Science.gov

Sample records for complex fibre architecture

  1. A unique cross section through the skin of the dinosaur Psittacosaurus from China showing a complex fibre architecture

    PubMed Central

    Lingham-Soliar, Theagarten

    2008-01-01

    This paper reports on a unique preservation of soft tissues in the ventrolateral region of the plant-eating dinosaur Psittacosaurus from the Jehol biota of China. The preservation is of a deep cross section through the dermis, which includes multiple layers of collagenous fibres in excess of 25, among the highest recorded in vertebrates, with a further 15 more layers (poorly preserved) estimated for the entire height of the section. Also, for the first time in a dinosaur two fibre layers parallel to the skin surface are preserved deep within the dermis at the base of the cross section. These fibre layers comprise regularly disposed fibres arranged in left- and right-handed geodesic helices, matching the pattern at the surface and reasonably inferred for the entire section. As noted from the studies on modern-day animals, this fibre structure plays a critical part in the stresses and strains the skin may be subjected to and is ideally suited to providing support and protection. Psittacosaurus gives a remarkable, unprecedented understanding of the dinosaur skin. PMID:18182372

  2. Simulation of complex phenomena in optical fibres

    NASA Astrophysics Data System (ADS)

    Allington-Smith, Jeremy; Murray, Graham; Lemke, Ulrike

    2012-12-01

    Optical fibres are essential for many types of highly multiplexed and precision spectroscopy. The success of the new generation of multifibre instruments under construction to investigate fundamental problems in cosmology, such as the nature of dark energy, requires accurate modellization of the fibre system to achieve their signal-to-noise ratio (SNR) goals. Despite their simple construction, fibres exhibit unexpected behaviour including non-conservation of etendue (focal ratio degradation, FRD) and modal noise. Furthermore, new fibre geometries (non-circular or tapered) have become available to improve the scrambling properties that, together with modal noise, limit the achievable SNR in precision spectroscopy. These issues have often been addressed by extensive tests on candidate fibres and their terminations, but these are difficult and time-consuming. Modelling by ray tracing and wave analysis is possible with commercial software packages, but these do not address the more complex features, in particular FRD. We use a phase-tracking ray-tracing method to provide a practical description of FRD derived from our previous experimental work on circular fibres and apply it to non-standard fibres. This allows the relationship between scrambling and FRD to be quantified for the first time. We find that scrambling primarily affects the shape of the near-field pattern but has negligible effect on the barycentre. FRD helps to homogenize the near-field pattern but does not make it completely uniform. Fibres with polygonal cross-section improve scrambling without amplifying the FRD. Elliptical fibres, in conjunction with tapering, may offer an efficient means of image slicing to improve the product of resolving power and throughput, but the result is sensitive to the details of illumination. We also investigated the performance of fibres close to the limiting numerical aperture since this may affect the uniformity of the SNR for some prime focus fibre instrumentation.

  3. Complex Event Recognition Architecture

    NASA Technical Reports Server (NTRS)

    Fitzgerald, William A.; Firby, R. James

    2009-01-01

    Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.

  4. Complex geometrical optics of nonlinear inhomogeneous fibres

    NASA Astrophysics Data System (ADS)

    Berczynski, Pawel

    2011-03-01

    This paper analyses the Gaussian beam (GB) evolution in nonlinear fibres with special attention given to the influence of the initial curvature of the wavefront and to the fibres' permittivity profile. The analysis is performed in the framework of paraxial complex geometrical optics (PCGO). This method reduces the problem of GB evolution in nonlinear and inhomogeneous media to the solution of ordinary differential equations, which can be easily solved either analytically or numerically. It is shown that the PCGO approach radically simplifies modelling of nonlinear phenomena in fibres as compared with standard methods of nonlinear optics such as the variational method approach and the method of moments. It is shown that the PCGO method readily supplies the solution of the nonlinear Schrödinger equation (NLS) for a self-focusing fibre with a focusing permittivity profile and provides a number of new results. The discussion on the interplay between the nonlinear (self-focusing and self-defocusing) and linear (focusing and defocusing) components of the total permittivity demonstrates the new possibilities to limit the collapse phenomenon in nonlinear fibres of Kerr type taking into account the effect of initial beam divergence.

  5. A viscoelastic-viscoplastic model for short-fibre reinforced polymers with complex fibre orientations

    NASA Astrophysics Data System (ADS)

    Nciri, M.; Notta-Cuvier, D.; Lauro, F.; Chaari, F.; Zouari, B.; Maalej, Y.

    2015-09-01

    This paper presents an innovative approach for the modelling of viscous behaviour of short-fibre reinforced composites (SFRC) with complex distributions of fibre orientations and for a wide range of strain rates. As an alternative to more complex homogenisation methods, the model is based on an additive decomposition of the state potential for the computation of composite's macroscopic behaviour. Thus, the composite material is seen as the assembly of a matrix medium and several linear elastic fibre media. The division of short fibres into several families means that complex distributions of orientation or random orientation can be easily modelled. The matrix behaviour is strain-rate sensitive, i.e. viscoelastic and/or viscoplastic. Viscoelastic constitutive laws are based on a generalised linear Maxwell model and the modelling of the viscoplasticity is based on an overstress approach. The model is tested for the case of a polypropylene reinforced with short-glass fibres with distributed orientations and subjected to uniaxial tensile tests, in different loading directions and under different strain rates. Results demonstrate the efficiency of the model over a wide range of strain rates.

  6. In-plane mechanics of soft architectured fibre-reinforced silicone rubber membranes.

    PubMed

    Bailly, L; Toungara, M; Orgéas, L; Bertrand, E; Deplano, V; Geindreau, C

    2014-12-01

    Silicone rubber membranes reinforced with architectured fibre networks were processed with a dedicated apparatus, allowing a control of the fibre content and orientation. The membranes were subjected to tensile loadings combined with continuous and discrete kinematical field measurements (DIC and particle tracking). These tests show that the mechanical behaviour of the membranes is hyperelastic at the first order. They highlight the influence of the fibre content and orientation on both the membrane in-plane deformation and stress levels. They also prove that for the considered fibrous architectures and mechanical loadings, the motion and deformation of fibres is an affine function of the macroscale transformation. These trends are fairly well described by the micromechanical model proposed recently in Bailly et al. (JMBBM, 2012). This result proves that these materials are very good candidates for new biomimetic membranes, e.g. to improve aortic analogues used for in vitro experiments, or existing textiles used for vascular (endo)prostheses. PMID:25265032

  7. Fibre architecture and song activation rates of syringeal muscles are not lateralized in the European starling

    PubMed Central

    Uchida, A. M.; Meyers, R. A.; Cooper, B. G.; Goller, F.

    2010-01-01

    The songbird vocal organ, the syrinx, is composed of two sound generators, which are independently controlled by sets of two extrinsic and four intrinsic muscles. These muscles rank among the fastest vertebrate muscles, but the molecular and morphological foundations of this rapid physiological performance are unknown. Here we show that the four intrinsic muscles in the syrinx of male European starlings (Sturnus vulgaris) are composed of fast oxidative and superfast fibres. Dorsal and ventral tracheobronchialis muscles contain slightly more superfast fibres relative to the number of fast oxidative fibres than dorsal and ventral syringealis muscles. This morphological difference is not reflected in the highest, burst-like activation rate of the two muscle groups during song as assessed with electromyographic recordings. No difference in fibre type ratio was found between the corresponding muscles of the left and right sound generators. Airflow and electromyographic measurements during song indicate that maximal activation rate and speed of airflow regulation do not differ between the two sound sources. Whereas the potential for high-speed muscular control exists on both sides, the two sound generators are used differentially for modulation of acoustic parameters. These results show that large numbers of superfast fibre types are present in intrinsic syringeal muscles of a songbird, providing further confirmation of rapid contraction kinetics. However, syringeal muscles are composed of two fibre types which raises questions about the neuromuscular control of this heterogeneous muscle architecture. PMID:20228343

  8. Spider wrapping silk fibre architecture arising from its modular soluble protein precursor.

    PubMed

    Tremblay, Marie-Laurence; Xu, Lingling; Lefèvre, Thierry; Sarker, Muzaddid; Orrell, Kathleen E; Leclerc, Jérémie; Meng, Qing; Pézolet, Michel; Auger, Michèle; Liu, Xiang-Qin; Rainey, Jan K

    2015-01-01

    Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable "beads-on-a-string" concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly α-helical dope to a mixed α-helix/β-sheet-containing fibre can be directly related to spidroin architecture and stability. PMID:26112753

  9. Spider wrapping silk fibre architecture arising from its modular soluble protein precursor

    PubMed Central

    Tremblay, Marie-Laurence; Xu, Lingling; Lefèvre, Thierry; Sarker, Muzaddid; Orrell, Kathleen E.; Leclerc, Jérémie; Meng, Qing; Pézolet, Michel; Auger, Michèle; Liu, Xiang-Qin; Rainey, Jan K.

    2015-01-01

    Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable “beads-on-a-string” concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly α-helical dope to a mixed α-helix/β-sheet-containing fibre can be directly related to spidroin architecture and stability. PMID:26112753

  10. Spider wrapping silk fibre architecture arising from its modular soluble protein precursor

    NASA Astrophysics Data System (ADS)

    Tremblay, Marie-Laurence; Xu, Lingling; Lefèvre, Thierry; Sarker, Muzaddid; Orrell, Kathleen E.; Leclerc, Jérémie; Meng, Qing; Pézolet, Michel; Auger, Michèle; Liu, Xiang-Qin; Rainey, Jan K.

    2015-06-01

    Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable “beads-on-a-string” concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly α-helical dope to a mixed α-helix/β-sheet-containing fibre can be directly related to spidroin architecture and stability.

  11. Adaptive functional specialisation of architectural design and fibre type characteristics in agonist shoulder flexor muscles of the llama, Lama glama.

    PubMed

    Graziotti, Guillermo H; Chamizo, Verónica E; Ríos, Clara; Acevedo, Luz M; Rodríguez-Menéndez, J M; Victorica, C; Rivero, José-Luis L

    2012-08-01

    Like other camelids, llamas (Lama glama) have the natural ability to pace (moving ipsilateral limbs in near synchronicity). But unlike the Old World camelids (bactrian and dromedary camels), they are well adapted for pacing at slower or moderate speeds in high-altitude habitats, having been described as good climbers and used as pack animals for centuries. In order to gain insight into skeletal muscle design and to ascertain its relationship with the llama's characteristic locomotor behaviour, this study examined the correspondence between architecture and fibre types in two agonist muscles involved in shoulder flexion (M. teres major - TM and M. deltoideus, pars scapularis - DS and pars acromialis - DA). Architectural properties were found to be correlated with fibre-type characteristics both in DS (long fibres, low pinnation angle, fast-glycolytic fibre phenotype with abundant IIB fibres, small fibre size, reduced number of capillaries per fibre and low oxidative capacity) and in DA (short fibres, high pinnation angle, slow-oxidative fibre phenotype with numerous type I fibres, very sparse IIB fibres, and larger fibre size, abundant capillaries and high oxidative capacity). This correlation suggests a clear division of labour within the M. deltoideus of the llama, DS being involved in rapid flexion of the shoulder joint during the swing phase of the gait, and DA in joint stabilisation during the stance phase. However, the architectural design of the TM muscle (longer fibres and lower fibre pinnation angle) was not strictly matched with its fibre-type characteristics (very similar to those of the postural DA muscle). This unusual design suggests a dual function of the TM muscle both in active flexion of the shoulder and in passive support of the limb during the stance phase, pulling the forelimb to the trunk. This functional specialisation seems to be well suited to a quadruped species that needs to increase ipsilateral stability of the limb during the support

  12. Adaptive functional specialisation of architectural design and fibre type characteristics in agonist shoulder flexor muscles of the llama, Lama glama

    PubMed Central

    Graziotti, Guillermo H; Chamizo, Verónica E; Ríos, Clara; Acevedo, Luz M; Rodríguez-Menéndez, J M; Victorica, C; Rivero, José-Luis L

    2012-01-01

    Like other camelids, llamas (Lama glama) have the natural ability to pace (moving ipsilateral limbs in near synchronicity). But unlike the Old World camelids (bactrian and dromedary camels), they are well adapted for pacing at slower or moderate speeds in high-altitude habitats, having been described as good climbers and used as pack animals for centuries. In order to gain insight into skeletal muscle design and to ascertain its relationship with the llama’s characteristic locomotor behaviour, this study examined the correspondence between architecture and fibre types in two agonist muscles involved in shoulder flexion (M. teres major – TM and M. deltoideus, pars scapularis – DS and pars acromialis – DA). Architectural properties were found to be correlated with fibre-type characteristics both in DS (long fibres, low pinnation angle, fast-glycolytic fibre phenotype with abundant IIB fibres, small fibre size, reduced number of capillaries per fibre and low oxidative capacity) and in DA (short fibres, high pinnation angle, slow-oxidative fibre phenotype with numerous type I fibres, very sparse IIB fibres, and larger fibre size, abundant capillaries and high oxidative capacity). This correlation suggests a clear division of labour within the M. deltoideus of the llama, DS being involved in rapid flexion of the shoulder joint during the swing phase of the gait, and DA in joint stabilisation during the stance phase. However, the architectural design of the TM muscle (longer fibres and lower fibre pinnation angle) was not strictly matched with its fibre-type characteristics (very similar to those of the postural DA muscle). This unusual design suggests a dual function of the TM muscle both in active flexion of the shoulder and in passive support of the limb during the stance phase, pulling the forelimb to the trunk. This functional specialisation seems to be well suited to a quadruped species that needs to increase ipsilateral stability of the limb during the

  13. Complex Macromolecular Architectures for Potential Biological Applications

    NASA Astrophysics Data System (ADS)

    Jung, Hwayoon

    This thesis describes original research aimed at the development of highly efficient synthetic methods towards complex polymer architectures. An explanation of different polymer architectures, their synthesis and applications, in particular as biomaterials, is provided. Dendronized polymers and block copolymers are identified as two classes of polymer architectures that are important for a variety of applications but whose fabrications still pose a challenge. In the macromonomer route for the synthesis of dendronized polymers, the preferred route due to complete and uniform dendron functionalization, high degrees of polymerization are difficult to achieve due to steric crowding. This limitation was overcome by incorporating linkers between the polymerizable group (norbornene) and the poly(amide)-based dendrons. By increasing the length of the linker, the rate of polymerization increased. The synthesis of block copolymers using non-living polymerization methods often requires the copolymerization of monomers by different polymerization mechanisms. This methodology is hampered by non-quantitative conversions of the precursor polymer into the required macroinitiator. This limitation was overcome by using a bifunctional initiator. Poly(norbornene)-block -poly(lactic acid)s were synthesized using a ruthenium initiator for the ring-opening metathesis polymerization (ROMP) and a hydroxy group to initiate the ring-opening polymerization (ROP) of L-lactide. This method opens up new routes for the creation of functional block copolymers that are created by a combination of ROMP and ROP. Finally, potential strategies towards the synthesis of complex polymer architectures for biomaterials using the methodologies developed in this thesis are described. Firstly, the synthesis of orthogonally functionalizable dendronized polymers for targeted drug-delivery is proposed. Second, studies to establish the relationship between architectures and properties for biological applications

  14. Complex architecture of primes and natural numbers

    NASA Astrophysics Data System (ADS)

    García-Pérez, Guillermo; Serrano, M. Ángeles; Boguñá, Marián

    2014-08-01

    Natural numbers can be divided in two nonoverlapping infinite sets, primes and composites, with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the architecture of natural numbers with primes as building blocks remains elusive. Here, we propose a new approach to decoding the architecture of natural numbers based on complex networks and stochastic processes theory. We introduce a parameter-free non-Markovian dynamical model that naturally generates random primes and their relation with composite numbers with remarkable accuracy. Our model satisfies the prime number theorem as an emerging property and a refined version of Cramér's conjecture about the statistics of gaps between consecutive primes that seems closer to reality than the original Cramér's version. Regarding composites, the model helps us to derive the prime factors counting function, giving the probability of distinct prime factors for any integer. Probabilistic models like ours can help to get deeper insights about primes and the complex architecture of natural numbers.

  15. Complex architecture of primes and natural numbers.

    PubMed

    García-Pérez, Guillermo; Serrano, M Ángeles; Boguñá, Marián

    2014-08-01

    Natural numbers can be divided in two nonoverlapping infinite sets, primes and composites, with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the architecture of natural numbers with primes as building blocks remains elusive. Here, we propose a new approach to decoding the architecture of natural numbers based on complex networks and stochastic processes theory. We introduce a parameter-free non-Markovian dynamical model that naturally generates random primes and their relation with composite numbers with remarkable accuracy. Our model satisfies the prime number theorem as an emerging property and a refined version of Cramér's conjecture about the statistics of gaps between consecutive primes that seems closer to reality than the original Cramér's version. Regarding composites, the model helps us to derive the prime factors counting function, giving the probability of distinct prime factors for any integer. Probabilistic models like ours can help to get deeper insights about primes and the complex architecture of natural numbers. PMID:25215780

  16. Molecular Architecture of the Yeast Monopolin Complex

    SciTech Connect

    Corbett, Kevin D.; Harrison, Stephen C.

    2012-07-30

    The Saccharomyces cerevisiae monopolin complex directs proper chromosome segregation in meiosis I by mediating co-orientation of sister kinetochores on the meiosis I spindle. The monopolin subunits Csm1 and Lrs4 form a V-shaped complex that may directly crosslink sister kinetochores. We report here biochemical characterization of the monopolin complex subunits Mam1 and Hrr25 and of the complete four-protein monopolin complex. By purifying monopolin subcomplexes with different subunit combinations, we have determined the stoichiometry and overall architecture of the full monopolin complex. We have determined the crystal structure of Csm1 bound to a Mam1 fragment, showing how Mam1 wraps around the Csm1 dimer and alters the stoichiometry of kinetochore-protein binding by Csm1. We further show that the kinase activity of Hrr25 is altered by Mam1 binding, and we identify Hrr25 phosphorylation sites on Mam1 that may affect monopolin complex stability and/or kinetochore binding in meiosis.

  17. Architecture of mammalian respiratory complex I

    PubMed Central

    Hirst, Judy

    2014-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The fourteen conserved ‘core’ subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 ‘supernumerary’ subunits are unknown. Here, we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we significantly advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases. PMID:25209663

  18. Ligament fibre recruitment at the human ankle joint complex in passive flexion.

    PubMed

    Stagni, Rita; Leardini, Alberto; Ensini, Andrea

    2004-12-01

    Knowledge of ligament fibre recruitment at the human ankle joint complex is a fundamental prerequisite for analysing mobility and stability. Previous experimental and modelling studies have shown that ankle motion must be guided by fibres within the calcaneofibular and tibiocalcaneal ligaments, which remain approximately isometric during passive flexion. The purpose of this study was to identify these fibres. Three below-knee amputated specimens were analysed during passive flexion with combined radiostereometry for bone pose estimation and 3D digitisation for ligament attachment area identification. A procedure based on singular value decomposition enabled matching bone pose with digitised data and therefore reconstructing position in space of ligament attachment areas in each joint position. Eleven ordered fibres, connecting corresponding points on origin and insertion curves, were modelled for each of the following ligaments: posterior talofibular, calcaneofibular, anterior talofibular, posterior tibiotalar, tibiocalcaneal, and anterior tibiotalar. The measured changes in length for the ligament fibres revealed patterns of tightening and slackening. The most anterior fibre of the calcaneofibular and the medio-anterior fibre of the tibiocalcaneal ligament exhibited the most isometric behaviour, as well as the most posterior fibre of the anterior talofibular ligament. Fibres within the calcaneofibular ligament remain parallel in the transverse plane, while those within the tibiocalcaneal ligament become almost parallel in joint neutral position. For both these ligaments, fibres maintain their relative inclination in the sagittal plane throughout the passive flexion range. The observed significant change in both shape and orientation of the ankle ligaments suggest that this knowledge is fundamental for future mechanical analysis of their response to external forces. PMID:15519590

  19. The architecture of complex weighted networks

    PubMed Central

    Barrat, A.; Barthélemy, M.; Pastor-Satorras, R.; Vespignani, A.

    2004-01-01

    Networked structures arise in a wide array of different contexts such as technological and transportation infrastructures, social phenomena, and biological systems. These highly interconnected systems have recently been the focus of a great deal of attention that has uncovered and characterized their topological complexity. Along with a complex topological structure, real networks display a large heterogeneity in the capacity and intensity of the connections. These features, however, have mainly not been considered in past studies where links are usually represented as binary states, i.e., either present or absent. Here, we study the scientific collaboration network and the world-wide air-transportation network, which are representative examples of social and large infrastructure systems, respectively. In both cases it is possible to assign to each edge of the graph a weight proportional to the intensity or capacity of the connections among the various elements of the network. We define appropriate metrics combining weighted and topological observables that enable us to characterize the complex statistical properties and heterogeneity of the actual strength of edges and vertices. This information allows us to investigate the correlations among weighted quantities and the underlying topological structure of the network. These results provide a better description of the hierarchies and organizational principles at the basis of the architecture of weighted networks. PMID:15007165

  20. Relaxation mechanisms in architecturally complex macromolecules

    NASA Astrophysics Data System (ADS)

    Vlassopoulos, Dimitris

    2004-03-01

    With the important recent advances in polymer chemistry as well as in tube model theories and simulations, the elucidation of the relaxation mechanisms of branched and hyperbranched macromolecules has emerged as a field of great significance, both from the scientific and the technological viewpoints. Here we present a systematic approach to analyze the response of model polymers with progressive complexation in architecture, both in the melt and in solution. In particular, we present dynamic data on series of well-defined nearly monodisperse branched polymer melts (polystyrenes, polybutadienes and polyisoprenes) of the Cayley-tree, comb and star-comb types. We discuss quantitatively the complex relaxation of these systems in terms of hierarchical motions. Special mention is made to analogies with commercial polymers such as polyethylenes exhibiting long-chain branching. We address the phenomenology of gel-like regimes in the melt state, whereas by comparing with their linear counterparts we demonstrate the possibilities of altering the rheology of polymeric systems in a controlled way by introducing branches. Based on these results we also show that it is possible to analyze the viscoelastic response of telechelic polymers forming dendritic supramolecular structures in the melt. In solution, dendritic structures can be viewed as colloidal particles exhibiting ultrasoft interactions, which can be tailored on the molecular level, and their dynamic response spans the range from polymeric to colloidal behavior. Simple rheometric data confirm this trend. In the dense state such soft suspensions exhibit complex dynamics which is interpreted in terms of colloidal vitrification. This suggests possibilities for obtaining a unified description of the response of suspensions of varying interactions and thus controlling their flow behavior. This work is in collaboration with M. Kapnistos, E. Stiakakis, J. Roovers, N. Hadjichristidis and R. Blackwell.

  1. Architecture of the caveolar coat complex

    PubMed Central

    Nichols, Benjamin James; Sandin, Sara

    2016-01-01

    ABSTRACT Caveolae are specialized membrane domains that are crucial for the correct function of endothelial cells, adipocytes and muscle cells. Caveolins and cavins are both required for caveolae formation, and assemble into a large (80S) caveolar coat complex (80S-CCC). The architecture of the 80S-CCC, however, has not been analyzed. Here, we study the 80S-CCC isolated from mammalian cells using negative stain electron microscopy and 3D cryo-electron tomography. We show that the 80S-CCC is a hollow sphere with a diameter of 50–80 nm, and so has the same size and shape as individual caveolar bulbs. This provides strong evidence that the distinctive membrane shape of caveolae is generated by the shape of the 80S-CCC itself. The particle appears to be made up of two layers, an inner coat composed of polygonal units of caveolins that form a polyhedral cage, and an outer filamentous coat composed of cavins. The data suggest that the peripheral cavin coat is aligned along the edges of the inner polyhedral cage, thereby providing a mechanism for the generation of a morphologically stable caveolar coat. PMID:27369768

  2. Architecture of the caveolar coat complex.

    PubMed

    Ludwig, Alexander; Nichols, Benjamin James; Sandin, Sara

    2016-08-15

    Caveolae are specialized membrane domains that are crucial for the correct function of endothelial cells, adipocytes and muscle cells. Caveolins and cavins are both required for caveolae formation, and assemble into a large (80S) caveolar coat complex (80S-CCC). The architecture of the 80S-CCC, however, has not been analyzed. Here, we study the 80S-CCC isolated from mammalian cells using negative stain electron microscopy and 3D cryo-electron tomography. We show that the 80S-CCC is a hollow sphere with a diameter of 50-80 nm, and so has the same size and shape as individual caveolar bulbs. This provides strong evidence that the distinctive membrane shape of caveolae is generated by the shape of the 80S-CCC itself. The particle appears to be made up of two layers, an inner coat composed of polygonal units of caveolins that form a polyhedral cage, and an outer filamentous coat composed of cavins. The data suggest that the peripheral cavin coat is aligned along the edges of the inner polyhedral cage, thereby providing a mechanism for the generation of a morphologically stable caveolar coat. PMID:27369768

  3. Orbital Architectures of Dynamically Complex Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Nelson, Benjamin E.

    2015-01-01

    The most powerful constraints on planet formation will come from characterizing the dynamical state of complex multi-planet systems. Unfortunately, with that complexity comes a number of factors that make analyzing these systems a computationally challenging endeavor: the sheer number of model parameters, a wonky shaped posterior distribution, and hundreds to thousands of time series measurements. We develop a differential evolution Markov chain Monte Carlo (RUN DMC) to tackle these difficult aspects of data analysis. We apply RUN DMC to two classic multi-planet systems from radial velocity surveys, 55 Cancri and GJ 876. For 55 Cancri, we find the inner-most planet "e" must be coplanar to within 40 degrees of the outer planets, otherwise Kozai-like perturbations will cause the planet's orbit to cross the stellar surface. We find the orbits of planets "b" and "c" are apsidally aligned and librating with low to median amplitude (50±610 degrees), but they are not orbiting in a mean-motion resonance. For GJ 876, we can meaningfully constrain the three-dimensional orbital architecture of all the planets based on the radial velocity data alone. By demanding orbital stability, we find the resonant planets have low mutual inclinations (Φ) so they must be roughly coplanar (Φcb = 1.41±0.620.57 degrees and Φbe = 3.87±1.991.86 degrees). The three-dimensional Laplace argument librates with an amplitude of 50.5±7.910.0 degrees, indicating significant past disk migration and ensuring long-term stability. These empirically derived models will provide new challenges for planet formation models and motivate the need for more sophisticated algorithms to analyze exoplanet data.

  4. Genetic Architecture of Complex Traits in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic architecture refers to the numbers and genome locations of genes affecting a trait, the magnitude of their effects, and the relative contributions of additive, dominant, and epistatic gene effects. Quantitative trait locus (QTL) mapping techniques are commonly used to investigate genetic ar...

  5. In vivo 3 T MR diffusion tensor imaging for detection of the fibre architecture of the human uterus: a feasibility and quantitative study

    PubMed Central

    Fiocchi, F; Nocetti, L; Siopis, E; Currà, S; Costi, T; Ligabue, G; Torricelli, P

    2012-01-01

    Objective The aim of this study was to investigate the feasibility of depicting fibre architecture of human uteri in vivo using 3 T MR diffusion tensor imaging (MR-DTI) with a three-dimensional (3D) tractography approach. Quantitative results were provided. Methods In vivo 3 T MR-DTI was performed on 30 volunteers (9 Caesarean delivery). Main diffusion directions reflecting the fibre orientation were determined using sensitivity-encoding single-shot echo planar imaging with diffusion-sensitised gradients (b=600 mm2 s−1) along 32 directions. A deterministic fibre-tracking algorithm was used to show in vivo fibre architecture, compared with ex vivo histological slides of cadaveric uteri. The number of fibres, the fibre density, the fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) were measured in 13 volunteers. Results Anisotropy was found in most regions of normal uteri and the preferential order of uterine fibres depicted, consisting of two representative fibre directions: circular and longitudinal, as in ex vivo studies. Two-thirds of uteri with a Caesarean scar did not have the same orientation of fibres in the anterior isthmus when compared with non-scarred myometrium. Quantitative data were obtained from 13 volunteers: Caesarean-scarred uteri (n=5) showed lower fibre number and density in the scarred anterior isthmus than the nulliparous uteri (n=8). No significant differences were found in FA (0.42±0.02, 0.41±0.02; p=0.25) and ADC (1.82±0.18×10−3 mm2 s−1, 1.93±0.25×10−3 mm2 s−1; p=0.20). Conclusion Fibre architecture of the human uterus can be depicted in vivo using 3 T MR-DTI. Advances in knowledge 3 T MR-DTI can help to provide an in vivo insight of uterine anatomy non-invasively, especially in females with previous Caesarean surgery, in order to provide better management of subsequent deliveries. PMID:22744322

  6. Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes.

    PubMed

    Wei, Qing; Xu, Qingwen; Zhang, Yuxia; Li, Yujie; Zhang, Qing; Hu, Zeng; Harris, Peter C; Torres, Vicente E; Ling, Kun; Hu, Jinghua

    2013-01-01

    Sensory organelle cilia have critical roles in mammalian embryonic development and tissue homeostasis. Intraflagellar transport (IFT) machinery is required for the assembly and maintenance of cilia. Yet, how this large complex passes through the size-dependent barrier at the ciliary base remains enigmatic. Here we report that FBF1, a highly conserved transition fibre protein, is required for the ciliary import of assembled IFT particles at the ciliary base. We cloned dyf-19, the Caenorhabditis elegans homologue of human FBF1, in a whole-genome screen for ciliogenesis mutants. DYF-19 localizes specifically to transition fibres and interacts directly with the IFT-B component DYF-11/IFT54. Although not a structural component of transition fibres, DYF-19 is required for the transit of assembled IFT particles through the ciliary base. Furthermore, we found that human FBF1 shares conserved localization and function with its worm counterpart. We conclude that FBF1 is a key functional transition fibre component that actively facilitates the ciliary entry of assembled IFT machinery. PMID:24231678

  7. Nanoparticle Optics of Complex Nanorod Architectures

    SciTech Connect

    Shuford, Kevin L; Park, Sungho

    2009-01-01

    Computational studies on the optical properties of nanorods with unique compositions and exotic surface structure are presented. The distinctive architectures investigated-and compared to smooth Au rods-include Ni/Au multiblock rods and nanoporous Au rods. The surface plasmon resonances are extremely dependent upon the morphology and makeup of the nanorods. For a rod with a given aspect ratio, the resonance structure is sensitive to attributes such as the size of Ni sections of multiblock rods and pore structure of nanoporous rods. These studies indicate that control of the optical properties of nanorods is possible via characteristics other than the aspect ratio and suggest that a broader range of tunability is attainable.

  8. Molecular architecture of the yeast Mediator complex

    PubMed Central

    Robinson, Philip J; Trnka, Michael J; Pellarin, Riccardo; Greenberg, Charles H; Bushnell, David A; Davis, Ralph; Burlingame, Alma L; Sali, Andrej; Kornberg, Roger D

    2015-01-01

    The 21-subunit Mediator complex transduces regulatory information from enhancers to promoters, and performs an essential role in the initiation of transcription in all eukaryotes. Structural information on two-thirds of the complex has been limited to coarse subunit mapping onto 2-D images from electron micrographs. We have performed chemical cross-linking and mass spectrometry, and combined the results with information from X-ray crystallography, homology modeling, and cryo-electron microscopy by an integrative modeling approach to determine a 3-D model of the entire Mediator complex. The approach is validated by the use of X-ray crystal structures as internal controls and by consistency with previous results from electron microscopy and yeast two-hybrid screens. The model shows the locations and orientations of all Mediator subunits, as well as subunit interfaces and some secondary structural elements. Segments of 20–40 amino acid residues are placed with an average precision of 20 Å. The model reveals roles of individual subunits in the organization of the complex. DOI: http://dx.doi.org/10.7554/eLife.08719.001 PMID:26402457

  9. Porous ceramic scaffolds with complex architectures

    SciTech Connect

    Saiz, Eduardo; Munch, Etienne; Franco, Jaime; Deville, Sylvain; Hunger, Phillip; Saiz, Eduardo; Tomsia, Antoni P.

    2008-03-15

    This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional (3-D) geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

  10. Nuclear pores. Architecture of the nuclear pore complex coat.

    PubMed

    Stuwe, Tobias; Correia, Ana R; Lin, Daniel H; Paduch, Marcin; Lu, Vincent T; Kossiakoff, Anthony A; Hoelz, André

    2015-03-01

    The nuclear pore complex (NPC) constitutes the sole gateway for bidirectional nucleocytoplasmic transport. Despite half a century of structural characterization, the architecture of the NPC remains unknown. Here we present the crystal structure of a reconstituted ~400-kilodalton coat nucleoporin complex (CNC) from Saccharomyces cerevisiae at a 7.4 angstrom resolution. The crystal structure revealed a curved Y-shaped architecture and the molecular details of the coat nucleoporin interactions forming the central "triskelion" of the Y. A structural comparison of the yeast CNC with an electron microscopy reconstruction of its human counterpart suggested the evolutionary conservation of the elucidated architecture. Moreover, 32 copies of the CNC crystal structure docked readily into a cryoelectron tomographic reconstruction of the fully assembled human NPC, thereby accounting for ~16 megadalton of its mass. PMID:25745173

  11. Complex processes from dynamical architectures with time-scale hierarchy.

    PubMed

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor

    2011-01-01

    The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes. PMID:21347363

  12. Fibre typing of intrafusal fibres.

    PubMed

    Thornell, Lars-Eric; Carlsson, Lena; Eriksson, Per-Olof; Liu, Jing-Xia; Österlund, Catharina; Stål, Per; Pedrosa-Domellöf, Fatima

    2015-08-01

    The first descriptions of muscle spindles with intrafusal fibres containing striated myofibrils and nervous elements were given approximately 150 years ago. It took, however, another 100 years to establish the presence of two types of intrafusal muscle fibres: nuclear bag and nuclear chain fibres. The present paper highlights primarily the contribution of Robert Banks in fibre typing of intrafusal fibres: the confirmation of the principle of two types of nuclear bag fibres in mammalian spindles and the variation in occurrence of a dense M-band along the fibres. Furthermore, this paper summarizes how studies from the Umeå University group (Laboratory of Muscle Biology in the Department of Integrative Medical Biology) on fibre typing and the structure and composition of M-bands have contributed to the current understanding of muscle spindle complexity in adult humans as well as to muscle spindle development and effects of ageing. The variable molecular composition of the intrafusal sarcomeres with respect to myosin heavy chains and M-band proteins gives new perspectives on the role of the intrafusal myofibrils as stretch-activated sensors influencing tension/stiffness and signalling to nuclei. PMID:26179023

  13. Fibre typing of intrafusal fibres

    PubMed Central

    Thornell, Lars-Eric; Carlsson, Lena; Eriksson, Per-Olof; Liu, Jing-Xia; Österlund, Catharina; Stål, Per; Pedrosa-Domellöf, Fatima

    2015-01-01

    The first descriptions of muscle spindles with intrafusal fibres containing striated myofibrils and nervous elements were given approximately 150 years ago. It took, however, another 100 years to establish the presence of two types of intrafusal muscle fibres: nuclear bag and nuclear chain fibres. The present paper highlights primarily the contribution of Robert Banks in fibre typing of intrafusal fibres: the confirmation of the principle of two types of nuclear bag fibres in mammalian spindles and the variation in occurrence of a dense M-band along the fibres. Furthermore, this paper summarizes how studies from the Umeå University group (Laboratory of Muscle Biology in the Department of Integrative Medical Biology) on fibre typing and the structure and composition of M-bands have contributed to the current understanding of muscle spindle complexity in adult humans as well as to muscle spindle development and effects of ageing. The variable molecular composition of the intrafusal sarcomeres with respect to myosin heavy chains and M-band proteins gives new perspectives on the role of the intrafusal myofibrils as stretch-activated sensors influencing tension/stiffness and signalling to nuclei. PMID:26179023

  14. Development of the nuclear weapons complex EP architecture

    SciTech Connect

    Murray, C.; Halbleib, L.

    1996-07-01

    The Nuclear Weapons Guidance Team is an interagency committee led by Earl Whiteman, DOE that chartered the generation of EP40100, Concurrent Qualification and its successor EP401099, Concurrent Engineering and Qualification. As this new philosophy of concurrent operations has evolved and as implementation has been initiated, conflicts and insufficiencies in the remaining Engineering Procedures (EPs) have become more apparent. At the Guidance Team meeting in November 1995, this issue was explored and several approaches were considered. It was concluded at this meeting, that a smaller set of interagency EPs described in a hierarchical system could provide the necessary interagency direction to support complex-wide implementation. This set consolidates many existing EP processes where consistency and commonality are critical to success of the extended enterprise. The Guidance Team subsequently chartered an interagency team to initiate development activity associated with the envisioned new EP set. This team had participation from seven Nuclear Weapons Complex (NWC) sites as well as DOE/AL and DP-14 (team members are acknowledged later in this report). Per the Guidance Team, this team, referred to as the Architecture Subcommittee, was to map out and define an EP Architecture for the interagency EPs, make recommendations regarding a more agile process for EP approval and suggest an aggressive timeline to develop the combined EPs. The Architecture Subcommittee was asked to brief their output at the February Guidance Team meeting. This SAND report documents the results of the Architecture Subcommittee`s recommendations.

  15. Pectin impacts cellulose fibre architecture and hydrogel mechanics in the absence of calcium.

    PubMed

    Lopez-Sanchez, Patricia; Martinez-Sanz, Marta; Bonilla, Mauricio R; Wang, Dongjie; Walsh, Cherie T; Gilbert, Elliot P; Stokes, Jason R; Gidley, Michael J

    2016-11-20

    Pectin is a major polysaccharide in many plant cell walls and recent advances indicate that its role in wall mechanics is more important than previously thought. In this work cellulose hydrogels were synthesised in pectin solutions, as a biomimetic tool to investigate the influence of pectin on cellulose assembly and hydrogel mechanical properties. Most of the pectin (60-80%) did not interact at the molecular level with cellulose, as judged by small angle scattering techniques (SAXS and SANS). Despite the lack of strong interactions with cellulose, this pectin fraction impacted the mechanical properties of the hydrogels through poroelastic effects. The other 20-40% of pectin (containing neutral sugar sidechains) was able to interact intimately with cellulose microfibrils at the point of assembly. These results support the need to revise the role of pectin in cell wall architecture and mechanics, and; furthermore they assist the design of cellulose-based products through controlling the viscoelasticity of the fluid phase. PMID:27561492

  16. Complexes of xylan and synthetic polyelectrolytes. Characterization and adsorption onto high quality unbleached fibres.

    PubMed

    Mocchiutti, Paulina; Galván, María V; Peresin, María S; Schnell, Carla N; Zanuttini, Miguel A

    2015-02-13

    In this work, polyelectrolyte complexes (PECs) were formed by adding polyacrylic acid (PAA) or 4-O-methylglucuronoxylan (Xyl) on poly(allylamine hydrochloride) (PAH) solutions, at different ionic strength and neutral pH. Turbidity curves, charge densities of the cationic complexes determined by polyelectrolyte titration method, and z-potential values showed clear differences between both complexes. Stirring favourably reverses the effects of sedimentation of Xyl/PAH complexes, as demonstrated by colloidal stability tests. Adsorption studies on silica surfaces, performed by Quartz Crystal Microbalance with Dissipation (QCM-D) showed that PAA/PAH adsorbed complexes layers were rigid, while the corresponding Xyl/PAH layers were viscoelastic. Despite the different conformations, both complexes were adsorbed as spherical particles, as observed by Atomic Force Microscopy (AFM). Adsorption isotherms performed on fibre suspensions showed that the ionic strength of the liquid medium determines the amount of PEC retained. Finally, it was found that the papermaking properties were significantly increased due to the addition of these PECs. PMID:25458282

  17. Multilayered and complex nanoparticle architectures through plasma synthesis

    SciTech Connect

    Phillips, Jonathan; Wakeland, Stephen; Cui, Yuehua; Knapp, Angela; Richard, Monique; Luhrs, Claudia

    2009-01-01

    Using the Aerosol Through Plasma (ATP) method in conjunction with simple chemical techniques a variety of complex and novel nanoparticle architectures were created. A TP was used to make metal-core/carbon shell nanoparticles (ca. 50 nm diameter) of SnlCarbon and AI/Carbon. These have, respectively, potential for application as battery anode (for hybrid and electric vehicles) and high energy fuel In one example of post processing, the Sn-core/carbon-shell material is treated in acidic solution and yields a true nano-sized hollow carbon shell. These shells have potential application as catalyst supports, gas storage, a neutral buoyancy material for applications as varied as proppants, and slow release capsules for pharmaceutical or agricultural applications. A different set of post-A-T-P processes were used to make three layer nanoparticles with a metal core, graphite inner shell and ceramic outer shell. This method extends the range of achievable nanoparticles architectures, hence enabling new applications.

  18. Architecture of the fungal nuclear pore inner ring complex.

    PubMed

    Stuwe, Tobias; Bley, Christopher J; Thierbach, Karsten; Petrovic, Stefan; Schilbach, Sandra; Mayo, Daniel J; Perriches, Thibaud; Rundlet, Emily J; Jeon, Young E; Collins, Leslie N; Huber, Ferdinand M; Lin, Daniel H; Paduch, Marcin; Koide, Akiko; Lu, Vincent; Fischer, Jessica; Hurt, Ed; Koide, Shohei; Kossiakoff, Anthony A; Hoelz, André

    2015-10-01

    The nuclear pore complex (NPC) constitutes the sole gateway for bidirectional nucleocytoplasmic transport. We present the reconstitution and interdisciplinary analyses of the ~425-kilodalton inner ring complex (IRC), which forms the central transport channel and diffusion barrier of the NPC, revealing its interaction network and equimolar stoichiometry. The Nsp1•Nup49•Nup57 channel nucleoporin heterotrimer (CNT) attaches to the IRC solely through the adaptor nucleoporin Nic96. The CNT•Nic96 structure reveals that Nic96 functions as an assembly sensor that recognizes the three-dimensional architecture of the CNT, thereby mediating the incorporation of a defined CNT state into the NPC. We propose that the IRC adopts a relatively rigid scaffold that recruits the CNT to primarily form the diffusion barrier of the NPC, rather than enabling channel dilation. PMID:26316600

  19. Architecture of the nuclear pore inner ring complex

    PubMed Central

    Stuwe, Tobias; Bley, Christopher J.; Thierbach, Karsten; Petrovic, Stefan; Schilbach, Sandra; Mayo, Daniel J.; Perriches, Thibaud; Rundlet, Emily J.; Jeon, Young E.; Collins, Leslie N.; Huber, Ferdinand M.; Lin, Daniel H.; Paduch, Marcin; Koide, Akiko; Lu, Vincent; Fischer, Jessica; Hurt, Ed; Koide, Shohei; Kossiakoff, Anthony A.; Hoelz, André

    2016-01-01

    The nuclear pore complex (NPC) constitutes the sole gateway for bidirectional nucleocytoplasmic transport. We present the reconstitution and interdisciplinary analyses of the ~425-kDa inner ring complex (IRC), which forms the central transport channel and diffusion barrier of the NPC, revealing its interaction network and equimolar stoichiometry. The Nsp1•Nup49•Nup57 channel nucleoporin hetero-trimer (CNT) attaches to the IRC solely through the adaptor nucleoporin Nic96. The CNT•Nic96 structure reveals that Nic96 functions as an assembly sensor that recognizes the three dimensional architecture of the CNT, thereby mediating the incorporation of a defined CNT state into the NPC. We propose that the IRC adopts a relatively rigid scaffold that recruits the CNT to primarily form the diffusion barrier of the NPC, rather than enabling channel dilation. PMID:26316600

  20. Cribellate thread production in spiders: Complex processing of nano-fibres into a functional capture thread.

    PubMed

    Joel, Anna-Christin; Kappel, Peter; Adamova, Hana; Baumgartner, Werner; Scholz, Ingo

    2015-11-01

    Spider silk production has been studied intensively in the last years. However, capture threads of cribellate spiders employ an until now often unnoticed alternative of thread production. This thread in general is highly interesting, as it not only involves a controlled arrangement of three types of threads with one being nano-scale fibres (cribellate fibres), but also a special comb-like structure on the metatarsus of the fourth leg (calamistrum) for its production. We found the cribellate fibres organized as a mat, enclosing two parallel larger fibres (axial fibres) and forming the typical puffy structure of cribellate threads. Mat and axial fibres are punctiform connected to each other between two puffs, presumably by the action of the median spinnerets. However, this connection alone does not lead to the typical puffy shape of a cribellate thread. Removing the calamistrum, we found a functional capture thread still being produced, but the puffy shape of the thread was lost. Therefore, the calamistrum is not necessary for the extraction or combination of fibres, but for further processing of the nano-scale cribellate fibres. Using data from Uloborus plumipes we were able to develop a model of the cribellate thread production, probably universally valid for cribellate spiders. PMID:26248293

  1. Development of the Neurochemical Architecture of the Central Complex

    PubMed Central

    Boyan, George S.; Liu, Yu

    2016-01-01

    The central complex represents one of the most conspicuous neuroarchitectures to be found in the insect brain and regulates a wide repertoire of behaviors including locomotion, stridulation, spatial orientation and spatial memory. In this review article, we show that in the grasshopper, a model insect system, the intricate wiring of the fan-shaped body (FB) begins early in embryogenesis when axons from the first progeny of four protocerebral stem cells (called W, X, Y, Z, respectively) in each brain hemisphere establish a set of tracts to the primary commissural system. Decussation of subsets of commissural neurons at stereotypic locations across the brain midline then establishes a columnar neuroarchitecture in the FB which is completed during embryogenesis. Examination of the expression patterns of various neurochemicals in the central complex including neuropeptides, a neurotransmitter and the gas nitric oxide (NO), show that these appear progressively and in a substance-specific manner during embryogenesis. Each neuroactive substance is expressed by neurons located at stereotypic locations in a given central complex lineage, confirming that the stem cells are biochemically multipotent. The organization of axons expressing the various neurochemicals within the central complex is topologically related to the location, and hence birthdate, of the neurons within the lineages. The neurochemical expression patterns within the FB are layered, and so reflect the temporal topology present in the lineages. This principle relates the neuroanatomical to the neurochemical architecture of the central complex and so may provide insights into the development of adaptive behaviors.

  2. Mandibular gnathobases of marine planktonic copepods – feeding tools with complex micro- and nanoscale composite architectures

    PubMed Central

    Gorb, Stanislav N

    2015-01-01

    Summary Copepods are dominant members of the marine zooplankton. Their diets often comprise large proportions of diatom taxa whose silicified frustules are mechanically stable and offer protection against grazers. Despite of this protection, many copepod species are able to efficiently break even the most stable frustule types. This ability requires specific feeding tools with mechanically adapted architectures, compositions and properties. When ingesting food, the copepods use the gnathobases of their mandibles to grab and, if necessary, crush and mince the food items. The morphology of these gnathobases is related to the diets of the copepods. Gnathobases of copepod species that mainly feed on phytoplankton feature compact and stable tooth-like structures, so-called teeth. In several copepod species these gnathobase teeth have been found to contain silica. Recent studies revealed that the siliceous teeth are complex microscale composites with silica-containing cap-like structures located on chitinous exoskeleton sockets that are connected with rubber-like bearings formed by structures with high proportions of the soft and elastic protein resilin. In addition, the silica-containing cap-like structures exhibit a nanoscale composite architecture. They contain some amorphous silica and large proportions of the crystalline silica type α-cristobalite and are pervaded by a fine chitinous fibre network that very likely serves as a scaffold during the silicification process. All these intricate composite structures are assumed to be the result of a coevolution between the copepod gnathobases and diatom frustules in an evolutionary arms race. The composites very likely increase both the performance of the siliceous teeth and their resistance to mechanical damage, and it is conceivable that their development has favoured the copepods’ dominance of the marine zooplankton observed today. PMID:25821707

  3. The architecture of the Schizosaccharomyces pombe CCR4-NOT complex

    PubMed Central

    Ukleja, Marta; Cuellar, Jorge; Siwaszek, Aleksandra; Kasprzak, Joanna M.; Czarnocki-Cieciura, Mariusz; Bujnicki, Janusz M.; Dziembowski, Andrzej; M. Valpuesta, Jose

    2016-01-01

    CCR4-NOT is a large protein complex present both in cytoplasm and the nucleus of eukaryotic cells. Although it is involved in a variety of distinct processes related to expression of genetic information such as poly(A) tail shortening, transcription regulation, nuclear export and protein degradation, there is only fragmentary information available on some of its nine subunits. Here we show a comprehensive structural characterization of the native CCR4-NOT complex from Schizosaccharomyces pombe. Our cryo-EM 3D reconstruction of the complex, combined with techniques such as immunomicroscopy, RNA-nanogold labelling, docking of the available high-resolution structures and models of different subunits and domains, allow us to propose its full molecular architecture. We locate all functionally defined domains endowed with deadenylating and ubiquitinating activities, the nucleus-specific RNA-interacting subunit Mmi1, as well as surfaces responsible for protein–protein interactions. This information provides insight into cooperation of the different CCR4-NOT complex functions. PMID:26804377

  4. Architecture and function of IFT complex proteins in ciliogenesis

    PubMed Central

    Taschner, Michael; Bhogaraju, Sagar; Lorentzen, Esben

    2014-01-01

    Cilia and flagella (interchangeable terms) are evolutionarily conserved organelles found on many different types of eukaryotic cells where they fulfill important functions in motility, sensory reception and signaling. The process of Intraflagellar Transport (IFT) is of central importance for both the assembly and maintenance of cilia, as it delivers building blocks from their site of synthesis in the cell body to the ciliary assembly site at the tip of the cilium. A key player in this process is the multi-subunit IFT-complex, which acts as an adapter between the motor proteins required for movement and the ciliary cargo proteins. Since the discovery of IFT more than 15 years ago, considerable effort has gone into the purification and characterization of the IFT complex proteins. Even though this has led to very interesting findings and has greatly improved our knowledge of the IFT process, we still know very little about the overall architecture of the IFT complex and the specific functions of the various subunits. In this review we will give an update on the knowledge of the structure and function of individual IFT proteins, and the way these proteins interact to form the complex that facilitates IFT. PMID:22118932

  5. Architecture and Flexibility of the Yeast Ndc80 Kinetochore Complex

    PubMed Central

    Wang, Hong-Wei; Long, Sydney; Ciferri, Claudio; Westermann, Stefan; Drubin, David; Barnes, Georjana; Nogales, Eva

    2008-01-01

    Kinetochores mediate microtubule–chromosome attachment and ensure accurate segregation of sister chromatids. The highly conserved Ndc80 kinetochore complex makes direct contacts with the microtubule and is essential for spindle checkpoint signaling. It contains a long coiled-coil region with globular domains at each end involved in kinetochore localization and microtubule binding, respectively. We have directly visualized the architecture of the yeast Ndc80 complex and found a dramatic kink within the 560-Å coiled-coil rod located about 160 Å from the larger globular head. Comparison of our electron microscopy images to the structure of the human Ndc80 complex allowed us to position the kink proximal to the microtubule-binding end and to define the conformational range of the complex. The position of the kink coincides with a coiled-coil breaking region conserved across eukaryotes. We hypothesize that the kink in Ndc80 is essential for correct kinetochore geometry and could be part of a tension-sensing mechanism at the kinetochore. PMID:18793650

  6. Complex Product Architecture Analysis using an Integrated Approach

    NASA Astrophysics Data System (ADS)

    Uddin, Amad; Felician Campean, Ioan; Khurshid Khan, Mohammed

    2014-07-01

    Product design decomposition and synthesis is a constant challenge with its continuously increasing complexity at each level of abstraction. Currently, design decomposition and synthesis analytical tasks are mostly accomplished via functional and structural methods. These methods are useful in different phases of design process for product definition and architecture but limited in a way that they tend to focus more on 'what' and less on 'how' and vice versa. This paper combines a functional representation tool known as System State Flow Diagram (a solution independent approach), a solution search tool referred as Morphology Table, and Design Structure Matrix (mainly a solution dependent tool). The proposed approach incorporates Multiple Domain Matrix (MDM) to integrate the knowledge of both solution independent and dependent analyses. The approach is illustrated with a case study of solar robot toy, followed by its limitations, future work and discussion.

  7. Molecular architecture and mechanism of the anaphase-promoting complex

    PubMed Central

    Yang, Jing; McLaughlin, Stephen H.; Barford, David

    2015-01-01

    The ubiquitination of cell cycle regulatory proteins by the anaphase-promoting complex/cyclosome (APC/C) controls sister chromatid segregation, cytokinesis and the establishment of G1. The APC/C is an unusually large multimeric cullin-RING ligase. Its activity is strictly dependent on regulatory coactivator subunits that promote APC/C – substrate interactions and stimulate its catalytic reaction. Because the structures of many APC/C subunits and their organization within the assembly are unknown, the molecular basis for these processes is poorly understood. Here, from a cryo-EM reconstruction of a human APC/C-coactivator-substrate complex at 7.4 Å resolution, we have determined the complete secondary structural architecture of the complex. With this information we identified protein folds for structurally uncharacterized subunits, and the definitive location of all 20 APC/C subunits within the 1.2 MDa assembly. Comparison with apo APC/C shows that coactivator promotes a profound allosteric transition involving displacement of the cullin-RING catalytic subunits relative to the degron recognition module of coactivator and Apc10. This transition is accompanied by increased flexibility of the cullin-RING subunits and enhanced affinity for UbcH10~ubiquitin, changes which may contribute to coactivator-mediated stimulation of APC/C E3 ligase activity. PMID:25043029

  8. Architecture and function of plant light-harvesting complexes II.

    PubMed

    Pan, Xiaowei; Liu, Zhenfeng; Li, Mei; Chang, Wenrui

    2013-08-01

    The antenna system associated with plant photosystem II (PSII) comprises a series of light-harvesting complexes II (LHCIIs) which are supramolecular assemblies of chlorophylls, carotenoids, lipids and integral membrane proteins. These complexes not only function in capturing and transmitting light energy, but also have pivotal roles in photoprotection under high-light conditions through a mechanism known as non-photochemical quenching process. Among them, the most abundant major species (majLHCII) is located at the periphery of PSII and forms homo/hetero-trimers. Besides, three minor species, named CP29, CP26 and CP24, are adjacent to the PSII core, exist in monomeric form and bridge the majLHCII trimers with the core complex. Structural studies on majLHCII and CP29 have revealed the overall architecture of plant LHC family, the binding sites of pigment molecules and the distribution pattern of chromophores in three-dimensional space. The high-resolution structural data of LHCIIs serve as fundamental bases for an improved understanding on the mechanisms of light harvesting, energy transfer and photoprotection processes in plants. PMID:23623335

  9. Polygonal Shapes Detection in 3d Models of Complex Architectures

    NASA Astrophysics Data System (ADS)

    Benciolini, G. B.; Vitti, A.

    2015-02-01

    A sequential application of two global models defined on a variational framework is proposed for the detection of polygonal shapes in 3D models of complex architectures. As a first step, the procedure involves the use of the Mumford and Shah (1989) 1st-order variational model in dimension two (gridded height data are processed). In the Mumford-Shah model an auxiliary function detects the sharp changes, i.e., the discontinuities, of a piecewise smooth approximation of the data. The Mumford-Shah model requires the global minimization of a specific functional to simultaneously produce both the smooth approximation and its discontinuities. In the proposed procedure, the edges of the smooth approximation derived by a specific processing of the auxiliary function are then processed using the Blake and Zisserman (1987) 2nd-order variational model in dimension one (edges are processed in the plane). This second step permits to describe the edges of an object by means of piecewise almost-linear approximation of the input edges themselves and to detects sharp changes of the first-derivative of the edges so to detect corners. The Mumford-Shah variational model is used in two dimensions accepting the original data as primary input. The Blake-Zisserman variational model is used in one dimension for the refinement of the description of the edges. The selection among all the boundaries detected by the Mumford-Shah model of those that present a shape close to a polygon is performed by considering only those boundaries for which the Blake-Zisserman model identified discontinuities in their first derivative. The output of the procedure are hence shapes, coming from 3D geometric data, that can be considered as polygons. The application of the procedure is suitable for, but not limited to, the detection of objects such as foot-print of polygonal buildings, building facade boundaries or windows contours. v The procedure is applied to a height model of the building of the Engineering

  10. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies

    PubMed Central

    Janghra, Narinder; Morgan, Jennifer E.; Sewry, Caroline A.; Wilson, Francis X.; Davies, Kay E.; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ –sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify

  11. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    PubMed

    Janghra, Narinder; Morgan, Jennifer E; Sewry, Caroline A; Wilson, Francis X; Davies, Kay E; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify

  12. Evidence for Complex Molecular Architectures for Solvent-Extracted Lignins

    SciTech Connect

    Rials, Timothy G; Urban, Volker S; Langan, Paul

    2012-01-01

    Lignin, an abundant, naturally occurring biopolymer, is often considered 'waste' and used as a simple fuel source in the paper-making process. However, lignin has emerged as a promising renewable resource for engineering materials, such as carbon fibers. Unfortunately, the molecular architecture of lignin (in vivo and extracted) is still elusive, with numerous conflicting reports in the literature, and knowledge of this structure is extremely important, not only for materials technologies, but also for production of biofuels such as cellulosic ethanol due to biomass recalcitrance. As such, the molecular structures of solvent-extracted (sulfur-free) lignins, which have been modified using various acyl chlorides, have been probed using small-angle X-ray (SAXS) and neutron (SANS) scattering in tetrahydrofuran (THF) solution along with hydrodynamic characterization using dilute solution viscometry and gel permeation chromatography (GPC) in THF. Mass spectrometry shows an absolute molecular weight {approx}18-30 kDa ({approx}80-140 monomers), while GPC shows a relative molecular weight {approx}3 kDa. A linear styrene oligomer (2.5 kDa) was also analyzed in THF using SANS. Results clearly show that lignin molecular architectures are somewhat rigid and complex, ranging from nanogels to hyperbranched macromolecules, not linear oligomers or physical assemblies of oligomers, which is consistent with previously proposed delignification (extraction) mechanisms. Future characterization using the methods discussed here can be used to guide extraction processes as well as genetic engineering technologies to convert lignin into value added materials with the potential for high positive impact on global sustainability.

  13. Architecture of the Florida power grid as a complex network

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Gurfinkel, Aleks Jacob; Rikvold, Per Arne

    2014-05-01

    We study the Florida high-voltage power grid as a technological network embedded in space. Measurements of geographical lengths of transmission lines, the mixing of generators and loads, the weighted clustering coefficient, as well as the organization of edge conductance weights show a complex architecture quite different from random-graph models usually considered. In particular, we introduce a parametrized mixing matrix to characterize the mixing pattern of generators and loads in the Florida Grid, which is intermediate between the random mixing case and the semi-bipartite case where generator-generator transmission lines are forbidden. Our observations motivate an investigation of optimization (design) principles leading to the structural organization of power grids. We thus propose two network optimization models for the Florida Grid as a case study. Our results show that the Florida Grid is optimized not only by reducing the construction cost (measured by the total length of power lines), but also through reducing the total pairwise edge resistance in the grid, which increases the robustness of power transmission between generators and loads against random line failures. We then embed our models in spatial areas of different aspect ratios and study how this geometric factor affects the network structure, as well as the box-counting fractal dimension of the grids generated by our models.

  14. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity.

    PubMed

    Alvarez-Filip, Lorenzo; Dulvy, Nicholas K; Gill, Jennifer A; Côté, Isabelle M; Watkinson, Andrew R

    2009-08-22

    Coral reefs are rich in biodiversity, in large part because their highly complex architecture provides shelter and resources for a wide range of organisms. Recent rapid declines in hard coral cover have occurred across the Caribbean region, but the concomitant consequences for reef architecture have not been quantified on a large scale to date. We provide, to our knowledge, the first region-wide analysis of changes in reef architectural complexity, using nearly 500 surveys across 200 reefs, between 1969 and 2008. The architectural complexity of Caribbean reefs has declined nonlinearly with the near disappearance of the most complex reefs over the last 40 years. The flattening of Caribbean reefs was apparent by the early 1980s, followed by a period of stasis between 1985 and 1998 and then a resumption of the decline in complexity to the present. Rates of loss are similar on shallow (<6 m), mid-water (6-20 m) and deep (>20 m) reefs and are consistent across all five subregions. The temporal pattern of declining architecture coincides with key events in recent Caribbean ecological history: the loss of structurally complex Acropora corals, the mass mortality of the grazing urchin Diadema antillarum and the 1998 El Nino Southern Oscillation-induced worldwide coral bleaching event. The consistently low estimates of current architectural complexity suggest regional-scale degradation and homogenization of reef structure. The widespread loss of architectural complexity is likely to have serious consequences for reef biodiversity, ecosystem functioning and associated environmental services. PMID:19515663

  15. The infectious particle of insect-borne totivirus-like Omono River virus has raised ridges and lacks fibre complexes.

    PubMed

    Okamoto, Kenta; Miyazaki, Naoyuki; Larsson, Daniel S D; Kobayashi, Daisuke; Svenda, Martin; Mühlig, Kerstin; Maia, Filipe R N C; Gunn, Laura H; Isawa, Haruhiko; Kobayashi, Mutsuo; Sawabe, Kyoko; Murata, Kazuyoshi; Hajdu, Janos

    2016-01-01

    Omono River virus (OmRV) is a double-stranded RNA virus isolated from Culex mosquitos, and it belongs to a group of unassigned insect viruses that appear to be related to Totiviridae. This paper describes electron cryo-microscopy (cryoEM) structures for the intact OmRV virion to 8.9 Å resolution and the structure of the empty virus-like-particle, that lacks RNA, to 8.3 Å resolution. The icosahedral capsid contains 120-subunits and resembles another closely related arthropod-borne totivirus-like virus, the infectious myonecrosis virus (IMNV) from shrimps. Both viruses have an elevated plateau around their icosahedral 5-fold axes, surrounded by a deep canyon. Sequence and structural analysis suggests that this plateau region is mainly composed of the extended C-terminal region of the capsid proteins. In contrast to IMNV, the infectious form of OmRV lacks extensive fibre complexes at its 5-fold axes as directly confirmed by a contrast-enhancement technique, using Zernike phase-contrast cryo-EM. Instead, these fibre complexes are replaced by a short "plug" structure at the five-fold axes of OmRV. OmRV and IMNV have acquired an extracellular phase, and the structures at the five-fold axes may be significant in adaptation to cell-to-cell transmission in metazoan hosts. PMID:27616740

  16. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    PubMed Central

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-01-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as ‘3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries. PMID:26494282

  17. The Molecular Architecture for the Intermediate Filaments of Hard [alpha]-Keratin Based on the Superlattice Data Obtained from a Study ofMammals Using Synchrotron Fibre Diffraction

    SciTech Connect

    James, Veronica

    2014-09-24

    High- and low-angle X-ray diffraction studies of hard {alpha}-keratin have been studied, and various models have been proposed over the last 70 years. Most of these studies have been confined to one or two forms of alpha keratin. This high- and low-angle synchrotron fibre diffraction study extends the study to cover all available data for all known forms of hard {alpha}-keratin including hairs, fingernails, hooves, horn, and quills from mammals, marsupials, and a monotreme, and it confirms that the model proposed is universally acceptable for all mammals. A complete Bragg analysis of the meridional diffraction patterns, including multiple-time exposures to verify any weak reflections, verified the existence of a superlattice consisting of two infinite lattices and three finite lattices. An analysis of the equatorial patterns establishes the radii of the oligomeric levels of dimers, tetramers, and intermediate filaments (IFs) together with the centre to centre distance for the IFs, thus confirming the proposed helices within helices molecular architecture for hard {alpha}-keratin. The results verify that the structure proposed by Feughelman and James meets the criteria for a valid {alpha}-keratin structure.

  18. The Molecular Architecture for the Intermediate Filaments of Hard α -Keratin Based on the Superlattice Data Obtained from a Study of Mammals Using Synchrotron Fibre Diffraction

    DOE PAGESBeta

    James, Veronica

    2011-01-01

    High- and low-angle X-ray diffraction studies of hard α -keratin have been studied, and various models have been proposed over the last 70 years. Most of these studies have been confined to one or two forms of alpha keratin. This high- and low-angle synchrotron fibre diffraction study extends the study to cover all available data for all known forms of hard α -keratin including hairs, fingernails, hooves, horn, and quills from mammals, marsupials, and a monotreme, and it confirms that the model proposed is universally acceptable for all mammals. A complete Bragg analysis of the meridional diffraction patterns, includingmore » multiple-time exposures to verify any weak reflections, verified the existence of a superlattice consisting of two infinite lattices and three finite lattices. An analysis of the equatorial patterns establishes the radii of the oligomeric levels of dimers, tetramers, and intermediate filaments (IFs) together with the centre to centre distance for the IFs, thus confirming the proposed helices within helices molecular architecture for hard α -keratin. The results verify that the structure proposed by Feughelman and James meets the criteria for a valid α -keratin structure.« less

  19. Tandem riboswitch architectures exhibit complex gene control functions.

    PubMed

    Sudarsan, Narasimhan; Hammond, Ming C; Block, Kirsten F; Welz, Rüdiger; Barrick, Jeffrey E; Roth, Adam; Breaker, Ronald R

    2006-10-13

    Riboswitches are structured RNAs typically located in the 5' untranslated regions of bacterial mRNAs that bind metabolites and control gene expression. Most riboswitches sense one metabolite and function as simple genetic switches. However, we found that the 5' region of the Bacillus clausii metE messenger RNA includes two riboswitches that respond to S-adenosylmethionine and coenzyme B12. This tandem arrangement yields a composite gene control system that functions as a two-input Boolean NOR logic gate. These findings and the discovery of additional tandem riboswitch architectures reveal how simple RNA elements can be assembled to make sophisticated genetic decisions without involving protein factors. PMID:17038623

  20. Application of complex macromolecular architectures for advanced microelectronic materials.

    PubMed

    Hedrick, James L; Magbitang, Teddie; Connor, Eric F; Glauser, Thierry; Volksen, Willi; Hawker, Craig J; Lee, Victor Y; Miller, Robert D

    2002-08-01

    The distinctive features of well-defined, three-dimensional macromolecules with topologies designed to enhance solubility and amplify end-group functionality facilitated nanophase morphologies in mixtures with organosilicates and ultimately nanoporous organosilicate networks. Novel macromolecular architectures including dendritic and star-shaped polymers and organic nanoparticles were prepared by a modular approach from several libraries of building blocks including various generations of dendritic initiators and dendrons, selectively placed to amplify functionality and/or arm number, coupled with living polymerization techniques. Mixtures of an organosilicate and the macromolecular template were deposited, cured, and the phase separation of the organic component, organized the vitrifying organosilicate into nanostructures. Removal of the sacrificial macromolecular template, also denoted as porogen, by thermolysis, yielded the desired nanoporous organosilicate, and the size scale of phase separation was strongly dependent on the chain topology. These materials were designed for use as interlayer, ultra-low dielectric insulators for on-chip applications with dielectric constant values as low as 1.5. The porogen design, chemistry and role of polymer architecture on hybrid and pore morphology will be emphasized. PMID:12203311

  1. Brain architecture and social complexity in modern and ancient birds.

    PubMed

    Burish, Mark J; Kueh, Hao Yuan; Wang, Samuel S-H

    2004-01-01

    Vertebrate brains vary tremendously in size, but differences in form are more subtle. To bring out functional contrasts that are independent of absolute size, we have normalized brain component sizes to whole brain volume. The set of such volume fractions is the cerebrotype of a species. Using this approach in mammals we previously identified specific associations between cerebrotype and behavioral specializations. Among primates, cerebrotypes are linked principally to enlargement of the cerebral cortex and are associated with increases in the complexity of social structure. Here we extend this analysis to include a second major vertebrate group, the birds. In birds the telencephalic volume fraction is strongly correlated with social complexity. This correlation accounts for almost half of the observed variation in telencephalic size, more than any other behavioral specialization examined, including the ability to learn song. A prominent exception to this pattern is owls, which are not social but still have very large forebrains. Interpolating the overall correlation for Archaeopteryx, an ancient bird, suggests that its social complexity was likely to have been on a par with modern domesticated chickens. Telencephalic volume fraction outperforms residuals-based measures of brain size at separating birds by social structure. Telencephalic volume fraction may be an anatomical substrate for social complexity, and perhaps cognitive ability, that can be generalized across a range of vertebrate brains, including dinosaurs. PMID:14685004

  2. Functional architecture of the retromer cargo-recognition complex

    PubMed Central

    Hierro, Aitor; Rojas, Adriana L.; Rojas, Raul; Murthy, Namita; Effantin, Grégory; Kajava, Andrey V.; Steven, Alasdair C.; Bonifacino, Juan S.; Hurley, James H.

    2008-01-01

    The retromer complex 1, 2 is required for the sorting of acid hydrolases to lysosomes 3-7, transcytosis of the polymeric Ig receptor 8, Wnt gradient formation 9, 10, iron transporter recycling 11, and processing of the amyloid precursor protein 12. Human retromer consists of two smaller complexes, the cargo recognition Vps26:Vps29:Vps35 heterotrimer, and a membrane-targeting heterodimer or homodimer of SNX1 and/or SNX2 13. The crystal structure of a Vps29:Vps35 subcomplex shows how the metallophosphoesterase-fold subunit Vps29 14, 15 acts as a scaffold for the C-terminal half of Vps35. Vps35 forms a horseshoe-shaped right-handed α-helical solenoid whose concave face completely covers the metal-binding site of Vps29 and whose convex face exposes a series of hydrophobic interhelical grooves. Electron microscopy shows that the intact Vps26:Vps29:Vps35 complex is a stick-shaped, somewhat flexible, structure, ∼ 21 nm long. A hybrid structural model derived from crystal structures, electron microscopy, interaction studies, and bioinformatics shows that the α-solenoid fold extends the full length of Vps35, and that Vps26 is bound at the opposite end from Vps29. This extended structure presents multiple binding sites for the SNX complex and receptor cargo, and appears capable of flexing to conform to curved vesicular membranes. PMID:17891154

  3. Complex Polymeric Architectures Synthesized and Functionalized using Robust Chemistries

    NASA Astrophysics Data System (ADS)

    Killops, Kathryn L.

    Niche applications for polymeric materials put stringent requirements on their properties and architecture. Although polymer synthesis techniques have improved significantly to produce well-defined materials with narrow molecular weight distributions from a variety of monomeric precursors, the final materials often require fine-tuning of the structure or functionality to achieve the properties necessary for a given high performance application. The ability to modify and synthesize soft materials in precise and predictable manner requires the use of robust, efficient, and orthogonal chemistries. The highly branched structure of dendrimers provides an ideal platform to rigorously evaluate the ability of a reaction to proceed with quantitative conversion and high specificity. In order to achieve a macromolecular structure having a monodisperse molecular weight of over 10,000 Da, highly efficient reactions must be used. The synthesis of dendrimers up to the fourth generation was accomplished using successive iterations of thiol--ene 'click' chemistry and esterification reactions. The high molecular weight dendrimers were subsequently derivitized at the periphery using a variety of functional groups to demonstrate the orthogonality of the thiol--ene reaction. An extension of this work provided direct comparison of the thermally- and photochemically-initiated thiol--ene reactions, as applied to the functionalization of polymers both along the backbone and at the chain ends. With block copolymers, access to nanoscale features is afforded by the propensity of two chemically-distinct, covalently-linked polymer chains phase separate into discrete domains. These nanoscopic features have important implications for high performance applications like microelectronics and water purification. Precise modification of these structures expands the number of applications that could benefit from their implementation. In the search for a poly(ethylene oxide)-based nanoparticle with

  4. Three-dimensional representation of complex muscle architectures and geometries.

    PubMed

    Blemker, Silvia S; Delp, Scott L

    2005-05-01

    Almost all computer models of the musculoskeletal system represent muscle geometry using a series of line segments. This simplification (i) limits the ability of models to accurately represent the paths of muscles with complex geometry and (ii) assumes that moment arms are equivalent for all fibers within a muscle (or muscle compartment). The goal of this work was to develop and evaluate a new method for creating three-dimensional (3D) finite-element models that represent complex muscle geometry and the variation in moment arms across fibers within a muscle. We created 3D models of the psoas, iliacus, gluteus maximus, and gluteus medius muscles from magnetic resonance (MR) images. Peak fiber moment arms varied substantially among fibers within each muscle (e.g., for the psoas the peak fiber hip flexion moment arms varied from 2 to 3 cm, and for the gluteus maximus the peak fiber hip extension moment arms varied from 1 to 7 cm). Moment arms from the literature were generally within the range of fiber moment arms predicted by the 3D models. The models accurately predicted changes in muscle surface geometry over a 55 degrees range of hip flexion, as compared to changes in shape predicted from MR images (average errors between the model and measured surfaces were between 1.7 and 5.2 mm). This new framework for representing muscle will enhance the accuracy of computer models of the musculoskeletal system. PMID:15981866

  5. Dissecting pigment architecture of individual photosynthetic antenna complexes in solution

    PubMed Central

    Wang, Quan; Moerner, W. E.

    2015-01-01

    Oligomerization plays a critical role in shaping the light-harvesting properties of many photosynthetic pigment−protein complexes, but a detailed understanding of this process at the level of individual pigments is still lacking. To study the effects of oligomerization, we designed a single-molecule approach to probe the photophysical properties of individual pigment sites as a function of protein assembly state. Our method, based on the principles of anti-Brownian electrokinetic trapping of single fluorescent proteins, step-wise photobleaching, and multiparameter spectroscopy, allows pigment-specific spectroscopic information on single multipigment antennae to be recorded in a nonperturbative aqueous environment with unprecedented detail. We focus on the monomer-to-trimer transformation of allophycocyanin (APC), an important antenna protein in cyanobacteria. Our data reveal that the two chemically identical pigments in APC have different roles. One (α) is the functional pigment that red-shifts its spectral properties upon trimer formation, whereas the other (β) is a “protective” pigment that persistently quenches the excited state of α in the prefunctional, monomer state of the protein. These results show how subtleties in pigment organization give rise to functionally important aspects of energy transfer and photoprotection in antenna complexes. The method developed here should find immediate application in understanding the emergent properties of other natural and artificial light-harvesting systems. PMID:26438850

  6. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.

    1988-01-01

    The purpose is to document research to develop strategies for concurrent processing of complex algorithms in data driven architectures. The problem domain consists of decision-free algorithms having large-grained, computationally complex primitive operations. Such are often found in signal processing and control applications. The anticipated multiprocessor environment is a data flow architecture containing between two and twenty computing elements. Each computing element is a processor having local program memory, and which communicates with a common global data memory. A new graph theoretic model called ATAMM which establishes rules for relating a decomposed algorithm to its execution in a data flow architecture is presented. The ATAMM model is used to determine strategies to achieve optimum time performance and to develop a system diagnostic software tool. In addition, preliminary work on a new multiprocessor operating system based on the ATAMM specifications is described.

  7. Architectural Analysis of Complex Evolving Systems of Systems

    NASA Technical Reports Server (NTRS)

    Lindvall, Mikael; Stratton, William C.; Sibol, Deane E.; Ray, Arnab; Ackemann, Chris; Yonkwa, Lyly; Ganesan, Dharma

    2009-01-01

    The goal of this collaborative project between FC-MD, APL, and GSFC and supported by NASA IV&V Software Assurance Research Program (SARP), was to develop a tool, Dynamic SAVE, or Dyn-SAVE for short, for analyzing architectures of systems of systems. The project team was comprised of the principal investigator (PI) from FC-MD and four other FC-MD scientists (part time) and several FC-MD students (full time), as well as, two APL software architects (part time), and one NASA POC (part time). The PI and FC-MD scientists together with APL architects were responsible for requirements analysis, and for applying and evaluating the Dyn-SAVE tool and method. The PI and a group of FC-MD scientists were responsible for improving the method and conducting outreach activities, while another group of FC-MD scientists were responsible for development and improvement of the tool. Oversight and reporting was conducted by the PI and NASA POC. The project team produced many results including several prototypes of the Dyn-SAVE tool and method, several case studies documenting how the tool and method was applied to APL s software systems, and several published papers in highly respected conferences and journals. Dyn-SAVE as developed and enhanced throughout this research period, is a software tool intended for software developers and architects, software integration testers, and persons who need to analyze software systems from the point of view of how it communicates with other systems. Using the tool, the user specifies the planned communication behavior of the system modeled as a sequence diagram. The user then captures and imports the actual communication behavior of the system, which is then converted and visualized as a sequence diagram by Dyn-SAVE. After mapping the planned to the actual and specifying parameter and timing constraints, Dyn-SAVE detects and highlights deviations between the planned and the actual behavior. Requirements based on the need to analyze two inter

  8. Contraction dynamics and function of the muscle-tendon complex depend on the muscle fibre-tendon length ratio: a simulation study.

    PubMed

    Mörl, Falk; Siebert, Tobias; Häufle, Daniel

    2016-02-01

    Experimental studies show different muscle-tendon complex (MTC) functions (e.g. motor or spring) depending on the muscle fibre-tendon length ratio. Comparing different MTC of different animals examined experimentally, the extracted MTC functions are biased by, for example, MTC-specific pennation angle and fibre-type distribution or divergent experimental protocols (e.g. influence of temperature or stimulation on MTC force). Thus, a thorough understanding of variation of these inner muscle fibre-tendon length ratios on MTC function is difficult. In this study, we used a hill-type muscle model to simulate MTC. The model consists of a contractile element (CE) simulating muscle fibres, a serial element (SE) as a model for tendon, and a parallel elastic element (PEE) modelling tissue in parallel to the muscle fibres. The simulation examines the impact of length variations of these components on contraction dynamics and MTC function. Ensuring a constant overall length of the MTC by L(MTC) = L(SE) + L(CE), the SE rest length was varied over a broad physiological range from 0.1 to 0.9 MTC length. Five different MTC functions were investigated by simulating typical physiological experiments: the stabilising function with isometric contractions, the motor function with contractions against a weight, the capability of acceleration with contractions against a small inertial mass, the braking function by decelerating a mass, and the spring function with stretch-shortening cycles. The ratio of SE and CE mainly determines the MTC function. MTC with comparably short tendon generates high force and maximal shortening velocity and is able to produce maximal work and power. MTC with long tendon is suitable to store and release a maximum amount of energy. Variation of muscle fibre-tendon ratio yielded two peaks for MTC's force response for short and long SE lengths. Further, maximum work storage capacity of the SE is at long relL(SE,0). Impact of fibre-tendon length ratio on MTC

  9. 3D stereolithography printing of graphene oxide reinforced complex architectures.

    PubMed

    Lin, Dong; Jin, Shengyu; Zhang, Feng; Wang, Chao; Wang, Yiqian; Zhou, Chi; Cheng, Gary J

    2015-10-30

    Properties of polymer based nanocomposites reply on distribution, concentration, geometry and property of nanofillers in polymer matrix. Increasing the concentration of carbon based nanomaterials, such as CNTs, in polymer matrix often results in stronger but more brittle material. Here, we demonstrated the first three-dimensional (3D) printed graphene oxide complex structures by stereolithography with good combination of strength and ductility. With only 0.2% GOs, the tensile strength is increased by 62.2% and elongation increased by 12.8%. Transmission electron microscope results show that the GOs were randomly aligned in the cross section of polymer. We investigated the strengthening mechanism of the 3D printed structure in terms of tensile strength and Young's modulus. It is found that an increase in ductility of the 3D printed nanocomposites is related to increase in crystallinity of GOs reinforced polymer. Compression test of 3D GOs structure reveals the metal-like failure model of GOs nanocomposites. PMID:26443263

  10. A high throughput architecture for a low complexity soft-output demapping algorithm

    NASA Astrophysics Data System (ADS)

    Ali, I.; Wasenmüller, U.; Wehn, N.

    2015-11-01

    Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.

  11. High-power fibre lasers

    NASA Astrophysics Data System (ADS)

    Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2013-11-01

    Fibre lasers are now associated with high average powers and very high beam qualities. Both these characteristics are required by many industrial, defence and scientific applications, which explains why fibre lasers have become one of the most popular laser technologies. However, this success, which is largely founded on the outstanding characteristics of fibres as an active medium, has only been achieved through researchers around the world striving to overcome many of the limitations imposed by the fibre architecture. This Review focuses on these limitations, both past and current, and the creative solutions that have been proposed for overcoming them. These solutions have enabled fibre lasers to generate the highest diffraction-limited average power achieved to date by solid-state lasers.

  12. Architectures for Distributed and Complex M-Learning Systems: Applying Intelligent Technologies

    ERIC Educational Resources Information Center

    Caballe, Santi, Ed.; Xhafa, Fatos, Ed.; Daradoumis, Thanasis, Ed.; Juan, Angel A., Ed.

    2009-01-01

    Over the last decade, the needs of educational organizations have been changing in accordance with increasingly complex pedagogical models and with the technological evolution of e-learning environments with very dynamic teaching and learning requirements. This book explores state-of-the-art software architectures and platforms used to support…

  13. Assessment of the integration capability of system architectures from a complex and distributed software systems perspective

    NASA Astrophysics Data System (ADS)

    Leuchter, S.; Reinert, F.; Müller, W.

    2014-06-01

    Procurement and design of system architectures capable of network centric operations demand for an assessment scheme in order to compare different alternative realizations. In this contribution an assessment method for system architectures targeted at the C4ISR domain is presented. The method addresses the integration capability of software systems from a complex and distributed software system perspective focusing communication, interfaces and software. The aim is to evaluate the capability to integrate a system or its functions within a system-of-systems network. This method uses approaches from software architecture quality assessment and applies them on the system architecture level. It features a specific goal tree of several dimensions that are relevant for enterprise integration. These dimensions have to be weighed against each other and totalized using methods from the normative decision theory in order to reflect the intention of the particular enterprise integration effort. The indicators and measurements for many of the considered quality features rely on a model based view on systems, networks, and the enterprise. That means it is applicable to System-of-System specifications based on enterprise architectural frameworks relying on defined meta-models or domain ontologies for defining views and viewpoints. In the defense context we use the NATO Architecture Framework (NAF) to ground respective system models. The proposed assessment method allows evaluating and comparing competing system designs regarding their future integration potential. It is a contribution to the system-of-systems engineering methodology.

  14. High-Speed Low-Complexity Architecture for Reed-Solomon Decoders

    NASA Astrophysics Data System (ADS)

    Lu, Yung-Kuei; Shieh, Ming-Der

    This paper presents a high-speed, low-complexity VLSI architecture based on the modified Euclidean (ME) algorithm for Reed-Solomon decoders. The low-complexity feature of the proposed architecture is obtained by reformulating the error locator and error evaluator polynomials to remove redundant information in the ME algorithm proposed by Truong. This increases the hardware utilization of the processing elements used to solve the key equation and reduces hardware by 30.4%. The proposed architecture retains the high-speed feature of Truong's ME algorithm with a reduced latency, achieved by changing the initial settings of the design. Analytical results show that the proposed architecture has the smallest critical path delay, latency, and area-time complexity in comparison with similar studies. An example RS(255, 239) decoder design, implemented using the TSMC 0.18µm process, can reach a throughput rate of 3Gbps at an operating frequency of 375MHz and with a total gate count of 27, 271.

  15. New Molecular Architecture for Electrically Conducting Materials Based on Unsymmetrical Organometallic-Dithiolene Complexes

    NASA Astrophysics Data System (ADS)

    Kubo, Kazuya; Kato, Reizo

    New molecular architecture for highly conducting molecular materials was developed with use of unsymmetrical organometallic-dithiolene complexes. The new architecture has various advantages including easy modification of their molecular and electronic features. Organometallic complexes based on unsymmetrical Au(III)-dithiolene complexes [(ppy)Au(C8H4S8 or C8H4S6O2)] were prepared for new cationic components of molecular conductors. These unsymmetrical organometallic complexes can provide various cation radical salts [(ppy)Au(S-S)]2[anion][solvent] n (S-S = C8H4S8 or C8H4S6O2, anion = PF6 -, BF4 -, AsF6 -, TaF6 -, solvent = PhCl, n = 0-0.5) by constant current electrolysis of their benzonitrile or chlorobenzene solutions containing (Bu4N)(anion) as electrolyte. [(ppy)Au(C8H4S8)]2[PF6] under pressure is the first molecular metal based on the organometallic component. In this review, principle of the molecular architecture based on the unsymmetrical organometallic-dithiolene complexes and physical properties of their cation radical salts are discussed.

  16. Molecular Architecture and Function of the SEA Complex, a Modulator of the TORC1 Pathway*

    PubMed Central

    Algret, Romain; Fernandez-Martinez, Javier; Shi, Yi; Kim, Seung Joong; Pellarin, Riccardo; Cimermancic, Peter; Cochet, Emilie; Sali, Andrej; Chait, Brian T.; Rout, Michael P.; Dokudovskaya, Svetlana

    2014-01-01

    The TORC1 signaling pathway plays a major role in the control of cell growth and response to stress. Here we demonstrate that the SEA complex physically interacts with TORC1 and is an important regulator of its activity. During nitrogen starvation, deletions of SEA complex components lead to Tor1 kinase delocalization, defects in autophagy, and vacuolar fragmentation. TORC1 inactivation, via nitrogen deprivation or rapamycin treatment, changes cellular levels of SEA complex members. We used affinity purification and chemical cross-linking to generate the data for an integrative structure modeling approach, which produced a well-defined molecular architecture of the SEA complex and showed that the SEA complex comprises two regions that are structurally and functionally distinct. The SEA complex emerges as a platform that can coordinate both structural and enzymatic activities necessary for the effective functioning of the TORC1 pathway. PMID:25073740

  17. A high-energy fibre-to-fibre connection for direct optical initiation systems

    NASA Astrophysics Data System (ADS)

    Bowden, M. D.; Knowles, S. L.

    2012-11-01

    Direct Optical Initiation (DOI), uses a moderate energy laser to shock initiate secondary explosives, via either a flyer plate or exploding metal foil. DOI offers significant performance and safety advantages over conventional electrical initiation. Optical fibres are used to transport the optical energy from the laser to the explosive device. A DOI system comprises of a laser, one or more optical fibres, and one or more laser detonators. Realisation of a DOI system is greatly eased by the use of fibre-to-fibre connections, allowing for easy integration into bulkheads or other interfaces, such as firing tanks and environmental test chambers. Fibres to fibre connectors capable of transmitting the required energy densities are not commercially available. Energy densities in the region of 35 J cm-2 are required for initiation, above the damage threshold of typical optical fibres. Laser-induced damage is typically caused by laser absorption at the input face due to imperfections in the surface polishing. To successfully transmit energy densities for DOI, a high quality fibre end face finish is required. A fibre-to-fibre connection utilizing micro-lens array injection into a large-core, tapered optical fibre, a hermetic fibre bulkhead feedthrough, and a disposable test fibre has been developed. This permits easy connection of test detonators or components, with the complex free-space to fibre injection simplified to a single operation. The damage threshold and transmission losses of the fibre-to-fibre connection have been established for each interface.

  18. Contrasting genetic architectures in different mouse reference populations used for studying complex traits

    PubMed Central

    Buchner, David A.; Nadeau, Joseph H.

    2015-01-01

    Quantitative trait loci (QTLs) are being used to study genetic networks, protein functions, and systems properties that underlie phenotypic variation and disease risk in humans, model organisms, agricultural species, and natural populations. The challenges are many, beginning with the seemingly simple tasks of mapping QTLs and identifying their underlying genetic determinants. Various specialized resources have been developed to study complex traits in many model organisms. In the mouse, remarkably different pictures of genetic architectures are emerging. Chromosome Substitution Strains (CSSs) reveal many QTLs, large phenotypic effects, pervasive epistasis, and readily identified genetic variants. In contrast, other resources as well as genome-wide association studies (GWAS) in humans and other species reveal genetic architectures dominated with a relatively modest number of QTLs that have small individual and combined phenotypic effects. These contrasting architectures are the result of intrinsic differences in the study designs underlying different resources. The CSSs examine context-dependent phenotypic effects independently among individual genotypes, whereas with GWAS and other mouse resources, the average effect of each QTL is assessed among many individuals with heterogeneous genetic backgrounds. We argue that variation of genetic architectures among individuals is as important as population averages. Each of these important resources has particular merits and specific applications for these individual and population perspectives. Collectively, these resources together with high-throughput genotyping, sequencing and genetic engineering technologies, and information repositories highlight the power of the mouse for genetic, functional, and systems studies of complex traits and disease models. PMID:25953951

  19. Architecture of the S. cerevisiae RNA polymerase I Core Factor complex

    PubMed Central

    Knutson, Bruce A.; Luo, Jie; Ranish, Jeffrey; Hahn, Steven

    2014-01-01

    Core Factor (CF) is a conserved RNA polymerase (Pol) I general transcription factor and is comprised of Rrn6, Rrn11, and the TFIIB-related subunit Rrn7. CF binds TBP, Pol I, and the regulatory factors Rrn3 and UAF. We used chemical crosslinking-mass spectrometry (CXMS) to determine the molecular architecture of CF and its interactions with TBP. The CF subunits assemble through an interconnected network of interactions between five structural domains that are conserved in orthologous subunits of the human Pol I factor SL1. The crosslinking-derived model was validated through a series of genetic and biochemical assays. Our combined results show the architecture of CF and the functions of the CF subunits in assembly of the complex. We extend these findings to model how CF assembles into the Pol I preinitiation complex, providing new insight into the roles of CF, TBP and Rrn3. PMID:25132180

  20. The dynamics of architectural complexity on coral reefs under climate change.

    PubMed

    Bozec, Yves-Marie; Alvarez-Filip, Lorenzo; Mumby, Peter J

    2015-01-01

    One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef-building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamics of the reef architecture is therefore important to envision the ability of corals to maintain functional habitats in an era of climate change. Here, we develop a mechanistic model of reef topographical complexity for contemporary Caribbean reefs. The model describes the dynamics of corals and other benthic taxa under climate-driven disturbances (hurricanes and coral bleaching). Corals have a simplified shape with explicit diameter and height, allowing species-specific calculation of their colony surface and volume. Growth and the mechanical (hurricanes) and biological erosion (parrotfish) of carbonate skeletons are important in driving the pace of extension/reduction in the upper reef surface, the net outcome being quantified by a simple surface roughness index (reef rugosity). The model accurately simulated the decadal changes of coral cover observed in Cozumel (Mexico) between 1984 and 2008, and provided a realistic hindcast of coral colony-scale (1-10 m) changing rugosity over the same period. We then projected future changes of Caribbean reef rugosity in response to global warming. Under severe and frequent thermal stress, the model predicted a dramatic loss of rugosity over the next two or three decades. Critically, reefs with managed parrotfish populations were able to delay the general loss of architectural complexity, as the benefits of grazing in maintaining living coral outweighed the bioerosion of dead coral skeletons. Overall, this model provides the first explicit projections of reef rugosity in a warming climate, and highlights the need of combining local (protecting and restoring high grazing) to global (mitigation of greenhouse gas

  1. Virtual design of electrospun-like gelatin scaffolds: the effect of three-dimensional fibre orientation on elasticity behaviour.

    PubMed

    Guessasma, S; Oyen, M

    2016-01-14

    Remarkable mechanical performance of biological tissues is explained by a hierarchical fibrous structure. Designing materials that have similar properties is challenging because of the need to assess complex deformation mechanisms. In order to shed more light on architectural possibilities of biopolymer fibrous networks, we propose a numerical study that relates the fibre arrangement to the elastic modulus of a gelatin scaffold obtained using electrospinning. The adopted approach is based on the virtual designing of scaffolds using all possible combinations of Euler angles that define fibre orientations including preferable alignment. The generated networks are converted into a finite element model and the predicted elastic behaviour is examined. Predictions show that the fibre alignment achieved experimentally in biopolymer fibrous networks is for most of the fibres exhibiting an orthotropic behaviour. Some particular combinations of Euler angles allow transverse isotropic architectures while only limited cases are isotropic. A large sensitivity of Young's moduli to Euler angles is achieved describing multiple scenarios of independent anisotropic behaviours. An anisotropy ratio of the elastic behaviour is suggested based on a suitable combination of elastic moduli. Such a ratio exhibits a wide variation depending on individual and coupled effects of Euler angles. The finite element model predicts 2D, 3D and 4D maps representing all possible configurations of fibre alignment and their consequences on elastic behaviour. The predicted fibre orientation representing the observed anisotropic behaviour of electrospun gelatin networks demonstrates unbalanced contributions of in-plane and out-of plane fibres for a large range of processing conditions. PMID:26508563

  2. An unusual 3D interdigitated architecture assembled from Keggin polyoxometalates and dinuclear copper(II) complexes

    SciTech Connect

    Pang, Haijun; Yang, Ming; Kang, Lu; Ma, Huiyuan; Liu, Bo; Li, Shaobin; Liu, Heng

    2013-02-15

    A novel organic-inorganic hybrid compound, [Cu{sub 2}(bipy){sub 3}({mu}{sub 1}-H{sub 2}O){sub 2}({mu}{sub 2}-H{sub 2}O)({mu}{sub 2}-OH)(H{sub 2}BW{sub 12}O{sub 40})]{center_dot}4 H{sub 2}O (1) (bipy=4,4 Prime -bipy), has been synthesized in hydrothermal condition and characterized by elemental analysis, IR spectrum, TG analysis and single-crystal X-ray diffraction. Compound 1 possesses poly-pendant layered motifs composed of 12-tungstoborates and dinuclear copper(II) complexes, in which the mono-coordinated bipy molecules are orderly appended to both sides of the layer, respectively. Adjacent layers mutually engage in a zipper-like pattern to result in a novel 3D interdigitated architecture. The variable-temperature magnetic susceptibility of 1 showed that there existed weak antiferromagnetic interaction in 1. Toward the reduction of hydrogen peroxide, 1 has good electrocatalytic activity and remarkable stability. - A new compound has been obtained, which represents the first interdigitated architecture assembled by POMs and dinuclear copper(II) complexes. Highlights: Black-Right-Pointing-Pointer The first example of interdigitated architecture assembled by POMs and dinuclear copper(II) complexes is observed. Black-Right-Pointing-Pointer A zipper-like pattern is observed in the structure. Black-Right-Pointing-Pointer The IR, TG, XRPD, magnetism and electrochemical property of the title compound were studied.

  3. Genetics of complex traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture.

    PubMed

    Goddard, M E; Kemper, K E; MacLeod, I M; Chamberlain, A J; Hayes, B J

    2016-07-27

    Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement. PMID:27440663

  4. Architectural elements of fan-delta complex in Pennsylvanian Taos Trough, New Mexico

    SciTech Connect

    Soegaard, K.

    1989-03-01

    Identification of architectural elements within alluvial-fan and subaqueous fan-delta gravel units is fundamental to resolving depositional processes within fan-delta complexes of the Pennsylvanian Taos trough, New Mexico. Subaqueous fan-delta deposits consist of lenticular gravel-body complexes encased by black, basinal shales. Gravel-body complexes are composed of a series of stacked gravel lenses, each of which is enveloped by fifth-order bounding surfaces. The central portion of individual gravel lenses contains a channel complex. Channels are outlined by third- and fourth-order bounding surfaces and are infilled by high-density gravity flow deposits. The fringe of submarine gravel lenses consists of stacked, laterally continuous Bouma sequences separated by second-order bounding surfaces. Bouma sequences were deposited by dilute turbidity flows during evacuation of submarine channels. Subaqueous channel complexes within gravel lenses represent midfan channels, whereas the fringe of lenticular gravel lenses represent outer-fan lobes. Recognition of depositional processes and architectural elements of fan deltas in the Sandia Formation enables distinction between these and other types of coarse-grained deltas in the Taos trough. This, in turn, has implications for resolving evolution of the trough.

  5. Genetics of complex traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture

    PubMed Central

    Goddard, M. E.; Kemper, K. E.; MacLeod, I. M.; Chamberlain, A. J.; Hayes, B. J.

    2016-01-01

    Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement. PMID:27440663

  6. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis.

    PubMed

    Loh, Po-Ru; Bhatia, Gaurav; Gusev, Alexander; Finucane, Hilary K; Bulik-Sullivan, Brendan K; Pollack, Samuela J; de Candia, Teresa R; Lee, Sang Hong; Wray, Naomi R; Kendler, Kenneth S; O'Donovan, Michael C; Neale, Benjamin M; Patterson, Nick; Price, Alkes L

    2015-12-01

    Heritability analyses of genome-wide association study (GWAS) cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here we analyze the genetic architectures of schizophrenia in 49,806 samples from the PGC and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which ≥71% of 1-Mb genomic regions harbor ≥1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) for several pairs of GERA diseases; genetic correlations were on average 1.3 tunes stronger than the correlations of overall disease liabilities. To accomplish these analyses, we developed a fast algorithm for multicomponent, multi-trait variance-components analysis that overcomes prior computational barriers that made such analyses intractable at this scale. PMID:26523775

  7. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance components analysis

    PubMed Central

    Bhatia, Gaurav; Gusev, Alexander; Finucane, Hilary K; Bulik-Sullivan, Brendan K; Pollack, Samuela J; de Candia, Teresa R; Lee, Sang Hong; Wray, Naomi R; Kendler, Kenneth S; O’Donovan, Michael C; Neale, Benjamin M; Patterson, Nick

    2015-01-01

    Heritability analyses of GWAS cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here, we analyze the genetic architecture of schizophrenia in 49,806 samples from the PGC, and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which ≥71% of 1Mb genomic regions harbor ≥1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) among several pairs of GERA diseases; genetic correlations were on average 1.3x stronger than correlations of overall disease liabilities. To accomplish these analyses, we developed a fast algorithm for multi-component, multi-trait variance components analysis that overcomes prior computational barriers that made such analyses intractable at this scale. PMID:26523775

  8. Acoustical model of a Shoddy fibre absorber

    NASA Astrophysics Data System (ADS)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  9. Heuristic Identification of Biological Architectures for Simulating Complex Hierarchical Genetic Interactions

    PubMed Central

    Moore, Jason H; Amos, Ryan; Kiralis, Jeff; Andrews, Peter C

    2015-01-01

    Simulation plays an essential role in the development of new computational and statistical methods for the genetic analysis of complex traits. Most simulations start with a statistical model using methods such as linear or logistic regression that specify the relationship between genotype and phenotype. This is appealing due to its simplicity and because these statistical methods are commonly used in genetic analysis. It is our working hypothesis that simulations need to move beyond simple statistical models to more realistically represent the biological complexity of genetic architecture. The goal of the present study was to develop a prototype genotype–phenotype simulation method and software that are capable of simulating complex genetic effects within the context of a hierarchical biology-based framework. Specifically, our goal is to simulate multilocus epistasis or gene–gene interaction where the genetic variants are organized within the framework of one or more genes, their regulatory regions and other regulatory loci. We introduce here the Heuristic Identification of Biological Architectures for simulating Complex Hierarchical Interactions (HIBACHI) method and prototype software for simulating data in this manner. This approach combines a biological hierarchy, a flexible mathematical framework, a liability threshold model for defining disease endpoints, and a heuristic search strategy for identifying high-order epistatic models of disease susceptibility. We provide several simulation examples using genetic models exhibiting independent main effects and three-way epistatic effects. PMID:25395175

  10. Synthesis and Functional Reconstitution of Light-Harvesting Complex II into Polymeric Membrane Architectures.

    PubMed

    Zapf, Thomas; Tan, Cherng-Wen Darren; Reinelt, Tobias; Huber, Christoph; Shaohua, Ding; Geifman-Shochat, Susana; Paulsen, Harald; Sinner, Eva-Kathrin

    2015-12-01

    One of most important processes in nature is the harvesting and dissipation of solar energy with the help of light-harvesting complex II (LHCII). This protein, along with its associated pigments, is the main solar-energy collector in higher plants. We aimed to generate stable, highly controllable, and sustainable polymer-based membrane systems containing LHCII-pigment complexes ready for light harvesting. LHCII was produced by cell-free protein synthesis based on wheat-germ extract, and the successful integration of LHCII and its pigments into different membrane architectures was monitored. The unidirectionality of LHCII insertion was investigated by protease digestion assays. Fluorescence measurements indicated chlorophyll integration in the presence of LHCII in spherical as well as planar bilayer architectures. Surface plasmon enhanced fluorescence spectroscopy (SPFS) was used to reveal energy transfer from chlorophyll b to chlorophyll a, which indicates native folding of the LHCII proteins. PMID:26473750

  11. Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex.

    PubMed

    Witosch, Justine; Wolf, Eva; Mizuno, Naoko

    2014-11-10

    The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork. PMID:25348395

  12. Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex

    PubMed Central

    Witosch, Justine; Wolf, Eva; Mizuno, Naoko

    2014-01-01

    The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork. PMID:25348395

  13. BECLIN 1-VPS34 COMPLEX ARCHITECTURE: UNDERSTANDING THE NUTS AND BOLTS OF THERAPEUTIC TARGETS

    PubMed Central

    Morris, Deanna H.; Yip, Calvin K.; Shi, Yi; Chait, Brian T.; Wang, Qing Jun

    2015-01-01

    Autophagy is an important lysosomal degradation pathway that aids in the maintenance of cellular homeostasis by breaking down and recycling intracellular contents. Dysregulation of autophagy is linked to a growing number of human diseases. The Beclin 1-Vps34 protein-protein interaction network is critical for autophagy regulation and is therefore essential to cellular integrity. Manipulation of autophagy, in particular via modulation of the action of the Beclin 1-Vps34 complexes, is considered a promising route to combat autophagy-related diseases. Here we summarize recent findings on the core components and structural architecture of the Beclin 1-Vps34 complexes, and how these findings provide valuable insights into the molecular mechanisms that underlie the multiple functions of these complexes and for devising therapeutic strategies. PMID:26692106

  14. Speciality optical fibres for astronomy

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Bland-Hawthorn, J.

    2015-05-01

    Astrophotonics is a rapidly developing area of research which applies photonic technology to astronomical instrumentation. Such technology has the capability of significantly improving the sensitivity, calibration and stability of astronomical instruments, or indeed providing novel capabilities which are not possible using classical optics. We review the development and application of speciality fibres for astronomy, including multi-mode to single-mode converters, notch filters and frequency combs.In particular we focus on our development of instruments designed to filter atmospheric emission lines to enable much deeper spectroscopic observations in the near-infrared. These instruments employ two novel photonic technologies. First, we have developed complex aperiodic fibre Bragg gratings which filter over 100 irregularly spaced wavelengths in a single device, covering a bandwidth of over 200 nm. However, astronomical instruments require highly multi-mode fibres to enable sufficient coupling into the fibre, since atmospheric turbulence heavily distorts the wavefront. But photonic technologies such as fibre Bragg gratings, require single mode fibres. This problem is solved by the photonic lantern, which enables efficient coupling from a multi-mode fibre to an array of single-mode fibres and vice versa. We present the results of laboratory tests of these technologies and of on-sky experiments made using the first instruments to deploy these technologies on a telescope. These tests show that the fibre Bragg gratings suppress the night sky background by a factor of 9. Current instruments are limited by thermal and detector emission. Planned instruments should improve the background suppression even further, by optimising the design of the spectrograph for the properties of the photonic components. Finally we review ongoing research in astrophotonics, including multi-moded multicore fibre Bragg gratings, which enable multiple gratings to be written into the same device

  15. Imparting the unique properties of DNA into complex material architectures and functions

    PubMed Central

    Xu, Phyllis F.; Noh, Hyunwoo; Lee, Ju Hun; Domaille, Dylan W.; Nakatsuka, Matthew A.; Goodwin, Andrew P.; Cha, Jennifer N.

    2014-01-01

    While the remarkable chemical and biological properties of DNA have been known for decades, these properties have only been imparted into materials with unprecedented function much more recently. The inimitable ability of DNA to form programmable, complex assemblies through stable, specific, and reversible molecular recognition has allowed the creation of new materials through DNA’s ability to control a material’s architecture and properties. In this review we discuss recent progress in how DNA has brought unmatched function to materials, focusing specifically on new advances in delivery agents, devices, and sensors. PMID:25525408

  16. 'Super Silyl' Group for Diastereoselective Sequential Reactions: Access to Complex Chiral Architecture in One Pot

    SciTech Connect

    Boxer, Matthew B.; Yamamoto, Hisashi

    2008-04-02

    We have shown that the tris(trimethylsilyl)silyl (TTMSS) silyl enol ether of acetaldehyde undergoes aldehyde cross-aldol reactions with high selectivity and the extremely low catalyst loading (0.05 mol % of HNTf{sub 2}) allows for one-pot sequential reactions where acidic or basic nucleophiles can be subsequently added. Various ketone-derived silyl enol ethers, Grignard reagents, and dienes succeeded, generating relatively complex molecular architectures in a single step. This represents the first case where, in a single pot, highly acidic conditions followed by very basic conditions were tolerated to give products with high diastereoselectivities and good yields.

  17. From Tls to Hbim. High Quality Semantically-Aware 3d Modeling of Complex Architecture

    NASA Astrophysics Data System (ADS)

    Quattrini, R.; Malinverni, E. S.; Clini, P.; Nespeca, R.; Orlietti, E.

    2015-02-01

    In order to improve the framework for 3D modeling, a great challenge is to obtain the suitability of Building Information Model (BIM) platform for historical architecture. A specific challenge in HBIM is to guarantee appropriateness of geometrical accuracy. The present work demonstrates the feasibility of a whole HBIM approach for complex architectural shapes, starting from TLS point clouds. A novelty of our method is to work in a 3D environment throughout the process and to develop semantics during the construction phase. This last feature of HBIM was analyzed in the present work verifying the studied ontologies, enabling the data enrichment of the model with non-geometrical information, such as historical notes, decay or deformation evidence, decorative elements etc. The case study is the Church of Santa Maria at Portonovo, an abbey from the Romanesque period. Irregular or complex historical architecture, such as Romanesque, needs the construction of shared libraries starting from the survey of its already existing elements. This is another key aspect in delivering Building Information Modeling standards. In particular, we focus on the quality assessment of the obtained model, using an open-source sw and the point cloud as reference. The proposed work shows how it is possible to develop a high quality 3D model semantic-aware, capable of connecting geometrical-historical survey with descriptive thematic databases. In this way, a centralized HBIM will serve as comprehensive dataset of information about all disciplines, particularly for restoration and conservation. Moreover, the geometric accuracy will ensure also reliable visualization outputs.

  18. Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions

    PubMed Central

    Li, Xiaoyu; Gao, Yang; Boott, Charlotte E.; Winnik, Mitchell A.; Manners, Ian

    2015-01-01

    Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block comicelle building blocks with crystalline cores to create supermicelles using spatially confined hydrogen-bonding interactions. We also demonstrate that it is possible to further program the self-assembly of these synthetic building blocks into structures of increased complexity by combining hydrogen-bonding interactions with segment solvophobicity. The overall approach offers an efficient, non-covalent synthesis method for the solution-phase fabrication of a range of complex and potentially functional supermicelle architectures in which the crystallization, hydrogen-bonding and solvophobic interactions are combined in an orthogonal manner. PMID:26337527

  19. Hierarchical fiber bundle model to investigate the complex architectures of biological materials.

    PubMed

    Pugno, Nicola M; Bosia, Federico; Abdalrahman, Tamer

    2012-01-01

    The mechanics of fiber bundles has been widely studied in the literature, and fiber bundle models in particular have provided a wealth of useful analytical and numerical results for modeling ordinary materials. These models, however, are inadequate to treat bioinspired nanostructured materials, where hierarchy, multiscale, and complex properties play a decisive role in determining the overall mechanical characteristics. Here, we develop an ad hoc hierarchical theory designed to tackle these complex architectures, thus allowing the determination of the strength of macroscopic hierarchical materials from the properties of their constituents at the nanoscale. The roles of finite size, twisting angle, and friction are also included. Size effects on the statistical distribution of fiber strengths naturally emerge without invoking best-fit or unknown parameters. A comparison between the developed theory and various experimental results on synthetic and natural materials yields considerable agreement. PMID:22400587

  20. The Fine-Scale and Complex Architecture of Human Copy-Number Variation

    PubMed Central

    Perry, George H.; Ben-Dor, Amir; Tsalenko, Anya; Sampas, Nick; Rodriguez-Revenga, Laia; Tran, Charles W.; Scheffer, Alicia; Steinfeld, Israel; Tsang, Peter; Yamada, N. Alice; Park, Han Soo; Kim, Jong-Il; Seo, Jeong-Sun; Yakhini, Zohar; Laderman, Stephen; Bruhn, Laurakay; Lee, Charles

    2008-01-01

    Despite considerable excitement over the potential functional significance of copy-number variants (CNVs), we still lack knowledge of the fine-scale architecture of the large majority of CNV regions in the human genome. In this study, we used a high-resolution array-based comparative genomic hybridization (aCGH) platform that targeted known CNV regions of the human genome at approximately 1 kb resolution to interrogate the genomic DNAs of 30 individuals from four HapMap populations. Our results revealed that 1020 of 1153 CNV loci (88%) were actually smaller in size than what is recorded in the Database of Genomic Variants based on previously published studies. A reduction in size of more than 50% was observed for 876 CNV regions (76%). We conclude that the total genomic content of currently known common human CNVs is likely smaller than previously thought. In addition, approximately 8% of the CNV regions observed in multiple individuals exhibited genomic architectural complexity in the form of smaller CNVs within larger ones and CNVs with interindividual variation in breakpoints. Future association studies that aim to capture the potential influences of CNVs on disease phenotypes will need to consider how to best ascertain this previously uncharacterized complexity. PMID:18304495

  1. Model of a DNA-protein complex of the architectural monomeric protein MC1 from Euryarchaea.

    PubMed

    Paquet, Françoise; Delalande, Olivier; Goffinont, Stephane; Culard, Françoise; Loth, Karine; Asseline, Ulysse; Castaing, Bertrand; Landon, Celine

    2014-01-01

    In Archaea the two major modes of DNA packaging are wrapping by histone proteins or bending by architectural non-histone proteins. To supplement our knowledge about the binding mode of the different DNA-bending proteins observed across the three domains of life, we present here the first model of a complex in which the monomeric Methanogen Chromosomal protein 1 (MC1) from Euryarchaea binds to the concave side of a strongly bent DNA. In laboratory growth conditions MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55. Like most proteins that strongly bend DNA, MC1 is known to bind in the minor groove. Interaction areas for MC1 and DNA were mapped by Nuclear Magnetic Resonance (NMR) data. The polarity of protein binding was determined using paramagnetic probes attached to the DNA. The first structural model of the DNA-MC1 complex we propose here was obtained by two complementary docking approaches and is in good agreement with the experimental data previously provided by electron microscopy and biochemistry. Residues essential to DNA-binding and -bending were highlighted and confirmed by site-directed mutagenesis. It was found that the Arg25 side-chain was essential to neutralize the negative charge of two phosphates that come very close in response to a dramatic curvature of the DNA. PMID:24558431

  2. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS

    NASA Astrophysics Data System (ADS)

    Nagy, Julia; Grohmann, Dina; Cheung, Alan C. M.; Schulz, Sarah; Smollett, Katherine; Werner, Finn; Michaelis, Jens

    2015-01-01

    The molecular architecture of RNAP II-like transcription initiation complexes remains opaque due to its conformational flexibility and size. Here we report the three-dimensional architecture of the complete open complex (OC) composed of the promoter DNA, TATA box-binding protein (TBP), transcription factor B (TFB), transcription factor E (TFE) and the 12-subunit RNA polymerase (RNAP) from Methanocaldococcus jannaschii. By combining single-molecule Förster resonance energy transfer and the Bayesian parameter estimation-based Nano-Positioning System analysis, we model the entire archaeal OC, which elucidates the path of the non-template DNA (ntDNA) strand and interaction sites of the transcription factors with the RNAP. Compared with models of the eukaryotic OC, the TATA DNA region with TBP and TFB is positioned closer to the surface of the RNAP, likely providing the mechanism by which DNA melting can occur in a minimal factor configuration, without the dedicated translocase/helicase encoding factor TFIIH.

  3. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS.

    PubMed

    Nagy, Julia; Grohmann, Dina; Cheung, Alan C M; Schulz, Sarah; Smollett, Katherine; Werner, Finn; Michaelis, Jens

    2015-01-01

    The molecular architecture of RNAP II-like transcription initiation complexes remains opaque due to its conformational flexibility and size. Here we report the three-dimensional architecture of the complete open complex (OC) composed of the promoter DNA, TATA box-binding protein (TBP), transcription factor B (TFB), transcription factor E (TFE) and the 12-subunit RNA polymerase (RNAP) from Methanocaldococcus jannaschii. By combining single-molecule Förster resonance energy transfer and the Bayesian parameter estimation-based Nano-Positioning System analysis, we model the entire archaeal OC, which elucidates the path of the non-template DNA (ntDNA) strand and interaction sites of the transcription factors with the RNAP. Compared with models of the eukaryotic OC, the TATA DNA region with TBP and TFB is positioned closer to the surface of the RNAP, likely providing the mechanism by which DNA melting can occur in a minimal factor configuration, without the dedicated translocase/helicase encoding factor TFIIH. PMID:25635909

  4. Architecture of the human XPC DNA repair and stem cell coactivator complex

    PubMed Central

    He, Yuan; Grob, Patricia; Fong, Yick W.; Nogales, Eva; Tjian, Robert

    2015-01-01

    The Xeroderma pigmentosum complementation group C (XPC) complex is a versatile factor involved in both nucleotide excision repair and transcriptional coactivation as a critical component of the NANOG, OCT4, and SOX2 pluripotency gene regulatory network. Here we present the structure of the human holo-XPC complex determined by single-particle electron microscopy to reveal a flexible, ear-shaped structure that undergoes localized loss of order upon DNA binding. We also determined the structure of the complete yeast homolog Rad4 holo-complex to find a similar overall architecture to the human complex, consistent with their shared DNA repair functions. Localized differences between these structures reflect an intriguing phylogenetic divergence in transcriptional capabilities that we present here. Having positioned the constituent subunits by tagging and deletion, we propose a model of key interaction interfaces that reveals the structural basis for this difference in functional conservation. Together, our findings establish a framework for understanding the structure-function relationships of the XPC complex in the interplay between transcription and DNA repair. PMID:26627236

  5. Architecture of the human XPC DNA repair and stem cell coactivator complex.

    PubMed

    Zhang, Elisa T; He, Yuan; Grob, Patricia; Fong, Yick W; Nogales, Eva; Tjian, Robert

    2015-12-01

    The Xeroderma pigmentosum complementation group C (XPC) complex is a versatile factor involved in both nucleotide excision repair and transcriptional coactivation as a critical component of the NANOG, OCT4, and SOX2 pluripotency gene regulatory network. Here we present the structure of the human holo-XPC complex determined by single-particle electron microscopy to reveal a flexible, ear-shaped structure that undergoes localized loss of order upon DNA binding. We also determined the structure of the complete yeast homolog Rad4 holo-complex to find a similar overall architecture to the human complex, consistent with their shared DNA repair functions. Localized differences between these structures reflect an intriguing phylogenetic divergence in transcriptional capabilities that we present here. Having positioned the constituent subunits by tagging and deletion, we propose a model of key interaction interfaces that reveals the structural basis for this difference in functional conservation. Together, our findings establish a framework for understanding the structure-function relationships of the XPC complex in the interplay between transcription and DNA repair. PMID:26627236

  6. Conversion of Highly Complex Faulted Hydrostratigraphic Architectures into MODFLOW Grid for Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Pham, H. V.; Tsai, F. T.

    2013-12-01

    The USGS MODFLOW is widely used for groundwater modeling. Because of using structured grid, all layers have to be continuous throughout the model domain. This makes it difficult to generate computational grid for complex hydrostratigraphic architectures including thin and discontinuous layers, interconnections of sand units, pinch-outs, and faults. In this study, we present a technique for automatically generating MODFLOW grid for complex aquifer systems of strongly sand-clay binary heterogeneity. To do so, an indicator geostatistical method is adopted to interpolate sand and clay distributions in a gridded two-dimensional plane along the structural dip for every one-foot vertical interval. A three-dimensional gridded binary geological architecture is reconstructed by assembling all two-dimensional planes. Then, the geological architecture is converted to MODFLOW computational grid by the procedures as follows. First, we determine bed boundary elevation of sand and clay units for each vertical column. Then, we determine the total number of bed boundaries for a vertical column by projecting the bed boundaries of its adjacent four vertical columns to the column. This step is of importance to preserve flow pathways, especially for narrow connections between sand units. Finally, we determine the number of MODFLOW layers and assign layer indices to bed boundaries. A MATLAB code was developed to implement the technique. The inputs for the code are bed boundary data from well logs, a structural dip, minimal layer thickness, and the number of layers. The outputs are MODFLOW grid of sand and clay indicators. The technique is able to generate grid that preserves fault features in the geological architecture. Moreover, the code is very efficient for regenerating MODFLOW grid with different grid resolutions. The technique was applied to MODFLOW grid generation for the fluvial aquifer system in Baton Rouge, Louisiana. The study area consists of the '1,200-foot' sand, the '1

  7. Modelling skeletal muscle fibre orientation arrangement.

    PubMed

    Lu, Y T; Zhu, H X; Richmond, S; Middleton, J

    2011-12-01

    Skeletal muscle tissues have complex geometries. In addition, the complex fibre orientation arrangement makes it quite difficult to create an accurate finite element muscle model. There are many possible ways to specify the complex fibre orientations in a finite element model, for example defining a local element coordinate system. In this paper, an alternative method using ABAQUS, which is combination of the finite element method and the non-uniform rational B-spline solid representation, is proposed to calculate the initial fibre orientations. The initial direction of each muscle fibre is specified as the tangent direction of the NURBS curve which the fibre lies on, and the directions of the deformed fibres are calculated from the initial fibre directions, the deformation gradients and the fibre stretch ratios. Several examples are presented to demonstrate the ability of the proposed method. Results show that the proposed method is able to characterise both the muscle complex fibre orientation arrangement and its complex mechanical response. PMID:20924862

  8. The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae.

    PubMed

    Chen, Zhiqiang; Speck, Christian; Wendel, Patricia; Tang, Chunyan; Stillman, Bruce; Li, Huilin

    2008-07-29

    The origin recognition complex (ORC) is conserved in all eukaryotes. The six proteins of the Saccharomyces cerevisiae ORC that form a stable complex bind to origins of DNA replication and recruit prereplicative complex (pre-RC) proteins, one of which is Cdc6. To further understand the function of ORC we recently determined by single-particle reconstruction of electron micrographs a low-resolution, 3D structure of S. cerevisiae ORC and the ORC-Cdc6 complex. In this article, the spatial arrangement of the ORC subunits within the ORC structure is described. In one approach, a maltose binding protein (MBP) was systematically fused to the N or the C termini of the five largest ORC subunits, one subunit at a time, generating 10 MBP-fused ORCs, and the MBP density was localized in the averaged, 2D EM images of the MBP-fused ORC particles. Determining the Orc1-5 structure and comparing it with the native ORC structure localized the Orc6 subunit near Orc2 and Orc3. Finally, subunit-subunit interactions were determined by immunoprecipitation of ORC subunits synthesized in vitro. Based on the derived ORC architecture and existing structures of archaeal Orc1-DNA structures, we propose a model for ORC and suggest how ORC interacts with origin DNA and Cdc6. The studies provide a basis for understanding the overall structure of the pre-RC. PMID:18647841

  9. Architecture of the Complex Formed by Large and Small Terminase Subunits from Bacteriophage P22.

    PubMed

    McNulty, Reginald; Lokareddy, Ravi Kumar; Roy, Ankoor; Yang, Yang; Lander, Gabriel C; Heck, Albert J R; Johnson, John E; Cingolani, Gino

    2015-10-01

    Packaging of viral genomes inside empty procapsids is driven by a powerful ATP-hydrolyzing motor, formed in many double-stranded DNA viruses by a complex of a small terminase (S-terminase) subunit and a large terminase (L-terminase) subunit, transiently docked at the portal vertex during genome packaging. Despite recent progress in elucidating the structure of individual terminase subunits and their domains, little is known about the architecture of an assembled terminase complex. Here, we describe a bacterial co-expression system that yields milligram quantities of the S-terminase:L-terminase complex of the Salmonella phage P22. In vivo assembled terminase complex was affinity-purified and stabilized by addition of non-hydrolyzable ATP, which binds specifically to the ATPase domain of L-terminase. Mapping studies revealed that the N-terminus of L-terminase ATPase domain (residues 1-58) contains a minimal S-terminase binding domain sufficient for stoichiometric association with residues 140-162 of S-terminase, the L-terminase binding domain. Hydrodynamic analysis by analytical ultracentrifugation sedimentation velocity and native mass spectrometry revealed that the purified terminase complex consists predominantly of one copy of the nonameric S-terminase bound to two equivalents of L-terminase (1S-terminase:2L-terminase). Direct visualization of this molecular assembly in negative-stained micrographs yielded a three-dimensional asymmetric reconstruction that resembles a "nutcracker" with two L-terminase protomers projecting from the C-termini of an S-terminase ring. This is the first direct visualization of a purified viral terminase complex analyzed in the absence of DNA and procapsid. PMID:26301600

  10. Contrasting the Genetic Architecture of 30 Complex Traits from Summary Association Data.

    PubMed

    Shi, Huwenbo; Kichaev, Gleb; Pasaniuc, Bogdan

    2016-07-01

    Variance-component methods that estimate the aggregate contribution of large sets of variants to the heritability of complex traits have yielded important insights into the genetic architecture of common diseases. Here, we introduce methods that estimate the total trait variance explained by the typed variants at a single locus in the genome (local SNP heritability) from genome-wide association study (GWAS) summary data while accounting for linkage disequilibrium among variants. We applied our estimator to ultra-large-scale GWAS summary data of 30 common traits and diseases to gain insights into their local genetic architecture. First, we found that common SNPs have a high contribution to the heritability of all studied traits. Second, we identified traits for which the majority of the SNP heritability can be confined to a small percentage of the genome. Third, we identified GWAS risk loci where the entire locus explains significantly more variance in the trait than the GWAS reported variants. Finally, we identified loci that explain a significant amount of heritability across multiple traits. PMID:27346688

  11. RootNav: Navigating Images of Complex Root Architectures1[C][W

    PubMed Central

    Pound, Michael P.; French, Andrew P.; Atkinson, Jonathan A.; Wells, Darren M.; Bennett, Malcolm J.; Pridmore, Tony

    2013-01-01

    We present a novel image analysis tool that allows the semiautomated quantification of complex root system architectures in a range of plant species grown and imaged in a variety of ways. The automatic component of RootNav takes a top-down approach, utilizing the powerful expectation maximization classification algorithm to examine regions of the input image, calculating the likelihood that given pixels correspond to roots. This information is used as the basis for an optimization approach to root detection and quantification, which effectively fits a root model to the image data. The resulting user experience is akin to defining routes on a motorist’s satellite navigation system: RootNav makes an initial optimized estimate of paths from the seed point to root apices, and the user is able to easily and intuitively refine the results using a visual approach. The proposed method is evaluated on winter wheat (Triticum aestivum) images (and demonstrated on Arabidopsis [Arabidopsis thaliana], Brassica napus, and rice [Oryza sativa]), and results are compared with manual analysis. Four exemplar traits are calculated and show clear illustrative differences between some of the wheat accessions. RootNav, however, provides the structural information needed to support extraction of a wider variety of biologically relevant measures. A separate viewer tool is provided to recover a rich set of architectural traits from RootNav’s core representation. PMID:23766367

  12. Random distributed feedback fibre lasers

    NASA Astrophysics Data System (ADS)

    Turitsyn, Sergei K.; Babin, Sergey A.; Churkin, Dmitry V.; Vatnik, Ilya D.; Nikulin, Maxim; Podivilov, Evgenii V.

    2014-09-01

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors-random distributed feedback fibre laser-was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (˜0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the generation

  13. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Yan, Zheng; Jang, Kyung-In; Huang, Wen; Fu, Haoran; Kim, Jeonghyun; Wei, Zijun; Flavin, Matthew; McCracken, Joselle; Wang, Renhan; Badea, Adina; Liu, Yuhao; Xiao, Dongqing; Zhou, Guoyan; Lee, Jungwoo; Chung, Ha Uk; Cheng, Huanyu; Ren, Wen; Banks, Anthony; Li, Xiuling; Paik, Ungyu; Nuzzo, Ralph G.; Huang, Yonggang; Zhang, Yihui; Rogers, John A.

    2015-01-01

    Complex three-dimensional (3D) structures in biology (e.g., cytoskeletal webs, neural circuits, and vasculature networks) form naturally to provide essential functions in even the most basic forms of life. Compelling opportunities exist for analogous 3D architectures in human-made devices, but design options are constrained by existing capabilities in materials growth and assembly. We report routes to previously inaccessible classes of 3D constructs in advanced materials, including device-grade silicon. The schemes involve geometric transformation of 2D micro/nanostructures into extended 3D layouts by compressive buckling. Demonstrations include experimental and theoretical studies of more than 40 representative geometries, from single and multiple helices, toroids, and conical spirals to structures that resemble spherical baskets, cuboid cages, starbursts, flowers, scaffolds, fences, and frameworks, each with single- and/or multiple-level configurations.

  14. Materials science. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling.

    PubMed

    Xu, Sheng; Yan, Zheng; Jang, Kyung-In; Huang, Wen; Fu, Haoran; Kim, Jeonghyun; Wei, Zijun; Flavin, Matthew; McCracken, Joselle; Wang, Renhan; Badea, Adina; Liu, Yuhao; Xiao, Dongqing; Zhou, Guoyan; Lee, Jungwoo; Chung, Ha Uk; Cheng, Huanyu; Ren, Wen; Banks, Anthony; Li, Xiuling; Paik, Ungyu; Nuzzo, Ralph G; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2015-01-01

    Complex three-dimensional (3D) structures in biology (e.g., cytoskeletal webs, neural circuits, and vasculature networks) form naturally to provide essential functions in even the most basic forms of life. Compelling opportunities exist for analogous 3D architectures in human-made devices, but design options are constrained by existing capabilities in materials growth and assembly. We report routes to previously inaccessible classes of 3D constructs in advanced materials, including device-grade silicon. The schemes involve geometric transformation of 2D micro/nanostructures into extended 3D layouts by compressive buckling. Demonstrations include experimental and theoretical studies of more than 40 representative geometries, from single and multiple helices, toroids, and conical spirals to structures that resemble spherical baskets, cuboid cages, starbursts, flowers, scaffolds, fences, and frameworks, each with single- and/or multiple-level configurations. PMID:25574018

  15. Morpho-functional architecture of the Golgi complex of neuroendocrine cells.

    PubMed

    Martínez-Alonso, Emma; Tomás, Mónica; Martínez-Menárguez, José A

    2013-01-01

    In neuroendocrine cells, prohormones move from the endoplasmic reticulum to the Golgi complex (GC), where they are sorted and packed into secretory granules. The GC is considered the central station of the secretory pathway of proteins and lipids en route to their final destination. In most mammalian cells, it is formed by several stacks of cisternae connected by tubules, forming a continuous ribbon. This organelle shows an extraordinary structural and functional complexity, which is exacerbated by the fact that its architecture is cell type specific and also tuned by the functional status of the cell. It is, indeed, one the most beautiful cellular organelles and, for that reason, perhaps the most extensively photographed by electron microscopists. In recent decades, an exhaustive dissection of the molecular machinery involved in membrane traffic and other Golgi functions has been carried out. Concomitantly, detailed morphological studies have been performed, including 3D analysis by electron tomography, and the precise location of key proteins has been identified by immunoelectron microscopy. Despite all this effort, some basic aspects of Golgi functioning remain unsolved. For instance, the mode of intra-Golgi transport is not known, and two opposing theories (vesicular transport and cisternal maturation models) have polarized the field for many years. Neither of these theories explains all the experimental data so that new theories and combinations thereof have recently been proposed. Moreover, the specific role of the small vesicles and tubules which surround the stacks needs to be clarified. In this review, we summarize our current knowledge of the Golgi architecture in relation with its function and the mechanisms of intra-Golgi transport. Within the same framework, the characteristics of the GC of neuroendocrine cells are analyzed. PMID:23543640

  16. Functional and architectural complexity within and between muscles: regional variation and intermuscular force transmission

    PubMed Central

    Higham, Timothy E.; Biewener, Andrew A.

    2011-01-01

    Over the past 30 years, studies of single muscles have revealed complex patterns of regional variation in muscle architecture, activation, strain and force. In addition, muscles are often functionally integrated with other muscles in parallel or in series. Understanding the extent of this complexity and the interactions between muscles will profoundly influence how we think of muscles in relation to organismal function, and will allow us to address questions regarding the functional benefits (or lack thereof) and dynamics of this complexity under in vivo conditions. This paper has two main objectives. First, we present a cohesive and integrative review of regional variation in function within muscles, and discuss the functional ramifications that can stem from this variation. This involves splitting regional variation into passive and active components. Second, we assess the functional integration of muscles between different limb segments by presenting new data involving in vivo measurements of activation and strain from the medial gastrocnemius, iliotibialis cranialis and iliotibialis lateralis pars preacetabularis of the helmeted guinea fowl (Numida meleagris) during level running on a motorized treadmill. Future research directions for both of these objectives are presented. PMID:21502119

  17. Integrating Nonadditive Genomic Relationship Matrices into the Study of Genetic Architecture of Complex Traits.

    PubMed

    Nazarian, Alireza; Gezan, Salvador A

    2016-03-01

    The study of genetic architecture of complex traits has been dramatically influenced by implementing genome-wide analytical approaches during recent years. Of particular interest are genomic prediction strategies which make use of genomic information for predicting phenotypic responses instead of detecting trait-associated loci. In this work, we present the results of a simulation study to improve our understanding of the statistical properties of estimation of genetic variance components of complex traits, and of additive, dominance, and genetic effects through best linear unbiased prediction methodology. Simulated dense marker information was used to construct genomic additive and dominance matrices, and multiple alternative pedigree- and marker-based models were compared to determine if including a dominance term into the analysis may improve the genetic analysis of complex traits. Our results showed that a model containing a pedigree- or marker-based additive relationship matrix along with a pedigree-based dominance matrix provided the best partitioning of genetic variance into its components, especially when some degree of true dominance effects was expected to exist. Also, we noted that the use of a marker-based additive relationship matrix along with a pedigree-based dominance matrix had the best performance in terms of accuracy of correlations between true and estimated additive, dominance, and genetic effects. PMID:26712858

  18. ARC-VM: An architecture real options complexity-based valuation methodology for military systems-of-systems acquisitions

    NASA Astrophysics Data System (ADS)

    Domercant, Jean Charles

    The combination of today's national security environment and mandated acquisition policies makes it necessary for military systems to interoperate with each other to greater degrees. This growing interdependency results in complex Systems-of-Systems (SoS) that only continue to grow in complexity to meet evolving capability needs. Thus, timely and affordable acquisition becomes more difficult, especially in the face of mounting budgetary pressures. To counter this, architecting principles must be applied to SoS design. The research objective is to develop an Architecture Real Options Complexity-Based Valuation Methodology (ARC-VM) suitable for acquisition-level decision making, where there is a stated desire for more informed tradeoffs between cost, schedule, and performance during the early phases of design. First, a framework is introduced to measure architecture complexity as it directly relates to military SoS. Development of the framework draws upon a diverse set of disciplines, including Complexity Science, software architecting, measurement theory, and utility theory. Next, a Real Options based valuation strategy is developed using techniques established for financial stock options that have recently been adapted for use in business and engineering decisions. The derived complexity measure provides architects with an objective measure of complexity that focuses on relevant complex system attributes. These attributes are related to the organization and distribution of SoS functionality and the sharing and processing of resources. The use of Real Options provides the necessary conceptual and visual framework to quantifiably and traceably combine measured architecture complexity, time-valued performance levels, as well as programmatic risks and uncertainties. An example suppression of enemy air defenses (SEAD) capability demonstrates the development and usefulness of the resulting architecture complexity & Real Options based valuation methodology. Different

  19. Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly

    NASA Astrophysics Data System (ADS)

    Male, Gary; von Appen, Alexander; Glatt, Sebastian; Taylor, Nicholas M. I.; Cristovao, Michele; Groetsch, Helga; Beck, Martin; Müller, Christoph W.

    2015-06-01

    In eukaryotes, RNA Polymerase III (Pol III) is specifically responsible for transcribing genes encoding tRNAs and other short non-coding RNAs. The recruitment of Pol III to tRNA-encoding genes requires the transcription factors (TF) IIIB and IIIC. TFIIIC has been described as a conserved, multi-subunit protein complex composed of two subcomplexes, called τA and τB. How these two subcomplexes are linked and how their interaction affects the formation of the Pol III pre-initiation complex (PIC) is poorly understood. Here we use chemical crosslinking mass spectrometry and determine the molecular architecture of TFIIIC. We further report the crystal structure of the essential TPR array from τA subunit τ131 and characterize its interaction with a central region of τB subunit τ138. The identified τ131-τ138 interacting region is essential in vivo and overlaps with TFIIIB-binding sites, revealing a crucial interaction platform for the regulation of tRNA transcription initiation.

  20. Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly

    PubMed Central

    Male, Gary; von Appen, Alexander; Glatt, Sebastian; Taylor, Nicholas M. I.; Cristovao, Michele; Groetsch, Helga; Beck, Martin; Müller, Christoph W.

    2015-01-01

    In eukaryotes, RNA Polymerase III (Pol III) is specifically responsible for transcribing genes encoding tRNAs and other short non-coding RNAs. The recruitment of Pol III to tRNA-encoding genes requires the transcription factors (TF) IIIB and IIIC. TFIIIC has been described as a conserved, multi-subunit protein complex composed of two subcomplexes, called τA and τB. How these two subcomplexes are linked and how their interaction affects the formation of the Pol III pre-initiation complex (PIC) is poorly understood. Here we use chemical crosslinking mass spectrometry and determine the molecular architecture of TFIIIC. We further report the crystal structure of the essential TPR array from τA subunit τ131 and characterize its interaction with a central region of τB subunit τ138. The identified τ131–τ138 interacting region is essential in vivo and overlaps with TFIIIB-binding sites, revealing a crucial interaction platform for the regulation of tRNA transcription initiation. PMID:26060179

  1. A reciprocal cross design to map the genetic architecture of complex traits in apomictic plants.

    PubMed

    Yin, Danni; Zhu, Xuli; Jiang, Libo; Zhang, Jian; Zeng, Yanru; Wu, Rongling

    2015-02-01

    Many higher plants of economic and biological importance undergo apomixis in which the maternal tissue of the ovule forms a seed, without experiencing meiosis and fertilization. This feature of apomixis has made it difficult to perform linkage mapping which relies on meiotic recombination. Here, we describe a computational model for mapping quantitative trait loci (QTLs) that control complex traits in apomictic plants. The model is founded on the mixture model-based likelihood in which maternal genotypes are dissolved into two possible components generated by meiotic and apomictic processes, respectively. The EM algorithm was implemented to discern meiotic and apomictic genotypes and, therefore, allow the marker-QTL linkage relationship to be estimated. By capitalizing on reciprocal crosses, the model is renovated to estimate and test imprinting effects of QTLs, providing a better gateway to characterize the genetic architecture of complex traits. The model was validated through computer simulation and further demonstrated for its usefulness by analyzing a real data for an apomictic woody plant. The model has for the first time provided a unique tool for genetic mapping in apomictic plants. PMID:25354995

  2. A high-resolution imaging approach to investigate chromatin architecture in complex tissues.

    PubMed

    Linhoff, Michael W; Garg, Saurabh K; Mandel, Gail

    2015-09-24

    We present ChromATin, a quantitative high-resolution imaging approach for investigating chromatin organization in complex tissues. This method combines analysis of epigenetic modifications by immunostaining, localization of specific DNA sequences by FISH, and high-resolution segregation of nuclear compartments using array tomography (AT) imaging. We then apply this approach to examine how the genome is organized in the mammalian brain using female Rett syndrome mice, which are a mosaic of normal and Mecp2-null cells. Side-by-side comparisons within the same field reveal distinct heterochromatin territories in wild-type neurons that are altered in Mecp2-null nuclei. Mutant neurons exhibit increased chromatin compaction and a striking redistribution of the H4K20me3 histone modification into pericentromeric heterochromatin, a territory occupied normally by MeCP2. These events are not observed in every neuronal cell type, highlighting ChromATin as a powerful in situ method for examining cell-type-specific differences in chromatin architecture in complex tissues. PMID:26406379

  3. Using cognitive architectures to study issues in team cognition in a complex task environment

    NASA Astrophysics Data System (ADS)

    Smart, Paul R.; Sycara, Katia; Tang, Yuqing

    2014-05-01

    Cognitive social simulation is a computer simulation technique that aims to improve our understanding of the dynamics of socially-situated and socially-distributed cognition. This makes cognitive social simulation techniques particularly appealing as a means to undertake experiments into team cognition. The current paper reports on the results of an ongoing effort to develop a cognitive social simulation capability that can be used to undertake studies into team cognition using the ACT-R cognitive architecture. This capability is intended to support simulation experiments using a team-based problem solving task, which has been used to explore the effect of different organizational environments on collective problem solving performance. The functionality of the ACT-R-based cognitive social simulation capability is presented and a number of areas of future development work are outlined. The paper also describes the motivation for adopting cognitive architectures in the context of social simulation experiments and presents a number of research areas where cognitive social simulation may be useful in developing a better understanding of the dynamics of team cognition. These include the use of cognitive social simulation to study the role of cognitive processes in determining aspects of communicative behavior, as well as the impact of communicative behavior on the shaping of task-relevant cognitive processes (e.g., the social shaping of individual and collective memory as a result of communicative exchanges). We suggest that the ability to perform cognitive social simulation experiments in these areas will help to elucidate some of the complex interactions that exist between cognitive, social, technological and informational factors in the context of team-based problem-solving activities.

  4. Exploring architecture of xyloglucan cellulose nanocrystal complexes through enzyme susceptibility at different adsorption regimes.

    PubMed

    Dammak, Abir; Quémener, Bernard; Bonnin, Estelle; Alvarado, Camille; Bouchet, Brigitte; Villares, Ana; Moreau, Céline; Cathala, Bernard

    2015-02-01

    Xyloglucan (XG) is believed to act as a cementing material that contributes to the cross-linking and mechanical properties of the cellulose framework in plant cell walls. XG can adsorb to the cellulose nanocrystal (CNC) surface in vitro in order to simulate this in vivo relationship. The target of our work was to investigate the sorption behavior of tamarind seed XG on CNC extracted from cotton linters at different XG/CNC concentration ratios, that is, different adsorption regimes regarding the XG-CNC complex organization and the enzymatic susceptibility of XG. First, we determined the adsorption isotherm. Second, XG-CNC complexes were enzymatically hydrolyzed using a xyloglucan-specific endoglucanase in order to quantify the different XG fractions involved in binding to CNC and to determine adsorption regimes, that is, presence of loops, tails, and trains. Finally, the architecture of the XG-CNC complex was investigated by transmission electron microscopy imaging of negatively stained XG-CNC suspensions and XG immunolabeled suspensions at different XG/CNC concentration ratios, both before and after xyloglucanase hydrolysis process. This study revealed that an increasing XG/CNC concentration ratio led to a change in the XG binding organization to CNC. At low XG/CNC concentration ratios, almost all XG chains were bound as trains to the CNC surface. In contrast, at increasing XG/CNC concentration ratios, the proportion of loops and tails increases. The organization change induces CNC aggregation to form a cellulose/XG network at low XG/CNC regimes, whereas CNC remains in the form of individual particles at higher XG/CNC regimes. Results are discussed both regarding the biological role of XG in plant cell walls and in the perspective of designing new biobased materials. PMID:25539015

  5. A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications.

    PubMed

    Revathy, M; Saravanan, R

    2015-01-01

    Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures. PMID:26065017

  6. A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications

    PubMed Central

    Revathy, M.; Saravanan, R.

    2015-01-01

    Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures. PMID:26065017

  7. Formation of focal adhesion-stress fibre complexes coordinated by adhesive and non-adhesive surface domains.

    PubMed

    Zimerman, B; Arnold, M; Ulmer, J; Blümmel, J; Besser, A; Spatz, J P; Geiger, B

    2004-04-01

    Cell motility consists of repeating cycles of protrusion of a leading edge in the direction of migration, attachment of the advancing membrane to the matrix, and pulling of the trailing edge forward. In this dynamic process there is a major role for the cytoskeleton, which drives the protrusive events via polymerisation of actin in the lamellipodium, followed by actomyosin contractility. To study the transition of the actin cytoskeleton from a 'protrusive' to 'retractive' form, we have monitored the formation of focal adhesions and stress fibres during cell migration on a micro-patterned surface. This surface consisted of parallel arrays of 2 microm-wide, fibronectin-coated gold stripes, separated by non-adhesive (poly(ethylene glycol)-coated) glass areas with variable width, ranging from 4-12 microm. Monitoring the spreading of motile cells indicated that cell spreading was equally effective along and across the adhesive stripes, as long as the non-adhesive spaces between them did not exceed 6 microm. When the width of the PEG region was 8 microm or more, cells became highly polarised upon spreading, and failed to reach the neighboring adhesive stripes. It was also noted that as soon as the protruding lamella successfully crossed the PEG-coated area and reached an adhesive region, the organisation of actin in that area was transformed from a diffuse meshwork into a bundle, oriented perpendicularly to the stripes and anchored at its ends in focal adhesions. This transition depends on actomyosin-based contractility and is apparently triggered by the adhesion to the rigid fibronectin surface. PMID:16475844

  8. Molecular architecture of the human sperm IZUMO1 and egg JUNO fertilization complex.

    PubMed

    Aydin, Halil; Sultana, Azmiri; Li, Sheng; Thavalingam, Annoj; Lee, Jeffrey E

    2016-06-23

    Fertilization is an essential biological process in sexual reproduction and comprises a series of molecular interactions between the sperm and egg. The fusion of the haploid spermatozoon and oocyte is the culminating event in mammalian fertilization, enabling the creation of a new, genetically distinct diploid organism. The merger of two gametes is achieved through a two-step mechanism in which the sperm protein IZUMO1 on the equatorial segment of the acrosome-reacted sperm recognizes its receptor, JUNO, on the egg surface. This recognition is followed by the fusion of the two plasma membranes. IZUMO1 and JUNO proteins are indispensable for fertilization, as constitutive knockdown of either protein results in mice that are healthy but infertile. Despite their central importance in reproductive medicine, the molecular architectures of these proteins and the details of their functional roles in fertilization are not known. Here we present the crystal structures of human IZUMO1 and JUNO in unbound and bound conformations. The human IZUMO1 structure exhibits a distinct boomerang shape and provides structural insights into the IZUMO family of proteins. Human IZUMO1 forms a high-affinity complex with JUNO and undergoes a major conformational change within its N-terminal domain upon binding to the egg-surface receptor. Our results provide insights into the molecular basis of sperm-egg recognition, cross-species fertilization, and the barrier to polyspermy, thereby promising benefits for the rational development of non-hormonal contraceptives and fertility treatments for humans and other mammals. PMID:27309818

  9. Fibre-reinforced materials.

    PubMed

    Brown, D

    2000-11-01

    This paper considers the role of fibres in the reinforcement of composite materials, and the significance of the form the fibre takes and the material from which it is made. The current dental applications of fibre reinforcement, including dental cements and splints, fibres made into structures for use in composites, denture bases and the contemporary use of fibres in fixed partial dentures, are reviewed. Their role in biomedical implants is surveyed and their future forecast. PMID:11218597

  10. Volcano-tectonic architecture of a Caldera Complex, Karthala volcano, Grande Comore: new field observations

    NASA Astrophysics Data System (ADS)

    Poppe, S.; Kervyn, M.; Soulé, H.; Cnudde, V.; De Kock, T.; Jacobs, P.

    2012-04-01

    fed small-scale eruptive cones, vertical degassing fissures and former caldera levels. Fissures with active fumaroles inside the two explosive craters and in the area between Choungou Chahalé and Changouméni are indicating a focus area in the hydrothermal activity. It is this hydrothermal system that is suggested to have controlled the phreatic nature of recent eruptions (1991, 2005 and 2007). Several pyroclastic beds and cones affected by block and bomb impacts inside the caldera complex and around the summit area testify the high explosive nature of these recent eruptions, in contrast with the effusive Hawaiian-style character generally associated with Karthala. The orientation of caldera-bounding structures, eruption and fumarolic fissures, dykes as well as the orientation of intra-caldera extensional faults indicate one minor (E-W) and two major volcano-tectonic directions (N-S and N135°S). The latter are concurring with previously identified regional stress orientations and rift zone's orientations on Karthala flanks. Upcoming field work will be dedicated to the exhaustive structural and stratigraphic mapping of Karthala caldera as it provides exceptional exposure to document the internal architecture of an alkali basalt shield volcano and a complex caldera subsidence chronology.

  11. Fibre laser component technology for 2-micron laser systems

    NASA Astrophysics Data System (ADS)

    Stevens, G.; Robertson, A.

    2014-05-01

    We report on recent developments in fibre laser component technology for use in 2-micron laser systems. A range of `building block' components has been built to allow novel fibre laser architectures that exploit the advantages of fibre lasers based on Thulium and Holmium active fibres. Fibre lasers operating around 2-microns are becoming widely used in an increasing number of applications, which is driving the need for components that can operate reliably at high powers and also integrate easily with other components. To that end, we have designed and built a range of fused fibre, acousto-optic and magneto-optic devices that can be readily integrated into a range of novel fibre laser systems. Research has been carried out into improving fused fibre technology for components operating at 2um wavelengths. Side-coupled feed through combiners have been developed with signal losses as low as 0.02dB and kilowatt level end-coupled pump couplers. Alongside this a range of taps, splitters and WDMs have been developed which allows for the implementation of a variety of laser architectures. Optical isolators based on new Faraday materials have been developed, providing over 30dB isolation, low insertion loss and 30W power handling in a fibre-in, fibre-out version. New cell designs and materials for Acousto-Optic devices have been researched leading to the development of fibre-coupled Acousto-Optic Modulators (AOM) and allows for the realisation of all fibre Thulium and Holmium Q-switched and pulsed fibre lasers. Novel Acousto-Optic Tunable Filters (AOTF) designs have been realised to produce narrow resolution AOTFs and zero-shift AOTFs.

  12. Linking the genetic architecture of cytosine modifications with human complex traits

    PubMed Central

    Zhang, Xu; Moen, Erika L.; Liu, Cong; Mu, Wenbo; Gamazon, Eric R.; Delaney, Shannon M.; Wing, Claudia; Godley, Lucy A.; Dolan, M. Eileen; Zhang, Wei

    2014-01-01

    Interindividual variation in cytosine modifications could contribute to heterogeneity in disease risks and other complex traits. We assessed the genetic architecture of cytosine modifications at 283 540 CpG sites in lymphoblastoid cell lines (LCLs) derived from independent samples of European and African descent. Our study suggests that cytosine modification variation was primarily controlled in local by single major modification quantitative trait locus (mQTL) and additional minor loci. Local genetic epistasis was detectable for a small proportion of CpG sites, which were enriched by more than 9-fold for CpG sites mapped to population-specific mQTL. Genetically dependent CpG sites whose modification levels negatively (repressive sites) or positively (facilitative sites) correlated with gene expression levels significantly co-localized with transcription factor binding, with the repressive sites predominantly associated with active promoters whereas the facilitative sites rarely at active promoters. Genetically independent repressive or facilitative sites preferentially modulated gene expression variation by influencing local chromatin accessibility, with the facilitative sites primarily antagonizing H3K27me3 and H3K9me3 deposition. In comparison with expression quantitative trait loci (eQTL), mQTL detected from LCLs were enriched in associations for a broader range of disease categories including chronic inflammatory, autoimmune and psychiatric disorders, suggesting that cytosine modification variation, while possesses a degree of cell linage specificity, is more stably inherited over development than gene expression variation. About 11% of unique single-nucleotide polymorphisms reported in the Genome-Wide Association Study Catalog were annotated, 78% as mQTL and 31% as eQTL in LCLs, which covered 37% of the investigated diseases/traits and provided insights to the biological mechanisms. PMID:24943591

  13. Genomic prediction of complex human traits: relatedness, trait architecture and predictive meta-models

    PubMed Central

    Spiliopoulou, Athina; Nagy, Reka; Bermingham, Mairead L.; Huffman, Jennifer E.; Hayward, Caroline; Vitart, Veronique; Rudan, Igor; Campbell, Harry; Wright, Alan F.; Wilson, James F.; Pong-Wong, Ricardo; Agakov, Felix; Navarro, Pau; Haley, Chris S.

    2015-01-01

    We explore the prediction of individuals' phenotypes for complex traits using genomic data. We compare several widely used prediction models, including Ridge Regression, LASSO and Elastic Nets estimated from cohort data, and polygenic risk scores constructed using published summary statistics from genome-wide association meta-analyses (GWAMA). We evaluate the interplay between relatedness, trait architecture and optimal marker density, by predicting height, body mass index (BMI) and high-density lipoprotein level (HDL) in two data cohorts, originating from Croatia and Scotland. We empirically demonstrate that dense models are better when all genetic effects are small (height and BMI) and target individuals are related to the training samples, while sparse models predict better in unrelated individuals and when some effects have moderate size (HDL). For HDL sparse models achieved good across-cohort prediction, performing similarly to the GWAMA risk score and to models trained within the same cohort, which indicates that, for predicting traits with moderately sized effects, large sample sizes and familial structure become less important, though still potentially useful. Finally, we propose a novel ensemble of whole-genome predictors with GWAMA risk scores and demonstrate that the resulting meta-model achieves higher prediction accuracy than either model on its own. We conclude that although current genomic predictors are not accurate enough for diagnostic purposes, performance can be improved without requiring access to large-scale individual-level data. Our methodologically simple meta-model is a means of performing predictive meta-analysis for optimizing genomic predictions and can be easily extended to incorporate multiple population-level summary statistics or other domain knowledge. PMID:25918167

  14. Genomic prediction of complex human traits: relatedness, trait architecture and predictive meta-models.

    PubMed

    Spiliopoulou, Athina; Nagy, Reka; Bermingham, Mairead L; Huffman, Jennifer E; Hayward, Caroline; Vitart, Veronique; Rudan, Igor; Campbell, Harry; Wright, Alan F; Wilson, James F; Pong-Wong, Ricardo; Agakov, Felix; Navarro, Pau; Haley, Chris S

    2015-07-15

    We explore the prediction of individuals' phenotypes for complex traits using genomic data. We compare several widely used prediction models, including Ridge Regression, LASSO and Elastic Nets estimated from cohort data, and polygenic risk scores constructed using published summary statistics from genome-wide association meta-analyses (GWAMA). We evaluate the interplay between relatedness, trait architecture and optimal marker density, by predicting height, body mass index (BMI) and high-density lipoprotein level (HDL) in two data cohorts, originating from Croatia and Scotland. We empirically demonstrate that dense models are better when all genetic effects are small (height and BMI) and target individuals are related to the training samples, while sparse models predict better in unrelated individuals and when some effects have moderate size (HDL). For HDL sparse models achieved good across-cohort prediction, performing similarly to the GWAMA risk score and to models trained within the same cohort, which indicates that, for predicting traits with moderately sized effects, large sample sizes and familial structure become less important, though still potentially useful. Finally, we propose a novel ensemble of whole-genome predictors with GWAMA risk scores and demonstrate that the resulting meta-model achieves higher prediction accuracy than either model on its own. We conclude that although current genomic predictors are not accurate enough for diagnostic purposes, performance can be improved without requiring access to large-scale individual-level data. Our methodologically simple meta-model is a means of performing predictive meta-analysis for optimizing genomic predictions and can be easily extended to incorporate multiple population-level summary statistics or other domain knowledge. PMID:25918167

  15. The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation

    NASA Astrophysics Data System (ADS)

    Salman Shahid, Syed; Bikson, Marom; Salman, Humaira; Wen, Peng; Ahfock, Tony

    2014-06-01

    Objectives. Computational methods are increasingly used to optimize transcranial direct current stimulation (tDCS) dose strategies and yet complexities of existing approaches limit their clinical access. Since predictive modelling indicates the relevance of subject/pathology based data and hence the need for subject specific modelling, the incremental clinical value of increasingly complex modelling methods must be balanced against the computational and clinical time and costs. For example, the incorporation of multiple tissue layers and measured diffusion tensor (DTI) based conductivity estimates increase model precision but at the cost of clinical and computational resources. Costs related to such complexities aggregate when considering individual optimization and the myriad of potential montages. Here, rather than considering if additional details change current-flow prediction, we consider when added complexities influence clinical decisions. Approach. Towards developing quantitative and qualitative metrics of value/cost associated with computational model complexity, we considered field distributions generated by two 4 × 1 high-definition montages (m1 = 4 × 1 HD montage with anode at C3 and m2 = 4 × 1 HD montage with anode at C1) and a single conventional (m3 = C3-Fp2) tDCS electrode montage. We evaluated statistical methods, including residual error (RE) and relative difference measure (RDM), to consider the clinical impact and utility of increased complexities, namely the influence of skull, muscle and brain anisotropic conductivities in a volume conductor model. Main results. Anisotropy modulated current-flow in a montage and region dependent manner. However, significant statistical changes, produced within montage by anisotropy, did not change qualitative peak and topographic comparisons across montages. Thus for the examples analysed, clinical decision on which dose to select would not be altered by the omission of anisotropic brain conductivity

  16. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Astrophysics Data System (ADS)

    Stoughton, John W.; Mielke, Roland R.

    1988-02-01

    Research directed at developing a graph theoretical model for describing data and control flow associated with the execution of large grained algorithms in a special distributed computer environment is presented. This model is identified by the acronym ATAMM which represents Algorithms To Architecture Mapping Model. The purpose of such a model is to provide a basis for establishing rules for relating an algorithm to its execution in a multiprocessor environment. Specifications derived from the model lead directly to the description of a data flow architecture which is a consequence of the inherent behavior of the data and control flow described by the model. The purpose of the ATAMM based architecture is to provide an analytical basis for performance evaluation. The ATAMM model and architecture specifications are demonstrated on a prototype system for concept validation.

  17. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.

    1987-01-01

    The results of ongoing research directed at developing a graph theoretical model for describing data and control flow associated with the execution of large grained algorithms in a spatial distributed computer environment is presented. This model is identified by the acronym ATAMM (Algorithm/Architecture Mapping Model). The purpose of such a model is to provide a basis for establishing rules for relating an algorithm to its execution in a multiprocessor environment. Specifications derived from the model lead directly to the description of a data flow architecture which is a consequence of the inherent behavior of the data and control flow described by the model. The purpose of the ATAMM based architecture is to optimize computational concurrency in the multiprocessor environment and to provide an analytical basis for performance evaluation. The ATAMM model and architecture specifications are demonstrated on a prototype system for concept validation.

  18. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.

    1988-01-01

    Research directed at developing a graph theoretical model for describing data and control flow associated with the execution of large grained algorithms in a special distributed computer environment is presented. This model is identified by the acronym ATAMM which represents Algorithms To Architecture Mapping Model. The purpose of such a model is to provide a basis for establishing rules for relating an algorithm to its execution in a multiprocessor environment. Specifications derived from the model lead directly to the description of a data flow architecture which is a consequence of the inherent behavior of the data and control flow described by the model. The purpose of the ATAMM based architecture is to provide an analytical basis for performance evaluation. The ATAMM model and architecture specifications are demonstrated on a prototype system for concept validation.

  19. Discrete polygonal supramolecular architectures of isocytosine-based Pt(ii) complexes at the solution/graphite interface.

    PubMed

    El Garah, Mohamed; Sinn, Stephan; Dianat, Arezoo; Santana-Bonilla, Alejandro; Gutierrez, Rafael; De Cola, Luisa; Cuniberti, Gianaurelio; Ciesielski, Artur; Samorì, Paolo

    2016-09-25

    Polygonal supramolecular architectures of a Pt(ii) complex including trimers, tetramers, pentamers and hexamers were self-assembled via hydrogen bonding between isocytosine moieties; their structure at the solid/liquid interface was unravelled by in situ scanning tunneling microscopy imaging. Density functional theory calculations provided in-depth insight into the thermodynamics of their formation by exploring the different energy contributions attributed to the molecular self-assembly and adsorption processes. PMID:27561126

  20. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Som, Sukhamoy; Stoughton, John W.; Mielke, Roland R.

    1990-01-01

    Performance modeling and performance enhancement for periodic execution of large-grain, decision-free algorithms in data flow architectures are discussed. Applications include real-time implementation of control and signal processing algorithms where performance is required to be highly predictable. The mapping of algorithms onto the specified class of data flow architectures is realized by a marked graph model called algorithm to architecture mapping model (ATAMM). Performance measures and bounds are established. Algorithm transformation techniques are identified for performance enhancement and reduction of resource (computing element) requirements. A systematic design procedure is described for generating operating conditions for predictable performance both with and without resource constraints. An ATAMM simulator is used to test and validate the performance prediction by the design procedure. Experiments on a three resource testbed provide verification of the ATAMM model and the design procedure.

  1. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.; Som, Sukhamony

    1990-01-01

    The performance modeling and enhancement for periodic execution of large-grain, decision-free algorithms in data flow architectures is examined. Applications include real-time implementation of control and signal processing algorithms where performance is required to be highly predictable. The mapping of algorithms onto the specified class of data flow architectures is realized by a marked graph model called ATAMM (Algorithm To Architecture Mapping Model). Performance measures and bounds are established. Algorithm transformation techniques are identified for performance enhancement and reduction of resource (computing element) requirements. A systematic design procedure is described for generating operating conditions for predictable performance both with and without resource constraints. An ATAMM simulator is used to test and validate the performance prediction by the design procedure. Experiments on a three resource testbed provide verification of the ATAMM model and the design procedure.

  2. Hough transform has O(N) complexity on SIMD N x N mesh array architectures. Technical report

    SciTech Connect

    Cypher, R.E.; Sanz, J.L.; Snyder, L.

    1987-07-01

    This paper reports on new algorithms for computing the Hough transform on mesh-array architectures. The mesh is fine-grained, consisting of an N x N array of processors, each holding a single pixel of the image. The mesh array operates in an SIMD mode. Several algorithms, differing in the techniques they use, their asymptotic complexity, or the architectural resources required, are presented for computing the Hough transform. The main algorithm computes any P angles of the Hough transform in O(N + P) time and used only a constant amount of memory per processor. All the algorithms apply to the more general problem of computing the Radon transform of gray-level images.

  3. Directed Assembly and Development of Material-Free Tissues with Complex Architectures.

    PubMed

    Vrij, Erik; Rouwkema, Jeroen; LaPointe, Vanessa; van Blitterswijk, Clemens; Truckenmüller, Roman; Rivron, Nicolas

    2016-06-01

    Material-free tissues are assembled using solely cells. Microstructured hydrogel templates and high content screening allow the formation of centimeter-scale tissues with precise architectures. Similar to developing tissues, these contract autonomously, controllably shift shape, self-scaffold by secreting extracellular matrix, and undergo morphogenesis. PMID:27000493

  4. Architectural design of the science complex at Elizabeth City State University

    NASA Technical Reports Server (NTRS)

    Jahromi, Soheila

    1993-01-01

    This paper gives an overall view of the architectural design process and elements in taking an idea from conception to execution. The project presented is an example for this process. Once the need for a new structure is established, an architect studies the requirements, opinions and limits in creating a structure that people will exist in, move through, and use. Elements in designing a building include factors such as volume and surface, light and form changes of scale and view, movement and stasis. Some of the other factors are functions and physical conditions of construction. Based on experience, intuition, and boundaries, an architect will utilize all elements in creating a new building. In general, the design process begins with studying the spatial needs which develop into an architectural program. A comprehensive and accurate architectural program is essential for having a successful building. The most attractive building which does not meet the functional needs of its users has failed at the primary reason for its existence. To have a good program an architect must have a full understanding of the daily functions that will take place in the building. The architectural program along with site characteristics are among a few of the important guidelines in studying the form, adjacencies, and circulation for the structure itself and also in relation to the adjacent structures. Conceptual studies are part of the schematic design, which is the first milestone in the design process. The other reference points are design development and construction documents. At each milestone, review and coordination with all the consultants is established, and the user is essential in refining the project. In design development phase, conceptual diagrams take shape, and architectural, structural, mechanical, and electrical systems are developed. The final phase construction documents convey all the information required to construct the building. The design process and elements

  5. Longitudinal fibre splitting in muscular dystrophy: a serial cinematographic study

    PubMed Central

    Isaacs, Edward R.; Bradley, Walter G.; Henderson, Gerald

    1973-01-01

    A technique of block surface-staining and serial cinematography was modified to review serial sections of normal and dystrophic muscle from the Bar Harbor 129 Re strain of mice as a preliminary study of fibre splitting in dystrophic muscle. Using this technique, muscle fibres were reconstructed for up to 1·5 mm of their length without difficulty. Split fibres were identified only when the actual separation of fibres was observed. Splitting was seen to be a significant cause of the variations in fibre diameter and was at times responsible for the formation of groups of small atrophic fibres which resembled those seen in denervation atrophy. Complex multiple splitting and recombination of daughter and parent fibres was also observed and reconstructed to scale. These results may have considerable significance for the interpretation of physiological data on both human and murine dystrophic muscle. Images PMID:4753877

  6. Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system.

    PubMed

    Tieri, Paolo; Grignolio, Andrea; Zaikin, Alexey; Mishto, Michele; Remondini, Daniel; Castellani, Gastone C; Franceschi, Claudio

    2010-01-01

    Recently, the network paradigm, an application of graph theory to biology, has proven to be a powerful approach to gaining insights into biological complexity, and has catalyzed the advancement of systems biology. In this perspective and focusing on the immune system, we propose here a more comprehensive view to go beyond the concept of network. We start from the concept of degeneracy, one of the most prominent characteristic of biological complexity, defined as the ability of structurally different elements to perform the same function, and we show that degeneracy is highly intertwined with another recently-proposed organizational principle, i.e. 'bow tie architecture'. The simultaneous consideration of concepts such as degeneracy, bow tie architecture and network results in a powerful new interpretative tool that takes into account the constructive role of noise (stochastic fluctuations) and is able to grasp the major characteristics of biological complexity, i.e. the capacity to turn an apparently chaotic and highly dynamic set of signals into functional information. PMID:20701759

  7. Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system

    PubMed Central

    2010-01-01

    Recently, the network paradigm, an application of graph theory to biology, has proven to be a powerful approach to gaining insights into biological complexity, and has catalyzed the advancement of systems biology. In this perspective and focusing on the immune system, we propose here a more comprehensive view to go beyond the concept of network. We start from the concept of degeneracy, one of the most prominent characteristic of biological complexity, defined as the ability of structurally different elements to perform the same function, and we show that degeneracy is highly intertwined with another recently-proposed organizational principle, i.e. 'bow tie architecture'. The simultaneous consideration of concepts such as degeneracy, bow tie architecture and network results in a powerful new interpretative tool that takes into account the constructive role of noise (stochastic fluctuations) and is able to grasp the major characteristics of biological complexity, i.e. the capacity to turn an apparently chaotic and highly dynamic set of signals into functional information. PMID:20701759

  8. Architectural Features and Preservation of Ancient Residential Complexes of the Changs in Xiangan, Xiamen

    NASA Astrophysics Data System (ADS)

    Xia, J.; Chiou, S.

    2015-08-01

    Ancient architecture is an important cultural symbol of a nation, which has high historical, artistic and technology of cultural value. A building not only carries the creator of effort, but also the past with the future of the historical traditions and humanistic significance. It is not purely construction of artistic expression, even more the witness of the production and development of social groups. Therefore, it is not only the common cultural heritage of mankind, as more equally important to protect these ancient buildings for the promotion of spiritual civilization and local economic development. In recent years, China and other developing countries, which in the pursuit of rapid economic development, are also facing the problems of development and preservation, Especially influenced by the inherent "reform and innovation" traditional concepts, many ancient villages and buildings with rich cultural connotation are in a great danger. Xiang'an is one of the six administrative regions of Xiamen, The Tungyuan village and numerous surrounding villages which in Xiang'an retain a large number of ancient buildings of Ming and Qing Dynasties, but it has not been given due attention, many ancient buildings are facing the crisis of disappearing. Changs ancient residential is one of typical Minnan architectural which located in Tungyuan village. its main feature is as follows: Cheng is before the rear is Cuo, Facing south, Three bays with double Hucuo , Red brick and White stone wall, Architectural form of Hard mountain type roof and Double cocked dovetail ridge. In this paper, on the basis of the fieldwork, In addition to the overall building community environment and monomer building surveying and mapping, photograph, record, and through the collection, interviews and analysis of relevant historical materials, etc. Grasping the historical background of Changs ancient residential building community, exploring the formation and characteristics of the overall layout of

  9. Developing a real-time emulation of multiresolutional control architectures for complex, discrete-event systems

    SciTech Connect

    Davis, W.J.; Macro, J.G.; Brook, A.L.

    1996-12-31

    This paper first discusses an object-oriented, control architecture and then applies the architecture to produce a real-time software emulator for the Rapid Acquisition of Manufactured Parts (RAMP) flexible manufacturing system (FMS). In specifying the control architecture, the coordinated object is first defined as the primary modeling element. These coordinated objects are then integrated into a Recursive, Object-Oriented Coordination Hierarchy. A new simulation methodology, the Hierarchical Object-Oriented Programmable Logic Simulator, is then employed to model the interactions among the coordinated objects. The final step in implementing the emulator is to distribute the models of the coordinated objects over a network of computers and to synchronize their operation to a real-time clock. The paper then introduces the Hierarchical Subsystem Controller as an intelligent controller for the coordinated object. The proposed approach to intelligent control is then compared to the concept of multiresolutional semiosis that has been developed by Dr. Alex Meystel. Finally, the plans for implementing an intelligent controller for the RAMP FMS are discussed.

  10. Complex matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    DOEpatents

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2014-02-11

    Mechanisms for performing a complex matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the complex matrix multiplication operation to a first target vector register. The first vector operand comprises a real and imaginary part of a first complex vector value. A complex load and splat operation is performed to load a second complex vector value of a second vector operand and replicate the second complex vector value within a second target vector register. The second complex vector value has a real and imaginary part. A cross multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the complex matrix multiplication operation. The partial product is accumulated with other partial products and a resulting accumulated partial product is stored in a result vector register.

  11. Chalcogenide-tellurite composite microstructured optical fibre

    NASA Astrophysics Data System (ADS)

    Kohoutek, T.; Duan, Z.; Kawashima, H.; Yan, X.; Suzuki, T.; Matsumoto, M.; Misumi, Takashi; Ohishi, Y.

    2012-02-01

    We report on fabrication a composite microstructured optical fibre composed of highly nonlinear chalcogenide Ge-Ga- Sb-S glass core and tellurite TeO2-ZnO-Li20-Bi2O3 glass clad. We aimed at obtaining more flattened chromatic dispersion for pumping chalcogenide glass based optical fibre by a pulse laser at current telecommunication wavelengths, i.e. λ = 1.35 - 1.7 μm, which is difficult to achieve by using a single material chalcogenide fibers due to their high refractive index (n > 2.1). A fibre design exploiting a composite of two glasses and one ring of the air holes brings similar options for tuning the fibre dispersion such as use of complex multi rings of air-holes approach. A good choice of glasses, allows for fabricating a composite chalcogenide-tellurite optical fibre benefiting from high nonlinearity of chalcogenide core glass but exploiting a tellurite glass technology and fibre drawing. In the paper, we discuss some aspects of CMOF design concerning current chalcogenide and tellurite glass choice. Also, we show the supercontinuum spectra recorded from current chalcogenide-tellurite CMOF pumped with a custom made femtosecond fibre laser at λ = 1.55 μm with the pulse duration of 400 fs.

  12. Fibre optics: Forty years later

    SciTech Connect

    Dianov, Evgenii M

    2010-01-31

    This paper presents a brief overview of the state of the art in fibre optics and its main applications: optical fibre communications, fibre lasers and fibre sensors for various physical property measurements. The future of fibre optics and the status of this important area of the modern technology in Russia are discussed. (fiber optics)

  13. Therapeutic role of dietary fibre.

    PubMed Central

    Hunt, R.; Fedorak, R.; Frohlich, J.; McLennan, C.; Pavilanis, A.

    1993-01-01

    The current status of dietary fibre and fibre supplements in health and disease is reported, and the components of dietary fibre and its respective mechanical and metabolic effects with emphasis on its therapeutic potential are reviewed. Practical management guidelines are provided to help physicians encourage patients identified as having fibre deficiency to increase dietary fibre intake to the recommended level. PMID:8388284

  14. Leaf shape evolution has a similar genetic architecture in three edaphic specialists within the Mimulus guttatus species complex

    PubMed Central

    Ferris, Kathleen G.; Rushton, Tullia; Greenlee, Anna B.; Toll, Katherine; Blackman, Benjamin K.; Willis, John H.

    2015-01-01

    Background and Aims The genetic basis of leaf shape has long interested botanists because leaf shape varies extensively across the plant kingdom and this variation is probably adaptive. However, knowledge of the genetic architecture of leaf shape variation in natural populations remains limited. This study examined the genetic architecture of leaf shape diversification among three edaphic specialists in the Mimulus guttatus species complex. Lobed and narrow leaves have evolved from the entire, round leaves of M. guttatus in M. laciniatus, M. nudatus and a polymorphic serpentine M. guttatus population (M2L). Methods Bulk segregant analysis and next-generation sequencing were used to map quantitative trait loci (QTLs) that underlie leaf shape in an M. laciniatus × M. guttatus F2 population. To determine whether the same QTLs contribute to leaf shape variation in M. nudatus and M2L, F2s from M. guttatus × M. nudatus and lobed M2L × unlobed M. guttatus crosses were genotyped at QTLs from the bulk segregant analysis. Key Results Narrow and lobed leaf shapes in M. laciniatus, M. nudatus and M. guttatus are controlled by overlapping genetic regions. Several promising leaf shape candidate genes were found under each QTL. Conclusions The evolution of divergent leaf shape has taken place multiple times in the M. guttatus species complex and is associated with the occupation of dry, rocky environments. The genetic architecture of elongated and lobed leaves is similar across three species in this group. This may indicate that parallel genetic evolution from standing variation or new mutations is responsible for the putatively adaptive leaf shape variation in Mimulus. PMID:26070644

  15. A Parallel Trade Study Architecture for Design Optimization of Complex Systems

    NASA Technical Reports Server (NTRS)

    Kim, Hongman; Mullins, James; Ragon, Scott; Soremekun, Grant; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    Design of a successful product requires evaluating many design alternatives in a limited design cycle time. This can be achieved through leveraging design space exploration tools and available computing resources on the network. This paper presents a parallel trade study architecture to integrate trade study clients and computing resources on a network using Web services. The parallel trade study solution is demonstrated to accelerate design of experiments, genetic algorithm optimization, and a cost as an independent variable (CAIV) study for a space system application.

  16. Evolution of multi-component anion relay chemistry (ARC): construction of architecturally complex natural and unnatural products.

    PubMed

    Smith, Amos B; Wuest, William M

    2008-12-01

    Efficient construction of architecturally complex natural and unnatural products is the hallmark of organic chemistry. Anion relay chemistry (ARC)-a multi-component coupling protocol-has the potential to provide the chemist with a powerful synthetic tactic, enabling efficient, rapid elaboration of structurally complex scaffolds in a single operation with precise stereochemical control. The ARC tactic can be subdivided into two main classes, comprising the relay of negative charge either through bonds or through space, the latter with aid of a transfer agent. This review will present the current state of through-space anion relay, in conjunction with examples of natural and unnatural product syntheses that illustrate the utility of this synthetic method. PMID:19030533

  17. The molecular architecture of the Dam1 kinetochore complex is defined by cross-linking based structural modelling

    PubMed Central

    Zelter, Alex; Bonomi, Massimiliano; Kim, Jae ook; Umbreit, Neil T.; Hoopmann, Michael R.; Johnson, Richard; Riffle, Michael; Jaschob, Daniel; MacCoss, Michael J.; Moritz, Robert L.; Davis, Trisha N.

    2015-01-01

    Accurate segregation of chromosomes during cell division is essential. The Dam1 complex binds kinetochores to microtubules and its oligomerization is required to form strong attachments. It is a key target of Aurora B kinase, which destabilizes erroneous attachments allowing subsequent correction. Understanding the roles and regulation of the Dam1 complex requires structural information. Here we apply cross-linking/mass spectrometry and structural modelling to determine the molecular architecture of the Dam1 complex. We find microtubule attachment is accompanied by substantial conformational changes, with direct binding mediated by the carboxy termini of Dam1p and Duo1p. Aurora B phosphorylation of Dam1p C terminus weakens direct interaction with the microtubule. Furthermore, the Dam1p amino terminus forms an interaction interface between Dam1 complexes, which is also disrupted by phosphorylation. Our results demonstrate that Aurora B inhibits both direct interaction with the microtubule and oligomerization of the Dam1 complex to drive error correction during mitosis. PMID:26560693

  18. Architecture, sedentism, and social complexity at Pre-Pottery Neolithic A WF16, Southern Jordan.

    PubMed

    Finlayson, Bill; Mithen, Steven J; Najjar, Mohammad; Smith, Sam; Maričević, Darko; Pankhurst, Nick; Yeomans, Lisa

    2011-05-17

    Recent excavations at Pre-Pottery Neolithic A (PPNA) WF16 in southern Jordan have revealed remarkable evidence of architectural developments in the early Neolithic. This sheds light on both special purpose structures and "domestic" settlement, allowing fresh insights into the development of increasingly sedentary communities and the social systems they supported. The development of sedentary communities is a central part of the Neolithic process in Southwest Asia. Architecture and ideas of homes and households have been important to the debate, although there has also been considerable discussion on the role of communal buildings and the organization of early sedentarizing communities since the discovery of the tower at Jericho. Recently, the focus has been on either northern Levantine PPNA sites, such as Jerf el Ahmar, or the emergence of ritual buildings in the Pre-Pottery Neolithic B of the southern Levant. Much of the debate revolves around a division between what is interpreted as domestic space, contrasted with "special purpose" buildings. Our recent evidence allows a fresh examination of the nature of early Neolithic communities. PMID:21536900

  19. Reconstitution of the augmin complex provides insights into its architecture and function.

    PubMed

    Hsia, Kuo-Chiang; Wilson-Kubalek, Elizabeth M; Dottore, Alejandro; Hao, Qi; Tsai, Kuang-Lei; Forth, Scott; Shimamoto, Yuta; Milligan, Ronald A; Kapoor, Tarun M

    2014-09-01

    Proper microtubule nucleation during cell division requires augmin, a microtubule-associated hetero-octameric protein complex. In current models, augmin recruits γ-tubulin, through the carboxyl terminus of its hDgt6 subunit to nucleate microtubules within spindles. However, augmin's biochemical complexity has restricted analysis of its structural organization and function. Here, we reconstitute human augmin and show that it is a Y-shaped complex that can adopt multiple conformations. Further, we find that a dimeric sub-complex retains in vitro microtubule-binding properties of octameric complexes, but not proper metaphase spindle localization. Addition of octameric augmin complexes to Xenopus egg extracts promotes microtubule aster formation, an activity enhanced by Ran-GTP. This activity requires microtubule binding, but not the characterized hDgt6 γ-tubulin-recruitment domain. Tetrameric sub-complexes induce asters, but activity and microtubule bundling within asters are reduced compared with octameric complexes. Together, our findings shed light on augmin's structural organization and microtubule-binding properties, and define subunits required for its function in organizing microtubule-based structures. PMID:25173975

  20. Does Supporting Multiple Student Strategies Lead to Greater Learning and Motivation? Investigating a Source of Complexity in the Architecture of Intelligent Tutoring Systems

    ERIC Educational Resources Information Center

    Waalkens, Maaike; Aleven, Vincent; Taatgen, Niels

    2013-01-01

    Intelligent tutoring systems (ITS) support students in learning a complex problem-solving skill. One feature that makes an ITS architecturally complex, and hard to build, is support for strategy freedom, that is, the ability to let students pursue multiple solution strategies within a given problem. But does greater freedom mean that students…

  1. Use of checkpoint-restart for complex HEP software on traditional architectures and Intel MIC

    NASA Astrophysics Data System (ADS)

    Arya, Kapil; Cooperman, Gene; Dotti, Andrea; Elmer, Peter

    2014-06-01

    Process checkpoint-restart is a technology with great potential for use in HEP workflows. Use cases include debugging, reducing the startup time of applications both in offline batch jobs and the High Level Trigger, permitting job preemption in environments where spare CPU cycles are being used opportunistically and efficient scheduling of a mix of multicore and single-threaded jobs. We report on tests of checkpoint-restart technology using CMS software, Geant4-MT (multi-threaded Geant4), and the DMTCP (Distributed Multithreaded Checkpointing) package. We analyze both single- and multi-threaded applications and test on both standard Intel x86 architectures and on Intel MIC. The tests with multi-threaded applications on Intel MIC are used to consider scalability and performance. These are considered an indicator of what the future may hold for many-core computing.

  2. Mechanisms employed by cellulase systems to gain access through the complex architecture of lignocellulosic substrates.

    PubMed

    Donohoe, Bryon S; Resch, Michael G

    2015-12-01

    To improve the deconstruction of biomass, the most abundant terrestrial source of carbon polymers, en route to renewable fuels, chemicals, and materials more knowledge is needed into the mechanistic interplay between thermochemical pretreatment and enzymatic hydrolysis. In this review we highlight recent progress in advanced imaging techniques that have been used to elucidate the effects of thermochemical pretreatment on plant cell walls across a range of spatial scales and the relationship between the substrate structure and the function of various glycoside hydrolase components. The details of substrate and enzyme interactions are not yet fully understood and the challenges of characterizing plant cell wall architecture, how it dictates recalcitrance, and how it relates to enzyme-substrate interactions is the focus for many research groups in the field. Better understanding of how to match pretreatments with improved enzyme mixtures will lead to lower costs for industrial biorefining. PMID:26529490

  3. A Low Complexity Architecture for OFCDM Downlink Transmitter Using Joint Time-Frequency Spreading and IFFT

    NASA Astrophysics Data System (ADS)

    Dan, Lilin; Xiao, Yue; Ni, Wei; Li, Shaoqian

    In this letter, a low complexity transmitter is proposed for the downlinks of orthogonal frequency code division multiplexing (OFCDM) systems. The principle is based on a joint time-frequency spreading and inverse fast Fourier transform (TFS-IFFT), which combines the frequency spreading with partial stages of IFFT, so as to simplify the real-time processing. Compared with the conventional one, the proposed OFCDM transmitter is of lower real-time computational complexity, especially for those with large spreading factor or low modulation level. Furthermore, the proposed TFS-IFFT can also be applied to other frequency spreading systems, such as MC-CDMA, for complexity reduction.

  4. Molecular architecture of the 40S⋅eIF1⋅eIF3 translation initiation complex.

    PubMed

    Erzberger, Jan P; Stengel, Florian; Pellarin, Riccardo; Zhang, Suyang; Schaefer, Tanja; Aylett, Christopher H S; Cimermančič, Peter; Boehringer, Daniel; Sali, Andrej; Aebersold, Ruedi; Ban, Nenad

    2014-08-28

    Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA. PMID:25171412

  5. Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex

    PubMed Central

    Erzberger, Jan P.; Stengel, Florian; Pellarin, Riccardo; Zhang, Suyang; Schaefer, Tanja; Aylett, Christopher H.S.; Cimermančič, Peter; Boehringer, Daniel; Sali, Andrej; Aebersold, Ruedi; Ban, Nenad

    2014-01-01

    Summary Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA. PMID:25171412

  6. Complex architecture of major histocompatibility complex class II promoters: reiterated motifs and conserved protein-protein interactions.

    PubMed Central

    Jabrane-Ferrat, N; Fontes, J D; Boss, J M; Peterlin, B M

    1996-01-01

    The S box (also known as at the H, W, or Z box) is the 5'-most element of the conserved upstream sequences in promoters of major histocompatibility complex class II genes. It is important for their B-cell-specific and interferon gamma-inducible expression. In this study, we demonstrate that the S box represents a duplication of the downstream X box. First, RFX, which is composed of the RFX5-p36 heterodimer that binds to the X box, also binds to the S box and its 5'-flanking sequence. Second, NF-Y, which binds to the Y box and increases interactions between RFX and the X box, also increases the binding of RFX to the S box. Third, RFXs bound to S and X boxes interact with each other in a spatially constrained manner. Finally, we confirmed these protein-protein and protein-DNA interactions by expressing a hybrid RFX5-VP16 protein in cells. We conclude that RFX binds to S and X boxes and that complex interactions between RFX and NF-Y direct B-cell-specific and interferon gamma-inducible expression or major histocompatibility complex class II genes. PMID:8756625

  7. Insights into the structure and architecture of the CCR4–NOT complex

    PubMed Central

    Xu, Kun; Bai, Yuwei; Zhang, Aili; Zhang, Qionglin; Bartlam, Mark G.

    2014-01-01

    The CCR4–NOT complex is a highly conserved, multifunctional machinery with a general role in controlling mRNA metabolism. It has been implicated in a number of different aspects of mRNA and protein expression, including mRNA degradation, transcription initiation and elongation, ubiquitination, and protein modification. The core CCR4–NOT complex is evolutionarily conserved and consists of at least three NOT proteins and two catalytic subunits. The L-shaped complex is characterized by two functional modules bound to the CNOT1/Not1 scaffold protein: the deadenylase or nuclease module containing two enzymes required for deadenylation, and the NOT module. In this review, we will summarize the currently available information regarding the three-dimensional structure and assembly of the CCR4–NOT complex, in order to provide insight into its roles in mRNA degradation and other biological processes. PMID:24904637

  8. Optical probing of long-range spatial correlation and symmetry in complex biophotonic architectures on transparent insect wings

    NASA Astrophysics Data System (ADS)

    Kumar, Pramod; Shamoon, Danish; Singh, Dhirendra P.; Mandal, Sudip; Singh, Kamal P.

    2015-02-01

    We experimentally probe the structural organization of complex bio-photonic architecture on transparent insect wings by a simple, non-invasive, real-time optical technique. A stable and reproducible far-field diffraction pattern in transmission was observed using collimated cw and broadband fs laser pulses. A quantitative analysis of the observed diffraction pattern unveiled long-range quasi-periodic order in the arrangement of the microstructures over mm scale. These observations agree well with the Fourier analysis of SEM images of the wing taken at various length scales. We propose a simple quantitative model based on optical diffraction by an array of non overlapping microstructures with minimal disorder which supports our experimental observations. We observed a rotation of the original diffraction profile by scanning the laser beam across the wing sample which gives direct signature of organizational symmetry in microstructure arrangements at various length scales. In addition, we report the first optical detection of reorganization in the photonic architecture on the Drosophila wings by various genetic mutations. These results have potential for the design and development of diffractive optical components for applied photonics and may open up new opportunities in biomimetic device research.

  9. Metal-Templated Ligand Architectures for Trinuclear Chemistry: Tricopper Complexes and Their O2 Reactivity

    PubMed Central

    Lionetti, Davide; Day, Michael W.

    2013-01-01

    A trinucleating framework was assmbled by templation of a heptadentate ligand around yttrium and lanthanides. The generated complexes orient three sets of two or three N-donors each for binding additional metal centers. Addition of three equivalents of copper(I) leads to the formation of tricopper(I) species. Reactions with dioxygen at low temperatures generate species whose spectroscopic features are consistent with a μ3,μ3-dioxo-tricopper complex. Reactivity studies were performed with a variety of substrates. The dioxo-tricopper species deprotonates weak acids, undergoes oxygen atom transfer with one equivalent of triphenylphosphine to yield triphenylphosphine oxide, and abstracts two hydrogen atom equivalents from tetramethylpiperidine-N-hydroxide (TEMPO-H). Thiophenols reduce the oxygenated species to a CuI3 complex and liberate two equivalents of disulfide, consistent with a four-electron four-proton process. PMID:23539341

  10. Fibre Flocculation in Papermaking

    NASA Astrophysics Data System (ADS)

    Kerekes, R. J.

    1998-11-01

    Pulp fibres flocculate into aggregates which paper a characteristic non-uniformity on a scale of several millimetres. This non-uniformity, visible in transmitted light, diminishes the physical and optical properties of paper. Consequently, minimization of fibre flocculation has been an objective of papermaking ever since the process was invented. It was established over 50 years ago that mechanical rather than colloidal forces governed fibre flocculation in the shear flows used in papermaking. However, the process by which individual flocs form and the conditions required for their creation have only recently been investigated in detail. This paper will review recent research on this topic at the University of British Columbia. The paper will focus on the formation and properties of coherent flocs, the importance of the Crowding Number in defining the level of interfibre contact necessary for floc creation, the role of hydrodynamic and inter-fibre forces in producing flocs, and the structure and strength of fibre flocs.

  11. Modelling the extrusion of preforms for microstructured optical fibres

    NASA Astrophysics Data System (ADS)

    Tronnolone, Hayden; Stokes, Yvonne; Crowdy, Darren

    2013-11-01

    Owing to a novel design, microstructured optical fibres (MOFs) promise the realisation of fibres with effectively any desired optical properties. MOFs are typically constructed from glass and employ a series of air channels aligned along the fibre axis to form a waveguide. The construction of MOFs by first extruding a preform and then drawing this into the final fibre has the potential to produce fibres on an industrial scale; however, this is hindered by a limited understanding of the fluid flow that arises during this process. We focus on the extrusion stage of fabrication and discuss a model of the fibre evolution based upon complex-variable techniques. The relative influence of the various physical processes involved is discussed, along with limitations of the model.

  12. MRN1 Implicates Chromatin Remodeling Complexes and Architectural Factors in mRNA Maturation

    PubMed Central

    Düring, Louis; Thorsen, Michael; Petersen, Darima Sophia Njama; Køster, Brian; Jensen, Torben Heick; Holmberg, Steen

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6ΔΔ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin architectural proteins Nhp6A/Nhp6B, accumulate intron-containing pre-mRNA at the restrictive temperature. In addition, we demonstrate that rsc8-ts16 nhp6ΔΔ cells contain low levels of U6 snRNA and U4/U6 di-snRNA that is further exacerbated after two hours growth at the restrictive temperature. This change in U6 snRNA and U4/U6 di-snRNA levels in rsc8-ts16 nhp6ΔΔ cells is indicative of splicing deficient conditions. We identify MRN1 (multi-copy suppressor of rsc nhp6ΔΔ) as a growth suppressor of rsc nhp6ΔΔ synthetic sickness. Mrn1 is an RNA binding protein that localizes both to the nucleus and cytoplasm. Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309Δ, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing. PMID:23028530

  13. Use of Dynamic Models and Operational Architecture to Solve Complex Navy Challenges

    NASA Technical Reports Server (NTRS)

    Grande, Darby; Black, J. Todd; Freeman, Jared; Sorber, TIm; Serfaty, Daniel

    2010-01-01

    The United States Navy established 8 Maritime Operations Centers (MOC) to enhance the command and control of forces at the operational level of warfare. Each MOC is a headquarters manned by qualified joint operational-level staffs, and enabled by globally interoperable C41 systems. To assess and refine MOC staffing, equipment, and schedules, a dynamic software model was developed. The model leverages pre-existing operational process architecture, joint military task lists that define activities and their precedence relations, as well as Navy documents that specify manning and roles per activity. The software model serves as a "computational wind-tunnel" in which to test a MOC on a mission, and to refine its structure, staffing, processes, and schedules. More generally, the model supports resource allocation decisions concerning Doctrine, Organization, Training, Material, Leadership, Personnel and Facilities (DOTMLPF) at MOCs around the world. A rapid prototype effort efficiently produced this software in less than five months, using an integrated process team consisting of MOC military and civilian staff, modeling experts, and software developers. The work reported here was conducted for Commander, United States Fleet Forces Command in Norfolk, Virginia, code N5-0LW (Operational Level of War) that facilitates the identification, consolidation, and prioritization of MOC capabilities requirements, and implementation and delivery of MOC solutions.

  14. Entropic effects, shape, and size of mixed micelles formed by copolymers with complex architectures.

    PubMed

    Kalogirou, Andreas; Gergidis, Leonidas N; Moultos, Othonas; Vlahos, Costas

    2015-11-01

    The entropic effects in the comicellization behavior of amphiphilic AB copolymers differing in the chain size of solvophilic A parts were studied by means of molecular dynamics simulations. In particular, mixtures of miktoarm star copolymers differing in the molecular weight of solvophilic arms were investigated. We found that the critical micelle concentration values show a positive deviation from the analytical predictions of the molecular theory of comicellization for chemically identical copolymers. This can be attributed to the effective interactions between copolymers originated from the arm size asymmetry. The effective interactions induce a very small decrease in the aggregation number of preferential micelles triggering the nonrandom mixing between the solvophilic moieties in the corona. Additionally, in order to specify how the chain architecture affects the size distribution and the shape of mixed micelles we studied star-shaped, H-shaped, and homo-linked-rings-linear mixtures. In the first case the individual constituents form micelles with preferential and wide aggregation numbers and in the latter case the individual constituents form wormlike and spherical micelles. PMID:26651715

  15. Building complex hybrid carbon architectures by covalent interconnections: graphene-nanotube hybrids and more.

    PubMed

    Lv, Ruitao; Cruz-Silva, Eduardo; Terrones, Mauricio

    2014-05-27

    Graphene is theoretically a robust two-dimensional (2D) sp(2)-hybridized carbon material with high electrical conductivity and optical transparency. However, due to the existence of grain boundaries and defects, experimentally synthesized large-area polycrystalline graphene sheets are easily broken and can exhibit high sheet resistances; thus, they are not suitable as flexible transparent conductors. As described in this issue of ACS Nano, Tour et al. circumvented this problem by proposing and synthesizing a novel hybrid structure that they have named "rebar graphene", which is composed of covalently interconnected carbon nanotubes (CNTs) with graphene sheets. In this particular configuration, CNTs act as "reinforcing bars" that not only improve the mechanical strength of polycrystalline graphene sheets but also bridge different crystalline domains so as to enhance the electrical conductivity. This report seems to be only the tip of the iceberg since it is also possible to construct novel and unprecedented hybrid carbon architectures by establishing covalent interconnections between CNTs with graphene, thus yielding graphene-CNT hybrids, three-dimensional (3D) covalent CNT networks, 3D graphene networks, etc. In this Perspective, we review the progress of these carbon hybrid systems and describe the challenges that need to be overcome in the near future. PMID:24862032

  16. Complex composite engineering architectures for nuclear and high-radiation environments

    SciTech Connect

    Kornreich, Drew E; Vaidya, Rajendra U; Ammerman, Curtt N

    2010-01-01

    Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of these elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.

  17. The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down syndrome

    PubMed Central

    Sailani, M. Reza; Makrythanasis, Periklis; Valsesia, Armand; Santoni, Federico A.; Deutsch, Samuel; Popadin, Konstantin; Borel, Christelle; Migliavacca, Eugenia; Sharp, Andrew J.; Duriaux Sail, Genevieve; Falconnet, Emilie; Rabionet, Kelly; Serra-Juhé, Clara; Vicari, Stefano; Laux, Daniela; Grattau, Yann; Dembour, Guy; Megarbane, Andre; Touraine, Renaud; Stora, Samantha; Kitsiou, Sofia; Fryssira, Helena; Chatzisevastou-Loukidou, Chariklia; Kanavakis, Emmanouel; Merla, Giuseppe; Bonnet, Damien; Pérez-Jurado, Luis A.; Estivill, Xavier; Delabar, Jean M.; Antonarakis, Stylianos E.

    2013-01-01

    Congenital heart defect (CHD) occurs in 40% of Down syndrome (DS) cases. While carrying three copies of chromosome 21 increases the risk for CHD, trisomy 21 itself is not sufficient to cause CHD. Thus, additional genetic variation and/or environmental factors could contribute to the CHD risk. Here we report genomic variations that in concert with trisomy 21, determine the risk for CHD in DS. This case-control GWAS includes 187 DS with CHD (AVSD = 69, ASD = 53, VSD = 65) as cases, and 151 DS without CHD as controls. Chromosome 21–specific association studies revealed rs2832616 and rs1943950 as CHD risk alleles (adjusted genotypic P-values <0.05). These signals were confirmed in a replication cohort of 92 DS-CHD cases and 80 DS-without CHD (nominal P-value 0.0022). Furthermore, CNV analyses using a customized chromosome 21 aCGH of 135K probes in 55 DS-AVSD and 53 DS-without CHD revealed three CNV regions associated with AVSD risk (FDR ≤ 0.05). Two of these regions that are located within the previously identified CHD region on chromosome 21 were further confirmed in a replication study of 49 DS-AVSD and 45 DS- without CHD (FDR ≤ 0.05). One of these CNVs maps near the RIPK4 gene, and the second includes the ZBTB21 (previously ZNF295) gene, highlighting the potential role of these genes in the pathogenesis of CHD in DS. We propose that the genetic architecture of the CHD risk of DS is complex and includes trisomy 21, and SNP and CNV variations in chromosome 21. In addition, a yet-unidentified genetic variation in the rest of the genome may contribute to this complex genetic architecture. PMID:23783273

  18. Architecture of the yeast Rrp44 exosome complex suggests routes of RNA recruitment for 3' end processing.

    PubMed

    Wang, Hong-Wei; Wang, Jianjun; Ding, Fang; Callahan, Kevin; Bratkowski, Matthew A; Butler, J Scott; Nogales, Eva; Ke, Ailong

    2007-10-23

    The eukaryotic core exosome (CE) is a conserved nine-subunit protein complex important for 3' end trimming and degradation of RNA. In yeast, the Rrp44 protein constitutively associates with the CE and provides the sole source of processive 3'-to-5' exoribonuclease activity. Here we present EM reconstructions of the core and Rrp44-bound exosome complexes. The two-lobed Rrp44 protein binds to the RNase PH domain side of the exosome and buttresses the bottom of the exosome-processing chamber. The Rrp44 C-terminal body part containing an RNase II-type active site is anchored to the exosome through a conserved set of interactions mainly to the Rrp45 and Rrp43 subunit, whereas the Rrp44 N-terminal head part is anchored to the Rrp41 subunit and may function as a roadblock to restrict access of RNA to the active site in the body region. The Rrp44-exosome (RE) architecture suggests an active site sequestration mechanism for strict control of 3' exoribonuclease activity in the RE complex. PMID:17942686

  19. Critical Infrastructures as Complex Systems: A Multi-level Protection Architecture

    NASA Astrophysics Data System (ADS)

    Assogna, Pierluigi; Bertocchi, Glauco; Dicarlo, Antonio; Milicchio, Franco; Paoluzzi, Alberto; Scorzelli, Giorgio; Vicentino, Michele; Zollo, Roberto

    This paper describes a security platform as a complex system of holonic communities, that are hierarchically organized, but self-reconfigurable when some of them are detached or cannot otherwise operate. Furthermore, every possible subset of holons may work autonomously, while maintaining self-conscience of its own mission, action lines and goals. Each holonic unit, either elementary or composite, retains some capabilities for sensing (perception), transmissive apparatus (communication), computational processes (elaboration), authentication/authorization (information security), support for data exchange (visualization & interaction), actuators (mission), ambient representation (geometric reasoning), knowledge representation (logic reasoning), situation representation and forecasting (simulation), intelligent feedback (command & control). The higher the organizational level of the holonic unit, the more complex and sophisticated each of its characteristic features.

  20. Architecture of the botulinum neurotoxin complex: a molecular machine for protection and delivery

    PubMed Central

    Lam, Kwok-Ho; Jin, Rongsheng

    2015-01-01

    Botulinum neurotoxins (BoNTs) are extremely poisonous protein toxins that cause the fatal paralytic disease botulism. They are naturally produced in bacteria with several nontoxic neurotoxin-associated proteins (NAPs) and together they form a progenitor toxin complex (PTC), the largest bacterial toxin complex known. In foodborne botulism, the PTC functions as a molecular machine that helps BoNT breach the host defense in the gut. Here, we discuss the substantial recent advance in elucidating the atomic structures and assembly of the 14-subunit PTC, including structures of BoNT and four NAPs. These structural studies shed light on the molecular mechanisms by which BoNT is protected against the acidic environment and proteolytic destruction in the gastrointestinal tract, and how it is delivered across the intestinal epithelial barrier. PMID:25889616

  1. Functional mapping - how to map and study the genetic architecture of dynamic complex traits.

    PubMed

    Wu, Rongling; Lin, Min

    2006-03-01

    The development of any organism is a complex dynamic process that is controlled by a network of genes as well as by environmental factors. Traditional mapping approaches for analysing phenotypic data measured at a single time point are too simple to reveal the genetic control of developmental processes. A general statistical mapping framework, called functional mapping, has been proposed to characterize, in a single step, the quantitative trait loci (QTLs) or nucleotides (QTNs) that underlie a complex dynamic trait. Functional mapping estimates mathematical parameters that describe the developmental mechanisms of trait formation and expression for each QTL or QTN. The approach provides a useful quantitative and testable framework for assessing the interplay between gene actions or interactions and developmental changes. PMID:16485021

  2. Posttranslational marks control architectural and functional plasticity of the nuclear pore complex basket.

    PubMed

    Niño, Carlos A; Guet, David; Gay, Alexandre; Brutus, Sergine; Jourquin, Frédéric; Mendiratta, Shweta; Salamero, Jean; Géli, Vincent; Dargemont, Catherine

    2016-01-18

    The nuclear pore complex (NPC) serves as both the unique gate between the nucleus and the cytoplasm and a major platform that coordinates nucleocytoplasmic exchanges, gene expression, and genome integrity. To understand how the NPC integrates these functional constraints, we dissected here the posttranslational modifications of the nuclear basket protein Nup60 and analyzed how they intervene to control the plasticity of the NPC. Combined approaches highlight the role of monoubiquitylation in regulating the association dynamics of Nup60 and its partner, Nup2, with the NPC through an interaction with Nup84, a component of the Y complex. Although major nuclear transport routes are not regulated by Nup60 modifications, monoubiquitylation of Nup60 is stimulated upon genotoxic stress and regulates the DNA-damage response and telomere repair. Together, these data reveal an original mechanism contributing to the plasticity of the NPC at a molecular-organization and functional level. PMID:26783300

  3. Posttranslational marks control architectural and functional plasticity of the nuclear pore complex basket

    PubMed Central

    Niño, Carlos A.; Guet, David; Gay, Alexandre; Brutus, Sergine; Jourquin, Frédéric; Mendiratta, Shweta; Salamero, Jean; Géli, Vincent

    2016-01-01

    The nuclear pore complex (NPC) serves as both the unique gate between the nucleus and the cytoplasm and a major platform that coordinates nucleocytoplasmic exchanges, gene expression, and genome integrity. To understand how the NPC integrates these functional constraints, we dissected here the posttranslational modifications of the nuclear basket protein Nup60 and analyzed how they intervene to control the plasticity of the NPC. Combined approaches highlight the role of monoubiquitylation in regulating the association dynamics of Nup60 and its partner, Nup2, with the NPC through an interaction with Nup84, a component of the Y complex. Although major nuclear transport routes are not regulated by Nup60 modifications, monoubiquitylation of Nup60 is stimulated upon genotoxic stress and regulates the DNA-damage response and telomere repair. Together, these data reveal an original mechanism contributing to the plasticity of the NPC at a molecular-organization and functional level. PMID:26783300

  4. A 2,300-year-old architectural and astronomical complex in the Chincha Valley, Peru

    PubMed Central

    Stanish, Charles; Tantaleán, Henry; Nigra, Benjamin T.; Griffin, Laura

    2014-01-01

    Recent archaeological research on the south coast of Peru discovered a Late Paracas (ca. 400–100 BCE) mound and geoglyph complex in the middle Chincha Valley. This complex consists of linear geoglyphs, circular rock features, ceremonial mounds, and settlements spread over a 40-km2 area. A striking feature of this culturally modified landscape is that the geoglyph lines converge on mounds and habitation sites to form discrete clusters. Likewise, these clusters contain a number of paired line segments and at least two U-shaped structures that marked the setting sun of the June solstice in antiquity. Excavations in three mounds confirm that they were built in Late Paracas times. The Chincha complex therefore predates the better-known Nasca lines to the south by several centuries and provides insight into the development and use of geoglyphs and platform mounds in Paracas society. The data presented here indicate that Paracas peoples engineered a carefully structured, ritualized landscape to demarcate areas and times for key ritual and social activities. PMID:24799703

  5. A 2,300-year-old architectural and astronomical complex in the Chincha Valley, Peru.

    PubMed

    Stanish, Charles; Tantaleán, Henry; Nigra, Benjamin T; Griffin, Laura

    2014-05-20

    Recent archaeological research on the south coast of Peru discovered a Late Paracas (ca. 400-100 BCE) mound and geoglyph complex in the middle Chincha Valley. This complex consists of linear geoglyphs, circular rock features, ceremonial mounds, and settlements spread over a 40-km(2) area. A striking feature of this culturally modified landscape is that the geoglyph lines converge on mounds and habitation sites to form discrete clusters. Likewise, these clusters contain a number of paired line segments and at least two U-shaped structures that marked the setting sun of the June solstice in antiquity. Excavations in three mounds confirm that they were built in Late Paracas times. The Chincha complex therefore predates the better-known Nasca lines to the south by several centuries and provides insight into the development and use of geoglyphs and platform mounds in Paracas society. The data presented here indicate that Paracas peoples engineered a carefully structured, ritualized landscape to demarcate areas and times for key ritual and social activities. PMID:24799703

  6. The architecture of the 12RSS in V(D)J recombination signal and synaptic complexes

    PubMed Central

    Ciubotaru, Mihai; Surleac, Marius D.; Metskas, Lauren Ann; Koo, Peter; Rhoades, Elizabeth; Petrescu, Andrei J.; Schatz, David G.

    2015-01-01

    V(D)J recombination is initiated by RAG1 and RAG2, which together with HMGB1 bind to a recombination signal sequence (12RSS or 23RSS) to form the signal complex (SC) and then capture a complementary partner RSS, yielding the paired complex (PC). Little is known regarding the structural changes that accompany the SC to PC transition or the structural features that allow RAG to distinguish its two asymmetric substrates. To address these issues, we analyzed the structure of the 12RSS in the SC and PC using fluorescence resonance energy transfer (FRET) and molecular dynamics modeling. The resulting models indicate that the 12RSS adopts a strongly bent V-shaped structure upon RAG/HMGB1 binding and reveal structural differences, particularly near the heptamer, between the 12RSS in the SC and PC. Comparison of models of the 12RSS and 23RSS in the PC reveals broadly similar shapes but a distinct number and location of DNA bends as well as a smaller central cavity for the 12RSS. These findings provide the most detailed view yet of the 12RSS in RAG–DNA complexes and highlight structural features of the RSS that might underlie activation of RAG-mediated cleavage and substrate asymmetry important for the 12/23 rule of V(D)J recombination. PMID:25550426

  7. Rotor architecture in the yeast and bovine F1-c-ring complexes of F-ATP synthase.

    PubMed

    Giraud, Marie-France; Paumard, Patrick; Sanchez, Corinne; Brèthes, Daniel; Velours, Jean; Dautant, Alain

    2012-02-01

    The F(1)F(O)-ATP synthase is a rotary molecular nanomotor. F(1) is a chemical motor driven by ATP hydrolysis while F(O) is an electrical motor driven by the proton flow. The two stepping motors are mechanically coupled through a common rotary shaft. Up to now, the three available crystal structures of the F(1)c(10) sub-complex of the yeast F(1)F(O)-ATP synthase were isomorphous and then named yF(1)c(10)(I). In this crystal form, significant interactions of the c(10)-ring with the F(1)-head of neighboring molecules affected the overall conformation of the F(1)-c-ring complex. The symmetry axis of the F(1)-head and the inertia axis of the c-ring were tilted near the interface between the F(1)-central stalk and the c-ring rotor, resulting in an unbalanced machine. We have solved a new crystal form of the F(1)c(10) complex, named yF(1)c(10)(II), inhibited by adenylyl-imidodiphosphate (AMP-PNP) and dicyclohexylcarbodiimide (DCCD), at 6.5Å resolution in which the crystal packing has a weaker influence over the conformation of the F(1)-c-ring complex. yF(1)c(10)(II) provides a model of a more efficient generator. yF(1)c(10)(II) and bovine bF(1)c(8) structures share a common rotor architecture with the inertia center of the F(1)-stator close to the rotor axis. PMID:22119846

  8. New generation of optical fibres

    NASA Astrophysics Data System (ADS)

    Dianov, E. M.; Semjonov, S. L.; Bufetov, I. A.

    2016-01-01

    The growing need for information in contemporary society is the motivating force behind the development of fibre optics in general and optical fibre communications in particular. Intensive research effort has been concentrated on designing new types of optical fibres and extending their application field. This paper reviews results of research on new types of optical fibres: bismuthdoped active fibres, multicore fibres and hollow-core fibres, which can be used as key components of systems that ensure further increase in optical information transfer rate.

  9. Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis

    PubMed Central

    Mudgil, Yashwanti; Karve, Abhijit; Teixeira, Paulo J. P. L.; Jiang, Kun; Tunc-Ozdemir, Meral; Jones, Alan M.

    2016-01-01

    Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior. PMID:27610112

  10. Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis.

    PubMed

    Mudgil, Yashwanti; Karve, Abhijit; Teixeira, Paulo J P L; Jiang, Kun; Tunc-Ozdemir, Meral; Jones, Alan M

    2016-01-01

    Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior. PMID:27610112

  11. Presynaptic Calcium Signalling in Cerebellar Mossy Fibres

    PubMed Central

    Thomsen, Louiza B.; Jörntell, Henrik; Midtgaard, Jens

    2009-01-01

    Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX)-sensitive fast Na+ spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers. Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon appeared to be isolated from one another in terms of calcium signalling. CGP55845 application showed that GABA B receptors mediated presynaptic inhibition of the calcium signal over the entire firing frequency range of mossy fibres. A paired-pulse depression of the calcium signal lasting more than 1 s affected burst firing in mossy fibres; this paired-pulse depression was reduced by GABA B antagonists. While our results indicated that a presynaptic rosette electrophysiologically functioned as a unit, topical GABA application showed that calcium signals in the branches of complex rosettes could be modulated locally, suggesting that cerebellar glomeruli may be dynamically sub-compartmentalized due to ongoing inhibition mediated by Golgi cells. This could provide a fine-grained control of mossy fibre-granule cell information transfer and synaptic plasticity within a mossy fibre rosette. PMID:20162034

  12. Complex Genotype by Environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus

    PubMed Central

    2011-01-01

    Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C) in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass), and each trait harboured significant additive genetic variance in the standard temperature (27°C) only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass). Of the female traits measured, only ovary mass for crickets reared at the cooler

  13. Multicomponent Nanomaterials with Complex Networked Architectures from Orthogonal Degradation and Binary Metal Backfilling in ABC Triblock Terpolymers.

    PubMed

    Cowman, Christina D; Padgett, Elliot; Tan, Kwan Wee; Hovden, Robert; Gu, Yibei; Andrejevic, Nina; Muller, David; Coates, Geoffrey W; Wiesner, Ulrich

    2015-05-13

    Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etching and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer-inorganic hybrid materials with two distinct metal networks. Multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures. PMID:25836760

  14. Multicomponent Nanomaterials with Complex Networked Architectures from Orthogonal Degradation and Binary Metal Backfilling in ABC Triblock Terpolymers

    PubMed Central

    2015-01-01

    Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etching and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures. PMID:25836760

  15. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1.

    PubMed

    Brown, Alan; Turner, Louise; Christoffersen, Stig; Andrews, Katrina A; Szestak, Tadge; Zhao, Yuguang; Larsen, Sine; Craig, Alister G; Higgins, Matthew K

    2013-02-22

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from CIDR (cysteine-rich interdomain regions) and DBL (Duffy-binding-like) domains and show extensive variation in sequence, size, and domain organization. Here we use biophysical methods to characterize the entire ∼300-kDa ectodomain from IT4VAR13, a protein that interacts with the host receptor, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLβ domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1 ectodomain in complex with its ligand. They show that it combines a modular domain arrangement consisting of individual ligand binding domains, with a defined higher order architecture that exposes the ICAM-1 binding surface to allow adhesion. PMID:23297413

  16. The Architecture of the Qo Site of Cytochrome bc1 Complex Probed by Superoxide Production

    SciTech Connect

    Muller, Florian L.; Roberts, Arthur G.; Bowman, Michael K.); Kramer, David M.

    2003-06-03

    Although several X-ray structures have been solved for the mitochondrial cytochrome (cyt) bc1 complex, none yet shows the position of substrate, ubiquinol, in the quinol oxidase (Qo) site. In the present study, the interaction of molecular oxygen with the reactive intermediate Qo semiquinone is used to probe Qo site. It has been known for some time that partial turnover of the cyt bc1 complex in the presence of antimycin A, a Qi site inhibitor, results in accumulation of a semiquinone at the Qo site, which can reduce O2 to superoxide (O2?-). It was more recently shown that myxothiazol, which binds close to the cyt bL heme in the proximal Qo niche, also induces O2?- production. In this work we show that, in addition to myxothiazol, a number of other proximal Qo inhibitors (including E-b-methoxyacrylate-stilbene, mucidin and famoxadone) also induce O2?- production in isolated yeast cyt bc1 complex, at about 50% the Vmax observed in the presence of antimycin A. We propose that proximal Qo site inhibitors induce O2?- production because they allow formation, but not oxidation of the semiquinone at the distal niche of the Qo site pocket. The apparent Km for ubiquinol at the Qo site in the presence of Qo proximal inhibitors suggests that the distal niche of the Qo pocket can act as a fully independent quinol binding and oxidation site. Together with the X-ray structures these results suggest substrate ubiquinol binds in essentially the same position as stigmatellin with H-bonds between H161 of the Rieske iron-sulfur protein and E272 of the cyt b protein. When modeled in this way, mucidin, and ubiquinol can bind simultaneously to the Qo site with virtually no steric hindrance, whereas progressively bulkier inhibitors show increasing overlap. The fact that partial turnover of the Qo site is possible even with bound proximal Qo site inhibitors is consistent with the participation of two separate functional Qo binding niches, occupied simultaneously or sequentially.

  17. Initiator-integrated 3D printing enables the formation of complex metallic architectures.

    PubMed

    Wang, Xiaolong; Guo, Qiuquan; Cai, Xiaobing; Zhou, Shaolin; Kobe, Brad; Yang, Jun

    2014-02-26

    Three-dimensional printing was used to fabricate various metallic structures by directly integrating a Br-containing vinyl-terminated initiator into the 3D resin followed by surface-initiated atomic-transfer radical polymerization (ATRP) and subsequent electroless plating. Cu- and Ni-coated complex structures, such as microlattices, hollow balls, and even Eiffel towers, were prepared. Moreover, the method is also capable of fabricating ultralight cellular metals with desired structures by simply etching the polymer template away. By combining the merits of 3D printing in structure design with those of ATRP in surface modification and polymer-assisted ELP of metals, this universal, robust, and cost-effective approach has largely extended the capability of 3D printing and will make 3D printing technology more practical in areas of electronics, acoustic absorption, thermal insulation, catalyst supports, and others. PMID:24328276

  18. Architecture of the Tn7 Post-Transposition Complex: an Elaborate Nucleoprotein Structure

    PubMed Central

    Holder, Jason W.; Craig, Nancy L.

    2010-01-01

    Four transposition proteins encoded by the bacterial transposon Tn7, TnsA, TnsB, TnsC, and TnsD, mediate its site- and orientation-specific insertion into the chromosomal site attTn7. To establish which Tns proteins are actually present in the transpososome that executes DNA breakage and joining, we have determined the proteins present in the nucleoprotein product of transposition, the Post-Transposition Complex (PTC) using fluorescently labeled Tns proteins. All four required Tns proteins are present in the PTC in which we also find that the Tn7 ends are paired by protein-protein contacts between Tns proteins bound to the ends. Quantification of the relative amounts of the fluorescent Tns proteins in the PTC indicates that oligomers of TnsA, TnsB, and TnsC mediate Tn7 transposition. High-resolution DNA footprinting of the DNA product of transposition attTn7∷Tn7 revealed that about 350 bp of DNA on the transposon ends and on attTn7 contact the Tns proteins. All seven binding sites for TnsB, the component of the transposase that specifically binds the ends and mediates 3’ end breakage and joining, are occupied in the PTC. However, the protection pattern of the sites closest to the Tn7 ends in the PTC are different from that observed with TnsB alone, likely reflecting the pairing of the ends and their interaction with the target nucleoprotein complex necessary for activation of the breakage and joining steps. We also observe extensive protection of the attTn7 sequences in the PTC and that alternative DNA structures in substrate attTn7 that are imposed by TnsD are maintained in the PTC. PMID:20538004

  19. Evaluating genome architecture of a complex region via generalized bipartite matching.

    PubMed

    Lo, Christine; Kim, Sangwoo; Zakov, Shay; Bafna, Vineet

    2013-01-01

    With the remarkable development in inexpensive sequencing technologies and supporting computational tools, we have the promise of medicine being personalized by knowledge of the individual genome. Current technologies provide high throughput, but short reads. Reconstruction of the donor genome is based either on de novo assembly of the (short) reads, or on mapping donor reads to a standard reference. While such techniques demonstrate high success rates for inferring 'simple' genomic segments, they are confounded by segments with complex duplication patterns, including regions of direct medical relevance, like the HLA and the KIR regions.In this work, we address this problem with a method for assessing the quality of a predicted genome sequence for complex regions of the genome. This method combines two natural types of evidence: sequence similarity of the mapped reads to the predicted donor genome, and distribution of reads across the predicted genome. We define a new scoring function for read-to-genome matchings, which penalizes for sequence dissimilarities and deviations from expected read location distribution, and present an efficient algorithm for finding matchings that minimize the penalty. The algorithm is based on a formal problem, first defined in this paper, called Coverage Sensitive many-to-many min-cost bipartite Matching (CSM). This new problem variant generalizes the standard (one-to-one) weighted bipartite matching problem, and can be solved using network flows. The resulting Java-based tool, called SAGE (Scoring function for Assembled GEnomes), is freely available upon request. We demonstrate over simulated data that SAGE can be used to infer correct haplotypes of the highly repetitive KIR region on the Human chromosome 19. PMID:23734567

  20. Microstructured fibres: a positive impact on defence technology?

    NASA Astrophysics Data System (ADS)

    O'Driscoll, E. J.; Watson, M. A.; Delmonte, T.; Petrovich, M. N.; Feng, X.; Flanagan, J. C.; Hayes, J. R.; Richardson, D. J.

    2006-09-01

    In this paper we seek to assess the potential impact of microstructured fibres for security and defence applications. Recent literature has presented results on using microstructured fibre for delivery of high power, high quality radiation and also on the use of microstructured fibre for broadband source generation. Whilst these two applications may appear contradictory to one another the inherent design flexibility of microstructured fibres allows fibres to be fabricated for the specific application requirements, either minimising (for delivery) or maximising (for broadband source generation) the nonlinear effects. In platform based laser applications such as infrared counter measures, remote sensing and laser directed-energy weapons, a suitable delivery fibre providing high power, high quality light delivery would allow a laser to be sited remotely from the sensor/device head. This opens up the possibility of several sensor/device types sharing the same multi-functional laser, thus reducing the complexity and hence the cost of such systems. For applications requiring broadband source characteristics, microstructured fibres can also offer advantages over conventional sources. By exploiting the nonlinear effects it is possible to realise a multifunctional source for applications such as active hyperspectral imaging, countermeasures, and biochemical sensing. These recent results suggest enormous potential for these novel fibre types to influence the next generation of photonic systems for security and defence applications. However, it is important to establish where the fibres can offer the greatest advantages and what research still needs to be done to drive the technology towards real platform solutions.

  1. The hygroscopic behavior of plant fibres: a review

    NASA Astrophysics Data System (ADS)

    Célino, Amandine; Freour, Sylvain; Jacquemin, Frederic; Casari, Pascal

    2013-12-01

    Environmental concern has resulted in a renewed interest in bio-based materials. Among them, plant fibres are perceived as an environmentally friendly substitute to glass fibres for the reinforcement of composites, particularly in automotive engineering. Due to their wide availability, low cost, low density, high-specific mechanical properties and eco-friendly image, they are increasingly being employed as reinforcements in polymer matrix composites. Indeed, their complex microstructure as a composite material makes plant fibre a really interesting and challenging subject to study. Research subjects about such fibres are abundant because there are always some issues to prevent their use at large scale (poor adhesion, variability, low thermal resistance, hydrophilic behavior). The choice of natural fibres rather than glass fibres as filler yields a change of the final properties of the composite. One of the most relevant differences between the two kinds of fibre is their response to humidity. Actually, glass fibres are considered as hydrophobic whereas plant fibres have a pronounced hydrophilic behavior. Composite materials are often submitted to variable climatic conditions during their lifetime, including unsteady hygroscopic conditions. However, in humid conditions, strong hydrophilic behaviour of such reinforcing fibres leads to high level of moisture absorption in wet environments. This results in the structural modification of the fibres and an evolution of their mechanical properties together with the composites in which they are fitted in. Thereby, the understanding of these moisture absorption mechanisms as well as the influence of water on the final properties of these fibres and their composites is of great interest to get a better control of such new biomaterials. This is the topic of this review paper.

  2. Fibres get functional

    NASA Astrophysics Data System (ADS)

    Graham-Rowe, Duncan

    2011-02-01

    New forms of advanced optical fibres featuring exotic glasses, carefully designed microstructures and cores that are either hollow, fluidic, semiconductor or piezoelectric are giving light guides a new lease of life, reports Duncan Graham-Rowe.

  3. Polyhomologation based on in situ generated boron-thexyl-silaboracyclic initiating sites: a novel strategy towards the synthesis of polyethylene-based complex architectures.

    PubMed

    Zhang, Zhen; Zhang, Hefeng; Gnanou, Yves; Hadjichristidis, Nikos

    2015-06-21

    A novel strategy, based on the in situ generated boron-thexyl-silaboracyclic initiating sites for the polyhomologation of dimethylsulfoxonium methylide, has been developed for the synthesis of complex polyethylene-based architectures. As examples, the synthesis of a 4-arm polyethylene star, three (polystyrene)(polyethylene)2 3-miktoarm stars and a PE-branched double graft copolymer is given. PMID:25900042

  4. Molecular Architecture of the Major Histocompatibility Complex Class I-Binding Site of Ly49 Natural Killer Cell Receptors

    SciTech Connect

    Deng,L.; Cho, S.; Malchiodi, E.; Kerzic, M.; Dam, J.; Mariuzza, R.

    2008-01-01

    Natural killer (NK) cells play a vital role in the detection and destruction of virally infected and tumor cells during innate immune responses. The highly polymorphic Ly49 family of NK receptors regulates NK cell function by sensing major histocompatibility complex class I (MHC-I) molecules on target cells. Despite the determination of two Ly49-MHC-I complex structures, the molecular features of Ly49 receptors that confer specificity for particular MHC-I alleles have not been identified. To understand the functional architecture of Ly49-binding sites, we determined the crystal structures of Ly49C and Ly49G and completed refinement of the Ly49C-H-2Kb complex. This information, combined with mutational analysis of Ly49A, permitted a structure-based classification of Ly49s that we used to dissect the binding site into three distinct regions, each having different roles in MHC recognition. One region, located at the center of the binding site, has a similar structure across the Ly49 family and mediates conserved interactions with MHC-I that contribute most to binding. However, the preference of individual Ly49s for particular MHC-I molecules is governed by two regions that flank the central region and are structurally more variable. One of the flanking regions divides Ly49s into those that recognize both H-2D and H-2K versus only H-2D ligands, whereas the other discriminates among H-2D or H-2K alleles. The modular design of Ly49-binding sites provides a framework for predicting the MHC-binding specificity of Ly49s that have not been characterized experimentally.

  5. Binary architecture of the Nav1.2-β2 signaling complex

    PubMed Central

    Das, Samir; Gilchrist, John; Bosmans, Frank; Van Petegem, Filip

    2016-01-01

    To investigate the mechanisms by which β-subunits influence Nav channel function, we solved the crystal structure of the β2 extracellular domain at 1.35Å. We combined these data with known bacterial Nav channel structural insights and novel functional studies to determine the interactions of specific residues in β2 with Nav1.2. We identified a flexible loop formed by 72Cys and 75Cys, a unique feature among the four β-subunit isoforms. Moreover, we found that 55Cys helps to determine the influence of β2 on Nav1.2 toxin susceptibility. Further mutagenesis combined with the use of spider toxins reveals that 55Cys forms a disulfide bond with 910Cys in the Nav1.2 domain II pore loop, thereby suggesting a 1:1 stoichiometry. Our results also provide clues as to which disulfide bonds are formed between adjacent Nav1.2 912/918Cys residues. The concepts emerging from this work will help to form a model reflecting the β-subunit location in a Nav channel complex. DOI: http://dx.doi.org/10.7554/eLife.10960.001 PMID:26894959

  6. Bacterial actin: architecture of the ParMRC plasmid DNA partitioning complex.

    PubMed

    Salje, Jeanne; Löwe, Jan

    2008-08-20

    The R1 plasmid employs ATP-driven polymerisation of the actin-like protein ParM to move newly replicated DNA to opposite poles of a bacterial cell. This process is essential for ensuring accurate segregation of the low-copy number plasmid and is the best characterised example of DNA partitioning in prokaryotes. In vivo, ParM only forms long filaments when capped at both ends by attachment to a centromere-like region parC, through a small DNA-binding protein ParR. Here, we present biochemical and electron microscopy data leading to a model for the mechanism by which ParR-parC complexes bind and stabilise elongating ParM filaments. We propose that the open ring formed by oligomeric ParR dimers with parC DNA wrapped around acts as a rigid clamp, which holds the end of elongating ParM filaments while allowing entry of new ATP-bound monomers. We propose a processive mechanism by which cycles of ATP hydrolysis in polymerising ParM drives movement of ParR-bound parC DNA. Importantly, our model predicts that each pair of plasmids will be driven apart in the cell by just a single double helical ParM filament. PMID:18650930

  7. Functional architecture of the Reb1-Ter complex of Schizosaccharomyces pombe.

    PubMed

    Jaiswal, Rahul; Choudhury, Malay; Zaman, Shamsu; Singh, Samarendra; Santosh, Vishaka; Bastia, Deepak; Escalante, Carlos R

    2016-04-19

    Reb1 ofSchizosaccharomyces pomberepresents a family of multifunctional proteins that bind to specific terminator sites (Ter) and cause polar termination of transcription catalyzed by RNA polymerase I (pol I) and arrest of replication forks approaching the Ter sites from the opposite direction. However, it remains to be investigated whether the same mechanism causes arrest of both DNA transactions. Here, we present the structure of Reb1 as a complex with a Ter site at a resolution of 2.7 Å. Structure-guided molecular genetic analyses revealed that it has distinct and well-defined DNA binding and transcription termination (TTD) domains. The region of the protein involved in replication termination is distinct from the TTD. Mechanistically, the data support the conclusion that transcription termination is not caused by just high affinity Reb1-Ter protein-DNA interactions. Rather, protein-protein interactions between the TTD with the Rpa12 subunit of RNA pol I seem to be an integral part of the mechanism. This conclusion is further supported by the observation that double mutations in TTD that abolished its interaction with Rpa12 also greatly reduced transcription termination thereby revealing a conduit for functional communications between RNA pol I and the terminator protein. PMID:27035982

  8. A Genome-wide Combinatorial Strategy Dissects Complex Genetic Architecture of Seed Coat Color in Chickpea

    PubMed Central

    Bajaj, Deepak; Das, Shouvik; Upadhyaya, Hari D.; Ranjan, Rajeev; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea. PMID:26635822

  9. Binding of bile salts to fibre-enriched wheat fibre.

    PubMed

    Florén, C H; Nilsson, A

    1987-01-01

    A commercial product of fibre-enriched wheat fibre (Fiberform R) was tested for its binding of bile salts in vitro. The wheat fibre preparation was standardized and through enzymatic digestion of protein and starch contained 78 per cent fibre (w/w). Fibre-enriched wheat fibre bound with high capacity both conjugated and unconjugated bile salts. Binding was saturable, reversible and showed no specificity towards tauro- or glycine-conjugated bile salts. Binding was rapid, dependent on pH, was enhanced by the presence of high salt concentrations and partially inhibited by 6 M urea. This indicated that binding was a combination of hydrophobic and hydrophilic interactions. PMID:2820035

  10. Molecular architecture of a Leu3p-DNA complex in solution: a biochemical approach.

    PubMed Central

    Remboutsika, E; Kohlhaw, G B

    1994-01-01

    The Leu3 protein (Leu3p) of Saccharomyces cerevisiae is a pleiotropic transregulator that can function both as an activator and as a repressor of transcription. It binds to upstream promoter elements (UASLEU) with the consensus sequence 5'-GCCGGNNCCGGC-3'. The DNA-binding motif of Leu3p belongs to the family of Zn(II)2-Cys6 clusters. The motif is located between amino acid residues 37 and 67 of the 886-residue protein. In this study, we used a recombinant peptide consisting of residues 17 to 147 to explore the interaction between Leu3p and its cognate DNA. We found that the Leu3p(17-147) peptide is a monomer in the absence of UASLEU but assumes a dimeric structure when the DNA is present. Results of protein-DNA cross-linking and methylation and ethylation interference footprinting experiments show that the Leu3p(17-147) dimer interacts symmetrically with two contact triplets separated by 6 bp and suggest that the peptide approaches its target DNA in such a way that each subunit is positioned closer to one DNA strand than to the other. The binding of Leu3p is strongly affected by the spacing between the contact triplets of the UASLEU and by the type of triplet. Binding occurs when the triplets are 6 bp apart (normal spacing) but fails to occur when the triplets are 0, 5, or 8 bp apart. Weak binding occurs when the triplets are 7 bp apart. Binding does not occur when the UASLEU triplets (GCC....GGC) are replaced with triplets found in the UAS elements for Gal4p, Put3p, and Ppr1p (CGG....CCG). The apparent Kd for the normal Leu3p(17-147)-UASLEU complex is about 3 nM. A mutant form of Leu3p(17-147) in which the histidine at position 50 has been replaced with cysteine binds UASLEU with significantly greater affinity (apparent Kd of about 0.7 nM), even though the interaction between the mutant peptide and target DNA appears to be unchanged. Interestingly, repression of basal-level transcription, which is a hallmark property of the wild-type Leu3p(17-147) peptide, is

  11. Highly efficient cladding-pumped fibre laser based on an ytterbium-doped optical fibre and a fibre Bragg grating

    SciTech Connect

    Kurkov, Andrei S; Karpov, V I; Medvedkov, O I; Dianov, Evgenii M; Vasil'ev, Sergei A; Paramonov, Vladimir M; Protopopov, V N; Laptev, A Yu; Gur'yanov, A N; Umnikov, A A; Vechkanov, N I; Artyushenko, V G; Frahm, J

    1999-06-30

    Ytterbium-ion-doped double-clad optical fibres were developed. The differential quantum efficiency of a diode-pumped fibre laser, fabricated on the basis of such optical fibres with a fibre Bragg grating, was 90%. (lasers)

  12. IAIMS Architecture

    PubMed Central

    Hripcsak, George

    1997-01-01

    Abstract An information system architecture defines the components of a system and the interfaces among the components. A good architecture is essential for creating an Integrated Advanced Information Management System (IAIMS) that works as an integrated whole yet is flexible enough to accommodate many users and roles, multiple applications, changing vendors, evolving user needs, and advancing technology. Modularity and layering promote flexibility by reducing the complexity of a system and by restricting the ways in which components may interact. Enterprise-wide mediation promotes integration by providing message routing, support for standards, dictionary-based code translation, a centralized conceptual data schema, business rule implementation, and consistent access to databases. Several IAIMS sites have adopted a client-server architecture, and some have adopted a three-tiered approach, separating user interface functions, application logic, and repositories. PMID:9067884

  13. IAIMS architecture.

    PubMed

    Hripcsak, G

    1997-01-01

    An information system architecture defines the components of a system and the interfaces among the components. A good architecture is essential for creating an Integrated Advanced Information Management System (IAIMS) that works as an integrated whole yet is flexible enough to accommodate many users and roles, multiple applications, changing vendors, evolving user needs, and advancing technology. Modularity and layering promote flexibility by reducing the complexity of a system and by restricting the ways in which components may interact. Enterprise-wide mediation promotes integration by providing message routing, support for standards, dictionary-based code translation, a centralized conceptual data schema, business rule implementation, and consistent access to databases. Several IAIMS sites have adopted a client-server architecture, and some have adopted a three-tiered approach, separating user interface functions, application logic, and repositories. PMID:9067884

  14. Ground-penetrating radar survey on the island of Pantelleria (Italy) reveals an ancient architectural complex with likely Punic and Roman components

    NASA Astrophysics Data System (ADS)

    Urban, Thomas M.; Murray, Carrie Ann; Vella, Clive; Lahikainen, Amanda

    2015-12-01

    A ground-penetrating radar (GPR) survey conducted on the small volcanic island of Pantelleria, in the Strait of Sicily, south-central Mediterranean, revealed an apparent complex of Punic/Roman architecture. The survey focused on the Lago di Venere area, where a previously investigated ritual Punic site was built alongside a brackish volcanic lake. The site also exhibits evidence of earlier Eneolithic components and later Roman components. The full extent of the site has remained undetermined, however, with only the small area of the Punic ritual complex having been excavated from 1996 to 2002. The GPR survey was intended to explore whether additional architecture remained unseen in surrounding areas, thus taking a first step toward determining the site's full spatial extent and archaeological potential. This survey revealed a complex of architectural ruins beneath an active agricultural field immediately west of the previously excavated features, and extending to a depth of approximately 2 m. These newly discovered features expand the known architectural footprint of the immediate site by three-fold. This GPR study is the first published archaeo-geophysical investigation on the island.

  15. Novel in situ multiharmonic EQCM-D approach to characterize complex carbon pore architectures for capacitive deionization of brackish water

    NASA Astrophysics Data System (ADS)

    Shpigel, Netanel; Levi, Mikhael D.; Sigalov, Sergey; Aurbach, Doron; Daikhin, Leonid; Presser, Volker

    2016-03-01

    Multiharmonic analysis by electrochemical quartz-crystal microbalance with dissipation monitoring (EQCM-D) is introduced as an excellent tool for quantitative studying electrosorption of ions from aqueous solution in mesoporous (BP-880) or mixed micro-mesoporous (BP-2000) carbon electrodes. Finding the optimal conditions for gravimetric analysis of the ionic content in the charged carbon electrodes, we propose a novel approach to modeling the charge-dependent gravimetric characteristics by incorporation of Gouy-Chapman-Stern electric double layer model for ions electrosorption into meso- and micro-mesoporous carbon electrodes. All three parameters of the gravimetric equation evaluated by fitting it to the experimental mass changes curves were validated using supplementary nitrogen gas sorption analysis and complementing atomic force microscopy. Important overlap between gravimetric EQCM-D analysis of the ionic content of porous carbon electrodes and the classical capacitive deionization models has been established. The necessity and usefulness of non-gravimetric EQCM-D characterizations of complex carbon architectures, providing insight into their unique viscoelastic behavior and porous structure changes, have been discussed in detail.

  16. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes.

    PubMed

    Silva-Rocha, Rafael; Martínez-García, Esteban; Calles, Belén; Chavarría, Max; Arce-Rodríguez, Alejandro; de Las Heras, Aitor; Páez-Espino, A David; Durante-Rodríguez, Gonzalo; Kim, Juhyun; Nikel, Pablo I; Platero, Raúl; de Lorenzo, Víctor

    2013-01-01

    The 'Standard European Vector Architecture' database (SEVA-DB, http://seva.cnb.csic.es) was conceived as a user-friendly, web-based resource and a material clone repository to assist in the choice of optimal plasmid vectors for de-constructing and re-constructing complex prokaryotic phenotypes. The SEVA-DB adopts simple design concepts that facilitate the swapping of functional modules and the extension of genome engineering options to microorganisms beyond typical laboratory strains. Under the SEVA standard, every DNA portion of the plasmid vectors is minimized, edited for flaws in their sequence and/or functionality, and endowed with physical connectivity through three inter-segment insulators that are flanked by fixed, rare restriction sites. Such a scaffold enables the exchangeability of multiple origins of replication and diverse antibiotic selection markers to shape a frame for their further combination with a large variety of cargo modules that can be used for varied end-applications. The core collection of constructs that are available at the SEVA-DB has been produced as a starting point for the further expansion of the formatted vector platform. We argue that adoption of the SEVA format can become a shortcut to fill the phenomenal gap between the existing power of DNA synthesis and the actual engineering of predictable and efficacious bacteria. PMID:23180763

  17. The chromosome 2p21 region harbors a complex genetic architecture for association with risk for renal cell carcinoma

    PubMed Central

    Han, Summer S.; Yeager, Meredith; Moore, Lee E.; Wei, Ming-Hui; Pfeiffer, Ruth; Toure, Ousmane; Purdue, Mark P.; Johansson, Mattias; Scelo, Ghislaine; Chung, Charles C.; Gaborieau, Valerie; Zaridze, David; Schwartz, Kendra; Szeszenia-Dabrowska, Neonilia; Davis, Faith; Bencko, Vladimir; Colt, Joanne S.; Janout, Vladimir; Matveev, Vsevolod; Foretova, Lenka; Mates, Dana; Navratilova, M.; Boffetta, Paolo; Berg, Christine D.; Grubb, Robert L.; Stevens, Victoria L.; Thun, Michael J.; Diver, W. Ryan; Gapstur, Susan M.; Albanes, Demetrius; Weinstein, Stephanie J.; Virtamo, Jarmo; Burdett, Laurie; Brisuda, Antonin; McKay, James D.; Fraumeni, Joseph F.; Chatterjee, Nilanjan; Rosenberg, Philip S.; Rothman, Nathaniel; Brennan, Paul; Chow, Wong-Ho; Tucker, Margaret A.; Chanock, Stephen J.; Toro, Jorge R.

    2012-01-01

    In follow-up of a recent genome-wide association study (GWAS) that identified a locus in chromosome 2p21 associated with risk for renal cell carcinoma (RCC), we conducted a fine mapping analysis of a 120 kb region that includes EPAS1. We genotyped 59 tagged common single-nucleotide polymorphisms (SNPs) in 2278 RCC and 3719 controls of European background and observed a novel signal for rs9679290 [P = 5.75 × 10−8, per-allele odds ratio (OR) = 1.27, 95% confidence interval (CI): 1.17–1.39]. Imputation of common SNPs surrounding rs9679290 using HapMap 3 and 1000 Genomes data yielded two additional signals, rs4953346 (P = 4.09 × 10−14) and rs12617313 (P = 7.48 × 10−12), both highly correlated with rs9679290 (r2 > 0.95), but interestingly not correlated with the two SNPs reported in the GWAS: rs11894252 and rs7579899 (r2 < 0.1 with rs9679290). Genotype analysis of rs12617313 confirmed an association with RCC risk (P = 1.72 × 10−9, per-allele OR = 1.28, 95% CI: 1.18–1.39) In conclusion, we report that chromosome 2p21 harbors a complex genetic architecture for common RCC risk variants. PMID:22113997

  18. Novel in situ multiharmonic EQCM-D approach to characterize complex carbon pore architectures for capacitive deionization of brackish water.

    PubMed

    Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Aurbach, Doron; Daikhin, Leonid; Presser, Volker

    2016-03-23

    Multiharmonic analysis by electrochemical quartz-crystal microbalance with dissipation monitoring (EQCM-D) is introduced as an excellent tool for quantitative studying electrosorption of ions from aqueous solution in mesoporous (BP-880) or mixed micro-mesoporous (BP-2000) carbon electrodes. Finding the optimal conditions for gravimetric analysis of the ionic content in the charged carbon electrodes, we propose a novel approach to modeling the charge-dependent gravimetric characteristics by incorporation of Gouy-Chapman-Stern electric double layer model for ions electrosorption into meso- and micro-mesoporous carbon electrodes. All three parameters of the gravimetric equation evaluated by fitting it to the experimental mass changes curves were validated using supplementary nitrogen gas sorption analysis and complementing atomic force microscopy. Important overlap between gravimetric EQCM-D analysis of the ionic content of porous carbon electrodes and the classical capacitive deionization models has been established. The necessity and usefulness of non-gravimetric EQCM-D characterizations of complex carbon architectures, providing insight into their unique viscoelastic behavior and porous structure changes, have been discussed in detail. PMID:26902741

  19. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola.

    PubMed

    Raman, H; Raman, R; Coombes, N; Song, J; Prangnell, R; Bandaranayake, C; Tahira, R; Sundaramoorthi, V; Killian, A; Meng, J; Dennis, E S; Balasubramanian, S

    2016-06-01

    Optimum flowering time is the key to maximize canola production in order to meet global demand of vegetable oil, biodiesel and canola-meal. We reveal extensive variation in flowering time across diverse genotypes of canola under field, glasshouse and controlled environmental conditions. We conduct a genome-wide association study and identify 69 single nucleotide polymorphism (SNP) markers associated with flowering time, which are repeatedly detected across experiments. Several associated SNPs occur in clusters across the canola genome; seven of them were detected within 20 Kb regions of a priori candidate genes; FLOWERING LOCUS T, FRUITFUL, FLOWERING LOCUS C, CONSTANS, FRIGIDA, PHYTOCHROME B and an additional five SNPs were localized within 14 Kb of a previously identified quantitative trait loci for flowering time. Expression analyses showed that among FLC paralogs, BnFLC.A2 accounts for ~23% of natural variation in diverse accessions. Genome-wide association analysis for FLC expression levels mapped not only BnFLC.C2 but also other loci that contribute to variation in FLC expression. In addition to revealing the complex genetic architecture of flowering time variation, we demonstrate that the identified SNPs can be modelled to predict flowering time in diverse canola germplasm accurately and hence are suitable for genomic selection of adaptative traits in canola improvement programmes. PMID:26428711

  20. RWD domain: a recurring module in kinetochore architecture shown by a Ctf19-Mcm21 complex structure

    SciTech Connect

    Schmitzberger, Florian; Harrison, Stephen C

    2012-04-30

    The proteins Ctf19, Okp1, Mcm21 and Ame1 are the components of COMA, a subassembly of budding-yeast kinetochores. We have determined the crystal structure of a conserved COMA subcomplex - the Ctf19 - Mcm21 heterodimer - from Kluyveromyces lactis. Both proteins contain 'double-RWD' domains, which together form a Y-shaped framework with flexible N-terminal extensions. The kinetochore proteins Csm1, Spc24 and Spc25 have related single RWD domains, and Ctf19 and Mcm21 associate with pseudo-twofold symmetry analogous to that in the Csm1 homodimer and the Spc24-Spc25 heterodimer. The double-RWD domain core of the Ctf19-Mcm21 heterodimer is sufficient for association with Okp1-Ame1; the less conserved N-terminal regions may interact with components of a more extensive 'CTF19 complex'. Our structure shows the RWD domain to be a recurring module of kinetochore architecture that may be present in other kinetochore substructures. Like many eukaryotic molecular machines, kinetochores may have evolved from simpler assemblies by multiplication of a few ancestral modules.

  1. Architecture and Nucleotide-Dependent Conformational Changes of the Rvb1-Rvb2 AAA+ Complex Revealed by Cryoelectron Microscopy.

    PubMed

    Ewens, Caroline A; Su, Min; Zhao, Liang; Nano, Nardin; Houry, Walid A; Southworth, Daniel R

    2016-05-01

    Rvb1 and Rvb2 are essential AAA+ proteins that interact together during the assembly and activity of diverse macromolecules including chromatin remodelers INO80 and SWR-C, and ribonucleoprotein complexes including telomerase and snoRNPs. ATP hydrolysis by Rvb1/2 is required for function; however, the mechanism that drives substrate remodeling is unknown. Here we determined the architecture of the yeast Rvb1/2 dodecamer using cryoelectron microscopy and identify that the substrate-binding insertion domain undergoes conformational changes in response to nucleotide state. 2D and 3D classification defines the dodecamer flexibility, revealing distinct arrangements and the hexamer-hexamer interaction interface. Reconstructions of the apo, ATP, and ADP states identify that Rvb1/2 undergoes substantial conformational changes that include a twist in the insertion-domain position and a corresponding rotation of the AAA+ ring. These results reveal how the ATP hydrolysis cycle of the AAA+ domains directs insertion-domain movements that could provide mechanical force during remodeling or helicase activities. PMID:27112599

  2. The Integrated Survey for Excavated Architectures: the Complex of Casalnuovo District Within the World Heritage Site "sassi" (matera, Italy)

    NASA Astrophysics Data System (ADS)

    Cardinale, T.; Valva, R.; Lucarelli, M.

    2015-02-01

    Never as within the complex of Sassi (Matera, South of Italy), the parties have a volumetric material identity and a special construction condition for which, first of all, you need to know the whole to which they give life, and then the individual components and their connections. In the course of time, in the Lucan city, there were stable and favorable conditions that allowed the development of an architectural language, of juxtaposition of the materials, interpenetration of space and conformation of the volumes, which generated an exceptional urban phenomenon. The distribution of these building artifacts in symbiotic connection with the connective calcareous texture that hosts them , resulted in a spontaneously harmonious figurative balance that characterizes the constructive expedients employed and the distributive and morphological solutions. This is the reason why the Sassi, and the overlooking Park of Rupestrian Churches of Matera Murgia, have been entered in 1993 in the UNESCO World Heritage List. The complexity of a built space, such as this one, determines the need for a non-traditional approach, so you have to combine last generation tools and canonical ones for survey, drawing and representation, within a dialectic between memory and design, tradition and innovation. For this reason, an appropriate cognitive apparatus has been set up for the entire technical process, making use of different non-destructive and non-contact techniques: digital photogrammetry, total station, laser scanner and thermography, in order to obtain a three-dimensional computer model, useful for the diagnosis and the preservation of the integrity of cultural heritage.

  3. Understanding How the Complex Molecular Architecture of Mannan-degrading Hydrolases Contributes to Plant Cell Wall Degradation*

    PubMed Central

    Zhang, Xiaoyang; Rogowski, Artur; Zhao, Lei; Hahn, Michael G.; Avci, Utku; Knox, J. Paul; Gilbert, Harry J.

    2014-01-01

    Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms. PMID:24297170

  4. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments

    NASA Astrophysics Data System (ADS)

    Baker, Brendon M.; Trappmann, Britta; Wang, William Y.; Sakar, Mahmut S.; Kim, Iris L.; Shenoy, Vivek B.; Burdick, Jason A.; Chen, Christopher S.

    2015-12-01

    To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices, we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell-matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibres, and bulk contraction of the material. Increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation; however, increasing fibre stiffness instead suppressed spreading and proliferation for certain network architectures. Lower fibre stiffness permitted active cellular forces to recruit nearby fibres, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signalling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fibre recruitment as a previously undescribed mechanism by which cells probe and respond to mechanics in fibrillar matrices.

  5. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    NASA Astrophysics Data System (ADS)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of

  6. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Bismuth-ring-doped fibres

    NASA Astrophysics Data System (ADS)

    Zlenko, Aleksandr S.; Akhmetshin, Ural G.; Dvoirin, Vladislav V.; Bogatyrev, Vladimir A.; Firstov, Sergei V.

    2009-11-01

    A new process for bismuth doping of optical fibres is proposed in which the dopant is introduced into a thin layer surrounding the fibre core. This enables bismuth stabilisation in the silica glass, with no limitations on the core composition. In particular, the GeO2 content of the fibre core in this study is 16 mol %. Spectroscopic characterisation of such fibres and optical gain measurements suggest that the proposed approach has considerable potential for laser applications.

  7. Specimen specific parameter identification of ovine lumbar intervertebral discs: On the influence of fibre-matrix and fibre-fibre shear interactions.

    PubMed

    Reutlinger, Christoph; Bürki, Alexander; Brandejsky, Vaclav; Ebert, Lars; Büchler, Philippe

    2014-02-01

    Numerical models of the intervertebral disc, which address mechanical questions commonly make use of the difference in water content between annulus and nucleus, and thus fluid and solid parts are separated. Despite this simplification, models remain complex due to the anisotropy and nonlinearity of the annulus and regional variations of the collagen fibre density. Additionally, it has been shown that cross-links make a large contribution to the stiffness of the annulus. Because of this complex composite structure, it is difficult to reproduce several sets of experimental data with one single set of material parameters. This study addresses the question to which extent the ultrastructure of the intervertebral disc should be modelled so that its moment-angle behaviour can be adequately described. Therefore, a hyperelastic constitutive law, based on continuum mechanical principles was derived, which does not only consider the anisotropy from the collagen fibres, but also interactions among the fibres and between the fibres and the ground substance. Eight ovine lumbar intervertebral discs were tested on a custom made spinal loading simulator in flexion/extension, lateral bending and axial rotation. Specimen-specific geometrical models were generated using CT images and T2 maps to distinguish between annulus fibrosus and nucleus pulposus. For the identification of the material parameters the annulus fibrosus was described with two scenarios: with and without fibre-matrix and fibre-fibre interactions. Both scenarios showed a similar behaviour on a load displacement level. Comparing model predictions to the experimental data, the mean RMS of all specimens and all load cases was 0.54±0.15° without the interaction and 0.54±0.19° when the fibre-matrix and fibre-fibre interactions were included. However, due to the increased stiffness when cross-links effects were included, this scenario showed more physiological stress-strain relations in uniaxial and biaxial stress

  8. Fibre gratings and their applications

    SciTech Connect

    Vasil'ev, Sergei A; Medvedkov, O I; Korolev, I G; Bozhkov, A S; Kurkov, Andrei S; Dianov, Evgenii M

    2005-12-31

    A brief review is given of the state of the art in the research on the photosensitivity of fibres and photoinduced fibre gratings. The most important properties of fibre gratings are considered and the main methods of their production and their applications are discussed. The photosensitive compositions of silica glasses are presented and methods for increasing their photosensitivity are indicated. (review)

  9. Can supplementary dietary fibre suppress breast cancer growth?

    PubMed Central

    Stoll, B. A.

    1996-01-01

    Case-control studies in diverse populations around the world have reported a lower risk of breast cancer in association with higher intake of dietary fibre and complex carbohydrates. Although this has not been confirmed in prospective studies in the USA, the observations have prompted the hypothesis that prolonged use of dietary fibre supplements might reduce breast cancer risk in high-incidence populations. Several possible mechanisms of action have been suggested, all involving a reduction of bioactive oestrogen levels in the blood. The various mechanisms are not necessarily mutually exclusive. First, a high-fibre diet might reduce circulating oestrogen levels by reducing the enterohepatic recirculation of oestrogen. Second, many plants and vegetables contain isoflavones and lignans capable of conversion in the bowel into weak oestrogens that may compete with oestradiol for target binding-sites. Third, a high-fibre diet is less often associated with obesity, which tends to increase availability of the biologically active 16-alpha metabolites of oestrone. Fourth, a high-fibre diet usually has a lower content of fat and a higher content of antioxidant vitamins, which may protect against breast cancer risk. Finally, diets rich in fibre and complex carbohydrates have been shown to improve insulin sensitivity, with an associated reduction in circulating oestrogen levels. Synergism between these effects offers a possible mechanism by which a high fibre intake might suppress breast cancer growth in women. PMID:8605086

  10. Bismuth-ring-doped fibres

    SciTech Connect

    Zlenko, Aleksandr S; Dvoirin, Vladislav V; Bogatyrev, Vladimir A; Firstov, Sergei V; Akhmetshin, Ural G

    2009-11-30

    A new process for bismuth doping of optical fibres is proposed in which the dopant is introduced into a thin layer surrounding the fibre core. This enables bismuth stabilisation in the silica glass, with no limitations on the core composition. In particular, the GeO{sub 2} content of the fibre core in this study is 16 mol %. Spectroscopic characterisation of such fibres and optical gain measurements suggest that the proposed approach has considerable potential for laser applications. (optical fibres and fibreoptic sensors)

  11. Self Healing Fibre-reinforced Polymer Composites: an Overview

    NASA Astrophysics Data System (ADS)

    Bond, Ian P.; Trask, Richard S.; Williams, Hugo R.; Williams, Gareth J.

    Lightweight, high-strength, high-stiffness fibre-reinforced polymer composite materials are leading contenders as component materials to improve the efficiency and sustainability of many forms of transport. For example, their widespread use is critical to the success of advanced engineering applications, such as the Boeing 787 and Airbus A380. Such materials typically comprise complex architectures of fine fibrous reinforcement e.g. carbon or glass, dispersed within a bulk polymer matrix, e.g. epoxy. This can provide exceptionally strong, stiff, and lightweight materials which are inherently anisotropic, as the fibres are usually arranged at a multitude of predetermined angles within discrete stacked 2D layers. The direction orthogonal to the 2D layers is usually without reinforcement to avoid compromising in-plane performance, which results in a vulnerability to damage in the polymer matrix caused by out-of-plane loading, i.e. impact. Their inability to plastically deform leaves only energy absorption via damage creation. This damage often manifests itself internally within the material as intra-ply matrix cracks and inter-ply delaminations, and can thus be difficult to detect visually. Since relatively minor damage can lead to a significant reduction in strength, stiffness and stability, there has been some reticence by designers for their use in safety critical applications, and the adoption of a `no growth' approach (i.e. damage propagation from a defect constitutes failure) is now the mindset of the composites industry. This has led to excessively heavy components, shackling of innovative design, and a need for frequent inspection during service (Richardson 1996; Abrate 1998).

  12. Specialization versus conservation: How Pol I and Pol III use the conserved architecture of the pre-initiation complex for specialized transcription

    PubMed Central

    Hoffmann, Niklas A.; Sadian, Yashar; Tafur, Lucas; Kosinski, Jan; Müller, Christoph W.

    2016-01-01

    ABSTRACT Here, we discuss the overall architecture of the RNA polymerase I (Pol I) and III (Pol III) core enzymes and their associated general transcription factors in the context of models of the Pol I and Pol III pre-initiation complexes, thereby highlighting potential functional adaptations of the Pol I and Pol III enzymes to their respective transcription tasks. Several new insights demonstrate the great degree of specialization of each of the eukaryotic RNA polymerases that is only beginning to be revealed as the structural and functional characterization of all eukaryotic RNA polymerases and their pre-initiation complexes progresses. PMID:27327079

  13. Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex.

    PubMed

    Katoh, Yohei; Terada, Masaya; Nishijima, Yuya; Takei, Ryota; Nozaki, Shohei; Hamada, Hiroshi; Nakayama, Kazuhisa

    2016-05-20

    Intraflagellar transport (IFT) is essential for assembly and maintenance of cilia and flagella as well as ciliary motility and signaling. IFT is mediated by multisubunit complexes, including IFT-A, IFT-B, and the BBSome, in concert with kinesin and dynein motors. Under high salt conditions, purified IFT-B complex dissociates into a core subcomplex composed of at least nine subunits and at least five peripherally associated proteins. Using the visible immunoprecipitation assay, which we recently developed as a convenient protein-protein interaction assay, we determined the overall architecture of the IFT-B complex, which can be divided into core and peripheral subcomplexes composed of 10 and 6 subunits, respectively. In particular, we identified TTC26/IFT56 and Cluap1/IFT38, neither of which was included with certainty in previous models of the IFT-B complex, as integral components of the core and peripheral subcomplexes, respectively. Consistent with this, a ciliogenesis defect of Cluap1-deficient mouse embryonic fibroblasts was rescued by exogenous expression of wild-type Cluap1 but not by mutant Cluap1 lacking the binding ability to other IFT-B components. The detailed interaction map as well as comparison of subcellular localization of IFT-B components between wild-type and Cluap1-deficient cells provides insights into the functional relevance of the architecture of the IFT-B complex. PMID:26980730

  14. Quantitative trait loci in hop (Humulus lupulus L.) reveal complex genetic architecture underlying variation in sex, yield and cone chemistry

    PubMed Central

    2013-01-01

    advance our understanding of the genetic control of traits of current economic and breeding significance in hop and demonstrate the complex genetic architecture underlying variation in these traits. The linkage information obtained in this study, based on transferable markers, can be used to facilitate the validation of QTL, crucial to the success of MAS. PMID:23718194

  15. Supramolecular architectures of novel chromium(III) oxalate complexes: steric effects of the ligand size and building-blocks approach.

    PubMed

    Androš, Lidija; Jurić, Marijana; Molčanov, Krešimir; Planinić, Pavica

    2012-12-28

    Five new oxalate complexes of chromium(III), [Hphen][Cr(phen)(C(2)O(4))(2)]·2H(2)O (1), [Cr(phen)(2)(C(2)O(4))][Cr(phen)(C(2)O(4))(2)]·3H(2)O (2), [Cr(phen)(2)(C(2)O(4))]NO(3)·H(2)C(2)O(4)·H(2)O (3), [Cr(bpy)(2)(C(2)O(4))][Cr(bpy)(C(2)O(4))(2)]·3H(2)O (4) and [Cr(bpy)(2)(C(2)O(4))]NO(3)·1/2H(2)C(2)O(4)·4H(2)O (5) (phen = 1,10-phenanthroline, bpy = 2,2'-bipyridine), were prepared by using an (oxalato)tantalate(V) solution as a source of oxalate ligands. The compounds contain either the discrete mononuclear [Cr(L)(2)(C(2)O(4))](+) cation [L = phen (3); L = bpy (5)] or the discrete mononuclear [Cr(L)(C(2)O(4))(2)](-) anion [L = phen (1)], or both types of mononuclear ions [L = phen (2); L = bpy (4)]. The crystal structures are dominated by the hydrogen-bonding and π···π-stacking interactions that give rise to the overall two- (compounds 1, 2, 4, 5) or three-dimensional (compound 3) architectures. Compounds 2 and 4 represent a borderline case between isostructurality and non-isostructurality; they exhibit an analogous packing of the cation and the anion units, but the crystallization water molecules occupy different positions - due to a difference in size between the phen and bpy ligands. The influence of steric factors is evident also in the case of 3 and 5, which, despite very similar chemical formulae, exert a completely different packing of the constituents. By the self-assembling of 1 and 4, used as building blocks in the reaction with calcium(II) cations, the heterobimetallic polymeric compounds {[CaCr(2)(phen)(2)(C(2)O(4))(4)]·5H(2)O}(n) (6) and {[CaCr(2)(bpy)(2)(C(2)O(4))(4)]·0.83H(2)O}(n) (7) were obtained. The crystal structure of 7 is reported: the [Cr(bpy)(C(2)O(4))(2)](-) unit, through the two oxalate groups, acts as a chelating ligand towards Ca cations, resulting in heterometallic one-dimensional double zigzag chains, formed of diamond-shaped units. The characterization of the compounds obtained was accomplished by the spectroscopy and

  16. Fibre-optical microendoscopy.

    PubMed

    Gu, M; Bao, H; Kang, H

    2014-04-01

    Microendoscopy has been an essential tool in exploring micro/nano mechanisms in vivo due to high-quality imaging performance, compact size and flexible movement. The investigations into optical fibres, micro-scanners and miniature lens have boosted efficiencies of remote light delivery to sample site and signal collection. Given the light interaction with materials in the fluorescence imaging regime, this paper reviews two classes of compact microendoscopy based on a single fibre: linear optical microendoscopy and nonlinear optical microendoscopy. Due to the fact that fluorescence occurs only in the focal volume, nonlinear optical microendoscopy can provide stronger optical sectioning ability than linear optical microendoscopy, and is a good candidate for deep tissue imaging. Moreover, one-photon excited fluorescence microendoscopy as the linear optical microendoscopy suffers from severe photobleaching owing to the linear dependence of photobleaching rate on excitation laser power. On the contrary, nonlinear optical microendoscopy, including two-photon excited fluorescence microendoscopy and second harmonic generation microendoscopy, has the capability to minimize or avoid the photobleaching effect at a high excitation power and generate high image contrast. The combination of various nonlinear signals gained by the nonlinear optical microendoscopy provides a comprehensive insight into biophenomena in internal organs. Fibre-optical microendoscopy overcomes physical limitations of traditional microscopy and opens up a new path to achieve early cancer diagnosis and microsurgery in a minimally invasive and localized manner. PMID:24593142

  17. Distributed ultrafast fibre laser

    PubMed Central

    Liu, Xueming; Cui, Yudong; Han, Dongdong; Yao, Xiankun; Sun, Zhipei

    2015-01-01

    A traditional ultrafast fibre laser has a constant cavity length that is independent of the pulse wavelength. The investigation of distributed ultrafast (DUF) lasers is conceptually and technically challenging and of great interest because the laser cavity length and fundamental cavity frequency are changeable based on the wavelength. Here, we propose and demonstrate a DUF fibre laser based on a linearly chirped fibre Bragg grating, where the total cavity length is linearly changeable as a function of the pulse wavelength. The spectral sidebands in DUF lasers are enhanced greatly, including the continuous-wave (CW) and pulse components. We observe that all sidebands of the pulse experience the same round-trip time although they have different round-trip distances and refractive indices. The pulse-shaping of the DUF laser is dominated by the dissipative processes in addition to the phase modulations, which makes our ultrafast laser simple and stable. This laser provides a simple, stable, low-cost, ultrafast-pulsed source with controllable and changeable cavity frequency. PMID:25765454

  18. Is it a modacrylic fibre?

    PubMed

    Grieve, M C; Griffin, R M

    1999-01-01

    This study describes the characteristics of modacrylic fibres and includes over 80 samples (previous and current) representing 15 trade names. Fibre morphology was examined using brightfield microscopy. Signs of elongation were determined using polarised light microscopy. Fibre cross sections were also examined. The generic class of fibre was divided into sub groups using polymer composition as determined by FTIR-microscopy. Microscopically, some modacrylic fibres cannot be distinguished from acrylic fibres. Others display unusual optical and morphological features which are a strong indication of their generic class. The infrared spectra provide information about the co-monomer, termonomers added to produced dye sites, the presence of solvent residue, dyes, and additives, e.g. flame retardant material. The infrared spectra should always be recorded before and after any thin layer chromatographic examination of the dye, otherwise peaks attributable to dyes, which may be a valuable comparative feature in casework will be lost. PMID:10795403

  19. The Formation and Binding of Gold Nanoparticles onto Wool Fibres

    SciTech Connect

    Johnston, James H.; Burridge, Kerstin A.; Kelly, Fern M.

    2009-07-23

    This paper presents the novel use of nanosize gold with different plasmon resonance colours, as stable colourfast colourants on wool fibres for use in high quality fabrics and textiles. The gold nanoparticles are synthesised by the controlled reduction of Au{sup 3+} in the AuCl{sub 4}{sup -} complex to Au{sup 0} onto the surface of the wool where they attach to the S in the cystine amino acids in wool keratin proteins. Scanning electronmicroscopy shows the nanoparticles are present on the cuticles of the fibre surface and are concentrated at the edges of these cuticles. EDS analysis shows a strong correlation of Au with S and X-ray photoelectron spectroscopy suggests Au-S bond formation. Hence the nanogold colourants are chemically bound to the wool fibre surface and do not fade as traditional organic dyes do. A range of coloured fibres have been produced.

  20. Meniscus on a shaped fibre: singularities and hodograph formulation

    PubMed Central

    Alimov, Mars M.; Kornev, Konstantin G.

    2014-01-01

    Using the method of matched asymptotic expansions, the problem of the capillary rise of a meniscus on the complex-shaped fibres was reduced to a nonlinear problem of determination of a minimal surface. This surface has to satisfy a special boundary condition at infinity. The proposed formulation allows one to interpret the meniscus problem as a problem of flow of a fictitious non-Newtonian fluid through a porous medium. As an example, the shape of a meniscus on a fibre of an oval cross section was analysed employing Chaplygin's hodograph transformation. It was discovered that the contact line may form singularities even if the fibre has a smooth profile: this statement was illustrated with an oval fibre profile having infinite curvature at two endpoints. PMID:25104910

  1. Fibre constituents of some foods.

    PubMed

    Rani, B; Kawatra, A

    1994-06-01

    Some plant foods viz. bottlegourd, carrot, cauliflower, cabbage, green bengalgram, pea, apple, plum, guava, karonda, blackgram husk and lentil husk were analysed for their dietary fibre components. The total dietary fibre contents of these foods varied from 14.68 to 78.21 percent on dry matter basis. As compared to fruits and vegetables, the husks had higher amount of total dietary fibre. Cellulose represented as the major fibre constituent in most of the foods whereas, husks were observed to be good sources of hemicellulose. All foods were low in pectin and lignin contents except guava. PMID:7971775

  2. Sulphur-doped silica fibres

    SciTech Connect

    Gerasimova, V I; Rybaltovskii, A O; Chernov, P V; Mashinsky, V M; Sazhin, O D; Medvedkov, O I; Rybaltovsky, A A; Khrapko, R R

    2003-01-31

    An optical fibre with low optical losses is manufactured from a sulphur-doped quartz glass. Optical absorption spectra are measured for various parts of the fibre core. Most of the bands of these spectra are assigned to oxygen-deficient centres and colour centres containing sulphur atoms. The photosensitivity of glasses exposed to laser radiation at wavelengths of 193 and 244 nm is investigated to estimate the possibility of their application for producing photorefracting devices. A Bragg grating of the refractive index with {Delta}n = 7.8 x 10{sup -4} is written in a sulphur-doped silica fibre. (fibre optics)

  3. Grid Architecture 2

    SciTech Connect

    Taft, Jeffrey D.

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  4. Fair performance comparison of different carbon blacks in lithium-sulfur batteries with practical mass loadings - Simple design competes with complex cathode architecture

    NASA Astrophysics Data System (ADS)

    Jozwiuk, Anna; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten

    2015-11-01

    The lithium-sulfur system is one of the most promising next generation battery systems, as elemental sulfur is cheap, abundant and has a high theoretical specific capacity. Although much research is conducted on complex sulfur/carbon composites and architectures, it is difficult to compare the performance of the cathodes to one another. Factors, such as different electrolyte composition and cell components strongly affect the cyclability of the battery. Here, we show the importance of optimizing "standard" conditions to allow for fair performance comparison of different carbon blacks. Our optimal electrolyte-to-sulfur ratio is 11 μL mgsulfur-1 and high concentrations of LiNO3 (>0.6 M) are needed because nitrate is consumed continuously during cycling. Utilizing these standard conditions, we tested the cycling behavior of four types of cathodes with individual carbon blacks having different specific surface areas, namely Printex-A, Super C65, Printex XE-2 and Ketjenblack EC-600JD. Both the specific capacity and polysulfide adsorption capability clearly correlate with the surface area of the carbon being used. High specific capacities (>1000 mAh gsulfur-1 at C/5) are achieved with high surface area carbons. We also demonstrate that a simple cathode using Ketjenblack EC-600JD as the conductive matrix material can well compete with those having complex architectures or additives.

  5. A Luminescent Cocaine Detection Platform Using a Split G-Quadruplex-Selective Iridium(III) Complex and a Three-Way DNA Junction Architecture.

    PubMed

    Ma, Dik-Lung; Wang, Modi; He, Bingyong; Yang, Chao; Wang, Wanhe; Leung, Chung-Hang

    2015-09-01

    In this study, a series of 10 in-house cyclometalated iridium(III) complexes bearing different auxiliary ligands were tested for their selectivity toward split G-quadruplex in order to construct a label-free switch-on cocaine detection platform employing a three-way junction architecture and a G-quadruplex motif as a signal output unit. Through two rounds of screening, we discovered that the iridium(III) complex 7 exhibited excellent selectivity toward the intermolecular G-quadruplex motif. A detection limit as low as 30 nM for cocaine can be achieved by this sensing approach with a linear relationship between luminescence intensity and cocaine concentration established from 30 to 300 nM. Furthermore, this sensing approach could detect cocaine in diluted oral fluid. We hope that our simple, signal-on, label-free oligonucleotide-based sensing method for cocaine using a three-way DNA junction architecture could act as a useful platform in bioanalytical research. PMID:26284502

  6. Omnis fibra ex fibra: fibre economies in Bonnet's and Diderot's models of organic order.

    PubMed

    Cheung, Tobias

    2010-01-01

    In a long-term transformation, that begins in Antiquity but takes a crucial turn in the Renaissance anatomies, the "fibre" becomes from around 1750 the operative building block and at the same time the first unifying principle of function-structure-complexes of organic bodies. It occupies the role that the cell takes up in the cell economies of the second third of the nineteenth century. In this paper, I will first discuss some key notions, technical analogies, and images that are related to "fibre"-concepts from Andreas Vesalius to Albrecht von Haller and then focus on Charles Bonnet's and Denis Diderot's fibre ceconomies. In Bonnet's and Diderot's fibre economies, the self-active, regulating properties of fibre-agents and their material structures, that reach from fibre bundles, tissues and membranes to apparati of organs, are united within the concrete whole of individual organized "systems" or "networks." PMID:20499615

  7. Dissolution behaviour of model basalt fibres studied by surface analysis methods

    NASA Astrophysics Data System (ADS)

    Förster, T.; Scheffler, C.; Mäder, E.; Heinrich, G.; Jesson, D. A.; Watts, J. F.

    2014-12-01

    New concepts of surface modifications aimed at the enhancement of alkali resistance of basalt fibres require research work on chemical composition of interacting surface layers as well as knowledge about fundamental processes of basaltic glass dissolution. Therefore, two model basalt fibres manufactured out of subalkaline and alkaline rock material were leached in NaOH solution at a temperature of 80 °C for up to 11 days. The formation of a corrosion shell was observed in both cases and was analyzed by SEM/EDX. The model fibres out of subalkaline rocks show dissolution kinetic, which is two-staged, whereas the more alkaline fibre reflects a linear one. The complex composition of basalt fibre is detected by EDX and XPS. The surface of basalt fibres is rich in Si and Al. XPS high resolution spectra provide information on oxidation state of iron.

  8. Determining the Architecture of a Protein-DNA Complex by Combining FeBABE Cleavage Analyses, 3-D Printed Structures, and the ICM Molsoft Program.

    PubMed

    James, Tamara; Hsieh, Meng-Lun; Knipling, Leslie; Hinton, Deborah

    2015-01-01

    Determining the structure of a protein-DNA complex can be difficult, particularly if the protein does not bind tightly to the DNA, if there are no homologous proteins from which the DNA binding can be inferred, and/or if only portions of the protein can be crystallized. If the protein comprises just a part of a large multi-subunit complex, other complications can arise such as the complex being too large for NMR studies, or it is not possible to obtain the amounts of protein and nucleic acids needed for crystallographic analyses. Here, we describe a technique we used to map the position of an activator protein relative to the DNA within a large transcription complex. We determined the position of the activator on the DNA from data generated using activator proteins that had been conjugated at specific residues with the chemical cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). These analyses were combined with 3-D models of the available structures of portions of the activator protein and B-form DNA to obtain a 3-D picture of the protein relative to the DNA. Finally, the Molsoft program was used to refine the position, revealing the architecture of the protein-DNA within the transcription complex. PMID:26404142

  9. Reticulation des fibres lignocellulosiques

    NASA Astrophysics Data System (ADS)

    Landrevy, Christel

    Pour faire face à la crise économique la conception de papier à valeur ajoutée est développée par les industries papetières. Le but de se projet est l'amélioration des techniques actuelles de réticulation des fibres lignocellulosiques de la pâte à papier visant à produire un papier plus résistant. En effet, lors des réactions de réticulation traditionnelles, de nombreuses liaisons intra-fibres se forment ce qui affecte négativement l'amélioration anticipée des propriétés physiques du papier ou du matériau produit. Pour éviter la formation de ces liaisons intra-fibres, un greffage sur les fibres de groupements ne pouvant pas réagir entre eux est nécessaire. La réticulation des fibres par une réaction de « click chemistry » appelée cycloaddition de Huisgen entre un azide et un alcyne vrai, catalysée par du cuivre (CuAAC) a été l'une des solutions trouvée pour remédier à ce problème. De plus, une adaptation de cette réaction en milieux aqueux pourrait favoriser son utilisation en milieu industriel. L'étude que nous désirons entreprendre lors de ce projet vise à optimiser la réaction de CuAAC et les réactions intermédiaires (propargylation, tosylation et azidation) sur la pâte kraft, en milieu aqueux. Pour cela, les réactions ont été adaptées en milieu aqueux sur la cellulose microcristalline afin de vérifier sa faisabilité, puis transférée à la pâte kraft et l'influence de différents paramètres comme le temps de réaction ou la quantité de réactifs utilisée a été étudiée. Dans un second temps, une étude des différentes propriétés conférées au papier par les réactions a été réalisée à partir d'une série de tests papetiers optiques et physiques. Mots Clés Click chemistry, Huisgen, CuAAC, propargylation, tosylation, azidation, cellulose, pâte kraft, milieu aqueux, papier.

  10. The Inhibitor DBMIB Provides Insight into the Functional Architecture of the Qo Site in the Cytochrome b(6)f Complex

    SciTech Connect

    Roberts, Arthur G.; Bowman, Michael K.; Kramer, David M.

    2004-06-22

    Previously, we showed that two equivalents of the quinone analog, 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB), could occupy the Qo site of the cytochrome (cyt) b6f complex simultaneously. In this work, study of electron paramagnetic resonance (EPR) spectra from oriented cyt b6f complex shows that the Rieske iron-sulfur protein (ISP) is in distinct orientations, depending on the stoichiometry of the inhibitor at the Qo site. With a single DBMIB at the Qo site, the ISP is oriented with the 2Fe2S cluster toward cyt f, which is similar to the orientation of the ISP in the x-ray crystal structure of the cyt b6f complex from thermophilic cyanobacteria, Mastigocladus laminosus, in the presence of DBMIB, as well as that of the chicken mitochondrial cyt bc1 complex in the presence of the class II inhibitor myxothiazol, which binds in the so-called ''proximal niche,'' near the cyt bL heme. These data suggest that the high affinity DBMIB site is at the proximal niche Qo pocket. With 2 equivalents or more of DBMIB bound, the Rieske ISP is in a position that resembles the ISPB position of chicken mitochondrial cyt bc1 complex in the presence of stigmatellin and Chlamydamonas reinhardtii cyt b6f complex in the presence of tridecyl-stigmatellin (TDS), which suggests that the low affinity DBMIB site is at the distal niche. The close interaction of DBMIB bound at the distal niche with the ISP induced the well-known effects on the 2Fe2S EPR spectrum and redox potential. To further test the effects of DBMIB on the ISP, the extents of cyt f oxidation after flash excitation in the presence of photosystem II inhibitor DCMU were measured as a function of DBMIB concentration in thylakoids. Addition of DBMIB concentrations where single binding was expected, did not markedly affect the extent of cyt f oxidation, whereas higher concentrations, where double occupancy was expected, increased the extent of cyt f oxidation to levels similar to cyt f oxidation in the presence of