of the exciton bandwidth beyond the lowest order is found in both cases for the low-temperature exciton diffusivity. Some predictions on the temperature dependence of the phonon-scattering limited exciton diffusion constant are given.

  19. Quantifying mineral abundances of complex mixtures by coupling spectral deconvolution of SWIR spectra (2.1-2.4 μm) and regression tree analysis

    USGS Publications Warehouse

    Mulder, V.L.; Plotze, Michael; de Bruin, Sytze; Schaepman, Michael E.; Mavris, C.; Kokaly, Raymond F.; Egli, Markus

    2013-01-01

    This paper presents a methodology for assessing mineral abundances of mixtures having more than two constituents using absorption features in the 2.1-2.4 μm wavelength region. In the first step, the absorption behaviour of mineral mixtures is parameterised by exponential Gaussian optimisation. Next, mineral abundances are predicted by regression tree analysis using these parameters as inputs. The approach is demonstrated on a range of prepared samples with known abundances of kaolinite, dioctahedral mica, smectite, calcite and quartz and on a set of field samples from Morocco. The latter contained varying quantities of other minerals, some of which did not have diagnostic absorption features in the 2.1-2.4 μm region. Cross validation showed that the prepared samples of kaolinite, dioctahedral mica, smectite and calcite were predicted with a root mean square error (RMSE) less than 9 wt.%. For the field samples, the RMSE was less than 8 wt.% for calcite, dioctahedral mica and kaolinite abundances. Smectite could not be well predicted, which was attributed to spectral variation of the cations within the dioctahedral layered smectites. Substitution of part of the quartz by chlorite at the prediction phase hardly affected the accuracy of the predicted mineral content; this suggests that the method is robust in handling the omission of minerals during the training phase. The degree of expression of absorption components was different between the field sample and the laboratory mixtures. This demonstrates that the method should be calibrated and trained on local samples. Our method allows the simultaneous quantification of more than two minerals within a complex mixture and thereby enhances the perspectives of spectral analysis for mineral abundances.

  20. Electron-exchange rates of polypyridine complexes: electron-transfer reactions involving the tris(polypyridine)nickel(II/III) couple in acidic aqueous media

    SciTech Connect

    Macartney, D.H.; Sutin, N.

    1983-01-01

    The kinetics of the reduction of NiL/sub 3//sup 3 +/ by NiL'/sub 3//sup 2 +/ complexes (where L and L' are substituted 2,2'-bipyridine or 1,10-phenanthroline derivatives) and by NiH/sub 2/A/sup 2 +/ (H/sub 2/A = 3,14-dimethyl-4,7,10,13-tetraazahexadeca-3,13-diene-2,15-dione dioxime), tris(5-nitro-1,10-phenanthroline)ruthenium(II), and Fe(H/sub 2/O)/sub 6//sup 2 +/ in acidic aqueous media have been studied by the stopped-flow technique. The kinetic data yield 1.5 x 10/sup 3/ M/sup -1/ s/sup -1/ for the NiL/sub 3//sup 2 +/-NiL/sub 3//sup 3 +/ self-exchange rate constant at 25/sup 0/C and 1.00 M ionic strength. The Fe(H/sub 2/O)/sup 62 +/ reduction of both Ni(4,4'-(CH/sub 3/)/sub 2/bpy)/sub 3//sup 3 +/ and Ni(bpy)/sub 3//sup 3 +/ is 10/sup 2/ times slower than predicted by the Marcus cross-relation, and reasons for this disagreement are discussed. The rate constant for the Ni(bpy)/sub 3//sup 2 +/-Ni(bpy)/sub 3//sup 3 +/ exchange is compared with other tris(2,2'-bipyridine) exchange rate constants, and the rate variations are discussed in terms of differences in the inner-shell reorganization barriers and electronic factors for the reactions. 39 references, 1 figure, 3 tables.

  1. Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis.

    PubMed

    Weng, Na; Wan, Shan; Wang, Huitong; Zhang, Shuichang; Zhu, Guangyou; Liu, Jingfu; Cai, Di; Yang, Yunxu

    2015-06-12

    The aromatic hydrocarbon fractions of five crude oils representing a natural sequence of increasing degree of biodegradation from the Liaohe Basin, NE, China, were analyzed using conventional gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography (GC×GC). Because of the limited peak capability and low resolution, compounds in the aromatic fraction of a heavily biodegraded crude oil that were analyzed by GC-MS appeared as unresolved complex mixtures (UCMs) or GC "humps". They could be separated based on their polarity by GC×GC. UCMs are composed mainly of aromatic biomarkers and aromatic hydrocarbons with branched alkanes or cycloalkanes substituents. The quantitative results achieved by GC×GC-FID were shown that monoaromatic hydrocarbons account for the largest number and mass of UCMs in the aromatic hydrocarbon fraction of heavily biodegraded crude oil, at 45% by mass. The number and mass of diaromatic hydrocarbons ranks second at 33% by mass, followed by the aromatic biomarker compounds, triaromatic, tetraaromatic, and pentaaromatic hydrocarbons, that account for 10%, 6%, 1.5%, and 0.01% of all aromatic compounds by mass, respectively. In the heavily biodegraded oil, compounds with monocyclic cycloalkane substituents account for the largest proportion of mono- and diaromatic hydrocarbons, respectively. The C4-substituted compounds account for the largest proportion of naphthalenes and the C3-substituted compounds account for the largest proportion of phenanthrenes, which is very different from non-biodegraded, slightly biodegraded, and moderately biodegraded crude oil. It is inferred that compounds of monoaromatic, diaromatic and triaromatic hydrocarbons are affected by biodegradation, that compounds with C1-, C2-substituents are affected by the increase in degree of biodegradation, and that their relative content decreased, whereas compounds with C3-substituents or more were affected slightly or unaffected, and their

  2. High resolution seismic data coupled to Multibeam bathymetry of Stromboli island collected in the frame of the Stromboli geophysical experiment: implications with the marine geophysics and volcanology of the Aeolian Arc volcanic complex (Sicily, Southern Tyrrhenian sea, Italy).

    PubMed

    Aiello, Gemma; Di Fiore, Vincenzo; Marsella, Ennio; Passaro, Salvatore

    2014-01-01

    New high resolution seismic data (Subbottom Chirp) coupled to high resolution Multibeam bathymetry collected in the frame of the Stromboli geophysical experiment aimed at recording active seismic data and tomography of the Stromboli Island are here presented. The Stromboli geophysical experiment has been already carried out based on onshore and offshore data acquisition in order to investigate the deep structure and the location of the magma chambers of the Stromboli volcano. A new detailed swath bathymetry of Stromboli Island is here shown and discussed to reconstruct an up-to-date morpho-bathymetry and marine geology of the area compared to the volcanologic setting of the Aeolian Arc volcanic complex. Due to its high resolution the new Digital Terrain Model of the Stromboli Island gives interesting information about the submerged structure of the volcano, particularly about the volcano-tectonic and gravitational processes involving the submarine flanks of the edifice. Several seismic units have been identified based on the geologic interpretation of Subbottom Chirp profiles recorded around the volcanic edifice and interpreted as volcanic acoustic basement pertaining to the volcano and overlying slide chaotic bodies emplaced during its complex volcano-tectonic evolution. They are related to the eruptive activity of Stromboli, mainly poliphasic and to regional geological processes involving the intriguing geology of the Aeolian Arc, a volcanic area still in activity and needing improved research interest. PMID:24860717

  3. On the equilibrium structures of the complexes H2C3H+ · Ar and c-C3H3(+) · Ar: results of explicitly correlated coupled cluster calculations.

    PubMed

    Botschwina, Peter; Oswald, Rainer

    2011-01-28

    Explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level [T. B. Adler et al., J. Chem. Phys. 127, 221106 (2007)] has been employed in a study of the potential energy surfaces for the complexes H(2)C(3)H(+) · Ar and c-C(3)H(3)(+) · Ar. For the former complex, a pronounced minimum with C(s) symmetry was found (D(e) ≈ 780 cm(-1)), well below the local "H-bound" minimum with C(2v) symmetry (D(e) ≈ 585 cm(-1)). The absorption at 3238 cm(-1) found in the recent infrared photodissociation spectra [A. M. Ricks et al., J. Chem. Phys. 132, 051101 (2010)] is, thus, interpreted as an essentially free acetylenic CH stretching vibration of the propargyl cation. A global minimum of C(s) symmetry was also obtained for c-C(3)H(3)(+) (D(e) ≈ 580 cm(-1)), but the energy difference with respect to the local C(2v) minimum is only 54 cm(-1). PMID:21280723

  4. Optical coupling

    NASA Astrophysics Data System (ADS)

    Bock, J. J.; Gundersen, J.; Lee, A. T.; Richards, P. L.; Wollack, E.

    2009-03-01

    This paper describes contributions to the CMBpol Technology Study Workshop concerning optical coupling structures. These are structures in or near the focal plane which convert the free space wave to a superconducting microstrip on a SI wafer, or to the waveguide input to a HEMT receiver. In addition to an introduction and conclusions by the editor, this paper includes independent contributions by Bock on 'Planar Antenna-Coupled Bolometers for CMB Polarimetry', by Gunderson and Wollack on 'Millimeter-Wave Platlet Feeds', and by Lee on 'Multi-band Dual-Polarization Lens-coupled Planar Antennas for Bolometric CMB polarimetry.'

  5. Properties of the manganese(II) binding site in ternary complexes of Mnter dot ADP and Mnter dot ATP with chloroplast coupling factor 1: Magnetic field dependence of solvent sup 1 H and sup 2 H NMR relaxation rates

    SciTech Connect

    Haddy, A.E.; Frasch, W.D.; Sharp, R.R. )

    1989-05-02

    The influence of the binding of ADP and ATP on the high-affinity Mn(II) binding site of chloroplast coupling factor 1 (CF{sub 1}) was studied by analysis of field-dependent solvent proton and deuteron spin-lattice relaxation data. In order to characterize metal-nucleotide complexes of CF{sub 1} under conditions similar to those of the NMR experiments, the enzyme was analyzed for bound nucleotides and Mn(II) after incubation with AdN and MnCl{sub 2} and removal of labile ligands by extensive gel filtration chromatography. In the field-dependent NMR experiments, the Mn(II) binding site of CF{sub 1} was studied for three mole ratios of added Mn(II) to CF{sub 1}, 0.5, 1.0, and 1.5, in the presence of an excess of either ADP or ATP. The results were extrapolated to zero Mn(II) concentration to characterize the environment of the first Mn(II) binding site of Cf{sub 1}. In the presence of both adenine nucleotides, pronounced changes in the Mn(II) environment relative to that in Mn(II)-CF{sub 1} were evident; the local relaxation rate maxima were more pronounced and shifted to higher field strengths, and the relaxation rate per bound Mn(II) increased at all field strengths. Analysis of the data revealed that the number of exchangeable water molecules liganded to bound Mn(II) increased from one in the binary Mn(II)-CF{sub 1} complex to three and two in the ternary Mn(II)-ADP-CF{sub 1} and Mn(II)-ATP-CF{sub 1} complexes, respectively; these results suggest that a water ligand to bound Mn(II) in the Mn(II)-ADP-CF{sub 1} complex is replaced by the {gamma}-phosphate of ATP in the Mn(II)-ATP-CF{sub 1} complex. A binding model is presented to account for these observations.

  6. Structure and thermodynamic properties of (C5H12N)CuBr3: a new weakly coupled antiferromagnetic spin-1/2 chain complex lying in the 1D-3D dimensional cross-over regime.

    PubMed

    Pan, Bingying; Wang, Yang; Zhang, Lijuan; Li, Shiyan

    2014-04-01

    Single crystals of a metal organic complex (C5H12N)CuBr3 (C5H12N = piperidinium, pipH for short) have been synthesized, and the structure was determined by single-crystal X-ray diffraction. (pipH)CuBr3 crystallizes in the monoclinic group C2/c. Edging-sharing CuBr5 units link to form zigzag chains along the c axis, and the neighboring Cu(II) ions with spin-1/2 are bridged by bibromide ions. Magnetic susceptibility data down to 1.8 K can be well fitted by the Bonner-Fisher formula for the antiferromagnetic spin-1/2 chain, giving the intrachain magnetic coupling constant J ≈ -17 K. At zero field, (pipH)CuBr3 shows three-dimensional (3D) order below TN = 1.68 K. Calculated by the mean-field theory, the interchain coupling constant J' = -0.91 K is obtained and the ordered magnetic moment m0 is about 0.23 μB. This value of m0 makes (pipH)CuBr3 a rare compound suitable to study the 1D-3D dimensional cross-over problem in magnetism, since both 3D order and one-dimensional (1D) quantum fluctuations are prominent. In addition, specific heat measurements reveal two successive magnetic transitions with lowering temperature when external field μ0H ≥ 3 T is applied along the a' axis. The μ0H-T phase diagram of (pipH)CuBr3 is roughly constructed. PMID:24617285

  7. Running coupling corrections to inclusive gluon production

    NASA Astrophysics Data System (ADS)

    Horowitz, W. A.; Kovchegov, Y. V.

    2011-12-01

    We calculate running coupling corrections for the lowest-order gluon production cross section in high energy hadronic and nuclear scattering using the BLM scale-setting prescription. At leading order, there are three powers of fixed coupling; in our final answer, these three couplings are replaced by seven factors of running coupling: five in the numerator and two in the denominator, forming a 'septumvirate' of running couplings, analogous to the 'triumvirate' of running couplings found earlier for the small-x BFKL/BK/JIMWLK evolution equations. It is interesting to note that the two running couplings in the denominator of the 'septumvirate' run with complex-valued momentum scales, which are complex conjugates of each other, such that the production cross section is indeed real. We use our lowest-order result to conjecture how running coupling corrections may enter the full fixed-coupling kT-factorization formula for gluon production which includes nonlinear small-x evolution.

  8. p -State Luminescence in CdSe Nanoplatelets: Role of Lateral Confinement and a Longitudinal Optical Phonon Bottleneck

    NASA Astrophysics Data System (ADS)

    Achtstein, Alexander W.; Scott, Riccardo; Kickhöfel, Sebastian; Jagsch, Stefan T.; Christodoulou, Sotirios; Bertrand, Guillaume H. V.; Prudnikau, Anatol V.; Antanovich, Artsiom; Artemyev, Mikhail; Moreels, Iwan; Schliwa, Andrei; Woggon, Ulrike

    2016-03-01

    We evidence excited state emission from p states well below ground state saturation in CdSe nanoplatelets. Size-dependent exciton ground and excited state energies and population dynamics are determined by four independent methods: time-resolved PL, time-integrated PL, rate equation modeling, and Hartree renormalized k .p calculations—all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Depending on its detuning to the LO phonon energy, the PL decay of CdSe platelets is governed by a size tunable LO phonon bottleneck, related to the low exciton-phonon coupling, very large oscillator strength, and energy spacing of both states. This is, for instance, ideal to tune lasing properties. CdSe platelets are perfectly suited to control the exciton-phonon interaction by changing their lateral size while the optical transition energy is determined by their thickness.

  9. Phonon induced pure dephasing process of excitonic state in colloidal semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Tongyun; Han, Peng; Wang, Xinke; Feng, Shengfei; Sun, Wenfeng; Ye, Jiasheng; Zhang, Yan

    2016-04-01

    We present a theoretical study on the pure dephasing process of colloidal semiconductor quantum dots induced by lattice vibrations using continuum model calculations. By solving the time dependent Liouville-von Neumann equation, we present the ultrafast Rabi oscillations between excitonic state and virtual state via exciton-phonon interaction and obtain the pure dephasing time from the fast decayed envelope of the Rabi oscillations. The interaction between exciton and longitudinal optical phonon vibration is found to dominate the pure dephasing process and the dephasing time increases nonlinearly with the reduction of exciton-phonon coupling strength. We further find that the pure dephasing time of large quantum dots is more sensitive to temperature than small quantum dots.

  10. p-State Luminescence in CdSe Nanoplatelets: Role of Lateral Confinement and a Longitudinal Optical Phonon Bottleneck.

    PubMed

    Achtstein, Alexander W; Scott, Riccardo; Kickhöfel, Sebastian; Jagsch, Stefan T; Christodoulou, Sotirios; Bertrand, Guillaume H V; Prudnikau, Anatol V; Antanovich, Artsiom; Artemyev, Mikhail; Moreels, Iwan; Schliwa, Andrei; Woggon, Ulrike

    2016-03-18

    We evidence excited state emission from p states well below ground state saturation in CdSe nanoplatelets. Size-dependent exciton ground and excited state energies and population dynamics are determined by four independent methods: time-resolved PL, time-integrated PL, rate equation modeling, and Hartree renormalized k·p calculations-all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Depending on its detuning to the LO phonon energy, the PL decay of CdSe platelets is governed by a size tunable LO phonon bottleneck, related to the low exciton-phonon coupling, very large oscillator strength, and energy spacing of both states. This is, for instance, ideal to tune lasing properties. CdSe platelets are perfectly suited to control the exciton-phonon interaction by changing their lateral size while the optical transition energy is determined by their thickness. PMID:27035317

  11. New high-order, semi-implicit Hybridized Discontinuous Galerkin - Spectral Element Method (HDG-SEM) for simulation of complex wave propagation involving coupling between seismic, hydro-acoustic and infrasonic waves: numerical analysis and case studies.

    NASA Astrophysics Data System (ADS)

    Terrana, S.; Vilotte, J. P.; Guillot, L.

    2015-12-01

    New seismological monitoring networks combine broadband seismic receivers, hydrophones and micro-barometers antenna, providing complementary observation of source-radiated waves. Exploiting these observations requires accurate and multi-media - elastic, hydro-acoustic, infrasound - wave simulation methods, in order to improve our physical understanding of energy exchanges at material interfaces.We present here a new development of a high-order Hybridized Discontinuous Galerkin (HDG) method, for the simulation of coupled seismic and acoustic wave propagation, within a unified framework ([1],[2]) allowing for continuous and discontinuous Spectral Element Methods (SEM) to be used in the same simulation, with conforming and non-conforming meshes. The HDG-SEM approximation leads to differential - algebraic equations, which can be solved implicitly using energy-preserving time-schemes.The proposed HDG-SEM is computationally attractive, when compared with classical Discontinuous Galerkin methods, involving only the approximation of the single-valued traces of the velocity field along the element interfaces as globally coupled unknowns. The formulation is based on a variational approximation of the physical fluxes, which are shown to be the explicit solution of an exact Riemann problem at each element boundaries. This leads to a highly parallel and efficient unstructured and high-order accurate method, which can be space-and-time adaptive.A numerical study of the accuracy and convergence of the HDG-SEM is performed through a number of case studies involving elastic-acoustic (infrasound) coupling with geometries of increasing complexity. Finally, the performance of the method is illustrated through realistic case studies involving ground wave propagation associated to topography effects.In conclusion, we outline some on-going extensions of the method.References:[1] Cockburn, B., Gopalakrishnan, J., Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed and

  12. Solution Structure of an Archaeal RNase P Binary Protein Complex. Formation of the 30-kDa Complex Between Pyrococcus furiosus RPP21 and RPP29 is Accompanied by Coupled Protein Folding, and Highlights Critical Features for Protein-Protein and Protein-RNA Interactions

    PubMed Central

    Xu, Yiren; Amero, Carlos D.; Pulukkunat, Dileep K.; Gopalan, Venkat; Foster, Mark P.

    2009-01-01

    RNase P is a ribonucleoprotein (RNP) enzyme that catalyzes the Mg2+-dependent 5’ maturation of precursor tRNAs. In all domains of life, it is a ribozyme: the RNase P RNA (RPR) component has been demonstrated to be responsible for catalysis. However, the number of RNase P protein subunits (RPPs) varies from one in bacteria to nine or ten in eukarya. The archaeal RPR is associated with at least four RPPs, which function in pairs (RPP21–RPP29 and RPP30-POP5). We used solution NMR spectroscopy to determine the three-dimensional structure of the protein-protein complex comprising Pyrococcus furiosus (Pfu) RPP21 and RPP29. We found that the protein-protein interaction is characterized by coupled folding of secondary structural elements that participate in interface formation. In addition to detailing the intermolecular contacts that stabilize this 30-kDa binary complex, the structure identifies surfaces rich in conserved basic residues likely vital for recognition of the RPR and/or precursor tRNA. Furthermore, enzymatic footprinting experiments allowed us to localize the RPP21–RPP29 complex to the specificity domain of the RPR. These findings provide valuable new insights into mechanisms of RNP assembly and serve as important steps towards a three-dimensional model of this ancient RNP enzyme. PMID:19733182

  13. Prosthesis coupling

    NASA Technical Reports Server (NTRS)

    Reswick, J. B.; Mooney, V.; Bright, C. W.; Owens, L. J. (Inventor)

    1979-01-01

    A coupling for use in an apparatus for connecting a prosthesis to the bone of a stump of an amputated limb is described which permits a bio-compatible carbon sleeve forming a part of the prosthesis connector to float so as to prevent disturbing the skin seal around the carbon sleeve. The coupling includes a flexible member interposed between a socket that is inserted within an intermedullary cavity of the bone and the sleeve. A lock pin is carried by the prosthesis and has a stem portion which is adapted to be coaxially disposed and slideably within the tubular female socket for securing the prosthesis to the stump. The skin around the percutaneous carbon sleeve is able to move as a result of the flexing coupling so as to reduce stresses caused by changes in the stump shape and/or movement between the bone and the flesh portion of the stump.

  14. FLEXIBLE COUPLING

    DOEpatents

    Babelay, E.F.

    1962-02-13

    A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)

  15. Dichotomous Hydrogen Atom Transfer vs. Proton Coupled Electron Transfer During Activation of X-H Bonds (X = C, N, O) by Nonheme Iron-Oxo Complexes of Variable Basicity

    PubMed Central

    Usharani, Dandamudi; Lacy, David C.; Borovik, A. S.; Shaik, Sason

    2013-01-01

    We describe herein the hydrogen-atom transfer (HAT)/ proton-coupled electron-transfer (PCET) reactivity for FeIV-oxo and FeIII-oxo complexes (1–4) that activate C-H, N-H, and O-H bonds in 9,10 dihydroanthracene (S1), dimethylformamide (S2), 1,2 diphenylhydrazine (S3), p-methoxyphenol (S4), and 1,4-cyclohexadiene (S5). In 1–3, the iron is pentacoordinated by tris[N'-tert-butylureaylato)-N-ethylene]aminato ([H3buea]3−) or its derivatives. These complexes are basic, in the order 3 >> 1 > 2. Oxidant 4, [FeIVN4Py(O)]2+ (N4Py: N,N-bis(2-pyridylmethyl)-bis(2-pyridyl) methylamine), is the least basic oxidant. The DFT results match experimental trends and exhibit a mechanistic spectrum ranging from concerted HAT and PCET reactions to concerted-asynchronous proton transfer (PT) / electron transfer (ET) mechanisms, all the way to PT. The singly occupied orbital along the O---H---X (X= C, N, O) moiety in the TS shows clearly that in the PCET cases, the electron is transferred separately from the proton. The Bell-Evans-Polanyi principle does not account for the observed reactivity pattern, as evidenced by the scatter in the plot of calculated barrier vs. reactions driving forces. However, a plot of the deformation energy in the TS vs. the respective barrier provides a clear signature of the HAT/PCET dichotomy. Thus, in all C-H bond activations, the barrier derives from the deformation energy required to create the TS, whereas in N-H/O-H bond activations, the deformation energy is much larger than the corresponding barrier, indicating the presence of stabilizing interaction between the TS fragments. A valence bond model is used to link the observed results with the basicity/acidity of the reactants. PMID:24124906

  16. GMAP210 AND IFT88 ARE PRESENT IN THE SPERMATID GOLGI APPARATUS AND PARTICIPATE IN THE DEVELOPMENT OF THE ACROSOME-ACROPLAXOME COMPLEX, HEAD-TAIL COUPLING APPARATUS AND TAIL

    PubMed Central

    Kierszenbaum, Abraham L.; Rivkin, Eugene; Tres, Laura L.; Yoder, Bradley K.; Haycraft, Courtney J.; Bornens, Michel; Rios, Rosa M.

    2014-01-01

    We describe the localization of the golgin GMAP210 and the intraflagellar protein IFT88 in the Golgi of spermatids and the participation of these two proteins in the development of the acrosome-acroplaxome complex, the head-tail coupling apparatus (HTCA) and the spermatid tail. Immunocytochemical experiments show that GMAP210 predominates in the cis-Golgi whereas IFT88 prevails in the trans-Golgi network. Both proteins co-localize in proacrosomal vesicles, along acrosome membranes, the HTCA and the developing tail. IFT88 persists in the acrosome-acroplaxome region of the sperm head whereas GMAP210 is not longer seen there. Spermatids of the Ift88 mouse mutant display abnormal head shaping and are tail-less. GMAP210 is visualized in the Ift88 mutant during acrosome-acroplaxome biogenesis. However, GMAP210–stained vesicles, mitochondria and outer dense fiber material build up in the manchette region and fail to reach the abortive tail stump in the mutant. In vitro disruption of the spermatid Golgi and microtubules with Brefeldin-A and nocodazole blocks the progression of GMAP210- and IFT88-stained proacrosomal vesicles to the acrosome-acroplaxome complex but F-actin distribution in the acroplaxome is not affected. We provide the first evidence that IFT88 is present in the Golgi of spermatids, that the microtubule-associated golgin GMAP210 and IFT88 participate in acrosome, HTCA and tail biogenesis, and that defective intramanchette transport of cargos disrupts spermatid tail development. PMID:21337470

  17. Dopant-Assisted Positive Photoionization Ion Mobility Spectrometry Coupled with Time-Resolved Thermal Desorption for On-Site Detection of Triacetone Triperoxide and Hexamethylene Trioxide Diamine in Complex Matrices.

    PubMed

    Jiang, Dandan; Peng, Liying; Wen, Meng; Zhou, Qinghua; Chen, Chuang; Wang, Xin; Chen, Wendong; Li, Haiyang

    2016-04-19

    Peroxide explosives, such as triacetone triperoxide (TATP) and hexamethylene trioxide diamine (HMTD), were often used in the terrorist attacks due to their easy synthesis from readily starting materials. Therefore, an on-site detection method for TATP and HMTD is urgently needed. Herein, we developed a stand-alone dopant-assisted positive photoionization ion mobility spectrometry (DAPP-IMS) coupled with time-resolved thermal desorption introduction for rapid and sensitive detection of TATP and HMTD in complex matrices, such as white solids, soft drinks, and cosmetics. Acetone was chosen as the optimal dopant for better separation between reactant ion peaks and product ion peaks as well as higher sensitivity, and the limits of detection (LODs) of TATP and HMTD standard samples were 23.3 and 0.2 ng, respectively. Explosives on the sampling swab were thermally desorbed and carried into the ionization region dynamically within 10 s, and the maximum released concentration of TATP or HMTD could be time-resolved from the matrix interference owing to the different volatility. Furthermore, with the combination of the fast response thermal desorber (within 0.8 s) and the quick data acquisition software to DAPP-IMS, two-dimensional data related to drift time (TATP: 6.98 ms, K0 = 2.05 cm(2) V(-1) s(-1); HMTD: 9.36 ms, K0 = 1.53 cm(2) V(-1) s(-1)) and desorption time was obtained for TATP and HMTD, which is beneficial for their identification in complex matrices. PMID:27031877

  18. Structure of the ternary complex formed by a chemotaxis receptor signaling domain, the CheA histidine kinase and the coupling protein CheW as determined by pulsed dipolar ESR spectroscopy†

    PubMed Central

    Bhatnagar, Jaya; Borbat, Peter P.; Pollard, Abiola M.; Bilwes, Alexandrine M.; Freed, Jack H.; Crane, Brian R.

    2010-01-01

    The signaling apparatus that controls bacterial chemotaxis is composed of a core complex containing chemoreceptors, the histidine auto-kinase CheA, and the coupling protein CheW. Site-specific spin labeling and pulsed-dipolar ESR spectroscopy (PDS) have been applied to investigate the structure of a soluble ternary complex formed by T. maritima CheA (TmCheA), CheW, and receptor signaling domains. Thirty-five symmetric spin-labels sites (SLSs) were engineered into the five domains of the CheA dimer and CheW to provide distance restraints within the CheA:CheW complex in the absence and presence of a soluble receptor that inhibits kinase activity (Tm14). Additional PDS restraints between spin-labeled CheA, CheW and an engineered single-chain receptor labeled at six different sites allows docking of the receptor structure relative to the CheA:CheW complex. Disulfide cross-linking between selectively incorporated Cys residues finds two pairs of positions that provide further constraints within the ternary complex: one involving Tm14 and CheW, and another involving Tm14 and CheA. The derived structure of the ternary complex indicates a primary site of interaction between CheW and Tm14 that agrees well with previous biochemical and genetic data on transmembrane chemoreceptors. The PDS distance distributions are most consistent with only one CheW directly engaging one dimeric Tm14. The CheA dimerization domain (P3) aligns roughly antiparallel to the receptor conserved signaling tip, but does not interact strongly with it. The angle of the receptor axis with respect to P3 and the CheW-binding P5 domains is bound by two limits differing by ~20°. In one limit, Tm14 aligns roughly along P3 and may interact to some extent with the hinge region near the P3 hairpin loop. In the other limit, Tm14 tilts to interact with the P5 domain of the opposite subunit in an interface that mimics that observed with the P5 homolog CheW. The time-domain ESR data can be simulated from the model

  19. Holomorphic Yukawa couplings in heterotic string theory

    NASA Astrophysics Data System (ADS)

    Blesneag, Stefan; Buchbinder, Evgeny I.; Candelas, Philip; Lukas, Andre

    2016-01-01

    We develop techniques, based on differential geometry, to compute holomorphic Yukawa couplings for heterotic line bundle models on Calabi-Yau manifolds defined as complete intersections in projective spaces. It is shown explicitly how these techniques relate to algebraic methods for computing holomorphic Yukawa couplings. We apply our methods to various examples and evaluate the holomorphic Yukawa couplings explicitly as functions of the complex structure moduli. It is shown that the rank of the Yukawa matrix can decrease at specific loci in complex structure moduli space. In particular, we compute the up Yukawa coupling and the singlet-Higgs-lepton trilinear coupling in the heterotic standard model described in ref. [32].

  20. Inductively Coupled Plasma Mass Spectrometry Study on the Increase in the Amount of Pr Atoms for Cs-Ion-Implanted Pd/CaO Multilayer Complex with Deuterium Permeation

    NASA Astrophysics Data System (ADS)

    Hioki, Tatsumi; Takahashi, Naoko; Kosaka, Satoru; Nishi, Teppei; Azuma, Hirozumi; Hibi, Shogo; Higuchi, Yuki; Murase, Atsushi; Motohiro, Tomoyoshi

    2013-10-01

    To investigate the nuclear transmutation of Cs into Pr reported in this journal by Iwamura and coworkers, we have measured the amount of Pr atoms in the range as low as ˜1×1010 cm-2 using inductively coupled plasma mass spectrometry for Cs-ion-implanted Pd/CaO multilayer complexes before and after deuterium permeation. The amount of Pr was initially at most 2.0×1011 cm-2 and it increased up to 1.6×1012 cm-2 after deuterium permeation. The increase in the amount of Pr could be explained neither by deuterium permeation-stimulated segregation of Pr impurities nor by external contamination from the experimental environment during the permeation. No increase in Pr was observed for permeation with hydrogen. These findings suggest that the observed increase in Pr with deuterium permeation can be attributed to a nuclear origin, as reported by Iwamura and coworkers, although the amount of the increase in Pr is two orders of magnitude less than that reported by them.

  1. High performance solid-phase extraction cleanup method coupled with gas chromatography-triple quadrupole mass spectrometry for analysis of polychlorinated naphthalenes and dioxin-like polychlorinated biphenyls in complex samples.

    PubMed

    Li, Fang; Jin, Jing; Tan, Dongqin; Xu, Jiazhi; Dhanjai; Ni, Yuwen; Zhang, Haijun; Chen, Jiping

    2016-05-27

    A solid-phase extraction (SPE) cleanup method was developed to purify the sample extracts for the analysis of polychlorinated naphthalenes (PCNs) and dioxin-like polychlorinated biphenyls (dl-PCBs). Monodisperse magnesium oxide (MgO) microspheres and basic alumina were used as SPE adsorbents. Important parameters of the SPE procedure were optimized, including the amount of basic alumina and the type and volume of the washing and elution solvents. The optimized SPE cleanup method exhibited excellent purification performance for the removal of organochlorinated compounds, lipid compounds, sulfur, and pigments. Additionally, it was found that the retention activities of congeners differed with the number and position of the chlorine substituents in PCNs. In this study, an analytical method based on a combination of accelerated solvent extraction (ASE) coupled with SPE cleanup and gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) is proposed for the analysis of PCNs and dl-PCBs in complex samples (sediment, pine needle, and scallop samples). The analytical method demonstrates good linearity, acceptable recovery (63-148%) and precision (relative standard deviations less than 26%). The limits of detection (LODs) of PCN and dl-PCB congeners were in the range of 0.6-19.1pgg(-1) and 0.4-8.6pgg(-1), respectively. The PCNs and dl-PCBs levels in these samples ranged from 0.16 to 3.07ngg(-1) dry weight (dw) and from undetectable to 0.07ngg(-1) dw, respectively. PMID:27130583

  2. Application of capillary electrophoresis-inductively coupled plasma mass spectrometry to comparative studying of the reactivity of antitumor ruthenium(III) complexes differing in the nature of counter-ion toward human serum proteins.

    PubMed

    Połeć-Pawlak, Kasia; Abramski, Jan K; Ferenc, Julia; Foteeva, Lidia S; Timerbaev, Andrei R; Keppler, Bernhard K; Jarosz, Maciej

    2008-05-30

    Varying the counter-ion is a highly supportive practice in tackling the problem of poor water-solubility of metal complexes of pharmaceutical importance. As a matter of fact, the relevant structural modification may alter the metabolic pathways and possibly the mode of action of a drug. To prove that this does not take place for one of the lead anticancer metal-based developmental compounds, indazolium trans-[RuCl(4)(1H-indazole)(2)] (KP1019), its reactivity toward human serum proteins was assessed under simulated physiological conditions and compared to that of a much more soluble analogue, sodium trans-[RuCl(4)(1H-indazole)(2)] (KP1339). For such kinetic assaying, capillary electrophoresis (CE) interfaced online with inductively coupled plasma mass spectrometry (ICP-MS) to specifically monitor changes in the metal speciation following the formation of ruthenium-protein adducts was applied. The rate constants of interaction with albumin and transferrin were determined at pharmacologically fitting drug-to-protein ratios as on average 0.0319+/-0.0021 min(-1) and 0.0931+/-0.0019 min(-1) (KP1019) and 0.0316+/-0.0018 min(-1) and 0.0935+/-0.0053 min(-1) (KP1339), respectively. The results of this brief study showed that changing from organic to inorganic counter-ion at the stage of formulation could commonly be recommended for improving ruthenium-based drug solubility and bioavailability. PMID:18433763

  3. Negative coupling and coupling phase dispersion in a silicon quadrupole micro-racetrack resonator.

    PubMed

    Bachman, Daniel; Tsay, Alan; Van, Vien

    2015-07-27

    We report the first experimental study of the effects of coupling phase dispersion on the spectral response of a two-dimensionally coupled quadrupole micro-racetrack resonator. Negative coupling in the system is observed to manifest itself in the sharp stop band transition and deep extinction in the pseudo-elliptic filter response of the quadrupole. The results demonstrate the feasibility of realizing advanced silicon microring devices based on the 2D coupling topology with general complex coupling coefficients. PMID:26367666

  4. Overdamping by weakly coupled environments

    NASA Astrophysics Data System (ADS)

    Esposito, Massimiliano; Haake, Fritz

    2005-12-01

    A quantum system weakly interacting with a fast environment usually undergoes a relaxation with complex frequencies whose imaginary parts are damping rates quadratic in the coupling to the environment in accord with Fermi’s “golden rule.” We show for various models (spin damped by harmonic-oscillator or random-matrix baths, quantum diffusion, and quantum Brownian motion) that upon increasing the coupling up to a critical value still small enough to allow for weak-coupling Markovian master equations, a different relaxation regime can occur. In that regime, complex frequencies lose their real parts such that the process becomes overdamped. Our results call into question the standard belief that overdamping is exclusively a strong coupling feature.

  5. Overdamping by weakly coupled environments

    SciTech Connect

    Esposito, Massimiliano; Haake, Fritz

    2005-12-15

    A quantum system weakly interacting with a fast environment usually undergoes a relaxation with complex frequencies whose imaginary parts are damping rates quadratic in the coupling to the environment in accord with Fermi's 'golden rule'. We show for various models (spin damped by harmonic-oscillator or random-matrix baths, quantum diffusion, and quantum Brownian motion) that upon increasing the coupling up to a critical value still small enough to allow for weak-coupling Markovian master equations, a different relaxation regime can occur. In that regime, complex frequencies lose their real parts such that the process becomes overdamped. Our results call into question the standard belief that overdamping is exclusively a strong coupling feature.

  6. Structural model of ligand-G protein-coupled receptor (GPCR) complex based on experimental double mutant cycle data: MT7 snake toxin bound to dimeric hM1 muscarinic receptor.

    PubMed

    Marquer, Catherine; Fruchart-Gaillard, Carole; Letellier, Guillaume; Marcon, Elodie; Mourier, Gilles; Zinn-Justin, Sophie; Ménez, André; Servent, Denis; Gilquin, Bernard

    2011-09-01

    The snake toxin MT7 is a potent and specific allosteric modulator of the human M1 muscarinic receptor (hM1). We previously characterized by mutagenesis experiments the functional determinants of the MT7-hM1 receptor interaction (Fruchart-Gaillard, C., Mourier, G., Marquer, C., Stura, E., Birdsall, N. J., and Servent, D. (2008) Mol. Pharmacol. 74, 1554-1563) and more recently collected evidence indicating that MT7 may bind to a dimeric form of hM1 (Marquer, C., Fruchart-Gaillard, C., Mourier, G., Grandjean, O., Girard, E., le Maire, M., Brown, S., and Servent, D. (2010) Biol. Cell 102, 409-420). To structurally characterize the MT7-hM1 complex, we adopted a strategy combining double mutant cycle experiments and molecular modeling calculations. First, thirty-three ligand-receptor proximities were identified from the analysis of sixty-one double mutant binding affinities. Several toxin residues that are more than 25 Å apart still contact the same residues on the receptor. As a consequence, attempts to satisfy all the restraints by docking the toxin onto a single receptor failed. The toxin was then positioned onto two receptors during five independent flexible docking simulations. The different possible ligand and receptor extracellular loop conformations were described by performing simulations in explicit solvent. All the docking calculations converged to the same conformation of the MT7-hM1 dimer complex, satisfying the experimental restraints and in which (i) the toxin interacts with the extracellular side of the receptor, (ii) the tips of MT7 loops II and III contact one hM1 protomer, whereas the tip of loop I binds to the other protomer, and (iii) the hM1 dimeric interface involves the transmembrane helices TM6 and TM7. These results structurally support the high affinity and selectivity of the MT7-hM1 interaction and highlight the atypical mode of interaction of this allosteric ligand on its G protein-coupled receptor target. PMID:21685390

  7. Evaluation of the capabilities of atmospheric pressure chemical ionization source coupled to tandem mass spectrometry for the determination of dioxin-like polychlorobiphenyls in complex-matrix food samples.

    PubMed

    Portolés, T; Sales, C; Abalos, M; Sauló, J; Abad, E

    2016-09-21

    The use of the novel atmospheric pressure chemical ionization (APCI) source for gas chromatography (GC) coupled to triple quadrupole using tandem mass spectrometry (MS/MS) and its potential for the simultaneous determination of the 12 dioxin-like polychlorobiphenyls (DL-PCBs) in complex food and feed matrices has been evaluated. In first place, ionization and fragmentation behavior of DL-PCBs on the APCI source under charge transfer conditions has been studied followed by their fragmentation in the collision cell. Linearity, repeatability and sensitivity have been studied obtaining instrumental limits of detection and quantification of 0.0025 and 0.005 pg μL(-1) (2.5 and 5 fg on column) respectively for every DL-PCB. Finally, application to real samples has been carried out and DL-PCB congeners (PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189) have been detected in the different samples in the range of 0.40-10000 pg g(-1). GC-(APCI)MS/MS has been proved as a suitable alternative to the traditionally accepted confirmation method based on the use of high resolution mass spectrometry and other triple quadrupole tandem mass spectrometry techniques operating with electron ionization. The development of MS/MS methodologies for the analysis of dioxins and DL-PCBs is nowadays particularly important, since this technique was included as a confirmatory method in the present European Union regulations that establish the requirements for the determination of these compounds in food and feed matrices. PMID:27590550

  8. Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes.

    PubMed

    Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J

    2015-04-21

    A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary. PMID:25822566

  9. Magnetoelectric coupling at metal surfaces

    SciTech Connect

    Gerhard, Lukas; Yamada, T.K.; Balashov, T.; Takacs, A. F.; Wesselink, R.J.H.; Daene, Markus W; Fechner, M.; Ostanin, S.; Ernst, Arthur; Mertig, I.; Wulfhekel, Wulf

    2010-10-01

    Magnetoelectric coupling allows the magnetic state of a material to be changed by an applied electric field. To date, this phenomenon has mainly been observed in insulating materials such as complex multiferroic oxides. Bulk metallic systems do not exhibit magnetoelectric coupling, because applied electric fields are screened by conduction electrons. We demonstrate strong magnetoelectric coupling at the surface of thin iron films using the electric field from a scanning tunnelling microscope, and are able to write, store and read information to areas with sides of a few nanometres. Our work demonstrates that high-density, non-volatile information storage is possible in metals.

  10. Tubular Coupling

    NASA Technical Reports Server (NTRS)

    Rosenbaum, Bernard J. (Inventor)

    2000-01-01

    A system for coupling a vascular overflow graft or cannula to a heart pump. A pump pipe outlet is provided with an external tapered surface which receives the end of a compressible connula. An annular compression ring with a tapered internal bore surface is arranged about the cannula with the tapered internal surface in a facing relationship to the external tapered surface. The angle of inclination of the tapered surfaces is converging such that the spacing between the tapered surfaces decreases from one end of the external tapered surface to the other end thereby providing a clamping action of the tapered surface on a cannula which increases as a function of the length of cannula segment between the tapered surfaces. The annular compression ring is disposed within a tubular locking nut which threadedly couples to the pump and provides a compression force for urging the annular ring onto the cannula between the tapered surfaces. The nut has a threaded connection to the pump body. The threaded coupling to the pump body provides a compression force for the annular ring. The annular ring has an annular enclosure space in which excess cannula material from the compression between the tapered surfaces to "bunch up" in the space and serve as an enlarged annular ring segment to assist holding the cannula in place. The clamped cannula provides a seamless joint connection to the pump pipe outlet where the clamping force is uniformly applied to the cannula because of self alignment of the tapered surfaces. The nut can be easily disconnected to replace the pump if necessary.

  11. Coupling Dynamics in Aircraft: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Day, Richard E.

    1997-01-01

    Coupling dynamics can produce either adverse or beneficial stability and controllability, depending on the characteristics of the aircraft. This report presents archival anecdotes and analyses of coupling problems experienced by the X-series, Century series, and Space Shuttle aircraft. The three catastrophic sequential coupling modes of the X-2 airplane and the two simultaneous unstable modes of the X-15 and Space Shuttle aircraft are discussed. In addition, the most complex of the coupling interactions, inertia roll coupling, is discussed for the X-2, X-3, F-100A, and YF-102 aircraft. The mechanics of gyroscopics, centrifugal effect, and resonance in coupling dynamics are described. The coupling modes discussed are interacting multiple degrees of freedom of inertial and aerodynamic forces and moments. The aircraft are assumed to be rigid bodies. Structural couplings are not addressed. Various solutions for coupling instabilities are discussed.

  12. Self-assembly of mixed-valence Co(II/III) and Ni(II) clusters: azide-bridged 1D single chain coordination polymers comprised of tetranuclear units, tetranuclear Co(II/III) complexes, ferromagnetically coupled azide-bridged tetranuclear, and hexanuclear Ni(II) complexes: synthesis, structural, and magnetic properties.

    PubMed

    Tandon, Santokh S; Bunge, Scott D; Rakosi, Robert; Xu, Zhiqiang; Thompson, Laurence K

    2009-09-01

    One-pot reactions between 2,6-diformyl-4-methylphenol (DFMP) and 2-aminoethanol (AE) in the presence of cobalt(II) salts [Co(ClO4)2, CoCl2, Co(CH3CO2)2, Co(NO3)2] and sodium azide result in the self-assembly of novel one-dimensional single chain mixed-valence cobalt coordination polymers {[Co2(II)Co2(III) (HL)2(OCH3)2(N3)3]ClO(4).5H2O.CH3OH}n (1), {[Co2(II)Co2(III) (HL)2(OCH3)2(N3)3]Cl.H2O}n (2) in which tetra-cobalt cationic units are bridged by symmetrical 1,3-azides, forming single chains; mixed valence neutral tetranuclear clusters [Co2(II)Co2(III) (HL)2(OCH3)2(N3)4]CH3OH.2H2O (3), [Co2(II)Co2(III)(HL)2(OCH3)2(N3)2(CH3CO2)2].2CH3OH.2H2O (4), and the cationic cluster [Co2(II) Co2(III) (HL)2(OCH3)2(CH3OH)2(N3)2](NO3)2 (5). In all these reactions, H3L, the potentially pentadentate (N2O3), trianionic double Schiff base ligand 2,6-bis[(2-hydroxy-ethylimino)-methyl]-4-methylphenol is formed. The reaction between DFMP and AE in the presence of nickel(ii) salts and sodium azide in methanol-water mixture results in the self-assembly of ferromagnetically coupled hexanuclear complexes [Ni6(H2L)2(HL-1)2(H2O)2(N3)6](ClO4)(2).2CH3OH (6), and [Ni6(H2L)2(HL-1)2(CH3OH)2(N3)6](BF4)2 (7), involving double (H3L) and single (H2L-1) Schiff base ligands, and a neutral tetranuclear complex [Ni4(H2L)2(OCH3)2(CH3CO2)2(N3)2] (8) with only double Schiff-base (H3L). In these complexes, the nature of the anion and the reaction conditions seem to play an important role in directing the formation of tetranuclear, hexanuclear or polymeric clusters. All complexes involve divacant double cubane-type cores containing three to four different types of bridging ligands (phenoxy, azido, methoxy/alkoxy, and acetate). Variable temperature magnetic properties of these spin coupled clusters have been investigated and magneto-structural correlations have been established. PMID:19672499

  13. Dark coupling

    SciTech Connect

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S. E-mail: d.hernandez@uam.es E-mail: omena@ific.uv.es

    2009-07-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed.

  14. Thermoacoustic couple

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-10-04

    An apparatus and method for determining acoustic power density level and its direction in a fluid using a single sensor are disclosed. The preferred embodiment of the apparatus, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  15. Using a combination of radiogenic and stable isotopes coupled with hydrogeochemistry, limnometrics and meteorological data in hydrological research of complex underground mine-pit lake systems: The case of Cueva de la Mora

    NASA Astrophysics Data System (ADS)

    Sánchez-España, J.; Diez Ercilla, M.; Pérez Cerdán, F.; Yusta, I.

    2012-04-01

    This study presents a combination of radiogenic and stable isotopes (3H, 2H and 18O on pit lake water, and 34S on dissolved sulfate) coupled with bathymetric, meteorological and limnometric investigations, and detailed hydrogeochemical studies to decipher the flooding history and hydrological dynamics of a meromictic and deeply stratified pit lake in SW Spain. The application of these combined techniques has been specially succesful considering the complexity of the studied system, which includes a substantial number of horizontal galleries, shafts and large rooms physically connected to the pit lake. Specific conductance and temperature profiles have depicted a physical structure of the water body which includes four monimolimnetic layers of increasing density with depth. This internal configuration includes m-scale layers separated by sharp transional zones and is rarely observed in natural, fresh water bodies and most other pit lakes. The tritium abundance of the different layers indicate that the deepest water consists in strongly acidified and metal-laden meteoric water infiltrated in the mine system soon after the mine closure in 1971-72. Oxygen and hydrogen isotope ratios of the different layers reflect a sharp stratification with increasing evaporative influence towards the lake surface. The combination of tritium data with the oxygen and hydrogen isotope composition of the different layers suggests a model of pit lake formation with an initial stage of flooding (with entrance of highly metal- and sulfate-loaded mine drainage from the underlying mine galleries) that deeply determined the physical structure and meromictic nature of the lake. After reaching the present water level and morphology, the stagnant, anoxic part of pit lake seems to have remained chemically and isotopically unmodified during its 40 year-old history. Although the pit lake receives significant water input during autumn and winter (which in turn provoke significant volumetric increases

  16. [Comorbidity in infertile couples].

    PubMed

    Sartorius, Gideon A; Bürgin, Laila; Kaufmann, Fabrice; De Geyter, Christian

    2009-12-01

    Pregnancy is the result of a series of highly complex processes, which can be deranged by multiple disturbances on many different levels. Physicians are increasingly dealing with couples suffering from infertility. This rise in case numbers is mainly due to the fact that couples are more and more delaying childbearing until a later phase of their reproductive life, when their social and professional careers are established. The increasing mean age at the first birth has a negative impact on fertility by deteriorating quality and reducing the quantity of oocytes. With increasing age systemic diseases are becoming more coincidental, which in turn tend to exert negative effects on fecundity and fertility both in males and females. This review highlights some associations between infertility and various common systemic diseases. Both general practitioners and gynecologists should counsel young women about the finity of the reproductive phase of their life. Young couples are to be informed, that a "healthy lifestyle" without smoking, sexual transmitted diseases and without metabolic diseases as diabetes and obesity can have a positive effect not only on their general health but also on their fertility and the outcome of future pregnancies. PMID:19950056

  17. Measuring the uncertainty of coupling

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaojun; Shang, Pengjian

    2015-06-01

    A new information-theoretic measure, called coupling entropy, is proposed here to detect the causal links in complex systems by taking into account the inner composition alignment of temporal structure. It is a permutation-based asymmetric association measure to infer the uncertainty of coupling between two time series. The coupling entropy is found to be effective in the analysis of Hénon maps, where different noises are added to test its accuracy and sensitivity. The coupling entropy is also applied to analyze the relationship between unemployment rate and CPI change in the U.S., where the CPI change turns out to be the driving variable while the unemployment rate is the responding one.

  18. Uncertainty Analysis of Model Coupling

    NASA Astrophysics Data System (ADS)

    Held, H.; Knopf, B.; Schneider von Deimling, T.; Schellnhuber, H.-J.

    The Earth System is a highly complex system that is often modelled by coupling sev- eral nonlinear submodules. For predicting the climate with these models, the following uncertainties play an essential role: parameter uncertainty, uncertainty in initial con- ditions or model uncertainty. Here we will address uncertainty in initial conditions as well as model uncertainty. As the process of coupling is an important part of model- ing, the main aspect of this work is the investigation of uncertainties that are due to the coupling process. For this study we use conceptual models that, compared to GCMs, have the advantage that the model itself as well as the output can be treated in a mathematically elabo- rated way. As the time for running the model is much shorter, the investigation is also possible for a longer period, e.g. for paleo runs. In consideration of these facts it is feasible to analyse the whole phase space of the model. The process of coupling is investigated by using different methods of examining low order coupled atmosphere-ocean systems. In the dynamical approach a fully coupled system of the two submodules can be compared to a system where one submodule forces the other. For a particular atmosphere-ocean system, based on the Lorenz model for the atmosphere, there can be shown significant differences in the predictability of a forced system depending whether the subsystems are coupled in a linear or a non- linear way. In [1] it is shown that in the linear case the forcing cannot represent the coupling, but in the nonlinear case, that we investigated in our study, the variability and the statistics of the coupled system can be reproduced by the forcing. Another approach to analyse the coupling is to carry out a bifurcation analysis. Here the bifurcation diagram of a single atmosphere system is compared to that of a cou- pled atmosphere-ocean system. Again it can be seen from the different behaviour of the coupled and the uncoupled system, that the

  19. Designing the Dynamics of Globally Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Orosz, G.; Moehlis, J.; Ashwin, P.

    2009-09-01

    A method for designing cluster states with prescribed stability is presented for coupled phase oscillator systems with all-to-all coupling. We determine criteria for the coupling function that ensure the existence and stability of a large variety of clustered configurations. We show that such criteria can be satisfied by choosing Fourier coefficients of the coupling function. We demonstrate that using simple trigonometric and localized coupling functions one can realize arbitrary patterns of stable clusters and that the designed systems are capable of performing finite state computation. The design principles may be relevant when engineering complex dynamical behavior of coupled systems, e.g. the emergent dynamics of artificial neural networks, coupled chemical oscillators and robotic swarms.

  20. The Norway Couple Project: Lessons Learned.

    PubMed

    Sparks, Jacqueline A

    2015-10-01

    Couple therapists in routine practice may find it difficult to apply findings from an increasingly expanding and complex body of couple therapy research. Meanwhile, concerns have been raised that competency in evidence-based treatments is insufficient to inform many practice decisions or ensure positive treatment outcomes (American Psychological Association Presidential Task Force on Evidence-Based Practice, American Psychologist, 2006, 271). This article aims to narrow the research/practice gap in couple therapy. Results from a large, randomized naturalistic couple trial (Anker, Duncan, & Sparks, Journal of Consulting and Clinical Psychology, 2009, 693) and four companion studies are translated into specific guidelines for routine, eclectic practice. Client feedback, the therapeutic alliance, couple goals assessment, and therapist experience in couple therapy provide a research-informed template for improving couple therapy outcomes. PMID:25244649

  1. Earthquakes with non--double-couple mechanisms.

    PubMed

    Frohlich, C

    1994-05-01

    Seismological observations confirm that the pattern of seismic waves from some earthquakes cannot be produced by slip along a planar fault surface. More than one physical mechanism is required to explain the observed varieties of these non-double-couple earthquakes. The simplest explanation is that some earthquakes are complex, with stress released on two or more suitably oriented, nonparallel fault surfaces. However, some shallow earthquakes in volcanic and geothermal areas require other explanations. Current research focuses on whether fault complexity explains most observed non-double-couple earthquakes and to what extent ordinary earthquakes have non-double-couple components. PMID:17794721

  2. Magnetically Coupled Transport System

    SciTech Connect

    Breshears, S.A.

    1999-01-26

    Throughout the DOE complex, materials are routinely transported within glovebox processing lines. Cylindrical product cans, crucibles, sample containers, tools, and waste products are all examples of items that are moved between equipment stations during glovebox operations. Traditional transport methods have included manual handling using tongs, chain and belt conveyors, carts with pull wires, and overhead hoists on monorails. These methods rely on hands-on operations and/or utilize high maintenance equipment located inside the gloveboxes, which can lead to high radiation exposure to personnel and can generate large amounts of radioactive waste. One innovative approach incorporates linear induction motors (LIMs) so that high maintenance items are located outside the gloveboxes, but LIMs produce heat, do not move smoothly over a wide range of velocities, and are not locked in position at zero velocity. Savannah River Technology Center (SRTC) engineers have developed and demonstrated a concept for a magnetically coupled transport system to transfer material within process lines and from line to line. This automated system significantly reduces hands-on operations. Linear actuators and lead screws provide smooth horizontal and vertical movement. Rare earth magnetic coupling technology allows the majority of the equipment to be located outside the glovebox, simplifying maintenance and minimizing radioactive waste.

  3. Relation between Enzymic Catalysis and Energy Coupling

    NASA Astrophysics Data System (ADS)

    Fry, Mitchell; Blondin, George A.; Green, David E.

    1980-10-01

    The principles that underlie enzyme catalysis also apply to energy coupling processes. A comparison is made between a kinase system that mediates the phosphorylation of glucose by ATP (hexokinase), as the prototype for enzymic catalysis, and the mitochondrial electron-transfer complexes, as the prototypes for energy coupling systems. Induced polarization of chemical bonds and charge separation and elimination are common component events of both enzyme catalysis and energy coupling. Thus, definite limits can be imposed on models of energy coupling; they must comply with the basic principles of enzymic catalysis.

  4. The Complex of Ciliary Neurotrophic Factor-Ciliary Neurotrophic Factor Receptor α Up-Regulates Connexin43 and Intercellular Coupling in Astrocytes via the Janus Tyrosine Kinase/Signal Transducer and Activator of Transcription PathwayD⃞

    PubMed Central

    Ozog, Mark A.; Bernier, Suzanne M.; Bates, Dave C.; Chatterjee, Bishwanath; Lo, Cecilia W.; Naus, Christian C.G.

    2004-01-01

    Cytokines regulate numerous cell processes, including connexin expression and gap junctional coupling. In this study, we examined the effect of ciliary neurotrophic factor (CNTF) on connexin43 (Cx43) expression and intercellular coupling in astrocytes. Murine cortical astrocytes matured in vitro were treated with CNTF (20 ng/ml), soluble ciliary neurotrophic factor receptor α (CNTFRα) (200 ng/ml), or CNTF-CNTFRα. Although CNTF and CNTFRα alone had no effect on Cx43 expression, the heterodimer CNTF-CNTFRα significantly increased both Cx43 mRNA and protein levels. Cx43 immunostaining correlated with increased intercellular coupling as determined by dye transfer analysis. By using the pharmacological inhibitor α-cyano-(3,4-dihydroxy)-N-benzylcinnamide (AG490), the increase in Cx43 was found to be dependent on the Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Immunocytochemical analysis revealed that CNTF-CNTFRα treatment produced nuclear localization of phosphorylated STAT3, whereas CNTF treatment alone did not. Transient transfection of constructs containing various sequences of the Cx43 promoter tagged to a LacZ reporter into ROS 17/2.8 cells confirmed that the promoter region between -838 to -1693 was deemed necessary for CNTF-CNTFRα to induce heightened expression. CNTF-CNTFRα did not alter Cx30 mRNA levels, suggesting selectivity of CNTF-CNTFRα for connexin signaling. Together in the presence of soluble receptor, CNTF activates the JAK/STAT pathway leading to enhanced Cx43 expression and intercellular coupling. PMID:15342787

  5. Traffic congestion in interconnected complex networks

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Wu, Jiajing; Xia, Yongxiang; Tse, Chi K.

    2014-06-01

    Traffic congestion in isolated complex networks has been investigated extensively over the last decade. Coupled network models have recently been developed to facilitate further understanding of real complex systems. Analysis of traffic congestion in coupled complex networks, however, is still relatively unexplored. In this paper, we try to explore the effect of interconnections on traffic congestion in interconnected Barabási-Albert scale-free networks. We find that assortative coupling can alleviate traffic congestion more readily than disassortative and random coupling when the node processing capacity is allocated based on node usage probability. Furthermore, the optimal coupling probability can be found for assortative coupling. However, three types of coupling preferences achieve similar traffic performance if all nodes share the same processing capacity. We analyze interconnected Internet autonomous-system-level graphs of South Korea and Japan and obtain similar results. Some practical suggestions are presented to optimize such real-world interconnected networks accordingly.

  6. A combined computational and experimental study of the [Co(bpy)3](2+/3+) complexes as one-electron outer-sphere redox couples in dye-sensitized solar cell electrolyte media.

    PubMed

    Yaghoobi Nia, Narges; Farahani, Pooria; Sabzyan, Hassan; Zendehdel, Mahmoud; Oftadeh, Mohsen

    2014-06-21

    A combined experimental and computational investigation conducted to understand the nature of the interactions between cobalt II/III redox mediators ([Co(bpy)3](2+/3+)) and their impact on the performance of the corresponding dye-sensitized solar cells (DSCs) is reported. The fully optimized equilibrium structures of cobalt(II/III)-tris-bipyridine complexes in the gas phase and acetonitrile solvent are obtained by the density functional B3LYP method using LanL2DZ and 6-31G(d,p) basis sets. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of the complexes are also calculated. The scaled computational vibrational wavenumbers show very good agreement with the experimental values. Calculations of the electronic properties of the complexes are also performed at the TD-B3LYP/6-31G(p,d)[LanL2DZ] level of theory. Detailed interpretations of the infrared and Raman spectra of the complexes in different phases are reported. Detailed atomic orbital coefficients of the frontier molecular orbitals and their major contributions to electronic excitations of the complexes are also reported. These results are in good agreement with the experimental electrochemical values. Marcus diagram is derived for the electron transfer reaction Co(II) + D35(+)→ Co(III) + D35 using the Co-N bond length as a reaction coordinate. PMID:24802678

  7. Four-electron oxidative dehydrogenation induced by proton-coupled electron transfer in ruthenium(III) complex with 2-(1,4,5,6-tetrahydropyrimidin-2-yl)phenolate.

    PubMed

    Mitsuhashi, Ryoji; Suzuki, Takayoshi; Sunatsuki, Yukinari

    2013-09-01

    New ruthenium(II or III) complexes with general formula [Ru(O-N)(bpy)2](n+) (O-N = unsymmetrical bidentate phenolate ligand; bpy = 2,2'-bipyridine) were synthesized, and their crystal structures and electrochemical properties were characterized. Ru(II) complexes with 2-(2-imidazolinyl)phenolate (Himn(-)) or 2-(1,4,5,6-tetrahydropyrimidin-2-yl)phenolate (Hthp(-)) could be deprotonated by addition of excess KO(t)Bu, although the deprotonated species were easily reprotonated by exposure to air. Unlike these Ru(II) complexes, their Ru(III) analogs showed interesting ligand oxidation reactions upon addition of bases. With [Ru(III)(Himn)(bpy)2](2+), two-electron oxidation of Himn(-) and reduction of the Ru(III) center resulted in conversion of the 2-imidazolinyl group to a 2-imidazolyl group. On the other hand, the corresponding Hthp(-) complex exhibited four-electron oxidation of the ligand to form 2-(2-pyrimidyl)phenolate (pym(-)). These aromatization reactions of imidazolinyl and 1,4,5,6-tetrahydropyrimidyl groups were also achieved by the electrochemically generated Ru(III) complexes. PMID:23967872

  8. Miscarriage experiences of lesbian couples.

    PubMed

    Wojnar, Danuta

    2007-01-01

    This was a descriptive phenomenological study of 10 self-identified lesbian couples who had experienced miscarriage in the context of a committed relationship. Analysis of individual and joint open-ended interviews revealed that the experience of miscarriage for lesbian couples must be viewed from the perspective of the difficulties surrounding conception as well as the actual pregnancy loss. The overarching theme, "We are not in control," captures the struggles lesbian couples faced in conceiving their pregnancies and the sense of loss that accompanied miscarrying. These experiences constituted two sub-themes: "We work so hard to get a baby" and "It hurts so bad: The sorrow of miscarriage." Our results indicate that the experience of miscarriage is compounded by the complexities of planning and achieving pregnancy. Practitioners need to be aware of the unique perspectives lesbian couples have on pregnancy and miscarriage and remain sensitive to their unique needs. Findings may serve as an intervention framework for nurse midwives and others caring for lesbian couples after miscarriage. PMID:17826711

  9. Synchronization in node of complex networks consist of complex chaotic system

    SciTech Connect

    Wei, Qiang; Xie, Cheng-jun; Liu, Hong-jun; Li, Yan-hui

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  10. Electrical coupling in multi-array charge coupled devices

    NASA Astrophysics Data System (ADS)

    Singh, Parul; Sakarvadiya, Vishal; Dubey, Neeraj; Kirkire, Shweta; Thapa, Nitesh; Banerjee, Arup

    2016-05-01

    Silicon based charge coupled device (CCD) performances have improved immensely over the years. Scientific community across the globe target challenging remote sensing applications with CCD as optical imaging detector. Over the years, both pixel count (from few hundreds to few tens of thousands) and line readout rate (from few kHz to few tens of kHz) have increased considerably. Pixels are readout using a large number of output ports driven up to few tens of MHz Moreover, for multi-spectral applications, same Si die contains multiple arrays sharing input stimuli. This is usually done to optimize package pin count. Si die as well as package level layout of clock and bias lines become critical for closely spaced multi-array devices. The inter-array separation may go down to few hundreds of microns when filter coating is laid on top of the die. Die level layout becomes quite critical for devices with such architecture. The inter-array (consecutive arrays) separation is optimized to reduce optical coupling / stray light in devices integrated multi-band strip filter. Layout constraints along with shared bias/clock lines are known to produce electrical cross-talk or coupling. Effect of this (within one array or between two arrays) cross-talk is more pronounced in systems having low noise floor. Video signal dependent coupling in a multi-port system becomes quite complex and leads to a relatively noisier system (post correction). The paper presents results of simulations and tests (pre and post correction) addressing this type of electrical coupling. The paper presents cause, impact and possible remedial measures to minimize such coupling in a multi-array, multi-port TDI CCD from 1.3% to below 0.06%.

  11. Complex matrix model duality

    SciTech Connect

    Brown, T. W.

    2011-04-15

    The same complex matrix model calculates both tachyon scattering for the c=1 noncritical string at the self-dual radius and certain correlation functions of operators which preserve half the supersymmetry in N=4 super-Yang-Mills theory. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich-Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces.

  12. Biorhythm in Couple Counseling

    ERIC Educational Resources Information Center

    Araoz, Daniel L.

    1977-01-01

    Twelve couples in marital counseling were studied during 12 months on the basis of their biorhythms. For each couple a compatibility percentage was obtained. It was found that difficulties in their interaction correlated highly with dissonance in their biorhythms. (Author)

  13. Couples with dementia: Positioning the 'we'.

    PubMed

    Hydén, Lars-Christer; Nilsson, Elin

    2015-11-01

    The aim of this article is to investigate how spouses in couples with dementia position themselves in relation to each other by analysing their use of pronouns, especially the we. The study uses joint interviews with 11 couples. Based on a quantitative analysis of pronoun use, it is argued that the pronoun we is used by all the spouses; however, it is used less frequently by the spouses with dementia in comparison with healthy spouses. A qualitative analysis of the use of the pronoun we shows that the spouses position, experience and consider themselves as a couple and that they position and experience themselves as individuals in relation to the couple. One of the challenges for couples with dementia is to be able to retain a we in face of the progression of the dementia disease. By positioning themselves in various ways, the spouses establish and negotiate quite a complex and emotionally charged web of relationships. PMID:24339120

  14. Complexity Survey.

    ERIC Educational Resources Information Center

    Gordon, Sandra L.; Anderson, Beth C.

    To determine whether consensus existed among teachers about the complexity of common classroom materials, a survey was administered to 66 pre-service and in-service kindergarten and prekindergarten teachers. Participants were asked to rate 14 common classroom materials as simple, complex, or super-complex. Simple materials have one obvious part,…

  15. Mononuclear and Binuclear Ruthenium(II) Complexes Containing 2,2'-Bipyridine or 1,10-Phenanthroline and Pyrazole-3,5-Bis(benzimidazole). Synthesis, Structure, Isomerism, Spectroscopy, and Proton-Coupled Redox Activity.

    PubMed

    Baitalik, Sujoy; Flörke, Ulrich; Nag, Kamalaksha

    1999-07-12

    A number of mixed-ligand mononuclear and binuclear ruthenium(II) complexes of composition [(bpy)(2)Ru(H(3)pzbzim)](ClO(4))(2).2H(2)O (1), [(phen)(2)Ru(H(3)pzbzim)](ClO(4))(2).3H(2)O (2), [(bpy)(2)Ru(H(2)pzbzim)Ru(bpy)(2)](ClO(4))(3).5H(2)O (3), [(phen)(2)Ru(H(2)pzbzim)Ru(phen)(2)](ClO(4))(3).4H(2)O (4), [(bpy)(2)Ru(H(2)pzbzim)Ru(phen)(2)](ClO(4))(3).4H(2)O (5), [(bpy)(2)Ru(pzbzim)Ru(bpy)(2)](ClO(4)).3H(2)O (6), and [(phen)(2)Ru(pzbzim)Ru(phen)(2)](ClO(4)).2H(2)O (7), where H(3)pzbzim = pyrazole-3,5-bis(benzimidazole), bpy = 2,2'-bipyridine, and phen = 1,10-phenanthroline, have been prepared and characterized. Complexes 3-5 isolated as mixtures of diastereoisomers have been separated by fractional recrystallization. In the cases of 3 and 4, the meso (LambdaDelta) and racemate (rac) (LambdaLambda, DeltaDelta) forms, and for 5, two enantiomeric pairs [(LambdaDelta, DeltaLambda) and (LambdaLambda, DeltaDelta)] have been obtained. These, as well as the meso and rac diastereoisomers of 6, have been characterized by (1)H and (13)C NMR spectroscopy. The crystal structure of the meso (LambdaDelta) form of 3 (C(57)H(53)N(14)Cl(3)O(17)Ru(2)) has been determined, which crystallizes in the monoclinic space group P2(1)/c with a = 11.672(2) Å, b = 41.696(9) Å, c = 12.871(2) Å, beta = 90.03(2)(o), and Z = 4. The acid-base and redox chemistry of the binuclear complexes has been studied over the pH range 1-12 in acetonitrile-water (3:2) medium. The equilibrium constants of the species involving protonation and deprotonation of the benzimidazole NH protons and the metal oxidation states covering +2 and +3 have been evaluated by spectrophotometric and cyclic voltammetric measurements. During spectrophotometric titrations of the complexes with cerium(IV), the metal-to-ligand charge transfer transitions are replaced by the newly generated ligand-to-metal charge transfer transition. The luminescence spectra of the complexes in solution (at 298 K) and in frozen glass (at 77 K) and

  16. Communication complexity and information complexity

    NASA Astrophysics Data System (ADS)

    Pankratov, Denis

    Information complexity enables the use of information-theoretic tools in communication complexity theory. Prior to the results presented in this thesis, information complexity was mainly used for proving lower bounds and direct-sum theorems in the setting of communication complexity. We present three results that demonstrate new connections between information complexity and communication complexity. In the first contribution we thoroughly study the information complexity of the smallest nontrivial two-party function: the AND function. While computing the communication complexity of AND is trivial, computing its exact information complexity presents a major technical challenge. In overcoming this challenge, we reveal that information complexity gives rise to rich geometrical structures. Our analysis of information complexity relies on new analytic techniques and new characterizations of communication protocols. We also uncover a connection of information complexity to the theory of elliptic partial differential equations. Once we compute the exact information complexity of AND, we can compute exact communication complexity of several related functions on n-bit inputs with some additional technical work. Previous combinatorial and algebraic techniques could only prove bounds of the form theta( n). Interestingly, this level of precision is typical in the area of information theory, so our result demonstrates that this meta-property of precise bounds carries over to information complexity and in certain cases even to communication complexity. Our result does not only strengthen the lower bound on communication complexity of disjointness by making it more exact, but it also shows that information complexity provides the exact upper bound on communication complexity. In fact, this result is more general and applies to a whole class of communication problems. In the second contribution, we use self-reduction methods to prove strong lower bounds on the information

  17. Cyclometalated Pd(II) and Ir(III) 2-(4-bromophenyl)pyridine complexes with N-heterocyclic carbenes (NHCs) and acetylacetonate (acac): synthesis, structures, luminescent properties and application in one-pot oxidation/Suzuki coupling of aryl chlorides containing hydroxymethyl.

    PubMed

    Xu, Chen; Li, Hong-Mei; Xiao, Zhi-Qiang; Wang, Zhi-Qiang; Tang, Si-Fu; Ji, Bao-Ming; Hao, Xin-Qi; Song, Mao-Ping

    2014-07-14

    A series of cyclopalladated 2-(4-bromophenyl)pyridine (bpp) complexes [Pd(bpp)(NHC)Cl] 1-3, [Pd(bpp)(acac)] 4, cyclometalated iridium(iii) complexes [Ir(bpp)2Cl]25 and [Ir(bpp)2(acac)] 6 have been synthesized and characterized. Their detailed structures have been determined by X-ray diffraction and many intermolecular C-HX (Cl, Br, π) and ππ interactions were found in their crystals. Cyclometalated complexes 1-4 and 6 exhibit luminescence with emission peaks of 390-543 nm in dichloromethane solution under UV irradiation. Their application to coupling reactions of aryl chlorides containing hydroxymethyl was also investigated. An efficient 3/Cu cocatalyzed oxidation/Suzuki reaction for the synthesis of biarylaldehydes from chloro-phenylmethanol and arylboronic acids in air has been developed. In addition, a 6/3-cocatalyzed one-pot reaction of acetylferrocene, (2-amino-5-chlorophenyl)methanol, and arylboronic acids provided 6-aryl-2-ferrocenylquinolines in moderate to good yields. PMID:24878778

  18. Ultra-high performance liquid chromatography coupled with quadrupole/time of flight mass spectrometry based chemical profiling approach for the holistic quality control of complex Kang-Jing formula preparations.

    PubMed

    Yang, Xiao-Huan; Cheng, Xiao-Lan; Qin, Bing; Cai, Zhuo-Ya; Cai, Xiong; Liu, Shao; Wang, Qi; Qin, Yong

    2016-05-30

    The Kang-Jing (KJ) formula is a compound preparation made from 12 kinds of herbs. So far, four different methods (M1-M4) have been documented for KJ preparation, but the influence of preparation methods on the holistic quality of KJ have remained unknown. In this study, a strategy was proposed to investigate the influence of different preparation methods on the holistic quality of KJ using ultra-high performance liquid chromatography coupled with quadrupole/time of flight mass spectrometry (UHPLC-QTOF-MS/MS) based chemical profiling. A total of 101 compounds mainly belonging to flavonoids, tanshinones, monoterpene glycosides, triterpenoid saponins, alkaloids, phenolic acids and volatile oils, were identified. Among these compounds, glaucine was detected only in M3/M4 samples, while two dehydrocorydaline isomers merely detected in M2/M3/M4 samples. Tetrahydrocolumbamine, ethylic lithospermic acid, salvianolic acid E and rosmarimic acid were only detected in M1/M3/M4 samples. In the subsequent quantitative analysis, 12 major compounds were determined by UHPLC-MS/MS. The proposed method was validated with respect to linearity, accuracy, precision and recovery. It was found that the contents of marker compounds varied significantly in samples prepared by different methods. These results demonstrated that preparation method does significantly affect the holistic quality of KJ. UHPLC-QTOF-MS/MS based chemical profiling approach is efficient and reliable for comprehensive quality evaluation of KJ. Collectively, this study provide the chemical evidence for revealing the material basis of KJ, and establish a simple and accurate chemical profiling method for its quality control. PMID:26977585

  19. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... Substances § 721.10045 Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  20. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... Substances § 721.10045 Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  1. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... Substances § 721.10045 Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  2. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... Substances § 721.10045 Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  3. Phase chaos in coupled oscillators.

    PubMed

    Popovych, Oleksandr V; Maistrenko, Yuri L; Tass, Peter A

    2005-06-01

    A complex high-dimensional chaotic behavior, phase chaos, is found in the finite-dimensional Kuramoto model of coupled phase oscillators. This type of chaos is characterized by half of the spectrum of Lyapunov exponents being positive and the Lyapunov dimension equaling almost the total system dimension. Intriguingly, the strongest phase chaos occurs for intermediate-size ensembles. Phase chaos is a common property of networks of oscillators of very different natures, such as phase oscillators, limit-cycle oscillators, and chaotic oscillators, e.g., Rössler systems. PMID:16089804

  4. Phase chaos in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Popovych, Oleksandr V.; Maistrenko, Yuri L.; Tass, Peter A.

    2005-06-01

    A complex high-dimensional chaotic behavior, phase chaos, is found in the finite-dimensional Kuramoto model of coupled phase oscillators. This type of chaos is characterized by half of the spectrum of Lyapunov exponents being positive and the Lyapunov dimension equaling almost the total system dimension. Intriguingly, the strongest phase chaos occurs for intermediate-size ensembles. Phase chaos is a common property of networks of oscillators of very different natures, such as phase oscillators, limit-cycle oscillators, and chaotic oscillators, e.g., Rössler systems.

  5. Excitonic linewidth of organic quantum wires generated in reduced dimensionality matrices.

    PubMed

    Barisien, Thierry; Legrand, Laurent; Mu, Zhao; Hameau, Sophie

    2016-05-14

    Luminescent organic quantum wires are generated in diacetylene crystalline ultra-thin films grown on orientation-inducing surfaces obtained by poly-tetrafluoroethylene (teflon) deposition. The films are characterized by atomic force microscopy showing that quasi-two-dimensional surroundings are achieved. In this particular environment, pure dephasing processes still determine the wires' homogeneous emission widths, measured using micro-photoluminescence. Coherence times that are slightly shorter in the films also exhibit a distinctive temperature dependence. A model inspired by semiconductor physics for exciton-phonon coupling accounts for the observed behaviour and evidences the role of matrix dimensionality on the coherence properties. PMID:27108759

  6. Davydov Ansatz as an efficient tool for the simulation of nonlinear optical response of molecular aggregates

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Wei; Gelin, Maxim F.; Chernyak, Vladimir Y.; Zhao, Yang

    2015-06-01

    We have developed a variational approach to the description of four-wave-mixing signals of molecular aggregates, in which the third-order response functions are evaluated in terms of the Davydov Ansätze. Our theory treats both singly and doubly excited excitonic states, handling the contributions due to stimulated emission, ground state bleach, and excited state absorption. As an illustration, we simulate a series of optical two-dimensional spectra of model J-aggregates. Our approach may become suitable for the computation of femtosecond optical four-wave-mixing signals of molecular aggregates with intermediate-to-strong exciton-phonon and exciton-exciton coupling strengths.

  7. Assessment of the "6-31+G** + LANL2DZ" Mixed Basis Set Coupled with Density Functional Theory Methods and the Effective Core Potential: Prediction of Heats of Formation and Ionization Potentials for First-Row-Transition-Metal Complexes

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Weaver, Michael N.; Merz, Kenneth M.

    2009-08-01

    Computational chemists have long demonstrated great interest in finding ways to reliably and accurately predict the molecular properties for transition-metal-containing complexes. This study is a continuation of our validation efforts of density functional theory (DFT) methods when applied to transition-metal-containing systems (Riley, K.E.; Merz, K. M., Jr. J. Phys. Chem. 2007, 111, 6044-6053). In our previous work we examined DFT using all-electron basis sets, but approaches incorporating effective core potentials (ECPs) are effective in reducing computational expense. With this in mind, our efforts were expanded to include evaluation of the performance of the basis set derived to approximate such an approach as well on the same set of density functionals. Indeed, employing an ECP basis such as LANL2DZ (Los Alamos National Laboratory 2 double ζ) for transition metals, while using all-electron basis sets for all other non-transition-metal atoms, has become more and more popular in computations on transition-metal-containing systems. In this study, we assess the performance of 12 different DFT functionals, from the GGA (generalized gradient approximation), hybrid-GGA, meta-GGA, and hybrid-meta-GGA classes, respectively, along with the 6-31+G** + LANL2DZ (on the transition metal) mixed basis set in predicting two important molecular properties, heats of formation and ionization potentials, for 94 and 58 systems containing first-row transition metals from Ti to Zn, which are all in the third row of the periodic table. An interesting note is that the inclusion of the exact exchange term in density functional methods generally increases the accuracy of ionization potential prediction for the hybrid-GGA methods but decreases the reliability of determining the heats of formation for transition-metal-containing complexes for all hybrid density functional methods. The hybrid-GGA functional B3LYP gives the best performance in predicting the ionization potentials, while the

  8. Excitons in a photosynthetic light-harvesting system: A combined molecular dynamics, quantum chemistry, and polaron model study

    NASA Astrophysics Data System (ADS)

    Damjanović, Ana; Kosztin, Ioan; Kleinekathöfer, Ulrich; Schulten, Klaus

    2002-03-01

    The dynamics of pigment-pigment and pigment-protein interactions in light-harvesting complexes is studied with an approach that combines molecular dynamics simulations with quantum chemistry calculations and a polaron model analysis. The molecular dynamics simulation of light-harvesting (LH) complexes was performed on an 87 055 atom system comprised of a LH-II complex of Rhodospirillum molischianum embedded in a lipid bilayer and surrounded with appropriate water layers. For each of the 16 B850 bacteriochlorophylls (BChls), we performed 400 ab initio quantum chemistry calculations on geometries that emerged from the molecular dynamical simulations, determining the fluctuations of pigment excitation energies as a function of time. From the results of these calculations we construct a time-dependent Hamiltonian of the B850 exciton system from which we determine within linear response theory the absorption spectrum. Finally, a polaron model is introduced to describe both the excitonic and coupled phonon degrees of freedom by quantum mechanics. The exciton-phonon coupling that enters into the polaron model, and the corresponding phonon spectral function, are derived from the molecular dynamics and quantum chemistry simulations. The model predicts that excitons in the B850 BChl ring are delocalized over five pigments at room temperature. Also, the polaron model permits the calculation of the absorption and circular dichroism spectra of the B850 excitons from the sole knowledge of the autocorrelation function of the excitation energies of individual BChls, which is readily available from the combined molecular dynamics and quantum chemistry simulations. The obtained results are found to be in good agreement with the experimentally measured absorption and circular dichroism spectra.

  9. Ordering design tasks based on coupling strengths

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Bloebaum, Christina L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  10. Ordering Design Tasks Based on Coupling Strengths

    NASA Technical Reports Server (NTRS)

    Rogers, J. L.; Bloebaum, C. L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  11. Three tooth kinematic coupling

    DOEpatents

    Hale, Layton C.

    2000-01-01

    A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

  12. Three tooth kinematic coupling

    SciTech Connect

    Hale, L.C.

    2000-05-23

    A three tooth kinematic coupling is disclosed based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

  13. Complex derivatives

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano; Caldarelli, Guido; Georg, Co-Pierre; May, Robert; Stiglitz, Joseph

    2013-03-01

    The intrinsic complexity of the financial derivatives market has emerged as both an incentive to engage in it, and a key source of its inherent instability. Regulators now faced with the challenge of taming this beast may find inspiration in the budding science of complex systems.

  14. Designing Complexity

    ERIC Educational Resources Information Center

    Glanville, Ranulph

    2007-01-01

    This article considers the nature of complexity and design, as well as relationships between the two, and suggests that design may have much potential as an approach to improving human performance in situations seen as complex. It is developed against two backgrounds. The first is a world view that derives from second order cybernetics and radical…

  15. Controlling synchronous patterns in complex networks

    NASA Astrophysics Data System (ADS)

    Lin, Weijie; Fan, Huawei; Wang, Ying; Ying, Heping; Wang, Xingang

    2016-04-01

    Although the set of permutation symmetries of a complex network could be very large, few of them give rise to stable synchronous patterns. Here we present a general framework and develop techniques for controlling synchronization patterns in complex network of coupled chaotic oscillators. Specifically, according to the network permutation symmetry, we design a small-size and weighted network, namely the control network, and use it to control the large-size complex network by means of pinning coupling. We argue mathematically that for any of the network symmetries, there always exists a critical pinning strength beyond which the unstable synchronous pattern associated to this symmetry can be stabilized. The feasibility of the control method is verified by numerical simulations of both artificial and real-world networks and demonstrated experimentally in systems of coupled chaotic circuits. Our studies show the controllability of synchronous patterns in complex networks of coupled chaotic oscillators.

  16. Complexity and synchronization in stochastic chaotic systems

    NASA Astrophysics Data System (ADS)

    Son Dang, Thai; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo

    2016-02-01

    We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.

  17. Coupling in cytochrome c oxidase

    PubMed Central

    Kessler, R. J.; Blondin, G. A.; Zande, H. Vande; Haworth, R. A.; Green, D. E.

    1977-01-01

    Cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase; EC 1.9.3.1) can be resolved into an electron transfer complex (ETC) and an ionophore transfer complex (ITC). Coupling requires an interaction between the moving electron in the ETC and a moving, positively charged ionophore-cation adduct in the ITC. The duplex character of cytochrome oxidase facilitates this interaction. The ITC mediates cyclical cation transport. It can be replaced as the coupling partner by the combination of valinomycin and nigericin in the presence of K+ when cytochrome oxidase is incorporated into liposomes containing acidic phospholipids or by the combination of lipid cytochrome c and bile acids in an ITC-resolved preparation of the ETC. Respiratory control can be induced by incorporating cytochrome oxidase into vesicles of unfractionated whole mitochondrial lipid. The activity of the ITC is suppressed by such incorporation and this suppression leads to the emergence of respiratory control. The ionophoroproteins of the ITC can be extracted into organic solvents; some 50% of the total protein of cytochrome oxidase is extractable. The release of free ionophore is achieved by tryptic digestion of the ionophoroprotein. Preliminary to this release the ionophoroprotein is degraded to an ionophoropeptide. Electrogenic ionophores, as well as uncoupler, are liberated by such proteolysis. The ITC contains a set of ionophoroproteins imbedded in a matrix of phospholipid. Images PMID:198794

  18. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  19. [Sophrology: a different tool for infertile couples].

    PubMed

    Heymès, O; Forges, T; Guillet-May, F; Zaccabri, A; Dandachi, N; Monnier, P

    2006-12-01

    Because of the high degree of complexity of assisted reproduction techniques (ART), the human and conscious dimensions of infertility problems are often neglected. Different strategies may help infertile couples coping with infertility and related treatments; among these, Caycedian sophrology relies on the cognitive, emotional, and somatic aspects of consciousness. In the present article, the authors report on their experience with sophrologic support for infertile patients by a midwife qualified in caycedian sophrology. Overall, since 1988, 310 couples have benefied from this kind of support, with an average of 10 sophrologic trainings per patient. Whereas some couples consider sophrology as a short time training to better cope with any particular aspect of their infertility treatment, others want to undertake more profound work on their body scheme. The authors wish to call the attention of ART professionals to this kind of medical support for infertile couples, and also to the particular role of midwives with sophrologic competence in an ART center. PMID:17151535

  20. Integral dependent spin couplings in CI calculations

    NASA Astrophysics Data System (ADS)

    Iberle, K.; Davidson, E. R.

    1982-06-01

    Although the number of ways to combine Slater determinants to form spin eigenfunctions increases rapidly with the number of open shells, most of these spin couplings will make only a small contribution to a given state, provided the spin coupling is chosen judiciously. The technique of limiting calculations to the interacting subspace pioneered by Bunge (1970) was employed by Munch and Davidson (1975) to the vanadium atom. The use of an interacting space looses its advantage in more complex cases. However, the problem can always be reduced to only one interacting spin coupling by making the coefficients integral dependent. The present investigation is concerned with the performance of integral dependent interacting couplings, taking into account the results of three test calculations.

  1. Multi-level coupled cluster theory

    SciTech Connect

    Myhre, Rolf H.; Koch, Henrik; Sánchez de Merás, Alfredo M. J.

    2014-12-14

    We present a general formalism where different levels of coupled cluster theory can be applied to different parts of the molecular system. The system is partitioned into subsystems by Cholesky decomposition of the one-electron Hartree-Fock density matrix. In this way the system can be divided across chemical bonds without discontinuities arising. The coupled cluster wave function is defined in terms of cluster operators for each part and these are determined from a set of coupled equations. The total wave function fulfills the Pauli-principle across all borders and levels of electron correlation. We develop the associated response theory for this multi-level coupled cluster theory and present proof of principle applications. The formalism is an essential tool in order to obtain size-intensive complexity in the calculation of local molecular properties.

  2. Integral dependent spin couplings in CI calculations

    NASA Technical Reports Server (NTRS)

    Iberle, K.; Davidson, E. R.

    1982-01-01

    Although the number of ways to combine Slater determinants to form spin eigenfunctions increases rapidly with the number of open shells, most of these spin couplings will make only a small contribution to a given state, provided the spin coupling is chosen judiciously. The technique of limiting calculations to the interacting subspace pioneered by Bunge (1970) was employed by Munch and Davidson (1975) to the vanadium atom. The use of an interacting space looses its advantage in more complex cases. However, the problem can always be reduced to only one interacting spin coupling by making the coefficients integral dependent. The present investigation is concerned with the performance of integral dependent interacting couplings, taking into account the results of three test calculations.

  3. The Coupled Harmonic Oscillator: Not Just for Seniors Anymore.

    ERIC Educational Resources Information Center

    Preyer, Norris W.

    1996-01-01

    Presents experiments that use Microcomputer Based Laboratory (MBL) techniques to enable freshmen physics students to investigate complex systems, such as nonlinear oscillators or coupled harmonic oscillators, at a level appropriate for an independent project. (JRH)

  4. Bibliographic Coupling: A Review

    ERIC Educational Resources Information Center

    Weinberg, Bella Hass

    1974-01-01

    The theory and practical applications of bibliographic coupling are reviewed. The reviewer takes issue with the use of bibliographic coupling for information retrieval and automatic classification on logical grounds, and for reasons relating to uncontrolled citation practices. The usefulness of the procedure for the study of the science of science…

  5. Gear Spline Coupling Program

    Energy Science and Technology Software Center (ESTSC)

    2013-08-29

    An analytical model is developed to evaluate the design of a spline coupling. For a given torque and shaft misalignment, the model calculates the number of teeth in contact, tooth loads, stiffnesses, stresses, and safety factors. The analytic model provides essential spline coupling design and modeling information and could be easily integrated into gearbox design and simulation tools.

  6. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2015-05-19

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  7. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  8. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    , condensed matter and ultra-cold plasmas. One hundred and thirty participants came from twenty countries and four continents to participate in the conference. Those giving presentations were asked to contribute to this special issue to make a representative record of an interesting conference. We thank the International Advisory Board and the Programme Committee for their support and suggestions. We thank the Local Organizing Committee (Stefania De Palo, Vittorio Pellegrini, Andrea Perali and Pierbiagio Pieri) for all their efforts. We highlight for special mention the dedication displayed by Andrea Perali, by Rocco di Marco for computer support, and by our tireless conference secretary Fiorella Paino. The knowledgeable guided tour of the historic centre of Camerino given by Fiorella Paino was appreciated by many participants. It is no exaggeration to say that without the extraordinary efforts put in by these three, the conference could not have been the success that it was. For their sustained interest and support we thank Fulvio Esposito, Rector of the University of Camerino, Fabio Beltram, Director of NEST, Scuola Normale Superiore, Pisa, and Daniel Cox, Co-Director of ICAM, University of California at Davis. We thank the Institute of Complex and Adaptive Matter ICAM-I2CAM, USA for providing a video record of the conference on the web (found at http://sccs2008.df.unicam.it/). Finally we thank the conference sponsors for their very generous support: the University of Camerino, the Institute of Complex and Adaptive Matter ICAM-I2CAM, USA, the International Centre for Theoretical Physics ICTP Trieste, and CNR-INFM DEMOCRITOS Modeling Center for Research in Atomistic Simulation, Trieste. Participants at the International Conference on Strongly Coupled Coulomb Systems (SCCS) (University of Camerino, Italy, 29 July-2 August 2008).

  9. Exponentially modified QCD coupling

    SciTech Connect

    Cvetic, Gorazd; Valenzuela, Cristian

    2008-04-01

    We present a specific class of models for an infrared-finite analytic QCD coupling, such that at large spacelike energy scales the coupling differs from the perturbative one by less than any inverse power of the energy scale. This condition is motivated by the Institute for Theoretical and Experimental Physics operator product expansion philosophy. Allowed by the ambiguity in the analytization of the perturbative coupling, the proposed class of couplings has three parameters. In the intermediate energy region, the proposed coupling has low loop-level and renormalization scheme dependence. The present modification of perturbative QCD must be considered as a phenomenological attempt, with the aim of enlarging the applicability range of the theory of the strong interactions at low energies.

  10. Ground energy coupling

    NASA Astrophysics Data System (ADS)

    Metz, P. D.

    The feasibility of ground coupling for various heat pump systems was investigated. Analytical heat flow models were developed to approximate design ground coupling devices for use in solar heat pump space conditioning systems. A digital computer program called GROCS (GRound Coupled Systems) was written to model 3-dimensional underground heat flow in order to simulate the behavior of ground coupling experiments and to provide performance predictions which have been compared to experimental results. GROCS also has been integrated with TRNSYS. Soil thermal property and ground coupling device experiments are described. Buried tanks, serpentine earth coils in various configurations, lengths and depths, and sealed vertical wells are being investigated. An earth coil used to heat a house without use of resistance heating is described.

  11. Carney Complex

    MedlinePlus

    ... Screening guidelines may change over time as new technologies are developed and more is learned about Carney complex. It is important to talk with your doctor about appropriate screening tests. Learn more about what to expect when having ...

  12. Time-Dependent Density Functional Theory Study of Low-Lying Absorption and Fluorescence Band Shapes for Phenylene-Containing Oligoacenes.

    PubMed

    Jun, Ye

    2015-12-24

    Low-lying band shapes of absorption and fluorescence spectra for a member of a newly synthesized family of phenylene-containing oligoacenes (POA 6) reported in J. Am. Chem. Soc. 2012 , 134 , 15351 are studied theoretically with two different approaches with TIPS-anthracene as a comparison. Underlying photophysics and exciton-phonon interactions in both molecules are investigated in details with the aid of the time-dependent density functional theory and multimode Brownian oscillator model. The first two low-lying excited-states of POA 6 were found to exhibit excitation characteristics spanning entire conjugated backbone despite the presence of antiaromatic phenylene section. Absorption and fluorescence spectra calculated from both time-dependent density functional theory and multimode Brownian oscillator model are shown to reach good agreement with experimental ones. The coupling between phonon modes and optical transitions is generally weak as suggested by the multimode Brownian oscillator model. Broader peaks of POA 6 spectra are found to relate to stronger coupling between low frequency phonon modes such as backbone twisting (with frequency <300 cm(-1)) and optical transitions. Furthermore, POA 6 exhibits weaker exciton-phonon coupling for the phonon modes above 1000 cm(-1) compared to TIPS-anthracene owing to extended conjugated backbone. A significant coupling between an in-plane breathing mode localized around the antiaromatic phenylene segment with frequency at 1687 cm(-1) and optical transitions for the first two excited-states of POA 6 is also observed. PMID:26611665

  13. Depression: The Differing Narratives of Couples in Couple Therapy

    ERIC Educational Resources Information Center

    Rautiainen, Eija-Liisa; Aaltonen, Jukka

    2010-01-01

    How does the spouse of a person with depression take part in constructing narratives of depression in couple therapy? In this study we examined couples' ways of co-constructing narratives of depression in couple therapy. Three couple therapy processes were chosen for the study, one spouse in each couple having been referred to an outpatient clinic…

  14. Complex networks: Patterns of complexity

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2010-07-01

    The Turing mechanism provides a paradigm for the spontaneous generation of patterns in reaction-diffusion systems. A framework that describes Turing-pattern formation in the context of complex networks should provide a new basis for studying the phenomenon.

  15. Dynamic and topological complexity

    NASA Astrophysics Data System (ADS)

    Turalska, Malgorzata; Geneston, Elvis; Grigolini, Paolo

    2010-03-01

    Cooperative phenomena in complex networks are expected to display unusual characteristics, associated with the peculiar topology of these systems. In this context we study networks of interacting stochastic two-state units as a model of cooperative decision making. Each unit in isolation generates a Poisson process with rate g. We show that when the cooperation is introduced, the decision-making process becomes intermittent. The decision-time distribution density characterized by inverse power-law behavior is defined as a dynamic complexity. Further, the onset of intermittency, expressed in terms of the coupling parameter K, is used as a measure of dynamic efficiency of investigated topologies. We find that the dynamic complexity emerges from regular and small-world topologies. In contrast, both random and scale-free networks correspond to fast transition into exponential decision-time distribution. This property is accompanied by high dynamic efficiency of the decision-making process. Our results indicate that complex dynamical processes occurring on networks could be related to relatively simple topologies.

  16. Coupling in the Tevatron

    SciTech Connect

    Gelfand, N.M.

    1994-12-01

    The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-{beta} quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note.

  17. The subfertile couple.

    PubMed

    McCusker, M P

    1982-01-01

    When pregnancy is achieved through fertility awareness, there are further long-range benefits to the couple: information which will permit them the choice to avoid, delay or achieve subsequent pregnancies. Thus, the opportunity for responsible parenthood continues. The goal of nursing in subfertility care is to identify factors which may contribute to lowered fertility, and to teach and/or refer appropriately. The most comprehensive single intervention may be to teach the couple awareness of their own fertility through the Billings Method of natural family planning. If conception does not occur, the couple may progress to infertility investigation, knowing that the expense, inconvenience, and possible trauma are justified. Whether pregnancy occurs or not, it is likely that the couple will have had the benefit of clarifying their relationship, further understanding their bodies, and generally growing toward fuller personhood. PMID:6920464

  18. Iteration of Complex Functions and Newton's Method

    ERIC Educational Resources Information Center

    Dwyer, Jerry; Barnard, Roger; Cook, David; Corte, Jennifer

    2009-01-01

    This paper discusses some common iterations of complex functions. The presentation is such that similar processes can easily be implemented and understood by undergraduate students. The aim is to illustrate some of the beauty of complex dynamics in an informal setting, while providing a couple of results that are not otherwise readily available in…

  19. Module coupling and predictability

    NASA Astrophysics Data System (ADS)

    Knopf, B.; Held, H.

    2003-04-01

    Successive coupling of several nonlinear submodules seems to be the implicit master strategy of the current world-wide modelling endeavour. The process of coupling is investigated by using different methods of examining low order coupled atmosphere-ocean systems. As a first step, a coupled atmosphere-ocean system, based on the Lorenz84 atmosphere is considered, operated in a forced versus the truly coupled mode. In [1] it is shown that forcing cannot emulate the fully coupled system, yet quite the contrary, generates time series of intermittently high predictability ("locking"). Standard linear stability analysis is incapable to explain the locking phenomenon. While regions of linear asymptotic stability can be evaluated, it turns out that this criterion is too conservative and does not explain the standard locking situation, as the trajectory periodically leaves the region of stability during a locking phase. We therefore propose that the locking phenomenon needs to be analysed in the framework of non-linear dynamics. Preliminary analysis of the statistic of locking-periods displays a similarity to type III intermittency. Bifurcation diagrams obtained from the continuation software AUTO indicate a rich phase space structure which makes the interpretation of the locking phenomenon intricate. Systematic variation of coupling constants appears to be a promising task as the key effects could be followed into parameter regimes of more transparent phase space structure. begin{thebibliography}{0} bibitem{Wittenberg98}A. T. Wittenberg, J. L. Anderson. Dynamical implications of prescribing part of a coupled system: Results from a low order model. Nonlinear Processes in Geophysics, 5: 167-179, 1998.

  20. Coupled transverse motion

    SciTech Connect

    Teng, L.C.

    1989-01-01

    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs.

  1. Rethinking Educational Reform: A Loosely Coupled and Complex Systems Perspective

    ERIC Educational Resources Information Center

    Goldspink, Chris

    2007-01-01

    This article critically examines two sets of ideas that have influenced educational reform in the recent past: managerialism and market approaches. It is argued that while each can be demonstrated to have led to useful change, neither provides a basis for future improvement in education. A recent example of change within the State School sector of…

  2. Researching Complexity.

    ERIC Educational Resources Information Center

    Sumara, Dennis J.

    2000-01-01

    Discusses what Complexity Theory (presented as a rubric that collects theoretical understandings from a number of domains such as ecology, biology, neurology, and education) suggests about mind, selfhood, intelligence, and practices of reading, and the import of these reconceptualizations to reader-response researchers. Concludes that developing…

  3. Complex Clouds

    Atmospheric Science Data Center

    2013-04-16

    ...     View Larger Image The complex structure and beauty of polar clouds are highlighted by these images acquired ... Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe ...

  4. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  5. Complex interactions

    NASA Astrophysics Data System (ADS)

    de Régules, Sergio

    2016-04-01

    Complexity science – which describes phenomena such as collective and emergent behaviour – is the focus of a new centre where researchers are examining everything from the spread of influenza to what a healthy heartbeat looks like. Sergio de Régules reports.

  6. Coupling environmental models and geospatial data processing

    NASA Astrophysics Data System (ADS)

    Brandmeyer, Jo Ellen

    2000-10-01

    This research investigated geospatial functions for solving environmental problems from the perspective of the environmental modeler. Its purpose is to better understand the different approaches to coupling complex models and geospatial data processing, plus the implications for the coupled system. To this end, various coupling methodologies were systematically explored using a geographic information system (GIS) and an emissions processor (SMOKE) for air quality models (AQMs). SMOKE converts an emissions inventory into the format required by an AQM. A GIS creates a file describing the spatial distribution of emissions among the cells in a modeling domain. To demonstrate advantages of a coupled GIS---environmental model system, two methods of spatially distributing on-road mobile emissions to cells were examined. The existing method calculates emissions for each road class, but distributes emissions to the cells using population density. For the new method a GIS builds road density by class and then distributes the emissions using road density. Comparing these methods reveals a significantly different spatial pattern of emissions. Next, various model-coupling methodologies were analyzed, revealing numerous coupling approaches, some of which were categorized in the literature. Critiquing these categorizations while comparing them with documented implementations led to the development of a new coupling hierarchy. The properties of each hierarchical level are discussed with the advantages and limitations of each design. To successfully couple models, the spatial and temporal scales of all models in the coupled system and the spatiotemporal extents of the data must be reconciled. Finally, a case study demonstrated methodologies for coupling SMOKE and a GIS. One methodology required a new approach utilizing dynamically linked libraries. Consequently, emissions were processed using SMOKE from a GIS. Also, a new method of converting data from netCDF files into a database

  7. Coupling Correction Study at NSRRC

    SciTech Connect

    Safranek, James

    2003-07-29

    Emittance coupling between vertical and horizontal planes at TLS has been investigated. Using a set of skew quadrupoles, the coupling can be corrected to an acceptable value. The coupling sources are studied and possible errors are reduced.

  8. Suzuki-Miyaura coupling of NHC-boranes: a new addition to the C-C coupling toolbox.

    PubMed

    Monot, Julien; Brahmi, Malika Makhlouf; Ueng, Shau-Hua; Robert, Carine; Desage-El Murr, Marine; Curran, Dennis P; Malacria, Max; Fensterbank, Louis; Lacôte, Emmanuel

    2009-11-01

    Complexes of triaryl- and trialkylboranes with N-heterocyclic carbenes (NHCs) participate in Suzuki-Miyaura cross-coupling reactions and provide coupled products in good yields under base-free conditions. The reaction can be applied to Csp(2)-Csp(2) and Csp(2)-Csp(3) carbon-carbon bond formation with triflates, iodides, bromides, and chlorides. These results enrich the utility of NHC-borane complexes, which can be added to the toolkit of Suzuki-Miyaura cross-couplings, along with boronic acids and organotrifluoroborates. PMID:19799407

  9. A regioselective double Stille coupling reaction of bicyclic stannolanes.

    PubMed

    Kamimura, Akio; Tanaka, Toshiyuki; So, Masahiro; Itaya, Tomoyuki; Matsuda, Kantaro; Kawamoto, Takuji

    2016-09-14

    A regioselective double Stille coupling reaction was explored using bicyclic stannolanes that were easily prepared from the radical cascade reaction of β-amino-α-methylene esters. Various 1-bromo-2-iodoarenes underwent the double coupling reaction to afford benzoisoindole derivatives in a regioselective manner, where the carbon attached to the iodine selectively coupled with the vinylic carbon, and then the carbon attached to bromine coupled with the alkyl carbon. The combination of intra- and intermolecular coupling reactions provided hexahydroindeno[1,2-b]pyrrole derivatives in good yields. The yields were further improved in the presence of excess amounts of CsF. An attempt to identify the reaction intermediate was made wherein the decomposition of the stannolanes with aqueous HCl and HBr afforded trigonal bipyramidal (TBP) pentacoordinated tin complexes, as confirmed by microanalyses and (119)Sn NMR. Using DCl for the decomposition selectively introduced a deuterium to the E-position of the exomethylene unit. The complexes smoothly underwent the intramolecular Stille coupling reaction in the presence of both a palladium catalyst and DABCO, affording hexahydroindeno[1,2-b]pyrroles in good yields. These results suggest that the double coupling reaction progresses through a TBP tin complex, promoting the second intramolecular coupling reaction between the aryl halide and Csp(3)-tin bond. PMID:27506959

  10. Pinning impulsive directed coupled delayed dynamical network and its applications

    NASA Astrophysics Data System (ADS)

    Lin, Chunnan; Wu, Quanjun; Xiang, Lan; Zhou, Jin

    2015-01-01

    The main objective of the present paper is to further investigate pinning synchronisation of a complex delayed dynamical network with directionally coupling by a single impulsive controller. By developing the analysis procedure of pinning impulsive stability for undirected coupled dynamical network previously, some simple yet general criteria of pinning impulsive synchronisation for such directed coupled network are derived analytically. It is shown that a single impulsive controller can always pin a given directed coupled network to a desired homogenous solution, including an equilibrium point, a periodic orbit, or a chaotic orbit. Subsequently, the theoretical results are illustrated by a directed small-world complex network which is a cellular neural network (CNN) and a directed scale-free complex network with the well-known Hodgkin-Huxley neuron oscillators. Numerical simulations are finally given to demonstrate the effectiveness of the proposed control methodology.

  11. Protein Complex Purification by Affinity Capture.

    PubMed

    LaCava, John; Fernandez-Martinez, Javier; Hakhverdyan, Zhanna; Rout, Michael P

    2016-01-01

    Affinity capture has become a powerful technique for consistently purifying endogenous protein complexes, facilitating biochemical and biophysical assays on otherwise inaccessible biological assemblies, and enabling broader interactomic exploration. For this procedure, cells are broken and their contents separated and extracted into a solvent, permitting access to target macromolecular complexes thus released in solution. The complexes are specifically enriched from the extract onto a solid medium coupled with an affinity reagent-usually an antibody-that recognizes the target either directly or through an appended affinity tag, allowing subsequent characterization of the complex. Here, we discuss approaches and considerations for purifying endogenous yeast protein complexes by affinity capture. PMID:27371601

  12. Model reduction for networks of coupled oscillators

    NASA Astrophysics Data System (ADS)

    Gottwald, Georg A.

    2015-05-01

    We present a collective coordinate approach to describe coupled phase oscillators. We apply the method to study synchronisation in a Kuramoto model. In our approach, an N-dimensional Kuramoto model is reduced to an n-dimensional ordinary differential equation with n ≪ N , constituting an immense reduction in complexity. The onset of both local and global synchronisation is reproduced to good numerical accuracy, and we are able to describe both soft and hard transitions. By introducing two collective coordinates, the approach is able to describe the interaction of two partially synchronised clusters in the case of bimodally distributed native frequencies. Furthermore, our approach allows us to accurately describe finite size scalings of the critical coupling strength. We corroborate our analytical results by comparing with numerical simulations of the Kuramoto model with all-to-all coupling networks for several distributions of the native frequencies.

  13. Spatial resolution effect of light coupling structures

    NASA Astrophysics Data System (ADS)

    Li, Juntao; Li, Kezheng; Schuster, Christian; Su, Rongbin; Wang, Xuehua; Borges, Ben-Hur V.; Krauss, Thomas F.; Martins, Emiliano R.

    2015-12-01

    The coupling of light between free space and thin film semiconductors is an essential requirement of modern optoelectronic technology. For monochromatic and single mode devices, high performance grating couplers have been developed that are well understood. For broadband and multimode devices, however, more complex structures, here referred to as “coupling surfaces”, are required, which are often difficult to realise technologically. We identify general design rules based on the Fourier properties of the coupling surface and show how they can be used to determine the spatial resolution required for the coupler’s fabrication. To our knowledge, this question has not been previously addressed, but it is important for the understanding of diffractive nanostructures and their technological realisation. We exemplify our insights with solar cells and UV photodetectors, where high-performance nanostructures that can be realised cost-effectively are essential.

  14. Mode coupling in spin torque oscillators

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Zhou, Yan; Li, Dong; Heinonen, Olle

    2016-09-01

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau-Lifshitz-Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature.

  15. Wave coupling of atmosphere-ionosphere system

    NASA Astrophysics Data System (ADS)

    Goncharenko, L. P.

    2011-12-01

    The dynamic coupling of atmosphere-ionosphere system is a complex interdisciplinary problem. Current thinking suggests that the upward propagation of internal atmospheric waves (planetary waves, tides, gravity waves) from the lower atmosphere is an essential source of energy and momentum for the thermosphere and embedded ionosphere. Studies over the last decade presented fascinating experimental and modeling evidence of global coupling from the troposphere to mesosphere, thermosphere and ionosphere. They were enabled by unprecedented availability of satellite data, in particularly from TIMED, MLS, CHAMP, and GRACE, focused experimental campaigns from ground-based instruments, and major advances in global coupling models. This paper will summarize several developments over the past decade, including non-migrating structures in the ionosphere and thermosphere, advances in studies of gravity waves and planetary waves, and their implications for better understanding of ITM. The paper will also identify questions that need to be answered in the future, and outline promising topics of future development.

  16. Spatial resolution effect of light coupling structures

    PubMed Central

    Li, Juntao; Li, Kezheng; Schuster, Christian; Su, Rongbin; Wang, Xuehua; Borges, Ben-Hur V.; Krauss, Thomas F.; Martins, Emiliano R.

    2015-01-01

    The coupling of light between free space and thin film semiconductors is an essential requirement of modern optoelectronic technology. For monochromatic and single mode devices, high performance grating couplers have been developed that are well understood. For broadband and multimode devices, however, more complex structures, here referred to as “coupling surfaces”, are required, which are often difficult to realise technologically. We identify general design rules based on the Fourier properties of the coupling surface and show how they can be used to determine the spatial resolution required for the coupler’s fabrication. To our knowledge, this question has not been previously addressed, but it is important for the understanding of diffractive nanostructures and their technological realisation. We exemplify our insights with solar cells and UV photodetectors, where high-performance nanostructures that can be realised cost-effectively are essential. PMID:26678574

  17. Managing Complexity

    SciTech Connect

    Chassin, David P.; Posse, Christian; Malard, Joel M.

    2004-08-01

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today’s most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically-based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This paper explores the state of the art in the use physical analogs for understanding the behavior of some econophysical systems and to deriving stable and robust control strategies for them. In particular we review and discussion applications of some analytic methods based on the thermodynamic metaphor according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood.

  18. Diverse coupling of neurons to populations in sensory cortex

    PubMed Central

    Okun, Michael; Steinmetz, Nicholas; Cossell, Lee; Iacaruso, M. Florencia; Ko, Ho; Barthó, Péter; Moore, Tirin; Hofer, Sonja B.; Mrsic-Flogel, Thomas D.

    2015-01-01

    A large population of neurons can in principle produce an astronomical number of distinct firing patterns. In cortex however, these patterns lie in a space of lower dimension1-4, as if individual neurons were “obedient members of a huge orchestra”5. Here we use recordings from the visual cortex of mouse and monkey to investigate the relationship between individual neurons and the population, and to establish the underlying circuit mechanisms. We show that neighbouring neurons can differ in their coupling to the overall firing of the population, ranging from strongly coupled “choristers” to weakly coupled “soloists”. Population coupling is largely independent of sensory preferences, and it is a fixed cellular attribute, invariant to stimulus conditions. Neurons with high population coupling are more strongly affected by non-sensory behavioural variables such as motor intention. Population coupling reflects a causal relationship, predicting a neuron’s response to optogenetically-driven increases in local activity. Moreover, population coupling indicates synaptic connectivity: a neuron’s population coupling, measured in vivo, predicted subsequent in vitro estimates of the number of synapses received from its neighbours. Finally, population coupling provides a compact summary of population activity: knowledge of the population couplings of N neurons predicts a substantial portion of their N2 pairwise correlations. Population coupling therefore represents a novel, simple measure that characterises each neuron’s relationship to a larger population, explaining seemingly complex network firing patterns in terms of basic circuit variables. PMID:25849776

  19. Mathematical and algorithmic issues in multiphysics coupling.

    SciTech Connect

    Gai, Xiuli; Stone, Charles Michael; Wheeler, Mary Fanett

    2004-06-01

    The modeling of fluid/structure interaction is of growing importance in both energy and environmental applications. Because of the inherent complexity, these problems must be simulated on parallel machines in order to achieve high resolution. The purpose of this research was to investigate techniques for coupling flow and geomechanics in porous media that are suitable for parallel computation. In particular, our main objective was to develop an iterative technique which can be as accurate as a fully coupled model but which allows for robust and efficient coupling of existing complex models (software). A parallel linear elastic module was developed which was coupled to a three phase three-component black oil model in IPARS (Integrated Parallel Accurate Reservoir Simulator). An iterative de-coupling technique was introduced at each time step. The resulting nonlinear iteration involved solving for displacements and flow sequentially. Rock compressibility was used in the flow model to account for the effect of deformation on the pore volume. Convergence was achieved when the mass balance for each component satisfied a given tolerance. This approach was validated by comparison with a fully coupled approach implemented in the British PetroledAmoco ACRES simulator. Another objective of this work was to develop an efficient parallel solver for the elasticity equations. A preconditioned conjugate gradient solver was implemented to solve the algebraic system arising from tensor product linear Galerkin approximations for the displacements. Three preconditioners were developed: LSOR (line successive over-relaxation), block Jacobi, and agglomeration multi-grid. The latter approach involved coarsening the 3D system to 2D and using LSOR as a smoother that is followed by applying geometric multi-grid with SOR (successive over-relaxation) as a smoother. Preliminary tests on a 64-node Beowulf cluster at CSM indicate that the agglomeration multi-grid approach is robust and efficient.

  20. Excitonic transition dynamics on front and back surfaces of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Lee, Sun-Kyun; Kwon, Bong-Joon; Cho, Yong-Hoon; Ko, Hang-Ju; Yao, Takafumi

    2011-11-01

    We report strong excitonic transitions and exciton-phonon couplings in the photoluminescence (PL) of ZnO thin films grown on MgO/sapphire (buffer/substrate) by plasma-assisted molecular-beam epitaxy. The room temperature (RT) PL spectra showed that the dominant emission contributions from the front surface area (FS) and the back surface area (BS) are the free exciton (FX) emission and its first longitudinal optical (LO)-phonon replica, respectively. We found that the one LO-phonon replica at the BS of ZnO can be even more intense than the direct (zero-phonon) FX transition at elevated temperatures. Time-resolved PL spectra revealed that the lifetime of FX recombination from FS is longer than that from BS, which is attributed to the reduction of nonradiative recombination at FS. This indicates that the existence of native defects or trap centers, which can be reduced by the proper initial growth condition, and the exciton-phonon interaction couplings play important roles in the excitonic transition properties of ZnO thin films.